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The H-matrix best linear unbiased prediction (HBLUP) method has been widely
used in livestock breeding programs. It can integrate all information, including
pedigree, genotypes, and phenotypes on both genotyped and non-genotyped
individuals into one single evaluation that can provide reliable predictions of
breeding values. The existing HBLUP method requires hyper-parameters that
should be adequately optimised as otherwise the genomic prediction accuracy
may decrease. In this study, we assess the performance of HBLUP using various
hyper-parameters such as blending, tuning, and scale factor in simulated and real
data on Hanwoo cattle. In both simulated and cattle data, we show that blending is
not necessary, indicating that the prediction accuracy decreases when using a
blending hyper-parameter <1. The tuning process (adjusting genomic
relationships accounting for base allele frequencies) improves prediction
accuracy in the simulated data, confirming previous studies, although the
improvement is not statistically significant in the Hanwoo cattle data. We also
demonstrate that a scale factor, α, which determines the relationship between
allele frequency and per-allele effect size, can improve the HBLUP accuracy in
both simulated and real data. Our findings suggest that an optimal scale factor
should be considered to increase prediction accuracy, in addition to blending and
tuning processes, when using HBLUP.
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1 Introduction

Genomic prediction can achieve a more accurate prediction of additive genetic values at
an early life stage, compared to the conventional pedigree-based prediction. Genomic
prediction has been applied to a broad range of disciplines, including animal breeding
(Hayes et al., 2009) and human disease risk prediction (Abraham et al., 2016; Inouye et al.,
2018; Khera et al., 2018). The accuracy of genomic prediction is important, which depends
on several factors such as marker density, linkage disequilibrium (LD) between the
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quantitative trait loci (QTLs) and markers, the sample size of
reference, the heritability of the trait, the number of QTLs, and
the distribution of QTL effects. The prediction accuracy is also
determined by the method used (Yan et al., 2022).

Genomic prediction requires genotypic information for both
discovery and target samples. Genome-wide single nucleotide
polymorphisms (SNPs) are typically used to estimate the
genomic relationship matrix (GRM) for the genotyped samples
so that breeding values (in livestock) can be estimated for the
target samples, given the phenotypic information of discovery
samples (De Los Campos et al., 2009; VanRaden et al., 2009). In
many cases, we may have individuals with useful phenotypic
information that are not genotyped, but they may be linked with
genotyped samples through a pedigree, i.e., missing genotype data.
To address this problem, a single-step genomic best linear unbiased
prediction (ssGBLUP) method was introduced, in which phenotypic
information on both genotyped and non-genotyped individuals in
the pedigree can be used simultaneously to maximise the prediction
accuracy of genotyped target individuals (Legarra et al., 2009;
Christensen and Lund, 2010; Christensen et al., 2012;
McWhorter et al., 2022).

SsGBLUP uses an H-matrix that is a harmonised matrix of a
pedigree-based numerator relationship matrix (NRM) and a GRM;
therefore, we will use the term H-matrix best linear unbiased
prediction (HBLUP). The H-matrix allows us to use the
information of non-genotyped individuals in genomic prediction
using a data augmentation technique (see (Legarra et al., 2009;
Misztal et al., 2009) and Legarra et al., 2014). HBLUP has been
widely used in the genetic evaluation of livestock and has been
employed in the national genetic evaluation program in many
countries (Gao et al., 2012; McMillan and Swan, 2017; Brown
et al., 2018; Chung et al., 2018; Johnston et al., 2018; Meyer
et al., 2018; Teissier et al., 2018; Oliveira et al., 2019; Mäntysaari
et al., 2020; Alkhoder and Liu, 2021). There are numerous studies
reporting that HBLUP outperforms traditional GBLUP (Baloche
et al., 2014; Gao et al., 2018; Gowane et al., 2019; Mancisidor et al.,
2021).

In HBLUP, there are two main hyper-parameters that can
determine its performance. First, blending is one of the hyper-
parameters that can provide a weighted sum of genomic and
numerator relationships, using an arbitrary weight typically
ranging from 0.5 to 0.99 (Meyer et al., 2018). This process is
essential because it ensures GRM, which is a positive definite
matrix, avoids numerical problems in HBLUP (VanRaden, 2008;
Legarra et al., 2009). Second, tuning is another important hyper-
parameter that can adjust GRM, accounting for the allele frequencies
in the base population that are inferred from the information of
NRM (Legarra et al., 2009; Misztal et al., 2009; Chen et al., 2011;
Vitezica et al., 2011). Note that GRM is typically based on genotyped
samples in the last few generations, whereas NRM includes the
information of founders in the base population through the
pedigree. Third, a scale factor is a novel hyper-parameter for
HBLUP to be introduced in this study, which can generate
different kinds of GRMs, accounting for the relationship between
allele frequency and per-allele effect size, i.e., per-allele effect sizes
vary, depending on a function proportional to [p (1 − p)] α, where p
is the allele frequency (Speed et al., 2012; Speed et al., 2017; Schoech
et al., 2019; Momin et al., 2023). Negative α values indicate larger

effect sizes for rare variants, and the choice of α may determine the
HBLUP accuracy, i.e., an optimal α can increase the accuracy.
Bouwman et al. (2017) considered alternative scale factors in
GBLUP, which were applied to a dairy cattle dataset. However,
they did not test the impact of alternative scale factors in HBLUP;
therefore, it is unclear how the scale factor, as a hyper-parameter,
determines the HBLUP accuracy.

In this study, we investigate the three hyper-parameters,
blending, tuning, and α, to assess how they affect HBLUP
accuracy, using simulated and real data. There are several tuning
methods (Legarra et al., 2009; Chen et al., 2011; Vitezica et al., 2011;
Meyer et al., 2018) among which we test two most frequently used
approaches, i.e., methods by Chen et al. (2011) (Chen et al., 2011)
and Vitezica et al. (2011) (Vitezica et al., 2011), referred to as tune =
1 and 2 in this study. For blending, we investigate a wide range of
weighting factors (θ) to assess the performance of HBLUP. In the
analyses, we use the direct Average Information algorithm (Lee and
Van Der Werf, 2006; Yang et al., 2011) that is robust to the
numerical problem caused by non-positive definite GRM so that
we can assess all kinds of weighting factors in blending, including θ =
1. We also assess HBLUP performance, varying the scale factor,
ranging from α = −1.5 to 1.5, in the estimation of GRM.We consider
the three hyper-parameters simultaneously to obtain optimal values
for blending, tuning, and α, using a grid search method (Bergstra
et al., 2011). Then, the performance of HBLUP with optimal values
is compared to performances with less optimal values.

2 Material and methods

2.1 Simulated data

QMSim software (Sargolzaei and Schenkel, 2009) was used for
simulation since it can efficiently generate a large-scale dataset
including genotypic and pedigree information. We simulated
three different scenarios that differed in terms of the effective
population size, mating design, and family structure. Two

TABLE 1 Parameters of historical population and genotyping data simulation
in the first scenario using QMSim software.

QMSim parameters Value

Litter size 2

The proportion of male progeny 0.5

Mating design random (rnd)

Selection design random (rnd)

Number of SNPs 9 × 103

Number of Chromosomes 30

Chromosome length (cM) 100

Number of marker loci on the chromosome 300

Marker positions random (rnd)

Marker allele frequencies equal

Marker mutation rate 2.8 × 10−8
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different effective population sizes are determined at 100 and
1,000 individuals with 100 generations in order to mimic
livestock (a half-sib design) and human (a full-sib design)
populations.

I. The historical population consists of 100 generations. For the
initial 95 generations, the effective population size (Ne) keeps
fixed at 100 individuals, consisting of 50 female individuals and
50 male individuals. Two offspring are generated with random
selection and random mating of parents. In the following five
generations (95th–100th), the number of progenies gradually
increased to 1,000. In the last generation of the historical
population (the 100th generation), we randomly select
50 male individuals and 500 female individuals as the
founders, and each male individual is mated with ten female
individuals and each female individual produced two offspring
(i.e., a half-sib design). The current population consists of five
generations with 1,000 offspring in each generation (101–105th
generations), which is used for the main analyses. The details of
applied parameters in the simulation of genotypic and pedigree
data are listed in Table 1. The steps to simulate the historical and
current populations are illustrated in Supplementary Figure S1.

II. In the second simulation scenario, Ne = 1,000 is used
(500 female individuals and 500 male individuals) with a
historical population of 100 generations. The population size
for each generation in the historical population with
100 generations is constant (N = 1,000). In the subsequent
five generations (101st–105th), each male individual is mated
with one female individual and each female individual produced
two offspring (i.e., a full-sib design), and 1,000 offspring were
generated in total. Thus, the founder population size is 1,000.

III. In the third scenario, Ne and the number of generations in the
historical population are the same as in the first scenario (Ne =
100 with 100 generations). However, In the last generation of the
historical population (100th) and the subsequent five generations
(101st–105th), the mating design and family structure are the same
as the second scenario, i.e., one male individual is mated with one
female individual to produce two progeny per mating (full-sib
design), producing 1,000 offspring in total in each generation.

In order to simulate the phenotypes of a complex trait based on
the simulated genotyped data, we used a model,

yi � Ziu + ei (1)
where yi is the phenotypic value, Zi is the vector of SNP genotypes
and ei is the residual effect for the ith individual, and u is the vector of
SNP effects. In this phenotypic simulation, we randomly selected
1,000 SNPs as causal variants, and u was drawn from a normal
distribution such that the mean and variance of the genetic effects
are mean(Ziu) � 0 and var(Ziu) � h2. The residual effects were
generated from a normal distribution with mean = 0 and variance
� 1 − h2. In the phenotypic simulation, the SNP effects, u, are scaled
by [2p (1 − p)]α, considering a non-negligible relationship between
allele frequency and per-allele effect size (Speed et al., 2012; Speed
et al., 2017; Schoech et al., 2019; Momin et al., 2023), which is a
function of alpha ranging from −1.5 to 1.5 in the simulation.

In theHBLUP analysis, for three simulation scenarios, it is assumed
that the pedigree information is available for the last five generations

(101–105th generations), and the genotypic information is available for
the individuals from the last two generations (104–105th generations),
noting that the sample size in each of the last five generations is 1,000.
Furthermore, it is noted that the phenotypes are available for all
individuals. We conducted 3,000 replicates of the simulations under
three different scenarios with specified simulation parameters. By
running multiple replicates, we were able to estimate the variance
and uncertainty in the results and obtain a more accurate assessment of
the effects of different factors on the population. Replicating the
simulation multiple times is a common practice in simulation
studies as it can increase the reliability and validity of the results by
reducing the impact of chance events and providing a more robust
assessment of the effects of the factors being studied.

2.2 Real data

2.2.1 Hanwoo cattle data
In this study, we applied statistical analyses to genotypic and

phenotypic data from Hanwoo beef cattle. The total number of
animals with pedigree information was 84,020, and among them,
13,800 animals were genotyped for 52,791 genome-wide SNPs, and
25,502 animals were recorded for their phenotypes. The number of
animals available for both genotypic and phenotypic information
was 9,072. The following criteria were applied for quality control
(QC) using PLINK: minor allele frequency below 0.01 (MAF),
filtering SNPs with a call rate lower than 95% (GENO = 0.05),
individual missingness more than 5% (MIND = 0.05), and
Hardy–Weinberg Equilibrium p-value threshold lower than 1e-04
(HWE). After QC, the number of individuals did not change, and
the SNPs number was 42,795. The Hanwoo beef cattle data included
five carcass traits: carcass weight, eye muscle area, back fat thickness,
marbling score, and adjusted 12 months weight. The total number of
animals with non-missing records for each carcass trait with and
without genotypic information can be seen in Table 2.

In the HBLUP analysis for the Hanwoo cattle data, animals
available for phenotypes and genotypes (Ng,p) (see Table 2) are
randomly divided into five groups. In a 5-fold cross-validation,
one of the five groups is selected as the target dataset, and the
remaining groups are used as the discovery dataset, which is
repeated five times, and the averaged phenotypic prediction
accuracy is calculated. The technical details of the training and
validation of HBLUP can be seen in Figure 1.

2.3 Estimating NRM, GRM, and HRM

2.3.1 Numerator relationship matrix
NRM is denoted as A which is estimated based on the pedigree

and has been used in Henderson’s mixed model equation
(Henderson, 1975) to obtain estimated breeding values. Following
Legarra et al., 2014, A matrix can be formulated as follows.

A � A11 A12

A21 A22
[ ] (2)

Where A11 and A22 denote the numerator relationships for the
groups of non-genotyped and genotyped individuals, and A12 and
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A21 are the numerator relationships between non-genotyped and
genotyped individuals.

2.3.2 Scale factor (α) and GRM
Following Momin et al., 2023, the variance of the ith genetic

variant (vi) can be expressed as a function of the allele
substation effect (u) and the allele frequency (pi), which can
be written as

Var vi( ) � 2pi 1 − pi( )γ2i � 2pi 1 − pi( )[ ]1+2α × ui
2 (3)

where γi � ui × [2pi(1 − pi)]α is the allele effect size (ui) that can
vary, depending on the allele frequency and the scale factor, α (Speed
et al., 2012; Speed et al., 2017), which can be explained by
evolutionary forces such as selections, mutations, immigrations,
and genetic drift. In the classical model [36], α is assumed to be
zero for all traits. Another widely used α value is α = −0.5, assuming
that the genetic variance of the causal variant has a uniform
distribution across the minor allele frequency spectrum.
However, there have been reports that optimal α values vary,
depending on traits and populations (Speed et al., 2012; Speed

TABLE 2 The number of individuals available for phenotypes with and without genotypic information for five carcass traits in the Hanwoo cattle dataset.

# Traits Phenotypic records With genotype Without genotype

1 Carcass weight (c_awgt in Kg) 7,833 4,607 3,226

2 Eye muscle area (c_ema in cm2) 7,829 4,607 3,222

3 Back fat (c_bf in mm) 7,834 4,607 3,227

4 Marbling score (c_ms in 1–9) 5,998 4,607 1,391

5 Adjusted 12 months’ weight (adj-w12) 18,654 9,072 9,582

FIGURE 1
A diagram showing the experimental designs and how to select the target and discovery samples for simulated and Hanwoo cattle datasets. In the
simulated dataset, the number of founders depends on the simulation scenarios (fn = 550, 1,000, and 550 for simulation scenarios 1, 2, and 3). The sample
size in each generation (Gi) is 1,000. Therefore, the sample size in the whole population is Nall = ∑N

i�1
Gi + fn . The sample sizes of target and discovery

samples are denoted as Nt and Nd. In Hanwoo cattle data, the phenotypic and genotypic information is partly missing. The number of animals
without genotype and phenotype (Nng,np), animals without genotype but with phenotype (Nng,p), animals with genotype but without phenotype (Ng,np),
and animals with both genotype and phenotype (Ng,p) are shown in the diagram. Ng is the total number of genotyped animals. In HBLUP, for the animals
with both genotype and phenotype (Ng,p), 5-fold cross-validation is applied, and each fold is selected as the target dataset (Nt), and the remaining animals
with phenotypes are used as the discovery samples (Nd). The best linear unbiased predictions for the phenotypes of the target samples are obtained. In
order to calculate the prediction accuracy, we used Pearson’s correlation coefficients between the true and predicted phenotypes for the target samples.
It is noted that the target dataset is selected from the last generations (offspring) and should be predicted by the previous generations (discovery
population).
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et al., 2017; Momin et al., 2023). Following Speed et al., 2020, the
genomic relationship matrix can be formulated as a function of α,
which can be written as

Gij � 1
d
∑L

k�1 xjk − 2pk( ) xik − 2pk( )[ ] 2pk 1 − pk( )[ ]2α (4)

where Gij is the genomic relationship between the ith and jth

individuals and L is the total number of SNPs, pk is the allele
frequency of the kth SNP, xjk is the SNP genotype coefficient of the jth

individual at the kth SNP, and d is the expected diagonals computed
as d � L · E[(xik − 2pk)2[2pk(1 − pk)]2α]. Eq. 4 is implemented in
LDAK software (Speed et al., 2012).

Note that Eq. 4 with α = −0.5 is equivalent to the genomic
relationship estimation implemented in PLINK, GCTA, and option
2 in BLUPf90 (VanRaden, 2008; Yang et al., 2010; Misztal et al.,
2018), and Eq. 4 with α = 0 is equivalent to option 1 in BLUPf90
(VanRaden, 2008; Misztal et al., 2018).

In the HBLUP analysis, we will vary α from −1.5 to 1.5 to find an
optimal α value that can improve the phenotypic prediction
accuracy and compare the performance with the conventional
HBLUP (with α = −0.5 or 0). It is noted that α value is used to
estimate GRM using the restricted maximum likelihood (REML)
method.

2.3.3 H-matrix (HRM) best linear unbiased
prediction

In the HBLUP analysis, GRM (G) is computed based on
genotypic information, and NRM (A) is estimated using the
pedigree information of the population. Following Legarra et al.,
2009, given estimated G and A (from Eqs 3, 4), the Hmatrix can be
derived as

H � A11 + A12A−1
22 G − A22( )A−1

22A21 A12A−1
22 G

GA−1
22A21 G

[ ] (5)

In the HBLUP analysis, the simulated data were divided into two
groups; one group included the individuals in the first three
generations, and the other group included individuals in the last
two generations in the current population (101–105th generations).
We used the genotypic information of the last two generations and
the full pedigree information across the five generations to estimate
the H matrix. In cattle data, animals available for phenotypes and
genotypes were considered (see Table 2) to estimate GRM, and then
the HRM was estimated using a combination of NRM estimated
based on whole pedigree (84,020 individuals) and GRM.

2.3.4 Blending
GRM is typically a non-positive definite matrix. In the process of

HBLUP, it is usually required to modify GRM to be positive definite
so that it can be inverted without any numerical problem
(VanRaden, 2008). This modification method is called “blending”
which shrinks the genomic relationships toward the pedigree
relationships, using an arbitrary weight, θ, typically ranging from
0.5 to 0.99 (VanRaden, 2008; Meyer et al., 2018; McWhorter et al.,
2022). The blended GRM can be written as

Gblended � θG + 1 − θ( )A22 ∀0≤ θ ≤ 1 (6)

2.3.5 Tuning
The tuning process adjusts GRM, accounting for the allele

frequencies in the base population, using the information from
NRM that includes the information of founders in the base
population through the pedigree (Legarra et al., 2009; Misztal
et al., 2009; Chen et al., 2011; Vitezica et al., 2011; Hsu et al.,
2017). The tuned GRM (Gtuned) is computed as

Gtuned � βGblended + ωJ (7)
where J is a matrix with the same size as GRM, all elements are equal
to one, and ω and β are tuning parameters that can be used to adjust
GRM, accounting for base allele frequencies. In this study, we use the
two most frequently used methods to obtain the tuning parameters,
ω and β. Following Chen et al., 2011, the first method (referred to as
tune = 1) computes ω, and β as

ω � I′A22I − I′GI( )
n22

β �
∑n

i�1A22i,i−I′A22I[ ]
n2

∑n

i�1Gi,i−I′GI[ ]
n2

(8)

where I is an array with the size of n × 1 and all values equal to one.
Following Vitezica et al., 2011, the second method (referred to as
tune = 2) can be written as

ω � I′A22I − I′GI( )
n22

β � 1 (9)

Please note that Eqs 8, 9 have been implemented in BLUPf90
(Misztal et al., 2018) as the second and fourth tuning options
(i.e., TunedG = 2 or 4).

2.4 Linear mixed model

In the analyses, we used a linear mixed model that can be
written as

y � Xb + Zg + e (10)
where y denotes a vector of phenotypic value, b is a vector of the
(environmental) fixed effects, g is a vector of random additive
genetic effect that is distributed based on N(0,Hσ2g), where H
can be derived from Eq. 5 and σ2g denotes the genetic variance.
Both X and Z are the incidence matrixes. Finally, the residual
effect vector is shown by e distributed as N(0, Iσ2e) where I is an
identity matrix and σ2e is the residual variance.

We employed the restricted maximum likelihood (REML)
method, fitting the H matrix, to estimate genetic variance and
heritability, which is referred to as HREML in this study. The
Akaike Information Criterion (AIC) was used to assess the
goodness of fitness of the model as � 2P − 2 × ln(L) , where
ln(L) is the log likelihood from HREML, and P is the number of
parameters. Given the estimated variances and heritability from
HREML, HBLUP was used to obtain individual genetic values.
We used MTG2.22 (Lee and Van der Werf, 2016; Lee et al.,
2017) genomic analysis software to perform the HREML and
HBLUP methods.
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2.5 Grid search to find optimal hyper-
parameters

One of the well-knownmethods to find the best configuration of
hyper-parameters is the grid search (LaValle et al., 2014). In the grid
search, all possible combinations of hyper-parameters are
considered to evaluate the performance of prediction models. We
considered two tuning methods and without tuning (Tune = 0, 1,
and 2). The blending step size in the grid search is 0.1 from 0 to 1 and
0.02 from 0.9 to 1.0. Meanwhile, the step size for α is
0.1 from −1 and 1.

2.6 Key performance metrics

This study uses critical performance metrics to evaluate the
accuracy and effectiveness of the prediction and estimation
methods. The specific performance metrics will depend on the
specific research question, the data type, and the prediction
method’s goals. Using multiple performance metrics to provide a
more comprehensive assessment of the model’s performance is
common.

2.6.1 Root Mean squared error (RMSE)
In genomic analysis studies, we often use a performance metric

called RMSE to see how good a model is at making predictions. It’s
like a measuring stick to compare the model’s guesses with the real
answers. We calculate RMSE by taking the differences between the
model’s predictions and the actual values, squaring them, and then
finding the average of those squared differences. Finally, we take the
square root of that average. RMSE is useful because it’s simple to
understand and tells us how far off the model’s predictions are from
the real answers, on average. The smaller the RMSE is related the
better the model is at making accurate predictions, which means the
guesses are closer to the real answers.

2.6.2 R-value
In the study of genes and their effects on physical traits, scientists

often use a tool called the Pearson correlation coefficient (R-value).
This helps them figure out if there’s a connection between the two
things they’re studying. If the coefficient is high and positive, that
means when one thing goes up, the other thing tends to go up too. If
it’s high and negative, that means when one thing goes up, the other
thing tends to go down.

2.6.3 Akaike information criteria (AIC)
In genomic analysis studies, researchers use statistical models to

understand the relationship between genes and traits. The Akaike
Information Criteria (AIC) is a metric that compares different
models and determines the best one. It was developed by
Hirotugu Akaike in 1974 (Akaike, 1974) and is based on the
principle of maximum likelihood, which aims to estimate the
parameters of a statistical model that is most likely to have
produced the observed data. The AIC value represents the
amount of information the model loses when it approximates the
true underlying process. A lower AIC value indicates a better model

FIGURE 2
HBLUP accuracy and hyper-parameters. (A) The HBLUP
accuracy (R-value) improves when using tune = 1 (Eq. 8) or tune = 2
(Eq. 9). However, blending (θ < 1) would not increase the accuracy for
this simulated dataset. (B) Optimal α values can increase the
accuracy, and also (C) can decrease the RMSE indicating that the
choice of α is important in HBLUP. We simulated genotypes and
phenotypes in 3,000 replications in which simulation parameters of
h2 � 0.8, Ne � 100 for 100 historical generations and a half-sib design
(50 male individuals, 500 female individuals) were used. The true α
values used in the phenotypic simulation were −0.5 or 0. The error
bars are 95% CI over the 3,000 replications.
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fit and a higher likelihood of accurately predicting new data. AIC is a
valuable metric for model selection because it takes into account
both the goodness of fit and the complexity of the model. It penalizes
models with more parameters, which can help prevent overfitting
and improve the generalisability of the model to new data.
Furthermore, AIC can be used in a wide range of statistical
models, including linear regression, generalized linear models,
and mixed effects models. It plays a crucial role in model
selection, allowing us to choose the model that best fits the data
while avoiding overfitting and ensuring that the model is
generalizable to new data.

3 Results

3.1 Simulated data

Figure 2A shows that the tuning process can improve the
phenotypic prediction accuracy (referred to as R-value) when
using the simulated data, which is a Pearson correlation
coefficient between the observed and predicted phenotypes in the
target dataset, confirming previous studies. However, it should be
noted that the improvement in prediction accuracy between Blend =
0.9 and Blend = 1 is only 0.003, which may be considered relatively
small. The tuning process with the first option (tune = 1; Eq. 8)
appears to better perform than the second option (tune = 2; Eq. 9)
for this simulated data. However, this shows that tuning GRMbefore
blending had a negligible impact on genomic predictions
(McWhorter et al., 2022). Furthermore, blending (θ <1) does not

significantly improve the HBLUP accuracy for this simulated data
(Figure 2A; Supplementary Figure S2). Figure 2B represents the
impact of α value on the HBLUP’s performance, showing that the
prediction accuracy increases when α value used in estimating
GRM is close to the true α value used in the phenotypic
simulation. When varying simulation scenarios (e.g., a small
or large effective population size with full-sib designs), a
similar result is observed: the phenotypic prediction accuracy
improves when applying the tunning process or when using
optimal α (Supplementary Figures S3–S6). In addition,
Figure 2C shows the importance of α value in decreasing the
root mean square error (RMSE) prediction of the HBLUP, and
Blend = 1 proposes less RMSE compared with Blend = 0.1 and
Blend = 0.5.

Mimicking a real dataset in which multiple replicates are not
possible, we used a single simulation data to assess the HBLUP
accuracy, varying hyper-parameters (Figure 3). All possible
configurations of tuning, blending, and α values were evaluated
using the grid search method where the prediction accuracy was
measured using 5-fold cross-validation (see Methods and
Supplementary Figures S7, S8). Figure 3 shows the HBLUP
accuracy averaged over 5-fold cross-validation when varying
hyper-parameters. The highest phenotypic prediction accuracy
was achieved with tune = 1, blend = 1, and α = 0 when using the
true α = 0, and with tune = 1, blend = 0.9, and α = −0.5 when
using the true α = −0.5 in the simulations (See Figure 3 and
Supplementary Figures S9, S10 for average RMSE). This shows
that the optimal α values found in the grid search are
approximately in agreement with the true simulated values.

FIGURE 3
HBLUP accuracy averaged over 5-fold cross validation in a grid searchwith various configurations of the hyper-parameters, using a single simulation
dataset. The best configuration found in the grid search consists of (A) and tune = 1, blend = 0.9, and α = −0.5 when using α = −0.5 in the simulation, and
(B) tune = 1, blend = 1 and α = 0 (in estimating GRM) when using α = 0 in the simulation. The population parameters used in the simulation are h2 = 0.8,
Ne = 100 for 100 historical generations, NSNPs = 9000, chromosome number = 30 and α = 0 or −0.5. Mimicking livestock population, a half-sib
design (50 sires, 10 dams per sire and 2 offspring per dam) was applied to the last 5 generations. Full pedigree across the 5 generations were used in
HBLUP. Among 2000 offspring in the last 2 generations, 5 subsets each with a random 400 individuals were used as target datasets in the 5-fold cross
validation. To predict for each target dataset, the remaining 5150 (across the 5 generations) were used as the discovery dataset.
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3.2 Cattle data

We used pedigree, genotype, and phenotype data of Korean
native cattle (Hanwoo), which is a unique and important breed in
the beef industry (Kim et al., 2017; Srivastava et al., 2021), to assess
the HBLUP accuracy with various hyper-parameters including α.
We first estimated optimal hyper-parameters that provided the
lowest Akaike information criteria (AIC) value based on the
residual maximum log-likelihood for each trait, using HREML
(Figure 4). We observed that ΔAIC was not uniformly
distributed across different α values, and optimal α values were
largely different across five carcass traits (Figure 4A). On the other
hand, a blending parameter θ = 1 provided the lowest ΔAIC values
for all traits except for EMA (θ = 0.86), indicating that a blended
GRM with θ < 1 did not increase the goodness of fit when using
HREML in general (Figure 4B). Finally, Figure 4C shows that tune =
2 could achieve better goodness of fit, compared with tune = 1 or
tune = 0 (i.e., without tuning), in most cases. For BFT and MS traits,
tune = 1 and 0 provided the lowest AIC (Figure 4C) although the
AIC was not significantly lower than tune = 2 (difference in AIC less
than 1). The best-performed hyper-parameters for five traits can be
seen in Supplementary Table S1.

We also used a grid search to assess the performance of all
hyper-parameters (Figure 5) in which HBLUP accuracies of all
possible configurations of tuning, blending, and α values were
evaluated in 5-fold cross-validation. Figure 5 shows the HBLUP
accuracy averaged over 5-fold cross-validation when varying α,
tuning, and blending values for five carcass traits. In Figure 5A,
we observed that the accuracy of HBLUP could be considerably
increased or decreased, depending on the choice of α values. In
contrast, Figure 5B shows that the highest HBLUP accuracy was
achieved with a blending parameter θ = 1 for all traits except EMA
(θ = 0.86), indicating that blended GRM would not improve the
HBLUP accuracy in most cases. Finally, Figure 5C indicates that the
tuning process would not substantially improve the HBLUP
accuracy for all carcass traits in Hanwoo cattle data. In addition,
the 2-D landscape of grid search results for HREML estimation
accuracy depending on α estimated in the genotyped samples and
making HRM can be seen in Supplementary Figure S11. The best
configuration of the hyper-parameters for each trait is shown in
Supplementary Table S1.

4 Discussion

HBLUP or ssGBLUP has been widely used in livestock breeding
programs (De Los Campos et al., 2009; VanRaden et al., 2009). The

FIGURE 4
HREML estimation accuracy depends on α estimated in the
genotyped samples and HRM. (A) Evaluating the impact of α values on
the ΔAIC for five different traits of the Hanwoo cattle dataset using
HREML in a univariate linear mixed model with different tuning
methods and blending coefficients. The Akaike Information Criterion
(AIC) was used to show the goodness of fitness of the model as
AIC � 2P − 2 × ln(L), where 2 × ln(L) is the HREML log likelihood, and
P is the number of parameters. ΔAIC � AIC − AICoptimal , where AIC is
obtained with the corresponding α value at the x-axis and AICoptimal is

(Continued )

FIGURE 4 (Continued)
the AIC for the optimal α. It is observed that optimal α varies
across traits. Whole individuals with available phenotypes were applied
in estimating the heritability based on Table 2. (B) A performance
comparison between two different blending coefficients (0.5–1)
in order to estimate the HRM using HREML with optimal tuning
method and optimal α value. (C) The performance of tune = 1 (Eq. 8)
compared with the tune = 2 (Eq. 9), without considering tuning in
estimating the HRM with the applied optimal blending and α values.
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HBLUP method (e.g., BLUPf90) requires hyper-parameters to
integrate the information of genomic and pedigree relationship
matrices, which should be optimised to increase the accuracy of

genomic prediction (Legarra et al., 2009; Chen et al., 2011; Vitezica
et al., 2011; Meyer et al., 2018). In this study, we evaluated the
performance of HBLUP with various hyper-parameters such as

FIGURE 5
The performance of HBLUP when (A) varying α, (B) blending, and (C) tuning hyper-parameters for five carcass traits. The five carcass traits include
carcass weight (cwt), eye muscle area (ema), adjusted 12 months weight (adj-w12), marbling score (ms), and back fat thickness (bft). There are a total of
84,020 animals in the Hanwoo cattle pedigree, of which 9,072 animals have both phenotypic and genotypic records that are randomly divided into five
validation groups (Table 2). Each set of the five groups is selected as the target samples, and all the phenotyped animals except the target samples
were used as the discovery dataset. This 5-fold cross-validation was used to validate the performance of HBLUP.
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blending, tuning, and scale factor, using simulated and real Hanwoo
cattle datasets.

In our simulation scenario, we employed random mating and
random selection instead of artificial selection based on
phenotypes or estimated breeding values because the purpose of
this simulation study is to demonstrate how the novel hyper-
parameter, alpha, works in a simplified simulation setting.
Nevertheless, we have applied our approach to real cattle data
that have been subjected to artificial selection. By doing so, we
believe that we have verified the performance of the hyper-
parameter in a realistic setting. In both simulation and real
data, allele frequencies can be altered significantly due to
genetic drift and selection (Falconer and Mackay, 1996; Hartl
and Clark, 1997; Lynch and Walsh, 1998).

The scale factor, α, can determine the relationship between
allele frequency and per-allele effect size. In the simulation,
HBLUP accuracy can be the highest when using GRM scaled by
the true α value used in the phenotypic simulation, indicating
that the choice of α value is important although this has never
been considered as a hyper-parameter in HBLUP. In fact, the
performance of HBLUP is shown to vary across the carcass
traits in the cattle data used in this study, confirming previous
studies that reported that optimal α values vary, depending on
traits and populations (Speed et al., 2012; Speed et al., 2017;
Momin et al., 2023). Importantly, using less optimal α values
may decrease HBLUP accuracy significantly, which should be
carefully checked before conducting genetic evaluations,
emphasising that the scale factor is not less important,
compared to other hyper-parameters such as blending and
tuning.

In both simulated and cattle data, blending (θ < 1) would not
really improve the phenotypic prediction accuracy except that of
the cattle traits, EMA; the blending of θoptimal � 0.86 could
increase the accuracy. The accuracy would increase more
when GRM was blended with higher weights, which is clearly
shown in Supplementary Figure S2. This is not totally
unexpected because richer information can come from GRM
(e.g., Mendelian sampling variance within sibs), and blended
GRM may lose some of such information. When the mixed
model equation is used for HREML or HBLUP (Henderson,
1953; Misztal et al., 2018), a non-positive definite GRM may
cause a numerical problem, for which the blending process is
essential. This may be one of the reasons blending has been an
important hyper-parameter in HBLUP. However, the direct
Average Information algorithm can use a non-positive
definite GRM without blending ( θ � 1) and there is a method
that can provide a positive definite GRM (Momin et al., 2023). In
any case, we recommend optimising the blending hyper-
parameter as the optimal blending can vary, depending on
data, in which θ � 1 should also be explicitly evaluated. A
non-positive definite GRM means the matrix has one or more
negative eigenvalues, which can cause problems in certain
computations. For example, when using the GRM in a linear
mixed model for genomic prediction, the non-positive
definiteness can lead to negative variance estimates, which are
not biologically meaningful (Legarra et al., 2009). In addition,
non-positive definite matrices can cause numerical instability in
various computations, such as matrix inversion and eigenvalue

decomposition (Kang et al., 2008). One common cause of a non-
positive definite GRM is the presence of genotyping errors,
which can lead to negative pairwise genetic distances between
individuals. Small sample sizes, genotyping errors, and mean
bias from the current GRM method can contribute to this
problem (Momin et al., 2023). However, there is a reliable
algorithm available to address non-positive definite GRMs,
which is the direct average information algorithm (Lee and
Van Der Werf, 2006; Yang et al., 2011; Lee and Van Der
Werf, 2016).

The tuning process adjusts GRM, accounting for the allele
frequencies in the base population, assuming that the founders in
the base population are not genotyped but are linked through the
pedigree. As expected, the widely used tuning method (tune = 1
(Chen et al., 2011) implemented in BLUPf90 option 2) could
improve the prediction accuracy in the simulated data,
indicating that the base allele frequencies are correctly
accounted for. However, the improvement caused by tune =
1 or 2 was not remarkable in the Hanwoo cattle data. This is
probably due to the fact that the pedigree information in the real
data is not accurate enough to trace the founders, or the genotypes
may capture substantial information about the base allele
frequencies.

The grid search benefits include being able to provide
reproducible results, being fast to implement, being simple to
develop for parallel computing, and being efficient in exploring a
low-dimensional hyper-parameter space. Moreover, for the large-
scale hyper-parameters search space, there are a large number of
other hyper-parameters optimisation methods, such as genetic/
evolutionary algorithms, swarm intelligence methods, stochastic/
random search techniques, and co-evolutionary algorithms (Dudzik
et al., 2021). These methods are able to provide robust performance
in exploring the multi-modal search space (Kuyu and Vatansever,
2021).

In conclusion, existing hyper-parameters such as blending and
tuning in HBLUP are important in general, and their optimal values
or options should be properly sought to achieve a reliable genetic
evaluation. Depending on the data, optimal values can vary, and
unnecessary or over-parametrised blending or tuning can produce
adverse effects on the prediction accuracy. The scale factor, a novel
hyper-parameter to be introduced in HBLUP, should be explicitly
optimised to increase the prediction accuracy, given that the impact
of the scale factor is competitive with other hyper-parameters,
blending and tuning. We suggest including the scale factor, α, in
HBLUP as a hyper-parameter.
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