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Abstract

Dental caries is a microbial disease and the most common chronic health condition, affecting nearly 3.5 billion people worldwide. In
this study, we used a multiomics approach to characterize the supragingival plaque microbiome of 91 Australian children, generating
658 bacterial and 189 viral metagenome-assembled genomes with transcriptional profiling and gene-expression network analysis.
We developed a reproducible pipeline for clustering sample-specific genomes to integrate metagenomics and metatranscriptomics
analyses regardless of biosample overlap. We introduce novel feature engineering and compositionally-aware ensemble network
frameworks while demonstrating their utility for investigating regime shifts associated with caries dysbiosis. These methods can
be applied when differential abundance modeling does not capture statistical enrichments or the results from such analysis are
not adequate for providing deeper insight into disease. We identified which organisms and metabolic pathways were central in a
coexpression network as well as how these networks were rewired between caries and caries-free phenotypes. Our findings provide
evidence of a core bacterial microbiome that was transcriptionally active in the supragingival plaque of all participants regardless of
phenotype, but also show highly diagnostic changes in the ways that organisms interact. Specifically, many organisms exhibit high
connectedness with central carbon metabolism to Cardiobacterium and this shift serves a bridge between phenotypes. Our evidence
supports the hypothesis that caries is a multifactorial ecological disease.
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Significance Statement:

Using metagenomics and metatranscriptomics, this study characterized 658 bacterial and 189 viral metagenome-assembled
genomes (MAGs) from the supragingival plaque oral microbiome to investigate dental caries in 91 children. We developed method-
ologies for species-level clustering to characterize biologically accurate MAGs across nonoverlapping samples. We also developed
novel feature engineering and network analysis techniques, which can be used to gain deeper insight into microbial diseases
than differential abundance methods alone. With these new techniques, we identified regime shifts between caries and caries-
free microbiomes where certain taxa switch their interactions with other organisms and metabolic pathways. Our study provides
evidence for the hypothesis that caries is a multifactorial ecological disease and contains generalizable methods for microbiome
research.

Introduction
Oral diseases such as dental caries are a critical concern for public
health. Untreated tooth decay is the most common chronic health
condition and affects nearly 3.5 billion people worldwide (1). Tooth
decay is most common in younger individuals with a prevalence
of 20% of children aged 5 to 11 and 13% in adolescents aged 12 to
19, with low-income children being twice as likely to have cavities

(2). In most low- and middle-income countries, the prevalence of
oral diseases increases with urbanization and inadequate access
to medical treatment (3). In high-income countries, dental treat-
ment averages 5% of total health expenditure and 20% of out-of-
pocket health expenditure (4) making the disease a socioeconomic
issue for all. This silent epidemic has long been coupled with the
rise of civilization as early evidence from the Pleistocene era sug-
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gests that agriculture and the exploitation of starchy plant foods
have burdened mankind with carious lesions since early prehis-
tory (5).

In the modern “ecological plaque hypothesis,” oral diseases
arise from environmental perturbations leading to a shift in
the endogenous microbial community (6) where the selection of
pathogenic bacteria is coupled with the environment and any
species with germane traits can contribute to pathogenesis (7).
The evidence for this theory is largely from the advent of next
generation sequencing (NGS) technologies and the ability to se-
quence uncultivated organisms. In the context of carious lesions,
the environmental perturbation arises from persistent consump-
tion of dietary sugars leading to a decrease in pH and, when sus-
tained, shifts the population to a more aciduric and cariogenic
microbial community, which degrades the enamel (8, 9). Changing
environments (e.g. a substantial increase in acidity) can destabi-
lize previously stable microbial communities reconfiguring them
into new stability domains, referred to as regime shifts (10), such
as a cariogenic microbiome (11). Furthermore, this regime shift of
the oral microbiome towards a cariogenic state is the result of an
environment partially created by the bacteria themselves creat-
ing a complex feed-forward loop. This complex feed-forward loop
makes it difficult to diagnose the exact cause of each case and the
development of therapeutics for severe cases.

Understanding the roles of microbes in the context of caries-
related dysbiosis (from the perspective of human health and not
microbial stability) is nontrivial and is often explored using as-
sociation networks. Association networks such as coexpression
(transcriptomics) or coabundance (genomics) are powerful frame-
works for investigating inferred biological interactions by group-
ing biological features, such as genes or microbes, with related
metabolism (12) or complementary ecological niches (13). Despite
widescale usage, many approaches do not address NGS composi-
tionality and this is a major concern because noncompositionally-
aware metrics (e.g. correlation) are known to yield spurious asso-
ciations with no biological meaning (14). Although packages such
as WGCNA (15) introduced intuitive and clever ways for analyz-
ing fully connected weighted gene association networks, they do
not directly support compositionally-aware association metrics
such as proportionality (16, 14, 17); thus, the findings using such
methods are based on a statistical fallacy. However, awareness of
compositional data analysis (CoDA) has increasingly made its way
from geology to bioinformatics (16, 14, 18, 19) with many advance-
ments in the context of network analysis (20).

Association networks are often applied to individual organisms
in controlled settings (21) and extending these concepts to ecosys-
tems introduces many challenges that arise from the complex-
ity of the data where the exact abundances of biological features
are often unknown a priori and the number of features increase
by several orders of magnitude. Furthermore, as systems biology
deals with interactions amongst biological features, the number
of pairwise interactions scale quadratically. The vast number of
variables in a microbiome not only makes hypothesis testing pre-
carious but can also lead to statistical artifacts in downstream
analysis due to the “curse-of-dimensionality” making interpre-
tation exceedingly difficult (22). Many dimensionality-reduction
methods such as PCA, [N]MDS, t-SNE (23), or UMAP (24) lose ac-
cessibility to original biological features rendering interpretation
limited and unintuitive. The genome-resolved hierarchical com-
plexity of microbiomes results in dynamic distributions of ex-
pression or abundance influenced by other microbes and latent
environmental variables not accounted for by the experimental
design. These community-level datasets require representations

of the data that account for these abstractions and group genes
within their genome-resolved structure; that is, explainable bio-
logical feature engineering.

The balance between biological accuracy and analytical prac-
ticality is a constant theme when pairing metagenomic assem-
blies with metatranscriptomic sequencing. On one hand, consen-
sus assemblies and binning of metagenome-assembled genomes
(MAGs) make it feasible to cross-reference genomic features
across samples while providing a relatively dense counts table.
Though not inherently sparse, sparsity in NGS technologies is
common and a major hurdle in CoDA (25, 26). This approach of-
ten produces user-friendly data structures, but the resulting MAGs
will likely be composites of multiple bona fide microbial genomes
of highly similar strains resulting in redundant and contami-
nated MAGs that lack true biological interpretation. On the other
hand, assembling samples individually and binning genomes will
produce more biologically accurate MAGs, but mapping to these
samples produces inherently sparse matrices that have an ex-
tremely large number of features, which is problematic for statis-
tical analysis (22), mostly filled with zeros because the one-to-one
mapping of reads to highly redundant genomic features. When
using paired metagenomics and metatranscriptomics to investi-
gate dysbiotic systems, it is imperative to address these pitfalls by
leveraging compositionally-aware network methodologies simul-
taneously with natural hierarchies inherent in the data.

Results
MAGs for bacteria and viruses
Metagenomes from 88 Australian children in this study were eval-
uated and analyzed previously (27, 28) but substantial improve-
ments in assembly, binning, and quality assessment methodolo-
gies warranted revisitation and reanalysis. Further, this reanaly-
sis from a multiomics perspective provides a unique opportunity
to couple phylogeny with metabolic function in the context of
health and disease; the metatranscriptomic patient cohort is de-
scribed in Table 1. Our reanalysis of combined metagenomics and
metatranscriptomics, we isolated 658 bacterial MAGs, 179 DNA
viruses, and 10 RNA viruses after quality assessment (Fig. 1, Ta-
ble S2). For clarity, DNA and RNA viruses refer to viruses derived
from metagenomics or metatranscriptomic sequencing, respec-
tively. These bacterial MAGs clustered (95% ANI where ANI refers
to Average Nucleotide Identity) into 135 unique species-level clus-
ters (SLC) representing 49 hitherto unclassified species with 26 of
which classified as Patescibacteria candidate phyla radiation (CPR;
6 Gracilibacteria/SR1, 43 Saccharibacteria) and a total of 69 CPR MAGs
collectively. Of the non-CPR SLCs, we identified 31 Bacteroidota, 22
Proteobacteria, 21 Actinobacteriota, 23 Firmicutes, 8 Fusobacteriota, and
4 Campylobacterota (Tables 2, and Tables S2 and S3). The DNA and
RNA viruses clustered into 137 and 5 unique SLCs, respectively.
Most of the DNA viruses were classified as Caudovirales, of un-
known species, associated with the human oral (42 SLCs), gut (41
SLCs), human respiratory (1 SLC), and nonspecific environments (1
SLC). Aside from these unknown species, we also identified several
Caudovirales phages for Arthrobacter (7 SLCs), Streptococcus (4 SLCs),
Klebsiella, Haemophilus, Pasteurella, Pseudomonas, and Burkholderia.
Other than Caudovirales, we identified Streptococcus satellite phages
(2 SLCs), unclassified CRESS-DNA Parvovirus associated with the
human gut (2 SLCs), and an unclassified virus associated with the
human oral environment. Most of the RNA viruses were Escherichia
phages (4 SLCs) designated as Qbeta BZ1, MS2, and BZ13 strains
but we also uncovered a novel virus with no close taxonomic
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Table 1. Metatranscriptomics cohort sample metadata.

Metadata Caries Caries-free

Age (μ, σ2, min, max) (8.09, 2.7, 5.5, 10.9) (7.82, 2.21, 5.4, 10.8)
Sex (female) 19 31
Sex (male) 17 20
Center (CBRG) 21 28
Center (MCRI) 15 23
Total samples 36 51

Overview of sample size for cohort with respect to phenotype and several metadata.

Fig. 1. Network of FastANI clusters for bacterial and viral MAGs. Network with edge weights corresponding to ANI and nodes representing MAGs. (Left)
Bacterial MAGs colored by phylum. (Right) Viral MAGs colored by either DNA or RNA virus type. Thicker edge weights indicate novel species not found
in GTDB-Tk or CheckV for bacterial and viral FastANI clusters, respectively.

Table 2. Bacterial SLCs and MAGs with respect to phylum.

Bacterial phyla SLCs MAGs Novel species (SLCs)

p__Actinobacteriota 21 153 3
p__Bacteroidota 31 160 13
p__Campylobacterota 4 4 3
p__Firmicutes 16 35 4
p__Firmicutes_A 4 6 2
p__Firmicutes_C 3 62 0
p__Fusobacteriota 8 40 1
p__Patescibacteria 26 69 18
p__Proteobacteria 22 129 5
Total 135 658 49

The number of bacterial MAGs, SLCs, and novel species with respect to phyla.
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Fig. 2. Taxonomic expression. Center log-ratio (CLR) transformed abundances of taxa from metatranscriptomics. Row colors represent bacterial (teal)
or viral (maroon) MAGs while the column colors represent caries (red) or caries-free (black) phenotypes. Clustering was performed using Euclidean
distance and Ward linkage.

classification. Only high-confidence viruses based on strict CheckV
thresholds were considered for analysis to reduce false positives
and increase interpretability. The bacterial and viral SLCs con-
tained 64 and 113 singleton clusters; individual genomes that did
not share 95% ANI with any other organisms in the dataset. No ar-
chaea, eukaryote, or novel bacterial genera beyond the CPR were
detected.

Our metapantranscriptomics approach collapsed 1,248,783
ORFs into 255,737 SLC-specific orthogroups (247,943 bacte-
rial and 7,794 viral) reducing the dimensionality by 80%
with minimal loss in information content. By using SLC-
specific orthogroups, we were able to maintain a “bag-of-
genomes” paradigm, opposed to that of a “bag-of-genes”
and preserving natural hierarchical structures inherent in
ecology.

We observed only one taxonomic database discrepancy, M-
1507–144.A__MAXBIN2__bin.008 was classified by GTDB-Tk as
a novel Tannerella but this MAG clustered in BC14 with 10
Peptidiphaga sp000466175 with high confidence (>95% ANI via
FastANI), which suggests an update to the GCF_003033925.1
reference taxonomy in NCBI. This result is further strength-
ened by the CheckM basal classification of the Actinobacteria
phylum.

Relative taxonomic expression and abundance
Clustering using genome-resolved gene expression grouped sub-
jects into five distinct clusters (Fig. 2) but these expression pat-
terns were not able to discriminate samples based on the pres-
ence or absence of caries. We also measured the silhouette scores
using Aitchison distance against caries status and observed aver-
age scores close to zero (|xsilhouette| < 0.003) for bacterial and vi-
ral microbiomes in both metatranscriptomics and metagenomics
datasets indicating minimal phenotype partitioning capacity us-
ing individual features.

As these expression patterns are in CLR, values close to 0 can
be considered basal community-level expression and close to the
geometric mean of expression values for the microbiome. We ob-
served a core bacterial supragingival plaque microbiome at the
genus level as almost every genus is transcriptionally active in ev-
ery sample (Clusters-2.1 to 2.4, see the “Methods” section for nam-
ing scheme), regardless of phenotype, but this is not the case for
either DNA or RNA viruses. Most of the viruses were detected with
low expression and grouped in Cluster-2.5. In Cluster-2.5, there
are a few DNA viruses that are detected in almost every sample
including Streptococcus satellite phage Jaavan335, unclassified Cau-
dovirales associated with human gut, Burkholderia phage phiE255,
Haemophilus phage SuMu, and Klebsiella phage ST405-OXA48phi1
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Fig. 3. Taxonomic expression:abundance ratios. Difference in CLR between metatranscriptomics expression (RNA) and metagenomics abundance
(DNA) where values indicate higher expression relative to abundance and vice versa.

with Escherichia phage MS2 as the only high prevalence RNA virus.
Cluster-2.4 contains an unclassified human oral DNA virus and
an unclassified oral Caudovirales that are transcriptionally active
in every sample at modest levels on par with many bacteria in
the microbiome. Cluster-2.1, the cluster with highest overall tran-
script abundance, we observe mostly genera from Bacteroidota, Pro-
teobacteria, Firmicutes(C), and Fusobacteriota. The most transcrip-
tionally active genera in Cluster-2.1 are Capnocytophaga, Strepto-
coccus, Neisseria, Haemophilus_D, Aggregibacter, Porphyromonas, and
Veillonella with modest expression from other bacteria. Cluster-2.2,
with CLRs of 1 and 2, includes genera that appear in downstream
analysis including Cardiobacterium, Corynebacterium, and Tannerella.
Cluster-2.3 is the cluster with baseline transcriptional activity (i.e.
CLR close to 0), which contains all the Saccharibacteria and SR1 CPR
clade.

We also investigated the RNA:DNA ratios from the 26 over-
lapping metatranscriptomic and metagenomic samples (Fig. 3).
Based on clustering of RNA:DNA ratios, five distinct groupings
were observed (Clusters-3.1 to 5). The most prominent findings
are from Clusters-3.1 and 2 where taxa have highest and lowest
RNA:DNA ratios, respectively. Cluster-3.1, the most transcription-

ally active, included Haemophilus_A and Alloprevotella, the most ac-
tive genera, as well as Aggregibacter, Gemella, and Campylobacter_A.
Cluster-3.2 has a more uniform distribution of low RNA:DNA
ratios and contained Gracilibacteria, Saccharibacteria, Streptococcus
satellite phage Javan335, and an unclassified Caudovirales phage as-
sociated with the human gut. Clustering of these RNA:DNA ratios
also did not differentiate subjects based on phenotype.

In terms of alpha diversity, we did not observe any difference
in bacterial richness for metatranscriptomics (x = 131 SLCs) or
metagenomics (x = 134 SLCs) datasets between caries and caries-
free microbiomes (Mann–Whitney P > 0.05). For viral richness, we
did not observe difference in the metatranscriptomics dataset (x
= 26 SLC) but observed a slight enrichment in viral richness in the
caries microbiome (xCaries = 34.5 SLCs, xCaries-free = 30 SLCs; Mann–
Whitney P = 0.026).

We implemented differential expression analysis between
caries and caries-free cohorts at the taxonomic level (SLC expres-
sion) and PGFC level (engineered taxonomy-functional compos-
ite features). We did not observe any statistically significant com-
ponents, neither SLCs nor PGFCs, using compositionally-aware
methods such as ANCOM and ALDEx2. However, the lack of clear
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taxonomic or functional differences between the cohorts suggests
interactions between variables is important, illustrating the need
of differential networks to interrogate the caries and caries-free
microbial systems.

Phenotype-specific coexpression networks reveal
unique taxonomic and metabolic characteristics
As the caries phenotype is a multifactorial disease (7), the most
natural approach for investigating associations would be through
network analysis as such methodologies are useful for modeling
complex systems with unknown structure. To be specific, the true
structure (if one exists) of microbial interactions within each phe-
notype in our dataset is unknown a priori. Therefore, we must in-
fer the structure of each network using data-driven approaches.
Using an ensemble approach, we computed compositionally-
aware coexpression networks, with PGFCs, an engineered feature
based on taxonomy and functional potential (see the “Methods”
section), as nodes (Nnodes = 2,478) and rho proportionalities as
edge weights (Nedges = 3,069,003), for caries and caries-free mi-
crobiomes (PSCNCaries and PSCNCaries-free, respectively). The total
connectivity of the PSCNCaries was 301,163.9 k with PSCNCaries-free

∼7% lower (279,832.1 k, Table S6). Unsupervised clustering of the
PSCNs sorted by median connectivity revealed clusters hetero-
geneous with respect to taxonomy, and a sharp drop off in con-
nectivity at 250 k (Fig. 4A and B, Tables S5 and S7). In this high-
connectivity range, there are 12 PSCNCaries clusters (749 PGFCs)
and 8 PSCNCaries-free clusters (555 PGFCs), which will be referred to
as high-connectivity PSCN clusters (HCPC).

One approach in computing homogeneity is via normalized en-
tropy and, in this context, can be interpreted as cluster homogene-
ity where low entropy translates to a cluster being dominated by
a single taxa (more homogenous) and high entropy as taxa be-
ing evenly distributed within a cluster (more heterogeneous). The
most highly connected cluster in both PSCNs is Cluster-1 (HCPC-
4A.1 and HCPC-4B.1), which is the second largest cluster in each
network and one of the most heterogenous with respect to tax-
onomy. We observed a modest trend that HCPCs in the caries mi-
crobiome have higher taxonomic homogeneity than the caries-
free microbiome. The caries HCPCs tend to have lower normalized
entropy than the caries-free HCPCs especially compared to when
considering all clusters; though, the number of observations was
not sufficient for this statistical analysis and these results will not
be further explored.

Despite the caries microbiome HCPCs being slightly more ho-
mogenous, the highest connectivity PSCNCaries cluster (HCPC-
4A.1) is one of the most heterogenous clusters in the system. The
majority of HCPC-4A.1 connectivity (82%) is from Veillonella, Strep-
tococcus, Granulicatella, and Kingella_B. The remaining caries HCPCs
are enriched in other bacteria including Streptococcus, Capnocy-
tophaga, Haemophilus_D, Neisseria, Cardiobacterium, and Aggregati-
bacter. The highest connectivity cluster in PSCNCaries-free is HCPC-
4B.1 whose connectivity is primarily from Streptococcus sangui-
nis, Veillonella parvula_A, and Granulicatella adiacens. The remain-
ing caries-free HCPCs are enriched in Neisseria, Capnocytophaga,
Fusobacterium, Haemophilus_D, and Prevotella. We observed a sub-
stantial overlap in high-connectivity genera but the cluster mem-
bership of these genera is phenotype-specific and these configu-
rations may provide key insight into how a system, whether caries
or caries-free, stabilizes.

The second highest connectivity HCPCs in both caries (HCPC-
4A.32) and caries-free (HCPC-4B.22) microbiomes are homoge-

nous for Streptococcus and Neisseria, respectively. Connectivity from
HCPC-4A.32 is mainly derived from S. sanguinis (98%) while con-
nectivity from HCPC-4B.22 is 100% attributable to a novel Neisseria
species (BC6). We also observed HCPC-4A.39 as another homoge-
nous caries HCPC for Capnocytophaga sputigena. In both PSCNs, car-
bohydrate metabolism (27% PSCNCaries, 36% PSCNCaries-free) and co-
factor/vitamin biosynthesis (10.7% PSCNCaries, 8.2% PSCNCaries-free)
are attributable to most of the connectivity (Fig. S2). Glycol-
ysis, gluconeogenesis, and pentose phosphate are heteroge-
nous amongst the HCPCs regardless of phenotype. The cit-
ric acid cycle was responsible for the majority of the car-
bohydrate connectivity in PSCNCaries HCPC-4A.29; a heteroge-
nous cluster enriched in Neisseria and Prevotella. Several cofac-
tor and vitamin metabolic pathways were common amongst the
HCPCs.

Community detection algorithms such as Louvain (29) and, its
updated successor, Leiden (30) have been used to investigate the
structure of large and complex networks. The former has been
used to study various biological networks (31, 32, 33, 34) while
Leiden is new and sparingly applied to biological systems, it ad-
dresses defects associated with Louvain. As these algorithms are
stochastic, we utilized an iterative version of the Leiden com-
munity detection algorithm to investigate how these phenotype-
specific HCPCs are structured and how the HCPCs partition into
tightly connected high-confidence communities in an induced
graph. The caries HCPCs naturally partition into Communities-
4C.I-III while the caries-free HCPCs partition into Communities-
4D.I-II (Fig. 4C and D, Table S5). Leiden communities revealed
similar coexpression of two complementary configurations in
both PSCNs: (1) majority Bacteroidota (PSCNCaries Community-4C.I
and PSCNCaries-free Community-4D.I); and (2) majority Firmicutes
via Streptococcus (PSCNCaries Community-4C.II and PSCNCaries-free

Community-4D.II) (Fig. 4E and F).
Community-4C.I and 4D.I have high overlap in taxonomic

membership, but they also have several unique taxa that may
provide insight into phenotype-specific system states. Inter-
estingly, no Neisseria were observed in PSCNCaries Community-
4C.I but high Neisseria genus-level membership was observed
in the complementary PSCNCaries-free Community-4D.I (Fig. 4E).
However, in PSCNCaries, we observed high Neisseria genus-level
membership in Community-4C.III coexpressed with more Neis-
seria and Haemophilus (Fig. 4E). Neisseria are highly connected in
both PSCNs but their community membership, the taxa they
are interacting with, is phenotype specific. More specifically,
Neisseria appears to shift from high coexpression with several
Bacteroidota species in the caries-free cohort to other Neisse-
ria and Haemophilus in the caries cohort. The connectivity of
Haemophilus_D parainfluenzae and an unclassified Neisseria (BC6)
is relatively high in PSCNCaries Community-4C.III and these taxa
are completely absent from the Neisseria enriched community in
PSCNCaries-free.

In terms of metabolism, drug resistance is only observed
in PSCNCaries Community 4C.II, specifically S. sanguinis beta-
Lactam resistance (Fig. S3). Both caries and caries-free mi-
crobiomes lack arginine, proline, and lipid metabolism in the
Bacteriodota-centric communities (PSCNCaries Community-4C.I and
PSCNCaries-free Community-4D.I) but provide these pathways in
the Firmicutes-centric communities (PSCNCaries Community-4C.II
and PSCNCaries-free Community-4D.II). Conversely, these Firmicutes-
centric communities lack sulfur metabolism which appears to
be provided by Bacteriodota-centric community. Central carbohy-
drate metabolism connectivity is much higher in the Bacteriodota-
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Fig. 4. Connectivity-based community detection in PSCNs. Heatmap of clustered PSCNs for (A) caries and (B) caries-free phenotypes sorted by median
cluster connectivity [k] in box-plot below with threshold for high-connectivity clusters set at 250 k in both PSCNs. Each i, j value in the heatmap
represents the weight of genus i in cluster j divided by the total weight of cluster j; that is, the weighted proportion of each genus in each cluster.
Leiden community detection algorithm applied to high-connectivity PSCN clusters for (C) caries and (D) caries-free phenotypes. Roman numerals
indicate PSCN-specific Leiden communities for reference. Pie charts indicate proportion of genus weight in each Leiden community and colored by
phyla. Clustering was performed using the distance version of rho proportionality and Ward linkage. Heatmaps of Leiden Community connectivity (C
and D) relative to taxonomy (E) and KEGG functional pathways (F) showing the connectivity of each grouping relative to the total connectivity in the
community.
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Fig. 5. Comparing PSCNs with respect to taxonomic or functional levels. Volcano plots of Leiden community PGFCs from Fig. 4 showing change in
scaled connectivity [�k∼] and -log2(FDR) with respect to (A) taxonomic and (B) functional PGFC levels. (C) Sorted barchart of taxa with statistically
different connectivities between caries and caries-free PSCNs. FDRs computed using Wilcoxon signed-rank test followed by Benjamini/Hochberg
multiple hypothesis correction. Red represents an enrichment in connectivity in the caries PSCN with blue represents an enrichment in connectivity
in the caries-free PSCN.

centric PSCNCaries-free Community-4D.I relative to all of the other
communities, which may suggest that the taxa and central carbo-
hydrate mechanisms in this community promote a healthy oral
microbiome.

We compared the scaled connectivity of different PGFC group-
ings between caries and caries-free PSCNs using the union of
PGFCs in caries and caries-free HCPCs. We observed statisti-
cally significant differential connectivity when grouping PGFCs
by taxonomic level (N = 7 PGFCs enriched in PSCNCaries and
N = 11 PGFCS enriched in PSCNCaries-free) and none when grouped
by functional level (Fig. 5). Although, the connectivity of high-
level metabolic functional profiles is similar for both PSCNs, the
taxa responsible for these driving functions are unique to the
phenotype. The taxa with enriched connectivity in PSCNCaries

were Kingella_B oralis trailed by G., Haemophilus_D parainfluen-
zae, Capnocytophaga leadbetteri, and Streptococcus oralis. The taxa
with greatest enriched connectivity in PSCNCaries-free were S. san-
guinis, Abiotrophia sp001815873, an unclassified Neisseria (BC6),
and Cardiobacterium hominis. Although unclassified Neisseria and
Abiotrophia. sp001815873 are enriched in PSCNCaries-free, they are
not present in the caries-free communities (Fig. 4E) because they
were not in the caries-free HCPCs. This discrepancy in member-
ship suggests that connectivities of these taxa, though enriched,
were masked by other high-connectivity taxa in PSCNCaries-free.

Differential coexpression networks suggests
community scale metabolic restructuring
through C. hominis
Differential coexpression networks (DCNs) reveal changes in con-
nectivity between a reference (caries-free) and treatment (caries)
network. As ensemble PSCNs are the building blocks of DCNs,
our DCNs provide the same benefits with respect to outlier re-
sistance. Previous approaches have used DCNs but did not use
compositionally-aware association metrics or ensemble networks
(21, 35). While differential abundance/expression analyses can be
useful in identifying feature enrichment (e.g. OTU, MAG, ORF, gene,
etc.), each method has their own caveats in assumptions about
the data distributions [well characterized in ref. (36) with the es-
tablishment of reference frames] and provide no information re-
garding differences in pairwise interactions; an essential perspec-
tive when studying diseases resulting from dysbiosis. Using the
PSCNCaries-free as a reference network and PSCNCaries as the treat-
ment network, we were able to construct a DCN using the 875
PGFCs from the community detection analysis for seamless cross-
referencing between PSCNs and the DCN. In the DCN, differential
connectivity (denoted as �k∼) is positive and negative when a con-
nectivity is enriched in the caries and caries-free microbiomes, re-
spectively. Unsupervised clustering of the DCN revealed six clus-
ters (Fig. 6, Tables S5 and S6), of which there were three high-
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Fig. 6. Differential network analysis between caries and caries-free PSCNs. (A) Hierarchical clustering of DCN using Leiden community PGFCs from
Fig. 4. Barchart shows the differential connectivity [�k∼] for PGFC nodes with positive (red) values indicating higher scaled connectivity in caries PSCN
and negative (blue) values indicating higher scaled connectivity in caries-free PSCN. Colored panel on bottom shows DCN clusters sorted by the
number of PGFCs in cluster with the largest cluster being 0 and the smallest being 5. (B) Shows hive plot of taxonomic categories for DCN(Cluster-4),
DCN(Cluster-2), and DCN(Cluster-5) with red and blue edges following the scheme in (A). (C) Shows the same hive plot in (B) but grouping PGFCs by
higher-level KEGG categories instead of taxonomic categories.
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connectivity DCN clusters (HCDC), each being diagnostic of phe-
notype; HCDC-6A.4 had enriched connectivity in the caries micro-
biome while HCDCs-6A.2 and 5 had enriched connectivity in the
caries-free microbiome. For the only HCDC with connectivity en-
riched in the caries microbiome (HCDC-6A.4), the differential con-
nectivity was primarily from C. sputigena, Kingella_B oralis, Vellonella
parvula_A, S. sanguinis, S. oralis, and several species of unclassi-
fied Streptococci (Fig. S4A) via carbohydrate and cofactor/vitamin
metabolism (Fig. S4B).

HCDC-6A.4 included 43% of all taxa within the DCN. HCDCs
with enriched connectivity in caries-free microbiome contained a
broader range of microbes. However, most of these taxa were in
HCDC-6A.2 with more than 77% of the taxa in the DCN, which
was not the case for HCDC-6A.5 with 40% of the taxa. In HCDC-
6A.2, most of the differential connectivity was attributable to S.
sanguinis, Abiotrophia. sp001815873, an unclassified Neisseria (BC6),
Rothia dentocariosa, and several Fusobacteriota via carbohydrate
metabolism, ATP synthesis, carbon fixation, and cofactor/vitamin
biosynthesis (Fig. S4B). While HCDC-6A.2 is heterogenous in terms
of taxa membership, HCDC-6A.5 is fairly homogenous with most
of the connectivity from C. hominis via carbohydrate metabolism.
Veillonella parvula_A and Fusobacterium polymorphum are the only
taxa that had membership in all HCDCs. As Veillonella. parvula_A
had high differential connectivity in both caries and caries-free
phenotypes through different metabolic pathways, this finding
may provide insight into dysbiosis. Several other taxa including
Haemophilus_D parainfluenzae had membership in the HCDC-6A.4
and with at least one HCDC with negative differential connectivity
(Fig. S4A).

Comparing set membership between HCDCs revealed key
metabolic differences between microbiomes. HCDC-6A.4 exclu-
sively had 14 KEGG modules with the most notable including pen-
tose phosphate pathway, phosphate acetyltransferase-acetate ki-
nase, beta-Lactam resistance, several cofactor/vitamin pathways
(Table S5). HCDC-6A.2 had 19 KEGG modules not in HCDC-6A.4,
which included many carbohydrate metabolic, reductive pentose
phosphate cycle, and dissimilatory nitrate reduction pathways.
HCDC-6A.5 only had four exclusive KEGG modules, including cit-
rate cycle, fumarate reductase, and Raetz pathway with citrate
cycle, and fumarate reductase metabolism from C. hominis.

Hive plots are a network visualization framework that groups
nodes with respect to predefined axes. In this case, grouping
PGFCs by taxa or KEGG categories for higher-level nodes and
HCDCs for axes. The hive structure visualizes both intra- and
inter-cluster differential connectivity clearly revealing hub nodes
connecting clusters (Fig. 6B and C). In the context of this DCN,
C. hominis was a link between the highest differential connectiv-
ity HCDCs for caries (HCDC-6A.4) and caries-free (HCDC.6A.2) mi-
crobiomes even though each cluster’s intra-cluster connectivity
is sign specific. HCDC-6A.4 had very low connectivity to HCDC-
6A.2 but both have high connectivity to HCDC-6A.5 primarily
via C. hominis. However, positive differential connectivity from
HCDC-6A.5 to HCDC-6A.4 was mainly from C. hominis carbohy-
drate metabolism and ATP synthesis from other bacterial species.
In the connection between C. hominis and HCDC-6A.2, we observed
many more taxa, also at greater differential connectivity magni-
tude, primarily through S. sanguinis, Abiotrophia. sp001815873, and
an unclassified Neisseria (BC6) with a long tail of taxa with negative
differential connectivity. In this latter case, the highly negative
differential connectivity from C. hominis to HCDC-6A.2 is spread
out across many metabolic pathways and is not disproportionally
weighted at carbohydrate and ATP synthesis suggesting C. homi-
nis may have a holistic relationship in a caries-free microbiomes

while also playing a potentially nonbeneficial role in caries mi-
crobiomes. We expanded C. hominis carbohydrate metabolism and
ATP synthesis modules out in a separate DCN (Fig. 7, Table 3, and
Tables S5 and S7).

After removing low-connectivity edges (Fig. S5), this DCN re-
vealed five Leiden communities, denoted as Communities-7.I-
V, with the two largest communities being Community-7.I and
Community-7.II. Consistent with our previous hive networks, we
observed a community with connectivity primarily enriched in
the caries microbiome (Community-7.I) and several communi-
ties with connectivity almost exclusively enriched in caries-free
microbiome (Communities-7.II to V). The exception to the lat-
ter is C. hominis pyruvate oxidation and C. sputigena polyketide
sugar unit biosynthesis connectivity enriched in caries micro-
biome in Community-7.III. Community-7.II, the largest of the neg-
ative differential connectivity communities, was far less com-
plex than Community-7.I and has C. hominis pentose phosphate
as highly central nodes. There were three other small commu-
nities with negative differential connectivity and the most in-
teresting of these is Community-7.IV as C. hominis glucose to
UDP-glucose conversion is connected to mostly to Veillonella.
parvula_A cofactor/vitamin metabolism but also Neisseria nitro-
gen metabolism/methane metabolism and Corynebacterium durum
carbohydrate metabolism.

The most complex and informative community is Community-
7.I, which is primarily composed of positive differential connectiv-
ity edges, those enriched in the caries microbiome. The negative
differential connectivity edges are primarily from ATP synthesis
of Veillonella. parvula_A and Leptotrichia_A sp001274535. Said nodes
only have negative differential connectivity edges, which suggest
they are influential to the rest of the community in a caries-free
microbiome and this may provide insight into community-scale
restructuring in the caries microbiome. Also, worthy of note, the
only nodes with both positive and negative differential connec-
tivity edges are from C. hominis supporting the hypothesis that
C. hominis is an essential player in the transition from caries-free
to caries phenotypes and vice versa. However, the most striking
feature of this community is that C. hominis citrate cycle and fu-
marate reductase are highly centralized suggesting a shift in car-
bohydrate metabolism from pentose phosphate cycle to citrate
acid cycle in the caries microbiome. We also observed various
types of carbohydrate metabolism in Community-7.I with positive
differential connectivity from several other organisms (Table 3).

Predictive models applied to caries diagnosis
Feature selection and predictive modeling was implemented to
further evaluate PGFC features that were indicative of caries di-
agnosis. In particular, the Clairvoyance feature selection algorithm
(37) that has been previously evaluated on identifying diagnostic
genes related to antibiotic resistance (37) and multimodal associa-
tions related to childhood undernutrition (38) was used to identify
PGFCs that were able to accurately discriminate caries individu-
als from caries-free individuals. To allow for seamless interpre-
tation with the network analysis, the set of 212 PGFCs from the
DCN were used as input into the feature selection algorithm and
this was implemented for PGFCs represented as MCR and as CLR
transformed abundances to yield two separate feature sets. This
mixed feature architecture allowed for a novel type stacking en-
semble where each base classifier uses a specific feature set and
feature representation (e.g. MCR and CLR values, simultaneously)
leveraging the strength of each measurement in the ability to pre-
dict caries phenotype. The MCR feature set included 36 PGFCs, the

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/1/5/pgac239/6762943 by U

niversity of Adelaide user on 24 O
ctober 2023



Espinoza et al. | 11

Fig. 7. Cardiobacterium hominis carbohydrate and ATP synthesis metabolism centric DCN. DCN of PGFCs from DCN(Cluster-4), DCN(Cluster-2), and
DCN(Cluster-5) grouped by either (1) taxonomy and higher-level KEGG categories for non-C. hominis PGFCs; and (2) C. hominis KEGG modules related to
carbohydrate and ATP synthesis metabolism. Edge weights indicate differential connectivity with positive (red) edges indicating higher scaled
connectivity in caries PSCN and negative (blue) edges indicating higher scaled connectivity in caries-free PSCN. Roman numerals indicate connected
components in DCN (i.e. isolated subgraphs within the larger graph).

CLR feature set included 27 PGFCs, and 11 PGFCs were shared be-
tween both base models (52 unique PGFCs) (Fig. S6B). The PGFCs
selected via feature selection included Cardibacterium hominis pen-
tose phosphate and TCA cycle as some of the highest weighted
features that were able to discriminate caries phenotypes (Table
S9). The stacking ensemble classification model was able to pre-
dict unobserved twin groupings with an accuracy of >96.5% (see
the “Methods” section for cross-validation). In this context, accu-
racy can be interpreted as the reliability of a feature set to be suf-
ficient in diagnosing caries. This is in stark contrast to predictive
modeling using the 212 PGFCs from the DCN without feature se-
lection, which yielded a baseline classification accuracy of only
58.8%.

Discussion
This study provides evidence of a core bacterial microbiome and
a personalized viral microbiome that is transcriptionally active
within the supragingival plaque of this cohort of Australian chil-
dren regardless of collection center, age, or sex. This core micro-
biome supports the ecological plaque hypothesis that environ-
mental conditions influence the metabolism of existing microbes

nudging the community into a cariogenic configuration, rather
than it being associated with extensive gain or loss of taxa. As
the oral community is able to shift the collective metabolism to
adapt to a cariogenic environment, the reverse must also be true
given the prevalence of this core community. The implications of
such a finding are both therapeutic and diagnostic. The specific
abundances of taxa or even transcripts are not diagnostic, but a
panel of transcripts and their associations are highly diagnostic
and could be used as remote dentistry as demonstrated by the
predictive model’s high accuracy in diagnosing caries phenotype.
Similarly, probiotics that revert community associations might be
powerful therapeutics. Characterizing the interactions between
microbes and their additive metabolism is expected to provide a
deeper insight into what it means metabolically to have a cari-
ogenic oral environment and, also important, a caries-free envi-
ronment. One objective of the study was to determine if an untar-
geted tooth swab of both cariogenic and noncariogenic commu-
nities combined with sequencing and in-silico analysis could pre-
dict the signals diagnostic of phenotype with an accuracy >96.%
using 52 unique biological features. This type of “take-at-home”
assay augments current dental prophylaxis, which is dependent
upon in-person visitation, and increases patient equity.
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Table 3. Carbohydrate metabolism and ATP synthesis nodes in DCN Leiden Communities.

PGFC Species Category Description HCDC Community

BC123|M00150 C. hominis ATP Fumarate reductase 5 I
BC46|M00157 G. adiacens ATP F-type ATPase 4 I
BC60|M00144 Kingella_B oralis ATP NADH:quinone

oxidoreductase
4 I

BC21|M00159 Leptotrichia_A sp001274535 ATP V-type ATPase 2 I
BC1|M00153 Veillonella. parvula_A ATP Cytochrome bd ubiquinol

oxidase
2 I

BC123|M00009 C. hominis CCM Citrate cycle (TCA cycle,
Krebs cycle)

5 I

BC123|M00011 C. hominis CCM Citrate cycle, 2-oxoglutarate
≥ oxaloacetate

5 I

BC0b|M00003 Corynebacterium matruchotii CCM Gluconeogenesis,
oxaloacetate ≥ fructose-6P

4 I

BC0b|M00001 C. matruchotii CCM Glycolysis (EMP), glucose ≥
pyruvate

4 I

BC0b|M00002 C. matruchotii CCM Glycolysis 4 I
BC46|M00007 G. adiacens CCM Pentose phosphate pathway,

nonoxidative phase
4 I

BC60|M00011 Kingella_B oralis CCM Citrate cycle, 2-oxoglutarate
≥ oxaloacetate

4 I

BC60|M00003 Kingella_B oralis CCM Gluconeogenesis,
oxaloacetate ≥ fructose-6P

4 I

BC60|M00001 Kingella_B oralis CCM Glycolysis (EMP), glucose ≥
pyruvate

4 I

BC60|M00002 Kingella_B oralis CCM Glycolysis 4 I
BC60|M00307 Kingella_B oralis CCM Pyruvate oxidation, pyruvate

≥ acetyl-CoA
4 I

BC60|M00308 Kingella_B oralis CCM Semi-phosphorylative (EDP),
gluconate ≥ glycerate-3P

4 I

BC36|M00005 S. oralis CCM PRPP biosynthesis, ribose 5P
≥ PRPP

4 I

BC46|M00854 G. adiacens OCM Glycogen biosynthesis,
glucose-1P ≥ glycogen/starch

4 I

BC18|M00157 Abiotrophia. sp001815873 ATP F-type ATPase 2 II
BC18|M00159 Abiotrophia. sp001815873 ATP V-type ATPase 2 II
BC123|M00004 C. hominis CCM Pentose phosphate pathway 5 II
BC123|M00007 C. hominis CCM Pentose phosphate pathway,

non-oxidative phase, fructose
6P ≥ ribose 5P

5 II

BC1|M00003 Veillonella. parvula_A CCM Gluconeogenesis,
oxaloacetate ≥ fructose-6P

5 II

BC1|M00001 Veillonella. parvula_A CCM Glycolysis
(Embden–Meyerhof

pathway), glucose ≥ pyruvate

5 II

BC1|M00002 Veillonella. parvula_A CCM Glycolysis, core module
involving three-carbon

compounds

5 II

BC123|M00854 C. hominis OCM Glycogen biosynthesis,
glucose-1P ≥ glycogen/starch

5 III

BC123|M00307 C. hominis CCM Pyruvate oxidation, pyruvate
≥ acetyl-CoA

5 IV

BC123|M00549 C. hominis OCM Nucleotide sugar
biosynthesis, glucose ≥

UDP-glucose

5 V

Category refers to KEGG Level 3 metabolic category while description refers to KEGG module description. Community refers to Leiden communities for DCN.
Acronyms: ATP—ATP Synthesis, CCM—Central carbohydrate metabolism, OCM—Other carbohydrate metabolism.

The complexity of this study required many novel methods
to be developed for identifying mechanisms involved in caries-
related dysbiosis. With a scope only considering single taxa ex-
pression patterns (e.g. unsupervised clustering of samples and
differential expression analysis), we would have not been able to
identify any distinguishing features of caries or caries-free phe-
notypes. Our development of novel association network method-

ologies built on the fundamental network concepts inspired by
WGCNA such as implementing fully connected, undirected, and
weighted networks that can be clustered via hierarchical cluster-
ing. Our approach augments legacy methods by leveraging feature
engineering to reduce dimensionality and exploitation of natural
biological ontologies, the use of proportionality instead of corre-
lation, consensus Leiden community detection, and a novel en-
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semble network framework to build distributions of edge weights
rather than singular point estimates. Only through the inferred
interactions between PGFCs were we able to notice trends in the
data that could describe caries-related regime shifts. We averted
the intractability of naive “bag-of-genes” representations of the
data (i.e. ORFs as individual units) by flexible feature engineering
methodologies to simulate an in-silico reconstruction of the mi-
crobial community grouped by taxonomy and function; a “bag-of-
genomes” approach. Analyzing caries-related dysbiosis using dif-
ferential networks in PGFC-space rather than gene-space allowed
for rapid and computationally economical methods for packing
and unpacking biological hierarchies to explore regime shifts;
bridging the gap between machine intelligence and biological in-
sight. Although the feature engineering methods in this study are
largely dependent on curated metabolic pathways, they were de-
signed to be generalizable to custom databases and unsupervised
paradigms such as hierarchical clustering paired with gene ontol-
ogy analysis.

Exploring the oral microbiome from unique vantage points
through analyzing networks specific to a phenotype, the compar-
ison of connectivity profiles, and the differentials between net-
works provided insight into not only dysbiotic regime shifts but
also maintenance of caries-free status. Even high-level network
statistics are biologically relevant in the context of caries-related
dysbiosis. For instance, the caries PSCN had substantially greater
total connectivity than the caries-free PSCN, which can be in-
terpreted as a higher number of interacting microbes and di-
verse metabolic pathways. This enrichment in inferred interac-
tions within a diseased community relative to a nondiseased com-
munity has been observed in other forms of dysbiosis in the hu-
man gut microbiome such as inflammatory bowel disease and
obesity (39). This finding is especially relevant considering the mi-
crobial richness does not differ between caries and caries-free
microbiomes. The larger total connectivity and number of high-
connectivity coexpression clusters in caries microbiome suggests
that there are more microbial and metabolic interactions occur-
ring in carious systems. Similarly, the fewer number of high-
connectivity clusters in a caries-free microbiome suggests that
the caries-free phenotype has a microbiome dominated by a few
key taxa and metabolic pathways.

Neisseria appears to be a key player with high connectivity in the
supragingival plaque oral microbiome regardless of caries pheno-
type. Previous research has observed Neisseria as highly abundant
in both caries and caries-free microbiomes (40) but, to our knowl-
edge, this study is the first to report this trend in the context of net-
work connectivity (Figs. 4 and 6) and RNA:DNA (Fig. 3). Although
the connectivity of Neisseria is comparable in both microbiomes,
the high connectivity in the caries microbiome is masked by a
plethora of other highly connected genera and is ranked higher
in the caries-free microbiome as a result of fewer high connec-
tivity genera (Fig. 4A and B). However, we observed different mi-
crobial communities interacting with Neisseria when comparing
between caries and caries-free microbiomes. In particular, sev-
eral species of Neisseria were interacting with members of Bac-
teroidota in the caries-free microbiome and shifts to interactions
with Haemophilus_D parainfluenzae and fellow Neisseria [mostly an
unclassified Neisseria (BC6) and Neisseria mucosa] in the caries
microbiome (Fig. 4E). This is interesting because several species
of Neisseria had enriched connectivity in the caries-free micro-
biome and Haemophilus_D parainfluenzae had enriched connectiv-
ity in the caries microbiome (Fig. 5A and C). Although, Neisseria
and Haemophilus parainfluenzae are both common in the oral cav-
ity of caries-free individuals from the perspective of abundance

(41, 42, 43), their interactions with other coexpressed microbes
known to be associated with infections in humans [e.g. Prevotella
conceptionensis from Community-C.II (44, 45)], may be indicative of
caries dysbiosis. Many of the organisms discussed in this research
have not been exhaustively characterized in the context of dental
caries from an ecological perspective which presents an opportu-
nity for future co-culture experiments.

The ability to collapse and expand PGFCs in these abstract
network spaces can be used to identify unanticipated players
with uncharacterized interactions relevant to maintaining either
caries-free or caries microbiomes. For instance, when comparing
PSCNs C. hominis is revealed to be one of the microbes with the
highest enrichment in connectivity in the caries-free microbiome
(Fig. 5A and C). However, the narrative is more complex when par-
titioning the PGFCs by differentially connected clusters (Fig. 6)
and collapsing PGFCs by taxa-specific higher order KEGG cate-
gories. In a hive network layout, C. hominis emerges as a hub not
only in the caries-free microbiome but also in the caries micro-
biome as it constitutes the majority of the differential connec-
tivity within HCDC.5 primarily through ATP synthesis and carbo-
hydrate metabolism. With C. hominis ATP synthesis and carbohy-
drate metabolism as a focal point, we were able to expand our
focus to more specific KEGG modules while retaining high-level
KEGG categories for the other microbes in the network to avoid
the infamous and uninformative hairball plots (46) of overly com-
plex networks (Fig. 7).

This hierarchical network, further validated through predictive
modeling, implicates C. hominis as a nexus between caries-free
and caries dysbiotic states through a switch from pentose phos-
phate to TCA cycle carbohydrate metabolism. Previous metabolic
research confirms that both the TCA cycle and the pentose phos-
phate pathway function within the supragingival plaque in vivo
and glycolytic activation caused an increase in pentose phos-
phate activity (47). These findings suggest that C. hominis mediated
pentose phosphate pathway metabolism promotes a caries-free
microbiome with the support of S. sanguinis lysine metabolism,
Abiotrophia. sp001815873 ATP synthesis, and Neisseria cofactor
metabolism (Community-7.II). This hypothesis agrees with previ-
ous research as S. sanguinis and Abiotrophia have been known to
co-occur in caries-free children (48) while Neisseria, as mentioned
previously, has been associated with beneficial oral health. The
simplicity of interactions enriched in the caries-free microbiome,
Communities-7.II-V, agree with our theory that fewer taxa with
more defined metabolisms are indicative of stable and healthy
oral communities; thus, opening the door for potential probi-
otics, engineered microbial communities, and therapeutics for
oral health and resilience.

The evidence for C. hominis TCA cycle and its association with
caries dysbiosis is more complex in Community-7.I, which has
considerably more taxa and metabolic pathways than commu-
nities that include the pentose phosphate pathway. However, this
agrees with our earlier finding that caries-related regime shifts
include more high-connectivity interactions without an increase
in microbial richness; that is, greater total connectivity with the
same core microbiome. Previous research has shown that the
caries microbiome has the potential to metabolize more diverse
sugar sources than the caries-free microbiome (27), which sup-
ports the notion that metabolism associated with dysbiotic caries
communities is more complex than healthy communities with-
out dental caries and, therefore, higher total network connectiv-
ity. In Communities-7.I-V, C. hominis is the only microbe that has
connectivities enriched in caries and in caries-free microbiomes
which supports our hypothesis of turncoat behavior in regards to
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oral health. Cardiobacterium hominis TCA cycle had enriched con-
nectivity to carbohydrate metabolism from Kingella oralis (49), S.
oralis (48), and C. matruchotii (40) in the caries microbiome, which
have previously been statistically associated with caries dysbiosis
in children.

Diseases stemming from microbial dysbiosis are often complex
and difficult to investigate due to computational limitations and
human interpretation. Our research addresses a critical limitation
in paired metagenomics and metatranscriptomics across multi-
ple samples/subjects: that is, how to have biologically accurate
assemblies not biased by coassembled chimeras while also pro-
ducing overlapping features (e.g. SLC, SLC-specific orthogroups).
Furthermore, the analytical methodology (e.g. feature engineer-
ing and network analysis) employed in this study, though devel-
oped for the oral microbiome, can be generalized to other dis-
eases, environments, and modalities (e.g. clinical measurements,
metabolomics, proteomics). This research demonstrates how in-
vestigating microbiomes from different vantage points can pro-
vide insight into microbial ecosystems and their relevance in
health and disease.

Methods
Sample collection
The study design has been described previously for this BioPro-
ject (PRJNA383868) in sister studies (27, 50, 13). In particular for
the metatranscriptomics cohort, dental plaque samples were col-
lected from participants of the University of Adelaide Craniofacial
Biology Research Group Tooth Emergence and Oral Health Study
(CBRG) (n = 52), and the Murdoch Children’s Research Institute
(MCRI) Peri/Postnatal Epigenetic Twins Study (PETS) (n = 39). Hu-
man research with PETS subjects was approved by the Royal Chil-
dren’s Hospital Human Research Ethics Committee (#3174), and
the CBRG cohort was approved by The University of Adelaide Hu-
man Research Ethics Committee (#H-2013–097). Research at the J.
Craig Venter Institute was approved by the JCVI Institutional Re-
view Board (#2013–182). All research was performed according to
the listed institutions guidelines and informed consent was ob-
tained from all participants’ parent and/or legal guardians. Inclu-
sion criteria included 5 to 11-y-old twins whose parents consented
to this portion of the study. Our protocol samples the supragingi-
val plaque of all teeth in the oral cavity during sample collection
regardless of whether a tooth is suspected of containing a cav-
ity. Although this yields a mixture of caries and caries-free com-
munities, it provides a powerful opportunity to develop diagnos-
tic “at-home” tests where samples would be collected by patients.
Our quality-controlled cohort consists of 36 caries and 51 caries-
free samples sampled in this method. Please refer to Supplemental
Methods for detailed descriptions on study design and sample col-
lection implemented in this study.

Bioinformatics and data analysis
Please refer to Supplemental Methods for detailed descriptions on
computational and analytical methodologies implemented in this
study. Schematics for metagenomics workflows and sample meta-
data are detailed in Fig. S1 and Table S1, respectively. Metage-
nomic and metatranscriptomic workflows were performed using
early versions of the VEBA software suite (51).

Supplementary Material
Supplementary material is available at PNAS Nexus online.

Acronyms
MAG—Metagenome-assembled genome

SLC—Species-level cluster
CPR—Candidate phyla radiation
PSCN—Phenotype-specific coexpression network
PGFC—Phylogenomic functional category
HCPC—High-connectivity PSCN cluster
DCN—Differential coexpression network
HCDC—High-connectivity DCN cluster
LFOCV—Leave family out cross-validation
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