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ABSTRACT
Over the last two decades, the danger of sharing resources between
programs has been repeatedly highlighted. Multiple side-channel
attacks, which seek to exploit shared components for leaking infor-
mation, have been devised, mostly targeting shared caching compo-
nents. In response, the research community has proposed multiple
cache designs that aim at curbing the source of side channels.

With multiple competing designs, there is a need for assessing
the level of security against side-channel attacks that each design
offers. Several metrics have been suggested for performing such
evaluations. However, these tend to be limited both in terms of
the potential adversaries they consider and in the applicability of
the metric to real-world attacks, as opposed to attack techniques.
Moreover, all existing metrics implicitly assume that a single metric
can encompass the nuances of side-channel security.

In this work we propose CacheFX, a flexible framework for
assessing and evaluating the resilience of cache designs to side-
channel attacks.CacheFX allows the evaluator to implement various
cache designs, victims, and attackers, as well as to exercise them
for assessing the leakage of information via the cache.

To demonstrate the power of CacheFX, we implement multiple
cache designs and replacement algorithms, and devise three evalu-
ation metrics that measure different aspects of the caches: (1) the
entropy induced by a memory access; (2) the complexity of building
an eviction set; (3) protection against cryptographic attacks; Our
experiments highlight that different security metrics give different
insights to designs, making a comprehensive analysis mandatory.
For instance, while eviction-set building was fastest for random-
ized skewed caches, these caches featured lower eviction entropy
and higher practical attack complexity. Our experiments show that
all non-partitioned designs allow for effective cryptographic at-
tacks. However, in state-of-the-art secure caches, eviction-based
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attacks are more difficult to mount than occupancy-based attacks,
highlighting the need to consider the latter in cache design.

CCS CONCEPTS
• Hardware → Simulation and emulation; • Security and pri-
vacy → Side-channel analysis and countermeasures.
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1 INTRODUCTION
Memory caches, which store recently accessed memory contents,
became a standard feature of mainstream computer processors.
While instrumental to the needs of contemporary computing, shar-
ing caches between multiple untrusted programs can lead to unde-
sired information leaks, in that the contents of caches necessarily
depend on past computations and by their nature are intended to
enhance the speed of future computations [22].

By monitoring the timing of memory operations, an attacker can
infer the state of the cache and learn information about the behavior
of the victim. Such side channels can result from any of the caches
in the processor [1, 27, 37, 43, 50, 53], and using such side channels,
a malicious actor may seek to infer sensitive information such as
cryptographic keys [2, 6, 24, 48, 50, 60, 83], user keystrokes and
their timing [32, 59, 61], address space information [20, 28, 35], and
others [4, 49, 65, 79]. The shared use of caches has also been shown
to enable efficient covert channels [8, 44, 46], where a malicious
Trojan colludes with an attacker to bypass the system’s security
policy.

The two main types of cache attacks are contention-based at-
tacks [1, 27, 37, 43, 50, 53, 81], which seek to exploit the limited
storage space in the cache, and reload-based attacks [28, 32, 33, 83],
which seek to exploit the attacker’s ability to evict memory it shares
with the victim from the cache. Because reload-based attacks rely
on shared memory, preventing memory from being shared across
security domains can be an effective countermeasure.
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Many cache designs have been suggested to address contention-
based cache attacks: partitioned caches aim to prevent contention [18,
76] while randomized caches [42, 57, 58, 67, 77] aim to introduce
noise and prevent the attacker from analyzing the side-channel
signal. Randomized caches often try to prevent the attacker from
mapping addresses to predictable cache line indexes, a step that is
considered essential for the attack. Finally, some proposals try to
prevent cross-core attacks by tweaking the inclusion properties of
shared cache levels in modern processors [29, 40, 80, 82].

With multiple proposals for protecting against contention, pro-
cessor vendors need some method of assessing their security. Sev-
eral approaches for evaluating secure caches have been suggested [8,
10, 11, 14, 15, 19, 21, 23, 25, 34, 41, 75, 86, 87]. For instance, [19, 25,
41] use formal methods and model checking to determine cache
leakage, [34, 75] model cache attacks to obtain attack success prob-
abilities, and [14, 15] use a three-step attack model to exhaustively
test for vulnerable attack patterns and apply it to various Arm
devices [13]. However, all of those suffer from some limitations
as they only work with simple cache models, focus on theoretical
analysis, cannot be automated, or do not cover the full range of
cache attacks. In addition, to strengthen confidence in the security
of cache designs, the evaluation of multiple metrics is mandatory.
Thus, in this work, we investigate the following question.

How can we evaluate the security that cache designs offer against
contention-based cache attacks?

1.1 Our Contribution.
To address this question, this paper presents CacheFX, a framework
for evaluating the security of caches. CacheFX provides an interface
for emulating the operation of cache designs with different victims
and attackers, and measuring the leakage for each combination of
attacker, victim, and cache design. We demonstrate the flexibility
of CacheFX by implementing nine cache designs, and evaluating
them using three metrics.
Cache Designs. The cache designs we implement include tradi-
tional fully-associative and set-associative caches, PLCache [76],
Newcache [42], PhantomCache [67], ScatterCache [77], way-partitioned
caches [18], and the two variants of CEASER [57, 58]. For caches
that do not stipulate a replacement policy, we support four replace-
ment algorithms: random replacement, least recently used (LRU),
and two variants of pseudo-LRU.
Evaluation Metrics. We further design and implement three
evaluation metrics. These not only add to the existing portfolio of
metrics proposed in prior works, allowing cache designers more
options for cache evaluation, but also demonstrate the flexibility of
CacheFX and its ability to measure a variety of metrics.
• Relative Eviction Entropy. The Relative Eviction Entropy (REE)
is a new metric we propose to measure the information leakage
from a single victim access via the cache side channel. We then
use an unrealistic attacker that can set the cache to a known
configuration and accurately observe the cache state.We combine
this attacker with a victim that accesses a single cache line only
and then calculate the amount of information that the attacker
receives from observing which cache line the victim evicted.

• Measuring Eviction-Set Creation. Most cache-based side
channel attacks require the attacker to find a minimal set of

addresses such that accessing them results in evicting a spe-
cific victim line from the cache. Our second metric measures
the difficulty for an attacker to find such sets. Here, we imple-
mented three eviction-set building strategies: Single Holdout
Method (SHM) [58], Group Elimination Method (GEM) [58] and
Prime+Prune+Probe (PPP) [55].

• Cryptographic Attack. Cryptographic attacks evaluate the
protection that the cache provides for cryptographic code. Our
victims perform cryptographic functions using implementations
known to be vulnerable. We let the victims encrypt data with one
of two keys, and task the attacker with distinguishing between
the keys. We evaluate both traditional attacks that aim to exploit
eviction sets, and occupancy-based attacks [63, 65]. In both cases,
we use the number of encryptions the attacker needs to observe
to distinguish between the keys as the security metric.

Results. Using CacheFX we can easily compare a large number of
cache design and evaluate them with multiple metrics. The frame-
work allows for easy implementation of new strategies and designs
and for comparison across the field. We now show some of the new
insights about caches and cache attacks, which CacheFX highlights.
Multiple Metrics. Our experiments show that different metrics
highlight different aspects of the caches. In particular, we find that
building eviction sets is faster in skewed caches such as Scatter-
Cache and CEASER-S, than other randomized caches, such as fully
associative caches or PhantomCache. Faster eviction-set construc-
tion reduces the effort required for mounting attacks. At the same
time, our experiments show that, with the right parameters, skewed
caches are not less secure when it comes to cryptographic attacks.
Evaluating Cryptographic Attacks. We find that the security
against cryptographic attackers depends not only on the design, but
also on other parameters, such as the replacement policy and the
cache associativity. We also show that all non-partitioned caches
are vulnerable to both eviction-set and occupancy attacks.
Comparing Attacks. Evaluating the metrics with CacheFX en-
ables us to compare attack strategies across the various cache de-
signs and parameters. For example, we find thatmost non-partitioned
secure cache designs offer protection against eviction-set attacks.
However, cache-occupancy attacks are left unconsidered and for
highly secure designs occupancy attacks are no less effective than
eviction-set attacks. Our evaluation thus demonstrates that par-
titioning is preferable from a side-channel perspective and the
resistance to eviction-set attacks of non-partitioned solutions may
be tuned to match the respective complexity of cache-occupancy
attacks to balance overall cache side-channel resistance and cost.

2 BACKGROUND
2.1 Cache Attacks
Modern processors use an array of caches to speed up accesses
to memory by exploiting program locality. Caches are architec-
turally transparent—whether a specific piece of data is cached does
not affect the architectural behavior of a program. It does, how-
ever, affect the performance of programs, thus monitoring program
performance can reveal information about the state of the cache.

Tsunoo et al. [69] were the first to demonstrate that this informa-
tion can be used to recover secret cryptographic keys. Early attacks
focused on the L1 data cache [50, 53, 68], but attacks targeting other
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caches soon emerged [1, 27, 33, 37, 43, 81, 83]. Cache attacks target
symmetric cryptography [7, 24, 33, 37, 48, 50, 68, 69], public-key
schemes [1, 9, 27, 43, 53, 60, 83], Post-quantum cryptography [30,
54], and non cryptographic software [4, 20, 28, 32, 35, 49, 61, 65, 79].
There are two main groups of cache attacks:
Reload-Based Attacks monitor accesses to a shared memory
address [32, 33, 83]. The attack first evicts the data from the cache
either via a dedicated instruction [33, 83] or by forcing contention
on the cache set containing the data [32]. The attacker then waits
a bit and measures the time to access the previously evicted data. If
while waiting the victim accesses the data, the data will be cached
and the attacker’s access be fast. As not sharing memory across
domains can be an effective mitigation, this attack type is not the
main target of this work.
Contention-Based Attacks , which seek to exploit the limited
storage in the cache, and in particular in each of the cache sets [1,
27, 37, 43, 50, 53, 81], are the main focus of this work. The most
common contention-based attack technique is Prime+Probe, where
the attacker first primes the cache by filling some or all of the
cache sets with their data and, after letting the victim some time to
execute, measures the time to access the cached data. A slow access
indicates that the data is no longer cached, suggesting eviction
from a cache set due to victim activity. Variants of the attack avoid
using timing information by relying on performance counters [4,
70] or transaction aborts [16] for contention detection. Another
contention-based attack is Evict+Time [27, 38, 50, 72], where the
attacker evicts data from the cache before measuring the execution
time of a victim. The victim’s execution time will be longer if the
evicted data is used by the victim, revealing information on cache
sets that the victim uses.
Other Types of Cache Attacks. Some cache attacks do not fit
into either of the two groups. Such attacks seek to exploit imple-
mentation aspects of the cache, such as port contention [85], cache
flushing time [31], replacement policies [56, 73, 78], cache inspec-
tion operations [5], or variations in power consumption based on
caching information [51]. Due to their specific requirements, such
attacks are outside the scope of this work.
Eviction-Set Construction. For many of the attacks mentioned
above, the attacker must be able to repeatedly evict specific contents
from the cache. Typically, attackers achieve this by constructing
an eviction set, which consists of memory locations that all map to
the same cache set as the data to evict. When mapping information
for the cache is available, constructing an eviction set tends to be
straightforward. However, when the mapping function is undocu-
mented or when the information it uses for indexing the cache is
not available to the attacker, further techniques are required to re-
cover the missing information. Past research shows how to reverse-
engineer undocumented mapping functions [27, 36, 45, 47, 84],
and how to build eviction sets without physical address informa-
tion [43, 74].

2.2 Secure Caches
Several proposed cache designs aim to mitigate contention-based
attacks. Their mitigation strategies are either based on partition-
ing [18, 76] or randomization [42, 57, 58, 77].

Partitioned Caches Way-partitioned caches [18] enforce a strong
partitioning between security domains by letting each security do-
main use a different subset of the cache ways. Hence, domains not
sharing cache ways will not see any interference. Alternatively,
Partition-Locked (PL) [76] caches share the whole cache among all
security domains, but offer to pin cache lines in the cache. These
pinned lines cannot be evicted by other security domains, prevent-
ing contention-based attacks. However, aggressive pinning can
starve other domains and severely degrade their performance.
CEASER. The CEASER cache [57] is based on an ordinary set-
associative cache and uses encryption to randomize the mapping
of addresses to cache sets. As a result, attackers need to first profile
the victim’s accesses of interest to find a suitable eviction set before
they can perform contention-based attacks. To limit the attacker’s
time for finding such eviction set, CEASER regularly changes the
encryption key. However, in this workwe onlymeasure information
leakage in each key epoch (i.e., during the time period the cache uses
the same key) and do not model re-keying. This allows assessing
the security of pure cache-set randomization as it is needed to
appropriately tune the re-keying interval for long-term security.
CEASER-S and ScatterCache. With improving eviction set build-
ing techniques [58, 74], CEASER required higher key refresh rates to
maintain security, resulting in increased overheads. CEASER-S [58]
and ScatterCache [77] thus use a skewed cache [62] to improve
cache randomization. These skewed caches split the cache into par-
titions along its ways and use a different key to encrypt the address
to index into each partition. The partition count can vary between
1 (CEASER) and the number of ways (ScatterCache) and allows to
control the degree of randomization. As before, we omit re-keying
to assess the security of pure cache randomization with skewing.
PhantomCache. PhantomCache [67] builds upon set-associative
caches and maps each address to multiple sets via multiple hash
functions, i.e., it looks in multiple sets for a cache hit. On a cache
miss, PhatomCache randomly selects one of the sets the address
maps to and inserts the cache line into the chosen set. The num-
ber of cache sets looked up in parallel determines the degree of
randomization and the cost of lookup. As before, we evaluate Phan-
tomCache without re-keying.
NewCache. Rather than randomizing the cache mapping, New-
Cache [42] is a more efficient implementation of a fully associative
cache. NewCache allows every cache line to be stored in any of
the physical lines of the cache. Compared to a standard associative
design, it optimizes power using a two-step look-up procedure:
For a cache that can hold 2𝑛 physical cache lines, NewCache first
looks up 𝑛 + 𝑘 index bits of the cache line address in a 2𝑛-element
Content-Addressable Memory (CAM), which has a 1:1 mapping to
the actual cache lines. Only if these 𝑛 + 𝑘 bits match, this index hit
is secondly followed by checking the tag for the respective entry. If
the tag hits, the cache line is found and returned. If there is a tag
miss for the same security domain in the second step, the tag and
cache line are simply replaced. If there is a index miss, any of the
2𝑛 cache lines in the cache is randomly replaced. While for large 𝑘
NewCache resembles a traditional fully associative cache, a smaller
𝑘 significantly reduces power and implementation cost.
Secure Cache Hierarchies. For cross-core attacks, attackers must
be able to evict data not only from the caches they use, but also
from caches at the victim’s core. Most cross-core attacks rely on
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an inclusive LLC, which ensures that the contents of the shared
LLC is a superset of the contents of all private caches. Inclusiveness
guarantees that when data is evicted from the LLC, it is also evicted
from all core-private caches. If the LLC is not inclusive, evictions
from it do not necessarily translate to evictions from core-private
caches, and may hamper cache attacks. Yan et al. [81] use a similar
property of cache directories in non-inclusive caches. Several cache
designs and features [29, 52, 82] that prevent cross-core eviction
are outside the scope for this work.

3 PROBLEM DESCRIPTION
With the abundance of secure cache designs, there is a clear need
for systematically evaluating the security of caches to ensure that
emerging cache architectures deliver the promised protection. Tack-
ling this task, previous works [8, 10–12, 14, 15, 17, 34, 75, 86, 87]
have suggested several metrics. However, all of these tend to suffer
from some limitations to their practicality. For example, measuring
the amount of information that can be transferred via a cache side
channel [8] or the correlation between a specific victim’s activity
and attacker observation [10] may not translate easily to crypto-
graphic attack scenarios. Possibly the most common limitation of
these approaches is the attempt to provide a single metric that
somehow represents the security of the cache.
A General Cache Evaluation Framework. Instead of focusing
on a single metric, this work proposes CacheFX, a framework for
evaluating the security of cache designs. The main design aim of
CacheFX is flexibility: CacheFX is extensible and allows evaluating
various combinations of victims, cache designs, and attack strate-
gies. As a proof of CacheFX’s generality, this paper implements and
evaluates three security metrics on nine different cache designs.
A Leakage Upper Bound. While we try to evaluate in realistic
scenarios, CacheFX aims to provide an upper bound on the amount
of leakage an attacker can obtain from a cache design. We thus
assume an attacker who has significant control over the victim
and is tightly synchronized with the victim’s execution. We further
assume that the attacker has access to victim’s memory layout and
code and thus knows the position of “interesting” data in the cache
(e.g., cache lines containing secrets). This allows the attacker to craft
inputs to the victim that may cause specific cache footprints. Unless
required by the cache design, we assume a noise-free environment
without any system activity besides the attacker and victim.

Using such strong assumptions allows CacheFX to properly eval-
uate the security offered by the cache design, as opposed to being
misled by security guarantees stemming from other components’
noise. We note that previous works have demonstrated that attack-
ers can find interesting cache lines [43] and overcome noise [8].

Attack Model Memory Handle Cache Model
rd offset rd offset

hit/miss hit/miss

Figure 1: CacheFX design overview.

4 CACHEFX DESIGN
As mentioned above, CacheFX is designed to provide an easily
extendable framework for evaluating (1) the security of emerging

cache designs and (2) the applicability and complexity of new attack
strategies to both deployed and emerging caches. To facilitate these
goals, CacheFX is split into three major components as depicted
in Figure 1. First, the attack model provides a set of interfaces and
their implementations to model different attack and security eval-
uation strategies. Attack models use a memory handle to request
reads, writes, and cache line invalidations to the memory system
by specifying a certain offset into a memory region that is asso-
ciated with the memory handle. The memory handle translates
the requests to cache line addresses and queries the cache model
correspondingly. The cache model returns whether the request
hit or missed in the cache via the memory handle to the attack
model, which then proceeds with the attack accordingly. Finally,
the cache model provides a generic cache interface allowing for
multiple different cache implementations. In the following, we give
additional details about each of these components. The CacheFX
code and a more comprehensive documentation is available at
https://github.com/0xADE1A1DE/CacheFX.

MemHandle
mmu : MMU
read()
write()
exec()
flush()

MMU
cache : Cache*
getCache()

read() mmu.getCache()
->read()

Cache
hits : long
misses: long

virtual read()
virtual write()
virtual exec()
virtual flush()

AssocCache
rp : ReplPlcy

NewCache

ScatterCache

SetAssocCache

virtual getSet()

CEASERCache PhantomCache WPCache PLCache

Figure 2: CacheFX overall architecture

4.1 Cache Model
CacheFX’s cache model offers a generic cache interface that the
memory handle and the attacker model can use to issue read, write,
and invalidation requests to the cache under test. For each of these
requests, the cache responds with whether the request hit or missed.
This indication removes the need to distinguish between hits and
misses using (potentially noisy) timing measurements, providing
an upper bound on the amount of leakage available to the attacker
and consequently lower bounding the attack’s complexity.
Supported Cache Designs. The cache model currently pro-
vides multiple implementations of security-oriented cache designs:
fully associative cache, set-associative cache, way-partitioned cache,
partition-locked cache, CEASER and CEASER-S [58, 74], Scatter-
Cache [77], NewCache [42], and PhantomCache [67]. These cache
implementations are parameterized by the number of sets, ways,
replacement policy, and cache-specific parameters. Unless a cache
design mandates a specific replacement policy, all the implementa-
tions support LRU, Bit-PLRU, Tree-PLRU, and random replacement.
The Cache Interface. The internal interface of the cache model
is defined by the Cache virtual class which acts as an interface with
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mainly four functions, namely: read, write, exec, and flush all of
which embody actual requests that are sent to the cache hardware.
Being an interface, these functions’ specific implementations are
delegated to the derived classes of the Cache virtual class, such
as, NewCache, ScatterCache, SetAssocCache, as shown in Figure 2.
Each inherited class devises distinct mechanisms for dealing with
the four requests which are carefully modeled based on the actual
cache hardware functionality. This design promotes effective encap-
sulation and abstraction along with ease of implementation when
adding new models as CacheFX’s simulation logic interfaces only
with these top level functions. To support generic set-associative
classes, CacheFX supports the SetAssocCache class, where each set
is implemented as an AssocCaches. This allows for easy creation of
the different set-based caches and reuses the code of the associative
cache class, e.g., to support multiple replacement algorithms.

Themechanism for selecting a set is implemented by the function
getSet(). For the SetAssocCache, this is a simple modulus operation of
the cache line and the number of cache sets. For CEASERCache and
PhantomCache the set selection mechanism is based on a hashing
algorithm. For both of these cases, the getSet() function is simply
overloaded while the underlying implementation of SetAssocCache
remains unchanged. Similarly, WPCache separates its context into
two partitions, one for sensitive, and another for general data. This
model simply consists of two SetAssocCache instances that are cho-
sen based on the security context of a data access. Finally, PLCache’s
design is based on the SetAssocCache, but with a minor change to
the replacement algorithm to facilitate pinning of specific lines.
Statistics Generation. The abstract cache model automatically
tracks the number of cache hits andmisses for each security domain.
In addition, the cache model can return the evicted address, if a
cache access causes an eviction. While attackers usually do not have
direct access to such information, providing the address allows us
to apply novel and efficient techniques, such as the Relative Eviction
Entropy (REE) in Section 5.1, for analyzing cache security.

4.2 Attack Model
CacheFX’s attack model implements the actual adversarial strat-
egy and evaluates the cache design under test. Currently, CacheFX
supports three security evaluation strategies:
The Attacker. CacheFX allows to model synchronized pairs of
victims and attackers, aiming to evaluate the security of cache de-
signs with respect to realistic attacks, such as cache attacks against
cryptographic block ciphers. CacheFX supports two types of attack-
ers, EvictionAttacker, and OccupancyAttacker, both are subclasses
of a generic Attacker class that manages the attack and collects the
success statistics.
Information Leakage Assessment. CacheFX supports entropy-
based security metrics that quantify information leakage during
cache attacks (e.g., mutual information analysis). Most noteworthy,
CacheFX implements a novel technique for evaluating information
leakage in cache designs via the REE, by efficiently analyzing the
statistical properties of a cache’s cross-domain eviction behavior.
Eviction-Set Profiling. CacheFX provides an environment that
allows for the evaluation of strategies to construct eviction sets for
different cache designs.

Experiment Randomization and Automation. CacheFX al-
lows to conduct each of these experiments multiple times with
randomized address ranges to automatically obtain statistical data
like maximum, minimum, etc. CacheFX hereby collects data such
as cache statistics and attack success rates.

4.3 Victim Model
The purpose of this model is to simulate the behavior of victim
applications within CacheFX’s simulation. CacheFX implements a
number of victim models including:
• SingleAccessVictim is the simplest victimmodel that repeatedly
accesses a single address in the memory.

• AESVictim simulates the behavior of AES encryption.
• SquareMultVictim imitates the square-and-multiply routine
used in popular algorithms such as RSA.

All models are carefully crafted to resemble their actual attack char-
acteristics. Take for example the AESVictim model whose code is
taken directly from the original AES implementation, but is adapted
to call intoCacheFX’s API on each T-table access. In other words, all
memory operations of the victim are redirected to CacheFX for fur-
ther simulation. A similar approach is taken for SquareMultVictim
where the cache line containing the multiplication code is exe-
cuted conditionally based on the exponent. In this context, a call to
CacheFX’s cache line read function is invoked at the beginning of
the multiplication basic block to notify the simulator of the instruc-
tion cache read. With this methodology, we ensure high precision
of CacheFX’s simulated model characteristic in comparison to the
actual implementation.

Note that CacheFX victims currently focus on cryptographic
code as its properties are well understood and are well suited to
analyzes the properties of the underlying cache design. However,
CacheFX is generic enough to similarly model other leaking code,
e.g., (de-)compression algorithms, data en-/decoders [66] or neural
networks [79].

4.4 The Attack Controller Function
As its name suggests, the purpose of this function is to moderate
interactions between Attack Model and Victim Model (both of which
subsequently interact with Cache Model).

Listing 1: Attack Controller main loop
/ / E v i c t i o n o r Occupacy A t t a c k e r
At t a ck e r ∗ a = c r e a t eA t t a c k e r ( a t t a ck e rMode l ) ;
/ / S i n g l e , AES , o r Squa r eMu l t V i c t im
Vic t im ∗ v = c r e a t eV i c t im ( v i c t imMode l ) ;

while ( c o n t r o l l e r _ r u n ) {
a−>prime ( ) ; v−> c i ph e r ( ) ; a−>probe ( ) ;

}

Listing 1 outlines the main workings of the attack controller
function. At the outset, pointers to both the Attacker and Victim
classes are instantiated to their desired model. At the heart of this
function is a loop that interleaves the execution of the attacker and
the victim i.e. the prime, cipher, and probe methods. Note that the
controller is agnostic of the specific implementations of these victim
and attack functions and that the choice is left up to polymorphism.

The controller consolidates all major simulation components
and can be thought of as the main driver of CacheFX.
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5 EVALUATION
Recognizing that no single metric is sufficient for measuring the
resilience of caches to side-channel attacks, we evaluate emerging
cache designs w.r.t. multiple metrics using our framework. First,
the Relative Eviction Entropy (REE) metric measures the amount
of information (in bits) that an attacker can deduce following a
single memory access performed by the victim. Our second metric
measures the complexity of creating eviction sets in randomized
caches. Our third metric measures the complexity of performing
cache attacks on cryptographic implementations. It evaluates both
traditional attacks that seek to exploit eviction sets and cache-
occupancy attacks [8, 65], which do not require eviction sets.

We now discuss each metric in detail and compare different
designs according to each of the measurement metrics.

5.1 Relative Eviction Entropy
In this sectionwe introduce our Relative Eviction Entropy (REE) tech-
nique for effectively measuring the amount of information available
to an attacker following a single memory access performed by the
victim. We begin by observing that traditional mutual information
analysis [8, 86] achieves such estimation for general side channels
by computing a 2-dimensional joint probability distribution, which
describes the likelihood of each victim activity (side channel input)
to be mapped to an effect observable by an attacker (side channel
output). For the case of caches, this means that for any address 𝑖
accessed by the victim, and for all cached addresses 𝑎, we need to
compute 𝑝𝑒 (𝑎, 𝑖) which is the probability that 𝑎 is evicted from the
cache assuming that the victim accesses address 𝑖 . We note that
mutual information techniques typically measure average leakage
across accesses, and thus do not capture the worst-case leakage.
Avoiding Quadratic Overheads. To avoid the quadratic over-
head of computing the 2-dimensional joint probability distribution,
we start by observing that natural cache designs typically do not
have different eviction behavior between cache line addresses, and
instead use the same replacement policy constantly across all cache
lines. In addition to simplifying cache designs, this property im-
plies that all cache line addresses exhibit the same leakage behavior.
Leveraging this fact, we can thus fix an arbitrary address 𝑖 to be
accessed by the victim, and simply sample 𝑝𝑒 (𝑎, 𝑖) for all other
addresses 𝑎. This avoids iterating over all possible values of 𝑖 and
thus makes the evaluation time of our metric linear in the size of
the victim and attacker address spaces. When the value of 𝑖 is fixed
and clear from the context, we will simply omit 𝑖 from the notation.
Quantifying Information Leakage. To capture the amount of
leakage available to the attacker (in bits), we start from the intuition
that fully associative caches with a random replacement policy leak
the least amount of information among all cache designs that share
cache lines between security domains, i.e., without consideration
of partitioned caches. We argue that this assumption is reasonable,
since fully associative caches with uniformly-random replacement
only leak whether an address 𝑎 was evicted or not, and do not
reveal any information about which address 𝑖 accessed by the victim
caused the eviction of 𝑎. To evaluate leakage of new cache designs,
we thus measure the REE as the statistical distance (in bits) of
the eviction behavior of the tested cache design from the eviction
behavior of ideal fully associative caches with random replacement.

ComputingRelative Eviction Entropy. Our strategy for comput-
ing a cache design’s REE is as follows. First, we allocate a chunk of
memory in the adversary’s address space, typically a small multiple
of the cache size. We denote the set of cache line addresses within
that adversary’s memory as 𝑎 ∈ [0, ..., 𝑁 − 1]. Second, for a single
victim access to some fixed address 𝑖 , we estimate the eviction prob-
ability 𝑝𝑒 (𝑎) for each cache line 𝑎 ∈ [0, ..., 𝑁 − 1] in the adversary’s
memory, using our implementation of the cache design under test.
The distribution 𝑝𝑒 (𝑎) will reflect the cache’s placement policy: e.g.,
if the single victim access can evict every adversary address 𝑎, as
in a fully associative cache with random replacement, 𝑝𝑒 (𝑎) will
be uniform among all adversary addresses 𝑎. If the single victim
access can only evict adversary addresses 𝑎 mapping to the same
cache set in a set-associative cache, 𝑝𝑒 (𝑎) will be uniform among
those addresses 𝑎 mapping to the same set as the victim address 𝑖
and zero otherwise. The reference eviction distribution of a fully
associative cache with random replacement is set to 𝑝𝑢 (𝑎) = 1/𝑁
for all addresses 𝑎, reflecting that every adversary address is equally
likely to get evicted. Finally, we compute the REE as the statistical
distance in bits between the eviction probability distributions 𝑝𝑒 (𝑎)
and 𝑝𝑢 (𝑎) using the Kullback-Leibler (KL) divergence to measure,

𝐷KL (𝑝𝑒 | |𝑝𝑢 ) =
∑︁

𝑎∈[0,...,𝑁−1]
𝑝𝑒 (𝑎) log2

𝑝𝑒 (𝑎)
𝑝𝑢 (𝑎)

. (1)

Note that the KL divergence does not fulfill the requirements of a
metric and is asymmetric. Nevertheless, 𝐷𝐾𝐿 (𝑝𝑒 | |𝑝𝑢 ) describes the
relative entropy of 𝑝𝑒 (𝑎) with respect to 𝑝𝑢 (𝑎) and is a measure
of the information lost if 𝑝𝑢 (𝑎) was used to approximate 𝑝𝑒 (𝑎).
Mapped to cache side channels, the KL divergence thus nicely char-
acterizes the leakage of a cache design with an eviction probability
distribution 𝑝𝑒 (𝑎) relative to the distribution 𝑝𝑢 (𝑎) in a fully asso-
ciative cache design.
Sampling 𝑝𝑒 (𝑎). As 𝑝𝑒 (𝑎) is generally unknown, we sample 𝑝𝑒 (𝑎)
and use the plug-in estimator [89] for the KL divergence to esti-
mate the REE: we simply count the number of evictions for the
attacker’s cache lines when the victim repeatedly accesses a fixed,
randomly chosen address. More specifically, we first fill the cache by
randomly accessing cache line addresses from the memory chunk
corresponding to the attacker’s security domain. To keep track of
self-evictions and hence the attacker’s lines that are actually cached,
we utilize our cache model’s capability to return which cache line is
evicted with each access, as described in Section 4.1. We note that
this is an over-approximation of the attacker’s capabilities, as on
real systems this translates to an attacker who can perfectly moni-
tor cache evictions and accurately determine address collisions in
the cache. Once the cache is entirely filled with the attacker’s data,
we access a fixed secret address from the victim’s security domain,
forcing an eviction of one of the attacker’s addresses. We then in-
crement the eviction counter for the attacker address that is being
reported as evicted from the cache. We repeat this sampling step
multiple times and finally divide the per-address eviction counts
by the total number of observed evictions, thereby obtaining 𝑝𝑒 (𝑎).
The repeated sampling procedure reduces the error of the sampled
eviction probabilities proportional to

√︁
(𝑟 ), where 𝑟 is the number

of samples collected.
Definition
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Figure 3: REE across cache designs with random replacement.
All but NewCache and the fully associative cache use 16ways.
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Figure 4: REE for CEASER-S with 2048 lines depending on
ways and partitions.

Relative Eviction Entropy is evaluated as follows:
(1) Select a victim address 𝑣 and initialize a pool of memory P.
(2) Sample 𝑝𝑒 (𝑎)∀𝑎 ∈ P, which is the probability that 𝑣 evicts

address 𝑎 from the cache.
(3) Compute the REE via Equation 1, where 𝑝𝑢 (𝑎) denotes a uni-

form distribution over all addresses 𝑎 ∈ P.
Evaluation Results. Figure 3 depicts the information leakage
in the analyzed cache designs for various cache sizes and using
random replacement. While the partitioned cache designs exhibit
zero leakage, the leakages for CEASER and set-associative caches
is the number of sets, i.e., log2 (#𝑠𝑒𝑡𝑠) bits, thereby confirming the
validity of our results. Next, we attribute the slightly above-zero
leakages in NewCache and the fully associative cache to statistical
noise. Note that CEASER-S and ScatterCache (with 2 and 16 parti-
tions, respectively) show considerably lower leakage than standard
set-associative caches. Moreover, as PhantomCache is looking up
8 sets, i.e., 128 lines, in parallel, PhantomCache stands out with
significantly lower leakage per access than other designs, but also
hurts chip area and power consumption.

Figure 4 analyzes the leakage in skewed caches like CEASER-S
depending on way and partition count. Figure 4 clearly shows that
increasing the number of ways and partitions effectively reduces
leakage, with the difference between the best and worst configura-
tion being 8 bits per access.
Supporting More General Cache Designs. We note that our
Relative Eviction Entropy method can be computed in linear time,
allowing us to evaluate different cache designs within minutes.
However, we do assume some properties of the replacement policy
of the cache being tested, namely that every line in the considered
cache design exhibits the same leakage behavior, which in turn is in-
dependent from the specific address accessed by the victim. We rely

on this assumption in our procedure for sampling 𝑝𝑒 (𝑎), evaluating
the eviction distribution using only a single fixed address accessed
by the victim. We argue that this assumption is natural and holds
for most cache designs, including all the caches considered in this
paper, as typical replacement policies do not differentiate between
cache line addresses. While a single access does not reflect practical
attack scenarios, it gives strong insight into the theoretical leakage
caused by the caches’s structural mapping of addresses to cache
lines. However, while the REE is a highly efficient tool to approxi-
mate leakage, we recognize that its underlying assumptions may
be limiting its use in various corner cases, e.g., when replacement
decisions are based on the actual address.

To better understand the practical exploitability of leakage de-
termined via the REE, we conduct application-specific tests using
cryptographic routines later in Section 5.3. However, note that the
REE metric can be easily adapted to other cases as well, by simply
testing multiple victim addresses and reporting the range of the
occurring leakage as a function of victim’s address.

5.2 Eviction-Set Creation
To perform contention-based cache attacks, attackers first construct
suitable eviction sets, i.e., minimal sets of addresses in their own
address space that collide with the victim’s accesses of interest.
Due to its perceived importance, multiple cache designs aim at
randomizing the cache to prevent efficient eviction-set creation and
thus contention-based attacks.

Definition
Eviction-set creation is evaluated as follows:

(1) Select an eviction-set construction algorithm A, an address 𝑎,
a target eviction set size 𝑇 , and number of repetitions 𝑅

(2) Select a pool P of candidate addresses.
(3) Run A on pool P to find an eviction set E ⊂ P for address 𝑎

until the target size |E | = 𝑇 is reached and repeat 𝑅 times.
(4) Evaluate minimum/maximum/median/average for 𝑅 samples of

key metrics, e.g., number of attacker accesses and final set size.

Constructing Eviction Sets on Randomized Caches. Previous
works proposed a range of methods for finding eviction sets in ran-
domized caches. Taking a top-down approach, the Single Holdout
Method (SHM) and the Group Elimination Method (GEM) [58, 74]
both start from a large set of attacker addresses that evicts a certain
victim address and then shrink this conflict set to a minimal eviction
set by trying to remove (groups of) addresses while continuously
verifying that the cache conflict remains. Taking a bottom-up ap-
proach, the Prime+Prune+Probe (PPP) method [55] pre-fills the
cache with a set of candidate addresses, and subsequently triggers
the victim access of interest. PPP then tests for cache misses in its
candidate set, thereby locating conflicting addresses. Note that all
of these approaches allow for optimizations specific to the cache
replacement strategy in use.

Evaluating Difficulty of Eviction Set Construction. As pro-
tecting against eviction set construction is a major design goal for
randomized caches, CacheFX allows to evaluate the effectiveness
of SHM, GEM, and PPP on a candidate cache design. In particular,
CacheFX quantifies the number of memory accesses required by
an attacker, the number of conflicting addresses found, and the
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success rate of using the found addresses for evicting the victim ad-
dress. These figures eventually allow to configure cache re-keying
intervals, e.g., for CEASER and CEASER-S. To set a level playing
field and support an equal comparison across cache designs, we use
the same implementations of eviction-set construction techniques
for all evaluated cache designs. We intentionally avoided cache-
specific optimizations, opting for comparable results rather than for
optimal strategies. Specifically, all of our implementations iterate
until they find (or shrink a conflict set to) the minimum number of
addresses required for an eviction set, or until a predefined maxi-
mum iteration count is reached. The latter is a necessity to perform
bulk testing as some algorithms do not terminate for every cache
design. We leave the question of identifying optimal strategies and
evaluating them to future work.
Measurement Setup. To measure the success rate, we set up
a clean cache environment 1000 times and count the number of
successful evictions of the cached victim address given the found
eviction set. We extracted the cache hit/miss statistics to evaluate
the number of attacker accesses needed for eviction-set creation.
We determine the number of true conflicts in the eviction set by
testing every found address for a collision with the victim address
in the cache. While this is not directly possible on real systems,
CacheFX provides this feature to assess how well each algorithm
works for every cache design.

In our experiments, we used random replacement, 2048 lines and
16 ways where applicable, i.e., except for NewCache and the fully
associative cache, which only have one set. We operated CEASER-S
with 2 partitions, NewCache with 𝑘 = 2, and PhantomCache with 8
parallel set lookups. We set up the algorithms to look for as many
addresses as there are cache ways. For PhantomCache, however,
we require 8x the number of ways, because it can place lines in 8
different sets.
Evaluating the Number of Memory Accesses for Eviction Set
Construction. Figure 5 shows the number of memory operations
done by SHM, GEM, and PPP for different cache designs. As L1
cache accesses take about five CPU cycles, these results give an
indication about the execution time of each technique when used
against a specific cache design.
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Figure 5: Number of memory accesses required by eviction-
set building techniques for different 2048-line caches.

As the figure shows, the number of memory accesses for SHM is
the highest, and in the same order of magnitude for all designs. In
contrast, the complexity of PPP scales with the eviction set size, e.g.,
PPP is two orders of magnitude faster for ScatterCache than for
NewCache. PPP also tends to be more efficient for skewed caches, as
it is 3x faster for CEASER-S than for CEASER. The performance of
GEM is mostly in between PPP and SHM, but tends to be faster than

PPP in the case of large eviction sets (e.g., for NewCache). Figure
6 gives further performance figures for CEASER-S and shows the
linear increase in complexity with the number of cache lines.
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Figure 6: Number of memory accesses required by eviction-
set building techniques for CEASER-S depending on cache
size.

Evaluating Eviction Coverage. Different eviction set construc-
tion techniques can also produce eviction sets of different quality.
Figure 7 thus shows the number of addresses in the found eviction
sets that truly conflict with the victim address: PPP works best for
all of the tested cache designs, producing eviction sets where all of
its addresses truly conflict with the victim address. In contrast, SHM
and GEM are less reliable, producing eviction sets where many of
the addresses do not conflict with the victim address. The main
reason for this is that SHM and GEM are highly susceptible to noise,
which stems from both random replacement and cache skewing.
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Figure 7: Percentage of addresses in the constructed eviction
sets that conflict with the victim’s address, using different
eviction-set construction techniques and 2048-line caches.

To verify this, Figure 8 shows the constructed eviction sets’ sizes
for SHM, GEM and PPP. Except for NewCache and fully associative
caches, both SHM and GEM stop shrinking the conflict set before
it becomes minimal, which results in eviction sets where many
addresses do not conflict with the victim address. This effect is
particularly strong for the skewed cache designs CEASER-S and
ScatterCache. Moreover, SHM and GEM also fail on PhantomCache,
where both algorithms terminate with 10x as many addresses as
needed. Finally, for NewCache and fully associative caches every
address is equally suitable for an eviction set, which automatically
results in 100% of the addresses conflicting with the victim address.
Evaluating Eviction Success Rate. We also evaluate the con-
structed eviction sets for their ability to effectively evict the victim
address of interest. As Figure 9 shows, the eviction sets found by all
three eviction set construction techniques perform equally well for
CEASER, NewCache, set- and fully associative caches. For CEASER-
S and ScatterCache, PPP yields better eviction success rates than
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SHM and GEM, because PPP is generally more accurate (cf. Figure
7). For PhantomCache, however, GEM and SHM yielded better evic-
tion rates as the found eviction set makes up roughly 50% of the
cache. As skewed caches exhibit a significantly smaller probability
of successful eviction (e.g., 2-4% for ScatterCache), eviction sets
might be chosen larger to obtain high eviction probabilities and
and Prime+Probe observability.
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Obtaining a Specific Eviction Probability. To learn how many
addresses would be needed to yield a certain eviction probability 𝛼 ,
we start with an empty eviction set and successively add conflicting
addresses until the eviction probability reaches𝛼 . Figure 10 presents
the results of this routine for 𝛼 = 90%, across different caches and
replacement policies. It shows that LRU and Tree-PLRU allow for
smaller eviction sets than Bit-PLRU and random replacement. In
addition, skewing significantly increases the number of conflicting
addresses needed, e.g., ScatterCache requires 10x more addresses
than CEASER with equal sets and ways.
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5.3 Eviction-Set Attack
This section focuses on measuring the security offered by cache de-
signs when performing attacks on cryptographic implementations.

To that aim, we simulate victims that use a cryptographic algorithm
while the attacker tries to learn enough information to distinguish
between two keys used by the victim. We use two cryptographic
algorithms, each representing a different type of cache attack.
The AES Victim. Our AES victim is based on code from OpenSSL,
which uses a set of tables, called T-tables, implemented as arrays.
The attack focuses on the first four accesses made to the first T-table
during the encryption. The two keys are selected such that, when
encrypting some vulnerable plaintexts with the first key, all of these
accesses fall in the first cache line of the T-table. Conversely, when
encrypting vulnerable plaintexts with the second key, each of the
four accesses falls in a different cache line. Finally, to further facili-
tate the attack, we allow the attacker to choose as many random
vulnerable plaintexts as required for the attack.

In a more realistic scenario, the attacker can guess the charac-
teristics of the vulnerable plaintexts. Specifically, the attacker can
fix the first byte of the plaintext, and test every combination of
plaintext values for the other three bytes that affect access to the
first T-table. For each such combination, the attacker then performs
the attack. If any of the combinations show statistical difference
between the keys, the attack succeeds. With T-tables that span 16
cache lines, there are 16 possible values for each of these bytes.
Thus, allowing to select vulnerable plaintexts represents a constant
factor of 163 = 4096 improvement in attack complexity.
Modular Exponentiation Victim Our second victim implements
modular exponentiation, a core operation in multiple public-key
schemes, e.g., RSA. Our modular exponentiation victim gets a 2048-
bit base 𝑏, a 2048-bit modulus 𝑚, and a 32-bit exponent 𝑒 . The
victim then uses the square-and-multiply algorithm [26] to calcu-
late 𝑏𝑒 mod𝑚. The square-and-multiply algorithm maintains an
accumulator 𝑎 that is initialized to 1. For each bit of the exponent
𝑒 , the algorithm squares 𝑎, and if the bit is set the algorithm also
multiplies 𝑎 by 𝑏, reducing 𝑎 modulo 𝑚 as necessary. Thus, the
multiplication code is only executed when the exponent bit is 1,
and the effect on the cache is that when the bit is 1, more cache
lines are accessed.

The keys are selected so that the value of a bit at a specific index
(7 in our tests) of the exponent is 0 in the first key and 1 in the
second. The other bits of each exponent are randomly chosen. We
simulate an attacker that runs concurrently with the victim. The
attacker can manipulate the cache whenever the victim finishes
processing an exponent bit to distinguish between the number of
cache lines accessed depending on the exponent bit.
Attacker Setup In the attack setup phase, the attacker is provided
with an eviction set that evicts a monitored victim cache line with
a probability 90%. We construct this eviction set by successively
adding conflicting addresses to an initially empty set as outlined in
Section 5.2. See there for an analysis of eviction-set construction.
Attacker Procedure. The attack proceeds as a sequence of rounds.
In each round, the attacker asks the victim to encrypt a plaintext
with the two selected keys, randomizing the order of using the keys
in each round to avoid cache effects that depend on the order of
the use of keys. Before each encryption, the attacker accesses the
eviction set three times to prime the cache. After each encryption,
the attacker accesses the eviction set, counting the number of cache
misses during these accesses. Finally, the attacker calculates the
average number of cache misses for each key, and stops when
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achieving a 95% confidence that the averages differ, or when hitting
a predefined number of rounds. (103 for the modular exponentiation
and 105 for AES.) To overcome the case where the eviction set and
the victim all fit in the cache, the attacker accesses some arbitrary
memory when no cache evictions are observed during a round.
Selecting Cache Designs for Evaluation. We perform the attack
on a sample of the cache designs considered in this paper. First, we
do not test partitioned caches, because these do not leak information
as there is no resource contention between the attacker and the
victim. Secondly, to ensure that results are comparable, we limit our
experiments to a cache size of 256 lines. Where applicable, we vary
the associativity, testing all powers of two between 1 and 16. For
each configuration, we run the attack 1,000 times and report the
median of the number of encryptions required for distinguishing
the keys. We use the median rather than the mean because in some
cases the distribution has a long tail, skewing the mean towards a
small number of cases where many encryptions are required.
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Figure 11: Eviction-set attack: Number of encryptions re-
quired to break AES and modular exponentiation with ran-
dom replacement. Designs which show behavior similar to
set associative caches, have been omitted from the figure.
(Normalized to a random-replacement associative cache.)
Observing Key Leakage. Figure 11 shows the median number
of encryptions required for the attacks when using random re-
placement. We normalize the results to the number of encryptions
required for the fully associative cache. (10,590 and 94 for AES and
modular exponentiation, respectively.) For brevity, we omit the
results of CEASER, CEASER-S with one partition, and Phantom-
Cache with one set lookup, all of which do not seem to offer any
advantage over a set-associative cache with the same associativity.

The figure shows that all NewCache variants and PhantomCache
with 16 set lookups are mostly equivalent to the fully associative
cache. CEASER-S with 8 partitions provides a stronger protection:
themajority of the AES attacks on CEASER-Swith 8ways and of the
modular exponentiation attacks with 16 ways were not successful.

The results with ScatterCache are a mixed bag. When the as-
sociativity is four or eight, the design provides a good protection,
equivalent or surpassing the fully associative cache. (In particular,
the AES attack fails in most cases on an 8-way cache.) However,
the protection is lower for the other cases.

5.4 Cache-Occupancy Attack
We now turn our attention to an emerging cache attack strategy
that ignores spatial information and instead only utilizes the vic-
tim’s overall cache usage [44, 63, 65]. To measure resistance against
so called cache-occupancy attacks, we use the same cryptographic
victims as in Section 5.3. The attacker is still tasked with distin-
guishing between two keys, but instead of using an eviction set

targeting a specific cache line, the attacker uses a cache-size buffer
and counts the number of cache misses when scanning the buffer.
(A different sized buffer may also work [64], but requires further
investigation.) Most other aspects of the attack are the same as in
our eviction-set attack. We do not, however, handle failed eviction
because using a cache-size buffer ensures contention on the cache.
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Figure 12: Occupancy attack: Number of encryptions required
to break AES and modular exponentiation with random re-
placement. Designs which show behavior similar to fully
associative caches, have been omitted from the figure. (Nor-
malized to a random-replacement associative cache.)

Observing Key Leakage. Figure 12 shows the median number of
encryptions required for the cache occupancy attacks when using a
random replacement strategy. As in Figure 11, we normalize the re-
sults to the number of encryptions required for the fully associative
cache. Similar to the eviction-set attack, NewCache, CEASER-S with
8 partitions, and PhantomCache with 16 set lookup achieve a pro-
tection similar to that of fully associative cache. (We omitted these
three from the figure for brevity.) Most other configurations achieve
a protection level which is significantly better than set-associative
caches, in particular for the attack on AES.

Due to normalization, Figure ?? do not show that occupancy
attacks on the fully associative cache require significantly less en-
cryptions than eviction-set attacks. (5664 and 68 for AES and mod-
ular exponentiation, compared to 10590 and 94.) The cause is that
the eviction set algorithm targets 90% eviction rate, which for fully
associative caches leads to eviction sets that are larger than the
cache-sized buffer used in the occupancy attack and thus more self
evictions.
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Figure 13: Median number of encryptions required to break
AES. Fully associative and 16-way set associative caches are
not fully represented, requiring 16,984 and 22,116 encryp-
tions for Bit-PLRU, respectively.

Comparing Different Replacement Algorithms. Figure 13
shows the effect of changing the replacement policy on the attack
complexity. As the figure demonstrates, in most cases, caches with
a random replacement policy offer significantly better protection
than those with deterministic replacement.
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For deterministic replacement policies, we observe that CEASER
only provides marginal benefit over set-associative caches, whereas
PhantomCache provides a significantly better protection than other
cache designs. We believe that the reason is that PhantomCache
is inherently non-deterministic, hence, even with deterministic
replacement algorithms, PhantomCache can reduce the correlation
between the victim’s access and the attacker’s observation.

Attacks on deterministic cache designs that use bit-based pseudo-
LRU replacement exhibit an anomaly that increases the number of
encryptions required for statistical confidence. The cause is that
the algorithm experiences some rare cases where a single cache
miss causes cascading evictions of the eviction set. These rare cases
increase the variance of the number of evictions observed, and with
it the number of samples required. Modifying the attack to ignore
outliers will eliminate these rare cases and significantly improve the
attack. Hence, the results do not indicate that bit-based pseudo-LRU
is more secure than random replacement.

6 CONCLUSION
This work fills a gap in the practice of evaluating cache designs for
security. It presents CacheFX, a flexible framework that supports
multiple metrics. We experiment with three different, albeit related,
metrics, to evaluate and compare multiple secure cache designs.

We observe that all of the non-partitioned caches leak informa-
tion and note that the leak is sufficient to implement cryptographic
attacks. However, partitioned caches are likely not practical for
many use cases. Moreover, we show that a single metric may fail
to capture all of the intricacies. Thus, the main conclusion of this
work is that there is no “best” cache design. Instead, we believe that
caches need to be designed for the anticipated use cases.

The flexibility of CacheFX allows us to also compare attack
strategies against existing caches. In particular, we show that the
Prime+Prune+Probe approach for eviction set construction achieves
more precise results than the Single Holdout and the Group Elim-
ination Methods. Moreover, we show that for caches with low
randomization, constructing an eviction set is a good strategy for
cryptographic attacks. However, in highly random designs the
cache-occupancy attack presents a more efficient strategy. Hence
we recommend that secure cache designers consider the attack.
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A OPTIMAL EVICTION-SET SIZE
In Section 5.2 we evaluate eviction sets based on the probability of
evicting a victim cache line from the cache. However, as discussed in
Section 5.4, larger eviction sets can result in lower attack efficiency,
apparently due to self evictions. Specifically, increasing the size of
the eviction set increases the probability of cache conflicts between
elements of the eviction set. These self evictions introduce measure-
ment noise that increases the variance in the measurements and
consequently the number of samples the attacker needs to observe
to distinguish the keys. As a secondary effect, larger eviction sets
require more memory accesses for both the prime and the probe
steps of the attack, reducing attack efficiency.

As a final example of the flexibility of CacheFX, we now use
it to find the eviction-set size that allows for the most efficient
attack. Specifically, we experiment with various cache designs, all
with size 1024, our AES victim, and our eviction-set attacker. We
vary the eviction-set size between 1 and 2048, and measure the
median number of encryptions required for distinguishing the keys.
Figure 14 reports the eviction-set size that allows the attack with
the minimal median. As we can see, a lower associativity allows for
smaller eviction-set sizes. However, when the associativity grows
to 16, in most cache designs the best eviction-set size is similar to
that of a fully associative cache, indicating that occupancy-based
attacks are as effective as eviction-set attacks.

B THREATS TO VALIDITY AND LIMITATIONS
At the moment, CacheFX does not support the evaluation of cache
hierarchies. Consequently, designs that rely on the hierarchy for
defense are outside the scope for this work. Moreover, evaluations
using CacheFX currently assume a noise-free scenario, which pro-
vides a conservative security estimate as the absence of noise is the
best case for attackers. However, practical cache attacks also face
systematic and random noise stemming from other system activity.
To assess the impact of noise and cache hierarchies to security, we
aim to add such models to CacheFX in the future.

For our cryptographic attack evaluations, CacheFX models a
strong, synchronized attacker and an artificial victim that computes
(and leaks) upon the attacker’s request. As for noise, this is a very
strong attack model that allows to obtain a lower bound for security.
While a simple model like CacheFX cannot capture all complexities
involved in real-world attacks, we consider modeling more realistic
scenarios as future work.

Another aspect of secure caches is their performance. CacheFX
currently does not support the evaluation of cache performance, but

its mechanisms to collect data about memory accesses, cache hits
andmisses allows easy future extension of CacheFX tomeasure, e.g.,
the cache hit rate, based on memory traces of relevant workloads.

CacheFX simplifies cache models to efficiently analyze the secu-
rity of caches against contention-based attacks. As a result,CacheFX
does not lend itself to model cache-based attacks that relate to spec-
ulative execution [39] or other microarchitectural structures, e.g.,
cache ports [85] and fill buffers [71]. Note that CacheFX allows to
model Flush+Reload attacks, but as Flush+Reload is well under-
stood we do not expect new insights from doing so.

C RELATEDWORKS
We now review past works that evaluate the security of caches
against side channel attacks.
Formal Cache Model and Theoretical Analysis. This line of
research [19, 41] tries to formally model the state change of the
cache and extend the program execution semantics to include cache
state changes by leveraging prior work on formal analysis of cache
miss rates. Eventually they can estimate the number of reachable
cache states and give an upper bound on the leakage in terms of
channel capacity, for a given program under analysis. Similarly,
[25] models caches and cache attacks as automata to verify cache
security using model checking. Due to the restrictions of formal
methods, these works are limited to simple cache models (e.g. set-
associative cache with LRU replacement) and can only give a very
loose upper bound of leakage. Hence, they are not suitable for
comparing the security of various complex secure cache designs.
In contrast, CacheFX empirically evaluates a number of metrics
to quantify side-channel leakage in software cache models and
evaluates the exploitabiliy of cache leakage for programs such as
cryptographic algorithms.
Metrics for Empirical Quantification of Information Leakage.
Another line of research introduces metrics to empirically evalu-
ate the security of cache designs and implementations, such as by
using mutual information and min-leakage [8], by using a linear
correlation coefficient between oracle traces and the attacker’s ob-
servations [10–12, 87], by measuring the accuracy of deep learning
models trained to learn the relationship between victim accesses
and the attacker’s cache observations [88], or by modeling and
statistically analyzing cache side channels using communication
theory [3]. CacheFX as well tries to empirically characterize the
leakage of cache designs. However, as we point out, a single metric
is insufficient to entirely capture cache security. Moreover, none of
these works looks at cache occupancy channels or tries to assess
security by using well-studied cryptographic targets.
Modeling of Cache Side Channel Attacks. Some works tried
to model caches and cache attacks such as to detect and quantify
cache leakage. For instance, Zhang and Lee [86] model the cache
as a finite state machine to identify interference and determine the
mutual information. He and Lee [34] model cache attacks as a Prob-
abilistic Information Flow Graph (PIFG) to derive for each cache
and attack an overall probability of success. Wang et al. [75] derive
a risk score from modeling attacks using Petri nets and calculating
the success probabilities of concrete attacks. Deng et al. [13–15]
model cache attacks as a series of three consecutive read/invalida-
tion steps, identify vulnerable three-step patterns using a simulator,
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and use the model for evaluating the security of the caches in multi-
ple Arm devices. In addition, their work introduces a Cache Timing
Vulnerability Score (CTVS) from running vulnerable patterns on
real machines. While these prior works greatly improve the under-
standing of cache attacks, many are based on simple cache models.

CacheFX thus takes another step forward and automatically evalu-
ates arbitrary software models of cache designs w.r.t. to a number of
different metrics and attack complexity to provide a comprehensive
security report.

176


	Abstract
	1 Introduction
	1.1 Our Contribution.

	2 Background
	2.1 Cache Attacks
	2.2 Secure Caches

	3 Problem Description
	4 CacheFX Design
	4.1 Cache Model
	4.2 Attack Model
	4.3 Victim Model
	4.4 The Attack Controller Function

	5 Evaluation
	5.1 Relative Eviction Entropy
	5.2 Eviction-Set Creation
	5.3 Eviction-Set Attack
	5.4 Cache-Occupancy Attack

	6 Conclusion
	Acknowledgments
	References
	A Optimal Eviction-Set Size
	B Threats to Validity and Limitations
	C Related Works

