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Abstract

Understanding and Measuring
Privacy and Security Assertions of

Mobile and VR Applications

by Ruoxi Sun

The emergence of the COVID-19 pandemic has catalysed a profound transfor-
mation in the way mobile applications are utilised and engaged with by con-
sumers. There has been a noticeable surge in people relying on applications
for various purposes such as entertainment, remote work, and daily activities.
These services collect large amounts of users’ personal information and use them
in many areas, such as in medical and financial systems, but they also pose an
unprecedented threat to users’ privacy and security.

Many international jurisdictions have enacted privacy laws and regulations to
restrict the behaviour of apps and define the obligations of app developers.
Although various privacy assertions are required in app stores, such as the
permission list and the privacy policies, it is usually difficult for regular users to
understand the potential threats the app may pose, let alone identify undesired
or malicious application behaviours.

In this thesis, I have developed a comprehensive framework to assess the cur-
rent privacy practices of mobile applications. The framework first establishes a
knowledge base (including datasets) to model privacy and security assertions. It
then builds a sound evaluation system to analyse the privacy practices of mobile
applications. Large-scale privacy evaluations were conducted on different real-
world datasets, including privacy policies, contact tracing apps, and children’s
apps, with the aim of revealing the risks associated with mobile application
privacy. Lastly, a novel approach to applying differential privacy on streamed
spatial data in VR applications is proposed. This thesis provides a comprehen-
sive guideline for the mobile software industry and legislators to build a stronger
and safer privacy ecosystem.

http://www.adelaide.edu.au
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1

Chapter 1

Introduction

The internet and mobile services provide many conveniences for our daily lives
and have greatly changed people’s lifestyles, especially in terms of interaction
with each other. These services collect large amounts of users’ personal infor-
mation and use them in many areas, such as in medical and financial systems,
but they also pose an unprecedented threat to users’ privacy and security.

Privacy and security statements ( e.g., the privacy regulations and the privacy
policies provided by app developers) are used to protect users’ personal informa-
tion. However, the actual behaviours of an app may be inconsistent with what is
asserted in their privacy policies, which will cause serious security and privacy
issues, such as personal information abusing, data breach, and prone to security
attacks.

To understand and measure the privacy and security practice of mobile apps, this
research built a framework , aiming to ensure that mobile users and developers
can reliably recognise the privacy issues and risks on their smart devices. The
datasets and tools developed in this research have been open-sourced to public.
The findings of this research have been summarised into guidelines for developers
and suggestions to legislators.
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1.1 Introduction

With the increasing significance of mobile phones in our daily lives, the issues of
information privacy and security have become a growing concern for both devel-
opers and users of mobile applications. It has become commonplace for mobile
apps to access, require, or transmit users’ sensitive personal information as part
of their service requests. The COVID-19 pandemic has triggered a substantial
shift in how consumers utilise and engage with mobile applications. Presently,
there is a notable increase in people relying on applications for various purposes
such as entertainment, remote work, and everyday tasks. Ninety-two percent
of Australian adults now have access to a smartphone and prefer to carry out
various tasks and access the internet through mobile applications, rather than
laptops or computers [1]. However, among the 2,669,912 applications available
in the Google Play Store, only 23% of applications have ratings higher than
4.0/5.0 [2] (last update: 04 Dec 2021). It is not surprising that the Office of
the Australian Information Commissioner (OAIC) received 2,474 privacy com-
plaints covering 2,698 issues violating Australian Privacy Principles in the single
year of 2020–2021 [3].

In order to safeguard user privacy and regulate the conduct of mobile appli-
cations, numerous countries have implemented regulations. These include the
Children’s Online Privacy Protection Act (COPPA) [4], the European General
Data Protection Regulation (GDPR) [5], the California Online Privacy Pro-
tection Act (CalOPPA) [6], and the Privacy Act 1988 in Australia [7]. These
regulations aim to promote and protect the privacy of individuals, as well as
govern the handling of personal information by organisations.

These regulations impose limitations on app behaviour and establish the respon-
sibilities of app developers. One key requirement under these privacy regulations
is the mandatory inclusion of a privacy policy for an app. A privacy policy out-
lines the collection, usage, retention, and disclosure of user information. While
app stores often require certain privacy disclosures, such as permission lists and
privacy policies, it can be challenging for average users to comprehend the po-
tential risks associated with an app, let alone identify undesired or malicious
behaviours of the application [8]. Significantly, findings from the Australian
Community Attitudes to Privacy Survey 2020 [9] indicate that a considerable
proportion of Australians (59%) have encountered issues regarding the manage-
ment of their personal information within the previous 12 months. Furthermore,
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parental concerns regarding their children’s privacy are even more pronounced.
The majority of parents in Australia strongly believe that children should have
the right to develop and grow without being subjected to profiling and tar-
geted marketing (84% agree, 59% strongly agree). This app user environment
is referred to as an “ecosystem”. We, the people of the world, are recurrently
suffering from such unpleasant privacy ecosystem.

Recent works study whether or not mobile apps behaviour matches statements
in privacy policies [10, 11, 12]. The actual behaviour of apps may be inconsistent
with the statements claimed in privacy policies. This can lead to many privacy
and security issues. The personal data could be collected and abused by an
app without user consent. An app may not provide data protection asserted
in its privacy policy and causes data breach. Even worse, the leaked sensitive
information could be illegally used in business. For example, once health data
(such as an electronic health record) is leaked to an insurance company, it
may lead to an increase or even rejection of user health and life insurance [13].
Therefore, it is worth studying and debating whether the privacy and security
of the user can be protected by the mobile apps assertions and behaviours.

Through this research, I develop a novel approach to assess the current privacy
practices of mobile applications, to ensure that mobile users and develop-
ers can reliably recognise the privacy issues and risks on their smart
devices. The findings of this research are summarised into guidelines
for developers and aim to further make suggestions to legislators.
Specifically this research aims to (i) reveal the current status, issues, and the
risks among mobile application software, with respect to the privacy practice;
and (ii) provide a comprehensive guideline for the mobile software industry and
legislators, to build a stronger and safer privacy ecosystem.

1.2 Background & Related Work

Thanks to the success of the smart device industry, mobile software privacy has
become a very promising and challenging field that aims at resolving various
privacy issues and threats currently inherent in mobile applications. The protec-
tion of users’ personal sensitive data is among the most common concerns among
smartphone users. Although many countries restrict app behaviour through
laws, regulations and app store policies, our community has not yet developed
a reliable solution to automate large-scale privacy compliance.
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Privacy requirements. Most app stores have released strict developer poli-
cies, along with inspection and vetting processes before app publishing, seeking
to nip the security and privacy threats in the bud and improve app quality
in the markets. For example, Google Play has released a set of developer poli-
cies [14] that cover 10 main categories, including “Restricted Content”, “Privacy,
Deception and Device Abuse”, “Monetisation and Ads”, and “Families”. Each
category stands for a type of violation that may be associated with various unde-
sired behaviours. For example, if one of the target audiences for an application
is children, the application must comply with the Families Policy Requirements,
which explicitly outlines standards that must be followed for apps that are in-
tended for children’s use. Apps that that do not follow these policies cannot
be published on Google Play. However, the information presentation and tar-
get audience registration in Google Play store are based on self-certification
manner.

Mobile application analysis. Static and dynamic analysis techniques are
widely used in the practical assessment of mobile apps. For example, Mob-

SF [15] offers automated application penetration testing, malware analysis, and
a security and privacy assessment framework. FlowDroid [16] statically com-
putes data flows in apps to understand which parts of the code that data may be
exposed to. Notably, these off-the-shelf tools only utilise syntax-based scanning
and data-flows, which leads to numerous false positives that are not relevant to
personal identifiable information.

Mobile app comments have been extensively studied from other perspectives,
including mining user opinions, app comment filtering, and exploring other
concerns. For example, Chen et al. [17] conduct a study on the unreliable
maturity content ratings of mobile apps, which may result in inappropriate risk
exposure for the children and adolescents. This research focuses more on the
comparison of content ratings between iOS app store and Google Play store,
rather than exposing undesired application behaviours.

Recent research by Liu et al. [18] targets to solve the problem of compliance
analysis between GDPR and privacy policies, utilising a combination of sentence
classification and rule-based analysis. However, the corpus suffers from the
“imbalanced data” problem, which greatly affects the classification accuracy.

This research. In contrast to the aforementioned works, this thesis not only
proposes and develops a holistic automated security and privacy assessment



1.3. Objectives of my research 5

tool to test apps designs but also conduct user studies to understand users’
concerns and requirements to reinforce security/privacy by design, in an attempt
to accommodate to the mobile software industry (Chapter 3).

In addition, based on the security and privacy assessment of mobile applications,
I expand my search into the privacy policy domain, e.g., to understand the
privacy and security assertion and measure the actual behaviours of applications
(Chapter 4).

Furthermore, taking VR application as an example where potentially more sen-
sitive information from users are collected and share, I investigated into privacy
enhancement techniques, proposing a practical approach to applying differential
privacy on streamed spatial data, such as the user visiting record in a virtual
home or a user’s body movement trace in a virtual game, with data utility
preserved (Chapter 5).

Please note that I have also conducted an investigation into existing online auto-
matic privacy policy generators (APPGs) which heavily rely on user input and
templates. This research distinguishes itself from previous work by examining
both the evaluation of privacy policies and app behaviours in terms of their
completeness and consistency. The results of this research [8] were published
three months prior to the commencement of my PhD study. While I cannot
include this study in my thesis, it serves as an indispensable component of the
framework proposed by this thesis.

1.3 Objectives of my research

The project aims to enforce the privacy compliance of mobile applications. The
outcomes of this research will greatly benefit both mobile application developers
and users. Developers will be supported with much better tools enabling effi-
cient development of privacy preserving mobile applications that comply with
the privacy regulations and online app store polices, maximising the potential of
the mobile privacy ecosystem for Australian businesses. Users will have access
to better apps that have less privacy issues. To achieve this, the key objectives
are to:
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• Objective 1: Define a comprehensive taxonomy of privacy issues and
regulation violations that frequently appear in applications, and estab-
lish a knowledge base (including datasets) to model such compliance and
privacy issues;

• Objective 2: Build a sound evaluation system to analyse the privacy
practice of mobile applications, as well as their privacy policies. A series
of evaluation tools will be developed to interpret these privacy policies
and extract application behaviours from package files and user comments;

• Objective 3: Conduct a large-scale privacy evaluation of mobile ap-
plications to reveal the non-compliance among the privacy policies and
application behaviours;

• Objective 4: Research and develop a practical privacy enhancement
approach for particular mobile application scenarios.

1.4 Methodology

This research focuses on Android applications. With over 70% of global market
share [19], Android is the most popular mobile platform in the world. Android
applications are relatively easier to be obtained and analysed, compared with
other mobile operating systems, due to its open ecosystem. Nonetheless, the
design and methodology proposed in this research could extend to address simi-
lar privacy evaluation on other mobile platforms, such as iOS. The objectives of
this research will be achieved through four phases that are designed to achieve
objectives 1-4 respectively, as illustrated in Figure 1.1. Please note that the re-
sults of research aiming to address Objective 1 were published three months
prior to the commencement of my PhD study, marked as “prior research” in
Figure 1.1). While I cannot include this study in my thesis, it serves as an
indispensable component of the framework proposed by this thesis.

1.4.1 Phase 1: Regulation Modelling and Dataset Estab-

lishment (Objective 1)

The first task of my research focused on the knowledge base building and infor-
mation collection, which was established before the analysis tool development
stage. I extracted privacy requirements from laws, regulations, and app store
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Figure 1.1. Methodology overview.

policies. A dataset was established to enable a large-scale privacy evaluation in
a later stage.

Modelling the regulations and app store policies [8]. The handling of
personal information is governed by legislation, such as the Privacy Act 1988 at
the federal level. App stores, e.g., Google Play Store, also restrict the behaviour
of mobile application with store policies and self-certificated programs. In this
task, I extracted and modelled the privacy requirements. More specifically, I
mapped the specific application behaviours with privacy activities required in
online privacy regulations and policies.

In my work [8], I conducted an empirical study which determines what cate-
gories and items should be covered in a mobile application privacy policy. This
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work has successfully assessed the auto-generated privacy policies. In this task,
I further extended this work to focus more on social media applications and
children’s privacy domains.

Dataset establishment (Chapters 4.4.1). To enable a large-scale privacy
practice evaluation, a dataset of mobile applications was established, which
contains the application package files, e.g., Android Package Kit (APK), user
comments in app stores, and the privacy policies stated by the application de-
velopers or organisations. Concretely, I collected the APKs and user comments
from Google Play Store using an account located in Australia. The privacy
policies were downloaded from developers’ official websites or extracted from
the mobile applications.

The data practices in the privacy policy corpus was further identified according
to the privacy model extracted. Specifically, each data practice in the policy
text was annotated into a privacy category, such as “First-party privacy infor-
mation collection”, “Information sharing with third-parties”, or “Children’s pri-
vacy”. A small group of domain experts were hired as skilled annotators and an
annotation tool is developed to automate the annotation procedure. I labelled
the privacy policies in a fine-grained manner, e.g., annotating on sentence level
instead of on paragraph-length segments, and most important, involving more
specific privacy categories addressing regulations and app store policies. Despite
enabling the large-scale privacy evaluation, the research community can also use
this corpus to advance research in both privacy and language technologies.

1.4.2 Phase 2: Analysis Tool Development (Objective 2)

Millions of mobile applications are available on various app markets and plat-
forms. Although app stores have enforced vetting approaches before releasing
an app, a large number of low-quality or regulation violating apps still exist in
the market. To identify these undesirable mobile application behaviours, espe-
cially the privacy practice in the real world, static and dynamic analysis tools
were developed during this phase. Further, I took user comments as a source of
information to identify violations in an accurate and timely manner, utilising
state-of-the-art NLP and machine learning technologies. In this phase, a ma-
chine learning classifier was also trained to recognise what privacy requirements
have been addressed in privacy policies, which was further used in the privacy
policy quality evaluation in the next stage.
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Privacy policy classification [8]. Based on the established privacy pol-
icy corpus, a multi-class classification machine learning model was trained to
identify the privacy activities that have been covered in the application pri-
vacy policies. Specifically, each privacy policy sample, e.g., a labelled policy
statement sentence, was first converted into a feature vector. To achieve a suit-
able highly-discriminative representation, various text representation techniques
were studied, e.g., word mapping, count vetoriser, TF-IDF, and pre-trained
transformers. Next, I leveraged multiple machine and deep learning algorithms
for privacy policy classification, evaluating their effectiveness in detecting differ-
ent segment-level categories. The learning algorithms include logistic regression,
random forest, convolutional neural networks, deep neural networks, and fine-
tuned transformers. It should be noted that transformers are increasingly the
model of choice for NLP problems, which have been trained with large language
datasets and can be fine-tuned for specific tasks. Therefore, the main efforts in
this research task focused on the pre-processing of privacy policy samples (e.g.,
removing stop-words, word lemmatisation and stemming) and the training or
fine-tuning of models to select the best-performing learning algorithm that fits
the privacy policy annotation classification.

Static analysis tool development (Chapters 3.3 and 4.4.2). Static
code analysis was performed by examining source code for signs of security
vulnerabilities without executing the program. Several studies [20, 21, 22, 23]
have used static analysis to analyse different types of Android applications in
search of malicious behaviours and privacy leaks.

In this task, I developed an automatic tool to detect undesired app behaviours
and violations against regulation, such as obtaining permissions without user
consent, using advertisement Software Development Kit (SDK) or trackers not
certified in Google Designed for Families (DFF), and privacy information leak-
age to third-parties. Considering that static analysis always suffers from false-
positives, a manual review of the static analysis tool was performed for quality
control.

Dynamic analysis tool development (Chapter 4.4.3). In contrast to
static analysis, dynamic analysis executes the code and captures the program
status during run-time. Rather than solely relying on offline code analysis, it is
possible to monitor vulnerabilities and program behaviours while the program
is actively running, thereby gaining insights into its real-world behaviour. Dy-
namic analysis techniques, commonly employed for mobile applications, include
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fuzzing and network traffic monitoring. These approaches enable the observa-
tion and assessment of a program’s behaviour and interactions during runtime.
In my research, I use dynamic approaches in privacy leakage detection [24],
fuzzing optimisation [25] and IoT firmware fuzzing [26].

In this task, I first researched and developed a dynamic analysis framework
adopting the mechanism of the state-of-the-art network traffic monitoring tool
on Android applications, Lumen [27], which has been widely used in the privacy
research community. New tracker lists and personal identifiable information
(PII) keywords were involved according to the privacy requirement model ex-
tracted in Phase 1, which enabled a fine-grained analysis, particularly focused
on the regulations and specific user groups, such as kids. Further, a user in-
terface fuzzing tool was developed. Different from the existing user interface
exerciser, such as Monkey [28], the fuzzing tool developed in this research fuzzes
the applications according to the structure of the user interface, instead of gen-
erating pseudo-random streams of user events, to mimic the user input to mobile
applications while ensuring the code coverage of fuzzing.

User comments analysis (Chapter 4.4.5). Besides the static and dy-
namic analysis of applications, the comments from users reflect timely feedback
that may reflect the violation of regulations or policies, including user concerns.
Analysis of the user comments reveals such undesired application behaviours.
Recent research [29] resorts to user comments to identify violations against mo-
bile application market policies, using a semi-automated rule-based process. In
this task, I adopted state-of-the-art text mining and natural language processing
(NLP) techniques, such as transformers, to interpret the application comments
and further train machine learning models to categories and identify informative
comments.

Specifically, comment clusters were obtained from topic modelling based on the
training set of user comments at first (as shown in Figure 1.2). Manual inspec-
tion was then conducted to refine the comment clusters and build a violation
model, e.g., recognising the centres of clusters that indicate violations or unde-
sired behaviours. Finally, using the violation model, the application behaviours
were extracted, functioning in complement with the static and dynamic analysis
results (since some application behaviours may not be identified by technical
analysis, but could be reflected by users).
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Figure 1.2. User comments analysis.

1.4.3 Phase 3: Large-scale Evaluation (Objective 3)

After the privacy requirements model and application datasets were established
(Phase 1) and analysis tools and machine learning models were ready (Phase 2),
I conducted a large-scale evaluation of mobile applications as the third phase of
my research. Through evaluations, I assessed the compliance of privacy policies
and the application behaviours based on regulations and store policies. This
was achieved via the following three distinct tasks.

Privacy policy quality assessment [8]. Information privacy issues are of
growing concern to developers as well as to mobile app users. Privacy policies
are one of the key legal statements that are used to protected users’ personal
information. However, a low-quality privacy policy may miss critical legislative
requirements such as providing the identity of data collectors, communicating
what personal information will be collected, and how the collected informa-
tion will be used. This makes it difficult for regular users to determine the
trustworthiness of apps.

In this research task, I assessed the quality of privacy policies at a large scale to
reveal the problems that arise in the practice of privacy regulations. Based on
the privacy requirement model and the privacy policy classifier built in previous
phases, I determined what categories and items should be covered in a complete
privacy policy and further analysed the completeness of privacy policies. Specif-
ically, each statement in a privacy policy was entered into a “classifier” and the
output labels were summarised to indicate what items have been covered in
the privacy policy. Then I compared the classification results with the privacy
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policy requirements to flag any missing items. Using this information, I im-
plemented an automatic privacy policy quality assessment tool to help mobile
users and developers check and improve their privacy policies. This tool, would
be the first to span the requirements of the privacy regulations and app store
policies, and is stricter in terms of social media and children’s privacy.

Privacy assertions compliance evaluation (Chapters 3.4, 3.5, and 3.6).
In addition to assessing whether the privacy policy complies with regulations,
I further assess whether the application behaviours comply with their privacy
policies. Thanks to the static and dynamic tools and the user comment anal-
ysis model built in Phase 2, in this research task, I am able to extract various
application behaviours, e.g., the permission requested and granted, the network
traffic, the collection and sharing of personal identifiable information, and other
undesired behaviours reflected by user comments. The application behaviours
are compared with their privacy policies (annotated by the classifier) to figure
out the compliance of mobile applications. In addition to a large-scale evalua-
tion, particular cases are studied to showcase the application behaviours that
do not comply with their privacy policies.

Privacy practices measurement and violation detection (Chapter 4.5).
Considering that the scope in previous research task could be limited to iden-
tify inconsistency in application privacy policies, I further investigated regula-
tion violations by evaluating the application behaviours against the regulation
requirements. Some application behaviours are not required to be explicitly
stated in privacy policies but are still restricted by regulations. In this research
task, I focused on additional application behaviours that are required by regula-
tions and app store policies, such as age verification, parental consent, and the
use of advertisement SDK and trackers in applications. Note that, due to the
consideration of user comments, more undesired application behaviours were
detected, even if these behaviours are not explicitly mentioned or restricted in
the regulations or app store polices.

1.4.4 Phase 4: Privacy Enhancement (Objective 4)

In today’s data-driven world, the need for effective implementation of privacy-
enhancing technology is more critical than ever. Proposing practical approaches
to implementing privacy-enhancing technology is crucial due to rising privacy
concerns, regulatory requirements, the need to build trust, data magnetisation
opportunities, and ethical considerations. In Chapter 5, I particularly focus on
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proposing a practical approach to enhance streamed spatial data collected from
Virtual Reality (VR) applications, to protect the user’s privacy against user
identification attacks.

To conclude, based on the large-scale evaluation of mobile application privacy
practice in previous phases, the outputs of all research tasks is thoroughly eval-
uated and summarised. Manual analyses was leveraged as an important quality
control mechanism to assess the precision, recall, and F-measure of the results.
Typical cases were selected for further studies. In addition to real-world mo-
bile application developers, application users were also contacted to ensure that
their interests and concerns are well respected. Finally, the analysis tools and
datasets developed throughout this research were released publicly to help de-
velopers and users evaluate the privacy protection during and after application
development. Please see more details of legislation informing in takeaways and
development guidelines in my prior research [8], Chapters 3, and 4.

1.5 Significance

This research addresses the critical problem of privacy compliance of mobile
applications, aiming to strengthen mobile privacy ecosystem. At present, com-
pliance issues in mobile applications pose a number of problems to users, devel-
opers, and businesses.

• For users, my research provides a publicly-available and easy-to-use privacy
assessment platform which arms normal users fighting against these and other
privacy threats. A real and ever-present risk is that using mobile applications
can increase the likelihood of privacy leakage affecting their finances (e.g., by
data breaches in the financial services), identity (e.g., by leaking users’ phone
number and email addresses) or even safety (e.g., by tampering with users’
health data). Unfortunately, with so much data passing through the internet
via mobile applications, the chances of involuntary data leaks become fairly
high. Savvy hackers find it quite lucrative to infiltrate personal files and
threaten to release them publicly.

• For developers, privacy assessment tools and privacy practice guidelines in my
research help less knowledgeable developers overcome the barriers to privacy
compliance. Neglecting to safeguard privacy can lead to violations of regula-
tions, potentially resulting in significant legal consequences. It is crucial for
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developers to incorporate robust privacy protections into their everyday busi-
ness practices and ensure compliance with the obligations outlined in privacy
regulations. By doing so, they can mitigate the risk of privacy breaches and
adhere to their legal responsibilities. However, not every app developer is
a legal professional, which makes the understanding of privacy regulations a
time-consuming task and implementing the privacy requirements even harder.

• For businesses, my research emphasises the importance of safeguarding con-
sumer privacy as a core objective. There is always ongoing pressure to stay
ahead of business competitors, and the growth of the mobile ecosystem is
compounding the number of ways in which this competition presents itself.
Businesses that prioritise and implement privacy protections will not only
enhance their operations but also position themselves as preferred choices
among consumers compared to competitors lacking such safeguards. When
organisations demonstrate this commitment through transparent and consis-
tently followed privacy practices, they build emotional connections with their
audience, thereby improving their brand value. By showcasing their dedica-
tion to consumer privacy, these businesses establish trust, foster loyalty, and
ultimately strengthen their brand reputation.

1.6 Contributions

Throughout this thesis, I built methods and evaluation frameworks for under-
standing and measuring privacy and security assertions of mobile apps, with
specific solutions that address the limitations and challenges outlined in the
sections above.

Contribution 1 The rapid spread of COVID-19 has made manual contact
tracing difficult. Thus, various public health authorities have experi-
mented with automatic contact tracing using mobile applications (i.e.,
“apps”). These apps, however, have raised security and privacy concerns.
I proposed an automated security and privacy assessment tool for Android
apps, COVIDGuardian, which combines identification and analysis of
Personal Identification Information (PII), static program analysis and data
flow analysis, to determine security and privacy weaknesses. Furthermore,
in light of my findings, I undertook a user study to investigate concerns
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regarding contact tracing apps. I offered concrete guidelines, and high-
light gaps between user requirements and app performance. Details of this
research are described in Chapter 3.

Contribution 2 While legislatures around the world have enacted regula-
tions and laws to protect children’s online privacy, and app stores have
instituted various restrictive protections and requirements, privacy in mo-
bile apps remains a growing concern for parents, as well as the wider
society. I investigated 20,195 mobile apps from the Google Play store
that are designed particularly for children (Family apps) or include chil-
dren in their target user groups (Normal apps). The findings suggested
that, despite significant attention to children’s privacy, a large gap be-
tween regulatory provisions, app store policies, and actual development
practices exists. Details of this research are described in Chapter 4.

Contribution 3 I developed a novel approach that leverages differential pri-
vacy to safeguard users’ privacy in the context of VR applications, specif-
ically focusing on streamed spatial data. By applying differential privacy
mechanisms, I effectively mitigate the risk of user identification through
attacks, thereby enhancing privacy protection. Details of this research are
described in Chapter 5.

Mobile devices are playing an increasingly ubiquitous role in our lives, forcing
more and more businesses to join the mobile ecosystem. At the same time, due
to the large amount of revenue involved, the number of privacy breaches and
malicious attacks are continuously increasing, exerting pressure on software in-
dustry to reliably deliver regulation compliance and privacy preserving mobile
applications. The outcomes of this thesis not only advanced the knowl-
edge in the field of mobile software engineering but also brought a
range of benefits to software developers, users and businesses.
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Chapter 2

Literature Review

In this chapter, I review the main techniques and recent research in (i) secu-
rity and privacy evaluation; (ii) static and dynamic analysis approaches, and
(iii) regulations and laws compliance.
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2.1 Introduction

The research on understanding and measuring privacy and security assertions of
mobile apps is where several domains overlap, e.g., I utilise static and dynamic
analysis approaches, as well as the user comments as sources of user feedback,
aiming to evaluate and expose the security and privacy issue existed in mobile
apps, according to the security and privacy assertions, including privacy policies,
regulations, and laws. In this chapter, I review the main techniques and recent
research in (i) security and privacy evaluation; (ii) static and dynamic analysis
approaches, and (iii) regulations and laws compliance. Figure 2.1 illustrates the
overview of this chapter.

Mobile Application
Security and Privacy

Research

Application
Behaviour
Evaluation

Analysis
Technologies

Assertion Quality
and Compliance

Analysis

Security
Evaluation

Privacy Leaks
Detection

Evaluation 
on Contact Tracing
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Figure 2.1. Overview of the literature review.

Specifically, I start by reviewing the work that focuses on the the privacy and
security evaluation of mobile applications, exposing flaws and issues in appli-
cation design and development (Section 2.2). Then I particularly focuses on
the static and dynamic analysis approaches that could has been introduced to
the security and privacy research domain (Section 2.3). Another approach to
analyse mobile application behaviour is based on the auto-parsing and under-
standing of user comments. In the remaining part of this chapter, the literature
related to privacy regulations and laws compliance are reviewed (Section 2.4).
Finally Section 2.5 presents reflections and conclusions of this chapter.
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The reason I focus on the these domains is that my research on understanding
and measuring privacy and security assertions of mobile apps is where they
overlap, e.g., I utilise static and dynamic analysis approaches, as well as the
user comments as sources of user feedback, aiming to evaluate and expose the
security and privacy issue existed in mobile apps, according to the security and
privacy assertions, including privacy policies, regulations, and laws.

2.2 Security and Privacy Evaluation

With the rapid development of the Internet and smart phones, mobile appli-
cations occupy an increasingly important position in people’s daily life. While
these applications are convenient for people’s lives, they also bring new prob-
lems and risks, such as the embedding of mobile phone malware, the leakage of
personal privacy data, user behaviour tracking for the purpose of personalised
advertising, and even financial fraud and the spread of fake news. This makes
the security and privacy evaluation of mobile applications a hot research topic
in recent years. The related research mainly falls into two categories: (i) Secu-
rity evaluation and malware detection and (ii) Privacy leaks and user tracking.
Table 2.1 illustrates recent research in security and privacy evaluation on mobile
applications.

2.2.1 Security Evaluation and Malware Detection

To evaluate the security of mobile applications, as well as the mobile ecosys-
tem, several studies research on the bug analysis [1, 2, 17] and malware detec-
tion [3, 4, 5, 6, 18, 19, 20, 21, 22] in Android system, proposing different meth-
ods of feature extraction and approaches to enabling state-of-the-art machine
learning technologies in malware detection domain. On the other hand, recent
research [7, 8, 23, 24, 25, 26, 27, 28] looks into the enhancement of machine
learning-based malware detectors, focusing on the generalisation issue existing
in the machine learning-based Android malware classifiers over a long period,
e.g., concept drift). Note that there are also recent studies focus on the security
of machine learning models [29, 30, 31, 32, 33, 34, 35] which may hint novel
approaches in malware detection through machine learning techniques.

Software bug analysis. Software bug analysis entails the process of identify-
ing, diagnosing, and rectifying anomalies or flaws within software applications.



24 Chapter 2. Literature Review

Table 2.1. Recent research in security and privacy
evaluations on mobile applications.

Research Year Domain Description

Li et al. [1] 2020 Bug analysis An empirical study of bugs in real-world WebXR projects and bug taxonomy.

ESDroid [2] 2023 Bug analysis An Event-aware dynamic Slicing technique for AnDroid applications, combining
segment-based delta debugging and backward dynamic slicing to narrow the search
space to produce precise slices for Android.

StormDroid [3] 2016 Android mal-
ware detection

A machine learning-based malware detection framework, which is enhanced with
a combination of contributed features and the whole malware detection process is
“streaminglized” to support large-scale analysis.

Drebin [4] 2014 Android mal-
ware detection

One of the most popular machine learning-based Android malware classification
model, relying on static features.

MamaDroid [5] 2016 Android mal-
ware detection

A malware detection system for Android, utilising Markov chains built from the
sequence of abstracted API calls.

DroidCat [6] 2018 Android mal-
ware detection

A dynamic Android malware detection approach, using a set of dynamic features
according to the method calls and inter-component communication (ICC) intents.

Transcend [7] 2017 Detectors en-
hancement

A novel framework to determine whether a classification model is degraded to avoid
poor performance.

Tesseract [8] 2019 Detectors en-
hancement

A classifier robustness metric and an algorithm to tune the classifier have been
introduced in this research, allowing the evaluation on mitigation strategies for time
decay.

Xue et al. [9] 2016 Privacy leakage This research looks into the privacy risk against the integrity of user anonymity in
popular anonymous social media applications.

Recon [10] 2016 Privacy leakage A corss-platform system, revealing personally identifiable information (PII) leaks in
mobile applications.

Englehardt [11] 2016 User tracking A measurement of online tracking with 1 million sites, proposing an open-source
web privacy measurement tool.

Wang et al. [12] 2020 User tracking This research investigates into China’s mobile tracking behaviours, making inter-
esting observations with respect to Advertising and Tracking Services (ATSs) pop-
ularity and community structure, user monopoly patterns, and personal private
information collection.

Ferretti et al. [13] 2020 Contact tracing Analysed the key parameters of pandemic spread and estimated the contribution of
digital contact tracing.

Li and Guo [14] 2020 Contact tracing Conduct a survey on the global deployment and challenges at the very beginning of
the pandemic.

Baumgartner [15] 2020 Contact tracing Demonstrate that the Google/Apple Proposal is vulnerable to several attacks that
are practical in real-world.

Gvili [16] 2020 Contact tracing Analyses the security issues in the specification, finding that significant risk to so-
ciety could be introduced by this specification.

These anomalies, often denoted as bugs, have the potential to trigger unfore-
seen behaviours, system crashes, or other malfunctions within the software.
Bug analysis constitutes a pivotal component of the software development life-
cycle, typically conducted by a collaborative effort involving developers, quality
assurance (QA) engineers, and occasionally, specialised bug analysts.

Recent scholarly research, as exemplified by a study conducted by Li et al. in
2020 [1], delved into an empirical investigation of bugs encountered in extended
reality (XR) applications. The primary objective of this study was to gain
insights into the distinctive attributes of these bugs. To accomplish this, the
researchers collected a comprehensive dataset comprising 368 real bugs from a
multitude of issue reports and release notes emanating from 33 WebXR projects
hosted on GitHub. The research findings centred on an in-depth examination of
the bugs’ symptoms and their underlying causes, ultimately culminating in the
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construction of a comprehensive bug taxonomy based on these two fundamental
aspects.

In a recent study [2], the focus was on automating the debugging process for
Android applications using dynamic slicing techniques. In the Android ecosys-
tem, the execution of an app is heavily influenced by asynchronous events that
trigger inter-component communications. This characteristic frequently results
in a large search space when existing dynamic slicing methods are employed.
To address this challenge, the researchers introduced a novel approach that
combines segment-based delta debugging with backward dynamic slicing. This
innovative combination aims to effectively reduce the search space and generate
precise slices tailored to the Android platform.

Android malware detection. Considering the increasing trend of mobile
application usage, the threats of malware attack are raising more and more sig-
nificant risks to mobile devices. One critical challenge is the mobile malware
detection. The StormDroid, a streaminglized machine learning-based malware
detection framework, has been proposed by Chen et al. [3]. In this research,
the researchers particularly defined “streaminglised” as a novelty of the pro-
posed framework which is built on an open-source distributed real-time stream
processing engine, which enables a large-scale analysis of a data stream.

The StormDroid is enhanced with a combination of contributed features and
the whole malware detection process is streaminglized to support large-scale
analysis. The framework of StormDroid consists of 3 phases: Preamble, Feature
Extraction, and Classification. Resource files are prepared in Preamble phase.
Four types of features are considered in the feature extraction process, including
permissions requested, sensitive API calls, API call sequences, and dynamic
behaviour. Particularly, different from other research, the StormDroid extracts
sequence features by counting the number of sensitive API calls: if the the sum
value is higher than the threshold, the corresponding sequence will be marked
as 1. Therefore, a high-dimension input vector could be converted into one
sequence feature.

A large-scale analysis involving more than 8,000 mobile applications has been
conducted by the authors of StormDroid, reporting that the StormDroid is able
to improve the malware detection accuracy by near 10%, compared with state-
of-the-art antivirus engines. This work not only provides novel contributed
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features for malware detection, but also suggests a new perspective on the
streaminglised malware detection process.

Drebin [4], one of the most popular machine learning-based Android malware
classification model, utilises 8 sets of static features, including hardware fea-
tures, requested and used permissions, app components, filtered intents, re-
stricted and suspicious API calls, and network addresses. The classifier is built
on a lightweight SVM model and achieves 94% detection rate on 5,560 malware
samples. The computational overhead of Drebin is quite low, which enables
malware detection directly running on smartphones. However, relying on static
features, Drebin inherits the limitations of static analysis, i.e., attacks that can-
not be detected by static analysis (such as reflection and bytecode encryption)
will compromise the Drebin classifier.

In 2016, Mariconti et al. [5] presents MaMaDroid, a malware detection system
for Android, utilising Markov chains built from the sequence of abstracted API
calls. Features are further extracted based on the Markov chains, feeding to
the classifier. The highlight of this work is the idea of abstracting calls, which
enables the resilience to API changes and controls the feature set size. A accu-
racy evaluation has been conducted by Mariconti et al. on over 8,500 benign
and 35,500 malicious applications across six years collection (which is another
highlight point of this work, i.e., demonstrating a good detection performance
over a long periods of time). The experimental results indicate that the Ma-
MaDroid has an effective detection capability on Adroid malware (F1-score >
99%).

The most important insight yielded by MaMaDroid is the relationship between
Markov chains and the behavioural model of mobile applications, which allows
MaMaDroid to obtain an accurate malware detection capability. The contri-
bution of MaMaDroid is crucial to the continuous evolution of the Android
ecosystem.

A dynamic Android malware detection approach has been proposed by Cai
et al. [6] as DroidCat, which uses a set of dynamic features according to the
method calls and inter-component communication (ICC) intents. According
to the experimental results, DroidCat outperforms static approaches and other
dynamic detection methods that are purely based on system calls. Specifically,
DroidCat distils features from behavioural characterisation study involving both
benign and malicious applications.
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An evaluation on 34,343 mobile applications (collected across 9 years) has been
conducted by Cai et al., reporting a better classification performance (97% F1-
score) than two state-of-the-art techniques [20, 22], with respect to accuracy.
Particularly, the literature reports its insights on the feature capturing — cap-
turing app execution structure is more important than capturing sensitive flows.
DroidCat proposes a promising solution to the main analysis challenges in An-
droid ecosystem, such as reflection, obfuscation, and run-time permissions.

Detector enhancement. Another category of recent research especially fo-
cuses on the building of sustainable learning models to overcome the generali-
sation issue existing in machine learning based malware detection models. The
generalisation issue could be considered as the continuation of the long period
robustness problem (please refer to the efforts presented in Mariconti et al. [5]
and Cai et al. [6] as discussed previously) when more and more machine learning
approaches emerge in state-of-the-art anti-malware engines.

Based on the recent publications, machine learning models can achieve F1-scores
up to 99%, which arguably solve the Android malware classification forever.
However, as Android ecosystem, as well as the Android malware, continues to
evolve, malware classifiers become less robust and even unsustainable. In this
work [7], Jordaney et al. propose Transcend, a novel framework to determine
whether a classification model is degraded to avoid poor performance. Tran-
scend first compares two sets of samples, i.e., the samples during deployment
and the samples used for training, then evaluate the prediction quality of the
classifier. Concretely, Transcend focuses on the identification of concept drift
which could be a sound solution bridging the research gap caused by the evolv-
ing of malicious software.

Further, research by Pendlebury et al. [8] demonstrates two experimental bias,
i.e., spatial bias and temporal bias. The former one considers the gap between
the distributions of a real-world deployment and the training/testing data; while
the latter one focuses on the incorrect time splits of training and testing data
sets (please refer to the research by Jordaney et al. [7] as they also focus on the
generalisation issue existing in the machine learning-based Android malware
classifiers over a long period, e.g., concept drift).

A set of experiment constraints with respect to the two bias have been proposed
by Pendlebury et al.. Further, a classifier robustness metric and an algorithm
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(implemented as Tesseract, an evaluation framework comparing malware clas-
sifiers) to tune the classifier have been introduced, allowing the evaluation on
mitigation strategies for time decay. Over 129,000 Android applications over
three years have been involved in the performance evaluation, demonstrating
that the earlier published results [4, 5] are biased.

My research: my recent research [36] measures the vulnerabilities of malware
detectors. In this study, we present a framework that combines explainability
and model-agnostic techniques to assess the effectiveness of malware detectors
in the face of adversarial attacks. Our proposed framework introduces the
concept of Accrued Malicious Magnitude (AMM) to identify the specific features
of malware that should be manipulated to maximise the chances of evading
detection. We apply this framework to evaluate the performance of various
cutting-edge malware detectors in detecting manipulated malware samples.

2.2.2 Privacy Leaks and User Tracking

The collection of user privacy by mobile phone applications is common and
necessary for the functions of some applications. However, it is illegal to
directly or indirectly collect private information without the user’s consent.
Such illegal privacy theft is often With a high degree of stealthy, which is
difficult for non-skilled users to detect. Therefore, many recent studies have
conducted large-scale evaluations of mobile applications from several perspec-
tives, such as location information exposure [9, 37, 38], personal identifiable
information leakage [10, 39, 37, 40, 41, 42, 43, 44, 45, 46], and user track-
ing [11, 12, 47, 48, 49, 50, 51].

Mobile application privacy leakage. In the research by Xue et al. [9], pri-
vacy risk against the integrity of user anonymity has been exposed in a popular
anonymous social media application which is susceptible to localisation attacks.
Although the application itself neither shares user’s location information nor
provides indirectly location information, such as the distances between users,
to any third-parties, an attack based on data collecting and supervised machine
learning is demonstrated to be effective to predict the location of messages,
without needing any reverse engineering of the application.

Specifically, an Android emulator is used to run the application with variable
fake GPS locations generated by a third-party tool. Screenshots of the applica-
tion are further automatically taken and the location-oriented information (e.g.,
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people-nearby) are extracted. The attack is able to analyse and predict user’s
location based on the collected information. According to the experimental re-
sults, the accuracy of the prediction could be around 100 meters. In addition,
the attack approach could also be applied to plenty of mobile applications that
provide messages-nearby or people-nearby services, such as WeChat [37], which
means that many apps may have the same potential localisation risks.

It is well known that mobile applications may leak user’s information. Ren et
al. [10] present ReCon, a corss-platform system, revealing personally identifiable
information (PII) leaks in mobile applications. The proposed ReCon framework
utilises network traffic and machine learning technologies. Specifically, ReCon
first selects features and train a decision tree classifier with labelled network
flows (with or without PII leaks). Notably, the classifier is retrained based on
user feedback.

The evaluation on 100 most popular iOS, Android, and Windows Phone appli-
cations, as well as the user study that involves near 100 participants, indicates
accurate and efficient performance of ReCon. ReCon opens a new area for mo-
bile privacy research — the approach based on machine learning shows good
accuracy and low overhead.

Other mobile application privacy research focuses on the tracking of user in-
formation, as many mobile applications are integrated with advertising or even
maliciously embedded tracking services running in the background.

User tracking. In 2016, Englehardt and Narayanan [11] conducted a mea-
surement of online tracking with 1 million sites, proposing an open-source web
privacy measurement tool, OpenWPM. For the first time, this research observe
the long tail distribution of online trackers and the trackers in the tail can only
be found on very few sites. Researchers further quantify the impact of trackers
and third parties. Such a measurement research is quite important as it makes
measurement tools broadly available to minimally technically skilled analyst.

Wang et al. [12] investigate into China’s mobile tracking behaviours, making in-
teresting observations with respect to Advertising and Tracking Services (ATSs)
popularity and community structure, user monopoly patterns, and personal pri-
vate information collection. 28 billion access logs have been analysed. The
researchers first identify the ATS domains and then associate ATS domains to
applications, obtaining more than 190 million sessions, from which 4 million
sessions are identified as containing only request from one application.
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The measurement results discover a very well-established tracking network,
where mobile trackers are interconnected and several tech giants in China track
the majority of users. Further exploration could focuses on tracker detection,
personal information collection, and the business relationships between mobile
trackers (as they are well-connected).

My research: to measure the privacy practice in the wild, I have investigated
into over 20K Android apps from the Google Play store, including apps that are
designed particularly for children (Family apps) and apps that include children
in their target user groups (Normal apps). Using both static and dynamic
analysis, I measure the use of trackers and privacy leakages and found that:
3.46% Family apps request location permissions, even though collecting location
information from children is forbidden by the Play store; and 13.08% of Family
apps use trackers (which are not allowed in children apps). Even big players
with 40+ kids apps on the Play store use ad trackers. Please find more details
in Chapter 4.

2.2.3 Security and Privacy Analysis on Contact Tracing

Applications During COVID-19

The pandemic of COVID-19 challenges the traditional manual contact tracing
and many health authorities turn to digital contact tracing via mobile appli-
cations. Although most contact tracing applications are carefully design to
preserve user’s privacy as much as possible, considering the potential huge user
population, even a tiny flaw may cause serious privacy disasters. Therefore,
the security community has shown great interest in the security and privacy of
mobile contact tracing applications [13, 52, 53, 54, 55, 14, 15, 56, 57, 58, 59, 16].

The research by Ferretti et al. [13] analysed the key parameters of pandemic
spread and estimated the contribution of digital contact tracing, arguing that
it is of crucial importance to control COVID-19 with instant digital contact
tracing. In addition, they pointed out that, with digital contact tracing, the
pandemic could be controlled without mass quarantines or lock-downs. How-
ever, just like a coin has two sides, the practical deployment of digital contact
tracing is facing dramatic challenges, including security and privacy concerns.

Li and Guo [14] conduct a survey on the global deployment and challenges at
the very beginning of the pandemic, analysing the strengths and weaknesses
of two major forms of contact tracing application structures, i.e., centralised
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and decentralised. The study presents a geolocation mapping of the real-world
deployment with respect to country, app name, installs, number of users, and
the technique used (Bluetooth, GPS, QR code, and WiFi). In addition, vulner-
abilities related to Bluetooth-based decentralised solutions are identified.

As pointed by the survey, compared with GPS, more digital contact tracing
solutions (57% of ) rely on Bluetooth technology, while a trade-off exists between
data privacy and tracing effectiveness. Centralised and GPS solutions allow
collect and trace the movement of population geographically, however, put user’s
data privacy at risk. On another hand, decentralised and non-GPS solutions
protect data protection at a higher level, but less information will be provided
to government or health authorities.

Several research focuses on particular contact tracing solutions, such as the
Google/Apple Proposal [60], and further proposes new privacy-preserving ap-
proaches.

For example, Baumgartner et al. [15] demonstrate that the Google/Apple Pro-
posal is vulnerable to several attacks that are practical in real-world, such as
de-anonymizing attack and relay attack. Particularly, in downtown of the city of
Darmstadt, Germany, researchers deployed 6 BLE sniffers in 6 sensitive places,
such as city hall, place station, and clinic, and use the sniffers capture the Blue-
tooth token shared by the contact tracing users passing by. The experimental
findings indicate that it is feasible to determine a user’s whereabouts, including
the locations they have visited, as well as the timing of their arrivals and de-
partures from each location. Moreover, a specific type of relay attack known as
a wormhole attack has been demonstrated. In this attack, an attacker captures
messages at one physical location, transmits them through a network tunnel to
another physical location, and subsequently retransmits the messages as if they
originated from the second location originally. From the insights of this research,
we can see that it is necessary to built up more sophisticated countermeasures
to enhance the privacy-preserving in contact tracing applications.

Nevertheless, soon after the announcement of the Google/Apple specification,
Gvili [16] analyses the security issues in the specification, finding that significant
risk to society could be introduced by this specification. The research further
proposes easy-to-adopt mitigation strategies for the risks. Several potential
attacks have been analysed in this research, including
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• Power and storage drain attacks. Power and storage drain attacks could
be categorised as a kind of denial-of service attacks through sending large
amount of messages. In such attack, a malicious attacker could send
advertising messages to nearby devices. According to the Bluetooth spec-
ification, the contact tracing applications in nearby devices are forced to
wake up to process each received message, which may lead to high power
and storage cost, resulting in the opt out of using the contact tracing
application by the user when she/he notice the drain.

• Relay and replay attacks. The relay attack is like the attack discussed
in Baumgartner et al. [15] where an attacker record the messages and
transfer it to another location and replay it to raise false alarms. While
in a replay attack, the attacker records the messages and replay it at the
later time, which is slightly different from the relay attack where a transfer
to other locations is required.

• Trolling attacks. Different relay and replay attack, in trolling attack, the
adversarial generates false messages to raise false positive alarms. The
messages could be technically generated by hacking the contact tracing
app, however, this could be difficult and requires professional skills or
tools.

• Linking attacks. The linking attacks is similar to the profiling attack
discussed in Baumgartner et al. [15], where an attacker can collect and
mapping other user’s information, such as the shared Bluetooth tokens
and link the information to identify the user, especially when a user is
diagnosed. The privacy of nearby persons is reduced due to the linkage
of messages. Mitigation to linking attacks could be adding noise to the
shared messages or consider a more privacy-preserving design, such as a
decentralised system.

• Tracking and de-anonymisation attacks. In tracking and deanonymisa-
tion attacks, an attack may utilise devices to track other users’ Bluetooth
signal strength to determine the location information or infer locations
over time. Mitigation to such attacks could be using variable Bluetooth
signal with strength varies periodically or even randomly.

Although the paper focuses on the potential vulnerabilities in Google/Apple
Proposal, kinds of attacks against contact tracing applications have been thor-
oughly discussed and analysed together with mitigation provided. The insights
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presented in this research is inspiring and should always be considered during
the development of any mobile applications.

My research: In my recent research [61], a false-claim attack has been dis-
cussed, where an attacker falsely claims that he/she has been diagnosed and
report the diagnose status to the government or health authorities. Other users
who have been contact with the adversarial will receive a false alarm. In our
research, we argue that a contact tracing app should co-operate with health
authorities tightly, e.g., a positive report can only be upload to the system
once there is a approval from health professionals. The relay attack has also
been discussed and analysed in my recent research [61], which threatens most
Bluetooth-based contact tracing solutions. Mitigation to relay and replay at-
tacks could be adding temporal and spacial information into the Bluetooth to-
kens. A potential solution to relay attack is proposed in my recent research [62].
Please find more details in Chapter 3.

2.3 Static and Dynamic Analysis

Static analysis involves examining the code of an application without executing
it, whereas dynamic analysis involves testing and evaluating an application dur-
ing its run-time. Both static and dynamic analysis can effectively identify soft-
ware defects, including memory and threading errors. These two approaches are
complementary since each has its own strengths and limitations, and no single
approach can uncover all types of errors. By utilising both static and dynamic
analysis, a more comprehensive and thorough assessment of an application’s
quality and reliability can be achieved.

Static analysis examines all possible execution paths and variable values, includ-
ing those that may not be invoked during actual execution. This makes static
analysis capable of detecting errors that might not surface until much later,
even weeks, months, or years after the application’s release. This aspect of
static analysis is particularly valuable in ensuring security, as security attacks
often exploit an application in unforeseen and untested ways. On the other
hand, dynamic analysis is useful in uncovering subtle defects or vulnerabilities
that may have complex causes, making them difficult to detect through static
analysis alone. While dynamic analysis can contribute to security assurance, its
primary focus is on error detection and debugging. Table 2.2 presents several
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Table 2.2. Recent research in security and privacy
evaluations on mobile applications.

Research Year Domain Description

Flowdroid [63] 2014 Static
analysis

Pioneered in the static taint analysis on Android applications.

IccTA [64] 2015 Static
analysis

Tracks flows of sensitive data from sources to sinks to identify the Inter-Component
Communication (ICC) leaks.

Ausera [65] 2020 Static
analysis

Propose an automated security risk assessment system, leveraging static analysis
techniques and sensitive keyword identification, particularly focusing on data-ralted
weakness detection.

Reardon et al. [66] 2019 Dynamic
analysis

Utilise a dynamic approach exploring the Android permission system.

Tang et al. [67] 2020 Dyanmic
analysis

Research into the security of network services of iOS applications with a dynamic
approach.

cutting-edge studies in the field of static and dynamic analysis, highlighting
their advancements in this area.

2.3.1 Static Taint Analysis

Static analysis is an automatic software analysis method which exam the source
code looking for bugs or vulnerabilities without execution the code. It has
been widely used in mobile industry, as well as security and privacy research
domain [63, 64, 68, 65, 69, 70, 71].

Flowdroid [63] pioneered in the static taint analysis on Android applications,
which is proposed by Arzt et al. in 2014. In taint analysis, potential malicious
data flows are tracked from sources (where the sensitive “tained” information is
obtained or accessed) to sinks (the leaking destination the sensitive information
has been transferred to). Once a data flow containing sensitive information
flows from a source to a sink, a privacy leak could be determined, as sinks are
methods where the information could be shared, e.g., a socket, message box, or
broadcasting.

As a static taint analysis tool, Flowdroid provides a precise model of Android
lifecycle, which handles callbacks invoded by the Android framework and suc-
cessfully reduce the false positives. According to the experimental results, Flow-
Droid achieves 93% recall and 85% precision, outperforming other tools at that
time. Android applications have many entry points, instead of a Main method,
which are called by the Android framework, Which challenges the taint anal-
ysis on Android applications. Creatively, FlowDroid handle this problem and
modelled the Android lifecycle with customise dummy main methods.

Several studies utilise such static analysis technology to evaluate the privacy
among Android applications, looking for potential privacy leaks. For example,
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in the IccTA proposed by Li et al. [64], flows of sensitive data have been tracked
from sources to sinks to identify the Inter-Component Communication (ICC)
leaks, i.e. privacy leaks between different components in Android applications.
IccTA resolves the ICC problem by directly connecting the discontinuities of
Android applications at the code level. Concretely, IccTA extracts the ICC links
from Dalvik bytecode, then modifies the Jimple representation and enable data-
flow analysis between components through connecting the components directly.
At last, the taint analysis is done by a modified version of FlowDroid. The
experiment on 15,000 real-world applications detects 2,395 ICC leaks in 377
applications.

Chen et al. [65] propose an automated security risk assessment system, Ausera,
leveraging static analysis techniques and sensitive keyword identification, par-
ticularly focusing on data-ralted weakness detection. The framework of Ausera
consists of three phases. The first phase is the tagging of sensitive data, in
which Ausera identifies sensitive data in the user inputs and the content in user
interface, and tag the sensitive data related variable according to the keyword
database. The the functions related to data leakage are further identified ac-
cording to a list of sinks which contains 106 manually defined vulnerable sinks.

At last, a forward taint analysis is conducted to detect potential privacy leaks
using the tagged sensitive data as sources. Ausera detects 2,157 weaknesses in
693 real-world banking applications across 83 countries. Notably, 126 weak-
nesses have been confirmed by 21 banks. The research team also helps 7 banks,
including HSBC in UK and OCBC in Singapore to improve the security of their
applications.

The global distribution of weaknesses among banking applications has also been
presented. The analysis shows that only 0.27 data leak weakness per applica-
tion has been detected in 143 banking applications from Europe and USA,
which may be attributed to the financial regulations and development guide-
lines, such as GDPR, which adopt strict security and privacy requirements,
affecting the implementation of banking applications. Further, the develop-
ment budget and developers’ expertise are also considered as factors leading to
weaknesses. The security status of banking applications is varied across different
countries, mainly because of the shaping of economies and regulations.
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2.3.2 Dynamic Network Traffic Analysis

The static analysis suffers from false positives, as it analyses the source code,
rather than actually executing the applications. The run-time behaviour could
be different from the static analysis outcome because there could exist dummy
or dead code that will never be executed. In addition, run-time application be-
haviours could also remotely run on a server or be provided as a cloud service.
To detect the run-time application behaviours, dynamic analysis approaches
are introduced in recent research. However, dynamic analysis also has its short-
comings, such as the code coverage, e.g., not all code can be triggered during
the testing. Here I introduce and review some of the state-of-the-art dynamic
analysis research [66, 67, 72, 73] in mobile application security and privacy
domain.

Reardon et al. [66] utilise a dynamic approach exploring the Android permission
system. They dynamically run the applications with an instrumented Android
environment to monitor the run-time behaviour and network traffic. Two types
of circumvention are reported: (i) circumvention through covert channel and
(ii) circumvention through side channel.

In covert channel cases, communication between two mobile applications trans-
fers information that is unauthorised to share. For example, apps may share
sensitive information through the access to SD card: app A obtains sensitive
information with a specific permission and write the information in hidden files
on SD card, while app B can read it from the SD card without a permission
specifically requesting the access to the sensitive information. In side channel
cases, privileged information is obtained by an application without permission
checking. For instance, an SDK is found exploiting side channels to share hashed
MAC address, which may enable a MAC-address-to-location mapping and leak
the user’s location information. However, due the limitations of dynamic anal-
ysis, the findings of this research can only provide a lower bound of privacy
leakages through the covert channel and side channel.

Tang et al. [67] research into the security of network services of iOS appli-
cations with a dynamic approach. They first develop a scalable application
collection tool which allows them download 168,951 iOS applications. Then
the researchers evaluate the characteristics of network service vulnerabilities in
1,300 applications, discovering 11 vulnerabilities in popular iOS applications.
Based on the findings, they create signatures for large-scale analysis and further
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look into the 168,951 applications dataset. From 92 applications, third-party
libraries are reported to listen remote connections and open up the iOS device
to a host of possible attacks, such as remote command execution, data leakage,
and denial-of-service attacks. Although the research focuses on iOS platform
which could be quite different from Android, the dynamic analysis approach is
potentially to be applied on Android platform, e.g., some of the vulnerabilities
could also exist in Android applications.

My research: In my recent research [74], we look into the privacy practice in
Android clipboards and conduct a thorough automated assessment on popular
Android applications. Particularly, we analyse the clipboard access mechanism
in Android system and propose a dynamic detection method to check whether
an application accesses the clipboard and leaks sensitive information. We first
identify the clipboard access by statically scanning the source code and further
conduct a taint analysis to check whether there is sensitive information obtained
by the clipboard accessing methods. The findings are further manually checked
by a call graph analysis backtracking the data flows from entry points to sinks.
Then dynamic analysis is conducted by hooking clipboard access methods dur-
ing run-time to confirm the data leaks. We believe such semi-automated assess-
ment method could overcome the shortcomings of static and dynamic analysis,
i.e., detecting potential privacy leaks through static analysis and confirm the
run-time behaviours with dynamic analysis. However, although our method is
able to achieve a low false positive rate, the false negatives are still existing.

2.4 Privacy Regulations and Assertions Compli-

ance

Restrictions on mobile app behaviour go both ways. Privacy regulations and app
store policies define legal mobile app behaviour and user rights from top-down.
If the behaviour of the mobile application violates the relevant privacy regula-
tions, it will be subject to corresponding penalties, such as fines, compensation
or application removal. A privacy policy is a statement in simple language ex-
plaining how an organisation or institution handles users personal information.
However, since mobile application developers are often not professional legal
professionals, and it is difficult for ordinary users to fully understand the com-
plex privacy policy terms (although they are required to use simple language),
the specific behaviour of mobile applications is likely to violate the requirements
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Table 2.3. Recent research in privacy policy quality
and regulation compliance.

Research Year Domain Description

Massey et al. [78] 2013 Privacy
policy

Focus on the automatic analysis on the requirements in policy documents.

Yu et al. [75] 2016 Privacy
policy

Automatically identifies three kinds of problems in privacy policy and conduct the
first systematic study on privacy policy.

Amos et al. [79] 2021 Privacy
policy

Develop a crawler that extracts archived privacy policies and analyse the trans-
parency and accessibility of privacy policies.

Qu et al. [77] 2014 Privacy
policy

Measure the description-to-permission fidelity in Android applications from Google
Play store, utilising the natural-language descriptions and the permissions list pro-
vided by the store.

Xue et al. [83] 2016 Regulation
compliance

Look into the consequences of violation RTBF, and the susceptibility to inference
attacks.

Sorensen et al. [84] 2019 Regulation
compliance

Examine the changes in third party presence and mapping the shifts in third party
topology before and after GDPR.

Liu et al. [86] 2021 Regulation
compliance

Detect compliance issues among regulations with privacy policies, and provide intu-
itive results for data subjects, data collection party, and the regulatory authorities.

Reyes et al. [87] 2017 Regulation
compliance

Develop an automatic method, combining dynamic analysis with network traffic
monitoring, to evaluate the mobile app’s COPPA compliance.

defined in privacy regulations and assertions, which has aroused the interest of
privacy research community. Privacy policy quality assessment [75, 76, 77],
interpretation of privacy policy [78, 79, 77, 80], and application behaviour anal-
ysis [81, 82, 83, 84, 85, 86, 87] have become hot topics in recent years. Table 2.3
illustrates several recent studies in this research area.

2.4.1 Privacy Policy Quality and Compliance

Several recent works focused on the privacy policy quality and compliance,
e.g., to compare the application behaviours with the claimed privacy assertions,
including privacy policies and permission request list.

Massey et al. [78] focus on the automatic analysis on the requirements in policy
documents, e.g. policy documents from popular websites and large multina-
tional corporations. Specifically, they analyse the readability of policy doc-
uments; determine that automated text mining enables the identification of
software requirements expressed as privacy protections or vulnerabilities in a
policy document; and provide preliminary support for the generalisability to
multiple domains.

In addition, probabilistic topic models are developed to uncover hidden themes
within extensive collections of documents. This approach enables analysis of
scenarios that would be otherwise challenging to assess through manual anno-
tation alone. Specifically, Latent Dirichlet Allocation (LDA) topic modelling is
employed to reveal the underlying topics within the document collection. To
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determine the optimal number of topics, denoted as K, a total of 35 topic mod-
els are constructed. Each model’s predictive likelihood, measured by perplexity,
is computed. Perplexity is a useful metric that can be applied to evaluate topic
models. The experimental findings demonstrate that models with lower per-
plexity values on the held-out dataset exhibit stronger performance, indicating
their ability to capture the latent structure of the data effectively.

It could be difficult for non-professional users to understand an application’s
behaviours through the required permissions. To figure out the potential privacy
risks and address users’ concerns, more and more applications are required to
release privacy policies written in natural language. Therefore, whether these
privacy policies are trustworthy or not is critical. It is worth noting that serious
security and privacy issues could be raised due to a questionable privacy policy.
PPChecker, a novel approach proposed by Yu et al. [75], automatically identifies
three kinds of problems in privacy policy and conduct the first systematic study
on privacy policy.

PPChecker is a tool designed to assess the quality of an app’s privacy policy,
description, APK file, and the privacy policies of its third-party libraries. It
focuses on examining whether the privacy policy is incomplete, incorrect, or
inconsistent. To evaluate the effectiveness of PPChecker, real-world applica-
tions and privacy policies are used. The experimental evaluation demonstrates
that PPChecker is highly effective in identifying questionable privacy policies,
achieving a high level of precision. In total, 282 apps were flagged for potential
problems or vulnerabilities. This study serves as inspiration for further research
aimed at improving and regulating the privacy policies of apps, ensuring better
protection of user privacy.

The automated analysis of privacy policies has emerged as a fruitful area of
research, as evidenced by studies such as those conducted by Amos et al. [79]
and Qu et al. [77]. In their work, Amos et al. develop a web crawler that ex-
tracts archived privacy policies from the Internet Archive’s Wayback Machine,
enabling the analysis of transparency and accessibility in privacy policies. Their
research reveals several noteworthy findings. First, privacy policies frequently
fail to disclose the presence of tracking technologies, indicating a lack of trans-
parency. Second, privacy policies have become increasingly challenging to read,
suggesting reduced accessibility for users. Lastly, self-regulation efforts for third
parties have increased, but online advertising trade associations dominate this
space. These findings shed light on the impact of the General Data Protection
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Regulation (GDPR) on privacy policies, demonstrating its historical significance
in shaping privacy practices. This research contributes significantly to the field
of privacy research, providing valuable insights into the state of privacy policies
and their evolution over time.

Qu et al. [77] measure the description-to-permission fidelity, i.e., the descrip-
tions should reflect the need for permissions, in Android applications from
Google Play store, utilising the natural-language descriptions and the per-
missions list provided by the store. An automatic description-to-permission
fidelity assessment system, AutoCog, has been proposed, employing state-of-
the-art natural language processing techniques and a newly proposed machine
learning-based algorithm to investigate the relationship between app description
and requested permissions. AutoCog greatly outperforms other related works in
both detection performance and generalization ability to various permissions. A
large-scale measurements over 45K applications demonstrates that the problem
of low description-to-permission fidelity is serious and prevalent. The measure-
ment in this study shows a generally weak description-to-permissions fidelity on
the Google Play store.

2.4.2 Regulation Compliance

Another set of research focuses on the compliance of regulations, aiming to
expose violations against GDPR or other privacy regulations. The privacy
policy serves as a vital interface that allows users to gain an understanding of
the collection and usage of their personal information. In light of the increasing
importance of data privacy protection as a crucial societal concern, numerous
laws and regulations have been implemented in various countries and regions.
These legal frameworks aim to safeguard individuals’ privacy rights and ensure
responsible handling of personal data.

For example, the recent “Right to be Forgotten” (RTBF) ruling (which enable an
individual to ask Google and other search engines to delist links to web pages
that contain information about that individual) has been studied by Xue et
al. [83]. In this research, a data-driven approach has been applied to study the
right to be forgotten in the traditional media outlets. The research further looks
into the consequences of violation RTBF, and the susceptibility to inference
attacks.
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In this study, a comprehensive analysis has been conducted on over two hun-
dred UK media pages that were known to be removed. The analysis involved a
combination of manual investigation and Latent Dirichlet Allocation (LDA) to
uncover insights. The authors also demonstrated how a third party can still un-
cover delisted URLs and the names of the requesters. Through experiments, the
researchers were able to establish the link between previously unknown delisted
URLs and the individuals who requested their removal. To assess the pres-
ence or absence of the Streisand effect, the study developed novel metrics and
methodologies utilising publicly available datasets, such as Google Trends and
Twitter data. Additionally, a demographic analysis of the known requesters was
performed. The results and observations of this research can provide valuable
insights to lawmakers as they continue to refine right to be forgotten laws in
the future. By shedding light on the outcomes and implications of delisting
requests, this study contributes to the ongoing discussions surrounding privacy
and data protection.

Sorensen et al. [84] conduct an eight months longitudinal study on more than one
thousand popular websites in Europe and US, examining the changes in third
party presence and mapping the shifts in third party topology before and after
GDPR. They find that the developments of third party vary in the numbers and
types in different categories of websites and countries. Based on the analysis of
the number of third parties over time, this research highlights a notable decline
in the presence of third parties on websites, suggesting that the implementation
of GDPR has resulted in reduced third-party activity. The study reveals signif-
icant variations between privately owned websites and publicly owned websites
in terms of third-party involvement. Privately owned websites tend to have a
higher number of embedded third parties, while publicly owned websites ex-
hibit a relatively lower but steadily increasing presence of third parties. These
findings provide valuable insights into the impact of GDPR on the dynamics of
third-party engagement, emphasising the contrasting patterns observed across
different types of website ownership.

Liu et al. [86] have developed a method to identify compliance issues between
regulations and privacy policies. Their approach aims to address the challenge
of analysing compliance between GDPR (Article 13) and privacy policies. The
method involves two main steps: sentence classification and rule-based analy-
sis. To train their system, the researchers collected and analysed a dataset of
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36,610 labelled sentences from 304 privacy policies. Using a rule-based analy-
sis, they were able to identify compliance issues. Additionally, they conducted
a user study to assess the usability of their approach. The researchers imple-
mented a web-based tool called AutoCompliance, which successfully detected
1,180 compliance issues. The tool provides intuitive results for data subjects,
data collection parties, and regulatory authorities, thereby assisting in compli-
ance analysis between regulations and privacy policies.

In the mobile world, there has been a significant growth in the market of games
and learning apps designed for children. However, ensuring compliance with
regulations that safeguard children’s privacy, such as COPPA, remains a cru-
cial concern. Many of these seemingly “free” mobile apps have the ability to
access sensitive personal information. To address this issue, Reyes et al. [87]
have introduced an automatic method that combines dynamic analysis with
network traffic monitoring. Their approach enables the evaluation of mobile
apps’ compliance with COPPA. By conducting empirical technical observations
and analysing the corresponding privacy policies, they provide a comprehensive
assessment of the apps’ adherence to the legal requirements. This method offers
a valuable tool for assessing and ensuring COPPA compliance in the context
of the growing market of games and learning apps for children in the mobile
industry.

The study utilises a modified version of the Android OS, which allows for the
execution of apps while recording their handling of sensitive information. This
approach enables the researchers to closely monitor the apps’ access to and
transmission of such data. To analyze third-party involvement, the researchers
leverage a crowdsourced dataset collected by the Lumen Privacy Tool [88]. This
dataset provides valuable insights into the activities of various organisations,
including advertising networks. The primary objective of this research is to
shed light on the compliance of apps with COPPA regulations and to create
a comprehensive catalog of organisations that collect sensitive user informa-
tion. Preliminary results indicate the presence of several potential violations of
COPPA. These violations include instances where prior consent is omitted and
the active sharing of persistent identifiers with third-party services for tracking
and profiling children. Through this study, the aim is to raise awareness about
potential COPPA violations and emphasize the need for stricter adherence to
privacy regulations in the context of children’s apps.
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2.5 Conclusion

This chapter conducts a comparative analysis of existing literature of mobile
security and privacy-related topics. In general, while there has been a lot of
research focusing on the security and privacy of mobile applications, the be-
haviour of mobile applications is kaleidoscopic. In specific application scenarios,
more fine-grained analysis tools are required to effectively detect security risks
and privacy leaks. At the same time, with the application of new technologies
such as Bluetooth, virtual reality, and 5G communication on smartphones, new
attack surfaces and threat models have emerged, and the privacy theft have be-
come more stealthy. These scrutiny of mobile application security and privacy
pose new challenges, and also require more attention from mobile application
developers, mobile phone users, and legislators pay more attention on the un-
derstanding and measuring privacy and security assertions of mobile apps.
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The rapid spread of COVID-19 has made manual contact tracing difficult. Thus,
various public health authorities have experimented with automatic contact trac-
ing using mobile applications (or “apps”). These apps, however, have raised
security and privacy concerns.

In this chapter, we propose an automated security and privacy assessment tool—
COVIDGuardian—which combines identification and analysis of Personal
Identification Information (PII), static program analysis and data flow anal-
ysis, to determine security and privacy weaknesses. Furthermore, in light of
our findings, we undertake a user study to investigate concerns regarding con-
tact tracing apps.

We hope that COVIDGuardian, and the issues raised through responsible
disclosure to vendors, can contribute to the safe deployment of mobile contact
tracing. As part of this, we offer concrete guidelines, and highlight gaps between
user requirements and app performance.

3.1 Introduction

In this chapter, I develop a security and privacy assessment tool, COVID-

Guardian. This tool can evaluate the security weaknesses, vulnerabilities,
potential privacy leaks, and malware in contact tracing apps. Using COVID-

Guardian, I have conducted a comprehensive empirical security and privacy
assessment of 40 contact tracing apps. The results have identified multiple
security and privacy risks, as well as threats. Naturally, my analysis has con-
firmed that no apps can protect users’ security and privacy against all potential
threats.

COVID-19 is now a global pandemic affecting over 200 countries, after its first
recorded outbreak in December 2019. To counter its spread, numerous mea-
sures have been undertaken by public health authorities, e.g., quarantining,
lock-downs, curfews, physical distancing, and mandatory use of face masks.
Identifying those who have been in close contact with infected individuals, fol-
lowed by self-isolation (so called contact tracing) has proven particularly effec-
tive [1]. Consequently, contact tracing has emerged as a key tool to mitigate
the spread of COVID-19.

Unfortunately, manual contact tracing, using an army of “detectives” has proven
challenging for many countries [2, 3, 4]. Therefore, authorities around the world
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have sought to develop contact tracing applications (or “apps”) that can au-
tomate the process. A plethora of country-centric contact tracing apps and
services are currently deployed. These include the Health Code in China [5],
the public COVID-19 website in South Korea [6], and the mobile contact trac-
ing apps released in Australia [7], Germany [8], Israel [9], Singapore [10], and
United Kingdom [11]. These apps operate by attempting to record prolonged
and close proximity between individuals by using proximity sensing methods,
e.g., Bluetooth. The data gathered is then used to notify people who may have
come in contact with an infected person.

Proponents argue that the low cost and scalable nature of contact tracing apps
make them an attractive tool for health authorities. However, they have proven
controversial due to potential violations of privacy [12] and the security conse-
quences of the mass-scale installation of (rapidly developed) apps across entire
populations. Despite attempts to alleviate these concerns, it is well-known that
the anonymisation of individuals’ information is a challenging problem [13]. To
mitigate these concerns, we develop a methodology for assessing the security
and privacy weaknesses of COVID-19 contact tracing apps.

Specifically, this chapter consists of the following key tasks: (i) we develop a
tool, COVIDGuardian, which uses static and dynamic program analysis, as
well as a keyword database utilising natural language processing (NLP) tech-
nology, to identify security weaknesses and personally identifiable information
(PII) leakage in apps; (ii) we conduct a comprehensive security and privacy
assessment across 40 state-of-the-practice global contact tracing apps (listed
in Tables 3.1 and 3.2); (iii) based on the assessment results, we conduct a
user study involving 373 participants, to investigate user concerns and the re-
quirements of contact tracing apps. Through our study, we aim to answer the
following research questions:

• RQ1: What is the performance of our security and privacy assessment
methodology, COVIDGuardian, compared to state-of-the-practice mo-
bile app assessment tools?

• RQ2: What is the security and privacy status of state-of-the-practice
contact tracing apps?

• RQ3: What is the robustness of state-of-the-practice contact tracing apps
against potential security and privacy threats?
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Table 3.1. Contact tracing apps considered in our
study.

# Applications Country Downloads

1 COVIDSafe Australia 1M
2 Hamagen Israel 1M
3 TraceTogether Singapore 500K
4 StopCovid France France 1M
5 Next Step (DP3T) Switzerland N/A
6 Corona Warn App German 5M

7 NHS Test and
Tracing App UK 10K

8 TraceCORONA Germany N/A
9 Private Kit USA 10K

10 MySejahtera Malaysia 500K
11 Smittestop Denmark 10K
12 Covid Alert Canada 500K
13 SwissCovid Switzerland 500K
14 Bluezone Vietnam 100K
15 COCOA Japan 5M
16 Immuni Italy 1M
17 Stopp Corona Austria 100K
18 Aarogya Setu India 100M
19 EHTERAZ Qatar 1M

20 Vietnam Health
Declaration Vietnam 100K

• RQ4: What are the user concerns and requirements of contact tracing
apps?

The main contributions of our study are as follows.

• We develop COVIDGuardian,1 the first automated security and privacy
assessment tool that tests contact tracing apps for security weaknesses,
malware, embedded trackers and private information leakage. COVID-

Guardian outperforms 4 state-of-the-practice industrial and open-source
tools.

• We assess the security and privacy status of 40 worldwide Android contact
tracing apps. We discover more than 50% of the apps pose potential secu-
rity risks due to: (i) employing cryptographic algorithms that are insecure
or not part of best practice (72.5%); and (ii) storing sensitive information
in clear text that could be potentially read by attackers (55.0%). Over

1Publicly available at https://covid-guardian.github.io/.

https://covid-guardian.github.io/
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Table 3.2. Contact tracing apps considered in our
study (continue).

# Applications Country Downloads

21 STOP COVID19 CAT Spain 500K
22 CG Covid-19 ePass India 500K

23 StopTheSpread
COVID-19 UK 100K

24 Stop COVID-19 KG Kyrgyzstan 10K
25 BeAware Bahrain Bahrain 100K

26 Nepal COVID-19
Surveillance Nepal 5K

27 Stop Covid Georgia 100K
28 Contact Tracing USA 10K
29 Contact Tracer USA 10K
30 Coronavirus Algérie Algeria 100K
31 CoronaReport Austria 10K
32 Covid19! Czech 10K
33 Coronavirus Bolivia Bolivia 50K
34 Coronavirus - SUS Brazil 1M
35 COVA Punjab India 1M
36 SOS CORONA Mali 10K
37 Hamro Swasthya Nepal 50K
38 COVID Radar Netherlands 50K

39 NICD COVID-19
Case Investigation South Africa 10K

40 Coronavirus UY Uruguay 100K

40% of apps pose security risks through Manifest weaknesses, e.g., allow-
ing permissions for backup (hence, the copying of potentially unencrypted
application data). Further, we identify that approximately 75% of the
apps contain at least one tracker, potentially causing privacy violations,
i.e., leaks that lead to exposing PII to third parties.

• By reviewing the state-of-the-art, we identify four major privacy and se-
curity threats against contact tracing apps. Our threat analysis finds
that apps adopting decentralised architectures are not necessarily more
secure than those adopting centralised architectures (by our measures).
We also conduct a user study involving 373 participants, to investigate
user concerns and requirements. The survey results indicate that the
tracing accuracy and potential privacy risks are the two major concerns.
Compared to users’ expectations of accurate proximity recording, users
are more likely to use contact tracing apps with better privacy by design.
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• We have disclosed our security and privacy assessment reports to the
related stakeholders on 23 May 2020. We have received acknowledgements
from numerous vendors, such as MySejahtera (Malaysia), Contact Tracer
(USA), and Private Kit (USA). Our re-assessments shown in Table 3.6
confirm that their updates have addressed several of the issues identified.

We believe our study can provide useful insights for government policy makers,
developers, and researchers to build secure contact tracing apps, and to contain
infectious diseases in the present and future.

3.2 Background and Related Work

3.2.1 Taxonomy of Contact Tracing Apps

The country-centric contact tracing apps we study fall into two broad categories:
(i) centralised and (ii) decentralised.

Centralised architectures. Many apps utilise a centralised system in which
a central server is responsible for: (i) collecting the contact records from di-
agnosed users; and (ii) evaluating the health status of users and selecting who
to notify. For example, in China and South Korea, centralised contact trac-
ing systems were rapidly developed and released. These systems helped health
authorities to successfully control the spread of COVID-19. However, a huge
amount of PII was collected [14, 5].

For instance, TraceTogether [10] from Singapore and COVIDSafe [7] from Aus-
tralia rely on proximity tracing via Bluetooth broadcasts from apps. That said,
designs that expose PII may not work well in countries with certain societal
norms. Thus, many western countries developed solutions with no PII related
information exchange, e.g., PEPP-PT [15] and the ROBERT system [16] im-
plemented by StopCovid France.

Decentralised architectures. The second type of solution is decentralised,
where (i) the back-end server is only responsible for collecting the anonymous
identifiers of diagnosed users; and (ii) the data is processed locally on the device
to identify who to alert. This design prevents the central server from knowing
at-risk persons or their contacts.

These decentralised apps operate in a range of ways. For example, Hamagen [9]
relies on location information. Users download the location history of diagnosed
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(a) Centralised contact tracing apps (b) Decentralised contact tracing apps

Figure 3.1. An illustration of centralised and
decentralised contact tracing applications.

users from a back-end server to check if they been in contact with any infected
people. Other decentralised solutions, e.g., DP3T [17] and the Exposure Notifi-
cation framework by Google and Apple (Gapple) [18], utilise Bluetooth beacons.
In this design, users periodically download the anonymous identifiers of infected
people and compare them against previously encountered beacons to compute
the risk of exposure. Note that NHS COVID-19 [11] and Corona Warn App [19]
implement the Gapple framework. This design paradigm reduces the privacy
exposure of users as only anonymous identifications are shared.

In a short word, as illustrated in Figure 3.1, the key differences between cen-
tralised and decentralised contact tracing applications lie in (i) centralised con-
tact tracing applications collect the contact records from diagnosed users, while
decentralised ones collect the token of diagnosed users; and (ii) centralised con-
tact tracing applications evaluates health status by server, while decentralised
ones evaluate health status by users.

3.2.2 Related Work

A number of prior works have utilised similar methodologies to our proposed
COVIDGuardian. We discuss them below.

Security and privacy analysis for mobile apps. COVIDGuardian relies
on static code analysis. This is performed by examining source code for signs
of security vulnerabilities without executing the program. In contrast, dynamic
analysis executes the code. Whereas static analysis often suffers from false
positives, dynamic analysis is limited by the execution coverage [20]. Several
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studies [21, 22, 23, 24, 25, 26, 27] have used static analysis to analyse different
types of software in search of malicious behaviours and privacy leaks. Static
analysis techniques are also widely used in the practical assessment of mobile
apps. For example, Qark [28] is a static code analysis tool designed to discover
various mobile security-related vulnerabilities, either in source code or APKs.
AndroBugs [29] is a framework that helps developers find potential mobile
security vulnerabilities by pattern-matching. MobSF [30] offers automated
application penetration testing, malware analysis, and a security and privacy
assessment framework. FlowDroid [31] statically computes data flows in apps
to understand which parts of the code that data may be exposed to. More details
about static and dynamic analysis methodologies are discussed in Chapter 2.

Notably, these off-the-shelf tools only utilise syntax-based scanning and data-
flows. Therefore, they cannot verify any identified vulnerabilities, which leads
to numerous false positives that are not relevant to PII data leakage. Thus,
COVIDGuardian complements this with other methodologies, including the
use of third party malware detection and techniques for data flow analysis.

Contact tracing apps analysis. Several works [32, 33] have focused on se-
curity and privacy analysis of the Bluetooth and cryptography specifications
published by Apple and Google [34, 35], arguing that significant risks may be
present. Other work [36, 37] has conducted a review of centralised and de-
centralised solutions, and proposed privacy-preserving contact tracing using a
zero-knowledge protocol. Sun et al. [38] proposed a privacy-by-design solution,
termed VenueTrace, which enables contact tracing of users based on venues
they have visited. VenueTrace preserves user’s privacy by avoiding infor-
mation exchanges between users and no private data is exposed to back-end
servers. He et al. [39] inspected the broad implications of COVID-19 related
apps, identifying the presence of malware. Wang et al. [40] also performed a
statistical analysis of contact tracing app popularity, as well as user reviews.

Our work. In contrast to recent works on analysing contact tracing apps [41,
42, 32, 33, 43], we not only propose and develop a holistic automated secu-
rity and privacy assessment tool, COVIDGuardian, but also undertake user
studies to perceive users’ concerns and requirements to reinforce security and
privacy by design. COVIDGuardian works for both centralised and decen-
tralised apps.
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Table 3.3. Security and privacy assessment category.

Assessment
Category Security and Privacy Risks
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Manifest
Weaknesses

Insecure flag settings
(e.g., app data backup allowed)
Non-standard launch mode
Clear text traffic

Security
Vulnerabilities

Sensitive data logged
SQL injection
IP address disclosure
Uses hard-coded encryption key
Uses improper encryption
Uses insecure SecureRandom
Uses insecure hash function
Remote WebView debugging
enabled

PII Leaks Trackers
Potential Leakage Paths from
Sources to Sinks

Malware
Detection

Viruses, worms, Trojans and
other kinds of malicious content
Automated flow analysis, Syntax-based scanning

3.3 Methodology of COVIDGuardian

In this section, we propose an automated security and privacy assessment tool,
COVIDGuardian, to identify security and privacy risks in contact tracing
apps. Using COVIDGuardian, we conduct a security and privacy assessment
of 40 contact tracing apps from Google Play Store and evaluate their security
performance against four categories: (i) manifest weaknesses; (ii) general se-
curity vulnerabilities; (iii) data leaks (with a focus on PII); and (iv) malware
detection (see Table 3.3). Further, we compare COVIDGuardian with several
state-of-the-practice tools to evaluate its ability and performance.

An overview of COVIDGuardian is shown in Figure 3.2. We first compile a
set of PII items, then perform: (i) code analysis to detect Manifest weaknesses
and security risks; (ii) data flow analysis to reveal the privacy leaks in contact
tracing apps; and (iii) malware detection.
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Figure 3.2. COVIDGuardian: An overview of our
security and privacy assessment methodology.

PII identification (pre-processing). Considering the large-scale use of
COVID-19 contact tracing apps and the concerns about PII data collection,
we pre-process the contact tracing apps to construct a PII keyword database.
Figure 3.2 shows the process of PII keyword database construction and the
approach to identifying variables that contain PII (defined as PII Variables).

To construct the keyword database, we first focus on the PII input by users
through widgets in the user interface, e.g., EditText. We decompile the Android
APKs and extract all strings defined in layout files and resource files, including
the widget ID name of any EditText components, the hint text, and the text in
the TextView. We manually filter the strings and keep the ones related to PII
as seed keywords, e.g., name, phone number, postcode, and password. We then
utilise Word2vec [44] to expand our keyword pool with synonymous words.
To ensure the generalisation of our PII keyword database, we train the model
with the text extracted from 54,371 general apps by the project, Supor [45].
Word2vec presents each word as a vector, and the vectors of synonymous
words will have a small cosine distance. After training, for each of the seed
keywords, we identify the top 5 synonymous words, and then feed them into
the keyword database after manual validation. Other numbers of synonyms
could be applied in practice, but a larger number will increase the workload of
manual review. Using Google translate, we check that all apps that have other
languages also have contexts (strings) in English, and that all variable names
in source code are in English. Considering other languages may increase the
efforts of manual filtering, and we therefore only extract English keywords.

After the keyword database is built, we identify which variables in the code
are related to PII. We do this by keyword matching, which binds semantics to
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Figure 3.3. An example pattern of rendering a view
widget.

variables. Concretely, we first extract variables related to the widgets in the
user interface, e.g., EditText for user input, and TextView for hints or display
text. We then determine a variable as a PII Variable if it matches with any
keyword in the database. For example, in Figure 3.3 we present a typical layout
XML file for a widget and the Java code to access it. The text attributes in
the layout file can help users quickly understand the usage of a widget, e.g.,
the string “Full name” for an input text box. When the app is compiled, the
widget is referenced by an integer ID which is typically assigned in the layout
XML file as a string, in the id attribute, e.g., personal_details_name. By
keyword matching (e.g., “name”) we tag the variable obj as a PII Variable, as it
gets content from the EditText widget where a user will input their full name.
Although the tool is tailored to focus on contact tracing apps, our synonym
compilation and keyword matching framework can also be adapted to other
contexts.

Code analysis. We next perform static analysis on the Android Package
(APK) binary files. We first decompile the APK of each app to its correspond-
ing class and xml files. As shown in Figure 3.2, the de-compiled AndroidMani-

fest.xml file is first parsed to extract essential information about the app, such
as Permission, Components, or Intents. Then, we assess requested permis-
sions and examine whether all Components (e.g., Service, Receiver, Activ-
ity, Provider) are protected by at least one permission explicitly requested
in Manifest files. Other attribute configurations, such as the allowBackup,
debuggable, and networkSecurityConfig flags, will also be checked.

The Extracting Method module matches methods in decompiled files with pre-
defined rules to extract potentially vulnerable methods. For example, if a
method contains the keyword .hashCode(), it relies on the Java Hash Code
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(a weak hash function). The Assessing Methods Containing PII module utilises
the PII Variable database to identify methods containing potential PII. How-
ever, as a weakness could be defined in a third-party API, the vulnerable method
inspected may never actually be executed during run-time. To address this, the
Determining Vulnerable Calls module assesses whether a vulnerable method
is actually called and determines whether the PII data is accessed. COVID-

Guardian records all the vulnerabilities listed in the Manifest Weaknesses and
Vulnerabilities categories in Table 3.3.

The assessed vulnerabilities include SQL injection, IP address disclosure, hard-
coded encryption keys, improper encryption, use of insufficiently random values
(CWE 330) [46], insecure hash functions, and remote WebView debugging being
enabled. To increase accuracy, COVIDGuardian not only relies on the detec-
tion of a vulnerable method being called, but also employs PII data matching.
For example, a vulnerable method detection rule may use keywords “log” or
“print” to locate the method calls related to “data logging”, e.g., Log.v() and
System.out.print(). We further check whether the logged data contains PII
by matching the inputs with the PII Variables.

Finally, the trackers in apps (e.g., Google Firebase Analytics, Facebook Ana-
lytics, and Microsoft Appcenter Analytics) are detected by the Tracker Identi-
fication module and recorded in the Privacy Leaks category in Table 3.3.

Data flow analysis. We next conduct a data flow analysis to identify high
risk privacy leaks. The data flow analysis extracts the paths from data sources
to sinks, and the code statements transmitting the data outside of the app. We
define sources as calls to any PII data we identify, e.g., getViewById(int) and
getText(). Furthermore, we also consider methods that may obtain personal
information without user input, e.g., getLatitude() for geographic location
information and database.Cursor.getString() for database queries. Note
that, although unauthorised users cannot directly access sources (only sinks),
PII data may still leak during storage or transmission activities. For example, an
app may not have permission to access location data directly (the source), but
it could obtain that information from the SMS outbox (the sink). If PII data
flows into a code point where unauthorised users or apps can access it (e.g.,
via local storage, external storage or SMS), the confidentiality of the PII is
broken. Here we define sinks as methods that may leak sources through specific
channels, e.g., SharedPreferences$Editor.putString(), Bundle.putAll(),
and SmsManager.sendTextMessage().
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Thus, we next search the app for lifecycle and callback methods. Using this,
we generate a call graph. Starting at the detected sources, the analysis tracks
taints by traversing the call graph. If PII data flows from a source to a sink, it
indicates that there is a potential privacy leak path. To reduce false-positives,
we conduct a backward flow analysis. If the vulnerable code is reachable (i.e.,
not dead code) and contains PII Variables, we determine it is a potential valid
privacy leak. For example, if we find there is a PII Variable that flows into a
sink (e.g., Bundle, Log output, SMS) where unauthorised users can access, we
will trace it backwards to its source and confirm whether the source is reachable.
If reachable, we consider it as a privacy leak.

Malware detection. To complement the code analysis, we rely on malware
scanners to flag malicious artefacts in contact tracing apps. COVIDGuardian

sends the APKs to VirusTotal [47], a free online service that integrates over
70 antivirus scanners. Note this has been widely adopted by the research com-
munity [25, 48, 49]. As shown in Table 3.3, the results of malware detection
identify viruses, worms, Trojans, and other malicious content embedded in the
apps.

Implementation. COVIDGuardian includes two components: static code
and PII data-flow analysis engines. The static code analysis engine employs
jadx [50] to decompile the dex byte code of APK files to Java code. This
allows the engine to generate an abstract syntax tree (AST) and create call
graphs. Then, the engine scans the given source code to find risks listed in the
OWASP [51]. Finally, the taint analysis engine utilises the call graphs previously
generated, with the list of sinks and sources, to locate private data leakage.

To perform the detection, we first summarise 220 types of (suspected) function
calls, which we then use to identify vulnerabilities in the source codes. Then 195
taint sources and sinks are collected to analyse PII leakage through the AST.
Finally, the static code analysis engine verifies whether the app logic invokes
the data leakage functions or not.

3.4 Evaluation and Results

3.4.1 Selection of Apps Under-study

To evaluate COVIDGuardian, and explore the risks associated with popular
contact tracing apps, we curate a list of apps to study. To achieve this, we first
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search for keywords in the Google Play Store, e.g., “contact tracing”, “Covid”,
and “tracing coronavirus”. We also search for known official apps from countries,
e.g., the COVIDSafe recommended by the Australian government. After a
contact tracing app is found, we assess its functionality by reading the app
description and select those with in excess of 10,000 downloads. We also include
two beta apps. Subsequently, we include the app into the set and look for new
apps through the recommendation links in the app store. We repeat this until
there are no more contact tracing apps found. At last, we finalised the list of 40
contact tracing apps, as shown in Table 3.1. More detailed information, such
as the versions of apps, is provided in our open source website.

3.4.2 Evaluation of COVIDGuardian

Comparison with the state-of-the-practice tools. To evaluate the ef-
fectiveness and accuracy of COVIDGuardian, we compare against four in-
dustrial and open-source state-of-the-practice security assessment tools. These
tools are selected based on the number of stars on GitHub (e.g., MobSF 7.6K,
Qark 2.4K), their update frequency, usability, and their ability to analyse the
security of Android apps. MobSF is recommended by OWASP [52]; Qark and
AndroBugs are widely used open-source security assessment tools for Android
apps; FlowDroid is a classic tool for static taint analysis. We therefore believe
they offer an effective baseline to compare against.

We apply all four tools to the 40 contact tracing apps under-study. The de-
tection precision results are listed in Table 3.4. Note that, as we focus on
evaluate the false positives generated by tools, we only report the precision in
this research. The number of types is the sum of the number of risks and leaks
identified by COVIDGuardian. The precision rates are obtained through
manual validation (i.e., filtering out all false positives). The worst performing
tool is FlowDroid, which generates a large number of false positives that fall
into “Log” related sinks. This is because FlowDroid marks all log methods as
sinks without considering whether the logged data is PII or not. For instance, in
TraceTogether, error messages such as SQLiteException (from the stack trace)
are logged by the Log.e method which matches the keywords “log” and is falsely
identified as a privacy leak.
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Table 3.4. Comparison of analysis results from
different tools. The number of types is the sum of the
number of risks an leaks identified by a tool; the
precision rates are obtained through manual validation.

Tools # Types Precision

COVIDGuardian 315 96.19%
MobSF 213 47.41%
AndroBugs 76 80.26%
FlowDroid 201 40.32%
Qark 93 84.94%

In contrast, COVIDGuardian is able to identify most log related false posi-
tives through analyzing the PII Variables (precision of 96.19%). It is also op-
timized to filter out non-private data, such as Locale.getCountry. Therefore,
most false positives are removed automatically, and only eight false positives
(which are from database query results but are not sensitive) are found.

Another type of false positive found in COVIDGuardian is related to SQL In-
jections. For instance, TraceTogether encapsulates all SQL manipulation meth-
ods to limit the input to the SQL query. Both MobSF and AndroBugs regard
them as at risk of SQL Injections, since they analyse apps by keyword scan-
ning. We manually analysed all 40 apps and found that ten false positives (of
which inputs are limited to several constants in the app but are still regarded
as injected) fall into this category in COVIDGuardian.

Threats to validity. Considering that both the code analysis and data
flow analysis rely on keyword matching, a potential cause of false negatives is
poorly chosen of keywords. This could mean that some vulnerabilities are not
defined in the analysis rules. Similarly, in our data flow analysis, although we
update the sources and sinks extracted by SuSi with newly defined ones based
on the PII data we identify, there may exist PII leakage that does not match
any sources or sinks. We aim to improve the false negatives by updating the
rules and keywords database in the future. Currently, our empirical assessment
accentuates the identified vulnerabilities and privacy leakage paths.

Answer to RQ1. State-of-the-practice tools are less effective (i.e., lower
precision) compared to COVIDGuardian. Our assessment methodology
can be used to identify security weaknesses with high precision.
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Figure 3.4. Percentages of apps that are subject to
vulnerabilities based on code analysis.

3.4.3 Empirical Assessment Results

We next explore the presence of security vulnerabilities among the 40 considered
apps using COVIDGuardian.

Code analysis results. Figure 3.4 shows the percentage of contact tracing
apps that have security weaknesses found via our code analysis. We observe
that 42.5% of apps do not set the flag allowBackup to False. Consequently,
users with enabled USB debugging can copy application data from the device.
Other weaknesses identified are related to “Clear Text Traffic”, such as plaintext
HTTP, FTP stacks, DownloadManager, and MediaPlayer. These may enable a
network attacker to implement man-in-the-middle (MITM) [53] attacks during
network transmission.

Figure 3.4 shows that the most frequent weakness identified by code analysis
is the “Risky Cryptography Algorithm”. Over 72.5% of apps use at least one
deprecated cryptographic algorithm, e.g., MD5 and SHA-1. For instance, in the
app MySejahtera (Malaysia), the parameters in WebSocket requests are com-
bined and encrypted with MD5. These will be compared with the content from
requests in the class Draft_76 in order to confirm the validity of connections.
Although this has been listed in the top 10 OWASP [51] mobile risks 2016, the
results show that it is still a common security issue. Another frequent weak-
ness is “Clear Text Storage” (i.e., creation of files that may contain hard-coded
sensitive information like usernames, passwords, keys, etc.). For example, in
the DataBaseSQL class of the COVID-19 (Vietnam) app, the SQLite database
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Table 3.5. Identified Trackers.

Trackers # Apps Percentage

Google Firebase 25 71.4%
Google CrashLytics 6 17.1%
Other Google trackers 4 11.4%
Facebook trackers 3 8.6%
Other trackers 9 25.7%

password is stored in the source code without encryption; CG Covid-19 ePass
(India) also hard-coded its encryption key in its Security class.

In total, 20 trackers have also been identified, including Google Firebase Ana-

lytics, Google CrashLytics, and Facebook Analytics. Approximately 75%
of the apps contain at least one tracker. In the most extreme case, one app,
Contact Tracing (USA), contains 8 trackers. As shown in Table 3.5, the most
frequent tracker is Google Firebase Analytics, which is identified in more
than 70% of the apps. Notably, a research study [54] argues that TraceTo-
gether, by using Google’s Firebase service to store user information, maybe
leaking user information.

Data flow analysis results. Figure 3.5 presents the potential privacy leak-
age between sources and sinks. This is counted by the number of source-to-sink
paths found in each app. The top sources of PII data are methods calling from
Location and database.Cursor. These may obtain PII from a geographic lo-
cation sensor or from a database query. Most of the PII data will be transferred
to sinks, such as Bundle, Intent, and BroadcastReceiver, which may leak PII
out of the app.

As discussed above, sending PII to the Bundle object may reveal PII data to
other activities. Notably, we also discover that some apps transmit location
information through SMS messages. Considering Hamagen (Israel) as an exam-
ple, location information is detected and obtained by a source method called
initialise(Context,Location,e). This then flows to a sink method where
Handler.sendMessage(Message) is called. This is a potential vulnerability, as
malware could easily intercept the outbox of the Android SMS service [31].

According to the COVIDGuard results, we identified various PII leaks in con-
tact tracing apps. We present the applications that have PII leaks identified
according to 10 types of sinks in Figure 3.6. 60% of the 40 assessed apps have
at least one PII leak found; 30% have more than 10 PII leaks detected.
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Figure 3.5. Privacy leaks detected between sources
and sinks. Percentages indicate the fraction of flows
originating at the sources (left) and terminating at the
sinks (right).

The app that have the most PII leak paths identified is COVA Punjab (40
leaks identified). The PII information is leaked through Bundle, File, and
Intent in this app. Notably, we also discover that some apps transmit loca-
tion information through SMS messages. Considering Hamagen (Israel) as an
example, location information is detected and obtained by a source method
initialize(Context,Location,e) and then flows to a sink method where
Handler.sendMessage(Message) is called. This is a potential vulnerability as
malware could easily intercept the outbox of Android SMS service [31].

Malware detection results. We discover only one app with malware, Stop
COVID-19 KG (Kyrgyzstan) [55]. Two risks are identified: a variant Of An-

droid/DataCollector.Utilcode.A and an Adware (0053e0591). This aligns
with the finding of COVID-19 apps’ threats reported elsewhere [56]. Consider-
ing the limited use of Stop COVID-19 KG (roughly 10K downloads), we con-
clude that the vast majority of contact tracing apps downloaded from Google
Play Store are free of malware. That said, the rise of contact tracking apps
has also attracted the interest of malicious developers, e.g., a recent report [57]
disclosed that new ransomware has targeted the contact tracing app in Canada
even before its public release.
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Figure 3.6. PII Leaks in contact tracing apps.

Feedback from developers. After alerting all developers of ours findings,
we re-checked the apps by regression testing. Table 3.6 summarises the re-
gression testing results. We find that all potential sources of privacy leak-
age on three apps — TraceTogether (Singapore), BlueZone (Vietnam), STOP
COVID19 CAT (Spain) — have been fixed. Additionally, the trackers in MySe-
jahtera (Malaysia) have been removed and the vulnerable app, Contact Tracer
(USA), is no longer available.

Meanwhile, new vulnerabilities are identified in the updated versions of sev-
eral apps (see Table 3.6). For example, COVA Punjab (India) enables popup
windows in the WebView setting. STOP COVID19 CAT (Spain) allows clear
text traffic in the Manifest, and some apps have more trackers identified. This
may mean that the urgency of app development has impacted quality assurance
procedures. We note that a study of 493 iOS apps [58] confirms that security
issues are prevalent in iOS too. Investigating the root cause of the security issue
and their urgency is beyond the scope of our research, yet it is an interesting
future research topic.

Answer to RQ2. The most frequent weaknesses found in contact tracing
apps are risky cryptography algorithms use (72.5%), incorrect default per-
missions (62.5%), clear text storage (55.0%), insecure random values (55%),
and allowing backup (42.5%). Meanwhile, trackers and potential privacy
leakage also pose risks to users’ personal information.
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Table 3.6. Results of regression testing of apps.

Applications Version Issues Patched

TraceTogether 2.0.15 ✓ Disabled Allow Backup;
✓ Fixed potential privacy leakage.

STOP COVID19
CAT 2.0.3

✓ Fixed Insufficient Random issue as they do
not use Microsoft package anymore;
✓ Fixed potential privacy leakage;
✗ Allows clear text traffic in manifest;
✗ New tracker detected: Google CrashLytics.

MySejahtera 1.0.19

✓ Fixed the incorrect launch mode of an ac-
tivity;
✓ Removed three trackers: Google Analyt-
ics, Google CrashLytics, and Google Tag
Manager.

BlueZone 2.0.2 ✓ Fixed potential privacy leakage.

COVA Punjab 1.3.11

✗ New WebView weakness is detected, which
could enable popup windows;
✗ New potential privacy leakage path found;
✗ New tracker detected: Google CrashLytics
and Google Ads.

Coronavirus UY 4.3.2 ✗ New tracker detected: Google CrashLytics.

Contact Tracer N/A ✓ No longer available in Google Play Store
✓: Fixed, ✗: New vulnerabilities found

3.4.4 Cases and Implications

From our curated list of 40 apps, we select five typical apps around the world to
further highlight key lessons we can learn with respect to security and privacy.
The cases are TraceTogether, Next Step (DP3T), Private Kit, COVIDSafe, and
Corona Warn App.

TraceTogether. According to the COVIDGuardian analysis results, root
detection [59] has been implemented in TraceTogether. This potentially pre-
vents SQL injection and data breaches, thereby reducing the risk to a certain
extent. For example, in o/C3271ax.java, root detection logic is implemented
by detecting the existence of specific root files in the system, e.g., /system/ap-
p/Superuser.apk and /system/xbin/su. By assessing their integrity, the app
can detect whether a device is rooted and subsequently block users from either
logging in or opening it.
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However, TraceTogether also includes a third-party customer feedback library,
zendesk SDK, in which remote WebView debugging is enabled. This poten-
tially allows attackers to dump the content in the WebView [60]. When a user
inputs confidential data, including passwords, in a debug-enabled WebView,
attackers may be able to inspect all elements in the webpage [61]. Fortunately,
as per the static analysis, the only WebView with debugging mode enabled is
to display articles; therefore, it does not contain confidential data.

Security guideline 1: Never leave WebView with debugging mode enabled
in the app release.

Next Step (DP3T). Next Step’s database is not encrypted, and data is saved
in plain text. In contrast to TraceTogether, the app does not implement any
root detection capabilities. Although, the leakage of user’s information via a
rooted device may not be remotely exploitable, local malware may be able to
gain root access. We therefore argue that root detection is necessary due to the
large-scale deployment of such apps (over 60% of the population [2]), the long
duration of their operation, and the fact that 7.6% of Android users already
have rooted their devices [62]. Further, in a rooted device, a malicious app
could possibly access the database and manipulate COVID-19 contact records.

Security guideline 2: To protect the database from being dumped and
prevent data breaches, a solution should:

• Implement database encryption [63]

• Enable root detection [64] and confidential data protection [65] at app
startup.

In addition, as the database records timestamps and contact IDs, the leakage of
the database from a rooted device could be exploited to mount linkage attacks
by adversaries [66]. Therefore, if enough data in a region were collected, contact
IDs and timestamps could be used to analyse movements [67].

Private Kit. Similar to Next Step (DP3T), Private Kit does not encrypt the
database and contains plaintext data. Additionally, the app creates temporary
JSON files to store users’ location data. Without any encryption and root
detection, the temporary JSON files could be dumped from a rooted device.
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Security guideline 3: To prevent potential data breaches, confidential
data must not be stored in temporary files in plain text.

COVIDSafe. COVIDSafe 1.0.11 stores all tracing histories (including con-
tacted device IDs and timestamps) into an SQLite database using plain text.
Since the app does not implement root detection logic, tracing histories may
be leaked from root devices and therefore potential linkage attacks could be
implemented [67]. However, in the latest version, COVIDSafe fixed this issue
by encrypting the local database with a public key.

Corona Warn App. We find two security features worth highlighting. Corona
Warn App applies the SQLCipher [68] framework, which enhances the SQLite

database by making it more suitable for encrypted local data storage. It also
introduces the conscrypt [69] framework, which uses BoringSSL to provide
cryptographic primitives and Transport Layer Security for Java applications on
Android, during data transmission.

Security guideline 4: To protect local databases, introducing professional
security frameworks is useful, e.g. conscrypt and SQLCipher are open-
source, well-documented, frequently-updated, widely-used, and their code
is frequently reviewed.

3.5 Reviewing and Assessing Security and Pri-

vacy Threats

In this section, we review the major security and privacy threats facing contact
tracing apps, based on our prior analysis.

3.5.1 Threat Model

We consider four attackers in our threat model in addition to the user groups.

Application users. Those who install contact tracing applications on their
mobile phones will receive information about COVID-19, e.g., an at-risk alarm.
A regular user may reveal their private information, e.g., name, gender, phone
number, national ID, home address, and location history, to the contact tracing
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systems, as well as discover other users’ private information from the system —
pubic information or broadcasts from other users.

Health authorities. The actors are responsible for diagnosing infections
and collecting health information from Application users. They may learn or
deduce private information about at-risk users. Health authorities will also help
the diagnosed users record or upload information to the contact tracing system.

Governments. These actors work with technology providers and are often
responsible for operating the contact tracing system. They may access the data
stored in a central server. In our threat model, we suppose the Government
(and even the cloud operator) is “untrusted”, that is, they may use the collected
data for purposes beyond the pandemic.

Malicious adversaries. These adversaries have access to local app infor-
mation. They follow the defined algorithms, but wish to learn more than the
allowed information. They may have the capability to access the local log of
contact tracing applications, but hacking the back-end server or another user’s
device is out of the scope of their capabilities. They may utilise some devices,
such as a Bluetooth broadcaster or receiver, to attack the system or gain extra
information. They may also modify the app and impersonate a legitimate user
to access the system, which is difficult to prevent unless remote attestation is
applied.

3.5.2 User Privacy Exposure

We envisage three groups of contact tracing app users, based on their health
status:

• Generic user. A typical user of the contact tracing system, who is
healthy or has not been diagnosed yet.

• At-risk user. A user who has recently been in contact with an infected
user. Ideally, an at-risk user will receive an at-risk alarm from the app.

• Diagnosed user. A diagnosed patient who will be asked to reveal
their information as well as the information of at-risk users to the health
authorities, e.g., the diagnosis of their infection, their movement history,
the persons they have been in contact with.

Based on our prior analysis, we further define five broad categories of apps:
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• Level I : “No data is shared with a server or users”, the most secure level.

• Level II : “Tokens are shared with proximity users”, a medium exposure
level with only tokens containing no PII being exchanged between users.

• Level III : “Tokens are shared with the server”, a medium exposure
level with tokens exposed to the server.

• Level IV : “PII is shared with a server”, a high risk exposure level.

• Level V : “PII is released to public”, the highest risk exposure level.

Based on the in-app instructions, documents provided in apps’ official websites,
and the privacy policies, we assess user privacy exposure and threats posed by
the 40 apps listed in Table 3.1. We translated to English the materials not
written in English with Google Translate. For 13 out of the 40 apps, we were
not able to collect adequate information to conduct the privacy assessment.
Significantly, 13 out of the 40 apps lacking transparent documentation were
also identified as the ones with higher than the average number of security and
privacy risks using CovidGuardian. Considering the lack of transparency of
such apps with more than two million downloads, our findings demonstrate the
pressing need for a holistic security and privacy assessment tool.

As summarised in Table 3.7 and Table 3.8, all 27 assessed apps have user privacy
exposure to some extent. We determine user exposure level as IV in some cen-
tralised apps, such as COVIDSafe, TraceTogether, and apps from #18 to #27.
This is primarily because the central servers request users’ PII (e.g., name,
phone number, postcode, or even location information) during registration or
execution. This could be fixed by better privacy by design, exemplified by #4
StopCovid France, which does not collect such PII. Meanwhile, most decen-
tralised Bluetooth-based apps are categorised as a lower-level exposure. This
is because they utilise non-identifiable tokens, instead of directly using PII in
contact tracing. However, we determine the privacy exposure level of diagnosed
users in Hamagen as Level V, as their location information could be accessed by
third-party users, allowing the diagnosed users to be potentially re-identified.

3.5.3 Security and Privacy Threats

As discussed previously, the privacy of users is hard to preserve in a contact
tracing system. To introduce potential privacy threats, we will let Alice be an
at-risk user, and let Bob be a diagnosed user who has been in contact with
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Table 3.7. User privacy exposure and threats to apps.

# Apps

(27 of 40 apps assessed;
13 apps do not provide
adequate information)

Privacy Exposure
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1 CovidSafe
2 HaMagen
3 TraceTogether
4 StopCovid France
5 Next Step (DP3T)
6 Corona Warn App
7 NHS Test and Tracing App
8 TraceCorona
9 Private Kit

10 MySejahtera
11 Smittestop
12 COVID Alert
13 SwissCovid
14 Bluezone
15 COCOA

: No data is shared with servers or users;

: Token shared with proximity users; : Token shared with the server;

: PII shared with the server; : PII is released to public.

Alice. Mallory will be a malicious attacker, and Grace will be the government
server (or other authority). Here we discuss four potential privacy and security
threats. According to our threat model in Section 3.5.1, if an attacker is not able
to re-identify a user or inject fake reports to a contact tracing system through
a specific privacy attack, we try to determine the system as well-protected
against such a threat; otherwise, the system will be considered as at-risk. The
assessment results are summarised in Table 3.9 and Table 3.10.

To further examine security and privacy threats against contact tracing apps,
we systematically search and review the state-of-the-art [70, 42, 33, 32]. We
use Google Search, Google Scholar, and Twitter to discover research papers
and Twitter comments or media outlets referring to published or arXiv papers.
To achieve this, we use a set of associated search keywords (e.g., security and
privacy attacks, COVID-19 contact tracing apps, vulnerabilities, effectiveness,
safety). To expand this set, we further examine papers in the bibliographies of
each keyword-filtered paper. We then manually exclude irrelevant topics and
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Table 3.8. User privacy exposure and threats to apps
(continue).

# Apps

(27 of 40 apps assessed;
13 apps do not provide
adequate information)

Privacy Exposure
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16 Immuni
17 Stopp Corona
18 Aarogya Setu
19 EHTERAZ
20 Vietnam Health Declaration
21 STOP COVID19 CAT
22 CG Covid-19 ePass
23 StopTheSpread COVID-19
24 Stop COVID-19 KG
25 BeAware Bahrain
26 Nepal COVID-19 Surveillance
27 Stop Covid

: No data is shared with servers or users;

: Token shared with proximity users; : Token shared with the server;

: PII shared with the server; : PII is released to public.

synthesise four dominant security and privacy threats: (i) server link attacks;
(ii) user link attacks; (iii) false positive claims; and (iv) relay attacks. We
summarise the nature of these threats in Figure 3.7, Figure 3.8, Figure 3.9, and
Figure 3.10, and discuss them in turn below.

Linkage attacks by servers. In centralised systems, the major privacy
concern is metadata leakage by the server. For example, in TraceTogether and
COVIDSafe, a central server is used to collect PII information and to evaluate
at-risk individuals. Consequently, Grace will be able to collect a large amount
of PII, such as names, phone numbers, contact lists, post code, home addresses,
location trails. Therefore Grace is able to deduce the social connections of Alice.
Even for StopCovid France, a centralised Bluetooth system with solutions to
avoid PII collection, the re-identifiable threats still exist. For example, from the
server side, Grace is able to link ephemeral IDs to the corresponding permanent
app identifier and thus trace Alice based on IDs observed in the past, as well as
tracing future movements. Thus, no centralised solutions in Table 1 can prevent
linkage attacks by the server.
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Table 3.9. User privacy exposure and threats to apps.

# Apps

(27 of 40 apps assessed;
13 apps do not provide
adequate information)

Threats

A
rc

h
it

ec
tu

re

L
in

ka
ge

-S
er

ve
r

L
in

ka
ge

-U
se

r

Fa
ls

e-
C

la
im

R
el

ay
A

tt
ac

k

1 CovidSafe C
2 HaMagen D
3 TraceTogether C
4 StopCovid France C
5 Next Step (DP3T) (-) D
6 Corona Warn App D
7 NHS Test and Tracing App D
8 TraceCorona D
9 Private Kit D

10 MySejahtera C
11 Smittestop C
12 COVID Alert D
13 SwissCovid D
14 Bluezone D
15 COCOA D

: the system is well protected : the system is at-risk C: centralised D: Decentralised

(-): Inadequate information to conduct an assessment.

In contrast, for decentralised Bluetooth solutions, Alice’s privacy is protected
as her PII will not be sent to a central server by a diagnosed user and her
health status is evaluated on her own device. Thus, decentralised Bluetooth
systems are able to protect users’ privacy against linkage attacks by the server.
However, in location-based decentralised systems (e.g., Hamagen), the server
also learns users’ PII, which can compromise such such decentralised systems
too (as marked in Table 3.9 and Table 3.10).

Privacy guideline 1: To protect users’ privacy against linkage attacks by
a server, a contact tracing app should:

• Avoid sharing PII with central points or

• Implement a decentralised design.
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Table 3.10. User privacy exposure and threats to
apps (continue).

# Apps

(27 of 40 apps assessed;
13 apps do not provide
adequate information)

Threats
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16 Immuni (-) D
17 Stopp Corona D
18 Aarogya Setu C
19 EHTERAZ C
20 Vietnam Health Declaration C
21 STOP COVID19 CAT C
22 CG Covid-19 ePass C
23 StopTheSpread COVID-19 C
24 Stop COVID-19 KG (-) C
25 BeAware Bahrain C
26 Nepal COVID-19 Surveillance C
27 Stop Covid C

: the system is well protected : the system is at-risk C: centralised D: Decentralised

(-): Inadequate information to conduct an assessment.

Linkage attacks by users. Linkage attacks performed by users (Mallory),
try to re-identify Alice or Bob. In contact tracing systems that directly publish
users’ PII, Bob is obviously at risk of privacy leakage.

For other apps listed in Table 3.9 and Table 3.10 that rely on information ex-
change between users (e.g., DP3T, which implements an ephemeral ID design),
Mallory is still able to identify Bob using more advanced attacks. For exam-
ple, if Mallory places a Bluetooth receiver near Bob’s home or working place
and ensures that the device will only receive Bluetooth broadcasts from Bob.
Once Bob is diagnosed, Mallory will receive an at-risk alarm and immediately
acknowledge that the infected patient is Bob. In addition, Mallory can log the
timestamp and the received ephemeral ID when in contact with Bob, which
could be done by modifying the app or developing a customised app using the
open-sourced contact tracing framework. Once Bob is diagnosed, Mallory will
be able to trace back the source of recording and re-identify Bob and poten-
tially infected users. Similar attacks were described as Paparazzi Attacks and
Nerd Attacks in [42]. Note that Mallory is able to extend such attacks to Sybil
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Figure 3.7. Linkage attacks by a server: in
centralised systems, a key privacy concern is metadata
leakage by the server.

attacks to enable the identification and the tracing back of multiple targets at
the same time. Even worse, if Mallory distributes multiple broadcast receivers,
which could be also considered as a Sybil attack, in a large area with some
layout, e.g., honeycomb, they could potentially trace the movement of Bob by
tracing the records on each device.

Privacy guideline 2: To protect users’ privacy against linkage attacks by
an adversary, a solution should:

• Avoid data sharing between users or

• Ensure privacy protections exist for any published data.

False positive claims. In some systems, such as Coronavirus Australia, Bob
can register as infected and upload data through the contact tracing app to
the server, which enables Alice to receive an at-risk alarm. However, if Mallory
exploits such a mechanism and registers as a (fake) infected user, Alice will
receive a false-positive at-risk alarm, which may cause social panic or negatively
impact evidence-driven public health policies. Most solutions mitigate this issue
by implementing an authorisation process, i.e., Bob is only permitted to upload
data after receiving a one-time-use permission code generated by the server.
Without the permission code, Mallory is not allowed to claim they are infected
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Figure 3.8. Linkage attacks by users: in systems
based on information exchange between users,
attackers could re-identify users using data published
or received from users.

and Alice will always receive a true at-risk alarm. Only two solutions, i.e.,
DP3T and PACT [70], have no authorisation process implemented.

Privacy guideline 3: To protect a system against false-positive-claim
attacks, a solution should establish an authorisation process.

Relay attacks. To apply such an attack, Mallory could collect existing broad-
cast messages exchanged between users, then replay it at another time or for-
ward it through proxy devices to a remote location and replay the messages.
Due to the lack of message validation in solutions that utilise information broad-
casts, a user will not be able to determine whether a received broadcast is from a
valid source or from a malicious device. Any received broadcast will be recorded
as a contact event, even though no actual contact exists. A malicious attacker
can potentially redirect all the traffic from one place to another, resulting in a
targeted area being incorrectly locked-down by replaying fake information.

For example, suppose Mallory records the broadcasts from Bob and then replays
it hours later, or transmits it to a remote location and replays the messages to
Alice. Alice’s device, although not actually being in contact with Bob, will
receive and record the replayed broadcast in its local log. Once Bob is di-
agnosed, Alice will receive an at-risk alarm even though she has never been
in contact with Bob. Such an attack will falsely enlarge the contact range of
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Figure 3.9. False positive claim: attackers can
incorrectly register as infected, which will generate
false at-risk alerts.

Bob and create a large amount of false-positive alarms, which may cause panic
among citizens. Solutions that do not utilise information broadcasts, such as
Coronavirus Disease-19 and Hamagen, can avoid relay attacks.

In DP3T, a solution is provided to limit the replay attack by including temporal
information in the broadcast ephemeral identifiers. However, it cannot effec-
tively prevent replay attacks occurring at the same moment. Another promising
solution is to use an ambient physical sensing approach, e.g., ambient audio.
This has been shown to secure proximity detection by comparing the ambi-
ent information embedded in the broadcast messages with the local ambient.
It allows a receiver to validate whether the source is nearby as the range of
Bluetooth broadcast is generally within 50 m.

Privacy guideline 4: To protect a system against relay attacks, a solution
should:

• Either avoid utilising information broadcast or

• Implement a validation approach.

Summary. The linkage attacks by a server are the overarching threats to
centralised systems, as third-party attackers (or the server itself) are able to
re-identify users (if PII is exposed to the central server). Although StopCovid
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Figure 3.10. Relay attacks: in Bluetooth based apps,
a malicious attacker can potentially redirect/replicate
Bluetooth broadcasts from one place to another,
thereby generating false at-risk alerts.

France is robust to such a threat, it is still susceptible to re-identification risks
since the information from the server enables linkage between anonymous IDs
and the corresponding permanent app identifier. This permits the tracing of
users based on IDs observed in the past, as well as future movements.

Additionally, apps that use Bluetooth broadcasts are exposed to linkage attacks
by users. We note that, although the false positive claims could be mitigated by
authorisation to allow only positive users to upload diagnosed data to the server,
there are still some apps failing to implement essential authorisation. Further-
more, the relay attack is another threat causing false positives in Bluetooth-
based apps. Notably, although TraceCORONA is rated as at-risk against relay
attacks, its specific design provides protection against one-way-relaying unlike
other apps.

Answer to RQ3. We manually rate the level of user privacy exposure
for each contact tracing app. We further categorise the robustness of apps
against security and privacy threats. We ascertain that the apps in question
are vulnerable to at least one of the four threats. Not all decentralised
architectures are necessarily more secure than those adopting centralised
architectures, e.g., Hamagen, a decentralised location-based system.
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Table 3.11. Types of contact tracing apps
investigated in the survey.

Type Architecture PII Collected? Example App Questions

A Centralized Yes COVIDSafe Q9, Q16
B Centralized No StopCovid France Q13, Q16
C Decentralized Yes Hamagen Q15
D Decentralized No Corona Warn App Q12, Q17

3.6 User Study

In this section, we present a survey, exploring the user perceptions of contact
tracing apps. Our objective is to query the likelihood and concerns associated
with using the apps. Through the study we aim to ascertain user concerns and
requirements of contact tracing apps (RQ4 ).

In our survey, we did not explicitly mention any specific contact tracing app,
but still covered all contextual privacy concepts of state-of-the-practice con-
tact tracing apps. For example, COVIDSafe is covered by questions related to
“phone number and postcode are shared with governments or health authori-
ties” and “upload proximity data if being tested positive”, and Corona Warn
App or other apps that implement Google and Apple (Gapple) framework are
covered by “anonymous identifiers are shared with other users” and “upload
anonymous tokens if being tested positive”. We present the detailed Type to
questions relationship in Table 3.11. For detailed questionnaire, please refer to
Supplementary Section 3.6.4.

3.6.1 Ethical Considerations

The Human Research Ethics Committee of lead author’s affiliation determined
that the study was exempt from further human subjects review, and we followed
best practice for ethical human subjects survey research, e.g., all questions were
optional and we did not collect unnecessary personal information. Participant
consented for their answers to be used for academic research. All participants
are over 18 years old, regularly use a smartphone, and are able to complete the
survey in English.
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3.6.2 Participant Recruitment

The proportion of youth aged 15-24 years with COVID-19 has increased six-fold
from 24 February through 12 July 2020 [71]. It was reported by Reuters [72] that
young people who are visiting nightclubs and beaches are causing a rise in fresh
cases with potential consequences for more vulnerable age groups. Therefore,
we focus our user study on 18-29 year olds. We have recruited 373 volunteers
and asked them standard demographic questions, i.e., age range, education,
gender, and nationality. All participants reside in Australia but have various
cultural backgrounds (58% from Oceania, 20% from Asia, and 14% from other
geographic regions; 30 participants did not indicate their nationalities). 39% of
participants are male (59% female). One participant identified themselves as
other gender and six participants refrained. 67% of participants are university
graduates and 30% are high school graduates.

3.6.3 Survey Protocol

To calibrate the scope of our survey without introducing bias, we provide vi-
gnettes describing user privacy exposure levels using the security and privacy
threats reviewed in Section 3.5.

All questions, excluding demographics, are five-point Likert scale [73] questions.
The Likert scale is a quantitative, fine-grained, and user-friendly method of col-
lecting data from users. The scales ask participants to indicate how much they
are likely (1) or unlikely (5), to be unconcerned (1) or concerned (5) about using
contact tracing apps. The survey adopts a bespoke model and integrates ques-
tions from related survey instruments used by Simko et al. [74] and Kaptchuk et
al. [75]. We provide the survey design and questionnaire in our open source web-
site and summarise the two item categories below.

(a) Likelihood of using contact tracing apps. To investigate the usability
requirements of contact tracing apps, we asked participants their likelihood of
using contact tracing apps under different scenarios: (i) functionality scenarios,
i.e., if the accuracy of proximity contact detection and at-risk alarm generation
is not perfect (false positives or false negatives exist); and (ii) privacy scenar-
ios, i.e., if personal data (location, phone number, postcode, or anonymous
identifier) will be shared with other entities (other users or governments), or
if the authorities require them to provide data (location, proximity data, or
anonymous tokens) after being diagnosed.
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Notably, to ensure the survey is designed for both users and non-users, we did
not explicitly mention any specific contact tracing app, but still covered all con-
textual privacy concepts of state-of-the-practice contact tracing apps discussed
in Section 3.2. For example, COVIDSafe is covered by scenarios in which a
“phone number and postcode are shared with governments or health authori-
ties” and if the app will “upload proximity data if tested positive”. Similarly, the
Corona Warn App or others that implement the Google and Apple (Gapple)
framework are covered by scenarios where “anonymous identifiers are shared
with other users” and the app will “upload anonymous tokens if being tested
positive”.

(b) Concerns about use of contact tracing apps. We also asked the
participants about their concerns regarding contact tracing apps. We focused
mainly on three aspects: (i) the usability of contact tracing apps, including
battery drain, storage drain, and ease-of-use; (ii) the effectiveness of contact
tracing apps, i.e., to what extent users are concerned about the accuracy of
contact tracing; and (iii) the concerns about privacy. We conducted the survey
through both pencil-and-paper and SoGoSurvey [76]. 3.4% (15) of participants
used the paper version of the survey and there is no significant impact on the
study results. During the paper survey, we did not receive any queries from
participants.

3.6.4 User Study Questionnaire

This is a survey on Coronavirus (COVID-19) and contact tracing applications by
researchers at the University of Adelaide. We will only collect non-identifiable
personal information, e.g., gender, age range and nationality, and will not put
you at any risk for harm.

You do not have to answer any question that makes you uncomfortable. In order
to participate, you must be at least 18 years old, regularly use a smartphone,
and are able to complete the survey in English. We expect this survey will take
about 15-20 minutes to complete.

[Please check] I am over 18 years old. I acknowledge that my gender, age range,
and nationality could be collected by this survey and my answers to this survey
may be published in an academic research.

1. What is your age? (a. Under 20 years old; b. 20-24 years old; c. 25-29
years old; d. 30-34 years old; e. 35-39 years old; f. 40-44 years old; g.
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45-49 years old; h. 50-54 years old; i. 55-59 years old; j. 60-64 years old;
k. 65-69 years old; l. 70 years or older.)

2. What is the highest degree or level of school you have completed? If
currently enrolled, the highest degree received. (a. Did not graduate high
school; b. Graduated high school; c. Graduated high school.)

3. To which gender identify do you most identify? (a. Female; b. Male; c.
Other; d. Prefer not to say)

4. What is your nationality?

5. How likely would you be to install and use an app that is able to accurately
detect and notify you that you were exposed, but actually you were not?
(1 - Extremely likely; 2 - Somewhat likely; 3 - Neither likely nor unlikely;
4 - Somewhat unlikely; 5 - Extremely unlikely)

6. How likely would you be to install and use an app that may have a
chance to incorrectly (false positively) detect and notify you that
you were exposed, but actually you were not? (1 - Extremely likely; 2 -
Somewhat likely; 3 - Neither likely nor unlikely; 4 - Somewhat unlikely; 5
- Extremely unlikely)

7. How likely would you be to install and use an app that may have a
chance to fail (false negatively) to detect that you were exposed and
not notify you in time? (1 - Extremely likely; 2 - Somewhat likely; 3 -
Neither likely nor unlikely; 4 - Somewhat unlikely; 5 - Extremely unlikely)

8. How likely would you be to install and use an app that shares your loca-
tion data with other users for the purposes of studying or mitigating
the spread of COVID-19? (1 - Extremely likely; 2 - Somewhat likely; 3 -
Neither likely nor unlikely; 4 - Somewhat unlikely; 5 - Extremely unlikely)

9. How likely would you be to install and use an app that shares your lo-
cation data with your government or health authorities for the
purposes of studying or mitigating the spread of COVID-19? (1 - Ex-
tremely likely; 2 - Somewhat likely; 3 - Neither likely nor unlikely; 4 -
Somewhat unlikely; 5 - Extremely unlikely)

10. How likely would you be to install and use an app that shares your phone
number and postcode with other users for the purposes of studying
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or mitigating the spread of COVID-19? (1 - Extremely likely; 2 - Some-
what likely; 3 - Neither likely nor unlikely; 4 - Somewhat unlikely; 5 -
Extremely unlikely)

11. How likely would you be to install and use an app that shares your phone
number and postcode with your government or health authori-
ties for the purposes of studying or mitigating the spread of COVID-19?
(1 - Extremely likely; 2 - Somewhat likely; 3 - Neither likely nor unlikely;
4 - Somewhat unlikely; 5 - Extremely unlikely)

12. How likely would you be to install and use an app that shares your anony-
mous identification with other users for the purposes of studying or
mitigating the spread of COVID-19? (1 - Extremely likely; 2 - Somewhat
likely; 3 - Neither likely nor unlikely; 4 - Somewhat unlikely; 5 - Extremely
unlikely)

13. How likely would you be to install and use an app that shares your anony-
mous identification with your government or health authorities
for the purposes of studying or mitigating the spread of COVID-19? (1 -
Extremely likely; 2 - Somewhat likely; 3 - Neither likely nor unlikely; 4 -
Somewhat unlikely; 5 - Extremely unlikely)

14. How likely would you be to install and use an app that shares no infor-
mation with other users or your government for the purposes of
studying or mitigating the spread of COVID-19? (1 - Extremely likely; 2
- Somewhat likely; 3 - Neither likely nor unlikely; 4 - Somewhat unlikely;
5 - Extremely unlikely)

15. If you tested positive of COVID-19, how likely would you be to upload
your location data for the past two weeks? (1 - Extremely likely; 2 -
Somewhat likely; 3 - Neither likely nor unlikely; 4 - Somewhat unlikely; 5
- Extremely unlikely)

16. If you tested positive of COVID-19, how likely would you be to upload
your proximity data (who have been in the proximity of your phone)
for the past two weeks? (1 - Extremely likely; 2 - Somewhat likely; 3 -
Neither likely nor unlikely; 4 - Somewhat unlikely; 5 - Extremely unlikely)

17. If you tested positive of COVID-19, how likely would you be to upload
your anonymous tokens for the past two weeks? (1 - Extremely likely;
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2 - Somewhat likely; 3 - Neither likely nor unlikely; 4 - Somewhat unlikely;
5 - Extremely unlikely)

18. When you use a contact tracing application, how concerned are you about
battery drain on your phone? (1 - Very unconcerned; 2 - Somewhat
unconcerned; 3 - Neither unconcerned nor concerned; 4 - Somewhat con-
cerned; 5 - Very concerned)

19. When you use a contact tracing application, how concerned are you about
privacy issues? (1 - Very unconcerned; 2 - Somewhat unconcerned; 3
- Neither unconcerned nor concerned; 4 - Somewhat concerned; 5 - Very
concerned)

20. When you use a contact tracing application, how concerned are you about
whether it is easy-to-use? (1 - Very unconcerned; 2 - Somewhat uncon-
cerned; 3 - Neither unconcerned nor concerned; 4 - Somewhat concerned;
5 - Very concerned)

21. When you use a contact tracing application, how concerned are you about
its accuracy? (1 - Very unconcerned; 2 - Somewhat unconcerned; 3 -
Neither unconcerned nor concerned; 4 - Somewhat concerned; 5 - Very
concerned)

22. When you use a contact tracing application, how concerned are you about
storage drain on your phone? (1 - Very unconcerned; 2 - Somewhat
unconcerned; 3 - Neither unconcerned nor concerned; 4 - Somewhat con-
cerned; 5 - Very concerned)

3.6.5 Data Analysis and Results

After gathering the answers from participants, we combine the answers that
related to one type of apps together. We take the more negative answer to the
likelihood questions, that is, keep the answer with larger value of Likert scale,
as in our study design, 5 means “Extremely unlikely”, and 1 means “Extremely
likely”. For example, if a user answered “1 - Extremely likely” to question 11,
“How likely would you be to install and use an app that shares your phone num-
ber and postcode with your government or health authorities for the purposes of
studying or mitigating the spread of COVID-19?”, and selected “5 - Extremely
unlikely” to question 16, “If you tested positive of COVID-19, how likely would
you be to upload your proximity data (who have been in the proximity of your
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Figure 3.11. Raw data of answers from question 8 to
17.

phone) for the past two weeks?”, we will consider that the user’s likelihood of
use this app is “5 - Extremely unlikely”. After combining questions, we use
a Python library, SciPy.stats to conduct Mann-Whitney U-tests. If the p-
value is smaller than 0.05, we reject the null hypothesis that users are equally
likely to use any of the two contact tracking apps and consider the difference
is significant. The raw data of answers from question 8 to 17 is provided in
Figure 3.11.

Our variables are ordinal and the responses to each question are not expected
to be normally distributed. Therefore, we use a Mann-Whitney U-test [77]
for statistical significance testing to ascertain the key factors that impact user
concerns and requirements (or expectations). Concretely, we aggregate item
responses to assess the participants’ likelihood of using contact tracing apps
across four different privacy-preserving and data sharing scenarios (as described
in the Section 3.5.3).

We calculate the U -value and p-value of each pair of contact tracing solutions
among centralised solutions with PII collected (Type A), centralised solutions
with non-PII collected (Type B), decentralised solutions with PII collected
(Type C), and decentralised solutions with non-PII collected (Type D). If the
p-value is smaller than 0.05, we reject the null hypothesis that users are equally
likely to use any of the two contact tracing apps. We use SciPy.stats for our
analysis.

(a) The accuracy of contact tracing impacts the likelihood of app use.
Users are sensitive to sharing PII in a decentralised system. As shown
in Figure 3.12, if a contact tracing app can accurately detect proximity and
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Figure 3.12. Participants’ likelihood of using contact
tracing apps vs. the accuracy of proximity detection.

notify users who may be at-risk, more than 60% of participants are likely to use
it. However, in reality, it is hard to eliminate false-positives and false-negatives.
When the tracing accuracy concern is considered, the proportion of users likely
to use contact tracing apps drops to 31% and 26%, respectively. Our results
align well with a survey of COVID-19 app usage taken in the USA [75].

Figure 3.13, shows how likely users are to use a contact tracing app in different
scenarios. Here, 50% of participants listed positive responses to decentralised
apps with non-PII identification collected and shared (Type D). This resonates
with the fact that Bluetooth-based decentralised systems preserve user privacy
more than centralised systems. However, decentralised apps with PII collected
(Type C) are not as popular with users. More than 64% of participants said
that they are unlikely to use such an app. It can be seen that even this young
cohort of users is sensitive to sharing PII.

Table 3.12 presents the Mann-Whitney U-tests comparing pairs of contact trac-
ing apps. Our results indicate that the differences between the likelihood of
using decentralised apps with PII collected (Type C) and other apps is statis-
tically significant. This is perhaps due to the privacy design in a decentralised
PII-collected system. That is, diagnosed users’ information (e.g., location in-
formation) will be collected and shared with other users, while the other types
of apps do not share such information between users. When compared with the
other three types, we had p-values greater than 0.05. Hence, despite the dif-
ferent levels of privacy protection, there is no statistically significant difference
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Figure 3.13. Participants’ likelihood of using apps
across different privacy-preserving and data sharing
scenarios. : 5 = extremely unlikely, : 1 =
extremely likely.

in the likelihood of users using these apps. However, from Figure 3.13, we can
infer that it is more likely for users to accept and use the decentralised apps
without PII collection (Type D).

Additionally, as evidenced in Figure 3.12 and Figure 3.13, we find that more
than 78% of participants are likely to use perfectly private contact tracing apps.
This indicates a much higher likelihood than those who prefer a perfectly ac-
curate contact tracing app (60%). The difference is statistically significant
(p-value < 0.0001), indicating that users are more likely to accept and use
contact tracing apps that satisfy privacy protection requirements.

(b) User concerns focus on privacy and tracing accuracy. As shown
in Figure 3.14, more than 55% of participants are extremely concerned about
the tracing accuracy of apps, and more than 49% of participants are extremely
concerned about privacy issues.

3.6.6 Threats to Validity of Our User Study

External validity. The participants of the survey were all from one country,
and the duration of the survey was three weeks. Further, our survey may
be subject to volunteer bias and non-response bias [78] (i.e., participants and
their responses may have different characteristics from the general population of
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Table 3.12. The likelihood of using contact tracing
apps.

Solution 1 Solution 2 U -value p-value

Type A Type B 66020.0 0.1072
Type A Type C 60756.0 <0.01**
Type A Type D 62714.0 0.0819
Type B Type C 57646.0 <0.001***
Type B Type D 66364.5 0.131
Type C Type D 54472.5 <0.001***

Type A: centralised system with PII collection
Type B: centralised system without PII collection
Type C: Decentralised system with PII collection
Type D: Decentralised system without PII collection

interest). To mitigate the volunteer bias, we designed the survey questionnaire
to be completed in 10-15 minutes and anonymized the responses.

Internal validity. Considering the nature of the user study, participants may
find that some questions are confusing or unclear. This will lead to incorrect
or inconsistent responses. To mitigate this threat, we conducted a pilot survey
with 45 computer science students and updated the questions based on feedback.
In addition, as the responses are anonymous, there could be participants who
took the survey multiple times.

Answer to RQ4. Privacy design and tracing accuracy impact the likeli-
hood of app use. Furthermore, compared to users’ expectations of tracing
accuracy, users are more likely to accept and use apps with better privacy
by design. Interestingly, if PII data is collected, users prefer a centralised
solution in contrast to a decentralised solution that collects PII data.

3.7 Conclusion

This chapter has developed a security and privacy assessment tool, COVID-

Guardian. This tool can evaluate the security weaknesses, vulnerabilities,
potential privacy leaks, and malware in contact tracing apps. Using COVID-

Guardian, we have conducted a comprehensive empirical security and privacy
assessment of 40 contact tracing apps. Our results have identified multiple
security and privacy risks, as well as threats. Naturally, our analysis has con-
firmed that no apps can protect users’ security and privacy against all potential
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Figure 3.14. Participants’ concerns about contact
tracing apps. : 5 = extremely concerned, : 1 =
extremely unconcerned.

threats. To understand the perception of users, we have also performed a sur-
vey involving 373 participants. This has further consolidated our observations
of user concerns. In the future, we plan to extend our study to obtain user
feedback from a wider geographic and demographic range. Examining network
traffic originating from contact tracing apps is also worth further exploration.
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The digital age has brought a world of opportunity to children. Connectivity can
be a game-changer for some of the world’s most marginalised children. How-
ever, while legislatures around the world have enacted regulations and laws to
protect children’s online privacy, and app stores have instituted various restric-
tive protections and requirements, privacy in mobile apps remains a growing
concern for parents, as well as the wider society. In this research, we aim to
explore potential privacy issues and threats that exist in these apps. With this
in mind, we investigate 20,195 mobile apps from the Google Play store that
are designed particularly for children (Family apps) or include children in their
target user groups (Normal apps). Using both static and dynamic analysis, we
find that 3.46% Family apps request location permissions, even though collecting
location information from children is forbidden by the Play store; and 13.08%
of Family apps use trackers (which are not allowed in children apps). Even big
players with 40+ kids apps on the Play store use ad trackers. Furthermore, we
find that most permission request notifications are not well designed for chil-
dren. 21.69% apps have inconsistent ratings across different rating authorities.
Our findings suggest that, despite significant attention to children’s privacy, a
large gap between regulatory provisions, app store policies, and actual develop-
ment practices exists. Our research sheds light for government policymakers,
app stores, developers. The dataset and source code are publicly available at
https://github.com/children-privacy.

4.1 Introduction

In this chapter, I focus on the privacy practices of apps that are designed for
children or have target users that include children. I have measured the use
of permissions and trackers, investigated inconsistency in content ratings, and
analysed user comment feedback. The measurement results illustrate that, de-
spite many privacy protection regulations and the strict requirements imposed
by the app store, children still experience privacy threats.

The last decades has seen a dramatic increase in society’s reliance on mobile
services for everyday activities. At the start of the 2000s, there were 740 mil-
lion cell phone subscriptions worldwide. Two decades later, that number has
surpassed 8 billion, meaning there are now more cellphones in the world than
people [1]. Particularly due to COVID-19, more and more young people are
spending time at home using mobile applications for entertainment, remote

https://github.com/children-privacy
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work, and day-to-day tasks [2]. Unfortunately, the Internet is home to a vast
amount of content, potentially harmful to children, such as uncensored sexual
imagery, violent content, and strong language [3, 4]. Though many parents
find YouTube videos to be entertaining and educational, more than four-in-ten
parents (46%) say their child aged 11 or younger who uses this platform has
encountered videos on YouTube that were inappropriate for their age [5]. Fur-
thermore, children may expose sensitive data online that could eventually fall
in the hands of predators, or that could trigger conflicts with their peers. Of
the 60 countries covered by The Economist Intelligence Unit’s ‘Out of the Shad-
ows’ index, only 9 have established legislation for mandatory reporting, content
blocking, deleting and record-keeping of child sexual abuse material [6]. More
than a third of young people in 30 countries report being a victim of online
bullying [7].

Due to these concerns, many international jurisdictions have enacted privacy
laws and regulations to promote and protect the privacy of individuals and
to regulate how organisations handle personal information. These include the
Children’s Online Privacy Protection Act (COPPA) and its implementation,
Children’s Online Privacy Protection Rule (COPPR) which “imposes certain
requirements on operators of websites or online services directed to children
under 13 years of age” [8, 9], the European General Data Protection Regulation
(GDPR) [10], and the Privacy Act 1988 [11] in Australia.

These regulations restrict the behaviour of apps and define the obligations of
app developers. For example, GDPR Art. 8, COPPA, and COPPR §312 require
that the applications should provide notice and obtain verifiable parental con-
sent prior to collecting personal information from children. Apps must make
reasonable efforts to ensure that the notification is received by a parent of a
child. Although various privacy assertions are required in app stores (such as
the permission list and the privacy policies), it is usually difficult for regular
users to understand the potential threats an app may pose, let alone identify
undesired or malicious application behaviours. Notably, according to a survey
by Pew Research Center [12], the majority of Americans report being concerned
about the way their data is being used by companies (79%); roughly three-in-
ten Americans (28%) say they have suffered at least one major identity theft
problem in the past 12 months.

In order to help parents determine age-appropriate mobile apps for their chil-
dren, app stores have released strict developer policies, along with inspection
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and vetting processes before app publishing, seeking to nip the aforementioned
threats in the bud and improve app quality in the markets. Critical app infor-
mation (such as the number of installs, requested permissions, a rating score,
the name of developer, and the comments by other users) is provided to help
users know the app before using it. Furthermore, every app that is sold through
the Google Play store is rated for age-appropriateness. These rating systems
recognise that mobile apps now run the entire gamut from interactive picture
books for toddlers, through to graphic adult content. Hence, parents can use
ratings to help with making app purchasing decisions. In 2015, Google Play
launched the “Designed for Families” program [13], which allows app publishers
to opt into an additional review in order have their apps labelled as being family-
friendly, aiming at highlighting pre-approved, child-safe apps. Further, in 2020,
Google Play added a “Teacher Approved” section in its app store, in which the
Play store consults with teachers and specialists rating Designed for Families
apps based on design, appeal, age appropriateness and the appropriateness of
ads [14]. However, considering that most information of apps is provided by
app developers’ self-report (e.g., by filling a form or answering questionnaires),
a centralised rating system is still missing.

We argue that the complexity of these different policies and systems challenge
the ability of many parents (and children) to make informed decisions. To gain
an understanding of this complexity, we provide the first comprehensive mea-
surement study of privacy practices in children’s applications. We inspect apps
from both a technical and user-available information perspective, with the aim
to expose improper children app development practices and privacy threats. We
particularly focus on apps that are (i) designed primarily for children under 13
and listed on the Children tab (Family apps); and (ii) designed for everyone, in-
cluding children (Normal apps). From the technical side, we conduct static and
dynamic analysis of 20,195 apps, including 3,627 Family apps and 16,568 Nor-
mal apps. From the users’ perspective, we collect and analyse content ratings
from 5 different ratings authorities and 13,132,577 comments from 11,831 apps.
The main findings of our measurement study are as follows.

• Through static and dynamic analysis, we find that 3.46% Family apps
request location permissions (which is forbidden by the Play store); the
proportion of Normal apps requesting dangerous per-missions is 6.07%
to 32.16% higher than that of Family apps. However, no apps except
the YoutubeKids have permission notification specifically request consent
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from parents (manually inspection on 500 apps); 13.08% Family apps use
trackers that are not allowed to be used in children apps. Worryingly, even
major players (having more than 40 kids apps published in Play store) do
not follow the Play store policies.

• We compare the content ratings given by various agencies (these tag the
suitability of apps for different age groups). We identify significant in-
consistency among these content ratings. 19.25% apps have such issues,
with 13.25% Family apps and 8.99% Normal apps have severe inconsis-
tencies. We conclude that greater transparency should be introduced to
help inform parents.

• From users’ comments, we find that Family app users complain more
about app content, but less about privacy and security. Highly-rated
apps have a larger number of complaints at the same time. We conclude
that a more efficient mechanism to report and check inappropriate app
content should be established.

Our findings suggest that despite significant attention paid to children’s privacy
by legislatures, app stores, and society, a large gap between regulatory provi-
sions, app store policies, and actual development practices still exists. We argue
that app stores should establish more effective supervision mechanisms, provide
more detailed information, reduce their reliance on developers’ self-certified in-
formation, and respond more actively to user feedback. We believe our study
can provide useful insights for government policy makers, app stores, develop-
ers, and researchers to build privacy-preserving apps for children, in the present
and future.

Ethical considerations. All the apps and user comments in this research
are collected from public available resources. All the app and developer names
mentioned in this chapter are anonymised with *s. All user personal informa-
tion, (usernames, timestamps) is removed from the database. We have disclosed
all the findings to Play store and related entities.

4.2 Legal Background and Play Store Policies

This section describes the legal background for online children’s apps that are
subject to regulations or policies, such as COPPA, GDPR, and the Google
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Play Store policies. We further briefly outline our legal analysis of potential
violations in Android children apps.

4.2.1 The Scope of Children Apps

The definition of the term of “child” is varied across regulations issued in differ-
ent territories and jurisdictions. According to COPPA and its implementation,
Children’s Online Privacy Protection Rule [9], the term “child” means an in-
dividual under the age of 13. In EU and EEA, the GDPR Art. 8 requires
that “the processing of the personal data of a child shall be lawful where the
child is at least 16 years old”, while in UK GDPR [15], a child means any-
one under the age of 18. In addition, as claimed by Play store, “all apps and
games on the Children tab are expert-approved” which are further categorised
into four age groups, i.e., All ages up to 12, Ages up to 5, Ages 6-8, and
Ages 9-12. Note that, based on our observation, apps without expert-approved
badges can also be found on Children tab. Therefore, in our research, we define
the apps that are categorised as FAMILY in Play store (i.e., can be found at
https://play.google.com/store/apps/category/FAMILY) as “Family apps”, while
the “Normal apps” in our research refer to apps that include children under
13-years old in their target user groups.

4.2.2 Families Policy Requirements

To better serve users, the Play store requires developers to provide accurate
information about their apps. In addition to filling out the content rating ques-
tionnaire, developers also must provide details about their app’s target audience
and content. Depending on the target audience selections the developers make,
the app will be subject to additional Google Play policies, to ensure that apps
for children have appropriate content, show suitable ads, and handle personal
and sensitive information correctly.

For apps that are designed primarily for children under 13, they must partici-
pate in the Designed for Families [13] and comply with Google Play’s Families
Policy Requirements [16]. For any apps that have at least one target audience
age group that includes children, developers must comply with Google Play’s
Families Policy Requirements. In short, for any apps that have target users that
include children, Google Play’s Families Policy Requirements are compulsory.
Developers are responsible for ensuring their apps are appropriate for children

https://play.google.com/store/apps/category/FAMILY
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and compliant with all relevant laws. Failure to satisfy the requirements may
result in an app’s removal or suspension.

4.2.3 Consent from Parents

Children merit specific protection with regard to their personal data, as they
may be less aware of the risks, consequences and safeguards concerned and
their rights in relation to the processing of personal data [17]. According to
COPPR §312.4 [9], it shall be the obligation of the operator to provide notice
and obtain verifiable parental consent prior to collecting, using, or disclosing
personal information from children. Apps with target users under 13 must make
reasonable efforts, taking into account available technology, to ensure that a
parent of a child receives direct notice of the apps’ practices with regards to the
collection, use, or disclosure of personal information from children. As regulated
in GDPR Art. 8, the processing of personal information is lawful only if the
consent is given by the holder of parental responsibility over the child, meaning
that users who are 15 years or younger need parental consent where applicable
(member states can choose a younger age down to 13). Developers will need
to prove that consent is valid, that it is informed and granular, and that they
have methods in place to allow parents to exercise their rights in relation to
children (also required by COPPR §312.4(b)). Although the Privacy Act 1988
in Australia does not specify an age after which an individual can make their
own privacy decision, it requires that, for their consent to be valid, an individual
must have capacity to consent. If they lack maturity it may be appropriate for
a parent or guardian to consent on their behalf.

Therefore, companies must obtain verifiable parental consent before gathering
data from children below the age limit (13 years of age for COPPA, 16 for
GDPR). This legal requirement implies that informing parents or legal tutors
about data collection practices via the privacy policy is not enough, especially
if the app disseminates sensitive data to third-party services. With this in
mind, we would like to determine whether apps collect private data without a
user consent. As a result, any sensitive or personal data, particularly unique
identifiers or geolocations, uploaded by the app to third parties without a user
consent may be a potential violation of COPPA and GDPR. Note that, in Play
store policy, apps that solely target children are not allowed to access location
permissions.
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4.2.4 Ads SDKs Allowed for Children

According to the Designing Apps for Children and Families policy by Play
Store [13], apps designed specifically for children must participate in the De-
signed for Families program. This requires that apps can only use Google Play
certified ad SDKs listed in Table 4.1. In order for an ad SDK to be included on
the list, the ad SDK must self-certify that they are compliant with Play’s Fam-
ilies Ad Program policies and all applicable local laws and regulations. Apps
that include children and adults in their target audience, but are not in the
Designed for Families program, are allowed to use non-certified ad SDKs for
serving ads only to users above the age of 13. Therefore, any non-certified ad
SDK used in Family apps violates the Play Store policy. Normal apps that
have non-certified ad SDKs but do not implement a neutral age screen may also
violate the policy.

4.2.5 Content Ratings

A content rating (also known as maturity rating) rates the suitability of TV
broadcasts, movies, comic books, or video games for its audience [18, 19]. This
usually places a media source into one of a number of different categories, to
show which age group is suitable to view the media. In the Google Play store,
the app developers are responsible for completing a rating questionnaire about
the nature of the apps’ content. The ratings assigned to the app, displayed on
Google Play, are determined by the questionnaire responses. Misrepresentation
of an app’s content may result in removal or suspension [20]

The ratings are intended to help consumers (especially parents) identify po-
tentially objectionable content that exists within an app. Considering that,
in different territories, rating standards can have differences and each rating
authority uses its own methodology, an app can earn different ratings. In Fig-
ure 4.1, we list a few rating authorities, including the Entertainment Software
Rating Board (ESRB) [18] in Americas, the Pan European Game Information
(PEGI) [19] in Europe and the Middle East, Unterhaltungssoftware Selbstkon-
trolle (USK) [21] in Germany, the Australian Classification Board (ACB) [22] in
Australia, and the International Age Rating Coalition (IARC) [23]. However,
for some apps, their content ratings across different territories are inconsistent
and confusing, even if they contain the same content. For example, the app,
sg***ve, earns a content rating of “PEGI 12” in Australia, while in Germany,
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Table 4.1. Ad SDKs that participate in Play’s
Families Ads Program.

Ad SDKs Code Signature Network Signature

AdColony com/adcolony/,
com/jirbo/adcolony/

adcolony.com

AppLovin com/applovin applovin.com,
applvn.com

Chartboost com/chartboost/sdk/ chartboost.com

Google AdMob com/google/ads/,
com/google/android/gms/ads/,
com/google/android/ads/,
com/google/unity/ads/,
com/google/android/gms/admob

2mdn.net,
google.com,
dmtry.com,
doubleclick.com,
doubleclick.net,
mng-ads.com

InMobi com/inmobi,
in/inmobi/

inmobi.com,
inmobicdn.net,
inmobi.cn

ironSource com/ironsource/ ironsrc.co

Kidoz com/kidoz/sdk kidoz.net/kidoz-sdk

SuperAwesome tv/superawesome/sdk,
tv/superawesome/lib/

superawesome.com

Unity Ads com/unity3d/services,
com/unity3d/ads

unity3d.com

Vungle com/vungle/publisher/,
com/vungle/warren/

vungle.com

it is rated as “USK 16+”. Note that, in the requirements of “PEGI 12”, an app
could contain “slight violence towards fantasy characters”, “non-graphic violence
towards human-looking characters”, and “mild bad language and no sexual ex-
pletives”. However, an “USK 16+” app is allowed to contain “realistic violence”,
“shock and horror elements”, “consistently explicit language”, and “erotic or sex-
ual focus”, which obviously cannot fall into the category “PEGI 12”, even the
gap between suitable age ranges of the two ratings is only 1 year (“PEGI 12” is
suitable for age group 12 to 15 and “USK 16+” is suitable for age group 16 to
17).
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Figure 4.1. Age groups of content ratings from
different rating authorities.

4.3 Related Work

4.3.1 Evaluation of Children Apps

Previous efforts have studied COPPA and children’s apps from various per-
spectives. Previous work examined the risks posed by third-party components
bundled in children’s apps, with a focus on targeted advertisements [24, 25].
Massey et al. examined privacy policies [26] according to the requirements of
COPPA, as well as Reyes et al. [27, 28] which analysed mobile apps’ compli-
ance with COPPA. Other research has focused on methods aiding developers
to make their apps more child-friendly in terms of content and privacy [29, 30].
Several works focus on the evaluation of app content rating. For example, Chen
et al. [31] conducted a study on the unreliable maturity content ratings of mo-
bile apps, which may result in inappropriate risk exposure for the children and
adolescents. However, this research focuses more on the comparison of content
ratings between iOS app store and Google Play store, rather than exposing
undesired application behaviours.

4.3.2 Static and Dynamic Analysis

Static code analysis techniques are widely used in the assessment of mobile
apps [32, 33, 34, 35, 36, 37, 38, 39]. For example, MobSF [40] offers automated
application penetration testing, malware analysis, and a security and privacy
assessment framework. FlowDroid [41] statically computes data flows in apps
to understand which parts of the code that data may be exposed to. Notably,
these off-the-shelf tools only utilise syntax-based scanning and data-flows, which
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leads to false positives that are not relevant to personal identifiable informa-
tion. In contrast, dynamic analysis executes the code. Whereas static analysis
often suffers from false positives, dynamic analysis is limited by the execution
coverage [42]. Most work in this category focuses on analysing apps’ network
traffic [43, 44, 45, 46, 47]. In our work, we utilise static analysis for identifying
permission requests and third-party trackers, while we trace privacy leakage
using network traffic through a dynamic network monitoring tool [45]

4.3.3 User Comments analysis

Mobile app review comments have been extensively studied from other per-
spectives, including mining user opinions [48, 49, 50, 51], app comment filter-
ing [52, 53], and exploring other concerns [54, 55]. Chen et al. [53] pioneered the
prioritisation of user comments with AR-Miner. Chen et al. [55] conducted a
study on the fraudulent campaigns to boost apps’ rankings, which will result in
inappropriate risk exposure for the children and adolescents. Besides user com-
ments, NLP techniques have been widely adopted to study app descriptions,
privacy policies, and other meta text related to mobile apps. Autocog [56]
adapts NLP techniques to characterise the inconsistencies between app descrip-
tions and declared permissions. PPChecker [57] is a system for identifying the
inconsistencies between privacy policy and the sensitive behaviours of apps. Re-
cent research by Liu et al. [58] tries to solve the problem of compliance analysis
between GDPR and privacy policies, utilising a combination of sentence classifi-
cation and rule-based analysis. However, the corpus suffers from an imbalanced
data problem, which negatively affects the classification accuracy. We build on
these techniques to investigates the children’s app behaviour through comments
analysis.

4.4 Test Environment and Analysis Pipeline

Figure 4.2, Figure 4.3, and Figure 4.4 present an overview of our analysis
pipeline. We combine the advantages of both static and dynamic analysis,
as well as performing using content rating and user comment analysis. Our
goal is to triage suspicious apps and analyse their behaviours in depth. Specifi-
cally, we evaluate apps (with targeted users including children) to find evidence
of violations against privacy regulations and app store policies. Our pipelines
covers 20,195 different Android apps, and we check for improper use of trackers
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Figure 4.2. An overview of static and dynamic
analysis.

in children’s apps, privacy leakage without user consent, inconsistent content
ratings from different countries, and complaints by users. All of the apps are
downloaded from the Google Play Store using a Google Play scraper.

Our pipeline performs several tasks. We first decompile the APK file of the
Android app under-study, and conduct a static analysis to determine what per-
missions have been requested and what trackers are used in the app. Next,
we execute each app version individually on a physical mobile phone with a
network monitor, which allows us to observe apps’ run-time behaviours. We
further collect the content ratings using different country settings and identify
improper ratings according to inconsistent levels. Finally, we analyse users’
comments with both NLP-based topic modeling and rule-based detection tech-
niques to identify undesired app behaviours from users’ complaints (especially
improper content for children).

4.4.1 Data Collection

We collect apps and their content ratings, as well as the user comments from
Google Play store. Here we describe how we collect the data.



4.4. Test Environment and Analysis Pipeline 123

Content Ratings

Content Rating
Systems

Family apps with
improper content
ratings

Inconsistent content
ratings across countriesRating Matrix

Figure 4.3. An overview of content rating analysis.

User Comments

NLP-based
Topic Modeling

Rule-based
Detection

Regulations &
Store Policies

Undesired app
behaviours

Regulations or store
policies violation

Figure 4.4. An overview of user comment analysis.

App collection. We wrote a Google Play Store scraper to download the most
popular children apps under each category. We collect 3,627 apps that partici-
pate in the Design for Families program. We refer to this group as “Family apps”
as their target users are purely children and families (categorise as “Children”
in Play Store). We also collect 16,568 apps that are not particularly designed
for children, but include children as target users. We refer to these as “Normal
apps” (with content ratings of “Everyone”, “Everyone 10+”, and “Teen”). Note,
we download all apps from the U.S. Google Play Store.

Because the popularity distribution of apps is long tailed, our analysis of the
20,195 most popular apps is likely to cover most of the apps that people cur-
rently use (from Mar 2021 to Dec 2021). We instrument the scraper to inspect
the Google Play Store to obtain application executable APK files, and their
associated metadata (e.g. number of installs, category, developer information,
content rating, etc.).

Content ratings collection. We collect the content ratings of each app in
the dataset from different countries by changing the country setting in the URL
of each app when visiting the Play Store. We gather data for Australia, France,
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Germany, UK, and USA. For example, the URL https://play.google.com/store/
apps/details?id=[package_name]&hl=en&gl=US will lead us to the Play Store
in the USA and if we change“gl=US” to “gl=FR”, it will present the app infor-
mation to users from France. The reason we selected these five countries is that
they are using different content rating standards that cover the main choices
around the world, including ACB (Australia - games only), ESRB (North &
South America), PEGI (Europe & Middle East), USK (Germany), and IARC
(other countries).

For a fair comparison, we only keep the content ratings of an app if it is available
in all five countries. However, as we download all the apps from the U.S. Play
Store, there is no Normal App rated as “Mature” and “Adults Only” in ESRB
in our dataset. Finally, we successfully collect content ratings for 9,453 apps.

User comments collection. For each app, we further collect their 3,000

most recent comments. Note, as we aim to find undesired app behaviours and
policy violations from user comments, we only collect the comments with rating
stars below 2. This focuses our analysis on negative feedback. We further
remove comments with fewer than 5 words. Finally, we successfully collect
13,132,577 comments for 11,831 apps.

4.4.2 Static Analysis

Our static analysis focuses on three parts: Manifest Analysis, Code Analysis,
and manual inspection. We use these to measure the use of dangerous and
signature permissions, as well as trackers in children apps. To perform static
analysis on the Android Package (APK) binary files, we first decompile the APK
of each app to its corresponding class and xml files using AndroGuard [59].

Permissions requested. The de-compiled AndroidManifest.xml file is
parsed to extract the permissions requested by the app. We further categorise
the permissions into dangerous, signature, and normal permissions, according
to the permission list of Android 11 (API level 30) from the Android Open
Source Project (AOSP).1 We then compare the Family apps and Normal apps
with respect to the most popular permissions and the numbers of permissions
requested by each app. For top cases that have requested large number of
dangerous or signature permissions, we further look into their functionality and

1Available at https://android.googlesource.com/platform/frameworks/base/+/re
fs/heads/master/core/res/AndroidManifest.xml

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/res/AndroidManifest.xml
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/res/AndroidManifest.xml
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descriptions in the app store to determine that whether the permission requested
are reasonable.

Through Manifest Analysis, we collect the dangerous and signature permissions
requested by the apps. We classify permissions as follows. (i) Dangerous per-
missions are permissions that could potentially affect the user’s privacy or the
device’s operation. The user must explicitly agree to grant such permissions.
These include accessing the camera, contacts, location, microphone, sensors,
SMS, and storage. However, children may not fully understand the description
of permissions and grant them unaware. Therefore, we would like to find cases
that request a large amount of dangerous permissions and compare the permis-
sion requests between Family apps and Normal apps. (ii) Signature permissions
are designed for applications to communicate with each other (which may not
pose a risk to the user’s privacy). There are several signature permissions that
need users’ consent to be granted. We would like to investigate whether they
are properly implemented in the children’s apps.

Trackers used. In code analysis, we extract all the class names in the de-
compiled source code and match them with trackers’ code signatures. We adopt
a list of tracker from Exodus Privacy with 693 known trackers2 and extend the
list with 32 more trackers reported in other online resources. We then search
for class names that contain any code signatures from the tracker list. For
example, an app that contains com/adcolony in its source code will be detected
as containing tracker “AdColony”, which matches its signature com/adcolony/,
com/jirbo/adcolony/.

Note, our static approach may report false positives. It cannot determine
whether the trackers are active or not during run-time. However, we argue that
such static analysis still reflects potential tracking of users, especially when an
app contains a large amount of trackers. We further compare the use of trackers
in Family and Normal apps. Finally, we manually review the Normal apps with
most trackers to check whether there are age screens implemented.

4.4.3 Dynamic Analysis

Our static analysis focuses on detecting the embedded third-party SDKs that
potentially collect and disseminate personal children data to the Internet. We

2Available at https://etip.exodus-privacy.eu.org/trackers/all

https://etip.exodus-privacy.eu.org/trackers/all
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compliment this with dynamic analysis, to collect evidence of personal data
dissemination.

App execution. To analyse whether personally sensitive information is leaked
to third-parties without user consent, we rely on the automatic method previ-
ously proposed by Feal et al. [60]. We launch each app and run it for 5 minutes
without interacting with it. This implies that we do not actively consent to data
collection and we do not carry out any of the children actions, opting instead
to leave the app running with no input.

For this, we implement the dynamic testing environment described in Figure 1.1,
which consists of four Xiaomi Notebook 9 Android phones running a rooted
Android 10. This allows us to comprehensively monitor the network traffic of
each of the 20,195 Android apps. We execute each app automatically using the
Android Automator Monkey [61] to achieve scale by eliminating any human
intervention. The Monkey is a UI fuzzer which injects a pseudo-random stream
of simulated user input events into the app. Concretely, we start each app with
the Android Debug Bridge (ADB) command, adb shell monkey -p [package

name] n, where the “-p” parameter specifies the package to run, and n indicates
the number of events. Here we set n as 1. After 5 minutes, we force stop and
uninstall the app. The logs are then cleared and the device is ready to be used
for the next test. We store the resulting network traffic in a database for offline
analysis, which we discuss in detail later.

Network monitoring. We monitor all network traffic, including TLS-secured
flows, using a network monitoring tool, Lumen Privacy Monitor [45]. This has
shown to be effective in several prior research activities [62, 60, 63, 42]. The
network monitoring module leverages Android’s VPN API to redirect all the
device’s network traffic through a localhost service that inspects the traffic,
regardless of the protocol used. It reconstructs the network streams and ascribes
them to the originating app by mapping the app owning the socket to the UID as
reported by the proc filesystem. Furthermore, it also performs TLS interception
by installing a root certificate in the system trusted certificate store. This
technique allows it to decrypt TLS traffic unless the app performs advanced
techniques, such as certificate pinning, which can be identified by monitoring
TLS records and proxy exceptions [45].

Personal information in network flows. We define “personal information”
as any piece of data that could potentially identify a specific individual and
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Table 4.2. Summary of personal identifiable
information checked in network transmission data.

PII Description Risk

Device Model Identifies device model and manufacturer. Low

Brand Identifies phone brand. When combined with
other information, it can be used to identify
a user uniquely.

Low

Board Info Identifies hardware and the phone model. Low

Build number Identifies uniquely the Android OS and the
version.

Low

MAC Address WLAN0 Identifies uniquely the WiFi AP users are
connecting to, leaking users’ activities and
location.

Mid

Private IP By leaking the private IP address of your de-
vice, an ad network, tracker or application
developer can better identify unique users.

Mid

distinguish them from another. Online companies, such as mobile app devel-
opers and third-party advertisement networks, want this type of information in
order to track users across devices, websites, and apps (to better target ads).
For this reason, we are primarily interested in examining apps’ access to the
persistent identifiers that enable long-term tracking, as well as their geolocation
information.

We focus our study on detecting apps that access specific types of sensitive data
without user consent, including persistent identifiers and geolocation informa-
tion. Notably, the unauthorised collection of geolocation information in Android
has been the subject of prior regulatory action [16]. Table 4.2 and Table 4.3
list the different types and risk levels of personal information that we look for
in network transmissions. Note that, some of the PII (e.g., device model) may
be needed for proper app functionality and is generally not considered sensitive
within the industry. Therefore, we consider them as low risk.

4.4.4 Content Rating Evaluation

Measuring rating inconsistency. To investigate inconsistent content rat-
ings, we measure the inconsistency with levels from 0 to 4, depending on the
distance of suitable age groups between each categories. Specifically, we con-
sider the inconsistency between two ratings from authority A and B in the
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Table 4.3. Summary of personal identifiable
information checked in network transmission data
(continue).

PII Description Risk

Device Fingerprint A fingerprint of user device which can be
used by analytics and ad services to track
user.

High

Location The location data of a user. High

Timezone Identifies the current timezone. High

IMEI The IMEI (International Mobile Station
Equipment Identity) identifies the device
uniquely, which could be used to track user’s
traffic and online behaviour.

High

Serial number Allows ad networks and online trackers to
identify a user uniquely for tracking, surveil-
lance or advertising purposes.

High

Advertising ID A unique string of characters that identifies
the user’s device, for purposes like measuring
app usage and ad penalisation.

High

following manner. (i) We define the suitable age group for rating A a range
[a1, a2], where a1 is the minimal allowed age of rating A and a2 is the minimal
allowed age of the next rating level minus 1. For example, the suitable age
group for “USK 6+” is [6, 11], as the next rating level is “USK 12+” for which
the minimal allowed age is 12. (ii) We determine the inconsistent level between
two ratings A and B, according to the gap between two age groups, i.e., b1−a2,
as shown in Equation 4.1.

Inconsistent Level =


0, if b1 − a2 ≤ 0,

⌊ (b1−a2)
T

⌋+ 1, if 9 ≥ b1 − a2 > 0,

4, otherwise.

(4.1)

where T is the threshold between two inconsistent levels (we increase the level
by 1 for each T years gap). We set T as 3 in the measurement as for most content
ratings the interval between neighbour levels is around 3. For example, if the
two age groups are overlapped, i.e., b1 − a2 < 0, we determine the inconsistent
level as 0; while for a 9 years gap, we determine the inconsistent level as 4.
(iii) We manually increase the inconsistent levels by 1, if rating A is suitable
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Figure 4.5. Inconsistency level matrix for content
rating evaluation.

for age under 16 and rating B is “ACB M15+”, as “ACB M15+” is more restrict
than “ACB M” although they both have suitable age group as [15, 17].

After assigning the inconsistency levels, we manually adjust the levels according
to the descriptions provided by the rating authorities. For example, we increase
the inconsistency level between “IARC 3+” (suitable for ages 3 to 6) and “ESRB
10+” (suitable for ages 10 to 12) from 1 to 2, as mild violence and bad language
are not permitted in “IARC 3+” but “ESRB 10+” allows “mild violence, mild
language and/or minimal suggestive themes” [23, 18].

To summarise the above, Figure 4.5 is a matrix showing the level assigned to
each combination of ratings. Using this, we later compare the content ratings
of each app. Further, for any that have inconsistency levels larger than 3,
we manually review them (including their description and Android packages
provided across different territories) .
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4.4.5 User Comments Analysis

Beyond the static and dynamic analysis of apps, the comments left by users
may also highlight the violation of regulations or policies, including user con-
cerns. Recent research [64] relies on user comments to identify violations against
mobile application market policies, using a semi-automated rule-based process.
Figure 4.6 presents an overview of our comment analysis pipeline. We adopt the
state-of-the-art text mining and natural language processing (NLP) techniques
(such as transformers) to interpret the application comments and train machine
learning models to categorise and identify informative comments.

First, 18 comment clusters are obtained from K-means clustering based on
the training set of user comments; next, we extract keyword lists using TF-
IDF [65] from each cluster and manually select and merge the lists into 15
keywords sets, representing 15 user complain topics; at last, 19 semantic rules
are extracted based on the keywords sets and manually labelled comments (50
comments from each topic). Such comment analysis complement the static
and dynamic analysis results (since some application behaviours may not be
identified by technical analysis, but could be better identified by users). The
rules will be further used in the recognition of regulation violations or undesired
app behaviours.

Pre-processing and embedding. We filter out comments with a length less
than 5 words. We further transfer emojis into words, such as transferring the
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emoji ud83d (smiling face with open mouth) to “smiley”, using the emoji Python
package.3 We utilize the pre-trained RoBERTa [66] embedding to vectorize each
comment into a 300-dimensional vector. RoBERTa (Robustly optimized BERT
approach) is a retraining of BERT [67] with an improved training methodology
and 10x more training data to improve the BERT performance. It achieves
state-of-the-art results (2% to 20% improvement over BERT) [68].

Comment clustering. The next step of user comments analysis is to cluster
the comments to tease out the different concerns that users describe. These
include complaints about functionality, performance, advertisement, personal
data collection, vulgar content, violence, and payment deception. We refer to
these as undesired behavior topics. As the Play Store user comments do not
have fine-grained labels for these topics, we use unsupervised learning to cluster
comments into types.

We rely on K-means clustering, to identify the user concerns. We use K-means
clustering as our experiments expose good results; we leave exploration of other
clustering solutions to future work. Without knowing how many distinct topics
users may write about, the challenge of applying K-means in our clustering
task is how to determine a proper k value (i.e. the number of target clusters).
Recent work by Nema et al. [69] proposes a Summarisation Metric as shown in
Equation 4.2, aiming for a k that results in well separated clusters and a high
number of compact clusters.

Summarization Metric = distk ∗Mk, (4.2)

where distk is the minimum of the cosine distance between all pairs of k cluster
centres, and Mk is the number of compact clusters. A compact cluster is a
cluster in which at least 30% of the samples have silhouette scores higher than
the average silhouette score in this cluster.

We iterate through k = 5, 10, 15, ..., 100 and chose k for which the summarisa-
tion score is highest, as we want to increase both distk (distance between cluster
centres) and Mk (number of compact clusters). We consider the range of k as
5 to 100 as we would like to focus on dominant user concerns at first. A larger

3Available at https://github.com/carpedm20/emoji.git

https://github.com/carpedm20/emoji.git
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k may include more undesired behaviour topics in the clustering results, but
could also lead to a too heavy workload in the later manual inspection.

To summarise the topic of each cluster, we further conduct a manual inspec-
tion on the clustering results. Specifically, we select the top 20 (per cluster)
representative comments that can be considered as representative of the entire
cluster. We rank a comment’s representativity using their silhouette scores. We
carefully analyse these representatives manually across all clusters and deter-
mine the topic of each cluster. Considering that not all user comments focus
on the expression of concerns or complaints, we only keep the 18 clusters with
topics related to undesired app behaviours, and drop the remaining 22 clusters.

Semantic rules extraction. If we directly use K-means to recognise users’
concerns, it may lead to a high false positive rate. This is because we can only
classify each comment based on its distances to the cluster centres, and we
have to assign a label even if it may not be relevant. Therefore, based on the
clustering results, we apply a rule-based approach which assigns topics to com-
ments according to semantic rules, i.e., if a comment is matched to a semantic
rule, the comment will be recognised as belonging to the corresponding topic.
Specifically, for each cluster, we first remove meaningless words (the stop-words
according to the NLTK English stop-words list [70]) and sort the remaining
words in descending order based on TF-IDF weighting [65] to generate a word
list. Then we manually select keywords for each word list and merge the word
lists that usually appear in the same topics. We finally obtain 15 topics in
4 categories as shown in Table 4.4. For each topic, we obtain a keyword set
containing one or more representative keywords. At last, we generate semantic
rules in a form of {w1, w2, d, t} for each keyword set, where w1 and w2 are two
keywords, d is the distance constrain between w1 and w2, t is the topic that a
matched comment will be assigned to. Concretely, we first manually select 50
representative comments from each topic as labelled samples. Then we traverse
each keyword set by calculate F1-scores for each single keyword (set w2 as null
and d as 0) and each pair of keywords under different distance constraints (from
1 to 20), and select the rules with F1-score larger than 0.8. For example, a se-
mantic rule could be {kid, improper, 2, not_proper_for_kids}, which detects
any comments that contains the keywords kid and improper, and the distance
between the two keywords are smaller than 2 words. Manual inspections are
further conducted on a pilot experiment on 5,000 labelled comments and rules
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Table 4.4. List of user comment topics.

Categories Topic Descriptions

Content

• The apps contain violence, blood or scaring contents
that are not proper for kids.
• The apps include sexual content that is not allowed
for kids.
• The app content encourages the use of tobacco or
drugs.
• The apps expose inappropriate language to children.
• The apps present depicting criminal activities to kids.

Ads

• The app provides too many advertisements.
• The users are disrupted by ads.
• Ads shortcuts in launching menu or notification bar.
• Redirection or drive-by download by ads.

Privacy

• The app leaks or steals users’ private information.
• The app abuse the permissions (e.g., requesting un-
necessary permissions).
• The app collects unnecessary private data.
• The app shares data with third-parties or other users
without user’s consent.

Security • The apps contain virus or malware.
• The app is suspicious to payment fraud.

with error rate larger than 10% are removed. At last, we obtained 19 semantic
rules for user comment analysis.

We note that, as the semantic rules are extracted from representative comments
in clusters, this approach may still focus more on the representative comments
and can only provide a lower bound of the detection of users’ complaints on
undesired app behaviours or regulation violations.

4.5 Results

In this section, we present the measurement results from applying our analysis
pipeline to 3,627 children apps that participate in the Google Family project
(the “Family Apps”), and 16,568 normal apps with kids included in the target
user group (the “Normal Apps”).
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Figure 4.7. Top-10 dangerous permissions requested.

Figure 4.8. Distribution of number of dangerous
permissions.

4.5.1 Permissions

We start by examining the use of permissions, based on our static analysis.

Dangerous permissions. The results of top 10 most requested dangerous
permissions in Family apps and the distribution of numbers of dangerous per-
missions requested per app are shown in Figure 4.7 and 4.8.

From Figure 4.7, we see that Normal apps request dangerous permissions more
frequently than Family apps. For the top 10 most frequently requested danger-
ous permissions, the proportion of Normal apps requesting these permissions is
6.07% to 32.16% higher than that of Family apps (per permission). Notably,
3.46% of Family apps request location-related permissions, which is potentially
violating the Design for Family policy. Further, from Figure 4.8, a larger frac-
tion of Normal apps request over 3 dangerous permissions. 29.15% of Normal
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apps request more than 5 dangerous permissions, compared to just 3.56% in
Family apps. These results show that dangerous permissions are being used
more carefully in the Family apps. However, note that all the Normal apps in
our research have target users that include children (less than 12 years old).
We argue that developers should be equally cautious about using dangerous
permissions as long as the target users include children.

Among these permissions, some are directly related to sensitive personal infor-
mation, such as CALL_PHONE, ACCESS_FINE_LOCATION, RECORD_AUDIO, RECORD_-
AUDIO, and CAMERA. We have manually checked 200 apps randomly sampled from
Family and Normal apps, and did not find any permission request notifications
specifically designed for children users (i.e., a notification to ensure that a par-
ent receives a direct notice, as required by COPPA and GDPR). This may mean
that children simply click "yes" buttons, without understanding what informa-
tion the developer or third-parties will collect. An appropriate design should
provide guidance to children with a graphical and textual interface, ensuring
that the children’s PII is only obtained with parental consent.

Signature permissions. Figure 4.9 and 4.10 presents the permission results
for the Normal apps. We see that Normal apps request more signature permis-
sions than Family apps do. Optimistically, one might argue that a signature
permission will only be granted when the requesting app is signed with the same
certificate as the app that declared the permission, and a signature permission
is limited to sharing specific features (e.g., communication). However, abuse
of signature permissions could still harm the privacy of users, especially chil-
dren users. For example, SYSTEM_ALERT_WINDOW, the most frequently requested
signature permission, allows an app to display a window over any other app,
with no notification for the user. This functionality can be abused to display
fraudulent ads, phishing scams, click-jacking, and overlay windows. These are
common with banking Trojans that create windows identical to a banking app’s
login page, as well as ransomware that creates a persistent on-top screen. Al-
though an app has to have explicit, manual approval from the user to use these
signature permissions, again, children user need more protection against the
abuse. We argue that a list of (dis)allow permissions in children’s apps should
be established, especially for the permissions that are (i) related to PII; and
(ii) easier to be exploited when user is a child.
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Figure 4.9. Top-10 signature permissions requested.

Figure 4.10. Distribution of number of signature
permissions.

Exemplar case study: YouTube Kids. The YouTube Kids app [71], a
Google product built with children in-mind, aims to make it safer and easier for
children to explore videos. This provides a good example of permission request
notifications for children. As shown in Figure 4.11(a), when the app is opened
for the first time, a simple and clear notification is presented to users, noting
that a parent is required to unlock the app. If the user selects “I’M A KID”, the
app requires the child to get their parent, and the only choice is going back to
the previous screen (Figure 4.11(b)). Only after the “I’M A PARENT” button
has been clicked, the app starts showing a introduction video (Figure 4.11(c))
and obtaining permissions from parent user (Figure 4.11(d)). Although a child
may fool this process and login with their parent’s account, the app tries its best
to ask consent from guardians. Through our manual checks on 500 randomly
selected Family and Normal apps, we did not find other permission notification
designed for children users in other apps.
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Figure 4.11. Examples of YouTube Kids
notifications.

Finding summary:

• 3.46% of Family apps request location-related permissions, which is
potentially violating the Design for Family policy.

• The proportion of Normal apps requesting dangerous permissions is
6.07% to 32.16% higher than that of Family apps. However, only x
out of xxx have permission notification specifically request consent
from parents.

• More restriction should be applied on permission requests when target
user includes children, e.g., strictly requiring consents from parents
and establishing a list of (dis)allow permissions for children apps.

4.5.2 Third-party Trackers

To determine the usage and the potential privacy leakage through third-party
trackers, we next leverage both static and dynamic analysis.

The usage of third-party trackers. The static analysis results on the use
of third-party trackers in both Family and Normal apps are presented in Fig-
ure 4.12. The trackers on the left side of the vertical red dash-line are allowed
by the Design for Family program. Google AdMob is the most frequently used
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Figure 4.12. Distribution of apps with respect to
number of non-kids trackers used.

ad SDK in both Family and Normal apps. Not surprisingly, Family apps use the
kids-allowed SDKs more frequently, especially for SDKs such as KIDOZ, Super-
Awesome, and ChartBoost. This could indicate that the Play store’s Design for
Family program contributes positively to app development — more developers
consider using the recommended SDKs when their target users are children.
However, as shown by the right side of the vertical red dash-line, we find that
quite a few Family apps still use SDKs that are not allowed for children apps,
i.e., not in the Google Play certified ad SDKs in Table 4.1. For example, more
than 72.80% Family apps use Google Firebase Analytics and the number
for Google Play Billing is 46.91%; while other tracker SDKs such as Google
CrashLytics, Facebook Login, and ApppsFlyer are more frequently used in
Normal apps. Considering that some tracker SDKs are very popular among
both Normal apps and Family apps, and they may provide irreplaceable func-
tionalities to apps, we argue that a list of kids-allowed tracker SDKs is essential
to protect the privacy of children users. This will likely also benefits the app
developers quite a lot.

As shown in Figure 4.13 shows the distribution of the number of trackers per
app. Worryingly, only 18.75% of Family apps did not use a disallowed ad or
tracker SDK, whereas 95.43% of Normal apps use SDKs that are disallowed
when the target users include children. Even when we exclude SDKs from
Google and Facebook, the numbers are still high: 38.49% of Family apps and
28.25% of Normal apps use at least one non-kids SDK. In fact, 1.63% of Family
apps and 5.54% of Normal apps use over 10 non-kids SDKs. From these results,
we confirm that the Design for Family requirements are not followed by all app



4.5. Results 139

0 1 2 3 4 5 6 7 8 9 10+
Number of Trackers

0

5

10

15

20

25

Pe
rc

en
ta

ge
 o

f A
pp

s

Family Apps
Normal Apps

Figure 4.13. Distribution of apps with respect to
number of non-kids trackers used.

developers. We note that, through static analysis, we cannot determine which
ad or tracker SDKs are active during run-time. However, dynamic analysis may
still be incomplete as it is hard to catch all tracking. We posit if the trackers
are not necessary, the app developers should remove the SDKs from a children
app.

Privacy leakage. We further analyse the specific privacy leakages via both
tracker SDKs and first-party APIs. We identify that 3.79% Family apps leak
the device model, brand, builder, and other PII to third-party trackers without
any consent from users. Table 4.2 presents the top 5 leaked PII that has been
marked as Mid or High risk in. Figure 4.14 further shows the destination of
this PII. We observe that Google collects a large amount of Private IP; and
Supersonic Ads obtains Advertisement ID, Location Information, and An-

droid Serial without users’ consents. Furthermore, Location Information

is sent to Facebook, and Babybus collects the Android Serial. We cannot
check how the leaked PII is used, but emphasize that the leaking of PII has
already violated the GDPR and other privacy regulations (which is forbidden
no matter if the target users are children or not). We note again that our results
only present a lower-bound of the PII leakage without users’ consents.

Case study: Excessive tracking. During the experiments, we found an
interesting phenomenon: apps from the same developer tend to have similar
trackers, even when the apps’ functionalities or content are different. For ex-
ample, we found that 6 apps from Tu***ns, a large player in the childrens game
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Personal Identifiable Information Destination

Figure 4.14. Sankey diagram representing the flow of
PII to different destinations.

market (published over 100 games and achieved more than 950 million down-
loads according to its official website), has 47 trackers. Although Tu***ns has
a privacy policy which listed 17 ad or tracker SDKs, there are still 30 trackers
that have not been mentioned. It is therefore unclear if parents or children
acknowledge that their personal information could be shared with 17 (or even
47) third-party trackers.

We investigate more apps to see whether there exists large players who have
large amount (e.g., more than 40) of children apps listed in Play store that
embed high numbers of trackers. In Figure 4.15, we pick 4 developers from our
static results and list the distribution of numbers of trackers in their products.
142 out of the 150 apps (94.7%) from Ba***us have 5 to 6 trackers; 105 out of
133 apps (78.9%) from Hi***es have 20 trackers; and 29 out of 43 apps (67.4%)
have 14 trackers. The distribution of numbers of trackers is less concentrated
among apps from Tu***ns: 6 out of 62 Tu***ns apps have 47 trackers; 14
apps have 34 trackers; and 16 trackers are detected in the rest 41 apps. The
reason behind this phenomenon could be that developers directly apply the same
tracker configurations while developing different apps, instead of setting trackers
for each app according to what personal information should be collected and
shared. Further, we conclude that most apps from these 4 big players contains
trackers not allowed in children apps.
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Finding summary:

• 81.25% of Family apps use trackers that are not allowed for children;
disallowed trackers are also frequently used in 95.43% Normal apps
whose target user includes children.

• 1.63% of Family apps and 5.54% of Normal apps use over 10 ad or
tracker SDKs that are not allowed to be used in children apps.

• Even big players do not follow the Play store policy. We found 4
developers who have 5 to 47 disallowed trackers in each of the 43 to
150 children apps they listed on Play store.

4.5.3 Inconsistent Content Ratings

We next investigate into the content (i.e., maturity) ratings of the 9,453 apps
across all 5 rating authorities. These are ACB for Australia, ESRB for Americas,
PEGI for Europe and the Middle East, USK for Germany, and IARC for generic
countries. We seek to check if the content ratings given by these different
agencies are inconsistent. Indeed, we find inconsistent ratings in 19.25% apps,
and 9.99% apps have an inconsistency level above 3. This indicates that content
rating inconsistencies among the various rating authorities are prevalent.
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Figure 4.16. Percentage of apps (per category) with
inconsistent content ratings

Figure 4.16 presents the content rating results across the top-10 categories of
Normal apps vs. Family apps. Note, as one app may have multiple inconsistent
rating pairs across different levels detected, the sum of apps could be higher
than 100%.

Although Family apps have a lower ratio of inconsistent ratings than the other
10 Normal app categories, at least 6% Family apps have an inconsistency level
higher than 3. 26% of COMICS and 15% of ENTERTAINMENT apps have inconsis-
tency leve higher than 3; and at least 55% SOCIAL apps have a rating inconsis-
tency level 2. We conjecture that the reason for highly inconsistent ratings in
these categories may be because the rules to flag sensitive contents could be dif-
ferent across the rating authorities. However, we argue it is still not reasonable
to have an app rated as 18+ in one territory and 3+ in another (level 4). This
will confuse parents and increase the risk to children (e.g., allowing a child to
play a game rated 18+ in another country). Therefore, we argue that, rather
than only displaying the content ratings in the user’s current territory, the app
store should also provide ratings from other authorities an an option. Briefly
listing the reason why the app is rated will also help parents and children to
make a decision.

Case study: Highly Inconsistent App Ratings. Here, we show case some
inconsistent ratings to highlight key concerns. For example, com.my***in.app,
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com.my a plant identification app with professional care guides (1,000,000+
installs), has been rated as “PEGI 3” and “Rated for 3+” in IARC. However,
when we visit the Play store using gl=de and gl=us, the ratings change to “USK
12+” and “ESRB Mature 17+”. The only explanation we can find is “Drug use”.
If the app truly contains information related to drugs, it is unsuitable for 3-
years old children, however, if there is no drug use content (we manually check
the app and only find drug-related information for plant diseases), the labels in
PEGI 3 and IARC are unnecessary.

Another example is com.di***rd, an instant messaging and digital distribution
platform. As of 2021, the service has over 350 million registered users and over
150 million monthly active users (over 100,000,000 installs from Play store). As
a social app, it is quite reasonable to be rated as “Parental guidance” in PEGI
(as such app may not always have predefined content that can be classified
beforehand). Nevertheless, in USK, the app is rated as “18+”, which hints that
the app contain “drug use, realistic and explicit violence”. However, there is no
explanation on the app page why the app is rated “18+”. If it contains “18+”
content, will a parent in the US acknowledge this before they download the app
for their teenager, as it is rated as “Teen” in ESRB? Here we argue again, there
should be better descriptions that explain why the app is rated, at least for
apps not recommended for children.

Finding summary:

• 21.69% of apps have inconsistent content ratings across different rating
authorities; this is commonplace.

• There are many examples of highly confusing and inconsistent content
ratings, including among Family apps. 6% of Family apps have an
inconsistently level above 3.

• The app store should provide ratings from other authorities as ref-
erences for parents and children users, and explanations of ratings
should be more transparent.

4.5.4 User Complaints

Finally, we analyse 13,132,577 comments downloaded from 11,831 apps in the
Play store. We strive to measure users’ complaints across 4 categories: app
content, advertisement, privacy, and security.
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Table 4.5. Comment analysis results.

Categories Family Apps Normal Apps

% Comments % Apps % Comments % Apps

Content 2.12% 30.62% 0.92% 33.86%
Ads 1.01% 25.77% 0.97% 34.81%
Privacy 0.09% 6.91% 0.52% 29.05%
Security 0.16% 12.89% 0.43% 23.76%

Table 4.5 presents the percentage of comments and that have been detected
as complaints in each category, alongside the percentage of corresponding apps
that they refer to. In 2.12% comments of Family apps, we recognize at least
one user complaints related to the app content, while the number is just 0.92%
for Normal apps. This indicates that the users of Family apps complain more
about the content, which is quite reasonable. However, the percentage of apps
are quite similar, 30.62% vs. 33.86%. This reflects that the developers of Family
app may not apply special controls on app content when the users are children.
The ratios of comments related to advertisement complaints are similar in both
Family and Normal apps, although this impacts more Normal apps than Fam-
ily apps (34.81% vs. 25.77%). Further, fewer Family apps are complained
about with respect to privacy and security than the other two categories. This
indicates that the users of Family apps may focus more on app content and ad-
vertisements, rather than thinking about privacy and security in Family apps.

Impact of popularity. We next seek to understand the impact of these neg-
ative reviews. Figure 4.17 correlates the number of complaints received by an
app with both its app rating and number of installations. The x-axis presents
the log of the number of installs, the y-axis presents the rating scores. The
color presents the log of the number of total comments, and the size of bubbles
reflect the number of complain comments.

To focus more on popular apps, we only present the top 100 apps that have most
complain comments with a rating score higher than 3.00 and over 1,000,000

installations. A popular app with more installs, more comments, and a higher
rating score will be located near to the upper-right corner with a light color.
Intuitively, one might expect a popular app may have fewer complaints (so
that the bubbles near to the upper-right corner should be smaller), while the
sizes of bubbles should increase from the upper-right corner to the lower-left
corner. However, this is not true. According to our measurement result, 45 of
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Figure 4.17. Correlation between the number of
complaints received by an app with both its rating and
number of installations; the colour represents the log of
the number of comments, and the size of the bubbles
reflect the number of complain comments.

the top-100 apps have rating scores above 4 and over 10,000,000 installations.
Such inconsistency between the number of complained comments and the rating
score suggests that the app store should expose more negative comments to help
users understand the app more comprehensively.

Case study: Apps with many complaints. We first extract the app
with the largest number of content complaints: com.to***en is an educational
app for children. The app has participated in the Design for Family program
(marked as “Ages 6-8”), achieving over 10,000,000 installations from the Play
store. However, 342 out of the 3,000 comments we downloaded from Play store
report that the game is “terrifying” or “scary”.

We list some of the comments below and mark the keywords we used in our
rules with square brackets. Note that we did not find any response to the
comments from developers. “The game honestly is [terrifying], the characters
look [inappropriate for kids], they don’t have teeth, the chewing sounds are very
[disturbing], I would not recommend this to kids, ...”“It’s super [scary]...as a
sixth grader I came back to play *** and do not recommend installing. It’s
like a [horror] game and [NOT a good fit for the kids]. So the chewing sounds
[disturbing] and the faces are like from little misfortune ...”
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By reading these comments, a user would likely feel that the app is not fit
for children. However, the Teacher approved “Ages 6-8” badge, the 4.2 rating
score, and the large number of installs are far more obvious than the comments.
Parents and children require a better way to acknowledge other users’ com-
plaints, rather than scrolling through thousands of comments. We argue that
our methodology could be applied to automatically flag these comment-based
concerns These could, for example, be presented as a set of word tags on an
app’s page in the Play Store.

Finding summary:

• 30.62% and 25.77% of Family apps have content-based and ad-based
complaints, respectively. Users report privacy and security issues on
Family apps far less often though (6.91% and 12.89%, respectively).

• Even highly popular and well rated apps accumulate many complaints
— among the top 100 apps that have most complain comments, 45
apps have app rating scores above 4 and over 10,000,000 installs.

• Comments offer an opportunity to automatically generate content
warnings for Family apps.

4.6 Discussion & Limitations

False positives and false negatives. Although we validate the measure-
ments via manual inspection, false positives and false negatives may still exist
in the reported results, which are inherent in the static and dynamic analysis.
Apart from this, there exists other factors that may contribute to false positives
and false negatives. For example, our comment analysis assumes users report
complaints accurately. However, malicious users (e.g. competing app develop-
ers) may create fake complaints (false positives). This may hinder the ability
to automatically extract content ratings from the comment text. That said,
we believe that this should be rare and our results still reflect the undesired
behaviours in kids apps. In addition, more privacy leakages may exist in the
apps (false negatives) that we have detected. This is because we have focused
on detecting privacy leakage without users’ operation (e.g., granting consents),
thus only providing a lower bound of privacy leakage.
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Scalability and manual efforts. In our measurements, dynamic analysis
and manual inspection play an important role. Unfortunately, this limits scal-
ability. It is possible to use static analysis methods to improve the detection
of privacy leakage without user consent, such as taint analysis, but it may lead
to new challenges (e.g., false positives and dead code) and more engineering
efforts. In the future, manual inspection in the rule-based comment analysis
could be reduced if more robust models were built with the development of
NLP technology. We would like to leave these interesting topics in the future
work.

Potential improvements to app stores. App stores have established sev-
eral programs to protect children’s privacy while using applications, such as
the Designed for Families and Teacher Approved in the Play store. However,
according to our results, there is still room for improvement. In the short-
term, as suggested in Section 4.5, app stores should provide more information
to display and explain content ratings. In addition, we argue manual-based app
content assessment mechanisms, (e.g. crowd-sourcing or user feedback-driven)
should complement the current self-certification rating system before realizing
a reliable large-scale automated app analysis system. Finally, we believe fam-
ily requirements should be embedded in the app development cycle (e.g. via
SDKs). For example, this could provide a permission notification interface de-
signed for children or disable the forbidden permission and ads if the target
users include children.

4.7 Conclusion

In this chapter, we have focused on the privacy practices of apps that are de-
signed for children or have target users that include children. We have measured
the use of permissions and trackers, investigated inconsistency in content rat-
ings, and analysed user comment feedback. Our measurement results illustrate
that, despite many privacy protection regulations and the strict requirements
imposed by the app store, children still experience privacy threats. This is
caused by things like permission requests without child-friendly notifications,
abuse of ad trackers, confusing and inconsistent content ratings, as well as pri-
vacy leakage without users consent. Ultimately, we conclude that the existing
self-certification-based content rating mechanism must be improved immedi-
ately.
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The increasing popularity of immersive environments creates a pressing chal-
lenge of reconciling service providers’ desire to collect user behaviour data with
users’ privacy concerns. Striking a balance between data collection and privacy
protection becomes crucial in this context. In this study, we investigate the use
of differential privacy (DP) algorithms in VR applications to enable statistical
analysis of 3D spatial motion data while protecting against re-identification at-
tacks. Two datasets were used to conduct the experiments. First is an indoor
activities data with simulated agents (N = 7). The second is a public 3D motion
capture dataset of users playing VR sport games (N = 16). We assessed the ef-
ficacy of DP on both the original 3D spatial data and its cumulative heat map
representation. Experimental results reveal that our approach effectively pre-
serves data utility (with threshold RSE ≤ 1) while reducing the accuracy of the
re-identification attack model from 93.89% to 48.03% (through window-slicing)
and from 96.53% to 55.37% (through heat map conversion). This study under-
scores the utility of the DP algorithm in the context of 3D body motion data and
highlights its potential for widespread adoption in diverse VR applications.

5.1 Introduction

The global VR market was valued at 28 billion US dollars in 2022 and is pro-
jected to grow at a compound annual growth rate (CAGR) of 13% from 2023 to
2030 [1]. Leading tech companies invest heavily in VR, with Meta introducing
its cutting-edge VR headset, the Meta Quest Pro [2], and reports suggesting
that Apple has a team of 3,000 employees dedicated to their upcoming VR
headset [3]. Consumer interest in applications such as gaming, fitness, and so-
cial experiences has steadily grown over the past decade. Notably, during the
COVID-19 pandemic [4], VR has played a pivotal role in driving innovation in
fields like art, healthcare, and education.

As VR devices become more widely adopted, researchers express increasing con-
cerns about privacy issues in many VR applications [5, 6, 7]. On one hand, VR
technology is rapidly evolving, and VR device companies understandably seek
to continuously monitor user behaviour data to improve user experiences and
the performance of VR systems [8]. On the other hand, it can be argued that the
privacy risks associated with VR applications are potentially more severe than
those of mobile applications. This is due to the extensive collection of users’ per-
sonal information by various input/output devices and sensors [9]. For example,
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the seemly standard data from VR headsets and controllers can inadvertently
disclose users’ biometric details, such as height and body shape [10]. Further-
more, the dynamic data captured by motion sensors can even unveil users’
preferences and opinions towards virtual content, as evidenced by the analysis
of eye-tracking data [11]. Moreover, recent studies have revealed that users can
be identified with an accuracy exceeding 90% when compared to a database of
over 50,000 individuals, based on just 100 seconds of motion recorded during
VR gaming sessions [12]. Striking a delicate balance between data collection
and privacy preservation is imperative to enable the ongoing enhancement of
VR technologies while respecting users’ privacy and security.

Differential privacy (DP) is a mathematical framework that provides a strong
guarantee of privacy by allowing data to be analysed without revealing sensi-
tive information about any individual in the dataset [13]. DP has been applied
across diverse domains, such as concealing demographic census data [14] and
safeguarding the privacy of Uber drivers and riders during analysis [15]. How-
ever, there is limited research on the use of DP in VR applications. Nair et
al. [16] proposed the pioneering concept of “VR Incognito Mode”, which uses
DP to obscure sensitive user data attributes, such as user height, wingspan,
or room size. However, it is unclear how to apply DP on 3D body motion
data, such as head or hand movement, which has been shown vulnerable to
re-identification attacks [12, 10].

To address this knowledge gap, we present two simple yet effective approaches to
apply DP mechanism on 3D body motion data from VR applications. Our goal
is to safeguard user privacy by preventing re-identification attack while retaining
valuable statistical information, such as the average head and hand movements
of users. This data is vital for enhancing the gaming experience and gaining
insights into user preferences in virtual social or shopping spaces. Our first
approach involves the direct application of DP onto the 3D body motion data
while our second approach transforms the spatial data into 2D heat maps before
applying DP. We evaluated the effectiveness of our privacy protection method
using two VR datasets. The first dataset emulates indoor activities collected by
the VirtualHome simulator [17], while the second dataset captures user motion
in a VR sports game [18]. The experimental findings demonstrate that our
method successfully maintains data utility (with an RMSE threshold set to
1) while diminishing the accuracy of the re-identification attack model from
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93.89% to 48.03% (via window-slicing) and from 96.53% to 55.37% (through
heat map conversion), indicating that heat map conversion is more effective.

Contribution. We summarise our main contributions as follows.

• We conduct experiments to apply Differential Privacy (DP) to 3D body
motion data, aiming to protect user privacy while preserving data utility.

• We suggest a novel approach of transforming 3D body motion data into
heat maps prior to applying DP, which enhances the efficacy of DP.

• We assess our method using both synthetic and real-world body motion
datasets, specifically focusing on their resilience against re-identification
attacks.

Our findings indicate that, despite the wealth of data being collected, user pri-
vacy can be preserved while still permitting data analysis for various purposes
within an immersive environment. Given the rapid evolution of VR and sensor
technologies, and the increasing collection of user behavior data for analysis,
there is a pressing need for more research dedicated to privacy-preserving ap-
proaches, such as DP.

5.2 Related Work

Recent studies have revealed the ease with which attackers can identify [19, 20,
21] and create profiles of VR users [22, 23] using just a few minutes of data
streaming. Furthermore, these studies have highlighted that the extent and
magnitude of data collection in VR surpass the capabilities of current internet
platforms. The immersive nature of VR contributes to these vulnerabilities, as it
can make users more susceptible to self-disclosure[24] and social engineering [25].

In contrast to current Internet platforms, where users have options like Tor,
VPNs, proxies, and incognito mode to protect against user tracking and pro-
filing, there is a lack of equivalent and robust defense mechanisms to address
the unique threats in VR. Existing literature provides a fragmented collection
of privacy defenses that are still in the proof-of-concept stage, with limited ap-
plication in commercial-grade solutions. Moreover, industry practices in the
VR domain are not reassuring. Vulnerabilities in VR devices have been identi-
fied, some developers disregard their own privacy policies, and updates tend to
prioritize increased data collection [26].



5.3. Use Cases 163

In our threat model, privacy breaches occur when attackers gather and infer suf-
ficient information to consistently identify and extensively profile a user across
multiple usage sessions in VR applications (referred to as tracking). Attackers
achieve identification (i) by distinguishing the user from others in a unique man-
ner and (ii) profiling users by associating unwarranted information with their
characteristics, such as demographics, preferences, and browsing history [22].

For example, two primary entities pose threats to user privacy in this context:
the developers of client-side applications running on VR devices (referred to
as Application Adversaries [8]) and content creators (known as Content Ad-
versaries [25]). Content adversaries have the ability to create immersive expe-
riences that incorporate misleading, manipulative, and deceptive content. On
the other hand, application adversaries can access input data through system
APIs and manipulate the rendered frames and signals sent to VR devices, as
well as the information streamed to external servers. While one server-side,
server adversaries may have control over the external server. As a result, they
possess the ability to manipulate and process the networked data they receive
before streaming it to other users’ devices in any desired manner.

We argue that without a well-designed privacy protection technique, users’ pri-
vacy is threatened by both client-side and server-side adversaries. In other
words, these adversaries have the capability to access users’ private data and
easily re-identify them.

5.3 Use Cases

Before diving into the methodology, we would like to introduce two use cases
of our proposed privacy protection approach.

Case 1: VR Gaming

In VR gaming, the goal of privacy protection is to secure players’ personal and
sensitive information while providing a safe and enjoyable gaming experience.
However, developers, such as gaming companies, often collect user data to anal-
yse gameplay and enhance the gaming experience.

Consider a VR archery game where the objective is to hit the bull’s eye. The
bow is attached to the user’s left hand, while the right hand draws the string,
and arrows are loaded by moving the bow towards a virtual quiver. Developers
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may enhance the gaming experience by analysing players’ behaviour using body
movement data collected from sensors on VR devices. This data can encompass
eye tracking, hand controller positioning, and derived features like user height,
reaction speed, and arm stability. Without adequate privacy protection, it could
be possible to re-identify a specific user from this data. However, it’s important
to note that developers may not necessarily need precise body movement data
from each user, as they are typically more interested in the average behaviour
of all users.

Case 2: Virtual shopping mall

In another scenario, a virtual shopping mall provides an immersive and interac-
tive environment, allowing shoppers to browse and purchase products from the
comfort of their homes. This virtual environment closely mirrors a real shop-
ping experience. Shoppers utilise VR headsets and controllers to navigate the
mall, interact with objects, and even try on virtual clothing and accessories.

In this context, the company is interested in collecting spatial interaction data,
such as movements within the virtual shopping mall or interactions with vir-
tual shelves, to identify popular areas and modify the virtual environment to
enhance user engagement. However, akin to the first use case, while this spatial
interaction data is crucial for improving user experience, it could potentially be
used to re-identify users, thus raising privacy concerns.

5.4 Methodology

In this section, we first introduce the background of differential privacy, fol-
lowed by our method of applying differential privacy onto 3D body motion data
through (i) window slicing and (ii) converting the data into heat maps. Our
approach aims to safeguard data privacy while preserving its utility.

5.4.1 Background of Differential Privacy

Differential privacy [27, 28] is a formally recognized concept of privacy that can
be mathematically validated for data releases. Unlike k-anonymity, which is a
property attributed to data, DP is a property attributed to algorithms. This
implies that we can prove an algorithm’s compliance with DP requirements. To
assert that a dataset adheres to DP, we need to show that the algorithm used
to generate it satisfies DP’s principles..
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Plain differential privacy. Formally, a mechanism M : D → R with
domain D and range R satisfies (plain) differential privacy if for all neighbouring
datasets d, d′ ∈ D and for all possible outputs S ⊆ R it have

Pr[M(d) ∈ S] ≤ eϵPr[M(d′) ∈ S]. (5.1)

Specifically, two datasets d, d′ ∈ D are considered neighbours if they only vary in
the information of a single individual. It’s important to note that M is usually
a randomised function, producing multiple possible outputs for the same input.
As a result, the probability distribution describing its outputs is not a singular
point distribution.

The crucial implication of this definition is that the output of M will remain
largely unchanged, regardless of the inclusion or exclusion of any specific in-
dividual’s data. In other words, the level of randomness incorporated into M
should be sufficient to prevent an observed output from revealing whether the
input was d or d′. For instance, if an individual data is present in d but not in
d′ an adversary would be unable to determine which of the two was the input
to M. As a result, the adversary would have no means of determining whether
an individual’s data was included in the input data, let alone obtaining any
detailed information about that particular data.

The privacy parameter or privacy budget in the definition is denoted as ϵ. It
serves as a control to adjust the “degree of privacy” provided by the mechanism.
Smaller values of ϵ that should produce highly similar outputs for similar inputs,
thereby offering stronger privacy protection. On the other hand, larger values
of ϵ allow for greater variability in the outputs, resulting in reduced privacy.

Laplace mechanism. The most direct method to achieve DP is by incorpo-
rating random noise into the response. The primary challenge is to add enough
noise to meet DP’s requirements, while ensuring the answer remains meaning-
ful and not excessively distorted. To streamline this process, the DP field has
developed fundamental mechanisms that precisely outline the type and level of
noise to be used.

Laplace mechanism [28] is a commonly used approach. Specifically, according
to the Laplace mechanism, the following definition of M satisfies ϵ-differential
privacy.



166 Chapter 5. Enhancing VR Users’ Privacy with Differential Privacy

M(d) = m(d) + Lap(
s

ϵ
) (5.2)

where s is the sensitivity of m which represents the amount of m’s output
changes when its input changes by 1 (recall the neighbouring datasets d and
d′), and Lap denotes sampling from the Laplace distribution with centre 0 and
scale s

ϵ
.

Approximate differential privacy. In this study, we employ the notion of
approximate differential privacy, also called (ϵ, δ)-differential privacy, which is
commonly used in machine learning and defined as below.

A randomized mechanism M : D → R with a domain D and a range R achieves
(ϵ, δ)-differential privacy if, for any pair of neighbouring inputs d and d′ ∈ D
and for any subset of outputs S ⊆ R, the following condition is satisfied:

Pr[M(d) ∈ S] ≤ eϵPr[M(d′) ∈ S] + δ (5.3)

where the privacy parameter δ represents the “failure probability” associated
with the definition. With a probability of 1−δ, the privacy guarantee provided is
equivalent to pure differential privacy, while with a probability of δ, no guarantee
is provided. In other words, with a probability of 1− δ, we have the inequality
Pr[M(d)∈S]
Pr[M(d′)]

≤ eϵ. Due to this, it is typically required for δ to be very small,
usually less than or equal to 1

n2 , where n represents the size of the dataset.

5.4.2 Preparing Body Motion Data for DP

Outliers Dropping. Considering that each sample in the datasets represents
a repetition of a motion, which can have varying lengths and some samples
may exhibit significant deviations, it becomes challenging to unify the shape of
the data without removing such outliers. Moreover, allowing these outliers to
remain could enable a machine learning model to learn and classify the execu-
tion length of a motion, potentially leading to user identification and privacy
breaches. Furthermore, similar to the outliers in the temporal domain men-
tioned earlier, outliers in the spatial domain should also be taken into account.

Therefore, prior to inputting the data into a machine learning model, we first
eliminate outliers using the standard deviation of the dataset. Specifically, we
calculate the upper and lower boundaries of the dataset by adding or subtracting
three standard deviations from the mean of the values. Any sample that falls
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outside these boundaries is marked as an outlier and subsequently removed from
the dataset.

It is worth noting that in practical applications, there may be alternative meth-
ods for handling outliers, such as pre-padding the data with zeros to achieve
temporal invariance. However, the selection of an optimised outlier approach
may depend on the specific application scenario and is beyond the scope of our
research.

Sequence Alignment. Dynamic time warping (DTW) is an algorithm for
measuring similarity between two temporal sequences, which is widely used
in time series analysis [29]. DTW is good at synchronizing two sequences by
optimally aligning within them through appropriate translations, expansions
and contractions, ultimately minimizing the distance between aligned series.
DTW has been applied to temporal sequences of video, audio, and graphics
data — indeed, any data that can be turned into a one-dimensional sequence
can be analyzed with DTW.

The principle is that a cos-matrix is created which is record the shortest distance
between longer sequence A and shorter sequence B. Then, the returning result
is a sequence B′ which has the same length of the sequence A and some repeated
values of sequence B. The sequence B′ is the final results from sequences tra-
jectories. For motion sequences, DTW preserves the distinct features of longer
sequences when compared to fixed segmentation method. Also, in contrast to
average fill-up method, Dynamic Time Warping ensures that the unique data
features of shorter sequences are retained.

Applying DTW for aligning each motion sequence becomes imperative to guar-
antee the successful computation of the average curve for motion sequences.
Otherwise, the trailing end of long sequences will be not computed the average
values. However, it is essential to note that due to the computationally inten-
sive nature, the application in data pre-processing for large datasets could be
limited.

In practice, we use the Dynamic Time Warping (DTW) method to align se-
quences, thereby preserving their distinct features. Specifically, we employ a
function from the ‘DTAIdistance’ library [30] to find values corresponding to
the time length of the longest sequence and implement dynamic alignment using
our user-defined function.
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Window Slicing. Window slicing is a prevalent technique for training machine
learning models on time series spatial data, operating on a rolling window with
a predefined size, denoted as n, and a step size, denoted as m. This method
iterates through each user’s data recording, generating new samples at each
step.

We use a window size of N = 10 and the step size of M = 1 for our training
and validation set for the evaluation. To ensure consistency and comparability,
the same pre-processing steps and sliding window approach are applied to the
validation data. This allows for fair evaluation and assessment of the model’s
performance.

From an adversary’s perspective, the application of the window slicing technique
involves a majority vote among the labels of all sliced windows. This approach is
frequently used as it enables the attack model to identify temporal patterns and
dependencies within the data, and potentially minimise noise or inaccuracies in
the prediction.

Heat map Creation. Alongside window slicing, we explore transforming the
3D body motion data into heat maps. This approach is frequently employed in
the visualisation of spatial data and consequently helps to preserve the utility
of the data.

Our proposed method comprises a series of steps. Initially, we calculate the
range of data values on each axis, such as the X axis, represented by [Xmax,
Xmin]. Subsequently, we define the resolution of the heat map as r, which
determines the number of data points along each axis. By having r data points
on each axis, the total number of data points in a heat map becomes r × r.
For each sample x ∈ X, we determine its position within the heat map using
Equation 5.4. The “ceil” function, denoted as “⌈ ⌉”, is applied to round each
sample’s position to the nearest integer, ensuring its placement within the heat
map grid.

xh = ⌈ x−Xmin

Xmax −Xmin

∗ r⌉ (5.4)

The value of each data point in the heat map is the number of samples that fall
into the corresponding grid position. This provides a measure of the density or
frequency of occurrences at that specific location. Lastly, to ensure consistency
and comparability, we normalize the data values in the heat map to fall within
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the range of [0, 1]. This step facilitates a standardized representation of the
data across various heat maps.

Heat map utility: one disadvantage of converting body motion data into heat
maps is the loss of temporal information, limiting the analysis to spatial move-
ment tracing and frequency information alone. However, as described in the
use cases earlier, the omission of temporal data when sharing with vendors or
third-parties have little impact the data utility. This is particularly true in
scenarios such as virtual homes or virtual shopping, where the primary focus
for application vendors may be recording movement traces and identifying the
most frequently visited places by users. Similarly, in VR scenarios involving
natural interactions like playing virtual archery, vendors may only need to col-
lect users’ average movement traces to analyse user behaviours and enhance the
user experience of VR applications. Hence, for these common use cases, heat
maps provide sufficient information to vendors or third-parties.

5.4.3 Applying DP on Body Motion Data with Utility

Preserved

We then apply different privacy mechanism onto both the original motion data
and the converted heat maps. To compare, we also conduct experiments apply-
ing DP on data with window slicing.

Differential privacy tool. In this research, we leverage the IBM differential
privacy library1, Diffprivlib [31]. Diffprivlib is a comprehensive library specif-
ically designed to address the challenges of differential privacy and machine
learning. Its primary objective is to provide researchers and practitioners with
a versatile platform for conducting experiments, simulations, and implementing
differentially private models. By utilising a unified codebase and a collection
of fundamental building blocks, Diffprivlib facilitates seamless exploration and
deployment of differential privacy techniques across various domains and ap-
plications. This library serves as a valuable resource for researchers seeking to
incorporate differential privacy into their studies and implementations. Particu-
larly, we utilise Diffprivlib’s implementation of Laplace mechanisms, which were
initially proposed by Dwork et al. [28]. This implementation also includes sup-
port for (relaxed) (ϵ, δ)-differential privacy [32]. We leverage these mechanisms

1The library is available at https://github.com/IBM/differential-privacy-library

https://github.com/IBM/differential-privacy-library
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to apply differential privacy to our datasets or heat maps, ensuring privacy
protection while preserving valuable information.

Utility preserving. Known as the privacy parameter or privacy budget, ϵ
represents the maximum allowable distance between a query performed on two
neighbouring databases (d and d′), where d, d′ ∈ D differ by only 1 change in
data (i.e., the addition or removal of a single entry, as per Equation 5.1). In
other words, ϵ serves as a measure of privacy loss, ensuring that for any pair
of adjacent databases d, d′ and all possible outputs M, an adversary cannot
differentiate between them based on observing the output.

Particularly, when ϵ has smaller values, the outputs generated for similar inputs
need to be very similar, thereby providing higher levels of privacy. Conversely,
larger values of ϵ allow for greater dissimilarity in the outputs, resulting in
reduced privacy. Essentially, a smaller ϵ implies that more noise must be added
to adequately protect the dataset’s privacy.

While our primary objective is to utilize the Laplace mechanism to introduce
noise and prevent the re-identification of individuals in the dataset, we also need
to consider the balance between privacy protection and data utility as described
in Section 5.3. To achieve this, we introduce a data utility threshold to control
the level of noise added through the application of differential privacy. This
threshold helps us avoid excessive noise that could potentially compromise the
usefulness of the data while still ensuring an acceptable level of privacy.

Specifically, we can establish the data utility threshold empirically using quan-
titative or qualitative metrics, or a combination of both. For instance, in the
case of a heat map, a qualitative threshold could be defined as “the heat map,
after applying differential privacy, should still provide clear visibility of the
users’ movement traces”. Based on this qualitative threshold, we can further
determine a quantitative threshold, such as “the Relative Squared Error (RSE)
between the heat maps before and after applying differential privacy should be
lower than t”. In our study, we identify the optimal privacy budgets as the
largest ϵ value that produce the output below an acceptable utility threshold,
based on the ϵ-RSE chart. The pilot experiment allows us to empirically assess
the impact of different privacy budgets on the data utility. By applying varying
levels of noise and measuring the resulting data utility, we can identify the op-
timal privacy budget that strikes the right balance between privacy protection
and data usability.
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By setting such utility thresholds, we can effectively limit the amount of noise
introduced by the differential privacy mechanism. These thresholds serve as
objective measures to ensure that the data utility is maintained while adequately
protecting privacy. Through a careful balance of quantitative and qualitative
assessments, we can strike the right balance between privacy preservation and
data utility in our analysis.

5.5 Experiment Setup

In this section, we introduce the datasets, user identification models, and the
evaluation metrics used in our study.

5.5.1 Experiment Environment

Our experimental environment consists of a PC workstation equipped with
64GB of RAM, an AMD Ryzen 3750X 8-core CPU, and Linux Mint 20.1 Cinna-
mon operating system. Additionally, we have allocated a 256GB swap partition
to enhance system performance. The experiments are conducted using Python
3.9.9.

5.5.2 Datasets

VirtualHome dataset. A technique for simulating household activities using
programs, employing sequences of atomic actions and interactions as a higher-
level representation of complex tasks, was introduced by Puig et al. [17]. The
proposed simulator, VirtualHome2, empowers users to generate a comprehensive
dataset of activity videos with detailed ground-truth information, facilitating
the training and evaluation of video understanding models. An example of an
agent is watching TV which is generated by the simulator and demonstrated in
Figure 5.1(a). In our study, we use some interaction sequences as the simulator
input and select all existed agents as the interacted subjects. Then, we utilise
the simulator to generating interacted videos and 3D spatial interacted data
of virtual agents performing kinds of tasks in household scenarios (i.e.,7 agents
acting 852 tasks) and collect the data as our experimental dataset. For example,
in one scenario, multiple agents’ activities can be generated using the following
description: “Go watch TV on the couch. Turn the TV off and grab the coffee
pot. Put the coffee pot on the table and go turn the light on” [17]. We collect

2The simulator is available at https://github.com/xavierpuigf/virtualhome_unity.

https://github.com/xavierpuigf/virtualhome_unity
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(a) (c)

Agent_male_1 movement track Agent_male_1 X/Z dimension heatmap

(b)

An example of VirtualHome Dataset

Figure 5.1. A visualisation of one sample in
VirtualHome dataset [18]: (a) the virtual environment,
(b) an illustration of movement track, and (c) the heat
map conversion.

the motion data of the agents from their starting points to the TV, then to
the table, and finally to the light switch. Figure 5.1(b) illustrates that the
movement track of agent male 1 in a 3D space. Since the head is the cent
er of the body and has more actions than other body parts, the position of
data collection is the head of each agent. After that, the results of the heat
map conversion method is utilised on interacted motion data, which is shown
in Figure 5.1(c). In this scenario, we define the data utility as ‘the average
motion trace of multiple users’, which could be collected by the app vendor or
third-parties for further data analysis.

Body Movement dataset. Liebers et al. [18] conducted a laboratory study
involving 16 participants to investigate the accuracy of user identification. The
researchers simulated two task-driven scenarios using common VR games, i.e.,
Bowling and Archery. In these VR games, users engage in natural interactions
with the game, based on their spatial movement. An illustration of the Archery
game to generate Body Movement dataset is demonstrated in Figure 5.2(a).
Spatial motion data was collected using a consumer-grade head-mounted display
(HMD) and hand-held controllers.

Specifically, the data recording includes Euler Angles, timestamps, and motion
stages as extended data features. These features are set into distinct experimen-
tal groups to investigate their impact on identification accuracy. Furthermore,
researchers have introduced a novel normalisation technique which is aimed at
adjusting the height and arm length ratios between users and virtual players.
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(a) (b)

Player-1 body motion curve in archery sport Player1 X/Z dimensional motion heatmapAn example of Body Movement Dataset

(c)

Figure 5.2. A visualisation of one sample in Body
Movement dataset [18]: (a) the virtual environment,
(b) an illustration of movement track, and (c) the heat
map conversion.

This adjustment is also a part of the experimental setup. In this study, re-
searchers argue that implementing the proposed height-normalisation approach
on spatial motion data only would generally increase the identification rate.

In our research, we adopt their dataset3 and particularly extract the users’
motion data after body normalization applied. Figure 5.2(b) shows an example
of body movement data in a 3D space; also, the heat map converted results are
shown in Figure 5.2 (c).

5.5.3 User Identification Models

As described in Section 5.4, we explore two approaches for applying differen-
tial privacy to 3D body motion data. In concrete, we process the data with
two different techniques (i.e.,window-slicing and converting into heat map).
Then we conduct user identification attacks using two distinct models based
on the features of the processed data. Specifically, following the experimental
setup in datasets and recent studies [18, 17], we apply a Recurrent Neural Net-
work (RNN) models on window-slicing data and Convolutional Neural Network
(CNN) models on heat map data, respectively.

LSTM on window-slicing data. The LSTM model consists of three Long
Short-Term Memory layers, and each layer has one hundred units. The activa-
tion function is selected as the default ‘sigmoid’. Other hyper-parameters are

3The dataset is available at https://www.hci.wiwi.uni-due.de/en/publikationen/u
nderstanding-user-identification-in-virtual-reality-through-behavioral-biome
trics-and-the-effect-of-body-normalization/.

https://www.hci.wiwi.uni-due.de/en/publikationen/understanding-user-identification-in-virtual-reality-through-behavioral-biometrics-and-the-effect-of-body-normalization/
https://www.hci.wiwi.uni-due.de/en/publikationen/understanding-user-identification-in-virtual-reality-through-behavioral-biometrics-and-the-effect-of-body-normalization/
https://www.hci.wiwi.uni-due.de/en/publikationen/understanding-user-identification-in-virtual-reality-through-behavioral-biometrics-and-the-effect-of-body-normalization/
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set as: 200 epochs, Adam optimiser, and 1e-4 learning rate. Additionally, a
majority voting is applied to determine the prediction label a sample. Specif-
ically, according to the labels predicted on all sub-samples (a sample could be
sliced into several sub-samples during window-slicing), the most frequent label
is assigned as the final predicted label. Due to the specificity of the dataset,
which includes repetitions over two days, we divided the data into two parts:
the motion data from the first day is set as the training set, while the data from
the second day is set as the testing set. The advantage of splitting the dataset
by date is that it helps avoid high repeatability between each sub-sample after
window-slicing pre-processing.

CNN on heat map data. We establish a CNN network with two convolution
layers and three full connection layer. In each convolution layer, there is a
pooling layer. In the first two full connection layers, we add a drop layer with
0.5 dropping rate. For each layer, we use ‘ReLU’ as the activation function.
The output of the model is a n-dimension vector, where n is the number of
users in the dataset. The model is trained on 80% of the samples and tested on
the remaining 20% samples.

5.5.4 Evaluation Metrics

In our study, we evaluate whether a privacy-enhancing approach is capable of
safeguarding users’ privacy while maintaining sufficient data utility. We use the
following two metrics in experiments.

Relative squared error (RSE). To measure and control the error intro-
duced by differential privacy, we utilise relative squared error (RSE) to calculate
the average squared difference between the original data and the DP-enhanced
data. The output value of RSE is expressed in terms of ratio. Specifically, as
formalised in Equation 5.5, RSE calculates the relative squared error, which
normalises the total squared error (i.e.,MSE) and normalises it by the square
of the difference between the actual and the mean of the data.

RSE =
1

n

∑n
i=1(xi − x̂i)

2∑n
i=1(xi − x̄i)2

, (5.5)

where xi is a data point from spatial data or a heat map, x̄i is the mean of all
data points, and x̂i is the corresponding data point after applying DP. A RSE
value can range from 0 to 1. A good model should have a value close to 0 while
a model with a value greater than 1 is not reasonable.
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The reason we use RSE as the error matric is because it is less influenced by the
total data volume, compared to Mean Squared Error (MSE). Specifically, for
window-slicing data, we directly compute two motion average curves between
the temporal dimension and each dimension of feature, both before and after
applying DP (i.e., calculating the average curve by x-dimension data of the
headset and time stamp); for heat map data, we calculate RSE between two
100*100 images.

Specifically, we use RSE as a quantitative threshold of data utility, to ensure
that the data is still usable after applying DP onto it. The threshold of RSE will
further determine the privacy budget ϵ which controls how much noise would
be added to the data. For example, we can select the Relative Squared Error
(RSE) threshold according to the specific utility scenario. A default threshold
could be set at 1, and the smallest value of ϵ that can meet this threshold will
be chosen for different privacy settings. For convenience in practice, we round
up the value of ϵ to an integer. For example, if a chosen value of ϵ is 6.4, it will
be rounded up to ϵ = 7.

Identification accuracy. To evaluate the data privacy performance against
user identification attacks, we utilise identification accuracy as the metric. As
illustrated in Equation 5.6, the attack accuracy is defined as the number of user
classifications the attack model correctly predicts divided by the total number of
predictions made. Specifically, a lower identification accuracy indicates higher
robustness of data privacy. If the accuracy of a user identification attack falls
below that of random guessing (i.e., below 50% in a binary classification), we
classify the attack as failed and consider the data privacy to be robust.

Identification Accuracy =
Number of correct predictions

Total number of predictions
(5.6)

5.6 Experimental Results

In this section, we present the experimental results of the data utility evalu-
ation and the performance of our approach in protecting privacy against user
identification attacks.
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5.6.1 Data Utility Evaluation

We first evaluate the data utility through both qualitative and quantitative
manners.

Qualitative data utility. As previously described in Section 5.4 and 5.5,
we first evaluate the data utility through a qualitative method. This involves
ensuring that the movement traces are still clear and recognisable to the human
eyes after adding differential privacy noise. We demonstrate the data utility
by plotting the original spatial data in x/z space, along with its corresponding
heat map.

Specifically, to illustrate how we compare the data utility in different ϵ settings,
we randomly select two samples from each dataset and plot their spatial data
and corresponding heat maps, as shown in (Figure 5.3(a) and Figure 5.4(a)).
Then compare with data with differential privacy applied. This is done for ϵ

settings of 1, 3, and 10, as shown in Figure 5.3(b-d) and Figure 5.4(b-d). From
the experimental results, it is evident that higher privacy budgets (e.g. when
ϵ = 3 and 10) introduce less noise into the data, which is expected as higher
privacy budgets are applied.

Here we note that, in practice, the purpose of conducting qualitative utility eval-
uation is to obtain an approximate proper range of ϵ, to saving computational
cost in the quantitative utility control, since a proper utility threshold may lead
to selecting a very large or small ϵ in specific cases. For example, an ϵ value
in the range of 3 to 10 provides sufficient data utility in VirtualHome dataset,
while an ϵ value less than 3 introduces too much noise, making it difficult to
recognise the body movements or the visiting trace in the virtual home.

Quantitative data utility controlling. Based on the qualitative results,
we further determine the data utility using RMSE thresholds. In Figure 5.5,
we present the RMSE between the original data and the differential privacy-
enhanced data with various ϵ settings. Specifically, we vary the values of ϵ from
1 to 10 with a step size of 1. It can be observed that the RMSE decreases as ϵ

increases. Moreover, there is an elbow point in the RSE-ϵ curve, indicating that
an appropriate RSE threshold could be chosen near this point. In this region,
increasing ϵ has less impact on the RSE, allowing us to select a privacy budget
that is sufficiently tight.
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(a) (b)

(c) (d)

Figure 5.3. Qualitative evaluation of data utility (an
example from VirtualHome dataset). (a) original data
and corresponding heat map; (b-d) data visualisation
after applying Laplace differential privacy with
ϵ = 1, 3, 10, respectively. Higher privacy budgets
introduce less noise into the data. To maintain the
data utility, a privacy budget higher than 3 should be
selected, since when ϵ = 3 the noise level is still high.

According to Section 5.4, we selected a threshold of RMSE ≤ 1 near the elbow
point for our experiments, which led to different values of ϵ being chosen (i.e.
ϵ = 4 for window-slicing data and ϵ = 7 for heat map data). This difference
arises because, when applying differential privacy to heat maps, perturbations
are introduced to all points in the heat map (in our case, 100*100 points);
whereas differential privacy applied to window-sliced data only introduces noise
to individual time series data points, resulting in a smaller amount of noise
being added with the same privacy budget, compared to the heat map case.

5.6.2 Privacy Performance against User Identification At-

tacks

We further evaluate the privacy protection performance of applying differential
privacy to streamed spatial data and its corresponding heat map. We conduct
user identification attacks on the original data and privacy-enhanced data using
various privacy budget settings (i.e., ϵ = 1, 3, 10), as well as an ϵ value selected
based on the data utility threshold determined in the previous experiments.

As shown in Table 5.1, the attack success rates experience a significant drop
when differential privacy is applied. For instance, in the VirtualHome (Body
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(a) (b)

(c) (d)

Figure 5.4. Qualitative evaluation of data utility (an
example from Body Movement dataset). (a) original
data and corresponding heat map; (b-d) data
visualisation after applying Laplace differential privacy
with ϵ = 1, 3, 10, respectively. Higher privacy budgets
introduce less noise into the data. To maintain the
data utility, a privacy budget around 3 could be
selected, since when ϵ = 3 the noise level is acceptable
and a stronger privacy protection can be pursued.
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(d) Heat map on Body Movement

Figure 5.5. RSE between the original data and the
differential privacy-enhanced data with various ϵ
settings. The query is the averaged user visiting trace.

Movement) dataset, the identification rate decreases in the range of from 41.16% to
45.86% (from 22.44% to 27.09% ), compared to the baseline attack success rates
when no privacy enhancement is applied.

5.7 Discussion

Our findings demonstrate that DP can effectively mitigate the risk of re-identification
attacks, while still preserving the utility of understanding average 3D body mo-
tion. This balance between privacy and utility is crucial in various applications.
For instance, in gaming, understanding players’ body motions can lead to en-
hancements in the gaming experience. Similarly, in a virtual shopping context,
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Table 5.1. Privacy enhancement against user
identification attack.

Datasets Methods Models

User Identification Accuracy

Original
Privacy Enhanced with Differential Privacy

ϵ = 0.0005 ϵ = 0.001 ϵ = 0.002 ϵ = 0.005 ϵ controlled by
utility threshold

Body Movement Window-slicing LSTM 85.42% 15.63 31.25 61.97 79.17 58.33%
Body Movement Heatmap CNN 66.67% 14.09 24.83 63.09 87.92 44.23%

Original
Privacy Enhanced with Differential Privacy

ϵ = 0.1 ϵ = 0.25 ϵ = 0.5 ϵ = 0.75 ϵ controlled by
utility threshold

VirtualHome Window-slicing LSTM 93.89% 27.15 36.51 53.07 75.91 48.03%
VirtualHome Heat map CNN 96.53% 14.09 24.83 63.09 87.92 55.37%

understanding shoppers’ movements and interactions can help improve the vir-
tual shopping experience. Thus, the application of DP not only ensures user
privacy but also contributes to the refinement of user experiences in virtual
environments.

Our result also suggest that the transformation of a user’s 3D body motion data
into heat maps can effectively enhance user privacy. When the same privacy
budgets are assigned to both the raw 3D body motion data and the heat maps,
the heat maps approach can incorporate more noise into the data, thereby
increasing the level of privacy protection. Importantly, this increase in noise
does not significantly compromise the utility of the data. This means that
important patterns and trends within the data can still be identified, which is
vital for analysing user behaviour and improving virtual experiences.

5.8 Limitations and Future Work

In this study, we utilized two VR application datasets to investigate user visiting
tracing in virtual home scenarios and body movement in an interactive VR
game. Although our choice of datasets is limited, we acknowledge the inherent
limitations in terms of representing the entire scope of VR scenarios. It is
important to note that the field of VR is vast and diverse, encompassing various
applications and user interactions. Despite such limitation, we contend that our
approach holds general applicability across a wide range of scenarios involving
the collection of users’ spatial data.

Another limitation of our study could be the number of attack models involved
in the experiments. We acknowledge that there exist more complex models
that could be used for user identification attacks. However, the primary goal of
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our study is to demonstrate that the application of differential privacy mech-
anisms can significantly reduce the success rate of user identification attacks,
thus enhancing user privacy. In future research, we aim to conduct more com-
prehensive investigations into how the complexity or structure of attack models
can influence privacy protection. This includes exploring whether a more com-
plex privacy protection method or a tighter privacy budget is necessary when
facing stronger attack models.

Additionally, it is crucial to explore the delicate balance between data utility and
privacy protection. Further studies can shed light on how to optimise this trade-
off and develop strategies that effectively preserve data utility while ensuring
robust privacy protection. By addressing these aspects, we can advance the
understanding of privacy protection in the context of VR applications and offer
valuable insights into the design of more resilient and efficient privacy-preserving
mechanisms.

5.9 Conclusion

In this chapter, we introduced a novel approach that leverages differential pri-
vacy to safeguard users’ privacy in the context of VR applications, specifically
focusing on streamed spatial data. By applying differential privacy mechanisms,
we effectively mitigate the risk of user identification through attacks, thereby
enhancing privacy protection.

Furthermore, we have demonstrated the efficacy of our proposed heat map
method, which surpasses the direct application of differential privacy to streamed
spatial data. The heat map method provides a more robust privacy protection
mechanism by introducing perturbations to all points in the heat map, rather
than solely focusing on individual data points. This approach allows for a more
comprehensive and effective privacy enhancement while preserving data utility.
Through our experiments and evaluation, we have shown that applying differ-
ential privacy to heat map data can significantly reduce the success rates of
user identification attacks. This validates the effectiveness of our approach in
enhancing user privacy within the VR domain.

Overall, our work contributes to the growing body of research on privacy preser-
vation in VR applications, offering insights into the application of differential
privacy mechanisms and highlighting the benefits of the heat map method for
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robust privacy protection. These findings pave the way for further advance-
ments in privacy-preserving techniques in the field of VR, ensuring that users’
privacy is safeguarded while enjoying immersive and interactive experiences.
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Chapter 6

Conclusion

This chapter summaries the material covered in our thesis and discusses
possible future work in this area.
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6.1 Summary of Thesis

Throughout this thesis, we proposed novel methods and evaluation frameworks
for understanding and measuring privacy and security assertions of mobile apps,
with specific solutions that address the limitations and challenges existing in
the security and privacy research domain. The outcomes of this research not
only advance the knowledge in the field of mobile software engineering but also
bring a range of benefits to software developers, users, and businesses. Here we
summarise how the objectives of this research have been addressed.

• (Addressing Objective 1) Requirements of key privacy regulations are ex-
tracted and modelled. The regulation model is used in our privacy policy
quality assessment and app behaviour violation detection. The knowledge
base to model privacy assertions has been established (Chapters 3.4 and
4.5), containing more than 20K mobile apps (20,195 children’s apps and
40 contact tracing apps) and their corresponding privacy policies. The
dataset and data collection scripts are open-sourced and publicly avail-
able.

• (Addressing Objective 2) A comprehensive security and privacy evalua-
tion system is built to enable large-scale analysis on mobile applications.
A series of evaluation tools, including privacy policy segment classifica-
tion, static analysis (Chapters 3.4.2 and 4.4.2), dynamic analysis (Chap-
ter 4.4.3), and user comments analysis (Chapter 4.4.5), have been devel-
oped and open-sourced. Novel methods and technologies are proposed
with validated prototypes.

• (Addressing Objective 3) Large-scale security and privacy evaluations are
conducted on different datasets and scenarios, including online privacy
policy generators, contact tracing apps (Chapter 3.4), and children’s apps
(Chapter 4.5). The findings of these evaluation successfully reveal the
non-compliance among the privacy assertions and application behaviours.

• (Addressing Objective 4) A novel approach is proposed and evaluated,
which leverages differential privacy to safeguard users’ privacy in the con-
text of VR applications, specifically focusing on streamed spatial data.
By applying differential privacy mechanisms, we effectively mitigate the
risk of user identification through attacks, thereby enhancing privacy pro-
tection (Chapter 5).
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• Based on the large-scale evaluation of mobile application privacy practice,
the outputs of all research tasks is thoroughly evaluated and summarised
into takeaways and development guidelines. In addition to real-world
mobile application developers, application users were also contacted to
ensure that their interests and concerns are well respected.

Chapter 3 develops a security and privacy assessment tool, COVIDGuardian.
This tool can evaluate the security weaknesses, vulnerabilities, potential pri-
vacy leaks, and malware in contact tracing apps. Using COVIDGuardian,
we have conducted a comprehensive empirical security and privacy assessment
of 40 contact tracing apps. Our results have identified multiple security and
privacy risks, as well as threats. Naturally, our analysis has confirmed that no
apps can protect users’ security and privacy against all potential threats. To
understand the perception of users, we have also performed a survey involving
373 participants. This has further consolidated our observations of user con-
cerns. COVIDGuardian and the issues raised through responsible disclosure
to vendors, can contribute to the safe deployment of mobile contact tracing.

Chapter 4 focuses on the privacy practices of apps that are designed for children
or have target users that include children. We have measured the use of permis-
sions and trackers, investigated inconsistency in content ratings, and analysed
user comment feedback. Our measurement results illustrate that, despite many
privacy protection regulations and the strict requirements imposed by the app
store, children still experience privacy threats. This is caused by things like
permission requests without child-friendly notifications, abuse of ad trackers,
confusing and inconsistent content ratings, as well as privacy leakage without
users consent. Ultimately, we conclude that the existing self-certification-based
content rating mechanism must be improved immediately.

Chapter 5 introduces a practical approach for enhancing the privacy of streamed
spatial data collected from VR applications, specifically targeting user identifi-
cation attacks. Our proposed method involves converting the streamed spatial
data into heatmaps, representing the data with frequencies. This approach
ensures a comprehensive and effective privacy enhancement while maintaining
data utility. Through the development of our method and the subsequent eval-
uation, we contribute to the growing body of research on privacy protection
in VR environments. Our work highlights the potential of applying differen-
tial privacy to heatmap data as an efficient and reliable means of safeguarding
user privacy. By adopting our proposed approach, VR applications can better
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ensure the protection of user identities and maintain a secure environment for
user interactions.

6.2 Future Work

The privacy-enhancing technologies and mobile application behaviour evalua-
tion approaches proposed in this thesis advance the knowledge and software
development in the field of mobile security and privacy research domain. How-
ever, much work still remains for further study. In this section, we discuss the
improvements that could be made to our proposed technologies, as well as a
more general area for future research.

First, to extend our study on contact tracing applications, we plan to

(i) Obtain user feedback from a wider geographic and demographic range.
User feedback could be a source of concerns and complaints that poten-
tially expose vulnerabilities or design flaws. However, it is challenging to
automatically understand such information on a large scale, considering
the breadth of topics discussed by users, the noise in the feedback com-
ments (such as slang, grammatical errors, and abbreviations), and the
performance of the state-of-the-art NLP technologies.

(ii) Examine network traffic originating from contact tracing apps. The cur-
rent evaluation did not involve network traffic information which could be
monitored by a dynamic testing framework. Dynamic tests can further
confirm the privacy leaks detected by the static approach. However, the
false negatives may influence the evaluation results quite a lot, i.e., not
every privacy leak could be confirmed in network traffic.

(iii) Extend the assessment to a broader scope. The security and privacy eval-
uation could be extended to other mobile applications, beyond contact
tracing applications. The security and privacy guidance and suggestions
can also be evaluated and further applied to a broader scope in the soft-
ware industry.

Second, our study on the privacy practice of applications designed for children
could be further improved with the following aspects considered. First, a user
study could collect users’ feedback more fine-granularly. One foreseeable chal-
lenge in such a user study could be the recruitment of children as participants
in the user study. Furthermore, the app store policy involved in the current



6.2. Future Work 191

research limits to Google Play store Designed for Family policy. It would be
interesting to extend to other app stores, checking the application compliance
with other app store family policies, and comparing the behaviour of applica-
tions across different venues. In addition, a notification framework could be
developed and validated to ensure a children’s application only access the pri-
vate information of children users with consent from their legal guardians.

Last but not least, to provide more comprehensive analysis and evaluation on
privacy enhancement with differential privacy, we would like to further evaluate
our proposed heatmap method on more datasets and other VR scenarios (e.g.,
other types of data) and involve more complex attacking models.
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