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Abstract

Sequential Monte Carlo (SMC) methods are vital in fitting models, without a tractable
likelihood, to data. When combined with Markov Chain Monte Carlo, SMC allows for
full posterior distributions of states and parameters to be estimated. However, for many
problems, these methods can be prohibitively computationally expensive. One such class
of models with intractable likelihoods are continuous-time Branching Processes (CTBPs).
In this thesis, we leverage the unique properties of CTBPs to derive a method that approx-
imates the results of standard SMC methods, with a significant reduction in computation
time. We find that under certain conditions the method we have developed can produce
highly accurate results in orders of magnitude less time than standard SMC methods.

Continuous-time Branching Processes are often used for epidemic modelling, partic-
ularly in the early phases of an outbreak. In light of the COVID-19 pandemic, CTBPs
have been used in metapopulation models, where agents are partitioned into subpopu-
lations (usually states or countries) that interact through immigration. In this thesis,
we build upon existing work in this area, with a focus on estimating disease importation
risk. We show how applying our method to this problem can allow for joint estimation
of the parameters mediating disease spread and unobserved cases. Specifically, the speed
improvement given by our method allows for full posterior distributions for states, param-
eters and importation risk to be derived. Furthermore, we find that the increase in speed
also allows more parameters to be estimated. Consequently, each subpopulation can have
its own parameters. As a result, hierarchical modelling can be employed, meaning that
parameter estimates from one subpopulation can inform the estimates of others. We find
hierarchical modelling to be vital in estimating importation risk, particularly for counties
with low observation probability.
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Chapter 1

Introduction

Throughout history, infectious diseases have remained an ever-present danger to human
society [1]. Even in the modern age, infectious disease is still a leading cause of death in
both high and low-income countries, responsible for ∼ 20% of deaths worldwide in 2019
[2]. A vital aspect of minimising the morbidity and mortality associated with a disease
is intelligent public health policy [3, 4]. However, implementing the best interventions
requires us to understand the current state of an outbreak and predict future states based
on available data. One approach to answering questions of this type is the field of math-
ematical epidemiology [5, 6]. The importance of mathematical epidemiology was made
abundantly clear through the recent SARS-CoV-2 pandemic [3, 4].

On December 29 2019 in Wuhan, China, a small cluster of individuals were reported
to be exhibiting atypical pneumonia. Soon after, these symptoms were determined to
be caused by a novel coronavirus, named SARS-CoV-2 [7]. Shortly after this, many
governments implemented various travel restrictions in an attempt to reduce the rate of
importation of infected individuals. On February 1, 2020, the Australian Federal Govern-
ment placed extensive restrictions on travel from Mainland China to Australia [4]. At this
time, Australian authorities had detected 9 cases, all with links to people living in Wuhan
[8]. Additionally, there were also a confirmed 120 cases outside of China [7]. Thus, an
important question at the time was the probability of importation from countries in the
wider Asia-Pacific where travel was still permitted [9, 10, 11]. The key difficulty for this
endeavour was that the true number of infected people was not observed, only the reported
cases. This was problematic as reported cases will almost always underestimate the true
number of cases, meaning risks will be underestimated [12, 13, 14, 15]. Consequently, one
focus of early modelling work was determining which countries were likely to have high
rates of underreporting [10, 11]. De Salazar et al. [10] used data on air travel volume
from Wuhan, China to estimate each country’s relative detection capabilities. From this
work, it was found that Singapore had very high relative detection capabilities. Bhatia
et al. [11] implemented a similar model but assumed Singapore had perfect detection ca-
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2 Chapter 1. Introduction

pabilities, leveraging this allowed the authors to produce estimates of the total number of
undetected cases in other countries. While these works were useful in analysing the then-
current risks associated with air travel, they did not explore how these risks changed with
time. This problem tends to be more difficult as it often requires a mechanistic model
that can be used to simulate disease dynamics. Shearer et al. [9] choose to use a simple
branching process model to simulate outbreaks, constructing a modular framework that
used the estimates of unobserved cases from Bhatia et al. [11] and De Salazar et al. [10].
These simulated outbreaks were then combined with air-travel volume data to estimate
the risk of case importation into Australia. However, due to the severe time constraints,
this assessment relied on early parameter estimates from other studies [16, 17] and fitted
data to simulated outbreaks independently using an approximate approach. This mo-
tivates the primary focus of this work: a flexible (meaning applicable to a broad class
of models) framework for early-phase disease modelling that jointly estimates parame-
ters, unobserved cases, and importation risk. The key advantage of the joint estimation
approach is that the same model is used for parameter estimation, forecasting, and risk as-
sessment ensuring perfect coherence between these elements. Furthermore, this approach
allows for new estimates to be produced every time new data is made available instead
of having to wait for other papers to be published. During the early phases of a novel
disease outbreak, data is scarce meaning it is vital that all of the available data is being
made use of, highlighting the importance of this type of approach.

Chinazzi et al. [4] developed a global model of SARS-CoV-2, jointly estimating the
R0 parameter and the total number of infections. Due to computational demands, the
authors were forced to rely on approximate Bayesian computation and were limited to
the estimation of a single parameter. In this work, we aim to remedy both of these issues.
It is important to be able to estimate many parameters simultaneously, since in general,
we expect different countries to have differing R0 values due to factors like population
density and public health infrastructure [18, 19, 20]. Additionally, country-specific R0

values allow for hierarchical modelling to be employed. Hierarchical modelling more ac-
curately encapsulates our knowledge since we expect R0 values to be different but still
correlated since the same underlying disease is the cause [21]. In Section 4.3 we show
how the formation of a hierarchical model can significantly improve parameter estimates
if done correctly. Moreover, while approximate Bayesian computation can have benefits
in the context of model mispecfication [22], it can lead to significant bias in posterior
distributions and loss of information [23]. The key barrier in jointly estimating all these
parameters is computation time. For the framework we have developed to be maximally
useful, it needs to be able to produce estimates within a day, as to keep up with the daily
influx of data. In Section 4.3 we show that our method can achieve this goal for a large
metapopulation model.

A key factor in grappling with these computational efficiency issues is the choice of the
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underlying epidemic model. In particular, the model needs to be a reasonable approxima-
tion of reality but simple enough to perform state and parameter estimation efficiently.
For modelling the early phases of the COVID-19 outbreaks, Crump-Mode-Jagers pro-
cesses have received significant attention due to their ability to model complex phenomena
[24, 25, 26]. These models are particularly useful for assessing the efficacy of certain local
policies such as contact tracing and quarantining. However, due to the complexity of these
models, likelihood estimation can be computationally infeasible, meaning authors often
need to derive parameter estimates using cruder methods [25, 26]. Conversely, simpler
CTMC models, for which likelihood estimates can be feasibly obtained through parti-
cle filters, have also been explored [27, 28]. However, these methods tend to rely upon
particle Markov chain Monte Carlo methods which incur a significant computational de-
mand [29]. Alternatively, Romano et al. [30] and Carcione et al. [31] have implemented
deterministic epidemic models to estimate parameters and predict outbreak trajectories.
Deterministic models require far less computation time. However, the stochasticity of the
transmission dynamics has a significant effect on infection counts when case counts are
low. Since we are focused on the early phases of an outbreak, where case counts are low,
we must capture this stochasticity. Given this we follow Shearer et al. [9], making use
of continuous-time branching process approximations of compartmental epidemic models.
These models capture the stochasticity of early transmission dynamics but also have use-
ful properties which can be used to improve computational efficiency. Leveraging these
properties to conduct joint state and parameter estimation is a key contribution made by
this work.

Branching process models have many use cases across a variety of disciplines includ-
ing epidemiology [32, 33], ecology [34], biology [35, 36] and economics [37]. Our focus in
Chapter 3 will be on the specific problem of inferring states and parameters of continuous-
time branching processes (CTBPs) based on incomplete data. Specifically, we consider
data generated by noisy and partial observation of the state at discrete points in a time
series, typically thought of as a hidden Markov model [38]. The problem of joint state and
parameter can be solved by combining the Metropolis-Hastings algorithm with a boot-
strap particle filter (PF), called pseudo-marginal Metropolis-Hastings (pmMH) [39]. The
PF essentially numerically integrates over all the unobserved sample paths by simulating
from the model directly [29]. Given this, using the PF as part of a pmMH scheme for
a CTBP can become computationally expensive when the number of agents gets large
[40]. Xu and Minin [36] and Xu et al. [41] have developed approximate methods that
improve computational efficiency. However, these improvements are far from sufficient
to estimate states and parameters for complex single-population epidemic models within
a reasonable time frame. Moreover, while in Chapter 3 we focus on single population
models in Chapter 4 we extend this method to multi-population models, which incur
further computational demands. This brings us to a primary contribution of this the-
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sis: a hybrid algorithm derived in Section 3.2.4 that can approximate the results of an
expensive particle filter, but which runs significantly faster. This allows for the estima-
tion of full Bayesian posteriors for the states and parameters for complex epidemic models.

The key observation that makes this algorithm work is the tendency for the state
posterior distributions to become approximately Gaussian over time as the agent counts
get larger, established in Sections 3.2.2 and 3.3. Under these conditions, we find that
a Gaussian approximation method, similar to a Kalman filter, can be used to obtain a
reasonable approximation for the PF. Moreover, we show that this observation can be
effectively taken advantage of by switching between a Gaussian approximation and a
bootstrap particle filter depending on the agent count (Section 3.2.4). We find that for
time steps with high agent counts (when the exact simulation of CTBP is very slow) the
Gaussian approximation is the most accurate. Complementing this, when the agent count
is low (when the exact simulation of CTBP is very fast) the Gaussian approximation is
the least accurate. Hence, switching between filtering methods allows our method to run
quickly while maintaining as much accuracy as required (Section 3.2.4).

In Chapter 4 we build on the Gaussian approximation method developed in Chapter 3
by applying it to an epidemic model with a meta-population structure (see Section 4.1.3).
In particular, we consider a model where sub-populations interact through immigration.
This requires an extra layer of approximation which we analyse via a simulation study.
This simulation study indicates that accurate results can be obtained in situations relevant
to early-phase epidemic modelling. Additionally, through a series of further simulation
studies, we show that our Gaussian approximation method can be used to produce full
posterior distributions for the states and parameters for meta-population models with
around 20 subpopulations, a significant departure from what is feasible with a standard
particle filter (see Section 4.3). Next, we explore the effect of hierarchical modelling,
finding that it can be used to improve parameter estimates (see Section 4.3.1). Putting
everything together, we describe how the method we have developed can be adapted into
a framework for estimating the probability of the importation of disease from one sub-
population to another (see Section 4.3.3). Further, we show that for large models (∼ 50
parameters) joint parameter estimates can be obtained within a day of computation on a
standard laptop processor, using 3 cores.
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In summary, this thesis has 2 main contributions. Firstly, an adaptive sequential
Bayesian filtering method for CTBPs that can approximate the output of the more com-
putationally expensive bootstrap particle filter. This method can be used for efficient joint
state and parameter estimation for any multi-type CTBP. Second, we adapt this method
to a hierarchical metapopulation epidemic model. This adapted method can produce full
posterior distributions for states and parameters, allowing for detailed quantification of
the risks associated with travel from different countries.
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Chapter 2

Technical Background

2.1 Continuous Time Markov Chains
In this section, we introduce continuous time Markov chains following the treatment in
Durrett [42]. A continuous time Markov Chain (CTMC) is a stochastic process {zt}t≥0

that satisfies the Markov property. The Markov property or memoryless property pos-
tulates that the state of the process at some time is only dependent on the most recent
knowledge of the state prior to this time [42]. Thus, a stochastic process {zt}t≥0 on a count-
able state space S is a CTMC if and only if for all finite sets of times t1 < · · · < tn < tn+1

P

(
ztn+1 = i

∣∣∣∣∣
n⋂

k=1

{ztk = jk}

)
= P

(
ztn+1 = i

∣∣ ztn = jn
)
, (2.1)

∀i, j1, j2, . . . , jn ∈ S.

The CTMCs we deal this in the thesis will be time homogeneous1 meaning

pi,j(t) := P(zt+s = j | zs = i) = P(zt = j | z0 = i) , ∀i, j ∈ S. (2.2)

The transition probabilities pi,j(t) are often collected in a matrix P(t) ∈ R|S|×|S| defined
as

P(t) = (pi,j(t)), ∀i, j ∈ S.

It is often impractical to define a CTMC model in terms of the transition probabilities.
Moreover, deriving the transition probabilities for an already defined CTMC is infeasible,
aside from the simplest of cases. To resolve these issues CTMCs are often defined and

1Since all CTMCs we deal with in the thesis are time-homogeneous we will here thereafter refer to
them as CTMCs with time homogeneity being implied.

7



8 Chapter 2. Technical Background

analysed in terms of the infinitesimal generator matrix Q ∈ R|S|×|S|. The infinitesimal
generator matrix is defined as the right time derivative of the transition matrix at t = 0.

Q := lim
h→0+

P(h)−P(0)

h
= lim

h→0+

P(h)− I
h

.

The negative diagonal elements of Q

−qi,i =
∑

j∈S\{i}

qi,j

are important in analysing the holding for each state, defined as Ti := inf {t ≥ 0 : zt ̸= i, z0 = i}.
Intuitively Ti can be thought of as the time the process spends in state i before leaving.
By definition zt satisfies (2.1) meaning the distribution of Ti is exponentially distributed
if qi,i ̸= 0

P(Ti > t|z0 = i) = eqi,it. (2.3)

In the case that qi,i = 0, state i is an absorbing state meaning once it is entered it never
leaves, meaning Ti = ∞ [42]. The probability that the process moves to state j when
leaving state i at t = Ti can also be written in terms of the elements of Q

P(zTi
= j|z0 = i) = −qi,j

qi,i
, i ̸= j. (2.4)

Equations (2.3) and (2.4) are both conditioned on z0. However, due to the memoryless
property and time homogeneity (2.3) and (2.4) can be used to determine the time until
the next state change and the probability of each change conditioned on any state at any
time. As a result, Q gives a full description of a CTMC avoiding the need to define P(t)
explicitly.

Taken together (2.3) and (2.4) leads us to interpret Q as a rate matrix. Specifically,
the off-diagonal elements qi,j are the rate at which the process moves to state j when in
state i. Correspondingly, the negative diagonal elements, −qi,i are the total rate at which
the process leaves state i. This interpretation can be used as a framework for formulating
models as rates of change are common in understanding most phenomena. In particu-
lar, for epidemic modelling the rate at which a new individual becomes infectious can be
mechanistically understood based on the current number of infectious individuals [43, 44].

For CTMCs, modelling most biological or physical processes, it can be inelegant to
directly define them in terms of their infinitesimal generator. This problem is particularly
pertinent for models with multi-dimensional state spaces as each element of the state
space must be mapped to a natural number corresponding to the index of the Q matrix.
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Instead, it can be useful to define the CTMC in terms of the possible events and the rates
that these events occur as a function of the state. In this context, when event i occurs the
state is updated by adding the corresponding state change ei to the current state. The rate
that event i occurs is defined as a function of the current state ai : S → R≥0. Formulating
the state changes ei and the event rates ai fully defines Q and thus the CTMC. The SIR
model, which we define properly in Section 2.4, is generally formulated in this way [43].
The state zt = (St, It) represents the number of susceptible and infectious individuals.
Table 2.1 shows the state changes, ei, and event rate functions ai(zt) for the recovery and
infection events. In this thesis, this is the approach we take to define CTMCs.

Event State Change Event Rate
Infection (−1, 1) It · βSt

N−1

Removal (0,−1) Itγ

Table 2.1: State changes and event rates for the SIR CTMC.

2.1.1 Simulation
Equations (2.3) and (2.4) describe the time until the next event and the probability of
each event occurring; this gives a natural way of simulating CTMCs called the stochastic
simulation algorithm2 (SSA) [45, 46]. Algorithm 1 details the SSA, the output of which can
be used to reconstruct a full realisation within a given time interval. The computational
complexity of the SSA is linearly dependent on the number of events that occur within
the simulation. Consequently, simulation of CTMCs with consistently large event rates
can be computationally expensive, a fact that will be salient throughout this thesis3 [49].

2.2 Continuous Time Branching Processes
Continuous time branching processes (CTBPs) are a special class of CTMCs that have
useful properties that can be leveraged to analyse them more easily than a general CTMC.
For a CTBP {zt}t≥0 the ith element of the state vector [zt]i represents the population of
agents of type i. In particular, for a model with r different types of agents the state space
is4

S = Nr.

2This algorithm is also referred to as the Doob—Gillespie method.
3It must me noted that other methods of exact CTMC simulation have been developed. In some cases

these method are faster than the SSA [47, 48]. However, these methods are still poorly suited to cases
with fast growing agent populations (the focus of this work).

4Here and throughout this thesis we are using the convention that the natural numbers include zero.
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Algorithm 1 Stochastic Simulation Algorithm
Input: Initial State z0, time horizon T , event rates aj(.) and state changes ei.

1: Set i← 0, t0 ← 0, s← TRUE.
2: while s = TRUE do
3: Calculate the rates for each of the E events

aj ← aj(zi), j = 1, 2, . . . , E.

4: Calculate rate parameter for holding time

a0 ←
E∑
i=1

aj.

5: Simulate holding time

τ ∼ Exp(a0).

6: if ti + τ < T then
7: Simulate event

k ∼ Categorical
(
a1
a0

,
a2
a0

, . . . ,
aE
a0

)
.

8: Update State

zi+1 ← zi + ek.

9: Update time ti+1 ← ti + τ .
10: Update index i← i+ 1.
11: else
12: s← FALSE
13: end if
14: end while
Output: Times {tℓ}iℓ=0, states {zℓ}iℓ=0.
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For CTBPs, events only occur upon the death of an agent, meaning to align with the
properties of a CTMC each agent type has exponentially distributed lifetimes. The key
property of CTBPs that distinguishes them from general CTMCs is that individual agents
behave independently. Specifically, both the lifetimes of individual agents and the progeny
they produce are independent of all the other agents [50].

We write the rate parameters for the lifetimes of each agent as ω = (ω1, ω2, . . . , ωr).
When an agent of type i dies they produce j1, . . . , jr agents of type 1, . . . , r, respectively,
with probability pi,j. Note here j = (j1, . . . , jr) and is assumed to be fixed and known.
The new agents that are produced are referred to as the progeny of the dying agent.
Consequently, a CTBP can be fully defined by the behaviour of a single agent of each
type. This information is encapsulated with the progeny generating function [50, p. 2–3]

Pi(s) =
∑
j∈Nr

pi,j

r∏
ℓ=1

sjℓℓ , i ∈ {1, . . . , r} ,

where s = (s1, . . . , sr).

Immigration can also be incorporated into CTBPs by modelling the arrival of new
agents as a Poisson process. Immigration rates for agent type i at time t are represented
by [αt]i. In this thesis, we allow the immigration rates to change over time but constrain
them to be piece-wise constant, i.e. only changing at discrete points in time.

2.2.1 Mean and Variance Calculation
Dorman et al. [50, p. 14–22] has derived equations for the mean and variance of a CTBP
with immigration. In this section, we catalogue the salient results for mean and variance
calculation. An important quantity in deriving the mean and variance is the characteristic
matrix

[Ω]ij =

{
ωifij, i ̸= j,

ωi(fij − 1), i = j,
(2.5)

where fij =
∂
∂sj

Pi(1), is the expected number of agents of type j produced from an agent
of type i.

Mean Calculation

Making use of (2.5) we can write the matrix defining the mean of the internal dynamics
as

[F]i,j := E[zi(t+ 1)|zt = uj,αt = 0] = [eΩ]i,j, (2.6)
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where ui ∈ Rr is a vector with 1 in the ith entry and 0 elsewhere, and αt = 0 removes
the effect of immgration. Similarly, assuming a unit rate of immigration, the mean of the
progeny of immigrants throughout a unit time step is

[B]i,j := E[zi(t+ 1)|zt = 0,αt = uj] =

[∫ 1

0

eΩ(1−τ) dτ

]
i,j

. (2.7)

Given the independence between agents, the mean, incorporating both internal and im-
migration dynamics can be written as

E[zt+1|zt] = Fzt + Bαt. (2.8)

Variance Calculation

To define the variance matrix we consider the variance Vi(t) associated with a single
agent of type i at time t

Vi(t) := Var(zt|z0 = ui,αt = 0). (2.9)

It is convenient to define Vec[V(t)] and Vec[C] as the resulting vector when stacking Vi(t)
and Ci for all agent types into one vector. Using this setup we have

Vec[V(t)] =

∫ 1

0

eτΩ ⊗ e(t−τ)Ω∗ ⊗ e(t−τ)Ω∗
dτVec[C],

where ⊗ denotes the Kronecker product, Ω∗ denotes the conjugate transpose, and

Ci := V′
i(0) = ωi

(
Gi + uiuT

i + fifTi − uifTi − fiuT
i

)
,

Gi := HPi
(1) + diag(fi)− fifTi ,

fi := ∇Pi(1),

given HPi
is the Hessian matrix of Pi(s). The variance associated with immigration is

Wi(t) := Var(zt+1|zt = 0,αt = ui). (2.10)

Further, making use of the Vec[.] operator the matrix can be calculated with

Vec[W(t)] =

∫ t

0

(
Vec[V(t− τ)] + e(t−τ)Ω∗ ⊗ e(t−τ)Ω∗Vec[uiuT

i ]
)
dτ,

Since we only make use of unit time steps it is useful to define Vi(1) := Vi and Wi(1) =
Wi. Using the independence of agents the overall variance is

Var(zt+1|zt) =
r∑

i=1

[zt]iVi +
r∑

i=1

[αt]iWi. (2.11)
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2.2.2 Example

For clarity, we consider a simple example of a CTBP. Consider a simple population model
with 2 agent types: adolescents and adults, with counts denoted by z1(t) and z2(t).
Suppose adolescents move into adulthood in an exponentially distributed amount of time
with rate δ, and adults are removed after an exponentially distributed amount of time
with rate µ. Adults produce new children independently as a Poisson process with rate
λ. Since, in this framework, events only occur when agents die this reproduction event
is formally encoded as an adult dying and producing both a child and a new adult. The
progeny generating function for this model is

P1(s) = s2, (2.12a)

P2(s) =
λ

λ+ µ
s1s2 +

µ

λ+ µ
. (2.12b)

The corresponding Ω matrix (2.5) is

Ω =

 −δ δ
λ(λ+ µ)

λ+ µ
(λ+ µ)

(
λ

λ+ µ
− 1

) . (2.13)

For a given set of parameters, we can use (2.8) and (2.11) to derive the mean and variance
matrix of the process at different points in time. Figure 2.1 illustrates how this method
can be used to describe the mean and variance for the model defined above. These
constructions will be useful later in developing approximations of CTBPs that remove
the need for simulation.
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Figure 2.1: Plot showing 100 realisations of the simple population model, with covariance
ellipses for the state of the process at t = 10, 30, 50. Inner ellipses are for 1 standard
deviation and outer ellipses are for 2 standard deviations. The positions and shapes of
ellipses are calculated using (2.8) and (2.11). The red lines show the full realisations, with
the black dots indicating the state of the realisations at t = 10, 30, 50. The parameters
used for simulation were δ = 1/20, µ = 1/70, λ = 2/50 and α = (0, 1)T .

2.3 Bayesian Inference
The term Bayesian owes its origin to the 18th-century mathematician and philosopher
Thomas Bayes, the namesake of Bayes’ theorem

P(X | Y) =
P(Y | X)P(X)

P(Y)
, P(Y) ̸= 0. (2.14)

The framework that evolved from Bayes’ work is now known as Bayesian inference [51]. A
vital concept in Bayesian inference is a subjective interpretation of probability, differing
starkly from the empirical frequentist interpretation. In particular, Bayesian probability
represents the degree of belief of a rational subject and will be dependent on the knowl-
edge/data available to this subject [52]. Consequently, even if an event X in reality has



2.3. Bayesian Inference 15

occurred we can still reason about the probability of X in the context of the belief of a
subject without access to the knowledge that X has occurred. In contrast, a frequentist
may assume X has not occurred and reason about the consequences of this assumption
in relation to our knowledge [53].

This subjective interpretation of probability is particularly useful in quantifying our
knowledge about a parameter θ ∈ Θ, given we have observed some data D. For a fre-
quentist, parameters are a fixed quantity. As a result, inferences would generally centre
around assuming θ satisfies some set of inequalities and detaining how reasonable this
assumption is in the context of the data. In contrast, parameters in the Bayesian frame-
work are interpreted as random variables with distributions dependent on the knowledge
of a subject. This knowledge is encapsulated by the distribution of θ given D, called the
posterior distribution and written as p(θ | D).

In the context of this thesis, the parameters we are interested in generally relate to
the disease dynamics; for example, the mean infection and recovery rate. Parameters
relating to the observation of the disease are also important to this work, including the
case observation probability and mean reporting delay. The data we use to estimate these
parameters is the daily reported case count. In this context, our inferences will take the
form of the posterior distribution of the parameters given the reported case counts.

Using Bayes’ theorem we can decompose the posterior into a likelihood p(D | θ) and
a prior p(θ)

p(θ | D) = p(D | θ)p(θ)
p(D)

=
p(D | θ)p(θ)∫

Θ

p(D | θ̃)p(θ̃) dθ̃
. (2.15)

Calculating the likelihood requires formulation of a model which mathematically describes
the process by which the data is generated [54]. The key challenge in model formulation
is achieving two often directly opposed goals simultaneously: capturing real-world phe-
nomena with sufficient accuracy and maintaining tractability in the likelihood.

The prior describes any information we have before observing our data [54]. While
there is much philosophical debate surrounding priors, in practice they are often used
to represent knowledge that is difficult to quantify mathematically [55]. In particular,
prior inferences will often come from modelling a process that is well understood scien-
tifically. One pertinent example of this scientific prior inference would be the knowledge
from epidemiology relating to the parameters that mediate the spread of disease through
a population. In general, this method of prior construction will be the approach that we
take in this work.
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2.3.1 Markov Chain Monte Carlo
Evaluation of (2.15) can often prove to be prohibitively difficult due to the normalisation
constant

p(D) =
∫
Θ

p(D | θ̃)p(θ̃) dθ̃. (2.16)

This difficulty comes from the required integration of likelihood over the entire parameter
space. For many models, the integral is intractable. Given this difficulty, evaluation of the
normalisation constant is often avoided by leveraging the fact that we can still calculate
the posterior up to proportionality (with respect to θ)

p(θ | D) ∝ p(D | θ)p(θ). (2.17)

In particular, Markov chain Monte Carlo (MCMC) methods use this construction to
design a Markov chain {θt}t∈N with a stationary distribution that is the same as the
posterior distribution [56]. Thus, simulated sample paths from the Markov Chain will
follow the desired posterior distribution as long as the Markov Chain has been simulated
for long enough for convergence to the stationary distribution to have been achieved. Note
that this means that samples simulated before the Markov Chain has converged cannot
be expected to come from the posterior. These samples are called burn-in and should be
removed before conducting any analysis [57]. This brings us to another issue, namely that
for most Markov chain constructions θt and θt+τ will be correlated. Hence, even if the
chain has converged, {θt,θt+1 . . . θT} will not make up a set up independent samples from
p(θ|D) despite the marginal distribution of each individual sample being the posterior. In
practice, this means that samples from our chain will contain less information than a set
of independent samples of the same size. This notion is captured by the effective sample
size statistic [58]

ESS =
n

1 + 2
∞∑
τ=1

ρ̂(τ)

, (2.18)

where ρ̂(τ) is an estimate of cor(θt,θt+τ ). Here the ESS is an estimate of the number of
independent samples that would contain the same amount of information as the correlated
samples from the chain. Consequently, chains with high cor(θt,θt+τ ) will require many
samples to make useful inferences about θ. This fact adds to the many computational
challenges associated with MCMC [57].

There are a wide variety of ways to construct an appropriate Markov chain, however,
due to the complexity of the likelihood the only relevant method for this work is the
Metropolis-Hastings algorithm [59]. The algorithm begins by first sampling θ0 ∈ Θ.
Then to obtain the θt we sample a proposed θ∗

t from some proposal kernel q(θ∗
t |θt−1).
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This proposed sample is then accepted with probability

α(θ∗
t ,θt−1) = min

{
1,

q(θt−1|θ∗
t )p(D|θ∗

t )p(θ
∗
t )

q(θ∗
t |θt−1)p(D|θt−1)p(θt−1)

}
.

If the proposed sample is accepted then θt = θ∗
t otherwise the previous sample is repeated

θt = θt−1. Note that this method requires the exact calculation of the likelihood, however,
this is not possible for many epidemic models. Accordingly, we will instead make use of
the pseudo-marginal Metropolis-Hastings algorithm (pmMH) [60].

Pseudo-Marginal Metropolis-Hastings algorithm

Pseudo-Marginal Metropolis-Hastings only requires us to calculate an unbiased estimate
of the likelihood p̂(θ|D). Moreover, for the epidemic models we are concerned with this
can be achieved using particle filters, which are discussed in the next section [61]. The
pmMH algorithm works very similarly to the standard Metropolis-Hastings algorithm: the
only difference is that p(D|θ∗

t ) is replaced with this unbiased estimate of the likelihood

α(θ∗
t ,θt−1) = min

{
1,

q(θt−1|θ∗
t )p̂(D|θ∗

t )p(θ
∗
t )

q(θ∗
t |θt−1)p̂(D|θt−1)p(θt−1)

}
. (2.19)

It is not immediately obvious that substituting the exact likelihood with an unbiased es-
timate in (2.19) will maintain the distributional accuracy of the resulting chain. However,
as demonstrated by Andrieu et al. [39] the stationary distribution of this Markov chain
will be the target posterior (see Algorithm 2)5. In this thesis, we make use of sequential
Bayesian filtering to generate unbiased likelihood estimates.

2.3.2 Sequential Bayesian Filtering
Branching process models can be formulated as a hidden Markov model (HMM). HMMs
can be written as some Markovian process {zt}t∈N which at each discrete point in time
generates data yt dependant only on zt [62, p. 67–71]

z0 ∼ p(z0), (2.20a)
zt ∼ p(zt | zt−1), (2.20b)
yt ∼ p(yt | zt). (2.20c)

Our data D, therefore, takes the form of an ordered discrete set of observations y1:T =
(y1,y2, . . . ,yT ). In the context of epidemic modelling these observations refer to daily
confirmed cases. The hidden process {zt}Ti=1 corresponds to the observed states of the

5Saving the likelihood in the fashion shown in line 9 is not only more computationally efficient but
also required for the Markov chain to converge to the correct distribution [39].
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Algorithm 2 Pseudo-Marginal Metropolis-Hastings
Input: Starting state θ0, total samples n, unbiased likelihood estimator p̂(D|θ), proposal

distribution q(θ∗|θ).
1: Lcurrent ← p̂(D|θ0)
2: for t ∈ 1 : n do
3: Propose a new sample from the proposal distribution

θ∗
t ∼ q(θ|θt−1)

4: Obtain a likelihood estimate for the proposed sample

Lprop ← p̂(D|θ∗
t )

5: Calculate acceptance probability

α←
{
1,

q(θt−1|θ∗
t )p(θ

∗
t )Lprop

q(θ∗
t |θt−1)p(θt−1)Lcurrent

}
6: Sample u ∼ U(0, 1)
7: if α ≥ u then
8: θt = θ∗

t

9: Lcurrent ← Lprop
10: else
11: θt = θt−1

12: end if
13: end for
Output: Sample path {θt}nt=1
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outbreak e.g. the actual number of infectious/exposed individuals.

Sequential Bayesian filtering allows us to obtain two useful quantities:

• An estimate of the distribution of the states given the data and the parameters
p̂(zt | y1:t,θ). This distribution can be used to estimate the full state and parameter
posterior p(z1:T ,θ | y1:T ).

• An unbiased estimate of the likelihood p̂(y1:T | θ). The data likelihood is used in
(2.19) to estimate the parameters.

The filtering procedure works by using the estimate of p(zt | y1:t,θ) to obtain p(zt+1 |
y1:t,θ) (the predictive distribution) and then using this to find p(zt+1 | y1:t+1,θ) (the
filtering distribution). This step is repeated inductively for t = 1, 2, . . . , T − 1. At each
step of the process we can also estimate p(yt+1 | y1:t,θ) which allows for calculation of
the overall data likelihood p(y1:T ,θ). In the following section, we present the standard
derivation for the general filtering procedure as well as the specific implementation of the
bootstrap particle filter [29].

General Filtering Procedure

For notational convenience, we suppress the dependence of θ. Suppose inductively that
we have some estimate of p(zt | y1:t). Using this, p(zt+1 | y1:t) can be calculated by
integrating Equation (2.20b) over zt

p(zt+1 | y1:t) =

∫
S
p(zt+1 | zt)p(zt | y1:t) dzt, (2.21)

where S is the state space of the process. Next, we calculate the likelihood associated
with yt+1, analytically written as

p(yt+1 | y1:t) =

∫
S
p(yt+1 | zt+1)p(zt+1 | y1:t) dzt+1. (2.22)

The filtering distribution at t+ 1 can then be written as

p(zt+1 | y1:t+1) ∝ p(yt+1 | zt+1)p(zt+1 | y1:t). (2.23)

Equations (2.21), (2.22) and (2.23) can be applied inductively for t ∈ {1, 2, . . . , T − 1},
allowing for the full likelihood to be derived

p(y1:T ) = p(y1)
T−1∏
i=1

p(yt+1 | y1:t). (2.24)
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Note that, the filtering distributions at t ∈ {2, . . . , T} are also derived in this process. For
a CTBP Equation 2.21 can not be computed explicitly as the exact transition density is
intractable for most models [63]. This problem can be overcome with a bootstrap par-
ticle filter. This method makes use of simulation to approximate (2.21), (2.22) and (2.23).

Bootstrap Particle Filter

For the bootstrap particle filter (PF) the filtering and predictive distributions are repre-
sented by a set of n samples

{
z(j)
t

}n

j=1
. These samples are called particles [62, p. 129–165].

In some applications, particles include a weight representing the likelihood of the corre-
sponding sample. For the specific implementation used in this thesis, all samples are
produced in such a way as to have equal likelihood. The starting point for the PF is
a set of samples

{
z(j)
t

}n

j=1
from the filtering distribution at time t. To draw samples

from the predictive distribution (2.21) each z(j)
t is simulated forward one time step giving{

z̃(j)
t+1

}n

j=1
. The predictive distribution can then be estimated

p̂(zt+1 | y1:t) =
1

n

n∑
j=1

δ(zt+1 − z̃(j)
t+1). (2.25)

To approximate Equation (2.23) numerical integration is used by taking the mean of
the observation likelihood over the samples from our predictive distribution.

p̂(yt+1 | y1:t) =
1

n

n∑
j=1

p(yt+1 | z̃
(j)
t+1). (2.26)

The filtering distribution (2.23) is approximated by resampling the particle from the
predictive distribution based on their likelihood given the observed data at t + 1. In
particular, each particle is assigned a normalised weight

w(j) =
p(yt+1 | z̃

(j)
t+1)∑n

i=1 p(yt+1 | z̃
(i)
t+1)

. (2.27)

Samples from the filtering distribution can be obtained by independently sampling n in-
dices

{
ajt+1

}n
i=1

from a discrete distribution over {1, 2, . . . , n} with PMF (w(1), w(2), . . . , w(n)).
These resampling indices correspond to the selected samples meaning{

z(j)
t+1

}n

j=1
=

{
z̃(ajt+1)

t+1

}n

j=1
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is from the filtering distribution. The above procedure can then be repeated for t ∈
{1, 2, . . . , T − 1}. The overall data likelihood (2.24) can then be estimated

p̂(y1:T ) = p̂(y1)
T−1∏
i=1

p̂(yt+1 | y1:t). (2.28)

At this stage, we must note that this method will require a significant amount of
forward simulation of the CTBP. Moreover, exact forward simulation of a CTBP has
time complexity O(E), where E is the total number of events that occur [40]. Hence, once
agent counts get very large, the forward simulation becomes very slow. This motivates
the derivation of an approximation in Chapter 3 which allows us to analytically solve
Equations (2.21), (2.22) and (2.23), for these time steps where many events are expected
to occur.

Backwards Smoothing

In modelling contexts where state estimates are important, the goal is to obtain the
smoothed distributions p(zt | y1:T ) for each time step. The bootstrap particle filter only
obtains the filtering distributions p(zt | y1:t). Since smoothed distributions are based on
the full data-set, rather than the data up to t, they provide a better estimate of the state.
In general, this is done by inductively solving/estimating

p(zt | θ,y1:T ) =

∫
S
p(zt | zt+1)p(zt+1 | θ,y1:T ) dzt+1, t ∈ {T − 1, . . . , 2, 1} . (2.29)

The starting point of the induction is p(zT | θ,y1:T ). For the bootstrap particle filter,
(2.29) can be estimated numerically. A sample

{
ẑ(j)
t+1

}N

j=1
from p(zt+1 | θ,y1:T ) is obtained

inductively from previous steps. If the resampling indices ajt are recorded, then for each
ẑ(j)
t+1 we have the corresponding z(ajt )

t . More clearly, for each ẑ(j)
t+1 we have a sample z(ajt )

t

from p(zt | ẑ(j)
t+1). Given (2.29) the sample

{
z(ajt )
t

}N

j=1
which we write as

{
ẑ(j)
t

}N

j=1
follows

the desired distribution

ẑ(j)
t ∼ p(zt|θ,y1:T ), j = 1, 2, . . . , N.

Thus, starting with the sample from the filtering distribution at t = T , which comes
from the bootstrap particle filter, we can inductively obtain samples from p(zt|θ,y1:T ) for
t = T − 1, T − 2, . . . , 1. In practice, the sampled paths from a single run will be highly
correlated, often having all samples being identical for earlier time steps [62, p. 189–227].
However, as we will in the next section this will be repeated for many sets of parameters
alleviating this issue [64].
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Obtaining Joint State and Parameter Posteriors with pmMH

The joint state and parameter posteriors p(zt,θ|y1:T ) can be sampled from with pmMH,
for t = 1, 2, . . . , T . Note that each time the bootstrap particle filter is used to estimate
the likelihood, backward smoothing can be used to obtain samples from p(zt|θ,y1:T ), for
t = 1, 2, . . . , T . Since

p(zt,θ|y1:T ) ∝ p(zt|θ,y1:T )p(θ|y1:T ),

saving the samples from p(zt|θ,y1:T ) for accepted θ will give samples from the joint
posterior. In practice, it is best to only take one sample from p(zt|θ,y1:T ) for each θ to
ensure each sample is independent [64].

2.4 Epidemic Modelling
2.4.1 Compartmental Models
In this thesis the model of the true disease dynamics {zt}t≥0 will be a compartmental
epidemic model. Compartmental models assign each individual in a population a type
that determines their behaviour. One of the foundational compartmental models for the
spread of infectious disease throughout a population is the susceptible-infectious-removed
(SIR) model [65]. While there are many more complex compartmental epidemics models
SIR serves as a useful introduction. The SIR model partitions individuals into susceptible,
infectious, or removed and then describes the rate at which infectious individuals infect
others and the rate at which they are removed. Susceptible individuals are vulnerable to
infection, infectious individuals can infect others and removed individuals have already
been infected and are thus assumed to be immune. Individuals begin as susceptible, be-
coming infectious after transmission and are eventually removed becoming immune to
future infection.

Although the model was originally formulated as a deterministic model, it can be
easily reformulated as a CTMC, which can more effectively model the inherent variability
present in the early stages of a disease outbreak [66]. For a population of size N the state
space of the CTMC is simply the number of susceptible St and infectious It individuals
in the population

S = {(St, It)|St + It ≤ N,St ∈ N, It ∈ N} .

The SIR model assumes homogeneous mixing, meaning all individuals interact equally
with each other, hence, individuals that an infectious individual interacts with are sam-
pled randomly and uniformly from the population. An infectious contact refers to an
interaction that would cause transmission of the disease if one individual is infectious
and the other is susceptible. For a single infectious individual, infectious contacts are
modelled as a Poisson process with rate β. Consequently, the rate of infection, for a
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single infectious individual is simply β multiplied by the probability of interacting with a
susceptible individual. Thus, the overall rate of infection is

a1((St, It)) = It ·
βSt

N − 1
.

Infectious individuals are assumed to be removed6 at a rate of γ, which assumes an ex-
ponentially distributed infectious period with mean 1/γ. Table 2.2 shows the CTMC
formulation of the SIR model.

Event State Change Event Rate
Infection (−1, 1) It · βSt

N−1

Removal (0,−1) Itγ

Table 2.2: State changes and event rates for the SIR CTMC.

An important parameter that can be derived from these models is the basic reproduc-
tion number R0, which is the mean number of secondary infections one infected person
will cause, where all other individuals are susceptible to infection. Calculation of R0 is
crucial as it determines whether an outbreak is likely to die out or spread throughout
the population [44, 67]. In particular, if R0 > 1 the disease will likely have a sustained
spread throughout the population and infect a significant proportion of the population.
However, if R0 < 1 the disease is likely to be eliminated quickly without infecting a large
proportion of the population [68]. For the SIR model, assuming all individuals are sus-
ceptible, infections caused by an infectious individual are simply a Poisson process with
rate β which continues for the duration of the infectious period thus

R0 = E[iτ ] , i|τ ∼ Pois(βτ), τ ∼ Exp(γ),

where τ is the length of the infectious period and i is the number of infections caused.
Hence, for the SIR model, the basic reproduction number is

R0 =
β

γ

While the SIR model is very simplistic, the more complex compartmental epidemic models
that we make use of in this thesis operate in the same basic framework. One extension
we make use of is the SE(n)I(m)R model [69, 70]. This model includes a latent period
where infected individuals are not infectious for a period of time after their infection.
Another key feature of this model is shown in Figure 2.2, this being the multiple stages

6In this context removal refers to death or recovery.



24 Chapter 2. Technical Background

for the infectious and latent period. Consequently, the latent and infectious periods have
generalised Erlang distributions [71]. This flexibility is important as the exponential
distribution tends to be a poor fit for infectious and latent periods observed in the real
world [69]. The key feature that makes an exponential distribution, assumed by the SIR
model, a poor fit to the real-world data is the memoryless property, something we certainly
would not expect for an infectious or latent period.

E1

S

. . . En I1 . . . Im

R

Figure 2.2: States of an individual for the SE(n)I(m)R model. Red states are infectious
and will produce new agents of type E1.

2.4.2 Branching Process Approximations
The SIR model variants are not CTBPs since the infection rate for an individual agent
is dependent on the proportion of susceptible people in the population. During the early
phases of an outbreak when the vast majority of the population is susceptible this ratio
is close to 1

St

N − 1
≈ 1, (2.30)

making the rate of infection for an individual infectious person approximately β, removing
the dependence on other agents [63]. Table 2.3 shows the formulation of the branching
process approximation of the SIR model. Similar approximations can be made for the
more complex variants of the SIR model making use of (2.30) to remove the inter-agent
dependence.

Ball and Donnelly [72] has shown strong convergence of these types of branching
process approximations to their corresponding CTMC models for large susceptible pop-
ulations. As a result, it may be reasonable to use a branching process approximation
during the early phases of an outbreak when a very small proportion of the population is
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infected or recovered. Figure 2.3 illustrates this phenomenon. In the early phases of the
outbreak (when the vast majority of the population is susceptible) the branching process
approximation corresponds closely with the SIR model. However, as more of the popula-
tion becomes non-susceptible the branching process approximation becomes less accurate.

Making these types of approximations can be useful since CTBPs are simpler and
easier to analyse. In particular, exact analytical calculation of the mean and variance of
zt+1|zt is far easier for a CTBP (see Section 2.2.1) than a general CTMC.

Event Rate (SIR model) Rate (CTBP Approximation)
Infection It · βSt

N−1
Itβ

Recovery Itγ Itγ

Table 2.3: Table comparing the event rates for the SIR model and the CTBP approxima-
tion.

The branching process model only has one agent type: infectious individual. Thus,
the progeny generating function is simply

P (s) =
β

β + γ
s2 +

γ

β + γ
. (2.31)

Furthermore, the corresponding Ω is a 1× 1 matrix

Ω =
[
β − γ

]
. (2.32)
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Figure 2.3: Plot showing 100 simulations of the standard SIR model and the branching
process approximation. Solid lines show sample paths and dashed lines show the means
of the respective simulations. The parameters used for the simulations were β = 0.02,
γ = 0.01 and N = 1000.



Chapter 3

Inference for Partially Observed
Continuous Time Branching
Processes

In this section, we consider the problem of inference for continuous time multitype branch-
ing processes (CTBPs) with partial observation. In particular, we develop an algorithm
for state and parameter estimation. The algorithm avoids the computational cost of stan-
dard sequential Monte Carlo methods, by exploiting a near-Gaussian property of some
components of CTBPs. Essentially the method we propose is an approximation of the
bootstrap particle filter. This work is motivated by the specific goal of this project:
multi-population early-phase epidemic modelling. However, the method described here
can be applied to any multi-type branching process. As a result, we describe our inference
method concerning a general branching process model.

3.1 Hidden Markov Models
Here we describe the set of models to which our inference method is applicable too. Con-
sider a hidden Markov model, where the dynamic hidden process is a CTBP {zt}t≥0, with
the immigration, as described in Section 2.2. In general, this method can accommodate
a Gaussian observation process of the form

yt | zt ∼ N (Hzt,Rt), (3.1)

where yt is column vector of size d, H is a d × r matrix & Rt is a d × d matrix. In this
thesis, the data we observe is generally discrete, consequently, this observation process
represents an approximation. In Section 3.2.3 we see that this approximation is necessary.
Additionally, exact observation of Hzt can also be incorporated by setting Rt to the d×d
zero matrix. In this case, the observation distribution has Dirac delta density centred at

27
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Hzt. In practice our method assumes (3.1) meaning for the results to be accurate (3.1)
must be reasonably close to the true observation process.

This formulation appears restrictive, in that the observation noise Rt is not state-
dependent. In the context of an epidemic model, we would expect the variance in the
observation of reported cases to increase as the number of real cases increases. However,
as we will see in Section 3.1.1 this issue can be avoided by modelling part of the observa-
tion process in the CTBP.

3.1.1 Example
For clarity, we begin with a simple example of the type of problem we are interested
in. Consider a simple population model with 4 agent types, two of these representing
actual individuals: adolescents & adults, with counts denoted by z1(t) & z2(t). The
other two agent types are event counters for partially observed births & deaths, with
counts denoted by z3(t) & z4(t). Suppose adolescents move into adulthood, and adults
die after an exponentially distributed amount of time with rates δ & µ, respectively.
Adults produce new children independently as a Poisson process with rate λ. Moreover,
reproduction events will produce a birth counter agent with probability p1 and death
events will produce a death counter agent with probability p2. The progeny-generating
function is

P1(s) = s2,

P2(s) =
(1− p1)λ

λ+ µ
s1s2 +

p1λ

λ+ µ
s1s2s3 +

(1− p2)µ

λ+ µ
+

p2µ

λ+ µ
s4,

P3(s) = s3,

P4(s) = s4.

The corresponding Ω (see Equation (2.5) for details) is

Ω =


−δ δ 0 0

λ(λ+µ)
λ+µ

(λ+ µ)
(

λ
λ+µ
− 1
)

λp1(λ+µ)
λ+µ

µp2(λ+µ)
λ+µ

0 0 0 0
0 0 0 0

 . (3.3)

Section 2.2.1 includes results from Dorman et al. [50, p. 17–22] showing how this matrix
can be used to determine the mean and variance of the progeny produced by a single agent
of a given type, at a fixed time, which will be important in approximating the branching
process.
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Suppose adolescents & adults also immigrate independently as Poisson processes with
rates α1 & α2 respectively. Section 2.2.1 also gives the mean and variance of the progeny
of immigrants over a time-step.

The observation process represents daily case counts rather than cumulative counts.
Hence, we will generally set z3(t) & z4(t) to zero at the beginning of each time step.
Thus, z3(t) & z4(t) would represent new daily observed cases. In particular, z3(t) and
z4(t) are binomial observation processes of the birth and death events. This technique
allows for state-dependent observation noise, without explicitly including it in the obser-
vation model.

Implicitly we have aligned time units with the observation frequency, hence we can
write our data as y1:t := {ys}

t
s=1. Recall z3(t) & z4(t) refer to counts of observed births

and deaths, however in some cases, we may want to add some extra noise to the data
model that is not accounted for by partial observation. This extra noise can be modelled
with multivariate Gaussian distribution

yt | zt ∼ N

[0 0 1 0
0 0 0 1

]
z1(t)
z2(t)
z3(t)
z4(t)

 ,

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

] . (3.4)

Further, σ2
1 & σ2

2 represent the variance in the observation of births & deaths, respectively
and we can also allow for a correlation in the observation with ρ > 0. Putting this together,
the set of parameters for this toy model is

θ := (λ, µ, δ, α1, α2, p1, p2, σ
2
1, σ

2
1, ρ).

Our goal is then to infer the parameters θ and the states {zt}Tt=1 given the data set
{yt}

T
t=1.

3.2 Sequential Bayesian Filtering Equations
As described in Chapter 2, we are interested in using the MCMC method to estimate
model parameters θ. In this context, the purpose of the sequential Bayesian filtering
procedure is to estimate the likelihood p̂(y1:T |θ) and the marginal distribution of the
states given the data and parameters p̂(zt|y1:t,θ). As discussed in Chapter 2 this goal
can be achieved by solving
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p(zt+1 | y1:t) =

∫
S
p(zt+1 | zt)p(zt | y1:t) dzt, (3.5)

p(yt+1 | y1:t) =

∫
S
p(yt+1 | zt+1)p(zt+1 | y1:t) dzt+1, (3.6)

p(zt+1 | y1:t+1) ∝ p(yt+1 | zt+1)p(zt+1 | y1:t), (3.7)
for t = 1, . . . T − 1 and

p(y1:T ) = p(y1)
T−1∏
i=1

p(yt+1 | y1:t). (3.8)

Aside from the simplest of CTBPs, the transition density p(zt+1 | zt) is not tractable [50].
As a result, the bootstrap particle filter (PF)1 is often used. This method numerically
estimates (3.5), (3.6) & (3.7) by simulating instances of p(zt+1 | zt) using the SSA [62,
p. 129–165].

As discussed in Section 2.3.2, the SSA can become computationally expensive as the
number of events increases. For a CTBP the rate that events occur is linearly dependent
on the number of agents [50]. Hence, once agent counts get very large, forward simulation
becomes very slow and the PF becomes infeasible. This problem is compounded as we
intend to use the PF as part of the pmMH scheme, which requires repeated application
of the PF. This issue motivates the method we develop in this chapter. In particular, we
make use of an asymptotically valid approximation for the transition density and use this
to analytically solve (3.5), (3.6) and (3.7), avoiding any simulation.

3.2.1 Approximation of the Transition Density
We turn our focus to Equation (3.5), in particular the state transition density p(zt+1 | zt).
For a CTBP the transition density is discrete since the state space Nr is discrete. In
this section, we approximate this state space with its continuous analogue in Rr. Since
zt+1 is simply the sum of the progeny of each agent at time t and the progeny evolve
independently, a central limit argument approximation can be used [73, p. 82–88]. If each
[zt]i is sufficiently large for all i = 1, . . . , r, then

zt+1 | zt ∼̇ N (mt(zt), vt(zt)), (3.9)
where mt(zt) and vt(zt) are the mean and variance respectively, given by

mt(zt) := E[zt+1 | zt] = Fzt + Bαt, (3.10)

vt(zt) := Var(zt+1 | zt) =
r∑

i=1

[zt]iVi +
r∑

i=1

[αt]iWi, (3.11)

1The bootstrap particle filter is discussed in more detail in Section 2.3.2.
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where F, B, Vi and Wi are fixed, computable r × r matrices (see Section 2.2.1 for
definition & calculation). Recall that αt is the vector immigration rates for each agent
type over the time interval [t, t+ 1)

3.2.2 Approximation of Predictive Distribution
Our goal in this section is to derive a Gaussian approximation of the predictive distribution
p(zt+1 | y1:t), assuming that (3.9) holds at time t. A second goal is to identify the
conditions under which the Gaussian approximation holds. For convenience let µn|m and
Σn|m denote the mean and variance of the state at time n given data upto time m. We
begin by deriving the mean and variance of the predictive distribution

µt+1|t = E[zt+1 | y1:t] = Fµt|t + Bαt (3.12)

and variance

Σt+1|t = Var(zt+1 | y1:t) = FΣt|tFT + vt(µt|t). (3.13)

Making use of Equation (3.9), for sufficiently large [zt]i, for i = 1, . . . , r we can rewrite
Equation (3.7) as

p(zt+1 | y1:t) ≈
∫
S
ϕ(zt+1;mt(zt), vt(zt))p(zt | y1:t) dzt, (3.14)

where ϕ(x;µ,Σ) denotes the pdf of a multivariate Gaussian distribution with mean µ
and variance Σ, evaluated at x. Equation (3.14) furthers our goal of analytical evaluation
of this integral. However, what we would like to say is that this whole integral reduces to
a Gaussian density.

The main obstacle in formulating a Gaussian approximation of the predictive distri-
bution is that the variance of the state transitions vt(zt) is state dependent. In particular,
if the vt(zt) differs significantly across samples from zt | y1:t then the distribution can
become highly skewed. However, when this state dependence is inconsequential this issue
is mitigated. The severity of the state dependence is modulated by the relative size of
[zt]i compared with [Σt|t]

1
2
i,i. To see this effect, consider the variance of a sample from the

filtering distribution at z(j)(t) ∼ zt | y1:t,

vt(z
(j)(t)) = vt(zt|t + ϵj)

=
r∑

i=1

[µt|t]iVi +
r∑

i=1

[αt]iWi +
r∑

i=1

[ϵj]iVi

≈ vt(µt|t),
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when

[µt|t]i ≫ |[ϵj]i|, ∀i ∈ {1, 2, . . . , r} . (3.15)

The size of |[ϵj]i| is influenced by [Σt|t]
1
2
i,i, meaning the approximation will work best

when the mean of the filtering distribution is significantly larger than the correspond-
ing element-wise standard deviation. Figure 3.1 illustrates this phenomenon; when µt|t is
small the difference between the variance transition densities is significant making the real
predictive distribution skewed. However, when µt|t is large these differences are less sig-
nificant and the predictive distribution is well approximated with a Gaussian distribution.

Given these conditions are sufficiently well met the transition density in the integrand
of (3.14) becomes

ϕ(zt+1;mt(zt), vt(zt)) ≈ ϕ(zt+1;mt(zt), vt(µt|t)). (3.16)

Given this, we can write the predictive distribution as a sum of a Gaussian random
variable and an affine transformation of a sample from the filtering distribution at t

zt+1 | y1:t = N (0, vt(µt|t)) +mt(z(j)
t ), z(j)

t ∼ p(zt | y1:t). (3.17)

Equation (3.17) is valid whenever (3.15) holds, illustrating how the predictive distributions
can become approximately Gaussian. Note that if p(zt | y1:t) is Gaussian the predictive
distribution becomes Gaussian. Consequentially, all the proceeding predictive and fil-
tering distributions are also Gaussian. This explains why these predictive and filtering
distributions appear Gaussian in our simulation studies as µt|t gets larger (Section 3.3).
Replacing mt(zt) and vt(zt) with the notation introduced before (3.14), we obtain the
Gaussian predictive distribution

zt+1 | y1:t
·∼ N (µt+1|t,Σt+1|t). (3.18)
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(a) µt|t = 5, σt|t = 5

(b) µt|t = 20, σt|t = 5

Figure 3.1: Illustrative, plots comparing the Gaussian approximation of the predictive
distribution p(zt+1 | y1:t,θ) with the real distribution, with a small (a) and large (b)
posterior mean at t. Here, the black shaded curves represent the transition densities for
each of the samples form zt | y1:t,θ. The samples at t are drawn from an exponential
distribution and the transition density is assumed to be Gaussian.
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3.2.3 Filtering Distribution
Assume the Gaussian approximation (3.18) is satisfied, and consider the observation pro-
cess given in (3.1) we can write the filtering distribution as

p(zt+1 | y1:t+1) ∝ ϕ(zt+1;µt+1|t,Σt+1|t)ϕ(y1:t+1;Hzt+1,Rt+1)

which is identical to the filtering step of a standard Kalman Filter (see Appendix 6),
meaning

p(zt+1 | y1:t+1) = ϕ(zt+1;µt+1|t+1,Σt+1|t+1), (3.19)

where

Kt := Σt+1|tH(HΣt+1|tHT + Rt+1)
−1, (3.20)

µt+1|t+1 = µt+1|t + Kt(yt+1 −Hµt+1|t), (3.21)
Σt+1|t+1 = (I−KtH)Σt+1|t. (3.22)

This brings us to the marginal likelihood calculation (3.6) which will also reduce to a
Gaussian density

p(yt+1 | y1:t) = ϕ(yt+1;µt+1|t,Σt+1|t). (3.23)

These equations constitute one step of the Gaussian approximation, moving from time t
to t+ 1.

3.2.4 Switching between Filtering Methods
In this section, we introduce a method that, based on a thresholding step from (3.15),
adaptively chooses whether to use the Gaussian approximation or the PF based on the
estimated agent count at each observation time. The derivation in Section 3.2.3 rests on
(3.1) holding at time t + 1 and (3.9) and (3.16) holding at time t. Equation (3.9) will
not hold in many common modelling situations, in particular in the early phases of some
epidemic models, where the agent count is low, so the generic situation is one in which
we begin filtering with a PF and later switch to a Gaussian filter.

We define the set T as the set of time steps where these assumptions are all reasonable.
Meaning, if t ∈ T we can derive the filtering distribution and likelihood estimate for
t using the Gaussian approximation. We discuss practical estimation of T later (see
Equations (3.28) and (3.29)). Suppose τ ̸∈ T but τ +1 ∈ T , meaning we want to use the
Gaussian approximation to obtain posteriors and likelihoods for t = τ + 1 but we used a
PF for t = τ . In this case our state posterior for t exists in the form of a set of samples
{z(1)(τ), . . . , z(n)(τ)} from zt | y1:t. To make use of the Gaussian approximation for the
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next step we simply obtain an unbiased estimate of the mean and variance of our state
posterior for t = τ

µ̂τ |τ :=
1

n

n∑
k=1

z(k)(τ), Σ̂τ |τ :=
1

n− 1

n∑
k=1

(z(k)
τ − µ̂τ |τ )(z(k)

τ − µ̂τ |τ )
T , (3.24)

p(zτ |y1:τ ) = ϕ(zτ ; µ̂τ |τ , Σ̂τ |τ ) (3.25)

Given this Gaussian density, we can use the method described in Section 3.2.2 to solve
Equations (3.7) and (3.6), producing the necessary state and likelihood estimates for
t = τ + 1. More rarely, we may want to switch from the Gaussian approximation to
the PF, and in this case, we can simply draw n rounded and censored samples from
N (µτ |τ ,Στ |τ ), assign them equal weights, and continue with the PF. Finally, we have
fully defined the Gaussian approximation allowing us to specify the last of our filtering
equations

p(y1:T | θ) = p(y1 | θ)
∏
t∈T

ϕ(yt;µt|t−1,Σt|t−1)
∏

t∈{1,2,...,T}\T

p̂(yt | y1:t−1), (3.26)

where p̂(yt | y1:t−1) is the likelihood estimate obtained from the tth step of the PF (2.26)
[62, p. 129–165]. We summarise the Gaussian approximation algorithm in Algorithm 3.

Defining which time steps to use the PF and the Gaussian approximation is a trade-off
between computational time and accuracy. The time complexity of a single step of the
Gaussian filter is independent of the number of samples being used and the total agent
population, unlike the PF. Thus, the overall time complexity of the Gaussian approxima-
tion (as a function of the total number of events) is well approximated by the complexity
of the steps when the PF is employed

O

(
n
∑
t∈T

Et

)
,

where n is the total number of PF samples and Et is the number of events that occur over
the interval [t−1, t]. Consider that, Et is highly correlated with the total number of agents
at time t, a quality which modulates the accuracy of Equation (3.9). Further, the variance
in the likelihood estimate will also be lower if the Gaussian approximation is used more
often, as no simulation is taking place during these steps. This effect is of great impor-
tance when using this method as part of a pseudo-Marginal Metropolis-Hastings scheme,
where lower variance estimators improve the mixing of chain up to a point [74, 61]. In
practice, the n required to obtain sufficiently low variance in the likelihood estimate will
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Algorithm 3
Gaussian approximation for obtaining a likelihood estimate and state posterior distribu-
tion. Here the function PF(.) denotes a single step of the bootstrap particle filter with
resampling [62, p. 129–165].
Input: Observations y1:T , parameters θ.

Sample Z0 ∼ p(z0 | θ).
Initialise log-likelihood ℓ← 0.
for t+ 1 ∈ {1, 2, . . . , T − 1} do

if t ∈ T then
if t ̸∈ T then

Calculate mean µt|t and covariance estimate Σt|t with (3.24).
end if
Update µt+1|t and Σt+1|t with (3.12) and (3.13).
Update µt+1|t+1 and Σt+1|t+1 with (3.20) and (3.22).
Update ℓ with (3.23) in log form.

else
if t ∈ T then

Sample Zt ∼ N (µt|t,Σt|t).
end if
Zt+1, ℓ← PF(Z,yt+1, ℓ).

end if
end for

Output: The log-likelihood ℓ, the filtering distribution means
{
µt|t
}
t∈T and variances{

Σt|t
}
t∈T and the filtering distribution samples {Zt}t∈T c .
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be lower for a switching criterion that uses the Gaussian approximation more often.

At any given time we have access to state estimate Zt−1, from the previous step and
the observation yt from the current step. Hence, we will define a switching criterion A as
an indicator function of these quantities

T := {t ∈ 1, 2, . . . , T : A(Zt,yt) = 1} . (3.27)

The simplest way of defining A is based on the observed data as this can give insight into
where we expect the agent counts to be at any given time

A(Zt−1,yt) =

{
1, f(yt) ≥ s,

0, f(yt) < s.
(3.28)

for a threshold s. This rule is convenient as T can be derived before running the filter,
making the computational time easy to estimate. A more justified way of defining A
based on the smallest component of the mean of the state estimate at t

A(Zt−1,yt) =

{
1, min(E[Zt]) ≥ s,

0, min(E[Zt]) < s.
(3.29)

This rule is more justified as it is more closely related to our assumptions in Section 3.2.2.
However, making A dependent on state estimates could cause issues if the Gaussian ap-
proximation is significantly biased in the calculation of the likelihood, as this could cause
certain state estimates to be artificially favoured.

In modelling contexts where agent counts are high for a large portion of the time
series, it may be reasonable to use Gaussian approximation throughout the entire time
series (Section 3.3.2), setting s = 0. Using the Gaussian approximation at every time step
gives a likelihood estimate with zero variance, which can greatly improve the efficiency
of the chain [61]. Consequently, this protocol can be used for more complex parameter
estimation problems.

3.2.5 Smoothed State Estimates
To obtain a likelihood estimate that can be used for pmMC we only need to obtain the
filtering distribution at each time step p(zt | y1:t,θ). In modelling contexts where state
estimates are important, the goal is to obtain the smoothed distributions p(zt | y1:T ,θ)
for each time step. Since smoothed distributions are based on the full data-set, rather
than the data up to t, they provide a better estimate of the state. Fortunately, smoothed
distributions can be obtained from the output of the Gaussian approximation. For t ∈
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T the filtering distributions are Gaussian meaning we can step backwards through the
estimates using the Rauch-Tung-Striebel smoother [29]. For t ̸∈ T , we need to keep track
of the resampling indexes and update the particle weights stepping backwards through
time (see Section 2.3.2). This means that we can also obtain posteriors for the states
using the Gaussian approximation.

3.3 Results
In this section we will compare the efficiency, state estimates and parameter estimates
produced by the PF and Gaussian approximation for various thresholds. The PF gives dis-
tributionally accurate state and parameter estimates. Hence, the Gaussian approximation
can be validated by comparing its estimates with those produced by the PF. The purpose
of the Gaussian approximation is to produce a faster alternative to the PF with mini-
mal losses in accuracy. The following results illustrate the degree to which this purpose
is achieved. In Sections 3.3.1 and 3.3.2 we used simulated data from branching process
approximations of the SEIR (Susceptible-Infectious-Recovered) and SE(2)I(2)R epidemic
models [64]. Section 3.3.3 uses real data from the Second COVID-19 Wave in Victoria,
Australia.

3.3.1 SEIR Branching Process
For the SEIR model branching process the state of our process at a given time is zt =
(E(t), I(t), C(t)), these elements representing the number of exposed, infected and ob-
served symptom onset events respectively. Table 3.1 describes the event rates and corre-
sponding state updates. Note that, symptom onset events correspond to observed symp-
toms onset events with probability p.

Event State Update BP Rate
Infection (1, 0, 0) βz2

Symptoms onset (observed) (−1, 1, 1) pδz1

Symptoms onset (unobserved) (−1, 1, 0) (1− p)δz1

Removal (0, 0,−1) λz2

Exposed Immigration (1, 0, 0) α1

Infectious Immigration (0, 1, 0) α2

Table 3.1: Table of events and rates for the SEIR branching process approximation

We assume our data, yt, consists of the number of observed symptom onset events
over the period (t− 1, t], with Gaussian noise

p(yt | zt) = N (C∗(t), σ2) (3.30)
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Note that since we are only focused on errors associated with the newly observed symp-
tom onset events we need to define a new variable C∗(t) = C(t)− C(t− 1), representing
the new cases for the day. The observation variance, σ2, can be interpreted as extra
noise associated with data collection, aside from the binomial observation of symptomatic
onsets. Additionally, this variance can act as a regularisation parameter.

To generate, y1:T we simply fix parameters (values given in Table 3.2) and simulate
from our branching process model using the SSA, drawing an observation at each time
step (see Figure 3.2). In particular, we choose a slow-growing epidemic with a basic re-
production number of 1.2, an initial state of 0 and a low immigration rate. This setup
leads to a large portion of the time series having a low agent population, hence probing
the worst-case scenario for the Gaussian approximation.

Figure 3.2: Plot of observed cases produced from SEIR simulation.

To analyse the Gaussian approximation accuracy, we fix the parameters θ at the val-
ues used for simulation and compare filtering distributions at different points in the time
series. We use the switching criteria from Equation (3.29) with thresholds of 0, 20 and∞
(note that s =∞ is a bootstrap particle filter which will give the distributionally correct
estimates of filtering distribution). Figure 3.3, shows that as agent counts become larger,
the Gaussian approximation becomes more accurate, consistent with our analysis in Sec-
tions 3.2.1 and 3.2.2. For t = 8 the s = 20 method and PF are identical as the switch
has not occurred, however, the s = 0 method is capturing the mean and variance but
fails to capture the shape of the distribution. Moving to t = 35, we can see that the PF
looks significantly more Gaussian but still with some skew, moreover, the s = 20 method
and s = 0 method are similar but the former appears to be a better approximation of the
PF. At t = 50, all 3 methods are very similar. The positive skew of the early filtering
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distributions is a result of the censoring of agent counts at zero. As a result, this skew is
reduced as the filtering distributions move further from zero.

Figure 3.3 also indicates that methods using the Gaussian approximation more often
give slightly lower estimates for the agent counts. We suspect this effect is caused by
not accounting for the skew in the filtering distributions. In particular, the mean and
variance of the predictive distribution are correct, however, when calculating the mean of
the filtering distribution we assume is predictive distribution is Gaussian. Since the real
predictive distribution is generally positively skewed, this assumption may cause a system-
atic error in which the means of the filtering distributions are systemically underestimated.

To examine the accuracy of the parameter estimation we conduct pmMH on our
simulated data using the Gaussian approximation at thresholds of s = 0, 10, 20 and ∞
and compare the posteriors for the parameters. Figure 3.4 shows the posteriors for R0,
illustrating the importance of using the PF for time steps with low agent populations.
As expected, increasing the threshold produces an increase in accuracy. Specifically, it
appears that lower thresholds lead to lower estimates for R0. This underestimation is
likely caused by the aforementioned systematic agent count underestimation.

Other parameters were estimated (see Table 3.2), however, the data is not very infor-
mative meaning estimates for all methods were visually indistinguishable. Moreover, we
see a similar pattern of results for joint posteriors of R0 and TE (see Figure 3.5).

Figure 3.6 illustrates the relationship between computation time and the log-likelihood
variance for different switching thresholds. For each threshold we simulate 1000 runs, cal-
culate the sample variance and the time taken for each run, repeating this for different
numbers of samples. The box plots represent the sample of observed computation times
for that number of samples and methods. From these results, it is clear that reduc-
ing the threshold can significantly reduce both computation time and the variance of
the likelihood estimate. These effects together lead to an overall increase in the efficiency
of the pmMH, meaning less time is needed to estimate posteriors to a sufficient detail [61].
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Parameter True value Prior Standard Formulation
Basic reproduction number (R0) 1.2 Gamma(4.4, 2) R0 = β/λ

Mean latency period (TE) 5 Gamma(100, 20) TE = 1/δ
Mean infectious period (TI) 14 Gamma(30, 2) TE = 1/λ

Immigration rate (α) (0.5, 0.5)T fixed -
Observation probability (p) 0.8 fixed -
Observation variance (σ2) 1 fixed -

Initial State (z0) (0, 0, 0)T fixed -

Table 3.2: Parameters and priors used for SEIR simulation study.
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Figure 3.3: Filtering distributions for z2(t) for t = 8, 35, 50 using the PF and Gaussian
approximation for s = 0, 20.
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Figure 3.4: Plot of kernel density estimates of the marginal posterior for R0. Dashed lines
indicate the posterior mean. Here the dashed line represents the corresponding posterior
mean. As expected from our analysis, all methods produce similar estimates, with the
higher thresholds being accurate (closer to the estimate produced by the PF).
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Figure 3.5: Comparisons of the joint posterior p(R0, TI |y1:T ) produced by the PF with
each of the Gaussian approximation estimates. The PF posteriors are represented by
the contours of the kernel density estimate (KDE), while the Gaussian approximation
posterior are shown as samples.
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Figure 3.6: Box plot comparing the computational time and variance of the log-likelihood
estimates produced by the Gaussian approximation at different thresholds.

3.3.2 SE(2)I(2)R Branching Process

In this section, we repeat the experiment described in Section 3.3.1 but instead with the
more complex SE(2)I(2)R model. The state vector is zt = (E1(t), E2(t), I1(t), I2(t), C(t)),
with Ei(t) and Ii(t) being the number of exposed and infectious individuals in stage i
at time t. Here we have 2 stages for the exposed and infectious states, this allows for
non-exponentially distributed latent and infectious periods [69, 70]. Given this, Table
3.3 describes the model dynamics. Again, our observations correspond to symptom onset
events with probability p. As before, we use the observation distribution defined in (3.30).

For this simulation, we have a much higher R0 and a large starting exposed and infec-
tious population as well as an intervention that reduces the rate of infection by a factor
of q at t = tq causing the case count to lower significantly (See Table 3.3). This setup
allows us to examine the other type of switching possible: Gaussian approximation to PF.
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Figure 3.7: Plot of observed cases produced from SE(2)I(2)R simulation used as the data
for this experiment.

As before, we begin with the filtering distributions. It appears that for both early
in the time series (when case counts are high) and late in the time series (when case
counts are lower) the PF is well approximated using Gaussian approximation regardless
of threshold. This then translates to similar results for parameter estimation across all
case thresholds (see Table 3.4, Figure 3.9 and Figure 3.10). Figure 3.11 compares the
computational time and likelihood variance for both methods making use of the same
method, as Figure 3.6. Given the highly accurate parameter estimates and superior per-
formance, these results suggest a use case for setting the threshold to 0 and using the
Gaussian approximation for the entire time series.

It is clear from this experiment that the Gaussian approximation is far more accurate
for this experiment compared with the previous experiment. One reason for this discrep-
ancy is the larger overall case count, which makes the Gaussian approximation perform
better. Additionally, starting from a high agent count and moving to a low agent means
that the largest inaccuracies do not occur at the beginning and thus, do not propagate
throughout the entire time series. Consequently, the systematic underestimation of the
filtering distribution means are far less pronounced.
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Event State Update BP Rate
Infection (1) (1, 0, 0, 0, 0) qtβz1

Infection (2) (1, 0, 0, 0, 0) qtβz2

Exposed1 → Exposed2 (−1, 1, 0, 0, 0) 2δz1

Symptoms onset (observed) (0,−1, 1, 0, 1) 2pδz1

Symptoms onset (unobserved) (0,−1, 1, 0, 0) 2(1− p)δz2

Infectious1 → Infectious2 (0, 0− 1, 1, 0) 2λz3

Recovery (0, 0, 0,−1, 0) 2λz4

Table 3.3: Table of events and rates for the SE(2)I(2)R branching process approximation,
where qt = 1 for t < tq and qt = q otherwise.

Parameter True value Prior Formulation
Basic reproduction number (R0) 3 Gamma(2.5, 0.5) R0 = β/λ

Intervention effect (q) 0.1 Beta(1.1, 1.5) -
Intervention day (tq) 10 Discrete Uniform(1, 30) -

Mean latency period (TE) 6 Gamma(60, 10) TE = 1/δ
Mean infectious period (TI) 12 Gamma(26, 2) TI = 1/λ

Immigration rate (α) (0, 0, 0, 0)T fixed -
Observation probability (p) 0.8 fixed -
Observation variance (σ2) 1 fixed -

Initial State (z0) (30, 30, 30, 30, 0)T fixed -

Table 3.4: Parameters and priors used for SEIR simulation study.
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Figure 3.8: State density estimates of z1(t) | y1:t and z3(t) | y1:t for t = 8, 30 using PF,
Gaussian approximation (s = 0) methods, using Equation 3.29 as the switching criteria.
Even the s = 0 method accurately estimates the filtering distributions across both time
steps. We have not shown any other thresholds as they all give very similar estimates, as
expected.
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Figure 3.9: Marginal posteriors for R0, q and tq, using different thresholds.
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Figure 3.10: Comparisons of the joint posterior p(R0, q|y1:T ) and p(R0, TI |y1:T ) produced
by the PF and the Gaussian appoximation (s = 0). The PF posteriors are represented by
the contours of the kernel density estimate (KDE), while the s = 0 switching threshold
estimate is shown as samples.

Figure 3.11: Box plot comparing the computational time and variance of the log-likelihood
estimates produced by the Gaussian approximation at different thresholds.

3.3.3 Victoria Second COVID-19 Wave
For our final test, we apply the s = 0 switching threshold to a significantly more complex
and computationally challenging problem. We will use 100 days of real data from the
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second COVID-19 wave in Victoria, Australia [75]. During this wave daily case counts
exceeded 600 people meaning the PF would be prohibitively slow. The length of the
time series means switching between the Gaussian approximation and PF produces high
variance log-likelihood estimates, even at low switching thresholds. Adding to this, we
assume a time dependant reproduction number changing every 10 days as a Gaussian
random walk [76, 77]. The primary purpose of this section is not to give novel insight
into the basic reproduction number of COVID in Victoria at this time, but rather to
illustrate that this method allows us to fit a relatively complex branching process model
to messy real-world data. Given the computational challenges associated with this type
of estimation, it would be infeasible with current methods [36, 41].

We treat each Rt as a parameter to be estimated, with a gamma prior on R1, and a
random walk structure enforced by the prior for R2, . . . R10

p(R1, R2, . . . , R10) = Gamma(R1; 1.1, 1)
10∏
t=2

ϕ(Rt;Rt−1, 0.25). (3.31)

We use the same SE(2)I(2)R model as in the previous tests, but we instead allow for the rate
of infection to change every 10 days (see Table 3.5). Details for other parameters can be
found in Table 3.6. From Figure 3.4 we see the Gaussian approximation was successful in
estimating the posterior distributions of each of the time-varying reproduction numbers.
As expected, we see the estimates for Rt drop below 1 as the daily case counts begin to fall.
Additionally, we see that earlier Rt estimates have far more variance than later estimates.
This occurs as there are fewer infectious individuals at this time, meaning there are fewer
opportunities to observe the infection rate of the disease. Moreover, towards the end of
the time series, we observe a slight widening of the posterior. This effect is caused by a
combination of the lowered case count and that many of the infections that occur over
that period are yet to be observed due to the delay between infection and case observation.

The procedure took ∼ 14 hours to complete, on 3 cores. The minimum ESS was
∼ 10000, after removing 50,000 burn-in samples2. The convergence of the chain was val-
idated with the R̂ diagnostic [57].

To validate the model we sample parameters from p(θ | y1:T ) and then use them to
simulate daily case counts. Figure 3.13 compares simulated daily case counts to the real
data. This comparison shows reasonable adherence of the model and parameter estimates
to the real data.

2All code was written in Julia v1.8 and the processor used was the Intel(R) Core(TM) i7-8650U CPU.
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Event State Update BP Rate
Infection (1) (1, 0, 0, 0, 0) β⌈t/10⌉z1

Infection (2) (1, 0, 0, 0, 0) β⌈t/10⌉z2

Exposed1 → Exposed2 (−1, 1, 0, 0, 0) 2δz1

Symptoms onset (observed) (0,−1, 1, 0, 1) pδz1

Symptoms onset (unobserved) (0,−1, 1, 0, 0) 2(1− p)δz2

Infectious1 → Infectious2 (0, 0− 1, 1, 0) 2λz3

Recovery (0, 0, 0,−1, 0) 2λz4

Table 3.5: Table of events and rates for the model of the COVID-19 outbreak in Victoria.

Parameter Prior Standard Formulation
Mean latency period (TE) Gamma(5, 1) TE = 1/δ

Mean infectious period (TI) Gamma(4, 0.5) TE = 1/λ
Observation probability (p) fixed p = 0.8 -
Observation variance (σ2) fixed σ2 = 1 -

Initial State (z0) fixed z0 = (10, 0, 0, 0)T -

Table 3.6: Parameters and priors used for the analysis of the COVID-19 outbreak in
Victoria.
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Figure 3.12: Violin Plot showing the posterior densities for time-varying reproduction
numbers as well as the daily case counts from the second COVID-19 wave in Victoria
[75].
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Figure 3.13: 90% credible intervals for the posterior predictive distribution and the real
data.



Chapter 4

Metapopulation Model

In this chapter, we extend our work in Chapter 3 to a metapopulation model. A metapop-
ulation model partitions agents into interacting subpopulations. Our focus is modelling
the early phases of a novel disease outbreak where our subpopulations represent coun-
tries/states that interact through immigration. Building on the work of Shearer et al.
[9] our primary goal is the development of a framework for estimating the risk of disease
importation from different countries. We will extend the Gaussian filtering method from
Chapter 3 to a metapopulation epidemic model. Driven by the computational require-
ments of large populations, we focus on Gaussian assumptions that enable predictions on
global scales. Our array of modelling assumptions are validated in Section 4.2. Moreover,
we show the utility of a hierarchical model for the subpopulation R0 parameters, testing
it against a non-hierarchical model. A hierarchical model is well suited to this problem
since we expect R0 parameters to be correlated among different subpopulations. Given
the fundamental goal of the thesis is to analyse the outbreak of a novel disease we choose
to maintain the functionality of our method for an arbitrary continuous-time branching
process, which allows for the modelling of a variety of disease dynamics. Different dis-
eases will have differing latent and generation time distributions as well as parameters,
thus confining ourselves to a particular compartmental model will not suffice.

4.1 Methods

Internal Dynamics

Consider a partition of the population into S subpopulations. The epidemic dynamics of
each subpopulation j will be modelled by a multitype continuous-time branching process
with r types

zj,t = (z1,j,t, z2,j,t, . . . zr,j,t)
T .

55
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here these r types represent the agent count for some compartmental epidemic model.
This formulation implicitly assumes that subpopulations can only interact through im-
migration. The parameters of the continuous-time branching process

{
θH
i

}S
i=1

can differ
across subpopulations allowing diversity in important properties such as the rate of in-
fection and recovery. The parameters for the internal dynamics of all the subpopulations
are written as

θH := (θH
1 ,θH

2 , . . . , θH
S ). (4.1)

The data for each subpopulation j is generated by some state-dependant process as
described in Chapter 3

yj,t := (y1,j,t(t), y2,j,t(t), . . . yd,j,t(t))
T , (4.2)

yj,t ∼ N (yj,t;Hzj,t,Rj) (4.3)

here yj,t is a column vector of size d which represents the data for subpopulation j at
time t. H is a d× r matrix, that describes which part of the state space is observed. Rj

represents any extra noise in the observations not accounted for by the hidden process.
As discussed in Chapter 3 we can model some of the observation noise as part of the
hidden process, allowing for state dependant observation noise. With this, we can write
the totality of our parameters as

θ = (θH,R1, . . . ,RS). (4.4)

In the context of an epidemic model zj,t would represent the underlying true process
of the disease, this being the numbers of agents that are exposed, infected, asymptomatic,
ect1., in subpopulation j and at time t. While yj,t would represent the data generated by
this underlying process, in particular, statistics like reported cases, recoveries and deaths
for subpopulation j and time step t.

4.1.1 Immigration Network
For our purpose, we will define our subpopulations as countries/states, as this aligns
reasonably well with the assumptions of our model:

• Individuals from one subpopulation cannot infect those from another subpopulation.

• Data is available that can give an estimate as to the volume of movement between
these subpopulations.

1In some cases this state may also keep track the total number of events that have occurred often the
total number of deaths/infections.
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For a given zj,t there is a subset of its elements that represent individuals that are capable
of movement between subpopulations, we call this subset I. Following Zhang et al. [78] &
De Salazar et al. [10] we model the immigration of infected agents of type i ∈ I between
subpopulations as a time inhomogeneous Poisson process. We assume further that travel
is equivalent to randomly sampling Tj,k individuals from subpopulation j and duplicating
the infected ones in subpopulation k, where Tj,k is the estimated travel volume moving
from j → k. As a result, when a subpopulation receives an immigrant there is no corre-
sponding removal from another subpopulation. As we will see later this approximation
is necessary for estimating the transition densities of each subpopulation independently.
Given that the number of infected agents will always be significantly larger than the out-
ward flux of agents this approximation is unlikely to have a significant effect.

With this setup, we can calculate the rate of immigration of type i agents from sub-
population j to subpopulation k at time t is

αi,j,k,t =

{
Tj,k

Nj
· zi,j,t i ∈ I

0 i ̸∈ I
, (4.5)

αj,k,t := (α1,j,k,t, α2,j,k,t, . . . , αr,j,k,t) (4.6)

where Nj is the population of subpopulation j. Thus, the overall rate of immigration into
subpopulation k is

αk,t =
S∑

j=1

αj,k,t (4.7)

As we will see later it is vital that we can calculate each subpopulation’s transmission
at a given time step independently of other subpopulations’ transmission during that time
step. To achieve this while including immigration effects we assume immigration rates at
t+ τ for τ ∈ [0, 1) are based on the agent count in each subpopulation at time t, making
the immigration rates constant over the interval [t, t+ 1). Here we are approximating an
inhomogeneous Poisson process with a piece-wise homogeneous one,

αj(t+ τ) ≈ αj(t) τ ∈ [0, 1).

Effectively this means that zj,t+τ and zk,t+τ are conditionally independent given the agent
counts for all the subpopulations at the beginning of the time step zt. We expect gener-
ally that the number of agents in each subpopulation will increase in the interval [t+ 1),
thus increasing the rate of immigration. Consequently, this approximation will slightly
underestimate the rate of immigration most of the time, but we expect this effect to be
small as long as the length of the time step is small in comparison with the growth rate
of the disease.
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The hidden Markov model for each subpopulation is then
zj(0) ∼ p(zj(0)|θ) (4.8)
zj,t+1 ∼ p(zj,t+1|zj,t,αj,t,θ), (4.9)

yi,t ∼ p(yi,t|zj,t,θ) (4.10)
for j = 1, 2, . . . , S and t = 1, 2, . . . T .

4.1.2 Problem Outline
Our fundamental goal is to produce a method that can jointly estimate states and pa-
rameters for partially observed interacting CTBPs across many separate subpopulations.
Practically this translates to using daily case data for a disease from different countries
to jointly estimate both the number of infected individuals and the parameters mediating
the spread of the disease in these countries. Mathematically our estimates are encapsu-
lated by the full joint posterior distribution p(z1:T ,θ|y1:T ), where y1:T is the daily case
counts for all the countries and z1:T is the number of infectious/exposed individuals in
each country. As discussed in Chapter 3, using pmMH with a bootstrap particle filter
to estimate p(z1:T ,θ|y1:T ) can be computationally expensive for a single subpopulation.
Extending the problem to many subpopulations increases the computational cost in 3
distinct ways:

• The cost of sample path simulation increases linearly with the number of subpop-
ulations [40].

• The variance of the likelihood estimate will increase, requiring more bootstrap sam-
ples [74, 61].

• The number of parameters that need to be estimated increases with the number of
subpopulations. This increase in the dimension of the parameter space can cause
an increase in the required burn-in time for the pmMH Markov chain and the time
required to fully explore the sample space [57].

Taken together these issues suggest that estimation on a reasonable scale will require a
more efficient method. To remedy this situation we apply the Gaussian approximation of
the bootstrap particle filter derived in Chapter 3 to the muli-population case. Given the
large computational challenge, we choose to use the Gaussian approximation throughout
the entire time series, rather than switching between it and the PF.

4.1.3 Application Of Gaussian Approximation
Applying the Gaussian approximation to the multi-population model is non-trivial, as
each subpopulation interacts through immigration. This interaction prevents simply ap-
plying the method detailed in Chapter 3 to each subpopulation separately, as we cannot
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decompose the full transition density p(zt+1|zt) into the transition density for the indi-
vidual subpopulations

∏S
i=1 p(zi,t+1|zi,t).

In this section, our goal is to derive a reasonable approximation of p(zt+1|zt) that can
be decomposed into transition densities that the Gaussian approximation can be applied
to. Firstly, since immigration rates remain constant throughout [t, t + 1) the state of a
given subpopulation at t + 1 is independent of all the others given the state of all the
subpopulations at t thus

p(zt+1|zt) =
S∏

i=1

p(zi,t+1|zi,t, z−i,t), (4.11)

where z−i,t is the state of all other subpopulations apart from i. The dependence on z−i,t

still prevents us from applying the Gaussian approximation: we would have to integrate
over all the possible states of the rest of the subpopulations since the immigration rate into
subpopulation i is a function of z−i,t. More clearly, the problem arises because we need
a known immigration rate to derive the mean (3.10) and variance (3.11) of the transition
density. We choose to replace z−i,t with a fixed value as opposed to a random variable,
in order to apply the approximation. The value we choose is the mean estimate of zt,−i

given the data upto time t, written as µ−i,t|t

αi,t =
∑
j∈−i

Tj,i

Nj

· [zj,t]I ≈
∑
j∈−i

Tj,k

Nj

· [µj,t|t]I , (4.12)

where [µj,t|t]I denotes the elements of µj,t|t that correspond to immigrating agent types.
Application of this approximation relinquishes the problematic dependence on the states
of the other subpopulations, weakly decoupling them

p(zt+1|zt) ≈
S∏

i=1

p(zi,t+1|zi,t,µj,t|t). (4.13)

We say weakly here because they are conditionally independent given the mean of the
filtering distribution, meaning that one subpopulation having a high case count will still
lead to an increased immigration rate for the other subpopulations. As a result, this
weak decoupling allows our Gaussian approximation to be used while still capturing the
immigration dynamics.

Figure 4.1 illustrates the salient difference between the Gaussian approximation and
the bootstrap particle filter. Since the bootstrap particle filter gives distributionally ac-
curate filtering distributions, comparing the two can help in understanding the effect of
assuming (4.13). Consider the grey path in subpopulation i, from Figure 4.1, and note
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that the immigration into subpopulation i is calculated based on the grey path in sub-
population j. Since the grey path has the largest z1,i,t, in subpopulation i it is more
likely to be associated with the higher z1,j,t paths in subpopulation j (which it is in our
illustration). However, this is not true for the Gaussian approximation as immigration
into subpopulation i is simply based on the mean value of subpopulation j (shown as
a grey dashed line). Thus, the higher estimates for z1,i,t in the Gaussian approximation
will have a lower incoming immigration rate than it should. This occurs, in the same way
with the lower estimates for z1,i,t, but now with higher immigration than would be correct.
This property has the effect of reducing the overall variance of the state estimates. In
the context of an epidemic model, immigration rates become insignificant in comparison
to local transmission as case counts increase. Since higher case counts are significantly
more informative than lower case counts we suspect that the effect of this error will be
insignificant.



4.1. Methods 61

Figure 4.1: Illustration of the difference between the bootstrap particle and our Gaussian
approximation. The colours on the bootstrap particle filter denote the corresponding
sample paths which make up the particle. We observe that the order of the colours
is similar in both figures since sample paths tend to be correlated. This effect is not
captured by the Gaussian approximation, but we show in Section 4.2.2 that the loss of
this correlation information is insignificant as long the immigration rates are small.

4.1.4 Algorithm Summary
Making use of the single population method described in Chapter 3 and the approxi-
mations developed in this chapter we can now fully describe the method. The inputs
are:
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• Observations y1:T .

• Parameters for all of the subpopulations θ (See (4.4)).

• Observation matrix H.

• Population sizes {Ni}Si=1.

• Travel volumes {Ti,j}Sj=1 for i ∈ {1, 2, . . . , S}.

• The intial mean µi,0|0 and variance Σi,0|0 of p(zi,0) for all i ∈ {1, 2, . . . , S}.
To initialise the algorithm we must use the parameters for each subpopulation to

derive their specific generator matrix (see Section 2.2). We write the generator matrix
corresponding to subpopulation i as Ωi. Then using Ωi we can calculate the mean matrix
Fi (2.6), the mean immigration matrix Bi (2.7), the variance matrices {Vj,i}dj=1 (2.9) and
the immigration variance matrices {Wj,i}dj=1 (2.10) (see Section 2.2.1 for calculation).
Finally, initialise the log-likelihood ℓ → 0. The following steps are then repeated for
t ∈ {1, 2, . . . , T}:

1. Calculate immigration rates for all subpopulations i ∈ {1, 2, . . . , S}

αi,t ←
∑
j∈−i

Tj,k

Nj

· [µj,t|t]I .

2. Using the immigration rates calculate the mean and variance of the predictive dis-
tributions for all subpopulations i ∈ {1, 2, . . . , S}

µi,t+1|t ← Fiµi,t|t + Biαi,t,

Σi,t+1|t ← FiΣi,t|tFT
i +

r∑
j=1

[µi,t|t]jVj,i +
r∑

j=1

[αi,t]jWj,i.

3. Calculate the mean and variance of the filtering distributions for all subpopulations
i ∈ {1, 2, . . . , S}

Ki ← Σi,t+1|tH(HΣi,t+1|tHT + Ri)
−1,

µi,t+1|t+1 ← µi,t+1|t + Ki(yt+1 −Hµi,t+1|t),

Σi,t+1|t+1 ← (I−KiH)Σi,t+1|t.

4. Update the log-likelihood total

ℓ← ℓ+
S∑

i=1

log
[
N (yi,t+1;µi,t+1|t,Σi,t+1|t)

]
.

The output of the procedure is the means
{
µi,t|t

}T
t=1

and variances
{
Σi,t|t

}T
t=1

of the
filtering distributions and the log-likelihood ℓ.
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4.2 Validation of Gaussian Approximation

4.2.1 Initial Importation Time

Due to the exponential nature of disease outbreaks, small changes in the time of the initial
infection can lead to vastly different infection numbers in the future. For our purposes,
the initial infection for most subpopulations will come through immigration. This is prob-
lematic for our method since the Poisson immigration process is instead modelled with a
Gaussian distribution. While the mean is accurate the skew of the Poisson distribution
is not captured by the Gaussian. Additionally, there is the variance reduction issue dis-
cussed in Section 4.1.3.

To interrogate this issue we take the sample path generated in Section 3.3.1 and esti-
mate immigration rates and the corresponding imported cases using both the bootstrap
particle filter and the Gaussian approximation (GA). Figure 4.2 shows the PMF of the
time of the first imported case using both the PF and GA. The GA has less variance,
likely caused by using the mean to approximate the immigration rate. Moreover, the
expected value is significantly greater, which we suspect is due to a combination of the
mean approximation and the lack of skew in the Gaussian approximation.

These findings are problematic for the GA method as this may cause a significant
underestimation of cases and an overestimation of R0. However, since the GA approxi-
mation assumes a continuous state space the importance of the first case threshold may
be mitigated. This motivates the experiment in the next section where we explore the
accuracy of the GA for parameter estimation, testing if this discrepancy is important. It
should be noted that this issue is not relevant when calculating importation risks. When
importation risks are derived we do not use a Gaussian approximation, they are derived
directly from CTBP theory and the immigration rate (see Section 4.3.3). Consequently,
the parameter and state estimates are the key issues that need to be resolved in light of
this discrepancy.
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Figure 4.2: Plot of the PMF for the time to first importation using the PF and GA.

4.2.2 Parameter Estimation
In Section 4.1.3 we discussed some of the biases associated with applying the Gaussian ap-
proximation to metapopulation models with immigration. In this section, we investigate
the severity of these biases in the context of an epidemic model via a simulation study.
For simplicity, we make use of the standard SEIR branching process approximation (see
Table 4.1). Our immigration model consists of 2 subpopulations with immigration going
both ways between them (see Figure 4.3). We choose population sizes and travel volumes
that give very exaggerated immigration rates, assuming 1% of the population travels ev-
ery day. This setup is chosen to exacerbate the effect of the approximation described
in Section 4.1.3. The effect is exacerbated because the impact of immigration on the
trajectory of the outbreak is increased.

For the simulation study, we fix a set of parameters and simulate from the CTMC
model using the SSA. Immigration is accounted for in the simulation using the procedure
described in Section 4.1.1. We then take the observed cases from the simulation, which
can be obtained from the simulated sample paths (see Section 3.3.1) and use this as the
dataset for the simulation study (see Figure 4.4).

Table 4.2 describes the parameters used for the simulation as well as the priors used
for estimating the parameters. We then use a standard bootstrap particle filter (PF) for
likelihood estimation as part of a pmMH scheme to estimate all the non-fixed parameters
(see Table 4.2). Once converged, the parameter samples produced will follow the correct
posterior distribution [39]. We then repeat this process using the Gaussian approximation
method (GA), described in the previous section. Recall that the PF will give samples from
the true posterior meaning if the GA is working well the parameter estimates should be
similar for both methods.
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Figure 4.5 compares the parameter estimates produced by the PF and GA method.
We see good adherence between the posteriors produced by the PF and GA. In particular,
we do not see significantly narrower posteriors for the GA which is what we would expect
if the variance of the filtering distributions were being significantly underestimated, due
to the immigration approximation. Additionally, we do not observe higher R0 estimates
due to the discrepancies in initial case importation. This supports our assertion, described
in Section 4.1.3, that immigration is only significant when the case count is very low or
zero (when the data is the least informative). It should be noted that in this test we
have avoided the issues with low agent populations as we have already explored this in
Section 3.3.1. Moreover, for our specific application subpopulations with low agent counts
(infected individual counts) are less important when estimating the importation risk.

Event State Update BP Rate
Infection (1, 0, 0) βjz2

Symptoms Development (observed) (−1, 1, 1) pjδz1

Symptoms Development (unobserved) (−1, 1, 0) (1− pj)δz1

Removal (0, 0,−1) λz2

Immigration of exposed (1, 0, 0) α1

Immigration of infectious (0, 1, 0) α2

Table 4.1: Table of events and rates for the SEIR branching process approximation in
subpopulation j.

Parameter True value Prior Formulation
Basic reproduction number 1: R

(1)
0 2.5 N[0,10](3, 25) R0 = β1/λ

Basic reproduction number 2: R
(2)
0 3 N[0,10](3, 25) R0 = β2/λ

Mean latency period: TE 3.6 N[0,10](3.6, 0.5) TE = 1/δ
Mean infectious period: TI 5.2 Gamma(5.2, 0.5) TI = 1/λ

Observation probabilities : p1, p2 0.6 Beta(24, 16) -
Observation variance: σ2 1 fixed -

Table 4.2: Parameters and priors used for SEIR simulation study.
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Subpopulation 1

z1,0 = (6, 6, 0)T

R0 = 2.5
N1 = 107

Subpopulation 2

z2,0 = (0, 0, 0)T

R0 = 3
N2 = 107

T1,2 = 105

T2,1 = 105

Figure 4.3: Immgration network diagram between 2 subpopulations. Arrows denote the
allowed directions of immigration.
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Figure 4.4: Simulated daily case counts for each subpopulation. The top left corner of
each plot identifies the subpopulation.
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Figure 4.5: Boxplot comparison of the parameter estimates produced using the bootstrap
particle filter (PF) and the Gaussian approximation (GA) for the disease (top) and ob-
servation (bottom) related parameters.
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4.3 Feasibility For Large Model
In this section, our goal is to test the computational feasibility of the GA for a much larger
immigration network. In particular, we choose to have 20 subpopulations, a similar size
as the model formulated by Shearer et al. [9] for the early phases of the SARS-CoV-2
pandemic. Again following Shearer et al. [9] we structure the immigration network with a
single source subpopulation (where the disease originates) 18 intermediary subpopulations
and one sink subpopulation. Immigration occurs from the source to the intermediaries
and from the intermediaries to the sink (see Figure 4.6).

The data for this test is simulated using the SE(2)I(2)R branching process approxima-
tion model with an added exponentially distributed delay between symptom onset and
observation. As before, the SSA is used to simulate a sample path from this model us-
ing the parameters given in Table 4.4, and the data is the daily observed cases for each
subpopulation. We assume very little knowledge of the observation probabilities for most
subpopulations, with only 2 subpopulations with well-known and high observation proba-
bilities. This is similar to the approach taken by Bhatia et al. [11] to estimate unobserved
cases. Figure 4.7, shows the simulated daily cases for each subpopulation. We then use
the GA as part of a pmMH scheme to estimate all the non-fixed parameters.

Running the pmMH scheme for ∼ 10 hours on 3 cores gives an effective sample size
of ∼ 1500, after removing 50,000 burn-in samples2. The convergence of the chain was
validated with the R̂ diagnostic [57]. Figure 4.8 shows the marginal posterior distributions
for R0 and p. For most of these parameters, the true values lie in reasonably high-density
areas of the posterior distributions. However, some parameters lie in the tails of the
posterior suggesting some of the generated subpopulation data is more likely to occur
with different sets of parameters. These aberrant estimates may be simply due to an
anomalous simulated sample path. Alternatively, the large number of parameters that
are being simultaneously estimated could be causing identifiability issues. Of particular
practical concern is the posterior for R(2)

0 which has most of the probability density below
1 with the true value being 1.5. Recall that R0 < 1 leads to an outbreak that will die
out while R0 > 1 would likely lead to a full outbreak. This highlights the importance of
incorporating as much valid prior information as possible, something we explore in the
next section.

Figure 4.9 shows the linear correlations between basic reproduction numbers as well as
between basic reproduction numbers and observation probabilities. Correlations between
R

(i)
0 show mostly positive correlations, explained in part by the fact all share the same TI ,

which, as we have discussed in previous chapters, is positively correlated with R
(i)
0 . More-

2All code was written in Julia v1.8 and the processor used was the Intel(R) Core(TM) i7-8650U CPU.
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over, correlations between the R
(i)
0 appear to be the largest between subpopulations with

the larger outbreaks. This effect is likely due to how much more informative the data from
these outbreaks are. There is also a general trend of negative correlation between R

(i)
0 and

p(i) which is as expected since an outbreak with high R
(i)
0 and low p(i) will produce similar

data to an outbreak with low R
(i)
0 and high p(i). We also observe a pattern of positive

correlation between p(1) and the R
(i)
0 for some of the intermediary subpopulations. This

effect can be understood by considering that higher p(1) leads to a smaller proportion
of unobserved cases and thus a lower immigration rate to intermediary subpopulations,
which must then be compensated for with a higher R0 in the intermediary subpopulations.

Event State Update BP Rate
Infection (1) (1, 0, 0, 0, 0, 0) βz1

Infection (2) (1, 0, 0, 0, 0, 0) βz2

Exposed1 → Exposed2 (−1, 1, 0, 0, 0, 0) 2δz1

Symptoms onset (observed) (0,−1, 1, 0, 1, 0) 2pδz1

Symptoms onset (unobserved) (0,−1, 1, 0, 0, 0) 2(1− p)δz2

Infectious1 → Infectious2 (0, 0− 1, 1, 0, 0) 2λz3

Recovery (0, 0, 0,−1, 0, 0) 2λz4

Observation recorded (0, 0, 0, 0,−1, 1) dz5

Table 4.3: Table of events and rates for SE(2)I(2)R branching process approximation model
with delay.

Parameter True value Prior Formulation
Reproduction Number j: R

(j)
0 (See Figure 4.8) N[0,20](2, 20

2) R0 =
β
λ

Mean latency period: TE 5 N[0,6](3, 2) TE = 1
δ

Mean infectious period: TI 14 N[2,14](8, 1) TI =
1
λ

Observation probabilities (high): p2, p19 0.9 Beta(9, 1) -
Observation probabilities (low): pj, j ̸= 2, 19 0.6 Beta(2, 1) -

Delay mean: TD 4 fixed 1
d

Observation variance: σ2 1 fixed -

Table 4.4: Parameters and priors used for SE(2)I(2)R simulation study.



70 Chapter 4. Metapopulation Model

Subpopulation 1 (Source)
z1,0 = (20, 20, 0, 0, 0, 0)

R
(1)
0 = 1.5

N1 = 107

p1 = 0.6

. . .
Subpopulation 3

z3,0 = (0, 0, 0, 0, 0, 0)

R
(3)
0 = 1.51

N3 = 3× 107

p3 = 0.6

Subpopulation 2
z2,0 = (0, 0, 0, 0, 0, 0)

R
(2)
0 = 1.51

N2 = 2× 107

p2 = 0.9

Subpopulation 18
z18,0 = (0, 0, 0, 0, 0, 0)

R
(18)
0 = 2.29

N18 = 18× 107

p18 = 0.6

Subpopulation 19
z19,0 = (0, 0, 0, 0, 0, 0)

R
(19)
0 = 2.36

N19 = 19× 107

p19 = 0.9

Subpopulation 20 (Home)
z20,0 = (0, 0, 0, 0, 0, 0)

R
(20)
0 = 2.49
N20 = 107

T1,2 = 105 T1,3 = 105
T1,18 = 105 T1,19 = 105

T2,20 = 105 T3,20 = 105

T18,20 = 105 T19,20 = 105

Figure 4.6: Travel network diagram for the 20 subpopulation model. Values of Ni are
chosen to give some variety in the immigration rates.
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Figure 4.7: Simulated daily case counts for each subpopulation. The top left corner of
each plot identifies the subpopulation.
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Figure 4.8: Boxplots of marginal posterior distributions for R0 (top) and p (bottom).
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Figure 4.9: Heat map of linear correlations between {R(i)
0 }20i=1 and {R(i)

0 }20i=1 (left) as well
as the linear correlations between {p(i)0 }20i=1 and {R(i)

0 }20i=1 (right).

4.3.1 Hierarchical Model
For global pandemics we expect the disease dynamics to be similar across different sub-
populations. Parameters like the mean infectious and latent period that relate specifically
to the biology of the disease should be similar across different subpopulations. However,
the basic reproduction number will be correlated across subpopulations (since it’s the
same underlying disease) but still different (due to differences in health care and popu-
lation density). Ideally, this knowledge should be incorporated into our prior inferences
about the parameters. This can be done with a hierarchical model [21]. In particular,
we assume the basic reproduction numbers for each subpopulation come from the same
distribution

R
(j)
0 ∼ N (µR, ν

2
R),

j = 1, 2, . . . , 20.

Here µR, ν2
R are called hyperparameters and they define the prior for R

(j)
0 (see Figure

4.10). We parameterise R
(j)
0 in terms of the deviations from µR

R
(j)
0 = µR + νRη

(j)
R ,

η
(j)
R ∼ N (0, 1),

j = 1, 2, . . . , 20.

This allows us to directly target the differences between populations. Table 4.5 details
the parameters and priors we use for the hierarchical model. Using this setup we rerun
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the inference routine. We found that the overall performance of the chain was similar to
the independent model.

Figure 4.11 shows the comparison between the posterior distributions for R0. We
see that generally, the hierarchical model tends to give lower variance posteriors, which
is expected since the hierarchical prior imparts more information. Additionally, overall
the hierarchical model appears to give higher densities for the true values. This suggests
that information added in the hierarchical prior has remedied some of the identifiability
issues associated with R0. However, the issues with the observation probabilities are still
present, emphasizing the need for more informative priors.

Parameter True value Prior
Reproduction number mean: µR 2 N[0,20](2, 20

2)
Reproduction number variance: ν2

R 0.5 N[0,∞](0,
1
9
)

Subpopulation j deviation: η(j) (See Figure 4.11) N (0, 1)
Mean latency period: TE 5 N[0,6](3, 2)

Mean infectious period: TI 14 N[2,14](8, 1)
Observation probabilities (high): p2, p19 0.9 Beta(9, 1)

Observation probabilities (low): pj, j ̸= 2, 19 0.6 Beta(2, 1)
Delay mean: TD 4 fixed

Observation variance: σ2 1 fixed

Table 4.5: Parameters and priors used for the hierarchical simulation study.

η
(j)
R

µR νR

R
(j)
0 = µR + νRη

(j)
R

pj

yj,1:T Π

Figure 4.10: Hierarchical parameter diagram. Here Π denotes the parameters that are
identical across all subpopulations: TI , TE, TD and σ2.
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Figure 4.11: Boxplots of marginal posterior distributions for R0 (top) and p (bottom) for
both the independent and hierarchical models.
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4.3.2 Effect of Observation Priors

In this section, we explore the effect of changing our prior knowledge of the observation
probability on the independent and hierarchical models. We repeat the same procedure
but instead, we assume subpopulations with high, low and unknown levels of observa-
tion probability (See Table 4.6). Overall this assumes far more knowledge about which
subpopulations we expect to have higher or lower observation probabilities. Moreover,
we also include some subpopulations which are simply not monitoring the disease. This
element of the setup mimics the early phases of a global pandemic where it may be unclear
if cirtain contries are conducting/reporting cases. With this setup, we simulate a set of
observations (see Figure 4.12).

As before, we conduct MCMC to obtain the parameter posteriors using the Gaussian
approximation for both the independent and hierarchical models. Figure 4.13 shows the
comparison between the posterior distributions for R0 and p. We again see that the hi-
erarchical model posteriors align more closely with the true values for R0. In particular,
for subpopulation 17, which has no observation, the independent model performs very
poorly. The reason for this poor performance is evident in the corresponding observa-
tion probability estimates. Note that the independent model appears to favour higher
observation probability estimates, for these subpopulations. This is then compensated
for with lower estimates for R0 to account for the lack of observation. This explanation
is evidenced by the high negative correlation (∼ −0.4) between p(17) and R

(17)
0 , for the

independent model. This issue is not observed in the hierarchical model, likely due to
the more restrictive priors. Furthermore, as expected the variance in the posterior distri-
butions of R0 is less for the hierarchical model in most subpopulations due to the extra
knowledge encapsulated by the hierarchical prior.

Comparing Figure 4.13 and 4.11 the variances in R0 values for the hierarchical model
are generally lower. This result is as expected since we are assuming more knowledge of
the observation probability. Moreover, this increase in prior knowledge appears to have
mitigated some of the issues with estimating p seen in Figure 4.11.

Parameter True value Prior
Observation probabilities (high) 0.9 Beta(9, 1)
Observation probabilities (low) 0.6 Beta(2, 1)

Observation probabilities (unknown) 0 Exp[0,1](1)

Table 4.6: Parameters and priors used for the hierarchical simulation study.
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Figure 4.12: Simulated daily case counts for each subpopulation. The top left corner of
each plot identifies the subpopulation.
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Figure 4.13: Boxplots of marginal posterior distributions for R0 (top) and p (bottom) for
both the independent and hierarchical models. Green and red shading denotes subpopu-
lations with high and low levels of observation respectively.
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4.3.3 Importation Risk Estimation
In this section, we briefly illustrate how the estimates produced by the methods we have
developed can be used to produce actionable insights relating to pandemic policy. In
particular, in Australia, estimating the risk of disease importation was of great interest
during the early phase of the SARS-CoV-2 pandemic [9]. Here we show how full posterior
distributions can be produced for the expected number of imported outbreaks and the
probability of an imported outbreak. Here an imported outbreak refers to an outbreak
stated by an imported individual.

For a given infectious or exposed individual we define the event that an outbreak
caused by that individual to be simply that the progeny of that individual never becomes
extinct. The extinction probabilities x will solve the system

Pθ(x) + uc = x, subject to x ∈ [0, 1]r (4.14)

where Pθ(x) is the progeny generating function given θ, and c is the index of the observed
state [50, p. 12]. Given our Poisson immigration process, the number of new outbreaks in
the sink subpopulation, per day, caused by subpopulation i is a censored Poisson process.
Thus, we can derive the probability of an imported outbreak (IOPi,t) from subpopulation
i, over the period [t, t+ 1).

IOPi,t = 1− exp((x− 1)αT
i,20,t), (4.15)

and the expected number of imported outbreaks per day (ENOi,t), from subpopulation i,
over the period [t, t+ 1).

ENOi,t = (1− x)αT
i,20,t. (4.16)

Calculating ENOi,t and IOPi,t using our samples from p(θ, zt|y1:T ) gives us the pos-
terior distribution for these quantities. Moreover, we are not restricted to t ≤ T since we
can simply simulate forward samples from p(zT ,θ|y1:T ) to obtain p(zT+τ ,θ|y1:T ) which
can be used to derive p(ENOi,T+τ |y1:T ) and p(IOPi,T+τ |y1:T ).

Figure 4.14 gives a snapshot of ENOi,t and IOPi,t using our hierarchical model and
independent model, described in Section 4.3.2. For subpopulation 17 we see that the lower
R0 estimate given by the independent model significantly affects both the ENO and IOP
with the hierarchical model adhering much closer to the true values. For subpopulation
18 we instead see the hierarchical model can give a much lower variance posterior distri-
butions, aligning well with the true values. This illustrates that even in subpopulations
with zero observations reasonable importation risk estimates can be produced with the
hierarchical model.
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Figure 4.14: Plots of the posterior distributions of ENOi,t and IOPi,t. Ribbons indicate
90% credible intervals.



Chapter 5

Discussion

In this thesis, our primary goal has been to develop a modelling framework for estimating
the risk of disease importation during the early phase of a pandemic. To achieve this goal
we developed an efficient Gaussian approximation of the bootstrap particle filter that can
be feasibly used as part of the pseudo-marginal Metropolis-Hastings algorithm scheme
for continuous-time branching process models (Chapter 3). We then showed how this
Gaussian approximation makes it possible to jointly estimate the states and parameters
for an epidemic model with a metapopulation structure (Chapter 4).

5.1 Inference for Partially Observed Continuous Time
Branching Processes

In Chapter 3 we have developed an algorithm for approximate state and likelihood es-
timation that can run significantly faster than a standard PF, making it more feasible
to be used as part of a Metropolis-Hastings scheme for parameter estimation [29]. Addi-
tionally, the likelihood estimates this algorithm produces have less variance, reducing the
number of bootstrap samples required, further reducing computational time. Moreover,
we have shown through simulation, given sufficiently high agent counts, that the Gaus-
sian approximation can be reasonably accurate for both the SIR and SE(2)I(2)R branching
process models.

Continuous time branching processes pose an interesting inferential challenge since,
in general, it is infeasible to obtain exact transition probabilities [50]. Thus, any infer-
ence method that is used must overcome this efficiently. The most obvious approach is
through simulation of the process, this being how the bootstrap particle filter works [62,
p. 129–165]. Despite this, as previously discussed, this can be far too computationally
expensive, due to exponentially growing agent counts. One alternative avenue that has
been explored in the literature is to approximate the transition probabilities numerically.

81
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In particular, by truncating the state space and taking the matrix exponential of the
corresponding infinitesimal generator the transition probabilities can be approximated.
However, this approach can also become prohibitively computationally expensive as the
agent population gets large. Xu and Minin [36] and Xu et al. [41] have improved upon
this method, making clever use of the progeny-generating function. Despite this, when
agent counts are high, even with these improvements, computational time can still be-
come problematic, particularly for use as part of a pmMH scheme that requires repeated
evaluation of the PF. The reason for this is that the transition density of a CTBP is
discrete and non-finite, hence, the approximations derived in these works have to be trun-
cated to a finite subset of the reasonably likely states. Then differential equations for
each of the states need to be numerically solved. As a result, this class of methods is
susceptible to increases in the agent population as well as the dimension of the state
space. Consequently, inference for CTBPs is usually focused on deriving point estimates,
using expectation maximisation type algorithms, rather than full posterior distributions
[79, 80, 41]. Our approach is instead focused on modelling over a shorter time series, with
less informative data, where the uncertainty in our estimates is crucial to quantify. This
is also what precludes us from using taking a deterministic approach, which would not
capture the variance of the process sufficiently [30, 66, 31]. Our method differs from these
approaches by applying a continuous Gaussian approximation of the transition density
for large populations, meaning we do not have to perform a calculation for each state,
only the mean and variance. As a result, the computational complexity of the method
we develop is not dependent on the agent population only the dimension of the state space.

In our results, one clear theme observed across our experiments is that the filtering
distributions produced by the Gaussian approximation appear to get closer to the cor-
rect filtering distributions generated by the PF as the agent counts increase. This effect
is even seen when using the Gaussian approximation throughout the entire time series,
meaning the errors from inaccurate early filtering distributions do not compound over
time. We suspect this is in part caused by the new observations preventing the mean of
the posterior estimates from deviating significantly. Also, the Gaussian approximation
will be most accurate for the highly informative parts of the time series, since a high agent
count tends to lead to high observation numbers. This effect can help override the more
inaccurate state estimates produced by the Gaussian approximation at low agent counts,
explaining the surprising accuracy of the s = 0 switching threshold in Sections 3.3.2 and
3.3.1. Additionally, the mean and variance of zt+1 | zt is exact, as is zt+1 | yt, even if zt | yt

is not Gaussian. This brings us to the limitation of extending this work to continuous
time Markov chains (CTMCs) in general. Specifically, for a general CTMC the mean and
variance of the transition density are not tractable. Consequently, linearisation would
need to be utilised to approximate the mean and variance of the transition kernel. These
approximations could lead to errors that may compound throughout the time series [49].



5.1. Inference for Partially Observed Continuous Time Branching Processes 83

The linearization approach has been applied by Fintzi et al. [81], however, simulation is
still utilized to derive predictive distributions. Using linearization to calculate means and
variances and assuming Gaussian predictive distributions (see Section 3.2.2) would allow
this method to be adapted to a CTMC. The exploration of this possibility remains an
endeavour for future research.

One aspect of the Gaussian approximation that we did not explore deeply in this work
is the choice of switching threshold, in particular concerning time-constrained practical
applications such as a disease outbreak where new state and parameter estimates need to
be produced daily. In situations where new state and parameter estimates are required
at regular intervals, the switching threshold could be made as high as is feasible. Specifi-
cally, the time taken for the likelihood to be calculated with the required variance could
be tested at different thresholds. Combining this with the total number of Metropolis-
Hastings samples required would enable a researcher to estimate the threshold that gives
the most accurate results for a given amount of time.

Given the general formulation of the Gaussian approximation it could theoretically be
used for any continuous time branching process. The main bottleneck to increasing the
complexity of the model is the dimension of the state space. In particular, the addition of
more intermediary states will mean that the number of agents will be spread out across
many agent types. This means to attain an accurate approximation, the PF will need
to be used for longer and in cases where the overall number of events is higher. Addi-
tionally, calculation of the mean and variance requires computations involving matrices
of size r3 × r3, where r is the dimension of the state space [50], which may be prob-
lematic for models with very high dimensional state spaces. Moreover, models including
agent types that tend to be significantly smaller (in terms of population) than other agent
types will diminish the benefit provided by this method. This limitation exists because
the transition density for all agent types is simulated/calculated the same way, meaning
if [zt]1 is very large (well suited for the Gaussian approximation) and [zt]2 is very small
(poorly suited for the Gaussian approximation) problems will arise. Specifically, using
the PF will incur a significant computational effort as [zt]1 is very large. Alternatively,
using the Gaussian approximation may be inaccurate due to the low value of [zt]2. The
difficulty with computing the different agent types using different methods is that there
is often a significant correlation between [zt]1 and [zt]2. We suspect that maintaining this
correlation while using separate methods would be challenging.

Section 3.2.2 brings to light some issues with the broader applicability of the Gaussian
approximation. In particular, the fact that the mean of the filtering distributions must
dominate the variance suggests that how informative the data is will impact the accuracy
of the Gaussian approximation. Recall that the accuracy of the predictive distribution
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approximation is dependent on the elementwise standard deviation of the filtering dis-
tribution being small in comparison to the elementwise mean. Further, the elementwise
standard deviation will be larger for less informative data. However, this is not something
we found to be significant in our results, suggesting much less informative data would be
required to observe the effect. This may also pose an issue for longer-term forecasting
since the variance of the state estimates will naturally grow larger as data is no longer
being observed. In this case, it would make sense to draw samples from the filtering at
the latest time when data is available and simulate forward with Gillespie’s algorithm to
obtain forecasts.

5.2 Meta-Population Pandemic Modelling Framework
In Chapter 4 we have shown how the Gaussian approximation of the PF can be applied
to an epidemic model with a metapopulation structure. More approximations needed
to be made to achieve this goal. Through simulation, we found that these approxima-
tions do not significantly affect the results, of the cases tested. In particular, the results
of the bootstrap particle filter and Gaussian approximation align very closely, even un-
der conditions expected to exacerbate errors. Specifically, as discussed in Section 4.1.3,
high immigration rates will cause the filtering distributions to have systematically lower
variance. In our simulation study, we assumed that 1% of the population in each subpop-
ulation travels to every other subpopulation every day, exceeding any immigration rate
we would observe in practice. Hence, the observed correspondence between the methods,
in this case, indicates that applying the Gaussian approximation to a metapopulation
model will give a reasonable approximation of posterior distributions. However, it is
important to note that, although we do not expect this the be an issue for epidemic mod-
els, this result may not apply to situations with significantly higher immigration rates.
Despite this, given the excellent correspondence between methods, we suspect the Gaus-
sian approximation may still be accurate for higher immigration rates than we tested. For
these cases, it would be important to validate the Gaussian approximation via simulation.

Another limitation to consider is that the accuracy issues present in the single popu-
lation case will carry over to the metapopulation case. In particular, the accuracy of the
predictive distribution approximation is dependent on the elementwise standard deviation
of the filtering distribution being small in comparison to the elementwise mean. In prac-
tice, this could be problematic for subpopulations with very small case counts, causing
lower estimates of infected individuals and R0. This maybe be, in part, the reason for the
low estimate of R(2)

0 in Figure 4.8. Fortunately, populations with low case counts are not
very informative meaning the use of accurate priors is quite effective in mitigating this
issue. This effect is evident in Figure 4.11 where we observe that the hierarchical model
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assigns greater probability density to the true value. Note that the hierarchical model is
not imposing a prior directly on the value of R(2)

0 forcing it to increase, rather it is using
the information obtained from other larger outbreaks, which are both more informative
and more accurately estimated by the Gaussian approximation. In this way, the hierar-
chical structure of the parameters helps to reduce the impact of errors associated with
the Gaussian approximation. Despite this, it must be emphasised that this improvement
requires the hierarchical structure to be accurate to the situation, which is assumed in
our testing. The hierarchical model does make sense in the context of a global pandemic
since the same underlying disease is the cause. Moreover, we cannot state for certain that
the hierarchical model is improving the estimate for R

(2)
0 simply because the posterior

assigns more density to the real value. It is possible that the correct posterior assigns low
density to the true value, it is just less likely. The only way to truly test the accuracy
of the posteriors is to compare the result to a bootstrap particle filter, which would be
computationally infeasible.

While the hierarchical model brought posteriors for R0 closer to the true values it
did not have this effect for the observation probabilities (see Section 4.3.1). This issue
was somewhat mitigated by using stricter priors for the observation probabilities of more
subpopulations (see Section 4.3.2). However, in cases where very little is known about
the observation probabilities of most subpopulations, this issue is important. While we
cannot be certain that the deviation of the posterior distributions from the true values im-
plies an inaccuracy it is suggestive of a problem with the framework. It is unclear whether
the inaccuracy of the Gaussian approximation is causing the issue or if there is no issue
and the posteriors are approximately correct. In the cases where we can calculate the
true posterior distributions, we have found good adherence to the ones produced by the
Gaussian approximation. However, these tests were performed on models with far fewer
subpopulations due to computational limitations. While it is unclear how increasing the
number of subpopulations would hinder the performance of the Gaussian approximation
it certainly cannot be ruled out. This narrow validation of the Gaussian approximation
for the metapopulation is a weakness of this work and represents an opportunity for future
work.

In Section 4.3.3 we showed how the joint state and parameter estimates can be used
to derive posterior distributions for the probability of an imported outbreak and the ex-
pected number of imported outbreaks—the primary goal of this thesis. However, further
work can explore how other actionable insights can be derived by extending the frame-
work. For example, the effect of airport screening individuals from certain countries on
the probability of an imported outbreak could be analysed similarly by censoring the im-
migration rates and simulating from the posterior predictive distribution. This inference
could be used to determine an optimal allocation of screening resources or to determine
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if a proposed policy is effective [82].

The framework developed in Chapter 4 builds on the method developed by Shearer
et al. [9]. The most important extension we make is including the parameter estimation
within the risk estimation framework rather than relying on early estimates [16]. Esti-
mating parameters in this way makes use of the latest data, rather than having to wait
for estimates to be published based on older datasets. This is of great practical impor-
tance for the early phases of a novel disease outbreak when data is scarce. Additionally,
the parameter estimates in the literature may not perfectly carry over to the underlying
dynamic model being used. Alternatively, including parameter estimation in the frame-
work ensures perfect correspondence between parameter estimates and the model of the
epidemic dynamics.

Shearer et al. [9] makes use of the immigration model from De Salazar et al. [10],
where imported cases I are a Poisson process with rates dependent on immigration rates
from China

I ∼ Pois(βC), (5.1)

where β is fit to the data. This statistical approach differs from the mechanistic ap-
proach we take. Since we estimate the number of infected individuals in each country
we can determine the expected number of imports based on the travel volume between
subpopulations. The mechanistic approach removes the need to estimate any immigration-
related parameters, which will make the data more informative for the other parameters.
However, a weakness of our approach is that it relies on the assumption that travelling
individuals are sampled independently and uniformly from the population. Clearly, this
assumption is not completely valid but the effect of it on predictive capability is an open
question.

Bhatia et al. [11] made use of a model similar to De Salazar et al. [10], again using air
travel with China to estimate the proportion of unobserved cases in various countries. To
help in estimating this proportion, Singapore is assumed to have perfect case observation.
This gives a reference point for how the rate of immigration from China relates to the
total number of observed and unobserved cases. In Section 4.3 we show how this idea can
be expanded upon and applied to our framework. Specifically, subpopulations expected
to have high levels of monitoring can have priors tight for the observation probability p.
This gives a more accurate picture of our knowledge since we cannot know that every
single case is being observed or the exact observation probability. Additionally, this ap-
proach, in tandem with the hierarchical structure, can help resolve the issues associated
with estimating R0 and the observation probability together. Without tight priors on the
observation probability, it can be difficult to determine if data was generated with a high
R0 and low observation probability or a low R0 and high observation probability. Having
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some subpopulations with tight priors on p fixes that issue for those subpopulations, and
then the hierarchical structure helps to mitigate those issues for other subpopulations
(See Section 4.3.2).

In Section 4.3 we explored the computational feasibility of applying the Gaussian
approximation to a model with 20 subpopulations, finding that an effective sample size
of ∼ 1500 could be obtained in ∼ 10 hours of computation on a laptop. In practice,
this means new parameter and state estimates could be produced each day as new case
data arrives. We did not test the bootstrap particle filter (PF) against the Gaussian
approximation in this problem as a single PF likelihood evaluation was found to take
over 10 minutes (note that ∼ 50000 likelihood evaluations were required to burn in the
Metropolis-Hastings chain). This highlights the difficulty of applying sequential Monte
Carol methods to complex parameter estimation problems of this size. The Gaussian
approximation alleviates these issues in 2 ways: removing all variance in the likelihood
estimation and reducing the time taken to produce the result. Moreover, the bulk of the
computation time is in calculating the mean and variance for the CTBP which only needs
to be done once per likelihood evaluation regardless of the length of the time series. As a
result, it is unlikely that the length of the time series will become a limiting factor.

However, the method we have developed is limited in the number of parameters that
can be simultaneously estimated. For our hierarchical model, we estimated 45 jointly, this
being reasonably close to the maximum of what is feasible within a day of computation.
In practice, we may want to have many subpopulations for each country all with their
own parameters, which would certainly not be feasible within our framework. Fundamen-
tally, this issue cannot be fixed by improving the speed of the likelihood estimator (the
focus of this work) as it is a problem with the Metropolis-Hastings algorithm itself [83].
One possible avenue for mitigating this effect is Hamiltonian Monte Carlo (HMC) [84].
This method reduces the correlation between the sampled parameters while still main-
taining reasonable acceptance probabilities, reducing the number of samples required to
sufficiently explore the parameter space. HMC requires the calculation of the gradient of
the likelihood function

∇ℓ(θ) =
(
∂p(y1:T |θ)

∂θ1
,
∂p(y1:T |θ)

∂θ2
, . . . ,

∂p(y1:T |θ)
∂θn

)
.

For the Gaussian approximation, this can be achieved with automatic differentiation [85].
However, it is unclear whether the extra computation time required to calculate the gra-
dient would offset the advantage provided by HMC and thus would need to be explored
in future works.

The hierarchical model we test in this thesis is relatively simple, assuming nothing
about the individual subpopulations. In reality, our scientific understanding of epidemi-
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ology can give insight into which subpopulations we expect to have higher or lower R0.
A simple example of this is population density. The R0 of a subpopulation will generally
be positively correlated with the population density of that subpopulation [18]. Further-
more, this inference was strongly validated by data from the COVID-19 outbreak [19, 20].
Thus, it makes sense to include this type of inference in our priors. This could be achieved
by altering the prior for the subpopulation deviation η(j) to make it dependent on the
population density PDi;

η(j) ∼ N (f(PDi), 1), (5.2)

where f is some increasing function. Note that, this maintains the hierarchical structure
as R

(j)
0 = µR + νRη

(j) but also makes use of our knowledge about population density.
Incorporating as much prior information as possible into these types of models is vital
due to the scarcity of data, thus, representing an important direction for further work.

A strength of this framework is its flexibility concerning the dynamic model, in particu-
lar, the Gaussian approximation can be applied to any continuous-time branching process.
This allows for a wide variety of disease and observation dynamics to be modelled. For ex-
ample, outbreak dynamics with high heterogeneity have the possibility of leading to super
spreading events (SSEs), where one infected individual is the cause of many secondary
infections [86]. For both severe acute respiratory syndrome coronavirus (SARS-CoV)
and Middle East respiratory syndrome coronavirus (MERS-CoV), SSEs were a significant
factor in their spread [87, 88]. Additionally, there is strong evidence of COVID-19 ex-
hibiting similar properties [89, 90, 91]. Figure 5.1 shows how super-spreading individuals
can be easily incorporated into a CTBP by adding an extra agent type with a greater
infection rate. Moreover, super-spreading events can be easily incorporated by adding
extra events that create more infectious individuals. Another extension that can be easily
incorporated into the framework is the effect of social isolation when infected. Social
isolation can similarly be incorporated by adding an extra agent type corresponding to
an isolated individual with a lower associated infection rate. However, adding extra agent
types increases the dimension of the state space which is a severe bottleneck for the Gaus-
sian approximation. Thus, care needs to be taken to ensure that the increased accuracy
provided by these more complex models is worth the extra computational cost. This is
particularly important in the early phases of an outbreak, as the scarcity and noise of data
are likely to render some of the more complex models redundant. Additionally, during
the early phases of a novel pandemic, it is unlikely that our knowledge of the disease
dynamics will be sufficient to formulate an accuracte complex model. In these situations,
simple models would likely be the best choice.

Demining which factors are the most important to capture and how best to incorporate
them into these types of models in low-data situations represents an important avenue
for further research. Furthermore, the important factors will likely differ depending on
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the specific disease, emphasising the importance of a flexible inference framework.

Susceptible Exposed

Infectious (Super-spreader)

Infectious (Normal)

Removed
η

psδ

ps(1− δ)

λ

λ

Figure 5.1: CTBP incorporating super spreading individuals. Here η is the effective
infection rate, 1

δ
is the mean incubation time, λ is the recovery rate and q is the probability

of an individual being a super spreader.

While our work has shown the computational feasibility of the framework, we have
not deeply explored the model formulation issues. In particular, the choice of the specific
branching process model and priors is something that will differ for each outbreak. To
answer these questions it will be important to apply the metapopulation framework to
real-world datasets. Investigation of these questions represents the most important step
in developing this framework into a practically useful tool.

In summary, we have developed a computationally inexpensive approximate inference
method for a broad class of partially observed continuous time-branching processes. This
method makes strategic use of particle filters and a Gaussian approximation to minimise
both computation time and bias. Moreover, we have shown how this method can be
adapted to a meta-population model as part of a framework for estimating the importation
risk of a novel disease.
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Chapter 6

Appendix

6.1 Kalman Filter
For a hidden Markov model with states {zt}Tt=0 and data {yt}

T
t=1 defined as

z0 ∼ N (µ0,Σ0),

zt | zt−1 ∼ N (Ftzt−1 + Btut−1,Qt),

yt | zt ∼ N (Htzt,Rt).

for t ∈ {1, 2, . . . , T}, where {zt}Tt=0, {ut}Tt=0 and µ0 are r element column vectors, {yt}
T
t=1

are d element column vectors, Σ0, {Ft}Tt=1, {Bt}Tt=1 and {Qt}
T
t=1 are r×r matrices, {Ht}Tt=1

are d× r matrices and {Rt}Tt=1 are d× d matrices. In this case, all filtering distributions
are Gaussian. The mean µt|t and variance Σt|t of the filtering distributions, as well as
the likelihood p(yt|zt) can be derived with Algorithm 4 [29, 56 – 58]. The smoothed
distributions are also Gaussian and the means

{
µt|T

}T
t=1

and variances
{
Σt|T

}T
t=1

can be
derived with Algorithm 5 [29, 136 – 137].

6.2 Bivariante Posterior Distribution Comparison
Figure 6.1 shows comparisons of the estimated bivariate posterior distributions using
the PF and GF, based on the experiment discribed in Section 4.2.2. As expected, the
bivariante distributions produced by GF align reasonablly closely the samples produced
by the distributionally accurate PF.
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Algorithm 4
Kalman Filter
Input: Data {yt}

T
t=1, inital mean µ0 and variance Σ0, model parameters {ut}Tt=0, {Ft}Tt=1,

{Ht}Tt=1 and {Bt}Tt=1.
Initialise t← 0, ℓ← 0, Σ0|0 ← Σ0 and µ0|0 ← µ0

for t ∈ {1, 2, . . . , T} do
µt|t−1 ← Ftµt−1|t−1 + Btut−1.
Σt|t−1 ← FtΣt−1|t−1FT

t + Qt.
K← Σt+1|tHt(HtΣt+1|tHT

t + Rt)
−1.

µt+1|t+1 ← µt+1|t + K(yt+1 −Htµt+1|t).
Σt+1|t+1 ← (I−KHt)Σt+1|t.
ℓ← ℓ+ log(ϕ(yt+1;µt+1|t,Σt+1|t)).

end for
Output: Log likelihood ℓ, means

{
µt|t
}T
t=1

and variances
{
Σt|t
}T
t=1

.

Algorithm 5
Rauch-Tung-Striebel Smoother
Input: Data {yt}

T
t=1, inital mean µ0 and variance Σ0, model parameters {ut}Tt=0, {Ft}Tt=1,

{Ht}Tt=1, {Bt}Tt=1 and filtering distribution means
{
µt|t
}
t=1

and variances
{
Σt|t
}T
t=1

.
Initialise t← T .
for t ∈ {T − 1, . . . , 2, 1} do

µt+1|t ← Ft+1µt|t + Bt+1ut.
Σt+1|t ← Ft+1Σt|tFT

t+1 + Qt.
G← Σt|tFT

t+1Σ
−1
t+1|t.

µt|T ← µt|t + K(µt+1|T − µt+1|t).
Σt|T ← Σt|t + G(Σt+1|T −Σt+1|t)GT .

end for
Output: Smoothed distribution means

{
µt|T

}T
t=1

and variances
{
Σt|T

}T
t=1

.
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Figure 6.1: Plots showing samples from bivariate posterior distributions. Samples pro-
duced using the PF method are shown as points. The samples produced using the GF
method are shown as kernal density estiamtes.
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