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Abstract

With the burgeoning advancements of computing and network communication tech-

nologies, network infrastructures and their application environments have become

increasingly complex. Due to the increased complexity, networks are more prone to

hardware faults and highly susceptible to cyber-attacks. Therefore, for rapidly growing

network-centric applications, network resilience is essential to minimize the impact

of attacks and to ensure that the network provides an acceptable level of services

during attacks, faults or disruptions. In this regard, this thesis focuses on developing

effective approaches for enhancing network resilience. Existing approaches for enhanc-

ing network resilience emphasize on determining bottleneck nodes and edges in the

network and designing proactive responses to safeguard the network against attacks.

However, existing solutions generally consider broader application domains and possess

limited applicability when applied to specific application areas such as cyber defense

and information diffusion, which are highly popular application domains among cyber

attackers. These solutions often prioritize general security measures and may not

be able to address the complex targeted cyberattacks [147, 149]. Cyber defense and

information diffusion application domains usually consist of sensitive networks that

attackers target to gain unauthorized access, potentially causing significant financial

and reputational loss.

This thesis aims to design effective, efficient and scalable techniques for discovering

bottleneck nodes and edges in the network to enhance network resilience in cyber defense

and information diffusion application domains. We first investigate a cyber defense
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graph optimization problem, i.e., hardening active directory systems by discovering

bottleneck edges in the network. We then study the problem of identifying bottleneck

structural hole spanner nodes, which are crucial for information diffusion in the

network. We transform both problems into graph-combinatorial optimization problems

and design machine learning based approaches for discovering bottleneck points vital

for enhancing network resilience. This thesis makes the following four contributions.

We first study defending active directories by discovering bottleneck edges in the

network and make the following two contributions. (1) To defend active directories by

discovering and blocking bottleneck edges in the graphs, we first prove that deriving

an optimal defensive policy is #P-hard. We design a kernelization technique that

reduces the active directory graph to a much smaller condensed graph. We propose an

effective edge-blocking defensive policy by combining neural network-based dynamic

program and evolutionary diversity optimization to defend active directory graphs.

The key idea is to accurately train the attacking policy to obtain an effective defensive

policy. The experimental evaluations on synthetic AD attack graphs demonstrate

that our defensive policy generates effective defense. (2) To harden large-scale active

directory graphs, we propose reinforcement learning based policy that uses evolutionary

diversity optimization to generate edge-blocking defensive plans. The main idea is

to train the attacker’s policy on multiple independent defensive plan environments

simultaneously so as to obtain effective defensive policy. The experimental results

on synthetic AD graphs show that the proposed defensive policy is highly effective,

scales better and generates better defensive plans than our previously proposed neural

network-based dynamic program and evolutionary diversity optimization approach. We

then investigate discovering bottleneck structural hole spanner nodes in the network

and make the following two contributions. (3) To discover bottleneck structural

hole spanner nodes in large-scale and diverse networks, we propose two graph neural

network models, GraphSHS and Meta-GraphSHS. The main idea is to transform the

SHS identification problem into a learning problem and use the graph neural network

models to learn the bottleneck nodes. Besides, the Meta-GraphSHS model learns
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generalizable knowledge from diverse training graphs to create a customized model that

can be fine-tuned to discover SHSs in new unseen diverse graphs. Our experimental

results show that the proposed models are highly effective and efficient. (4) To

identify bottleneck structural hole spanner nodes in dynamic networks, we propose a

decremental algorithm and graph neural network model. The key idea of our proposed

algorithm is to reduce the re-computations by identifying affected nodes due to updates

in the network and performing re-computations for affected nodes only. Our graph

neural network model considers the dynamic network as a series of snapshots and

learns to discover SHS nodes in these snapshots. Our experiments demonstrate that

the proposed approaches achieve significant speedup over re-computations for dynamic

graphs.
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Chapter 1

Introduction

The past few years witnessed tremendous growth in various large-scale networks,

including social, collaboration, biological, semantic and criminal networks [60, 112, 17,

129, 50, 152]. These networks are essential for cyber defense, information diffusion,

transportation, communication and other critical functionalities [133, 116, 157, 24].

Moreover, with the advancements in network communication technologies, networks

have become increasingly complex and interdependent, making them vulnerable to

various disruptions, such as targeted attacks, faults and failures. These disruptions

undermine the ability of the network to meet the fundamental functionalities and

lead to service outages, data loss, infrastructure damage and network breakdown,

with significant economic and social loss [34, 182]. Network resilience enables the

network to withstand and recover from disruptions quickly and effectively, in turn

minimizing the impacts of attacks [140]. Resilient networks are essential for reducing

the downtime associated with service interruptions, preventing further damages or

cascading failures [13]. Besides, a resilient network enhances security and makes it

more difficult for cyber attackers to penetrate or disrupt the network. Therefore, it

is essential to design solutions for enhancing network resilience. Attackers generally

target bottleneck nodes or edges in the network to compromise its capability to
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provide essential network services [48, 162]. Cyber attacks on bottleneck points in the

network may result in total network failure. Therefore, it is essential to determine

the bottleneck nodes and edges that hold advantageous positions in the network and

develop proactive strategies to protect these points and improve network resilience

[47]. In the literature, several approaches have been proposed to assess network

vulnerabilities by discovering key network nodes and edges in order to improve network

resilience against cyber attacks [47, 46, 48, 132]. However, the limitation is that most

of the existing solutions are designed for general application domains and have limited

relevance when applied to particular application domains, such as cyber defense and

information diffusion. Networks in cyber defense and information diffusion application

domains are highly sensitive, and attacks on these networks may cause significant

financial and reputational loss to the organizations. Hence, there is a need to design

effective solutions for enhancing network resilience in cyber defense and information

diffusion application domains.

This thesis aims to design effective, efficient and scalable techniques for identifying

bottleneck nodes and edges in the network to improve the overall network resilience. We

aim to enhance network resilience by focusing on cyber defense and information diffusion

application domains. Accordingly, this thesis investigates two graph-combinatorial

optimization problems, first in cyber defense and second in the information diffusion

application domain. We first investigate a cyber defense problem of defending active

directory graphs1 by discovering bottleneck edges in the network. We then study the

problem of finding bottleneck structural hole spanner nodes, which are crucial for

information diffusion in the network. The description of both application domains is

discussed below.

1In this thesis, “network” and “graph” are used interchangeably.
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1.1 Cyber Defense

Cyber attackers target sensitive networks to gain unauthorized access to the systems,

potentially causing significant financial and reputational loss [1]. In contrast, cyber

defense aims to defend networks, systems and data from cyber attackers. One critical

aspect of cyber defense is identifying network vulnerabilities and implementing security

policies [134]. However, the increased complexity and sensitivity of the networks

have made it challenging to discover and mitigate the network vulnerabilities [128].

Organizational networks are highly sensitive, and the attacker tries to reach high-

privileged accounts to gain unauthorized access to valuable information [87]. One

way of defending the network is to discover bottleneck points and block access to

these points to prevent attackers from reaching the high-privileged accounts. However,

blocking access to the nodes in an organizational network can negatively impact the

network functionality. Another solution is to restrict access to the bottleneck edges in

the network, preventing cyber attackers from reaching the high-privileged accounts.

Blocking access to the bottleneck edges improves network security and makes it more

resilient to cyber-attacks. This thesis studies a specific application scenario in cyber

defense, i.e., “defending active directory graphs from cyber attackers” by

blocking access to the bottleneck edges so as to make the network more resilient.

Active Directory. Active Directory (AD) is a directory service developed by Microsoft

for Windows domain networks. It is designed to manage and secure network resources,

such as user accounts, computers, printers, etc. AD allows administrators to assign

permissions and monitor network activities, making managing and authenticating users

and computers in enterprise environments crucial. AD is considered a default security

management system for Windows domain networks [44]. Microsoft domain network

constitutes significant market shares among small and big organizations globally, due

to which AD are promising targets for cyber attacks. Microsoft reported that 90%

of Fortune 1000 companies use AD, and as per the study by Enterprise Management
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Associates [2021], 50% of the surveyed organizations have experienced an AD attack

since 2019. Microsoft reported that 95 million AD accounts are targeted daily by cyber

attackers, and 1.2 million Azure AD accounts are compromised monthly. Moreover,

80% of all breaches target access to the privileged account, called Domain Admin

(DA).

Figure 1.1: AD attack graph containing 500 computers.

AD attack graphs are widely used attack graph models among industrial practitioners

and real-world attackers to model and analyze potential attack scenarios in an AD

environment. The structure of AD describes an attack graph, with a node representing

accounts/computers/etc., and directed edge (i, j) indicating that an attacker can

gain access to node j from node i via known exploits or existing accesses. Various

applications and tools are designed to investigate the AD attack graphs; however,

BloodHound is the most popular tool, that identifies various attack paths in AD

graph structures. Figure 1.1 illustrates an instance of AD attack graph created

using DBCreator2 and only the nodes reachable to DA are shown. BloodHound

simulates an identity snowball attack, in which an attacker begins from a low-privileged

account (gains access through phishing attack) and subsequently moves to other nodes

with the goal of reaching the highest-privileged account, DA. Figure 1.2 illustrates

an example of BloodHound snowball identity attack. BloodHound employs

Dijkstra’s shortest path algorithm to determine the path from entry node to DA.

BloodHound has made it much easier for the attacker to attack AD. Given the

sensitive nature of organizational AD and high number of cyber attacks targeting AD,

security professionals are designing various solutions to defend AD. BloodHound
2DBCreator is a synthetic AD graph generator tool from the BloodHound team.
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is motivated by an academic paper [51], where the authors designed a heuristic to

selectively block some edges from the attack graph to disconnect the graph and

prevent attackers from reaching DA. Notably, edge blocking in an AD environment

can be attained by either monitoring the edges or revoking access. GoodHound3,

BloodHound Enterprise4 and ImproHound5 are various industry solutions that

use edge blocking to provide defense.

Figure 1.2: Example of BloodHound snowball identity attack.

This thesis aims to defend AD graphs by identifying the bottleneck edges that can be

blocked to prevent the attackers from reaching the DA. We convert the problem of

defending AD graphs into a graph combinational optimization problem and design

machine learning-based defensive policies to defend AD graphs.

1.2 Information Diffusion

Networks have become increasingly crucial for modelling interactions, as they provide

frameworks for understanding the connections between various entities and the flow

of information between them. Various application domains where the modelling of

interactions is crucial include information diffusion, social networks, collaboration net-

works, email networks, transportation systems and power grids. Cyber attacker targets

network entities, specifically bottleneck nodes, which are imperative for information

diffusion in the network, to render the network useless by disrupting the information

flow. This may lead to severe consequences, including communication loss, financial

loss, reputation damage, service downtime and operational disruptions. Bottleneck

nodes are crucial for optimizing information dissemination and improving the network’s

3https://github.com/idnahacks/GoodHound
4https://bloodhoundenterprise.io/
5https://github.com/improsec/ImproHound
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efficiency. Therefore, it is essential to discover bottleneck network nodes and protect

them from cyber attackers to ensure efficient and effective information dissemination,

enhancing network resilience. This thesis studies a specific application scenario in

the information diffusion domain, i.e., “discovering bottleneck structural hole

spanner nodes in the network ” to enhance the network’s resilience.

Structural Hole Spanners. The last decade witnessed tremendous growth of

various large-scale networks, such as biological, semantic, collaboration, criminal and

social networks. There is a huge demand for efficient and scalable solutions to study

the properties of these large networks. A network consists of communities where

the nodes share similar characteristics [36], and these communities are crucial for

information diffusion in the network. The nodes having connections with the diverse

communities get positional advantages in the network. This notion serves as a base

for the Theory of Structural Holes [33]. The theory states that the Structural Holes

(SH) are the positions in the network that can bridge different communities and bring

the beholders into an advantageous position. The absence of connections between

different communities creates gaps, which is the primary reason for the formation of

SHs in the network [107]. The nodes that fill SHs by bridging different communities

are known as Structural Hole Spanners (SHS) [107]. SHSs get various positional

benefits such as access to novel ideas from diverse communities, more control over

information flow, etc. Figure 1.3 shows the SHS between communities in the network.

There are many vital applications of SHSs, such as community detection [80], opinion

control [96], information diffusion [22, 170], viral marketing [35] etc. In case of an

epidemic disease, discovering SHSs and quarantining them can help stop the spread of

infection. In addition, SHSs can be used to advertise a product to different groups

of users for viral marketing. A number of centrality measures such as Closeness

Centrality [124], Constraint [29], and Betweenness Centrality (BC) [61] exist in the

literature to define SHSs. SHS nodes lie on the maximum number of shortest paths

between the communities [124]; removal of the SHS nodes will disconnect multiple
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Figure 1.3: Illustration of SHS in network.

communities and block information flow among the nodes of the communities [107].

Based on this, we have two implications about the properties of SHSs; 1) SHSs bridge

multiple communities; 2) SHSs control information diffusion in the network. Lou et

al. [107] showed that the removal of an SHS node disconnects a maximum number of

communities and blocks information propagation between the nodes of the communities.

Attack on SHS nodes will disrupt the information propagation in the network; therefore,

it is essential to discover and safeguard these nodes.

This thesis aims to discover bottleneck SHS nodes responsible for information diffusion

in the network, and attacks on these nodes can significantly impact the spread of

information. Therefore, by discovering and protecting these nodes, we can prevent

cyber attackers from exploiting the vulnerabilities in these nodes to compromise the

network, making it harder for the attacker to disrupt the network information flow.

This thesis develops algorithmic and machine learning-based solutions to discover SHS

nodes in the network.

1.3 Research Scope and Challenges

This thesis aims to discover bottleneck nodes and edges in the network to enhance

network resilience by focusing on cyber defense and information diffusion application

domains. In the context of cyber defense, we aim to address the problem of “defending

AD graphs by discovering and blocking bottleneck edges in the network ” so as to enhance
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the network’s ability to withstand cyber attacks. Additionally, we study the problem of

“identifying bottleneck SHS nodes in the network ”. SHS nodes are crucial for optimizing

the information flow in the network, and attacks on these nodes may severely disrupt

the network information flow.

1.3.1 Research Scope

This thesis investigates the above-mentioned research topics and addresses the following

specific research problems.

• For defending active directory graphs, we focus on two key research problems.

Firstly, we investigate the problem of designing effective defensive policies for

discovering bottleneck edges in the AD graphs to protect these graphs from cyber

attackers. Secondly, we address the scalability issue that arises while designing

scalable defensive policies for defending large-scale AD graphs.

• For discovering structural hole spanner nodes, we focus on identifying bottleneck

SHS nodes in different types of networks. Firstly, we study discovering SHS nodes

in static networks, i.e., the networks where the structure remains static. Secondly,

we consider identifying SHS nodes in diverse networks, i.e., the networks with

different structures. Finally, we investigate the problem of identifying SHS nodes

in dynamic networks, i.e., the networks where the structure evolves continuously.

1.3.2 Research Challenges

Given the research scope, this thesis addresses the following research challenges:

1. To design effective and scalable edge-blocking defensive policies for

defending active directory graphs.

Due to the popularity of Active Directories among small and large organizations,

AD systems have become an attractive target for cyber attackers. However,

defending AD systems is a novel research area, and not much work has been
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done in this field. Considering the highly sensitive nature of organizational

AD systems, any unauthorized access to AD may cause significant financial

and reputation loss to the organization. Therefore, there is a need to design

effective approaches for defending AD graphs from cyber attackers. Moreover,

the designed strategies should be scalable to meet the current organizational

network size and accommodate any possible future growth.

2. To design effective and efficient approaches for discovering SHS nodes

in large-scale and diverse networks.

Existing solutions for discovering SHS nodes require high runtime and fail to scale

to large networks. Therefore, there is a need to design approaches for discovering

SHS nodes in large-scale networks. Generally, machine learning models are

used to discover SHS nodes in a network by analyzing patterns in the network

and utilizing graph-based algorithms to identify and categorize nodes based

on their relationships and attributes. This enables automated node detection

and classification in networks. However, the challenge is discovering SHS nodes

across different types of networks for which the traditional one-model-fit-all

approach fails to capture the inter-graph differences, particularly in the case

of diverse networks. Besides, re-training a machine learning model on different

types of large networks can be time-consuming. Therefore, it is essential to

design machine learning models that are aware of differences across graphs and

customize accordingly, avoiding the need to re-train the model for every type of

network individually.

3. To develop efficient approaches for identifying SHS nodes in dynamic

networks.

Numerous solutions have been proposed to discover SHS nodes in static networks;

however, real-world networks are highly dynamic, due to which SHS nodes in

the network change over time. Currently, there is no solution that discovers SHS
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nodes in dynamic networks. Traditional SHS discovering algorithms are time-

consuming and might not work efficiently for dynamic networks. Additionally, the

network might have already changed by the time these conventional algorithms

recompute SHSs in the new network. Therefore, there is a need to develop

efficient techniques that can quickly discover SHS nodes in dynamic networks.

1.4 Thesis Contributions and Publications

The primary objective of this thesis is to design effective, efficient and scalable

approaches for discovering bottleneck nodes and edges in the network. This thesis aims

to enhance network resilience in cyber defense and information diffusion application

domains. In this regard, we study the following two research problems.

• Firstly, this thesis investigates a cyber defense graph combinatorial optimization

problem of hardening active directory systems by discovering bottleneck edges

in the AD graph to improve the overall resilience of AD systems. Defending

AD systems is a crucial research problem and has practical applications in

organizations that depend on AD for authentication and authorization. AD is a

security management system that holds information about users, computers and

other resources in an organization. In case the attacker gains unauthorized access

to the organizational AD systems, all the organizational confidential information

may be compromised. Therefore, there is an urgent need to design defensive

approaches for protecting AD graphs and preventing data breaches.

• Secondly, this thesis studies the problem of identifying bottleneck nodes, known

as SHS nodes, which are essential for information diffusion in the network.

Discovering bottleneck SHS nodes is a theoretical research area in network

analysis, and mathematical techniques are used to analyze the relationships

between different nodes to discover SHSs in the network. Even though the

SHS discovering problem is theoretical in nature, it has substantial practical
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implications in terms of network analysis and optimization. The organization

can use SHS nodes to strengthen network connectivity and improve efficiency

and resilience. This research area has numerous applications in various domains,

including social networks, recommendation systems and biological networks.

To address the above-discussed problems, we convert the aforementioned problems into

graph-combinatorial optimization problems and aim to discover bottleneck nodes and

edges in the network to enhance network resilience in cyber defense and information

diffusion application domains. We leverage state-of-the-art machine learning and

graph combinatorial optimization techniques to design novel approaches for identifying

bottleneck nodes and edges in the network. We propose various neural network,

reinforcement learning, graph neural network and evolutionary diversity optimization-

based solutions for addressing the aforementioned research problems. Notably, this

thesis is an amalgam of practical and theoretical results.

The outcome of this thesis is effective, efficient and scalable approaches for discovering

bottleneck nodes and edges in the network, in turn enhancing network resilience.

The proposed approaches will provide organizations with the necessary solutions to

determine the bottleneck points in the network; and once these points are discovered,

essential proactive actions can be performed to protect the organizational networks.

This thesis makes the following contributions.

Chapter 3 - This chapter presents an effective defensive policy for determining the

bottleneck edges that can be blocked to defend organizational AD graphs. In this

chapter, we study a Stackelberg game model between one attacker and one defender

on an AD attack graph, where the attacker’s goal is to maximize their chances of

successfully reaching the most privileged account. The defender aims to block a set

of edges to minimize the attacker’s success rate. We first show that the problem is

#P-hard; therefore, it can not be solved exactly. We design a kernelization procedure

that exploits the structural features of AD graphs to obtain a much smaller condensed
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graph and converts the attacker’s problem from a condensed graph to a dynamic

program. For small AD graphs, we can solve the dynamic program; however, for

larger AD graphs, it is computationally challenging to solve the dynamic program.

Therefore, to solve the attacker’s problem, we propose an approach that involves

training a Neural Network (NN) to learn the recursive relationship of the dynamic

program. Besides, we design an Evolutionary Diversity Optimization (EDO) based

policy to solve the defender’s problem, i.e., to determine which edges to block in the

AD graph. The trained NN serves as an efficient fitness function for the defender’s

EDO. Moreover, EDO generates a diverse set of blocking plans that act as training

samples for the NN. We perform extensive experiments on synthetic AD attack graphs,

and our experimental results show that the proposed approach is highly effective. This

chapter has already been published as:

❶ Diksha Goel, Max Hector Ward-Graham, Aneta Neumann, Frank Neumann,

Hung Nguyen and Mingyu Guo, Defending Active Directory by Combining Neural

Network based Dynamic Program and Evolutionary Diversity Optimisation, In

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO),

Boston, US, 2022 [71].

Chapter 4 - This chapter presents another defensive edge-blocking policy for hard-

ening AD graphs. This policy is specifically designed to be applicable and effective

in the context of large-scale AD graphs. In this chapter, we study attacker-defender

Stackelberg game on an AD graph in configurable environment settings, where each

environment represents an edge-blocking plan. The defender tries various environ-

ment configurations to develop the best defensive configuration and protect the AD

graphs. In contrast, the attacker observes the environment configurations and designs

an attacking policy to maximize their chances of reaching the DA. We propose a

Reinforcement Learning (RL) based policy to maximize the attacker’s chances of

successfully reaching the DA. The RL agent simultaneously interacts with “multiple

independent environments” by suggesting actions to maximize the overall reward. We
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design a Critic network-assisted Evolutionary Diversity Optimization based approach

that generates numerous environment configurations to solve the defender’s problem.

Defender’s approach utilizes the trained RL critic network to evaluate the fitness of

the environment configurations. The defender adopts the technique of rejecting the

configurations that are advantageous for the attacker and replacing them with better

ones. The attacker and defender play against each other in parallel. We perform

experiments on large-scale AD attack graphs, and our results demonstrate that our

proposed defensive approach is highly effective, approximates the attacker’s problem

more accurately, generates better defensive plans and scales better. This chapter has

already been published as:

❷ Diksha Goel, Aneta Neumann, Frank Neumann, Hung Nguyen and Mingyu Guo,

Evolving Reinforcement Learning Environment to Minimize Learner’s Achievable

Reward: An Application on Hardening Active Directory Systems, In Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO), Lisbon,

Portugal, 2023 [66].

Chapter 5 - This chapter presents various effective and efficient approaches for

identifying bottleneck structural hole spanner nodes in large-scale and diverse networks.

We first propose GraphSHS, a graph neural network model for efficiently discovering

SHSs in large-scale networks. GraphSHS aims to minimize the computational cost

while achieving high accuracy. GraphSHS uses the network structure and features of

nodes to learn the low-dimensional node embeddings and then uses these embeddings

to discover SHS nodes in the network. Inter-graph differences exist in diverse graphs,

due to which it is not possible for GraphSHS to effectively discover SHSs across

diverse networks. Therefore, to discover SHSs across diverse networks, we propose

Meta-GraphSHS , meta-learning based graph neural network for discovering structural

hole spanner nodes. Meta-GraphSHS aims to effectively discover SHS nodes in

diverse networks without re-training the model on every network dataset to adapt to

cross-network property changes. Meta-GraphSHS is based on learning generalizable
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knowledge from diverse training graphs and then using the learned knowledge to

create a customized model by fine-tuning the parameters to suit each new graph. We

theoretically show that the depth of the proposed graph neural network model should

be at least Ω(
√
n/ log n) to calculate the SHSs problem accurately. We evaluate the

performance of the proposed models through extensive experiments on synthetic and

real-world datasets. Our experimental results show that both the proposed models

GraphSHS and Meta-GraphSHS are highly efficient and effective in discovering SHSs

in large-scale networks and diverse networks. This chapter is under submission as:

❸ Diksha Goel, Hong Shen, Hui Tian and Mingyu Guo, Effective Graph-Neural-

Network based Models for Discovering Structural Hole Spanners in Large-Scale

and Diverse Networks [69].

Chapter 6 - This chapter presents efficient approaches for discovering bottleneck

structural hole spanner nodes in dynamic networks. Our approaches aim to reduce the

computational costs while achieving high accuracy. To discover SHS nodes in dynamic

networks, we first propose an efficient Tracking-SHS algorithm that maintains Top-k

SHS nodes by discovering a set of affected nodes. Tracking-SHS aims to maintain

and update the SHS nodes faster than recomputing them from the ground. We

derive some properties to determine the affected nodes due to updates in the network.

In order to avoid unnecessary recomputations for unaffected nodes, Tracking-SHS

algorithm utilizes the knowledge from the initial runs of the static algorithm. In

addition, we propose GNN-SHS, a graph neural network model that discovers SHSs in

dynamic networks. GNN-SHS model works for both incremental and decremental edge

updates of the network. We consider the dynamic network as a series of snapshots

and discover SHSs in these snapshots. GNN-SHS aggregates embeddings from the

node’s neighbors, and the final embeddings are used to identify SHS nodes. We

conduct a theoretical analysis of the proposed Tracking-SHS algorithm, and our results

demonstrate that the algorithm achieves high speedup over recomputations. Besides,

we perform experiments on synthetic and real-world datasets. Our results demonstrate
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that the proposed Tracking-SHS algorithm and GNN-SHS model achieve significant

speedup over baselines. This chapter is based on our following three papers:

❹ Diksha Goel, Hong Shen, Hui Tian and Mingyu Guo, Maintenance of Structural

Hole Spanners in Dynamic Networks, In 46th IEEE Conference on Local Computer

Networks (LCN), Edmonton, AB, Canada, 2021 [70].

❺ Diksha Goel, Hong Shen, Hui Tian and Mingyu Guo, Discovering Structural

Hole Spanners in Dynamic Networks via Graph Neural Networks, In The 21st

IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent

Agent Technology (WI-IAT), Niagara Falls, Canada, 2022 [67].

❻ Diksha Goel, Hong Shen, Hui Tian and Mingyu Guo, Discovering Top-k

Structural Hole Spanners in Dynamic Networks [68].

1.5 Other Publications

In addition to the six publications mentioned above, I co-authored two papers during

my PhD candidature. Despite being closely related, the contributions from these

publications are not included in this thesis. The publications are listed below:

❼ Mingyu Guo, Diksha Goel, Guanhua Wang, Yong Yang, Muhammad Ali Babar,

Cost Sharing Public Project with Minimum Release Delay [76].

❽ Mingyu Guo, Diksha Goel, Guanhua Wang, Runqi Guo, Yuko Sakurai, Muham-

mad Ali Babar, Mechanism Design for Public Projects via Three Machine Learn-

ing Based Approaches [75].

1.6 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides a comprehensive

literature review of the problems investigated in this thesis. Chapter 3 studies effective

edge-blocking defensive policies for defending AD graphs from cyber attackers. Chapter
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4 presents effective and scalable edge-blocking strategies for protecting large-scale

active directories. Chapter 5 proposes graph neural network models for discovering

bottleneck SHS nodes in large-scale and diverse networks. Chapter 6 presents an

algorithm and graph neural network model to identify SHS nodes in dynamic networks.

Finally, Chapter 7 summarizes the main contributions of this thesis and suggests

possible extensions and areas for future work.
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Chapter 2

Literature Review

Identifying bottleneck nodes and edges in the network and developing proactive

responses to protect these points can enhance network resilience. We specifically focus

on enhancing network resilience with applications in cyber defense and the information

diffusion domain. In this chapter, we first review the existing literature on defending

AD graphs, including methods for discovering the most vital edges in the network.

Furthermore, in order to model the attacker-defender interactions on an AD graph,

we review the existing Stackleberg game models on attack graphs. Later, we analyze

the existing literature on identifying bottleneck SHS nodes, which are crucial for

information diffusion in the network. We particularly focus on identifying SHS nodes

in various types of networks, including static, diverse and dynamic networks.

2.1 Active Directories

This section discusses various techniques for defending AD graphs from cyber attackers.

We first discuss the existing solutions available to protect AD. We then explore existing

work for determining the most vital edges in the graph. Lastly, we investigate the

Stackelberg game models on attack graphs.
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2.1.1 Defending Active Directory

Active Directory is the default security management system for Windows Domain

Networks [44]. The primary functionality of AD is to facilitate administrators to

handle the permissions and manage access to the network resources. Consequently, it

is necessary to defend the organizational AD to protect their assets and ensure smooth

functioning. Generally, edge-blocking strategies are used to protect the AD graphs

from cyber attackers. Edge blocking in an AD graph is accomplished by either revoking

access or implementing surveillance measures to prevent attackers from reaching the

domain admin [51]. Guo et al. [78] studied the shortest path edge interdiction problem

for protecting AD graphs from cyber attackers. The authors formalized the problem

as a Stackelberg game between an attacker and a defender, where the attacker seeks

to reach the highest privileged account via the shortest attack path, and the defender

aims to maximize the expected path length of the attacker. In order to solve the

problem, the authors designed various fixed-parameter algorithms, including a tree

decomposition-based algorithm and another one that considers a small number of

splitting nodes in the graph. Besides, the authors proposed a graph convolutional

neural network based approach that is scalable to larger AD graphs. In another study,

Guo et al. [79] investigated a Stackelberg game that involves one attacker and one

defender. The attacker attempts to reach the domain admin via a path that has high

success rate, and the defender attempts to minimize the attacker’s success rate by

blocking a constant number of edges. The authors exploited the tree-like structure

of AD graphs and designed various scalable algorithms. The authors also designed

reinforcement learning and mixed integer programming-based techniques to further

improve the scalability of the proposed approaches. Guo et al. [77] proposed a limited

query graph connectivity test model to determine the connectivity between two nodes

in a graph. Each edge in the graph has a binary state that can be queried to reveal

its status. The goal is to design a querying strategy that minimizes the required

number of queries to determine a path between two nodes while operating under a
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limited query budget. The authors proposed an algorithm that scales well on larger

graphs and evaluated its performance on numerous practical graphs, including AD

graphs and power networks. Ngo et al. [113] designed various near-optimal policies

for placing honeypots on computer nodes when the AD graph changes dynamically.

The authors studied the problem of identifying bottleneck nodes in the network that

can be used for monitoring purposes. Zhang et al. [175] proposed a scalable double

oracle algorithm for defending AD graphs and compared their solution against various

industry solutions.

Challenge: Active directories have increasingly become an attractive target for cyber

attackers. However, a very limited amount of work has been done focusing on blocking

edges to defend the AD graphs. Consequently, this thesis designs effective and scalable

edge-blocking defensive policies to safeguard active directory graphs.

2.1.2 Discovering Most Vital Edges

Bar-Noy et al. [12] proved that identifying the k-most vital arcs or nodes in the graph

is an NP-hard problem. The authors described the k most vital arcs as the set of edges

whose removal leads to the greatest increase in the shortest path between two nodes

in network. Bazgan et al. [16] studied the shortest path most vital edges problem for

analyzing the network robustness. The authors proved that the problem is NP-hard

and aim to remove the minimum number of edges so as to increase the shortest path

length between two nodes in the network. The authors studied a few parameters that

affect the computational tractability and underlined the key challenges. Khachiyan

et al. [92] studied short path interdiction problem that involves deleting arcs from a

directed graph to eliminate the shortest path from source to destination node. The

authors analyzed two subproblems and showed that the short paths node interdiction

problem can be solved efficiently; however, the short paths total interdiction problem

is an NP-hard problem and is not approximable within certain bounds. Furini et al.

[62] investigated the edge interdiction clique problem that aims to discover an edge set
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that minimizes the maximum clique size when removed from the graph. The authors

developed an integer linear program formulation and a branch-and-cut algorithm to

solve the problem. Nardelli et al. [104] examined the most vital edge problem. The

authors aim to discover a set of edges in a graph, which, when removed, maximizes

the total weight of the minimum spanning tree. The authors proved that the problem

is NP-hard, and proposed a branch and bound algorithm to address the problem.

2.1.3 Stackelberg Game on Attack Graphs

Milani et al. [111] studied the applicability of deception in Stackelberg security

games using attack graphs. The authors designed an attack graph deception game

where the defender can utilize three deceptive actions to modify the attack graph and

protect crucial targets from attackers. The authors proved that computing the optimal

deception and defensive strategy is NP-hard. The authors developed an approach

using a mixed-integer linear program to efficiently solve the problem. Aziz et al. [10]

examined a Stackelberg game on a network, where the defender aims to optimize the

inverse geodesic length of network by protecting network components from the attacker,

and the attacker seeks to weaken the network. The authors designed several algorithms

to determine the defender’s optimal policy. Aziz et al. [11] investigated the problem

of removing nodes from the network to optimize the covert network’s performance.

The authors used inverse geodesic length to compute the network performance and

designed various algorithms to address the problem. Durkota et al. [53] studied

the problem of defending networks from strategic attackers with limited resources.

The authors modelled the network’s interaction between defender and attacker, and

employed attack graphs to illustrate the attacker’s possible actions. The authors

proposed heuristic algorithms to obtain defence strategies against the attacker. [176,

54, 52, 101, 52, 9] are other studies that explored Stackelberg games on attack graphs.
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2.2 Structural Hole Spanners

Structural hole spanner nodes are the bottleneck nodes that connect otherwise dis-

connected groups of nodes in a network and are crucial for optimizing information

flow in the network. Eliminating SHS nodes from the network results in a fragmented

network and disrupted information flow [107]. Hence, it is essential to discover SHS

nodes and enhance the network’s resilience. The theory of SH [33] was introduced by

Burt to discover essential individuals in the organizations and was further explored by

[5, 32]. This section presents the current state-of-the-art techniques for discovering

SHS nodes in the network and Table 2.1 presents the summary of SHS identification

solutions. Existing work on SHSs identification can be categorized into the following

three categories.

1. Discovering structural hole spanners in static networks.

2. Discovering structural hole spanners in diverse networks.

3. Discovering structural hole spanners in dynamic networks.

2.2.1 Discovering Structural Hole Spanners in Static Networks

There are several pioneering works on discovering SHS nodes in static networks. The

work can be further categorized into three categories, i.e., information propagation-

based solutions, centrality-based solutions and machine learning-based solutions. This

section discusses the existing solutions for discovering SHS nodes in static networks.

Information Propagation-based Solutions

The solutions based on information propagation aim to discover the SHS nodes whose

removal maximally disrupts the information flow in the network. Lou et al. [107]

proposed an algorithm for discovering SHSs in the network, considering that the

community information is given in advance. The authors argued that eliminating

SHS nodes from the network decreases the minimal cut of the communities. The
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authors described the minimal cut as the minimum number of edges that disconnect a

community from its connected communities. However, the proposed algorithm only

works if the community information is given in advance. He et al. [81] proposed a

Harmonic Modularity (HAM) algorithm that discovers both SHSs and communities in

the network. The authors utilized the harmonic function to estimate the smoothness of

the community structure and examined the interaction type among the bridging nodes

to distinguish SHS nodes from normal ones. The algorithm presumes that every node

belongs to only one community, but a node may belong to many communities in the

real world. [31, 30] reveal that the profits gained by SHS differ depending on the nature

of their ties with the connected communities. Some SHSs may achieve high profits,

while others may gain comparatively less. Inspired by this notion, Xu et al. [153]

developed a fast solution to discover SHS nodes that connect multiple communities and

have strong relations with these communities. The authors argued that removing such

SHS nodes blocks maximum information propagation in the network. The authors

formulated the top-k SHS problem as a set of k nodes that maximally block the

information propagation in the network. Li et al. [102] proposed an ESH algorithm

for identifying SHS nodes in large-scale networks. ESH utilizes the distributed parallel

graph processing frameworks to solve the scalability issue. The algorithm is based on

the factor diffusion process, which allows it to efficiently determine structural holes

without depending on the substructures in the network.

Network Centrality based Solutions

The solutions based on network centrality aim to identify the nodes that are located

at advantageous positions in the network. Tang et al. [138] designed a two-step

technique for identifying SHSs in the network. The authors considered the shortest

path of length two for each node while ignoring the others. The drawback of this

technique is that it is not able to identify the SHSs when a node is densely connected

with two or more communities. The network’s mean distance can also be utilized to

discover SHS nodes. The shortest path between two nodes that belong to different
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Table 2.1: Summary of SHSs identification solutions.

Author Method Main idea Pros & Cons

Lou et al. [107] HIS
MaxD

SHS connects opinion leaders of the
various communities

Require prior community
information

He et al. [81] HAM The authors used harmonic function
to identify SHSs

Jointly discover SHSs and
communities

Xu et al. [153] maxBlock
maxBlockFast

SHSs are likely to connect multiple
communities and have strong rela-
tions with these communities

Less computational cost

Li et al. [102] ESH The authors designed entropy-based
mechanism that uses distributed par-
allel computing

Less computational cost

Tang et al. [138] 2-step algorithm The model considers the shortest
path of length two that pass through
the node

It fails to work in case a
node is densely linked to
many communities

Rezvani et al. [124] ICC
BICC

AP_BICC

Eliminating SHSs from the network
leads to an increase in the average
shortest distance of the network

Only used topological net-
work structure

Xu et al. [154] Greedy
AP_Greedy

The authors used inverse closeness
centrality to discover SHSs

Does not require commu-
nity information

Ding et al. [45] V-Constraint The authors used ego-network of the
node to discover SHSs

Ego network may not cap-
ture the global importance
of the node

Zhang et al. [174] FSBCDM The author used community forest-
based model utility to discover SHSs

Jointly discover SHSs and
communities

Gong et al. [72] Machine learning model The authors used various cross-site
and ego network features of the
nodes

Achieves high accuracy

communities is more likely to pass through the SHS node, and removing this SHS node

increases the shortest path between the two nodes. Based on this notion, Rezvani

et al. [124] first proved that identifying the SHS node problem is NP-hard and then

designed various scalable algorithms based on bounded inverse closeness centrality

and articulation points in the network. The authors argued that removing SHS nodes

from the network increases the shortest distance of network. Inspired by [124], Xu

et al. [154] designed solutions to estimate the quality of SHSs based on various

properties. The authors proposed efficient algorithms that use filtering techniques to

eliminate unlikely solutions. Ding et al. [45] developed a V-Constraint method to

enhance information transmission in the network by determining the SHS nodes. The

authors argued that SHS nodes occupy advantageous positions in the network and also

control the information diffusion between different communities. The authors used the

susceptible-infected-recovery model to perform the experiments. The drawback of the

proposed solution is that it only considers the ego network of nodes; therefore, fails

to capture the global properties of the nodes. Zhang et al. [174] demonstrated that
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the local features-based metrics are not sufficient for discovering SHS nodes in the

network. The authors designed an algorithm that utilizes the community forest model

and diminishing marginal utility to identify SHSs. The authors also emphasized the

crucial role SHS nodes play in numerous real-world applications, such as information

diffusion [56], community detection [177], epidemic diseases [106] and viral marketing

[86].

Machine Learning-based Solutions

Machine learning-based solutions utilize the node features to discover SHSs. Gong

et al. [72] designed a supervised learning model to discover SHS nodes in online

social networks. The authors used the user’s profile and content generated by the

user to decide if the user is SHS or not. Features such as descriptive, cross-site and

ego network features represent each user. However, the solution depends on manually

extracted features and may not understand the complex network structures; therefore,

the solution may not be applicable to all networks.

Challenge: In the literature, several approaches exist for discovering SHS nodes in

static graphs; however, those approaches fail to scale to large graphs. Therefore, there

is a need to design approaches for discovering SHS nodes in large-scale networks. This

thesis aims to design a graph neural network-based model for efficiently finding SHSs

in large-scale networks.

2.2.2 Discovering Structural Hole Spanners in Diverse Net-

works

Discovering SHS nodes in diverse networks is a new research problem that needs to be

addressed. We study different machine-learning approaches [84, 181, 40, 95, 123, 90]

and discovered that Meta-Learning techniques can be utilized for discovering SHSs in

diverse networks. The meta-learning technique designs machine learning models that

learn from the experiences and improve the learning process over time. The objective
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of meta-learning is to design models that can learn to learn and are able to adapt to

new tasks very quickly. This section discusses several studies [180, 126, 59, 148, 127,

122, 173, 137, 25] that uses Meta-Learning [146, 144, 57, 114, 58, 84] to solve similar

research problems.

Zhou et al. [180] developed Meta-GNN framework to solve the few-shot node clas-

sification problem. The authors trained one classifier on numerous similar few-shot

learning tasks to gain prior knowledge. The acquired knowledge is then utilized to

classify the nodes from new classes, given only a limited number of labelled instances.

The authors claimed that the proposed framework can be incorporated with any graph

neural network model, making it a universal framework for solving similar problems.

Ryu et al. [126] proposed a technique to solve an essential problem in machine learning,

i.e., to improve the model generalization capability on unseen data. The authors

developed a meta-learning model that trains the perturbation function in parallel

over many heterogeneous tasks to improve the model’s generalization power across

different tasks. Frans et al. [59] proposed a meta-learning approach for leveraging

the shared primitives to learn hierarchically structured policies in order to enhance

the sampling efficiency on new tasks. Wang et al. [148] proposed a meta-learning

based model to address the problem of few-shot learning in an attributed network.

The authors considered the distinctive characteristics of attributed networks that led

to the model’s exceptional performance in the meta-testing stage. Sankar et al. [127]

designed a semi-supervised learning technique for attributed heterogeneous networks.

Despite limited supervision, the method facilitates node classification based on network

structure and type of nodes.

Challenge: Discovering SHS nodes in diverse networks is a novel research problem

that needs to be addressed. Traditional one-model-fit-all Machine Learning-based

models fail to capture the inter-graph differences and may perform poorly for diverse

graphs. Therefore, we need machine learning models that are aware of differences

across graphs and can customize accordingly without the need to be retrained on
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every type of network. This thesis designs a meta-learning-based graph neural network

model to effectively discover SHSs across diverse networks.

2.2.3 Discovering Structural Hole Spanners in Dynamic Net-

works

Numerous solutions have been proposed for discovering SHSs in the steady-state

behaviour of the network. Nevertheless, real-world networks are not static; they evolve

continuously. Currently, there is no solution that discovers SHS nodes in dynamic

networks. This section presents various proposed solutions that discover bottleneck

nodes, such as influential nodes, blockers and critical nodes in dynamic networks.

Several studies [38, 161, 178, 136, 160, 115, 159, 14, 2] have investigated the problem of

discovering influential nodes in dynamic networks. Chen et al. [38] studied the problem

of tracking influential nodes in dynamic networks. The authors designed an upper-

bound interchange greedy algorithm that exploits the network structure evolution

smoothness to solve the problem. The algorithm utilizes the previously identified

influential nodes and then executes node replacement in order to enhance influence

coverage. Besides, the authors proposed an approach that updates the nodes quickly

to retain an upper bound on the node replacing gain. Yang et al. [161] designed an

algorithm to track the influential nodes in dynamic networks. The algorithm works by

updating the nodes incrementally as the network evolves. The algorithm is able to work

under various scenarios, including insertions and deletions. Zhao et al. [178] designed

an algorithm to identify the influential nodes in dynamic networks. The algorithm

capture the interaction between nodes and discard the outdated interactions. Song et

al. [136] investigated the problem of tracking influential nodes as the network evolves

and proposed an algorithm that updates the influential nodes using the influential

nodes from the previous network. [163, 98, 110, 93, 19, 20, 64] studied solutions for

updating the centrality measures in dynamic networks. Yen et al. [163] proposed an

algorithm named CENDY to efficiently update the closeness centrality and average path
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length in dynamic networks. The algorithm works for incremental and decremental

edge updates in the network. The algorithm first discovers the nodes for which the

shortest path changes due to network updates and then performs centrality updates

for affected nodes only. Bergamini et al. [19] designed an algorithm for calculating

the betweenness centrality in dynamic networks. The proposed algorithm is able

to perform in-memory computations of the centrality measure in dynamic networks

with millions of edges. Lerman et al. [98] designed a centrality metric that considers

the network’s temporal dynamics. The metric computes the node’s centrality as the

number of paths connecting it to the other nodes. Bergamini et al. [20] designed

incremental algorithms for calculating the betweenness centrality in dynamic networks

and provided a provable guarantee on absolute approximation error. The algorithms

are able to achieve significant speedup due to the efficient update mechanism of shortest

paths. Song et al. [135] developed various heuristic solutions to identify broker nodes

in dynamic networks. The author defined broker nodes as the set of nodes that occupy

critical positions and control information flow in the network. The authors first proved

that the problem is NP-hard and then proposed incremental algorithms based on the

weak tie theory. Yu et al. [165] studied the problem of determining good blocker

nodes in the network, which can hamper the spread of dynamic process. The authors

evaluated the structural measures to determine the most effective blockers in static and

dynamic networks. The authors demonstrated that the simple local measures could

accurately predict an individual’s capability to block the spread of process, regardless

of network’s dynamic nature.

Challenge: The SHS node identification problem in a static network is a well-studied

problem, but no solution exists for discovering SHS nodes in dynamic networks.

Traditional algorithms are time-consuming and may not perform well for dynamic

networks. Therefore, this thesis designs efficient solutions for discovering SHS nodes

in dynamic networks.
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Chapter 3

Defending Active Directory by Combining

Neural Network based Dynamic Program and

Evolutionary Diversity Optimization

Related publication:

This chapter is based on our paper titled “Defending Active Directory by Combining

Neural Network based Dynamic Program and Evolutionary Diversity Optimization”

published in The Genetic and Evolutionary Computation Conference (GECCO), 2022

[71].

Microsoft domain network comprises significant market shares among small as well as

big organizations globally, due to which active directories have become an attractive

target for the attackers. If an attacker gains unauthorized access to the most privileged

account in AD, it can cause considerable financial and reputational damage to the

organization. Therefore, defending AD is crucial to protect the organization’s assets and

ensure its smooth functioning. This chapter presents an effective defensive technique

for determining the bottleneck edges which can be blocked to prevent an attacker

from reaching the most privileged account in AD. We study a Stackelberg game
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model between one attacker and one defender on an AD attack graph. The attacker

aims to maximize their chances of successfully reaching the destination before getting

detected, and the defender’s goal is to block a constant number of edges to minimize

the attacker’s chances of success. We show that the problem is #P-hard and, therefore,

intractable to solve exactly. We train a Neural Network to approximate the attacker’s

problem and propose Evolutionary Diversity Optimization based policy to solve the

defender’s problem. We evaluate the performance of our proposed defensive policy on

synthetic AD attack graphs, and our results demonstrate that the proposed defensive

policy is highly effective.

3.1 Introduction

Cyber attackers utilize attack graphs to identify the possible ways to gain unauthorized

access to the systems. Industrial practitioners are actively utilizing the AD attack

graph, which is an attack graph model. Microsoft Active Directory is a default security

management system for Windows domain networks [44]. Microsoft domain network

constitutes significant market shares among organizations globally, due to which AD

are promising targets for cyber attackers. BloodHound is the most popular tool

to analyze the AD attack graphs. The BloodHound has significantly eased the

process of attacking AD for potential cyber attackers. Due to the popularity of AD

attack graphs, defenders also study AD graphs to devise defensive strategies. Dunagan

et al. [51] developed a heuristic solution for blocking a few edges to partition the

attack graph into disconnected components. The resulting disconnected components

disable attackers from reaching the most privileged account, called Domain Admin,

only if the attacker’s entry nodes and DA are in different components. Edge blocking

in an AD environment can be attained by either monitoring the edges or revoking

access. Evolutionary algorithms have traditionally been used to solve various attacker-

defender problems [172, 85, 82]. Ulrich et al. [141, 142] studied Evolutionary Diversity

Optimization (EDO) that aims to find a set of diverse solutions. EDO has gained
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considerable attention in the Evolutionary Computation community. A new solution

deviating from its predecessors leads to less competitiveness and high evolvability [97].

In this chapter, the defender aims to block a set of edges to minimize the

strategic attacker’s probability of reaching DA. To solve the defender’s problem,

we consider the blocking plans of the defender as a population and propose EDO

based defensive approach to generate a diverse set of blocking plans. To address the

defender’s problem, we treat the defender’s blocking strategies as a population and

introduce an Evolutionary Differential Optimization (EDO) based defensive approach.

Our solution aims to generate a wide range of blocking plans, leveraging EDO’s

diversity capabilities. The diversity in blocking plans, in turn, improves the accuracy

of modelling the attacker’s problem, ultimately leading to the discovery of more

effective defensive plans.

In the literature, Guo et al. [78] proposed several algorithms to address this problem.

However, the authors have considered a scenario where once the attacker is detected,

the attack ends, and when an attacker chooses a path, the attacker continues to move

on to that path until the attacker gets caught or reaches DA. The attacker’s problem in

[78] can be solved using Dijkstra’s algorithm, but in our model, the attacker’s problem

is computationally hard. In our model, we assume that every edge e has a different

detection probability pd(e), i.e., if the attacker is detected, the whole attack ends and a

failure probability pf(e), i.e., if the attacker fails and is not able to pass through an

edge; the attacker can try another edge from the same node or different node. For

example, an edge requires cracking a password to pass through it; if the password is

weak, then the attacker can crack it. In this case, the probability of having a strong

password is the failure probability. With every edge’s pd(e) and pf(e), the attacker can

successfully go through an edge e with a success probability ps(e) = (1− pd(e) − pf(e)).

Therefore, in our model, the attacker plays strategically in the sense that the attacker

first starts an attack, and if, at some point, fails (instead of being detected), the

attacker can try again until the attacker is detected or has tried all possible options.
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The attacker aims to design an attacking policy that maximizes their probability of

reaching DA. Initially, the attacker has access only to a set of entry nodes, from where

the attacker can start. While trying to reach DA, the attacker expands the set of

accessible nodes by exploring edges and saves this information, i.e., set of successful

edges the attacker has currently control of, set of edges that the attacker has lost

(failed but not detected, for not being able to guess the password, etc.). All the

strategies that attacker has tried are an “investment” that the attacker can use later.

In this way, the attacker has “secured” a set of nodes at any point and can attempt an

unattempted edge originating from any of the secured nodes or entry nodes, which we

combinedly call checkpoints, Checkpoints = {Entry nodes∪Secured nodes}. Generally,

the attacker prefers the attack paths with low detection and failure probability, and

covers the valuable checkpoints along its way. The defender wants to deterministically

block k block-worthy edges, where k is the defender’s budget, in turn increasing the

corresponding edge’s failure rate from original pf to 100%. We follow a standard

Stackelberg game model [164], where the defender devises a strategy, and the attacker

observes the defender’s strategy and plays his best to develop an attack strategy on the

target. In practice, the attacker can scan the AD environment using SharpHound1

tool and get information about which edges are blocked.

We aim to propose an effective approach for computing defender strategy (to block

a set of edges that minimizes strategic attackers’ probability of reaching DA) that

scales to large AD attack graphs. We have proved that the attacker’s problem of

deriving an optimal attacking policy is #P -hard. We proved that the defender’s

problem is also #P -hard, even if the blocking budget is one. Therefore, the problem is

intractable to solve exactly with the current methods, so we propose an approach that

involves training a Neural Network (NN) to approximate the attacker’s problem

and Evolutionary Diversity Optimization to solve the defender’s problem. We

can describe the attacker’s problem as Markov Decision Process (MDP), which can

be solved using Dynamic Program (DP) [18]. The size of state space is 3|Edges|, where
1https://github.com/BloodHoundAD/SharpHound
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an edge is either unattempted, attempted and failed, or attempted and successful.

However, this state space is too large considering that practical AD graphs may

have tens of thousands of edges. We use a fixed-parameter analysis technique that

focuses on determining easy-to-solve instances of a problem. We design a kernelization

technique so as to reduce the AD attack graphs to a much smaller condensed graph.

We then convert the attacker’s problem from a condensed graph to a DP. Using our

kernelization technique, the state space becomes Fixed Parameter Tractable with

respect to a parameter called the number of Non-Splitting Paths (NSP). Guo et al. [78,

79] proposed NSP idea to describe tree-likeness of AD graphs. NSP is a path on which

every node has only one successor except the last node. We can solve the DP directly

for small AD graphs. For larger AD graphs, our FPT special parameter #NSP is

practically too large, so we use NN to approximate the DP [155]. Our main idea is to

train NN to learn both the base cases and the DP recursive relationships. Considering

that the state space is exponential and we do not have resources to train NN to learn

the value of every state; however, not all states are useful. It is important to learn

the values of the states that are referenced by the optimal decision path; therefore, we

only consider the important states in the state space, which reduces the state space

size to a large extent. With the strong flexibility power of NN, we aim to train the

NN to approximate the attacker’s policy. NN serves as a fitness function for EDO (the

exact fitness function is #P-hard to compute). EDO provides a diverse set of blocking

plans, i.e., diverse set of training samples for training NN, which prevents NN from

getting stuck in local optimum. The blocking plans are given as input to the NN, and

it outputs the attacker’s probability of reaching DA corresponding to the blocking

plan. We go back and forth between the processes, generating blocking plans using

EDO and training NN on blocking plans, to get a well trained NN that can act as an

efficient fitness function for EDO. In this way, EDO and NN help each other in order

to improve.

Contributions: In this chapter, we make the following contributions.



33

• #P-hard proof. We first prove that the attacker’s problem of deriving an

optimal attacking policy is #P -hard, and the defender’s problem is also #P -hard.

• Kernelization technique. We design a kernelization technique that converts

the attacker’s problem to a dynamic program where the number of states is

fixed-parameter tractable with respect to the number of non-splitting paths.

• Attacker-defender policy. We train a Neural Network for approximating the

attacker’s problem and propose Evolutionary Diversity Optimization to solve

the defender’s edge blocking problem.

• Extensive experiments. Our experimental results on the synthetic R500 AD

attack graph show that the proposed approach (attacker’s policy and defender’s

policy) is highly effective, and is less than 1% away from the optimal solution.

Chapter organization: Section 3.3 describes the model description. Section 3.5

discusses the proposed methodology in detail, including kernelization technique, at-

tacker’s policy and defender’s policy. Section 3.6 reports the experimental results, and

finally, Section 3.7 concludes the chapter.

3.2 Background

Dynamic Programming (DP). DP is a widely used technique for designing efficient

optimisation algorithms. For a problem that can be reduced to a subproblem with

similar structures, each corresponding to a decision-making stage, DP first finds the

optimal solution for each subproblem and then finds the optimal global solution. One

significant characteristic of DP is that the solution of a subproblem is frequently used

numerous times for solving various large subproblems.

Neural Networks (NN). NN are the foundation for various artificial intelligence

applications such as speech recognition, image recognition, self-driving cars, detecting

cancer etc. Currently, NNs are outperforming human accuracy on a range of tasks. The
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reason behind the exceptional performance of NNs is its ability to extract high-level

features from data and obtain an effective representation of input space. Theoretically,

NNs with a large number of parameters can fit any complex function. NN have enabled

machine learning techniques to attain high accuracy in less time for various problems.

Evolutionary Diversity Optimisation (EDO). EDO aims to find a diverse, high-

quality set of solutions that are maximally different. This research area was first

studied by Ulrich et al. [141] and has gained considerable attention in the community

of evolutionary computation. A new solution deviating from its predecessors leads to

less competitiveness and high evolvability. In addition, numerous interesting solutions

are considered more valuable than a single good solution; therefore, EDO is a beneficial

addition to conventional optimisation. Various applications that use a diverse set of

solutions are air traffic control, personalised agent planning, etc.

3.3 Problem Description

AD attack graph is a directed graph G = (V,E), with n = |V | nodes and m = |E|

edges. There are s entry nodes, from where the attacker can enter the graph and one

destination node DA (Domain Admin). AD attack graphs may have multiple admin

nodes, but we merge all admin nodes into one node and call it DA2. The attacker

starts from any entry node and aims to devise a policy that maximizes their probability

of reaching DA. The attacker initially has access only to a set of entry nodes and

tries to expand this set by exploring more edges. Every edge e ∈ E has a detection

probability pd(e) that ends the attack, and a failure probability pf(e), which does not

end the attack; on encountering a failed edge, the attacker can continue the attack

by exploring one of the unexplored edges. The attacker can successfully pass through

an edge with a probability of (1 − pd(e) − pf(e)). In our model, the attacker plays

strategically; the attacker initiates an attack and continues the attack by exploring

unexplored edges until the attacker is detected, has explored all possible options or

2We merge all the DA into a single node to reduce the problem complexity.
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reached DA. The defender blocks k block-worthy edges, where k is the defender’s

budget and aims to minimize the strategic attacker’s chances of reaching DA. Only

a set of edges are blockable. We assume that the attacker can observe the defensive

action and accordingly comes up with the best-response attacking policy. We first

show that the attacker’s and defender’s problems are #P -hard to calculate. Therefore,

the problems are intractable to solve with the existing approaches. We propose an

approach that trains a Neural Network to approximate the attacker’s problem and

Evolutionary Diversity Optimization to solve the defender’s problem.

This chapter proposes Evolutionary Diversity Optimization (EDO) as a defender’s

policy that generates diverse plans to block a set of edges, minimizing the attacker’s

chances of successfully reaching the DA. The NN serves as the fitness function for EDO,

evaluating the attacker’s probability of reaching the DA based on different blocking

plans. The diverse blocking plans generated using EDO are used as training data for

the NN, and they prevent the NN from getting stuck in local optima and enhance the

NN’s accuracy in modelling attacker behaviour.

3.4 Hardness Results

Let G be a graph with one entry node ENTRY and one destination node DA as shown

in Figure 3.1(a). For both the edges ENTRY → 1 and ENTRY → 2 in G, pd = 0.1

(pd can be any arbitrary value greater than 0) and pf = 0. Our hardness results are

discussed below:

Figure 3.1: G′ is constructed from G.
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Theorem 3.1. The attacker’s value is #P-hard to calculate.

Proof. The attacker’s value is the attacker’s probability for reaching DA before getting

detected under the attacker’s optimal attacking policy, facing a given defense (Figure

3.1(a)). A known #P -complete result for the s− t connectedness problem [143] states

that, given nodes s and t in a directed graph, if every edge’s probability of existence is

0.5, then it is #P-complete to calculate the probability that s and t are connected. We

can apply this result to our problem by assuming an edge’s pf = 0.5 and pd = 0 for all

edges in the attack graph. Therefore, the attacker’s value is #P-hard to compute.

Theorem 3.2. The attacker’s optimal policy is #P-hard to calculate.

Proof. We construct a graph G′ from G as shown in Figure 3.1(b). Let G′ be a

directed graph with a source node s and destination node t . All the edges in graph

G′ have pd = 0 and pf = 0.5. We add two edges 1 → s and t → DA to G′, each with

pd = pf = 0. In addition, we add another edge 2 → DA with pd = 0, pf = c where c is

any constant. In Figure 3.1(b), the attacker needs to determine whether the attacker

should go up (Entry→1) or down first (Entry→2). Let us assume that the total failure

rate for going from s to t is pup, and the failure rate of going from 2 to DA is pdn. If

the attacker go up (Entry→1) first then,

Attacker’s value = 0.9(pup + (1− pup)0.9pdn).

Attacker’s value = 0.9pup + 0.81pdn − 0.81pup × pdn.

If the attacker go down first (Entry→2) then,

Attacker’s value = 0.9(pdn + (1− pdn)0.9pup).

Attacker’s value = 0.9pdn + 0.81pup − 0.81pup × pdn.
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Therefore, the attacker needs to determine higher failure rate from two, pup or pdn. We

call this problem an up-down deciding problem, and the attacker’s optimal policy is at

least as difficult as the up-down deciding problem. Let’s assume we have an oracle

that solves the up-down deciding problem. We can compute the exact value of pup

by calling the oracle polynomial number of times (Value of pup is from a finite set,

{ 0
2m

, 1
2m

, ...2
m

2m
}, where m is the number of edges in the directed graph containing s

and t). We can perform binary search on pup using our up-down oracle, i.e., every

time we construct one attack graph, we can reduce the range of possible values for

pup by a factor of 2, and we need to call the up-down oracle only m times. This is

Turing reduction as we use the up-down oracle polynomial number of times to get

the exact value of pup, and construction of m attack graphs is also polynomial. By

Turing reduction, the up-down deciding problem behind the oracle is at least as hard

as calculating pup; however, pup is #P-hard to compute (Theorem 3.1), therefore, the

up-down deciding problem is #P-hard. Since the attacker’s optimal policy is at least

as hard as the up-down problem, therefore, attacker’s optimal policy is also #P-hard

to calculate.

Corollary 3.1. The defender’s value and policy are both #P-hard to calculate.

Proof. The defender’s value is the attacker’s chance of reaching DA (assuming the

attacker plays the optimal policy) under the best defense. In order to compute the

defender’s value, we have to solve the up-down deciding problem, which is #P-hard.

Let us assume that the defender’s budget is one for defender’s policy. Now, the

defender has 2 paths to block, 1→DA or 2→DA, and assuming only two edges t→DA

and 2→DA are blockable. Therefore, the defender’s policy is also at least as hard as

the up-down deciding problem, which is #P-hard and hence, the defender’s is also

#P-hard to calculate.
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3.5 Proposed Approach

This section first discusses the proposed kernelization technique that reduces the original

graph to a condensed graph and converts the attacker’s problem to a dynamic program.

We then discuss the proposed Neural Network that approximates the attacker’s problem.

Lastly, we discuss the proposed Evolutionary Diversity Optimization to design the

defensive policy.

3.5.1 Fixed-Parameter Tractable Kernelization

Kernelization is a common technique for fixed-parameter analysis that processes

a problem and reduces it to a smaller equivalent problem, called kernel. We can

consider an attack graph as a tree with h extra edges, known as feedback edges (h) and

h = m− (n− 1). Splitting nodes (t) are the nodes with more than one outgoing edge.

DA does not have any successor in the graph, and even if DA have any successors,

that can be ignored as once the attacker reaches DA, the attack ends. When t = 0,

the attack graph is exactly a tree. Also, t ≤ h. We denote the Number of entry nodes

using s. For kernelization, we consider one parameter of AD attack graphs, which is

the number of Non-Splitting Paths (paths from entry nodes, or other splitting nodes).

Definition 3.1. Non-Splitting Path (NSP). Non-Splitting Path NSP(i, j) is a

path that goes from node i to j, where j is i′s successor and then continually moves to

j′s sole successor, until we reach DA or another splitting node [78, 79].

NSP = {NSP (i, j)| i ∈ SPLIT ∪ ENTRY},

where SPLIT represents the set of splitting nodes and ENTRY represents the set

of entry nodes. A NSP is blockable only if at least one of its edge is blockable. In

addition, once the attacker chooses to move onto a NSP, it is without the loss of

generality to assume that under the attacker’s optimal policy, the attacker has to
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Figure 3.2: Example of attack graph.

complete the NSP until the attacker 1) gets caught; 2) fails; 3) reaches DA; or 4)

reaches any splitting node. Otherwise, the attacker risks getting detected without

securing any new checkpoints (splitting nodes).

Definition 3.2. Block-worthy (BW). A block-worthy bw(i, j) is any furthermost

blockable edge on path NSP(i, j). Two NSPs may share the same block-worthy edge.

BW = {bw(i, j)| i ∈ SPLIT ∪ ENTRY, j ∈ Successor(i)}.

Notably, for the edge blocking strategy, we only need to spend one unit of budget on

NSP (i, j); otherwise, we could simply block bw(i, j) to eliminate this NSP from the

attacker’s consideration. Size of block-worthy edge set, |BW | can be bounded as:

|BW | ≤ s+ t+ h

|BW | ≤ s+ 2h, since t ≤ h

Figure 3.2 illustrates an attack graph, where the entry node is s, destination node is

DA, split nodes are {a, d, f}, non-splitting paths are {(s, a), (a, b, c, d), (a, e, f)}. The

thick edges are blockable, so blockable edges are {(b, c), (c, d), (a, e)} and block-worthy

set is {(c, d), (a, e)}. In the original AD attack graph, there are n nodes and m edges.

The kerneization technique converts the original graph into a condensed AD attack

graph with only (|ENTRY|+|SPLIT| + 1) nodes and |NSP| edges.

Converting Attacker’s Problem to Dynamic Program. We describe attacker’s

problem of devising an attacking policy that maximizes the probability of reaching
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DA as Markov Decision Process, where the state s is a vector of size |NSP | and can

be represented as:

< S,F, ?, ?, ?, S, F, ?, ?, ?, ?, ?, S, F, F >︸ ︷︷ ︸
Length of state vector = Number of NSP

(3.1)

where:

‘S’ represents that the attacker has tried NSP and it is successful (the attacker has

reached at the end of NSP)

‘?’ represents that the attacker has not yet attempted the NSP

‘F’ represents that attacker has tried NSP and failed (not detected)

Given a state vector as shown in Equation 3.1, the attacker tries one of the NSP (action

for a state) with status ‘?’ (not attempted) in order to reach DA. The realization of

the NSP that the attacker tries can turn out to be either successful, fail or detected.

Accordingly, the status of that NSP changes to ‘S’ or ‘F’ and the attacker gets a new

state. However, if the attacker is detected, the attack ends. All the NSPs that the

attacker has tried and are successful act as checkpoints for the attacker. The attacker

can explore an unexplored edge from these checkpoints in the future. In this way, the

attacker tries unexplored NSPs until the attacker reaches DA or is detected.

State Transition. For a state and action (actions for a state s are the unexplored

NSPs outgoing from the end node of successful NSPs in state s), we may have a

distribution of future states. We have described the state transition process using

Figure 3.3. For simplicity, assume that every edge in Figure 3.3 has pd = 0.1 and

pf = 0.2. We have two NSPs, <NSP(ABCD), NSP(ECD)> visible in our figure, so

we focus on these two NSPs for presentation purposes. The initial state vector is

<?, ? >. We can try one of the NSPs. Let us try NSP(ABCD), and we go through

each edge on this NSP. If AB fails: the status of its NSP changes to ‘F’, and the

new state is <F, ?>. This state is added to the future state set with 0.2 transition

probability. There is 0.1 probability the attack ends and 0.7 probability of successfully
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Figure 3.3: Example of state transition process.

passing through edge. If edge AB succeeds but BC fails: <F,?> state is already in

set; therefore, its transition probability is updated to (0.7×0.2+0.2)=0.34. There is

(0.7×0.1)=0.07 probability that the attack ends and the probability of successfully

passing through edge is (0.7×0.7)=0.49. If edge AB succeeds, BC succeeds, but CD

fails: CD is a common block-worthy edge between NSP(ABCD) and NSP(ECD). If

CD fails, both the NSPs sharing CD fail, and the new state is <F, F>. The state

is added to the future state set with (0.7×0.7×0.2)= 0.098 transition probability.

There is (0.7×0.7×0.1)=0.049 probability that the attack ends, and the probability

of successfully passing through edge is (0.7×0.7×0.7)=0.343. If AB succeeds, BC

succeeds, CD succeeds: All the edges on NSP(ABCD) have been explored, and we

can successfully go through this NSP. Therefore, we have a new state <S, ?>. This

state is added to the future state set with 0.343 transition probability. On trying

NSP(ABCD), we get three future states and their corresponding transition probabilities,

{(< F, ? >, 0.34), (< F,F >, 0.098), (< S, ? >, 0.343)}.

State Transition Rules. Two or more NSPs may share the same block-worthy edge,

making the state transition process complicated. In Figure 3.3, there is one splitting

node D and two NSPs, i.e., ABCD and ECD. However, the two NSPs are not

independent as they share the same block-worthy edge CD. We design the following

rules for the state transition:

1. If NSP (ABCD) is successful, then we change the status of all unexplored NSPs

that ends at node D to successful. Since we already got access to node D,

we do not have to try these NSP(ECD). We can directly change the status of
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NSP (ECD) to ‘S’.

2. If all the NSPs that ends on a split node D fails, then the status of all the NSPs

from the split node D is changed to ‘F’.

3. If a NSP (ABCD) fails, then it may or may not affect the status of other

NSPs ending or originating from node D. It depends on which edge on the

NSP (ABCD) fails. The failure on NSP (ABCD) may be due to any of the

edge AB, BC or CD. If edge AB or BC fails, then it will not affect the status of

NSP (ECD), and we can try NSP (ECD) later; however, if the common block-

worthy edge CD fails, then the status of all the NSPs sharing this block-worthy

edge is changed to ‘F’. Therefore, we need to determine where exactly the failure

occurs and if this failure will affect the other NSPs or not.

During state transition, for each new state s, we first check if it is already a determined

state or not. Determined states are the states which are already present in future

state set and for each determined state, we have identified set of actions that can be

performed on that state. If the state is not determined yet, we compute admissible

set of actions A(s), for this state. Admissible set of actions are the actions available

for the state, i.e., set of unexplored NSPs that can be explored from the checkpoints of

this state. Notably, admissible actions only include unexplored NSPs and ignore those

NSPs for which we do not have access to their source node. The maximum size of the

attacker’s state space can be 3|NSP |, which is very large; however, not all state vectors

are possible or relevant for the attacker. We only consider the state vectors that are

relevant for the attacker by following the state transition process; given an initial

state and admissible set of action, we determine the future states that an attacker can

encounter on the way to DA, and we call these states as important states. We can

solve the attacker’s problem using the DP technique. For a given state s and action

a from admissible set of actions a ∈ A(s), the attacker problem of maximizing the
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probability of reaching DA can be written as:

V (s) = max
a∈A(s)

(∑
s′

Pr(s′ | s, a)V (s′)

)
, (3.2)

where V (s) denotes the value function for the current state s i.e., probability of reaching

DA when the attacker is in state s, s′ denotes the distribution of future states that

follows after choosing action a and Pr(s′ | s, a) denotes the state transition probability

of s′, when an action a is performed on s. Equation 3.2 can be solved by computing

the value functions for smaller problems and the overall value function step by step.

Nevertheless, backward induction can be computationally challenging for large state

spaces. Therefore, we use NNs to approximate the dynamic programming function.

3.5.2 Attacker Policy: Neural Network based Dynamic Pro-

gram

We use NN to approximate the attacker’s problem, and it acts as a fitness function for

the Evolutionary Diversity Optimization. Given a blocking plan, NN outputs a value

that indicates the attacker’s chances of reaching DA. For approximating the attacker’s

value function, we first supervise NN to learn the DP base states. Base states are

the states in which the status of NSPs that end at DA is either ‘S’ or ‘F’. NSPs that

ends at DA with status ‘S’ are always 100% successful, and therefore, the value of

these states is 1; the attacker will reach DA. If all the NSPs leading to DA have status

‘F’, the attack fails 100%; therefore, the value for these states is 0. Once the attacker

reaches DA, there is no state transition as the attack ends immediately. For other

states, we train the NN to learn the recursive relationship of Equation 3.2. We select

an initial state vector (actual state vector corresponding to a blocking plan; the state

where some coordinates are ‘F’, which are the NSPs blocked by the blocking plan and

rest of the coordinates are ‘?’) as shown in Equation 3.1 and generate a batch of future

states to train NN. Given an initial state, NN makes an optimal decision (according to

the NN model) with 0.5 probability or makes a random decision with 0.5 probability
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to explore other possibilities. It is possible that the action performed by NN is not

optimal; therefore, we employ randomness to explore other actions as well. After

performing an action, we may have a distribution of future states and their transition

probabilities. We select one of the future states weighted by its probability. Similarly,

we keep moving to other states until we reach the base state. We train the NN to

learn the recursive relationship between states and minimize the mean squared error

(MSE) of estimated results of the value function. Let V (s; θ) be the value predicted

by the NN, where s represents the input state vector, and θ be the model parameter.

Ideally, V (s; θ) is exactly a DP function. The loss is computed as follow:

Loss =
∑
s∈S

(
V (s; θ)− max

a∈A(s)

(∑
s′

Pr(s′ | s, a)V (s′)
))2

, (3.3)

where S is the set of all states. It is impractical to compute the gradient for all

states in one iteration; therefore, we adopt a common approach of performing gradient

descent on a mini-batch of data to train the NN. As the NN value function gets better,

there are higher chances that the generated states are optimal or near-optimal, which

indicates that the attacker may go via these states to DA. In addition, given a deep

enough neural network model and unlimited time, this will give us optimal results.

3.5.3 Defender Policy: Evolutionary Diversity Optimization

The defender uses Evolutionary Diversity Optimization to block k block-worthy edges

in order to minimize the strategic attacker probability of reaching DA. NN acts as a

fitness function for EDO and the fitness function computes the attacker’s probability

of reaching DA, for a given blocking plan. The defender uses EDO to obtain a diverse

set of defensive blocking plans to train NN, with an aim to improve the accuracy of

trained NN for modelling the attacker. We have only considered the block-worthy
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edges for the defensive policy. The defensive state vector can be represented as:

< 0, 1, 0, 0, 1, 1, 0, 0 >︸ ︷︷ ︸
Length of defensive state vector = Number of block-worthy edges

(3.4)

where:

‘1’ represents blocked edges

‘0’ represents non-blocked edges

Evolutionary Diversity Optimization. We initially generate a random population

P of defensive blocking plans, and each blocking plan is a vector of size |BW |. The

values in a state vector are either 1 or 0, and the number of 1s is always equal to k

(defensive budget). We randomly select individuals from P for mutation and crossover.

We also draw a random number x from Poisson distribution with a mean value equal

to 1 and perform either mutation or crossover with a probability of 0.5 to create new

offspring. Our mutation and cross-over operators ensure that the number of blocked

edges in an offspring does not exceed k; the mutation and crossover operations are

discussed below:

Mutation. We pick a random individual p′ from the population P , and flip x 0s to 1s

and x 1s to 0s. For example, we pick a random individual p′ = <1,0,0,0,1,0,0,1> from

the population P . To mutate p′, we flip two 0s to 1s and two 1s to 0s. New individual

obtain is: <0,1,0,0,1,0,1,0>.

Crossover. We pick two random individual state vector p′ and p′′ from the population

P to crossover. We find x coordinates where p′ has 0s on those coordinates, and p′′ has

1s on those coordinates. For these coordinates, we change 0s in p′ to 1s and change 1s

in p′′ to 0s. We then find x coordinates where p′ has 1s on those coordinates and p′′

has 0s on those coordinates. We again change 1s to 0s and 0s to 1s.

Diversity Measure. After mutation and crossover, we add the new individual to P if

its fitness value is close to optimal (within an absolute difference of 0.1); otherwise, we
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reject the individual even if it is good for the diversity of population. We consider the

diversity in terms of equal representation of block-worthy edges in the population. Let

us say there are µ individuals in the population P and each individual pj is represented

as:

pj =
(
(bw1; j), (bw2; j), ..., (bw|BW |; j)

)
, j ∈ {1, ..., µ}

For each block-worthy edge bwi, i ∈ {1, ..., |BW |}, let c(bwi) denotes the block-worthy

edge count as the number of individuals out of µ who have blocked this edge. Therefore,

we get block-worthy edge count vector C(bw) as:

C(bw) = (c(bw1), c(bw2), ..., c(bw|BW |)).

We now compute the diversity vector D of the population P without individual pj as:

D(C(bw)\pj) = C(bw)− pj,

D(C(bw)\pj) =
(
c(bw1)− (bw1; j), ..., c(bw|BW |)− (bw|BW |; j)

)
,

where D(C(bw)\pj) represents the diversity of population without individual pj . In or-

der to maximize the blocked edge diversity, we aim to minimize the SortedD(C(bw)\pj)

in the lexicographic order, where sorting is done in descending order.

SortedD(C(bw)\pj) = sort
((

c(bw1)− (bw1; j)
)
, .......,

(
c(bw|BW |)− (bw|BW |; j)

))
.

In this way, we determine the diversity SortedD, of the population without each

individual in the population. We then select the individual r, removal of which leads

to maximum diversity (minimum SortedD(C(bw)\pr)) in population. We reject r

if it contributes least to diversity and its fitness value is not close to optimal. One

exception is that if the newly introduced individual is the best-performing individual,

then we remove the individual with the worst fitness value instead. In this way, we get

a diverse set of defensive blocking plans via EDO.
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Converting defensive blocking plan to actual state vector. For each defensive

blocking plan vector (Equation 3.4), we first need to convert it to the actual state

vector (Equation 3.1) in order to determine the attacker’s chances of reaching DA

(corresponding to this blocking plan). “Actual state vector” is the state vector used

in the attacker’s MDP. For each block-worthy blocked edge bw in the defensive state

vector, we first determine the number of NSPs blocked by this bw edge and then

change the status of those NSPs to ‘F’, keeping the status of rest to ‘?’.

Overall approach: NNDP-EDO. Initially, we have an NN which is highly inaccurate

(attacker’s policy). We generate a diverse set of blocking plans as training data for

NN using EDO (Defender’s policy), and NN acts as an efficient fitness function for

EDO. Notably, the exact fitness function is #P -hard to compute, therefore, we use

NN as a fitness function. We convert the blocking plans to the actual state vectors

and in each training epoch select a random blocking plan out of the population to

train NN, which we call an initial state vector. We use the state transition process to

determine future states set, transition probabilities and admissible action set. We then

train NN using Equation 3.3 on the future state set to approximate the value function,

i.e., NN outputs attacker’s probability of reaching DA with the given a blocking plan.

We repeatedly train NN on diverse blocking plans aiming to improve the accuracy of

NN for modelling the attacker. We repeatedly go back and forth between training

NN and EDO processes for many rounds to get a well trained NN that can act as

an efficient fitness function for EDO. In the last round, we train NN once again on

the population obtained from the last round of EDO. EDO prevents the NN model

from getting stuck into local optima too early, especially in the early phases of the

training when the value function is highly inaccurate. In addition, not all states are

important for the attacker; therefore, we let the value of states that are referenced by

the attacker’s optimal decision path, be more accurate by training NN on these states.
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3.6 Experimental Results

We discuss the effectiveness of the proposed approach by conducting exhaustive

experiments on various AD attack graphs. We conducted all the experiments on

a high-performance cluster server with Intel Gold 6148/6248 CPUs. All trials are

executed using 1 CPU and 1 Core. Notably, we conducted the experiments on a very

large scale, and it took us 141.47 days of computing hours to run all the experiments.

We allocated 180 CPUs from the high performance cluster to run our 180 trials in

parallel, therefore, our experiment completed in 1 day. The main reason for the high

computational cost is training the neural network to learn the dynamic programming’s

recursive relation. The EDO process is not computationally expensive; it’s rather

efficient. Therefore, the time-intensive aspect lies in the neural network training

process. We implemented the code in PyTorch.

3.6.1 Dataset

We generated synthetic R500, R1000, R2000 AD attack graphs using DBCREATOR,

where 500, 1000 and 2000 are the number of computers. In addition, we only consider

three types of edges by default present in BloodHound; HasSession, AdminTo, and

MemberOf. Table 3.1 presents the summary of original attack graphs, where nodes

in original graphs include computers, user accounts and security groups. We pick 40

nodes that are farthest away from DA (in terms of number of hops) and randomly

select 20 nodes as entry nodes. An edge(i, j) is set to be blockable with probability L:

L =
Min number of hops between edge(i, j) and DA
Max number of hops between edge(i, j) and DA

.

In this way, the farthest edges from DA are more likely to be blockable, which are less

important. We pre-process the original attack graphs to obtain the condensed graphs,

which only contains splitting nodes. For instance, in R500 original graph, there are 7

DA, 1493 nodes and 3456 edges. We merge the 7 DA into one destination node and



49

remove all the outgoing edges from DA (once the attacker reaches DA, the attack

ends). As the attacker will never use the incoming edges to entry nodes, we remove

them. We also remove the nodes with no incoming edges. Out of 1493 nodes, only 105

can reach DA; we remove all the nodes that can not reach DA. In addition, splitting

nodes are connected via non-splitting paths, therefore, we consider a non-splitting

path as a single edge. In this way, we obtain a condensed graph, which is much smaller

than the original AD graph.

Table 3.1: Summary of synthetic original AD attack graphs.

AD attack graph Nodes Edges
R500 1493 3456
R1000 2996 8814
R2000 5997 18795

3.6.2 Training Parameters

In our approach, we use a simple fully connected Neural Network, and a ReLU

activation function follows each NN layer. For the R500 graph, a small NN with 4

fully connected layers is used, whereas, for R1000 and R2000, we use an NN with

10 layers. The size of each layer is 256 and the last layer of NN is followed by a

sigmoid activation function that maps the model output to a value between 0 and

1 (the attacker’s chances of reaching DA). We train the NN in a batch of 16 states.

We use the mean squared error to compute the loss, and train the parameters using

Adam Optimizer with a learning rate of 0.001. The model is trained for 500 epochs

in each round. We set the defender budget to 5. We generate a population of 100

defensive blocking plans in 10000 iterations and perform mutation or crossover with

a probability of 0.5. We repeat the combined process (training NN and generating

blocking plans using EDO) for 100 rounds. We perform experiments with a seed from

0 to 9 for 10 separate trials (we conduct experiments on 10 different AD graphs with

different entry nodes and different blockable edges).
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3.6.3 Baselines

We compare our proposed approach with a combination of various attacking and

defensive policies, and the details are described below:

1. NNDP-EDO (Proposed). We proposed NNDP approach to approximate the

attacking policy and EDO for defensive policy. The defensive plan that contributes

least to the diversity is rejected, and the fitness value is evaluated using NNDP.

2. NNDP-EDO+DP. NNDP is used to approximate the attacking policy and EDO

for defensive policy. However, instead of using NNDP to evaluate the success rate of

best blocking plan (as in our proposed approach), we use accurate DP to determine

the value of the defensive plan.

3. Exact solution. Dynamic Program is used as attacker’s policy, and defensive

blocking plan is obtained by exhaustively trying each in order to get the best plan.

4. NNDP-VEC. In this approach, NNDP is used to approximate the attacking policy,

and Value-based Evolutionary Computation (VEC) is used to design the defensive

policy. In VEC, the blocking plans with the worst fitness values are rejected, and

the fitness value is evaluated using NNDP.

5. NNDP-Greedy. The attacker uses NNDP to approximate the attacking policy

and defender adopts a greedy approach to design the defensive policy. The defender

greedily blocks single best block-worthy edge to minimize the attacker’s chances of

reaching DA using NNDP. The defender repeats this for k times.

Notably, NNDP-EDO+DP and Exact solution use DP to evaluate the blocking plan;

however, it is infeasible for DP to process large graphs. Therefore, for R500 graph,

we compare our proposed approach NNDP-EDO, with NNDP-EDO+DP and Exact

solution. For larger graphs R1000 and R2000, we compare our approach with the

NNDP-VEC and NNDP-Greedy to determine our defensive strategy’s effectiveness.

The trained NNDP may not give us the accurate values of success rate for the defensive
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plan; therefore, we use Monte Carlo simulations to determine the effectiveness of the

defensive plan. Moreover, in order to investigate the impact of correlation between

failure rate pf and detection rate pd of edges on the success rate of attacker, we

have considered three types of distribution; Independent (I), positive correlation (P)

and negative correlation (N). In independent distribution, pf and pd are mutually

independent, and we set pf and pd based on independent uniform distribution from

0 to 0.2. Positive correlation between pf and pd indicates that both have a steady

relationship in the same direction. Negative correlation between pf and pd indicates an

inverse relationship; one decreases as the other increases. We use multivariate normal

distribution to get pf and pd for positive and negative correlation between an edge e

as:

pd(e), pf(e) = multivariate normal (mean, cov).

For positive correlation, mean = [0.1, 0.1] and cov = [[0.052, 0.5 × 0.052], [0.5 ×

0.052, 0.052]]. For negative correlation, mean = [0.1, 0.1] and cov = [[0.052,−0.5 ×

0.052], [−0.5× 0.052, 0.052]].

3.6.4 Results

In our results, “Success Rate” represents the attacker’s chances of successfully reaching

DA before getting detected (given attacker’s policy) under the defensive blocking plan

from the defender’s policy. “Time (s)” is the number of seconds per trial. We simulate

the attacker’s policy (NNDP) on the best defensive blocking plan (predicted by NNDP)

using Monte Carlo simulations over 100000 runs to determine attacker’s chances of

reaching DA. We performed all the experiments ten times with a seed from 0 to 9, and

avg. represents the average results over all seeds are presented as final results.

Results on R500. Table 3.2 presents the success rate of the proposed approach

NNDP-EDO and other baselines on synthetic R500 graph under various distributions.

The attacker’s average success rate is 87.96% when simulated using Monte Carlo
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Table 3.2: Comparison of success rate on R500 AD attack graph.

Graph Approach I P N Avg.
NNDP-EDO (Proposed) 87.96% 84.77% 84.5% 85.74%

R500 NNDP-EDO + DP 90.49% 84.8% 84.46% 86.58%
Exact solution 89.73% 84.78% 84.45% 86.32%

over 100000 runs with our proposed defense EDO and NNDP (under independent

distribution). Moreover, the exact actual success rate for our proposed defense when

evaluated using NNDP-EDO+DP is 90.49%. This indicates that for a blocking plan

from EDO, our trained NNDP generates an error of 2.53% in the success rate. For

exact optimal defense, the attacker’s success rate is 89.73%, which indicates that

our proposed defense is 0.76% (less than 1%) away from the optimal. Similarly,

the proposed defense NNDP-EDO performs near-optimal under positive correlation;

NNDP-EDO believes the best defense has a success rate of 84.77%, but in reality, the

accurate success rate of the proposed defense is 84.8%, which is slightly worse than the

exact solution 84.78%. In negative correlation as well, NNDP-EDO defense is nearly

as effective as optimal.

Results on R1000. Table 3.3 presents the results for R1000 AD attack graph. It is

impossible to determine the exact attacker’s success rate for R1000 graph using DP;

therefore, we use NNDP to approximate the attacker’s policy. The trained NNDP may

not provide us with accurate success rate values for the defensive plan. Consequently,

we employ Monte Carlo simulations to assess the effectiveness of the defensive plan.

Table 3.3 shows that, on an average, the proposed EDO based defense NNDP-EDO,

leads to the best defensive policy as compared to the other defense (NNDP-VEC

and NNDP-Greedy). For instance, under independent distribution, the attacker’s

success rate is 42.69% with EDO defensive policy; however, the success rate increases

to 43.19% and 53.89% when facing VEC defense and Greedy defense, respectively.

Under positive correlation, NNDP-EDO is the best defense among the three and leads

to minimum attacker’s success rate. However, under negative correlation, the VEC

defense is slightly better than EDO. The results show that overall EDO’s best defense
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Table 3.3: Comparison of success rate on R1000 AD attack graph.

Success Rate Time(s)

Graph Approach I P N Avg. I P N
NNDP-EDO (Proposed) 42.69% 42.44% 41.29% 42.14% 39410.85 60263.28 64093.08

R1000 NNDP-VEC 43.19% 44.7% 41.24% 43.04% 39815.72 61572.04 57708.75
NNDP-Greedy 53.89% 52.86% 50.31% 52.35% 38413.97 64555.83 67436.33

Table 3.4: Comparison of success rate on R2000 AD attack graph.

Success Rate Time(s)

Graph Approach I P N Avg. I P N
NNDP-EDO (Proposed) 31.07% 33.9% 35.56% 33.51% 27291.01 65488.9 59843.9

R2000 NNDP-VEC 33.23% 36.45% 34.19% 34.62% 26838.6 67079.8 57160.1
NNDP-Greedy 38.32% 42.69% 39.02% 40.01% 24478.4 65620.3 57412.8

has an average success rate of 42.14%; VEC best defense has a success rate of 43.04%,

which is slightly worse than EDO. The greedy defense has an average success rate of

52.35%, which is far worse than VEC.

Results on R2000. The results for R2000 AD attack graphs in Table 3.4 show

that EDO based defence outperforms VEC and Greedy based defense in terms of

average success rate. With the EDO defense (under independent distribution), there

are only 31.07% chances of attacker’s reaching DA; however, with the Greedy defense,

the attacker’s success rate increases to 38.32%. EDO performs better than VEC and

Greedy in both independent and positive correlation; however, VEC performs slightly

better than EDO in negative correlation. On an average best defense from EDO has

an average success rate of 33.51%; VEC has success rate of 34.62%, slightly worse

than EDO and Greedy has an average success rate of 40.01%, which is very high as

compared to EDO defense.

3.6.5 Discussion

The results show that the proposed defense NNDP-EDO is highly effective. We have

exact optimal results for R500 attack graph, and on average, our proposed approach

is less than 1% away from the optimal defense. In addition, the proposed attacker’s

policy NNDP approximates the success rate for the defense with high accuracy and
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incurs a small error of 2.53%. This shows that EDO trains NNDP very effectively,

and trained NNDP acts as a very efficient fitness function for EDO. It is impossible

for large R1000 and R2000 graphs to run the exact DP evaluation function; therefore,

we simulate the defense using Monte Carlo simulation to get attacker’s success rate.

The results show that the proposed approach NNDP-EDO is better than others, and

overall, the best defense from EDO has an average success rate of 42.14% for R1000

and 33.51% for R2000, which is far less than other defensive approaches. In addition,

the results show that the Value-based Evolutionary Computation proves to be a better

defense than the greedy defense. For R1000 and R2000 graphs, 6/180 trails (around

3% ) ended up with unconverged NN training, i.e., after 500×100 epochs, the cost

function remains to be large.

3.7 Chapter Summary

This chapter investigated a Stackelberg game model on an Active Directory attack

graph between an attacker and a defender. The defender aims to block a number of

edges to minimize the attacker’s probability of reaching DA; however, the attacker aims

to maximize their chances of reaching DA. We first proved that both the attacker’s and

defender’s problems are #P -hard. We proposed Evolutionary Diversity Optimization

to solve the defender’s problem, and train the Neural Network to solve the attacker’s

problem. The experimental results showed that the proposed Evolutionary Diversity

Optimization based defensive policy is highly effective, and our proposed approach can

solve AD graph problems, which are intractable to solve using a conventional Dynamic

Program. Moreover, for R500 AD attack graph, our proposed approach is less than

1% away from the optimal defense.



55

Chapter 4

Evolving Reinforcement Learning

Environment to Minimize Learner’s

Achievable Reward: An Application on

Hardening Active Directory Systems

Related publication:

This chapter is based on our paper titled “Evolving Reinforcement Learning Envi-

ronment to Minimize Learner’s Achievable Reward: An Application on Hardening

Active Directory Systems” published in The Genetic and Evolutionary Computation

Conference (GECCO), 2023 [66].

Chapter 3 studied defensive techniques for identifying bottleneck edges that can be

blocked to defend organization’s active directory graphs. However, devising defensive

policies for large-scale AD graphs can be challenging. Therefore, this chapter presents

another approach aiming to defend large-scale AD graphs. In this chapter, we study a

Stackelberg game between one attacker and one defender in configurable environment

settings to defend AD graphs. The defender picks a specific environment configuration
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that represents an edge-blocking plan. The attacker observes the configuration and

attacks via Reinforcement Learning (RL). The defender aims to find the environment

configuration with the minimum achievable reward for the attacker, i.e., minimum

success rate of reaching the DA. We propose an Evolutionary Diversity Optimization

based defensive policy to generate a diverse population of defensive environment

configurations, and these environments are used for training the attacker’s policy. The

diversity not only improves training quality but also fits well with our RL scenario,

i.e., RL agents tend to improve gradually, so a slightly worse environment earlier on

may become better later.

Overall, this thesis proposes two approaches, i.e., neural network based dynamic

program and reinforcement learning based approach for defending AD graphs. Our

experimental results demonstrate that the reinforcement learning based approach is

scalable to larger AD graphs than the neural network based dynamic program approach

in Chapter 3.

4.1 Introduction

In an adversarial environment, the attacker and defender play against each other

[41]. The attacker intends to devise a technique to successfully carry out an attack,

while the defender’s objective is to protect the system from being compromised.

In such environments, the strategies and actions of the attacker and defender are

interdependent and affect each other [43]. This chapter studies an attacker-defender

Stackelberg game in configurable environment settings, where the defender (leader)

tries various environment configurations to protect the system [28]. In contrast, the

attacker (follower) observes the environment configurations and designs an attacking

policy using Reinforcement Learning (RL) to maximize their rewards. The defender

aims to find an environmental configuration where the attacker’s attainable reward is

minimum. We consider a specific application scenario, “hardening active directory

systems”, to discuss the problem in detail.
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Active Directory is a directory service developed by Microsoft for managing and

securing network resources in Windows domain networks. It is considered as the

default security management system for Windows domain networks [44] and has

become a popular target for cyber attackers. Given the popularity of organizational

AD graphs and the large number of cyber attackers targeting AD graphs, security

professionals are devising various solutions to protect AD [51, 78, 79, 175, 113]. One

solution is to selectively block certain edges from the attack graph to prevent attackers

from reaching DA [51]. Edge blocking in AD graphs can be performed by either

abrogating access or monitoring to stop the attacker from reaching the DA.

This chapter studies a Stackelberg game between an attacker and one defender on

AD graphs, where the attacker aims to design a strategy to maximize their chances of

successfully reaching the DA, and the defender aims to design a strategy to minimize

the attacker’s success rate. The attacker in our model is strategic and adopts a

proactive approach while performing the attack (For details, refer Section 3.1). Each

edge in AD graph is associated with a failure rate, detection rate and success rate.

The attacker starts the attack from one of the entry nodes and attempts to traverse

an edge to reach new nodes. If the attacker fails to traverse the edge, the attacker

tries another edge until gets detected, has tried all possibilities or reaches the DA.

Notably, if the attacker previously failed to pass through an edge, then they do not try

this edge again. The strategic attacker maintains a set called checkpoints , which are

nodes that the attacker can use as starting points or continue an attack from. Initially,

the checkpoint consists of only the entry nodes. The optimal attacking policy is the

one that maximizes attacker’s chances of reaching the DA without getting detected.

Notably, it is essential to design a sophisticated attacker’s policy, as we can not have

an effective defense without having an accurate attacker’s policy. Furthermore, the

defender’s goal is to design a defensive policy to minimize the attacker’s success rate.

The defender blocks a set of k edges by increasing the edge’s failure rate from the

original to 100%.
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This chapter aims to design the defender’s policy to block a set of edges

with the goal of minimizing the attacker’s chances of successfully reaching

the DA. For the attacker problem, we propose a Reinforcement Learning (RL)

based policy to maximize attacker’s chances of successfully reaching the DA (maximize

attacker’s achievable reward). We propose a Critic network assisted Evolutionary

Diversity Optimization (C-EDO) based defensive policy to find the defensive plan

configurations that minimize the attacker’s success rate. The attacker’s problem of

maximizing their chances of successfully reaching DA can be modelled as a Markov

Decision Process (MDP) [120]. We propose RL based policy to approximate the

attacker’s problem. Specifically, we use Proximal Policy Optimization RL algorithm, an

Actor-Critic based approach to train the attacker policy [131]. The RL agent interacts

with the environment by suggesting actions with the goal of maximizing the overall

reward. In our proposed approach, the RL agent interacts and learns from “multiple

independent environments” simultaneously. The RL training process is continuous

and not interrupted by any other process. We propose a Critic network assisted

Evolutionary Diversity Optimization based policy to solve the defender problem. C-

EDO generates numerous environment configurations (defensive plans). Our approach

uses the trained RL critic network to estimate the fitness of environment configurations.

The defender continuously monitors the RL training process and after regular intervals,

the defender uses the trained critic network to evaluate the current configurations

and uses C-EDO to generate better ones. The defender follows the approach of

discarding the environment configurations favourable for the attacker and replacing

them with better ones. In our proposed RL+C-EDO approach, the attacker and

defender play against each other in parallel. On the other hand, in Chapter 3, we

propose Evolutionary Diversity Optimization (EDO) as the defender’s policy. In EDO,

the Neural Network acts as a fitness function that computes the attacker’s probability

of reaching DA. The defender uses EDO to obtain a diverse set of defensive blocking

plans to train the Neural Network, with an aim to improve the accuracy of the trained

Neural Network for modelling the attacker.
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Overall, the defender’s C-EDO generates numerous high-quality, diverse environment

configurations (defensive plan) worth learning for the RL agent to train a better

attacking policy. We emphasize on high-quality, diverse environments to prevent

the RL agent from spending time on learning environments that are irrelevant to

an effective defense. Besides, we train our attacker’s policy using actor-critic based

algorithm, so we inherently have a critic network that gives us a reasonable estimation

of the state values and can be used as a fitness function for defender’s C-EDO. In this

way, these two problems are interconnected, and the solution strategies complement

each other. We conduct extensive experimental analysis and compare the results

with our previously proposed NNDP-EDO approach [71]. Our experimental results

show that the RL+C-EDO approach achieves better results than our NNDP-EDO

approach and the reason is that we have used RL to approximate the attacker’s

problem. In NNDP-EDO approach, NNDP attacker’s policy trains the model against

one defensive plan at a time, due to which it forgets the previous plan. This way,

it keeps learning and forgetting the plans. However, in RL+C-EDO approach, we

train our RL based attacker’s policy against multiple defensive plans (environment

configurations) at a time, due to which it learns shared experience and performs

better. For the RL agent, diverse environment configurations are only different in the

“opening games”, whereas the “end games” or “mid games” are likely to be similar across

different environments. The similarity in later stages can be utilized in parallel training,

where the agent is trained against multiple environments simultaneously and gains

shared experience, leading to faster convergence and improved performance. Besides,

the NNDP approach is value iteration-based RL algorithm, whereas our approach is

policy iteration-based RL algorithm. In general, the policy iteration-based algorithms

converge faster than value iteration-based algorithms [90], which is another reason for

the superior performance of our approach. Due to the reasons mentioned above, the

performance of our proposed RL+C-EDO approach is better than our NNDP-EDO

approach.
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Contributions: In this chapter, we make the following contributions.

• Attacker policy. We propose a Reinforcement Learning based policy to solve

the attacker problem and train the RL agent in parallel on multiple environments,

to accelerate the training process.

• Defender policy. We propose Critic network assisted Evolutionary Diversity

Optimisation based policy to address the defender problem. The defender

generate diverse blocking plans and replicates those plans that perform well for

defender and diminishes the ones that do not.

• Extensive experiments. Our experimental results demonstrate that the

proposed approach is highly effective and scalable to R40001 AD graph. The pro-

posed RL based attacker policy approximates attacker’s problem more accurately

and the proposed defensive approach generates better defense.

Chapter organization: Section 4.2 discusses the problem description in detail.

Section 4.3 discusses the proposed approach, including pre-processing AD graphs,

reinforcement learning based attacker’s policy, critic network assisted evolutionary

diversity optimization based defender’s policy and attacker-defender overall approach.

Section 4.4 reports the experimental results and finally, Section 4.5 concludes the

chapter.

4.2 Problem Description

Active directory graph can be represented as a directed graph G = (V,E), where V

is nodes set, and E is edges set. The highest privilege accounts in AD graphs are

called Domain Admin (DA). This chapter considers a two-player Stackelberg game

between one defender and one attacker to defend AD graphs. There are s entry nodes.

The attacker can start from one of the entry nodes and aims to design a strategy to

maximize their chances of successfully reaching DA. The defender seeks to block a

1R4000 AD graph is an AD graph containing 4000 computers.
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set of edges so as to minimize the attacker’s success rate. The defender has a limited

budget and can only block k edges. Not all edges are blockable; therefore, the attacker

can only block ‘blockable’ edges. Edge blocking is costly and requires efforts (auditing

access logs) to safely remove an edge; due to this, we cannot remove too many edges

and have assumed a limited budget. In our model, every edge in the AD graph has a

detection rate, failure rate and success rate. For more details, please refer to Section 3.3.

The strategic attacker starts from one of the entry nodes and tries unexplored edges

in order to reach DA. At any time during the attack, the checkpoint indicates the set

of nodes that the attacker has control of and can continue the attack from (in case the

attacker fails to pass through the edge). Chapter 3 proved that computing defender’s

and attacker’s optimal policy (and value) is #P-hard. Therefore, to approximate the

attacker problem, we design a reinforcement learning based policy where the agent

learns from multiple environment configurations (defensive plans) at a time, in turn

accelerating the training process. We propose a critic network assisted evolutionary

diversity optimization policy to address the defender problem.

4.3 Proposed Approach

This section describes our proposed approach for defending active directory graphs.

We first discuss our proposed pre-processing procedure that converts the original AD

graph to a smaller graph. We then discuss our proposed reinforcement learning based

attacker’s policy and critic network assisted evolutionary diversity optimization based

defender’s policy. Later, we describe our overall attacker-defender approach.

4.3.1 Pre-processing AD graphs

We first pre-process our AD graph by exploiting its structural features to get a smaller

graph. In an AD graph, Splitting nodes are the nodes with multiple edges originating

from them. Entry nodes are the starting points from where the attacker can initiate an

attack. The set of splitting nodes and entry nodes is represented by Split and Entry,
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respectively. If at least one of the edges on an NSP (Definition 3.1) is blockable, only

then we say that the NSP is blockable.

Definition 4.1. Block-worthy edge (bw). Any blockable edge farthest away from

node i on NSP (i, j) is known as block-worthy edge bw(i, j). The block-worthy edge set

is defined as:

BW = {bw(i, j)| i ∈ Split ∪ Entry, j ∈ Successors(i)}.

A block-worthy edge can be shared among two NSPs. We only spent one budget

unit on blocking NSP (i, j). If the original graph contains n nodes and m edges; after

pre-processing, the resulting graph consists of (|Entry|+ |Split|+1) nodes and |NSP |

edges.

4.3.2 Attacker Policy: Reinforcement Learning

The attacker’s goal is to design a strategy that maximizes their chances of successfully

reaching the DA. We describe the attacker’s problem as a Markov Decision Process

and propose a reinforcement learning based policy to address the attacker’s problem.

Our proposed RL based attacker policy uses Proximal Policy Optimization (PPO)

algorithm, an Actor-Critic based approach, to train the RL agent. We train our RL

agent in parallel against multiple instances of environment configurations at a time,

and each environment contains a defensive plan from the defender. Training the RL

agent in parallel on numerous environments speeds up the training process as the

agent is able to learn from various defensive plans at a time. Moreover, the shared

experience that the RL agent gains from the different environments can be used to

make better decisions and achieve a higher reward in the final stages of the game. This

section discusses our proposed RL based attacker’s policy in detail.
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Environment

We model the attacker’s problem of designing a policy to maximize their chances of

successfully reaching the DA as MDP. We call the attacker’s MDP M = (S,A,R, T )

as an environment, where S denotes the state space, A denotes the action space, R is

the reward function, and T represents the transition function. The description of the

environment is discussed below.

State space (S): State space S is a finite set of attacker’s states, and state ‘s’ is a

vector of size equal to the number of NSPs in AD graph. Each coordinate in state s

represents one NSP, and the status of each NSP is either ‘S’, ‘F’ or ‘?’. We represent

the attacker state s as described in Equation 3.1. Given a state s, the attacker explores

one of the NSPs with status ‘?’ and the status of tried NSP changes to either ‘S’ or

‘F’ 2, and the attacker reaches a new state. The attacker continues to explore one of

the unexplored NSPs at a time to reach a new state till the attacker reaches DA or

gets detected. At any time t during the attack, the attacker’s current state st acts as

a knowledge base and conveys the following information: the set of NSPs that the

attacker has control of (NSPs with status ‘S’), NSPs that the attacker has failed on

(NSPs with status ‘F’) and NSPs that the attacker can try in future (NSPs with status

‘?’). The attacker has two base states: 1) When the attacker reaches DA, the attack

is successful and terminates; 2) When the attacker is not able to reach the DA; the

reason can be that they got detected or has tried all possible NSPs, and there is no

option left to explore; in this case, the attack fails and ends.

Action space (A): Action space A is the action set available for state s, which are

the outgoing NSPs from the successful NSPs in state s. The attacker’s action space is

discrete. Action a is one of the NSPs from the action space of state s and indicates

that the attacker tries this NSP to reach the DA.

Reward function (R): The reward r(s, a) for state s on performing an action a is

2Status of some other NSPs may also change, in case the destination is already reached, or joint
block-worthy edge is failed.
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1 if the attacker is able to reach the DA without getting detected. Otherwise, the

reward is 0.

Transition function (T): For a given state s and action a, the transition function

performs action a on state s, and may have a set of future states. Each future state is

associated with its transition probability, and one state is selected as the next state

(weighted by its transition probability).

Policy training

We propose to utilize Proximal Policy Optimization (PPO) RL algorithm to train the

attacker’s policy so as to maximize attacker’s success rate. PPO follows an Actor-Critic

approach that exploits the advantages of policy based and value based approaches

while eliminating their disadvantages. In this approach, the policy and value networks

help each other improve. In our approach, we train two networks: actor network and

critic network. Actor network , also referred to as policy network, takes the current

state s as input and outputs the action a to be performed on s. Actor network updates

the policy parameters in the direction implied by the critic network. Critic network ,

also known as value network, takes the state as input and outputs the value of state.

For an attacker problem, value of the state is the attacker’s success rate.

Our RL agent uses the actor-critic based PPO algorithm to train the attacker’s policy by

interacting with the environment (each environment is associated with a configuration,

i.e., defensive plan). The RL agent does not possess any prior knowledge of the

environment. Instead of training the RL agent against a single environment, we train

the agent against multiple parallel environments. Each environment is initialized

with the attacker’s initial state (defensive plan is converted to obtain attacker’s initial

state). The following process is executed in all environments simultaneously. At each

timestep t of an episode, the RL agent receives state st. The trained actor network

issues an action at to be performed on the current state st and action at is sent to

the environment. The environment performs action at on state st and reaches a new
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state st+1 (following the transition function), and receives a reward rt+1 (following

the reward function). The process repeats until we reach the base state, i.e., the

attacker reaches DA or gets detected. In this manner, we obtain a sequence of states,

actions, and rewards that terminates at the base state. The designed policy intends

to maximize the total reward received during an episode. The final reward is the

attacker’s success rate. This way, the attacker designs RL based policy to maximize

their achievable reward (success rate).

4.3.3 Defender Policy: Critic Network Assisted Evolutionary

Diversity Optimization

The defender’s goal is to block k block-worthy edges to minimize the attacker’s chances

of successfully reaching the DA. We propose a Critic network assisted Evolution-

ary Diversity Optimization (C-EDO) based defensive policy that computes high

quality and diverse environmental configurations (defensive plan). We aim to identify

the valuable environments, i.e., the environment configurations that correspond to

potentially good defense. Our main idea is to let the RL agent play against the

environment configuration and if, after training for some time, the configuration proves

to be unfavourable for the defender (i.e., the attacker has a high success rate against

the configuration), we discard this environment configuration. We do not waste our

computational effort on this environment and allocate our limited computational re-

sources to other challenging environments. The high-quality and diverse characteristics

of environments enhance the accuracy of modelling the attacker. The trained RL critic

network serves as a fitness function for the defender’s C-EDO. For every environmental

configuration, the fitness function is used to evaluate that environment, i.e., calculate

the attacker’s success chances against that configuration (defensive plan). The defender

only blocks block-worthy edges to generate environment configuration. The defender’s

environment configuration/defensive plan can be represented as:

Environment configuration = < N,B, . . . , B,N,B >, (4.1)
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Algorithm 4.1 Critic network assisted Evolutionary Diversity Optimization based
Defender’s Policy
1: Initialise population P with µ environment configurations
2: Select individual p′ uniformly at random from P and create an offspring p′new by

mutation or crossover
3: If (OPT − 0.1) ≤ fitness(p′new) ≤ (OPT + 0.1), add p′new to P
4: If |P | = µ+ 1, remove individual r from P that contributes least to diversity, i.e.,

minimum SortedDiver(C(bw)\pr)
5: Repeat steps 2 to 4 till the termination condition is met

where ‘B’ denotes the blocked edges and ‘N’ denotes the non-blocked edges. Notably,

length of the configuration (defensive plan) is equal to the number of block-worthy

edges in AD graph.

Algorithm 4.1 outlines the defender’s policy. The process starts by generating arbitrary

population P of µ configurations as shown in Equation 4.1. In every configuration, the

total number of Bs is k (defender’s budget). To create new offspring (environmental

configuration), we perform mutation or crossover operation, each with 0.5 probability

on the randomly selected configuration p′ from the population P . We randomly select

a variable x from a Poisson distribution with mean value of 1. For Mutation, we select

an individual p′ randomly from P and flip x Bs to Ns and x Ns to Bs. Algorithm

4.2 presents the mutation operator for C-EDO. For Crossover, we randomly select

two individual p′ and p′′ from P and look for x indices such that p′ has N and p′′ has

B on those indices. Now, for these indices, we change Ns to Bs in p′ and Bs to Ns in

p′′. Similarly, we look for x indices where p′ has B and p′′ has N on those indices and

change Bs to Ns in p′ and Ns to Bs in p′′. The mutation and crossover operation

make sure that exactly k edges are blocked in the environmental configuration. We

add the newly created offspring to the population only if its fitness score lies within the

range of (OPT ± 0.1); otherwise, the offspring is rejected even though it is beneficial

for diversity. If the new offspring is added to the population, we aim to maximize the

blocked edge diversity and remove the individual that contributes least to the diversity.

Algorithm 4.3 presents the crossover operator for C-EDO.
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Algorithm 4.2 Mutation operator for C-EDO
Input: Population P , bits to mutate x
1: p′ ← RandomSelect(P )
2: p′′ ←Flip x Bs to Ns and x Ns to Bs in p′

3: return p′′

Algorithm 4.3 Crossover operator for C-EDO
Input: Population P
1: p′, p′′ ← RandomSelect(P )
2: for i = 1, ..., len(p′) do
3: if (p′[i] == 0 ∧ p′′[i] == 1) then
4: C.append(i)
5: end if
6: end for
7: C ′ = Randomly select x bits from C
8: for all i ∈ C ′ do
9: set p′[i] = 1 and p′′[i] = 0

10: end for
11: for i = 1, ..., len(p′) do
12: if (p′[i] == 1 ∧ p′′[i] == 0) then
13: D.append(i)
14: end if
15: end for
16: D′ = Randomly select x bits from D
17: for all i ∈ D′ do
18: set p′[i] = 0 and p′′[i] = 1
19: end for
20: return p′

Maximizing blocked edges diversity. We define the diversity measure as “all block-

worthy edges are equally blocked ”. Our proposed diversity measure aims to maximize

the diversity of blocked edges in the environment configurations. It calculates how

often each block-worthy edge is blocked in the configuration population, with the aim

of making this frequency equal. When a new offspring is created using mutation or

crossover, the offspring is added to the population only if its fitness score is close to

the best fitness score and rejects the individual that contributes least to the diversity.

Let us assume there are µ configurations (we call these configurations as individuals)

in P . Each individual pi can be described as:

pi =
(
(B/N, bw1), (B/N, bw2), ..., (B/N, bw|BW |)

)
,
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where B/N denotes the status of block-worthy edge; ‘B’ indicates blocked, ‘N’ indicates

non-blocked, and i ∈ {1, ..., µ}. We then compute the block-worthy edge count vector

C(bw), which is defined as “for each block-worthy edge bwj, j ∈ {1, ..., |BW |}, the

number of individuals who have blocked bwj edge”.

C(bw) = (c(bw1), c(bw2), ..., c(bw|BW |)),

where c(bw1) denotes the total individuals out of µ who have blocked bw1 edge. For

each individual pi, we then determine the vector Diver(C(bw)\pi), which computes

the diversity of the population without individual pi as:

Diver(C(bw)\pi) = C(bw)− pi.

Our goal is to maximize the blocked edge diversity; therefore, we calculate SortedDiver(C(bw)\pi)

as:

SortedDiver(C(bw)\pi) = sort
(
Diver(C(bw)\pi)

)
.

To maximize the diversity of blocked edges, our goal is to minimize the SortedDiver(C(bw)\pi)

in lexicographic order where sorting is carried out in descending order. The individual

l with minimum SortedDiver(C(bw)\pl) is the one, removal of which maximizes the

diversity. Therefore, the individual l is removed from the population, if its removal

maximizes the diversity and its fitness score is not close to the best. In special case,

when the newly created offspring has the best fitness score, we add it to P (even though

it is worst in terms of diversity) and the individual with the lowest fitness score is

discarded. Using this process, the defender creates diverse environment configurations.

Figure 4.1 presents an example of maximizing the blocked edge diversity in population.
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Figure 4.1: Example of maximizing blocked edge diversity.

4.3.4 Attacker-Defender Overall Approach

The defender employs C-EDO to generate high-quality and diverse environment

configurations, each containing a defensive plan worth learning for the attacker policy.

The attacker uses an actor-critic based RL algorithm to train their policy against the

defender’s environment configurations. The attacker’s trained RL critic network serves

as a fitness function for the defender C-EDO. The attacker first converts the defensive

plans in environment configurations (Equation 4.1) to the attacker’s initial state3

(Equation 3.1)). The RL agent then interacts and learns from the environments in

parallel by issuing actions according to the trained policy. The environments perform

the action and return a new state and reward. The quality of the trained policy

is determined based on the total reward collected by the agent during an episode.

Initially, the policy is not trained, and the action suggested might result in low rewards,

but with training, it results in high rewards (attacker’s success rate). In this way, the

RL agent trains the policy to maximize the reward.

Besides, our defensive policy is based on the idea of “replicating the environment

configurations that perform well for the defender and diminishing the ones that do

not”. The defender process continuously monitors the RL training process and, after

every regular interval, uses the trained critic network to evaluate the current set

of environments. The defender discards those environments that are good for the

3In attacker’s state, the status of NSPs corresponding to the blocked block-worthy edges in the
defender’s environment configuration is changed from ‘?’ to ‘F’ to obtain attacker’s initial state.
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Figure 4.2: Proposed attacker-defender approach.

attacker and replaces them with better ones. This way, at the beginning of every

episode, the RL agent checks if the defensive plan configuration corresponding to each

environment is changed or not. If changed, the attacker initializes the environment

with the new defense configuration and starts training the agent against it. In this

manner, the attacker and defender play against in parallel, where the attacker’s RL

process continuously learns, and the defender process evaluates the current environment

configurations and generates better ones. C-EDO’s diversity characteristic helps RL not

get stuck in the local optimum. The RL agent experiences differences in environmental

configurations only in the early stages, but the later stages tend to be similar across

environments. We took advantage of this similarity and trained the agent on multiple

environments in parallel, due to which our agent gained shared experience, resulting

in faster convergence and enhanced performance. Overall, the trained attacker’s RL

policy improves as the defender generates better environmental configurations using

C-EDO. The defender’s policy generates better environments as the attacker’s critic

network is trained. This way, these two processes assist each other to perform better.

Figure 4.2 illustrates our overall proposed approach.

4.4 Experimental Results

We executed experiments on a high-performance cluster server with Intel Gold

6148/6248 CPUs, utilizing 1 CPU and 20 cores for each trial. We used OpenAI

Gym [27] to implement the RL environments and trained the RL model using the
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PPO algorithm from the Tianshou library [150]. Success rate/Chances of success

indicates the attacker’s probability of reaching the DA without getting detected when

the defender has blocked certain edges.

4.4.1 Dataset

Real-world AD graphs are highly sensitive; therefore, we used BloodHound team’s

synthetic graph generator DBCreator to generate synthetic AD graphs. We generate

AD graphs of four sizes, i.e., R500, R1000, R2000 and R4000, where 500, 1000, 2000

and 4000 indicate the number of computers in the AD graph. R500 AD graph contains

1493 nodes and 3456 edges; R1000 AD graph contains 2996 nodes and 8814 edges;

R2000 AD graph contains 5997 nodes and 18795 edges; R4000 AD graph contains

12001 nodes and 45780 edges. Our experiments consider only 3 specific kinds of edges,

by default present in BloodHound: HasSession, MemberOf and AdminTo. To

set the attacker’s starting nodes, we first find 40 faraway nodes from DA and then

arbitrarily set 20 nodes from them as the starting nodes.

Each edge e is blockable with a probability = Min #hops between e and DA
Max #hops between any e and DA .

This way, the edges farthest from the DA, i.e., less significant edges, are more likely to

be blocked. It is challenging to perform computations on a large AD graph; therefore,

we pre-process it to obtain a smaller graph. Pre-processing includes merging all DA

into 1 DA, removing nodes and edges irrelevant for the attacker (outgoing edges from

DA, all incoming edges to the entry nodes and the nodes without any incoming edges).

We also consider an NSP (Definition 3.1) as one edge. Furthermore, to investigate

the relationship between the failure rate pf(e) and detection rate pd(e) of an edge e

on attacker’s chances of success, we use three different distributions: Independent

distribution (I), Positive correlation (P), and Negative correlation (N). In independent
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distribution, we set the values of pd(e) and pf(e) as:

pd(e), pf(e) = Independent uniform (0, 0.2).

In positive correlation, we set the values of pd(e) and pf(e) as:

pd(e), pf(e) = N (µ,Σ),

where

µ = [0.1, 0.1] and Σ = [[0.052, 0.5× 0.052], [0.5× 0.052, 0.052]].

Here, N represents the multivariate normal distribution, µ represents the mean, and

Σ represents the covariance matrix.

In negative correlation, we set the values of pd(e) and pf(e) as:

pd(e), pf(e) = N (µ,Σ),

where

µ = [0.1, 0.1] and Σ = [[0.052,−0.5× 0.052], [−0.5× 0.052, 0.052]].

4.4.2 Training Parameters

Reinforcement Learning: We used a simple multi-layer perceptron neural network

to implement the actor and critic network. The hidden layer size is 128 for R500 and

R1000 AD graphs, and 256 for R2000 and R4000 AD graphs. The parameters are

trained using adam optimizer, learning rate of 1e−4 and batch size of 800 states. For

PPO-specific hyper-parameters, we used the standard hyper-parameters as specified

in the original paper [131]. We created 20 environments. For experimental setup 1, we

parallelly train the RL policy for a total of 700 epochs (1200 epochs for R2000 and

R4000 AD graph) on 20 environments. After every 20 training epochs, the defender
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Table 4.1: Summary of hyper-parameters configurations.

Hyper-parameter Value
Buffer size 30,000
Learning rate 1e−4

Gamma 0.99
Step per epoch 80,000
Step per collect 1,000
Repeat per collect 10
Number of environment configurations 20
Batch size 800
Defender’s budget 5
Population size 20
Number of EC iterations 20000
Mutation, Crossover probability 0.5
Absolute difference 0.1

evaluates and resets the environments. When the terminating condition is met (number

of epochs), the defender chooses the defensive plan with the lowest attacker success

rate as their best environment configuration. For experimental setup 2 and 3, we train

the RL policy for 150 epochs on 20 environments parallelly. The trained attacker’s

policy is then simulated on the best environment configuration for 5000 episodes, and

the average reward over 5000 episodes is the attacker’s success rate. Notably, we

intensively train the RL based attacker’s policy to obtain a good attacking strategy,

as the effectiveness of defensive plans depends on the attacker’s model accuracy.

Critic network assisted Evolutionary Diversity Optimization: The defender

can only block 5 edges. In 20000 iterations, defender creates a population of 20

environment configurations (defense). Table 4.1 presents the summary of hyper-

parameters configurations.

4.4.3 Experimental Setup 1

In this experimental setup, we determine the effectiveness of our overall proposed

approach.
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Table 4.2: Comparison of attacker’s chances of success under various attacker-defender
policies (smaller number represents better performance). Results show that the proposed

C-EDO defensive policy leads to the best defense.

Chances of success Time (hour)

Graph Policy I P N Avg. I P N
RL+C-EDO (Proposed) 40.16% 41.36% 41.51% 41.01% 43.82 44.73 47.27

R1000 RL+EC 41.69% 48.45% 42.89% 44.34% 44.43 43.88 48.43
RL+Greedy 56.45% 47.86% 47.88% 50.73% 43.32 44.95 47.38
RL+C-EDO (Proposed) 25.09% 32.45% 30.44% 29.33% 112.74 118.58 119.53

R2000 RL+EC 28.13% 35.51% 37.28% 33.64% 114.22 112.57 118.51
RL+Greedy 33.43% 34.30% 40.06% 35.93% 113.84 116.43 113.76
RL+C-EDO (Proposed) 22.02% 17.29% 21.81% 20.37% 127.54 121.11 137.73

R4000 RL+EC 22.78% 21.87% 24.71% 23.12% 132.55 120.67 135.31
RL+Greedy 25.16% 24.18% 22.34% 23.89% 125.61 120.73 127.29

Baseline

We combine the RL based attacker’s policy with various defender’s policies to compare

the effectiveness of our proposed defensive policy.

• RL+C-EDO (proposed): In this approach, RL is utilized as attacker’s strategy,

whereas C-EDO is used as defender’s policy. In C-EDO, the defender rejects those

environment configurations that contribute least to diversity.

• RL+EC : In RL+EC approach, RL is utilized as attacker’s policy, and Evolutionary

Computation (EC) is used as defender’s policy. In EC, the configurations with the

lowest fitness score are discarded.

• RL+Greedy : In RL+Greedy approach, RL is utilized as attacker’s strategy. The

defender uses a greedy technique to generate environment configurations. The

defender greedily blocks one edge that minimizes attacker’s success rate. This way,

the defender iteratively discovers k edges to be blocked.

Results

We perform experiments on R1000, R2000 and R4000 AD graphs. We first train the RL

based attacker’s policy on the environment configurations (defensive plan) generated

by the defender’s policies, i.e., C-EDO, EC and Greedy. We then test the effectiveness
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of the attacker’s policy against the defender’s best environmental configurations. We

report the average reward (success rate) by simulating the attacker’s strategy on the

best environment for 5000 episodes. For each AD graph, we perform experiments

on 5 seeds from 0 to 4, and report the average success rate over 5 seeds. Table 4.2

reports the results obtained for R1000, R2000 and R4000 AD graph. For R1000 AD

graphs, results from the table show that under independent distribution, the attacker’s

chances of success under C-EDO based defensive policy is 40.16%. In contrast, the

attacker’s chances of success increase to 41.69% and 56.45% under EC based and

greedy defense, respectively. For R2000 AD graphs, our results show that under

independent distribution, the attacker chances of success are minimum, i.e., 25.09%

when the defender uses C-EDO based policy; the success rate increases to 28.13%

and 33.43% under EC based defense and Greedy defense, respectively. Our proposed

approach is scalable to R4000 AD graph. The results on R4000 AD graphs show that

under a positive correlation, the attacker success rate is minimum, i.e., 17.29% under

C-EDO based defence; however, the success rate increases to 21.87% and 24.18% under

EC based and Greedy defense, respectively. Overall, our results demonstrate that for

all three AD graphs, i.e., R1000, R2000 and R4000, on average C-EDO based defence

is the best defense where the attacker success rate is minimum. Also, EC based defense

outperforms Greedy defense. Notably, our proposed RL+C-EDO approach is scalable

to R4000 graphs.

4.4.4 Experimental Setup 2

In this experimental setup, we determine the effectiveness of our proposed RL based

attacker’s policy.

Baseline

We compare our proposed RL based attacker’s strategy with our previously proposed

Neural Network based Dynamic Program (NNDP) attacker policy [71]. In NNDP

approach, we trained neural network to address the attacker’s problem.
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Table 4.3: Comparison of attacker’s chances of success under various attacker’s policies
(larger number represents better performance).

Graph Policy I P N Avg.
R500 RL (Proposed) 88.01% 86.58% 89.37% 87.98%

NNDP 87.57% 86.08% 89.28% 87.64%
R1000 RL (Proposed) 54.99% 48.21%∗ 52.69% 51.96%

NNDP 53.52% 48.32% 52.15% 51.33%
R2000 RL (Proposed) 45.28%∗ 56.41% 42.43%∗ 48.04%

NNDP 45.11% 56.29% 42.39% 47.93%

Results

Our baseline NNDP approach is scalable to R2000 graph; therefore, we perform

experiments on R500, R1000 and R2000 AD graphs. We randomly generate 10

environmental configurations for each AD graph. We first train NNDP based attacker’s

strategy on 10 environments for 2000 epochs and perform Monte Carlo simulations

for 5000 runs to compute the attacker’s success rate on each environment. We then

train our proposed RL based attacker’s policy on the same set of 10 environments

for 150 epochs and then evaluate the trained policy for 5000 episodes to compute

attacker’s chances of success. We reported attacker’s average chances of success over

10 environments in Table 4.3. For a given environmental configuration, the attacker’s

policy that results in a higher success rate indicates that the corresponding policy is

able to approximate the attacker’s problem more accurately than others. We opted for

a higher number of epochs in NNDP training because RL training is time-consuming

per epoch, whereas NNDP training is much faster. This allowed us to balance the

overall training time between the two models.

Table 4.3 shows that for R500 graph, the attacker average success rate is 87.98% under

the RL policy, which is slightly higher than NNDP based policy. For the R1000 graph,

attacker’s average chance of success is 51.96%, which is again higher than the NNDP

policy. Our results show that the under our proposed RL based strategy, the attacker

success rate is higher compared to NNDP based strategy, implying that RL policy is

more effective at countering defense than NNDP policy.
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Table 4.4: Comparison of attacker’s chances of success on best defense from various
attacker-defender policies (smaller number represents better performance).

Graph Policy I P N Avg.
R1000 Best defense from RL+C-EDO (Proposed) 40.16% 41.36% 41.51% 41.01%

Best defense from NNDP-EDO 42.02% 44.76% 41.53%∗ 42.77%
R2000 Best defense from RL+C-EDO (Proposed) 25.09% 32.45% 30.44% 29.32%

Best defense from NNDP-EDO 30.31% 30.17%∗ 30.85% 30.44%

4.4.5 Experimental Setup 3

In this experimental setup, we determine the effectiveness of our proposed C-EDO

based defense.

Baseline

We compare our proposed approach’s final environmental configuration (defensive

plan) with the final configuration from NNDP-EDO approach.

Results

We run RL+C-EDO and NNDP-EDO approaches on 5 seeds from 0 to 4 to obtain

the defender’s best environment. We train the RL attacker policy for 150 epochs on

the best environmental configurations from both approaches (on 5 seeds). We then

evaluate the trained policy for 5000 episodes to compute the attacker success rate.

We reported the results in Table 4.4. An environmental configuration against which

the RL based attacker policy is able to achieve a lower success rate is considered as

the best environmental configuration. Results in Table 4.4 show that the average

attacker success rate for R1000 AD graph is 42.77% on the best configuration from

NNDP-EDO. However, the attacker success rate is 41.01% on the best configuration

from RL+C-EDO, which is 1.76% less than the former approach. Similarly, for R2000

AD graph, the attacker success rate is minimal under RL+C-EDO based defensive

* indicates that with our general parameter settings, RL policy results were slightly bad than
baseline. Therefore, we train the RL policy for 300 epochs instead of 150 epochs. Given enough time,
the RL policy outperforms the baseline.
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plan. The results demonstrate that our approach RL+C-EDO is able to generate

better environmental configurations and minimizes the attacker’s success rate.

4.5 Chapter Summary

We studied a Stackelberg game model in a configurable environment, where the

attacker’s goal is to devise a strategy to maximize their achievable rewards. The

defender seeks to identify the environment configuration where the attacker’s attainable

reward is minimum. We proposed a reinforcement learning based approach to address

the attacker problem and critic network assisted evolutionary diversity optimization

based policy to address the defender problem. We trained the attacker policy against

numerous environments simultaneously. We leverage the trained RL critic network to

evaluate the fitness of the environment configurations.

Overall, we proposed two approaches for defending AD graphs; first is neural network

based dynamic program and evolutionary diversity optimization approach in Chapter

3 and second is reinforcement learning and evolutionary diversity optimization based

approach in Chapter 4. Our experimental results showed that the proposed reinforce-

ment learning and evolutionary diversity optimization based approach is more effective

and scalable than our proposed neural network based dynamic program approach.
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Chapter 5

Effective Graph-Neural-Network based

Models for Discovering Structural Hole

Spanners in Large-Scale and Diverse

Networks

Related publication:

This chapter is based on our paper titled “Effective Graph-Neural-Network based Models

for Discovering Structural Hole Spanners in Large-Scale and Diverse Networks” [69].

Structural hole spanners are the bottleneck nodes essential for information diffusion in

the network. Although numerous solutions have been developed to discover SHS nodes

in the network; however, these solutions require high run time on large-scale networks.

Another limitation is discovering SHSs across different networks, for which conventional

approaches fail to work. To address these limitations, this chapter aims to design

effective and efficient solutions for discovering SHS nodes in large-scale and diverse

networks. We transform the problem of discovering SHSs into a learning problem

and propose an efficient GraphSHS model that exploits both the network structure
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and node features to discover SHS nodes in large-scale networks, endeavouring to

lessen the computational cost while maintaining high accuracy. To effectively discover

SHSs across diverse networks, we propose another model, Meta-GraphSHS, based on

meta-learning that learns generalizable knowledge from diverse training graphs and

utilizes the learned knowledge to create a customized model to identify SHSs in each

new graph. We evaluate the performance of our proposed models through extensive

experimentation on synthetic and real-world datasets, and our results demonstrate

that the proposed models are highly effective and efficient.

5.1 Introduction

In recent years, various large-scale networks have emerged, such as biological, collabo-

ration and social networks. These networks exhibit a community structure where the

nodes within the community share similar characteristics, behaviour, and opinions [36].

The absence of connection between different communities in a network is referred to as

Structural Holes (SH) [33], and the presence of SHs in the network restricts the flow

of novel information [125] between communities. The individuals who bridge multiple

communities obtain considerable benefits in the network over others who belong to

one community only [107], and these individuals are known as Structural Hole

Spanners (SHSs). SHSs have various real-world applications, such as information

diffusion, identifying central nodes and discovering communities [105, 7, 169, 166, 179,

4]. A number of centrality measures such as Closeness Centrality [124], Constraint

[29], Betweenness Centrality (BC) [61] exist in the literature to define SHSs. SHS

nodes lie on the maximum number of shortest paths between the communities [124];

removal of the SHS nodes will disconnect multiple communities and block information

flow among the nodes of the communities [107]. Based on this, we have two implica-

tions about the properties of SHSs; 1) SHSs bridge multiple communities; 2) SHSs

control information diffusion in the network. Figure 5.1 illustrates the comparison of

various centrality measures in a network. The figure shows that node i holds a vital
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Figure 5.1: Comparison of various centrality measures.

position in the network, and the shortest path between the nodes of three communities

passing-through node i, and removing node i will block the information propagation

between the nodes of these communities. In contrast, the impact of the removal of

other nodes is comparatively less significant. Since the removal of a node with the

highest betweenness centrality disconnects the maximum number of communities and

blocks information propagation between the nodes of the communities, therefore, we

adopt the betweenness centrality measure for defining SHSs in the network. Goyal et

al. [73] defined the node that lies on a large number of shortest paths as SHS, which is

similar to the betweenness centrality. BC quantifies a node’s control on the information

flow in the network and discovers those nodes that act as a bridge between different

communities. Brandes algorithm [26] is the best-known method for calculating the BC

scores of the nodes and has a run time of O(nm).

Challenges: Several studies [107, 81, 153, 102] have been conducted for discovering

SHSs in the network. Lou et al. [107] developed an algorithm for finding SHSs

by assuming that community information is given in advance. However, discovering

communities in a large network is a challenging task. He et al. [81] designed a harmonic

modularity solution that discovers both SHSs and communities in the network. The

authors assume that every node belongs to one community only, but a node may

belong to many communities in the real world. Although there are numerous solutions
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that address the SHSs identification problem; however, there are still challenges that

need to be addressed, such as:

1. Discovering SHS nodes efficiently in large scale networks: For small networks,

we can discover SHSs by computing the BC score of the nodes using Brandes

algorithm [26]. However, real-world networks are much larger, with millions of

nodes and edges, making it challenging to perform tasks like SHS or community

detection efficiently. The Brandes algorithm’s time complexity of O(nm) becomes

a significant bottleneck in such cases, where we need quick solutions for very

large networks. Therefore, we need efficient solutions for discovering SHSs in

large networks.

2. Discovering SHS nodes effectively in diverse networks: For discovering SHSs in

different types of network, traditional learning techniques fail to work because

their one-model-fit-all approach neglect the inter-graph differences, especially

when the graphs belong to diverse domains. Besides, re-training the model again

on different types of large networks is a time-consuming process. Therefore, it

is crucial to have a model which is aware of differences across the graphs and

customizes accordingly, avoiding the requirement of re-training the model on

every type of network individually.

To address the challenges mentioned above and inspired by the recent advancements

of Graph Neural Network (GNN), we propose message-passing GNN based models

to discover SHS nodes. GNNs [139, 94] are Neural Network architectures designed

for graph structured data. GNNs are used as graph representation learning models

[89] and learn node representations by aggregating feature information from the local

graph neighbourhood [49]. GNNs have shown exceptional results on various graph

mining problems [83, 88]; therefore, we investigate the power of GNNs for solving SHS

identification problem. In this chapter, we aim to discover SHS nodes in large-scale

networks, endeavouring to reduce the computational cost while maintaining high

accuracy, and in different types of networks effectively without the need of re-training
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the model on individual network datasets to adapt to cross-network property changes.

We transform the SHS discovery problem into a learning problem and propose two GNN

based models, GraphSHS and Meta-GraphSHS. In order to address the first challenge

mentioned above, we propose GraphSHS (Graph neural network for Structural

Hole Spanners), a graph neural network-based model for efficiently discovering SHSs

in large scale networks. GraphSHS exploits both the network structure and features of

nodes to learn the low-dimensional node embeddings. In addition, unlike traditional

Deep Learning approaches that assume a transductive setting, GraphSHS assumes

an inductive setting. GraphSHS is generalizable to new nodes of the same graph or

even to the new graphs from the same network domain. Our experimental results

demonstrate that the idea of designing graph neural network based model to discover

SHSs in large-scale networks provides a significant run time advantage over other

algorithms. Apart from the run time efficiency, GraphSHS achieves competitive or

better accuracy in most cases than the baseline algorithms. To address the second

challenge, we propose Meta-GraphSHS (Meta-learning based Graph neural

network for Structural Hole Spanners) to effectively discover SHSs across diverse

networks. In the case of diverse graphs, there exist inter-graph differences due to which

GraphSHS can not effectively discover SHSs across diverse networks. Therefore, instead

of directly learning the model, we learn the generalizable knowledge (parameters) from

diverse training graphs and utilize the learned knowledge to create a customized model

by fine-tuning the parameters according to each new graph1. Meta-GraphSHS uses

meta-learning [146] to learn generalizable parameters from the training graphs that are

different from the testing graphs we are considering, and the goal is to reach an “almost

trained” model that can be quickly adapted to create a customized model for the new

graph under consideration within a few gradient steps. The goal of Meta-GraphSHS

is to observe many graphs from different domains and use the learned knowledge to

identify SHS on any new graphs, enabling quick adaptation and higher accuracy. Once

1The generalizable knowledge act as a good initialization point (good set of parameters) for the
new customized model. The generalized parameters are fine-tuned using the labelled nodes of new
unseen graphs.
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our proposed model is trained, it can be applied repeatedly for future arriving data;

therefore, we consider primarily the run time of applying the model and regard the

training process is done offline, as the common practice in machine learning literature.

Our experimental results show that both the proposed graph neural network models

GraphSHS and Meta-GraphSHS are highly efficient and effective in discovering SHSs in

large scale networks and diverse networks, respectively. We evaluate the performance

of GraphSHS on synthetic datasets, and the results show that GraphSHS is at least

58 times faster than baselines and achieves higher or competitive accuracy than

baselines. In addition, GraphSHS is at least 167.1 times faster than the baselines on

real-world networks, illustrating the efficiency advantage of the proposed GraphSHS

model on large-scale networks. We evaluate the performance of Meta-GraphSHS on

a diverse set of synthetic and real-world graphs, and the results show that Meta-

GraphSHS identifies SHSs with high accuracy, i.e., 96.2% on synthetic graphs and

outperforms GraphSHS by 2.7% accuracy, demonstrating the importance of designing

separate model for discovering SHSs in diverse networks. Additionally, we also conduct

parameter sensitivity analysis to analyze the impact of parameters on the performance

of proposed models. In order to determine the applicability of the proposed model

GraphSHS in the dynamic network, we perform experiments on synthetic graphs and

found that our model is at least 89.8 times faster than the existing baseline.

Contributions: In this chapter, we make the following contributions.

• GraphSHS model. We propose an efficient graph neural network-based model

GraphSHS that discovers SHSs in large scale networks and achieves considerable

efficiency advantage while maintaining high accuracy compared to existing

baselines.

• Meta-GraphSHS model. We propose another model Meta-GraphSHS that

combines meta-learning with graph neural network to discover SHS nodes across

diverse networks effectively. This model learns a generalized knowledge from

diverse graphs that can be utilized to create a customized inductive model for
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each new graph, in turn avoiding the requirement of repeated model training on

every type of diverse graph.

• Inductive setting. We use an inductive setting, where our GraphSHS model is

generalizable to new nodes of the same graph or even to the new graphs from the

same network. In addition, the proposed Meta-GraphSHS model is generalizable

to unseen graphs from diverse networks.

• Theoretical analysis. We theoretically show that our message-passing archi-

tecture of GraphSHS is sufficient to solve the SHSs identification problem under

sufficient conditions on its node attributes, expressiveness of layer, architecture’s

depth and width. In addition, we show that the depth of the model should be at

least Ω(
√
n/ log n) to accurately solve the SHSs identification problem.

• Extensive experiments. We conduct extensive experiments on synthetic

networks and real-world networks of varying scales. The results show that the

proposed model GraphSHS is at least 167.1 times faster than the baselines on real-

world networks and at least 58 times faster on synthetic networks. In addition,

Meta-GraphSHS discovers SHSs across diverse networks with an accuracy of

96.2%.

Chapter organization: Section 5.2 discusses the preliminaries and background of

the problem. Section 5.3 presents the problem description. Section 5.4 discusses the

proposed GraphSHS model that discovers SHSs in large-scale networks and Section 5.5

describes the Meta-GraphSHS model that discovers SHSs in diverse networks. Section

5.6 reports and discusses the experimental results. Finally, Section 5.7 concludes the

chapter.

5.2 Preliminaries and Background

This section discusses the preliminaries and background of the problem.
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Notations. A network can be represented as an undirected graph G = (V,E), where

V is the set of nodes (users), and E is the set of edges (the relationship between

users). Let n = |V | and m = |E|. We use x⃗(i) to represent the feature vector of node

i and h(l)(i) to denote the embedding of node i at the lth layer of the model, where

l = (1, 2, ..., L). The neighbors of node i are represented by N(i), and the degree of

node i is represented by d(i).

Graph Neural Networks. Graph Neural Networks (GNNs) are designed by extending

Deep Learning approaches for the graph-structured data and are used in diverse fields,

including computer vision, graph problems etc. GNNs are used to learn the graph data

representations. Motivated by the success of Convolution Neural Network, various

Graph Neural Network architectures are designed. One such architecture is Graph

Convolutional Network [94], which uses an aggregation mechanism similar to the mean

pooling. Graph Attention Network [145] is another Graph Neural Network architecture

that uses an attention mechanism for aggregating features from the neighbors. Existing

GNN architectures mostly follow message-passing mechanism. These GNNs execute

graph convolution by aggregating features from neighbours, and stacking many layers

of GNN to capture far-off node dependencies.

Figure 5.2: Network embedding: embedding of node i in Rw space.

Network Embedding. Network embedding [42] is a mechanism that maps the nodes

of the network to a low-dimensional vector representation. It aims to encode the

nodes in such a way that the resemblance in the embedding space approximates the

resemblance in the network [3]. These embeddings can then be utilized for various

graph problems such as classification, regression etc. Figure 5.2 illustrates an example

of node embedding.
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Meta-Learning. Meta-Learning aims to learn efficiently and generalize the learned

knowledge to the new tasks. There are various meta-learning approaches such as black-

box methods [8], gradient-based methods [57] and non-parametric learning methods

[37]. Meta-Learning assumes that the prior learned knowledge is transferable among

the tasks. The model trained on the training tasks can be adjusted to the new task

using a small amount of labelled data or in the absence of any supervised knowledge.

Meta-learning significantly improves the performance of the tasks that suffers from

data deficiency problem. It learns the shared learning from the various tasks and

adapts this knowledge to the unseen tasks, speeding up the learning process on new

tasks.

5.3 Problem Description

In this section, we formally state the structural hole spanner problem for large-scale

networks and diverse networks.

Definition 5.1. Betweenness Centrality. The betweenness centrality BC(v) of a

node v ∈ V is defined as [61]:

BC(v) =
∑
s ̸=v ̸=t
v∈V

σst(v)

σst

, (5.1)

where σst denotes the total number of shortest paths from node s to t and σst(v)

denotes the number of shortest paths from node s to t that pass through node v. We

will use the term SHS score of a node and BC of a node interchangeably. We label k

nodes with the highest BC in the graph as Structural Hole Spanner nodes and the rest

as normal nodes.

In theory, the computation of Betweenness Centrality (discovering SHSs) is tractable as

polynomial-time solutions exist; however, in practice, the solutions are computationally

expensive. Currently, Brandes algorithm [26] is the best-known technique for calculating
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the BC of the nodes with a run time of O(nm). However, this run time is not practically

applicable, considering that even mid-size networks may have tens of thousands of

edges. Computing the exact BC for a large scale network is not practically possible

with traditional algorithms; consequently, we convert the SHS identification problem

into a learning problem and then solve the problem. We formally define both the

structural hole spanner discovering problems as follows:

Problem 1: Discover SHS nodes in large scale networks.

Given: Training graph Gtrain, features and labels2 of nodes in Gtrain, and test graph

Gtest.

Goal: Design an inductive model GraphSHS (by training the model on Gtrain) to

discover SHSs in new unseen large scale graph Gtest. GraphSHS aims to achieve a

considerable efficiency advantage while maintaining high accuracy.

Problem 2: Discover SHS nodes in diverse networks.

Given: A set of training graphs Gtrain = {G1, G2, ..., GM} from diverse domains,

features and labels of nodes in Gtrain and test graph Gtest in which the nodes are

partially labeled.

Goal: Design a model Meta-GraphSHS to discover SHS nodes across diverse networks

effectively by learning generalized knowledge from diverse training graphs Gtrain. The

generalized knowledge (parameters) is fine-tuned using labelled nodes from Gtest in

order to obtain updated parameters that can be used to discover SHSs in Gtest.

We address the above-discussed two problems by transforming them into learning

problems and proposing two message-passing GNN-based models. Once the models

are trained, the inductive setting of the models enables them to discover SHS nodes.

The identified k SHSs are the nodes with the highest SHS score (BC) in the network.

2Label of a node can either be SHS or normal.
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5.4 Proposed Model: GraphSHS - Discovering SHSs

in Large-Scale Networks

In this section, we discuss our proposed message-passing graph neural network-based

model GraphSHS that aims to discover SHS nodes in large scale networks. We first

discuss the network features that we extracted to characterize each node. We then

discuss the proposed model GraphSHS in detail. To discover SHSs, GraphSHS first

maps each node to an embedding vector (low dimensional node representation) using

the aggregation mechanism. GraphSHS then uses the embedding vector of each node

to determine the labels of the node. Figure 5.3 illustrates the overall architecture of

the proposed model GraphSHS. The network features, aggregation mechanism and

the training procedure of GraphSHS model are discussed below.

5.4.1 Network Features

Definition 5.2. r-ego network. The r-ego network of a node v ∈ V is the subgraph

induced from Nr(v) where Nr(v) = {u : distGuv ≤ r} is v′s r-hop neighbors and distGuv

denotes the distance between node u and v in graph G [121].

We use three network features; effective size, efficiency and degree computed from the

one-hop ego network of each node to characterize the node.

Effective Size. The effective size is a measure of non-redundant neighbors of a node

[29]. Effective size determines the extent to which neighbor j is redundant with the

other neighbors of node i.

Efficiency. The efficiency is the ratio of the effective size of ego network of the node

to its actual size [29].

Degree. The degree of a node is the number of connections it has with the other

nodes of the network.
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5.4.2 Aggregation Mechanism

Our proposed aggregation mechanism computes the low dimensional node embeddings

in two phases: 1) Neighborhood aggregation phase, where a node aggregates embed-

dings from its neighbors; 2) Combine function phase, where a node combines its own

embedding to the aggregated neighbors embeddings. The procedure for generating

embeddings of the nodes is presented in Algorithm 5.1.

Algorithm 5.1 Generating node embedding using GraphSHS
Input: Graph: G(V,E), Input features: x⃗(i), ∀i ∈ V , Depth: L, Weight matrices:

W (l), ∀l ∈ {1, .., L}, Non-linearity: σ
Output: Node embedding: z(i), ∀i ∈ V
1: h(0)(i)← x⃗(i), ∀i ∈ V
2: for l = 1 to L do
3: for i ∈ V do
4: Compute h(l)(N(i)) using Equation 5.2
5: Compute h(l)(i) using Equation 5.4
6: end for
7: end for
8: z(i) = h(L)(i)

Neighborhood Aggregation. For generating the node embeddings, GraphSHS first

performs neighborhood aggregation by capturing feature information (embeddings)

from the neighbors of the node. This process is similar to the message passing

mechanism of GNNs. Due to the distinctive properties exhibited by the SHS node (i.e.,

the SHS node act as a bridge, and its removal disconnects the network), we aggregate

embeddings from all one-hop neighbors of the node. We describe the neighborhood

aggregation as a weighted sum of embedding vectors and is given by:

h(l)(N(i)) =
∑

j∈N(i)

h(l−1)(j)

d(i)
, (5.2)

where h(l)(N(i)) denotes the embedding vectors aggregated from the neighbors N(i)

of node i at the lth layer. The aggregated embedding from the neighbors of node i is

used to update node i’s embeddings. During the aggregation process, we utilize the
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Figure 5.3: Architecture of proposed GraphSHS model.

degree d of the node as a weight. We use the features of the nodes (as discussed in

Section 5.4.1) to compute the initial embedding h(0) of the nodes. Let x⃗(i) represents

the feature vector of node i; GraphSHS initialize the initial embedding of node i as:

h(0)(i) = x⃗(i). (5.3)

Therefore, given a network structure and initial node features, neighborhood aggrega-

tion phase computes the embedding of each node by aggregating features from the

neighbors of the nodes.

Combine Function. In the neighborhood aggregation phase, we describe the rep-

resentation of a node in terms of its neighbors. Moreover, to retain the knowledge

of each node’s original features, we propose to use the combine function. Combine

function concatenates the aggregated embeddings of the neighbors from the current

layer with the self-embedding of the node from the previous layer and is given by:

h(l)(i) = σ

(
W (l)

(
h(l−1)(i) ∥ h(l)

(
N(i)

)))
, (5.4)

where h(l−1)(i) represents embedding of node i from layer (l − 1) and h(l)(N(i))

represents aggregated embedding of the neighbors of node i. W (l) is the trainable

parameters, ∥ denotes the concatenation operator, and σ represents the non-linearity

ReLU.
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High Order Propagation. GraphSHS stacks multiple layers (Neighborhood Ag-

gregation phase and Combine Function phase) to capture information from the l-hop

neighbors of a node. The output of layer (l − 1) acts as an input for layer l, whereas

the embeddings at layer 0 are initialized with the initial features of the nodes. Stacking

l layers will recursively formulate the embeddings h(l)(i) for node i at the end of lth

layer as:

z(i) = h(l)(i), ∀i ∈ V (5.5)

where z(i) denotes the final embedding of node i at the end of lth layer (l = 1, ..., L).

For the purpose of node classification, we pass the final embeddings z(i) of all the

nodes through the Softmax Layer. The softmax layer maps the embeddings of the

nodes to the probabilities of two classes, i.e., SHS and normal node. The model is then

supervised to learn to differentiate between SHS and normal nodes using the labelled

data available.

5.4.3 Model Training

In order to differentiate between SHSs and normal nodes, we train GraphSHS using

Binary Cross-Entropy Loss with the actual labels known for a set of nodes. The loss

function L is computed as:

L(θ) = −1

t

t∑
i=1

(
y(i) log ŷ(i) + (1− y(i)) log (1− ŷ(i))

)
, (5.6)

where y is the actual label of a node and ŷ is the label predicted by GraphSHS, t is

the number of nodes in the training data for which the labels are known, and θ are

the set of model parameters.

Theorem 5.1 (Loukas [108]). A simple message passing architecture of

GraphSHS is sufficient to solve the SHSs discovery problem if it satisfies

the following conditions: each node in the graph is distinctively identified;

functions (Neighborhood aggregation and Combine function) computed
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within each layer l are Turing-Complete; the architecture is deep enough,

and the width is unbounded.

Here, depth indicates the number of layers in the architecture and width is the number

of hidden units. Simple message passing graph neural networks are proven to be

universal if the four conditions mentioned above are satisfied [108]. Therefore, we

adopt a simple message passing graph neural network architecture to solve the SHSs

discovery problem, and our architecture satisfies these conditions. We believe that the

universal characteristic of graph neural networks enables our model to discover SHS

nodes with high accuracy. This argument is confirmed by our experimental results, as

reported in Section 5. Notably, we choose not to include the unique identifiers (node

ids) in our node features as SHSs are equivariant to node permutation. In other words,

we can interpret our graph neural network GraphSHS as a function that maps a graph

with n nodes to an output vector of size n, where the ith coordinate of the output

specifies whether node i is a SHS or not. Since any permutation on the graph nodes

would also permute the output exactly in the same way, and thus, what our model is

trying to learn is an equivariant function (by definition). Keriven et al. [91] proposed

a simple graph neural network architecture that does not require unique identifiers

and shows that the network is a universal approximator of equivariant functions. It

should be noted that the theoretical results of Keriven et al. [91] do not apply directly

to message-passing graph neural networks that are more often used in practice. We

do not have proof that unique identifiers are not necessary for our model, as we are

using message-passing graph neural networks. We do not include unique identifiers as

a design choice.

Theorem 5.2. To calculate the SHSs discovery problem (discovering high

betweenness centrality nodes), the depth of GraphSHS (with constant width)

should be at least Ω(
√
n/ log n).

Proof. Let G = (V,E) be an instance of shortest s-t path problem [108] in an undirected

graph with source node s, destination node t and |V | = n, as shown in Figure 5.4(a).
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Figure 5.4: G′ is derived from G.

The shortest s-t path problem aims to find the nodes that lie on the shortest path

from node s to t. We construct an instance of discovering high betweenness centrality

nodes (SHSs) problem in another undirected graph G′ from G, as illustrated in Figure

5.4(b). We add a set of nodes X = {x1, x2, ..., xq} which are connected to node

s via undirected edges {x1 −− s, x2 −− s, ..., xq −− s}. Similarly, we add another set

of nodes Y = {y1, y2, ..., yq} which are connected to node t via undirected edges

{y1 −− t, y2 −− t, ..., yq −− t}. Our goal is to discover high betweenness centrality nodes

(SHSs) in graph G′.

Let us assume that the value of q is cn, where c is a constant ≥ 3 . For computation,

we assume q = 3n; then, for every node that lies on the shortest s-t path, there are

9n2 shortest paths that go through these nodes. For the rest of the nodes that do not

lie on the shortest s-t path, the shortest paths in G′ that go through these nodes are:

1. The shortest paths between the nodes of the original graph G in G′. For this

case, there are at most n2 shortest paths passing through the nodes that do not

lie on the shortest s-t path in G′.

2. The shortest paths between the nodes of set X to the nodes of the original graph

G in G′. For this case, there are at most (3n×n), i.e., 3n2 shortest paths passing

through the nodes that do not lie on the shortest s-t path.

3. The shortest paths between the nodes of set Y to the nodes of the original graph

G in G′. There are at most (3n× n), i.e., 3n2 shortest paths passing through

the nodes that do not lie on the shortest s-t path.
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There are 9n2 shortest paths going through the nodes that lie on the shortest s-t path,

which is greater than the total number of shortest paths, i.e., at most (n2 + 3n2 + 3n2)

going through the nodes that do not lie on the shortest s-t path, i.e., (n2+3n2+3n2 ≤

9n2). According to the definition of betweenness centrality, a node would have a high

betweenness centrality if it appears on many shortest paths. Our analysis shows that

more number of shortest paths go through those nodes that lie on the shortest s-t

path; therefore, high betweenness centrality nodes must also lie on the shortest s-t

path. In this way, if we can find the high betweenness centrality nodes (SHSs) in the

graph, then we can solve the shortest s-t path problem. Corollary 4.3 of [108] already

showed that for approximating (to a constant factor) the shortest s-t path problem, a

message-passing graph neural network must have a depth that is at least Ω(
√
n/ log n)

assuming constant model width. Hence, this depth lower bound also applies to our

SHSs discovery problem.

5.4.4 Complexity Analysis

Training time. To train the GraphSHS model on a network of 5000 nodes, the

convergence time is around 15 minutes, which includes the time to compute the ground

truth labels and features of the nodes for the training graph. Notably, we train the

model only once and then utilize the trained model to predict the nodes’ labels for

any input graph.

Inference complexity. In the application step of GraphSHS, we apply the trained

GraphSHS model to a given network for discovering SHSs. To determine the labels of

the nodes, the model computes embeddings for each node. Algorithm 5.1 shows that

computing the nodes’ embedding takes O(LnN) time, where L is the depth (number

of layers) of the network, n is the number of nodes, and N is the average number of

node neighbors. In practice, adjacency matrix multiplication is used for Line 3-6 in

Algorithm 5.1, and if the graph is sparsely connected, then the complexity for Line 3-6

is O(m). Theoretically, we showed that the lower bound on depth L is Ω(
√
n/ log n);
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therefore, the theoretical lower-bound complexity for application step of GraphSHS is

O(m
√
n/ log n). On the other hand, we experimentally showed that the depth L of

the GraphSHS is a small constant (L = 4), and most of the real-world networks are

sparse; therefore, the practical time complexity for the application step of GraphSHS

turns out to be O(m), i.e., linear in the number of edges.

5.5 Proposed Model: Meta-GraphSHS - Discovering

SHSs in Diverse Networks

In this section, we discuss our proposed meta-learning based model Meta-GraphSHS

that aims to discover SHS nodes across diverse networks. The crucial challenge in this

task is to capture the inter-graph differences and customize the model according to the

new diverse graph (test graph). Meta-GraphSHS discovers SHSs in the new test graph

Gtest (called meta-testing graph) by training the model on a set of diverse training

graphs Gtrain = {G1, G2, ..., GM} (called meta-training graphs). The distribution over

graphs is considered as a distribution over tasks and we consider the training task

corresponding to each training graph in Gtrain as τ = {τ1, τ2, .., τM}. Similarly, τtest is

the task corresponding to test graph Gtest. We further refer to the training and testing

node set in all tasks τ as support set S and query set Q. Let Si represent the support

set, and Qi represent the query set for Gi, and fθ represent the model, where θ is a

set of model parameters.

Meta-GraphSHS addresses above mentioned challenge by first learning the general

parameters from diverse training graphs Gtrain and utilizing these parameters as a

good initialization point for the test graph Gtest. The learned general parameters are

fine-tuned using the small number of available labelled data of the test graph3 (support

set of τtest) and the obtained updated parameters are used to determine the labels of

unlabeled nodes in the test graph (query set of τtest). In this way, Meta-GraphSHS

3Fine-tune aims to precisely adjust the learned general model parameters in order to fit with the
test graph.
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Figure 5.5: Architecture of proposed Meta-GraphSHS model.

avoids the need for repeated model training on each type of different graph (which is

a time-consuming task) by designing a customized model that can be quickly adapted

to the test graph under consideration in a few gradient steps, given only a few labelled

nodes in the test graph. Our goal is to reach an “almost trained model” that quickly

adapts to the new graph. The performance of the Meta-GraphSHS is determined

via meta-testing on the testing task τtest, by fine-tuning the model on the support

set of τtest and evaluating on the query set of τtest. Meta-GraphSHS uses MAML

[57] for updating the gradients during training. The procedure for meta-training and

meta-testing are discussed below:

5.5.1 Meta Training

During training, we intend to learn a set of generalizable parameters that act as a

good initialization point for Meta-GraphSHS with the aim that the model rapidly

adapts to the new task (test graph Gtest) within a few gradient steps. For M learning

tasks {G1, G2, ..., GM}, we first adapt the model’s initial parameters to every learning

task individually. We use Lτi(θ) to represent the loss function for task τi. We utilize

the same procedure as that of GraphSHS to train the model on task τi and compute

the loss function for the same using Equation 5.6. After computing the loss, updated

model parameter θi’ is computed using gradient descent. We update the parameters
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Algorithm 5.2 Training procedure for Meta-GraphSHS
Input: Gtrain={G1, G2, ..., GM} and Gtest

Output: Parameters: θ
1: Initialize θ randomly
2: while not early-stop do
3: for Gi = G1, G2, ..., GM do
4: Split labelled nodes of Gi into Si and Qi

5: Evaluate ∇θLτi(θ) for Si

6: Compute parameter θ′i using Equation 5.7
7: end for
8: Update θ on {Q1, Q2, ..., QM} using Equation 5.9
9: end while

10: Fine-tune θ on Gtest using loss function

as follows:

θ′i = θ − α∇θLτi(θ), (5.7)

where α represents learning rate and θ becomes θ′i when adapting to the task τi. We

just describe 1 gradient step in Equation 5.7, considering many gradient steps as a

simple extension [57]. Since there are M learning tasks, M different variants of the

initial model are constructed (i.e., fθ′1 , ..., f theta′M
). We train the model parameters by

optimizing the performance of fθ′i on all tasks. Precisely, the meta-objective is given

by:

θ = argmin
θ

M∑
i=1

Lτi(θ
′
i). (5.8)

Notably, optimization is performed over θ, and the objective function is calculated

using the updated parameters theta′i. The model parameters are optimized in such a

way that only a few gradient steps are needed to adjust to the new task, maximizing

the model’s prediction performance on the new task. We use stochastic gradient

descent to perform optimization across tasks. The parameter θ is updated as below:

θ ← θ − γ∇θ

M∑
i=1

Lτi(θ
′
i), (5.9)
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where γ represents meta-learning rate. The learned general parameter is then trans-

ferred to the meta-testing phase. The training procedure for Meta-GraphSHS is

presented in Algorithm 5.2.

5.5.2 Meta Testing

The model in meta-testing phase is initialized with the learned parameters from

meta-training phase, due to which the model is already almost trained. We then

feed the support set Stest of test graph Gtest as input to the model and fine-tune the

learned model parameters precisely to fit with Gtest. Since the model is already almost

trained, it can be fine-tuned by just a few gradient steps. After fine-tuning, the model

performance is assessed on query set Qtest of test graph Gtest. Figure 5.5 illustrates the

overall architecture of the proposed model Meta-GraphSHS. The left side illustrates

the meta-training phase that outputs a generalized parameter θ′, which is transferred

to the meta-testing phase. Meta-testing phase utilizes θ′ as a good initialization point

and fine tune θ′ using labelled data from the test graph to obtain θtest, which can be

used to obtain labels of unlabeled nodes in the test graph.

5.6 Experimental Results

We discuss the performance of the proposed models GraphSHS and Meta-GraphSHS

by performing exhaustive experiments on widely used datasets. We first discuss the

experimental setup. We then report the performance of GraphSHS on various synthetic

and real-world datasets, followed by the performance of Meta-GraphSHS. Lastly, we

present the parameter sensitivity analysis and application improvement. In our results,

Top-5%, Top-10% and Top-20% indicate the percentage of nodes labelled as SHSs.
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5.6.1 Experimental Setup for GraphSHS

Datasets

We report the effectiveness and efficiency of GraphSHS on various datasets. The

details of synthetic and real-world datasets are discussed below.

Synthetic Datasets. Considering the features of the Python NetworkX library, we

used this library to create two types of synthetic graphs, namely Erdos-Renyi graphs

(ER) [55] and Scale-Free graphs (SF) [117]. For each type, we generate test graphs of

six different scales: 5000, 10000, 20000, 50000, 100000 and 150000 nodes by keeping

the parameter settings the same. In addition to these test graphs, we generate two

graphs of 5000 nodes, one of each type (ER and SF) for training GraphSHS. Notably,

for each type of graph (ER and SF), we train the model on a graph of 5000 nodes and

test the model on all scales of graphs (5000, 10000, 20000, 50000, 100000 and 150000

nodes). Table 5.1 presents the summary of graph generating parameters for synthetic

datasets4.

Table 5.1: Summary of synthetic datasets.

Graph type Graph generating parameters

Erdos-Renyi Graphs
Number of nodes 5000, 10000, 20000, 50000
Probability of adding a random edge 0.001
Number of nodes 100000, 150000
Probability of adding a random edge 0.0001

Scale-Free Graphs

Number of nodes 5000, 10000, 20000, 50000, 100000, 150000
Alpha 0.4
Beta 0.05
Gamma 0.55

Real-World Datasets. We use five real-world datasets to determine GraphSHS

performance. Table 5.2 presents the summary of these datasets, and the details are

discussed below:

4Due to the computational challenges in computing ground truths for large-scale graphs, we limit
the maximum number of edges to 200000 for ER and SF graphs with 100000 and 150000 nodes.
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Table 5.2: Summary of real-world datasets.

Dataset Nodes Edges Avg degree
ca-CondMat 21,363 91342 8.55
email-Enron 33,696 180,811 10.73
coauthor 53,442 255,936 4.8
com-DBLP 317,080 1,049,866 6.62
com-Amazon 334,863 925,872 5.53

• ca-CondMat [99] is a scientific collaboration network from arXiv. This network

covers collaborations between the authors who have submitted papers in condensed

matter category.

• email-Enron [100] is a communication network of emails where nodes denote the

addresses, and edge connects two nodes if they have communicated via email.

• coauthor [107] is an author-coauthor relationship network. It consists of coauthor

relationships obtained from papers published in major computer science conferences.

• com-DBLP [156] is a coauthor network. Nodes represent the authors, and an

edge connects the authors if they have published at least one paper together.

• com-Amazon [156] is a customer-product network obtained from amazon website.

Nodes represent the customers, and edge connects the customers who have purchased

the same product.

Evaluation Metrics

For baselines and GraphSHS, we measure the effectiveness and efficiency in terms of

accuracy and running time, respectively.

Baselines

We compare GraphSHS with the two representative SHS identification algorithms:

• Constraint. Constraint is a heuristic solution to discover SHSs in the network [29].

It measures the degree of redundancy among the neighbors of the node. Constraint
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C of a node i is defined as:

C(i) =
∑

j∈N(i)

(
pij +

∑
q

piqpqj

)2

, q ̸= i, j

where N(i) is neighbors of node i, q is the node in the ego network other than node

i and j, and pij represents the weight of edge (i, j).

• Closeness Centrality. The closeness centrality of a node is the reciprocal of sum

of length of the shortest paths from the node to all other nodes in the graph [15].

Rezvani et al. [124] used closeness centrality as a base to propose an algorithm

Inverse Closeness Centrality (ICC), for discovering SHSs in the network. Closeness

Centrality (CC) of node i is calculated as:

CC(i) =
1∑

j∈V SP(i, j)
,

where SP(i, j) is the shortest path between node i and j.

• Vote Rank Algorithm. Vote Rank is an iterative algorithm to identify top-k

decentralized spreaders with the best spreading ability. This algorithm uses a voting

scheme to rank nodes in a graph, where each node votes for its in-neighbors, and

the node with the highest number of votes is selected in each iteration [171].

Ground Truth Computation

For all the datasets under consideration, we used the Python library NetworkX to

calculate nodes’ SHS score (BC). Besides, for large scale graphs, i.e., com-DBLP and

com-Amazon, we used the SHS score (BC) reported by AlGhamdi et al. [6]. The

authors [6] performed parallel implementation of the Brandes algorithm, utilizing

96,000 CPU cores on a supercomputer to compute exact BC values for large graphs.

We were not able to perform experiments on very large synthetic networks, as it is

computationally challenging to compute the ground truth BC for larger graphs using

normal system configurations; therefore, we limit the synthetic network size to 150000
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nodes. After computing the SHS score of the nodes, we sort the nodes in descending

order of their score values. We label the high score k% nodes as SHS nodes and the

rest as normal ones. We evaluate the performance of GraphSHS for three different

values of k, i.e., 5, 10 and 20. Labelled graphs are used to train GraphSHS, and we

assess the performance of GraphSHS on the test graphs.

Training Details

We perform all the experiments on a Windows 10 PC with a CPU of 3.20 GHz and

16 GB RAM. We implement the code in PyTorch. We fix the number of layers to 4

and the embedding dimension to 128. Parameters are trained using Adam optimizer

with a learning rate of 0.01 and weight decay 5e− 4. We train the GraphSHS for 200

epochs on ER graph of 5000 nodes and evaluate the performance on test ER graphs of

all scales. We adopted the same training and testing procedure for SF graphs. Since

real-world networks demonstrate attributes similar to SF graphs; therefore, we train

our model on an SF graph of 5000 nodes and test the model on real-world datasets.

Besides, we used an inductive setting where test graphs are invisible to the model

during the training phase.

5.6.2 Performance of GraphSHS on Synthetic Datasets

Tables 5.3 and 5.4 report the accuracy and run time of the comparative algorithms

and GraphSHS on synthetic graphs. Table 5.3 shows that GraphSHS achieves higher

classification accuracy than the baselines. For example, in the SF graph of 5000 nodes,

GraphSHS performs better than the baselines, closeness centrality, constraint and vote

rank by achieving Top-5% accuracy of 96.78%, whereas the best accuracy achieved by

the baseline is 96.12%. Besides, GraphSHS is 190.9 times faster than the best result

for the same scale and type of graph, as reported in Table 5.4. For the ER graph of

10000 nodes, although GraphSHS sacrifices 2.93% in Top-10% accuracy in contrast to

the top accuracy (vote rank); however, it is over 134 times faster.
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Table 5.3: Classification accuracy (%) on synthetic datasets of different scales. Top-5%,
Top-10% and Top-20% indicate the percentage of nodes labelled as SHSs. Bold results

indicate the best results among the proposed and all baselines.

Scale ↓

Method

Top-5% Top-10% Top-20%

Dataset → SF ER SF ER SF ER
Constraint 94.23 93.98 91.57 91.05 88.26 84.35

5,000 Closeness centrality 94.58 93.38 88.66 90.7 86.54 82.26
Vote Rank 96.12 95.43 92.41 91.13 92.79 85.51
GraphSHS (Proposed) 96.78 95.66 93.66 91.30 87.65 83.22
Constraint 94.02 94.45 90.87 92.02 87.24 85.64

10,000 Closeness centrality 94.81 94.09 89.21 92.34 85.75 80.75
Vote Rank 95.29 95.18 92.04 93.82 94.41 87.98
GraphSHS (Proposed) 96.44 95.29 93.23 90.89 86.92 82.45
Constraint 95.02 93.97 88.23 90.61 88.32 87.41

20,000 Closeness centrality 94.29 94.35 87.71 91.39 82.78 80.34
Vote Rank 95.01 94.88 92.59 91.25 89.64 87.28
GraphSHS (Proposed) 96.31 95.23 92.97 90.56 85.80 81.22
Constraint 94.93 93.85 87.12 88.65 84.77 82.36

50,000 Closeness centrality 93.95 91.89 85.27 84.91 81.60 72.37
Vote Rank 94.64 93.27 91.54 87.83 85.49 81.22
GraphSHS (Proposed) 95.03 94.81 92.01 89.49 85.55 80.24
Constraint NA 90.49 NA 82.08 NA 68.15

100,000 Closeness centrality 93.51 87.18 88.06 85.48 84.20 85.33
Vote Rank 94.18 92.72 91.43 86.76 87.11 80.73
GraphSHS (Proposed) 94.93 93.75 91.84 87.9 88.37 80.6
Constraint NA 89.40 NA 82.56 NA 68.03

150,000 Closeness centrality 93.04 91.61 91.14 88.50 89.03 86.74
Vote Rank 93.92 91.93 90.73 86.92 85.87 78.17
GraphSHS (Proposed) 94.25 93.56 91.69 89.35 88.82 83.42

For a large-scale SF graph of 100000 nodes, GraphSHS achieves higher accuracy than

the baselines by achieving a Top-5% accuracy of 94.93%, whereas the best accuracy

achieved by the baseline is 94.18% (vote rank). Notably, the constraint algorithm

cannot complete the computation for the SF graph of 100000 and 150000 nodes within

three days, so we put NA corresponding to its accuracy and time in the results.

Moreover, our proposed model achieves the best accuracy for SF and ER graphs of

150000 nodes in the case of Top-5% and Top-10% accuracy; however, for Top-20%,

closeness centrality achieves higher accuracy. To avoid unfair comparison, we have not

considered the training time of the model as none of the baseline algorithms needs to

be trained. Hence, it is logical not to count the training time. Moreover, GraphSHS
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Table 5.4: Run time (sec) comparison of different algorithms on synthetic datasets of different
scales. Bold results indicate the best results, and second best results are underlined.

Scale Dataset Constraint Closeness
centrality

Vote Rank GraphSHS
(Proposed)

Speedup

5,000
SF 16013.2 40.1 17.18 0.09 190.9x
ER 5.8 45.9 32.26 0.1 58x

10,000
SF 21475.3 199.4 29.72 0.3 99.1x
ER 67.2 286.1 316.88 0.5 134.4x

20,000
SF 24965.3 836.7 155.89 0.7 222.7x
ER 884.7 1820.7 2970.47 1.75 505.5x

50,000
SF 28336.1 5675.8 1088.39 2.5 435.3x
ER 27754.2 2055.4 3987.62 12.6 163.1x

100,000
SF NA 4442.9 2164.68 15.4 140.5x
ER 29345.1 13746.9 3512.17 27.4 128.2x

150,000
SF NA 3143.1 1592.46 21.6 73.7x
ER 31601.73 22338.3 15631.67 33.7 463.8x

converges rapidly, and the convergence time is around 15 minutes. In addition, our

model works in multi-stages. We can train the model whenever we have time and later

use it for discovering SHSs. However, all the baselines identify SHSs in one stage only.

Table 5.4 reports the running time of baselines and GraphSHS. For a small scale

ER graph of 5000 nodes, GraphSHS takes 1 sec to discover SHSs, whereas closeness

centrality takes 45.9 sec and vote rank takes 32.26 sec. For a large-scale ER graph of

50000 nodes, GraphSHS takes less than 13 sec to discover SHSs. However, constraint,

vote rank and closeness centrality require a large amount of time to discover SHSs

in large-scale networks. For ER graph of 50000 nodes, constraint took around 7.5

hours, whereas both closeness centrality and vote rank took around 1 hour to discover

SHSs. For ER graph of 150000 nodes, GraphSHS takes less than 34 sec to discover

SHSs. However, all the baselines require a large amount of time to discover SHSs and

GraphSHS is 463.8 times faster than the most efficient baseline. The results prove

that our model has a considerable efficiency advantage over other models in run time.

The proposed model GraphSHS consistently achieves the best Top-5% accuracy for ER

as well as SF graphs of all scales. GraphSHS achieves the highest Top-10% accuracy

for most of the cases; however, vote rank achieves better Top-10% accuracy for ER

graphs of 10000 nodes and closeness centrality for ER graphs of 20000 nodes. The vote
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Table 5.5: Generalization accuracy of GraphSHS on different types of synthetic datasets.

Train ↓

Accuracy Test→
ER_5,000 SF_5,000

ER_5,000 95.66% 94.22%
SF_5,000 93.16% 96.78%

rank algorithm outperforms most of the comparative methods for ER and SF graphs in

terms of Top-20% accuracy. Although other algorithms achieve better accuracy than

GraphSHS in a few cases, but our model runs faster. GraphSHS is at least 58 times

faster than the baselines on synthetic graphs. Results from Table 5.3 show that the

classification accuracy is inversely proportional to the size of the network. In addition,

there is a decrease in Top-k% accuracy as we increase the value of k. Table 5.5 presents

the generalization accuracy of the proposed model GraphSHS across different types of

graphs. We train the GraphSHS on ER and SF graphs separately, and test on both

types of graphs. For this analysis, we only consider graphs of 5,000 nodes for training

and testing. The results demonstrate that GraphSHS attains the best accuracy when

the training graph is similar to testing graphs.

5.6.3 Performance of GraphSHS on Real-World Datasets

This section evaluates GraphSHS performance on five real-world datasets. Since real-

world networks exhibit some characteristics similar to that of SF graphs; therefore, we

train our model on an SF graph (SF graph of 5000 nodes having the same properties

as discussed in Table 5.1) and test the model on real-world datasets. We present the

Top-k% accuracy and running time of the baselines in Tables 5.6 and 5.7, respectively.

The results illustrate that GraphSHS attains competitive Top-k% accuracy compared

to other baselines. Nevertheless, considering the trade-off between accuracy and

run time, GraphSHS runs much faster than the baselines. Take the example of the

ca-CondMat network; GraphSHS performs better than the baselines by achieving

Top-5% accuracy of 95.73% and Top-10% accuracy of 90.43%. Although vote rank

performs better in the Top-20% accuracy for the same network; however, GraphSHS
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Table 5.6: Classification accuracy (%) on real-world datasets. Top-5%, Top-10% and
Top-20% indicate the percentage of nodes labelled as SHSs. Bold results indicate the best

results among the proposed and all baselines.

Dataset Method Top-5% Top-10% Top-20%
Constraint 94.41 90.18 86.23

ca-CondMat Closeness centrality 95.05 89.78 82.56
Vote Rank 95.59 90.15 89.44
GraphSHS (Proposed) 95.73 90.43 83.23
Constraint 95.77 91.87 87.38

email-Enron Closeness centrality 95.41 90.98 83.71
Vote Rank 95.93 93.01 87.28
GraphSHS (Proposed) 96.2 93.13 86.49
Constraint 93.60 90.77 86.61

coauthor Closeness centrality 94.4 88.95 81.07
Vote Rank 94.59 93.6 86.53
GraphSHS (Proposed) 95.03 91.28 80.91
Constraint 92.4 91.42 84.21

com-DBLP Closeness centrality 95.1 89.9 80.2
Vote Rank NA NA NA
GraphSHS (Proposed) 93.11 89.2 81.24
Constraint 94.61 88.12 83.15

com-Amazon Closeness centrality 93.13 87.30 77.83
Vote Rank NA NA NA
GraphSHS (Proposed) 94.71 85.21 78.23

Table 5.7: Run time (sec) comparison of different algorithms on real-world datasets. Bold
results indicate the best results and the second best results are underlined.

Dataset Constraint Closeness
centrality

Vote Rank GraphSHS
(Proposed)

Speedup

ca-CondMat 1403.2 2853.4 983.88 1.07 919.5x
email-Enron 1968.5 2903.4 2541.6 2.2 894.7x
coauthor 417.8 5149.6 3948.53 2.5 167.1x
com-DBLP 8574.9 38522.1 NA 19.2 446.6x
com-Amazon 4533.4 42116.9 NA 18.9 239.8x

is 919.5 times faster. In the email-Enron graph, GraphSHS performs better than

the baselines by achieving the highest Top-5% and Top-10% accuracy. On the other

hand, if we take an example of a large-scale network, such as com-Amazon, constraint

outperforms GraphSHS in Top-10% and Top-20% accuracy; however, GraphSHS is

239.8 times faster than the best baseline. The vote rank algorithm cannot complete the

computation for com-DBLP and com-Amazon networks within 3 days, probably due

to the large network size (approximately 1,000,000 edges). Therefore, we have included

NA corresponding to its accuracy and time in the results. GraphSHS achieves the best
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Top-5% accuracy in four real-world networks and the best Top-10% accuracy in three

out of five networks. However, for the Top-20% accuracy, constraint algorithm is more

accurate. Table 5.7 shows that GraphSHS achieves a minimum speedup of 167.1 and

is up to 919.5 times faster than the baseline algorithms. The run time comparison

indicates the efficiency advantage of our model over other baselines. Furthermore, our

results proved that the proposed simple graph neural network architecture GraphSHS

is sufficient to solve the SHSs discovering problem on real-world networks.

5.6.4 Performance of Meta-GraphSHS

In order to obtain a classifier Meta-GraphSHS that can discover SHSs in diverse net-

works, we train our model on different types of networks. We evaluate the performance

of our model on the following synthetic and real-world datasets. The summary of

dataset is presented in Table 5.8.

• Synthetic graph. We generate one synthetic graph consisting of 36 sub-graphs

of 3 different types, i.e., Erdos-Renyi, Scale-Free, and Gaussian Random Partition

graphs. The graph contains 12 sub-graphs of each type, and each sub-graph consists

of a minimum of 1000 nodes and a maximum of 5000 nodes.

• Real-world graph. We obtain one real-world graph by combining 2 diverse real-

world graphs, i.e., ca-CondMat and email-Enron (refer Table 5.2 for properties of

these graphs). For each of these graphs, we disconnect the original graph to obtain

12 much smaller subgraphs. In this way, the overall graph contains 24 sub-graphs

(12 of each type) and each sub-graph consists of a minimum of 1000 nodes and a

maximum of 3000 nodes.

We follow the procedure discussed in Section 5.6.1 for obtaining the ground truths for

the graphs and label the top 5% nodes in each of the sub-graph as SHS nodes. We use

80% of the sub-graphs for training (meta-training), and 20% for testing (meta-testing).

We train Meta-GraphSHS for 200 epochs, and set α to 0.1 and γ to 0.001. The

training sub-graphs are used to optimize the model parameters (to learn generalizable
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Table 5.8: Summary of dataset for evaluating Meta-GraphSHS.

Dataset Types of subgraph #Subgraphs #Nodes in each subgraph

Synthetic graph

Erdos-Renyi graphs

36Scale-Free graphs 1000 to 5000

Gaussian Random Parti-
tion graphs

Real-world graph
ca-CondMat graphs

24
1000 to 3000

email-Enron graphs

Table 5.9: Classification accuracy of Meta-GraphSHS.

Dataset Method Accuracy

Synthetic graph
GraphSHS 93.5%

Meta-GraphSHS 96.2%

Real-world graph
GraphSHS 92.1%

Meta-GraphSHS 94.8 %

parameters by observing multiple graphs from different domains). Only 50% of the

nodes in the testing sub-graphs are labelled. The labelled nodes in testing sub-graphs

are used to fine-tune the trained model to accurately determine labels for the rest of

the nodes in the test graphs.

Table 5.9 shows the accuracy achieved by Meta-GraphSHS for discovering SHSs in

diverse synthetic and real-world graphs compared to that of GraphSHS. For diverse

synthetic graphs, Meta-GraphSHS discovers SHS nodes with high accuracy of 93.5%

and outperforms GraphSHS by an accuracy of 2.7%. For diverse real-world graphs,

GraphSHS is able to achieve an accuracy of 92.1%, whereas Meta-GraphSHS model

achieves an accuracy of 94.8%, which is much higher than GraphSHS accuracy. Our

previous results from Table 5.3 and Table 5.6 illustrate that even though GraphSHS

discovers SHSs with high accuracy when trained and tested on graphs from the same

domain; however, the accuracy decreases when GraphSHS is tested on graphs from

different domains than what the model is trained on. The reason for the low accuracy

of GraphSHS in the case of diverse graphs is that the model is not able to capture

the inter-graph differences. The performance of Meta-GraphSHS on both synthetic

and real-world graphs shows that machine learning models explicitly designed for a
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particular task outperform the models designed for generalized tasks. The advantage

of meta learning models is that they learn from experience and quickly adapt to new

tasks with minimal training data. This allows them to achieve high accuracy, even

with diverse data. This is why once trained, Meta-GraphSHS generalizes well and

discovers SHSs from diverse networks with high accuracy.

5.6.5 Parameter Sensitivity

We perform experiments on the real and synthetic networks to determine the impact

of parameters on the accuracy of both the proposed models, GraphSHS and Meta-

GraphSHS. Particularly, we study the sensitivity of the number of layers (depth) and

embedding dimensions for the models. We vary the number of layers and embedding

dimension among {1, 2, 3, 4, 5, 6} and {16, 32, 64, 128, 256}, respectively. Figures

5.6 and 5.7 show the parameter sensitivity of GraphSHS on real-world and synthetic

datasets, respectively. The results illustrate that the accuracy is relatively low for

fewer aggregation layers (depth), as shown in Figures 5.6(a) and 5.7(a). The reason for

low accuracy is insufficient aggregated information due to the limited reachability of

the nodes. Our results show that initially, the SHSs identification accuracy increases

with the increase in the number of layers (model depth); however, if we increase the

depth of the model over four layers, the accuracy starts decreasing. The reason for

this is the over-smoothing problem [103, 158, 119]. Besides, results from Figures 5.6(b)

and 5.7(b) show that for higher embedding dimensions, GraphSHS performs better as

higher embedding dimensions provide the GraphSHS with more ability to represent

the network. Our reasoning behind the improved accuracy of GraphSHS, with the

increase in the number of layers and embedding dimensions, is further supported

by the parameter sensitivity analysis results of the Meta-GraphSHS model. The

parameter sensitivity analysis of Meta-GraphSHS on synthetic and real-world datasets

is demonstrated in Figure 5.8. The results indicate that the accuracy is comparatively

low for a smaller number of aggregation layers, as depicted in Figure 5.8(a), and the
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Figure 5.6: Parameter sensitivity of GraphSHS on real-world datasets.

Figure 5.7: Parameter sensitivity of GraphSHS on synthetic datasets.

Figure 5.8: Parameter sensitivity of Meta-GraphSHS on synthetic and real-world datasets.

accuracy increases as the number of layers increases. However, the accuracy begins

to decline after four layers. Similarly, Figure 5.8(b) presents the accuracy of Meta-

GraphSHS on varying the number of embedding dimensions. Firstly, the accuracy

increases with the increase in embedding dimensions; however, the accuracy starts

deteriorating on increasing the embedding dimension to 256 or higher. The reason

for the deteriorating performance of Meta-GraphSHS on increasing the embedding

dimensions beyond 128 is the similar node embeddings that make it difficult for the

model to distinguish between the nodes and, consequently, the model mislabels the

nodes.
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5.6.6 Application Improvement

GraphSHS can be used to discover SHSs in a dynamic network, where nodes and edges

change over time. For example, on Facebook and Twitter, links appear/disappear

whenever a user friend/unfriend others on Facebook or follow/unfollow others on

Twitter. As a result, discovered SHSs change, and hence, it is essential to track the

new SHSs in the updated network. Traditional algorithms are highly time-consuming

and might not work efficiently for dynamic networks. Additionally, it is highly possible

that the network has already been changed by the time these algorithms re-compute

SHSs. Therefore, we need a fast heuristic that can quickly update SHSs in dynamic

networks. We can use our proposed model GraphSHS for discovering SHSs in dynamic

networks. Even if training the model takes a few hours to learn the evolving pattern

of the network, we only need to train the model once, and after that, whenever there

is a change in the network, our trained GraphSHS can identify the new SHSs within a

few seconds. We compare our proposed GraphSHS with the solution designed by Goel

et al. [70] that discovers SHSs in dynamic networks. We start with an entire network

and arbitrarily delete 100 edges, one edge at a time, and calculate the average speedup

of GraphSHS over dynamic solution [70]. As shown in Table 5.10, GraphSHS is at

least 89.8 times faster than [70]. This confirms the efficiency of the proposed model in

dynamic networks.

Table 5.10: Performance of GraphSHS on dynamic networks.

Dataset # Nodes # SHSs discovered Speedup

Scale-Free 5,000
1 89.8x
5 139.5x
10 163.7x

5.6.7 Discussion

Our experiments on various datasets show that our simple message-passing graph

neural network models are sufficient to solve the SHSs discovering problem. Our

proposed model GraphSHS, provides a significant run time advantage over other
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algorithms. GraphSHS is at least 167.1 times faster than the baselines on real-world

networks and at least 58 times faster than the baselines on synthetic networks. Even

though we trained GraphSHS on the synthetic SF graph, the model achieved high

accuracy when tested on real-world graphs. This shows the inductive nature of our

proposed model, where the model can be trained on one graph and used to predict

SHSs in another graph. Besides, once trained, Meta-GraphSHS generalizes well and

identifies SHSs from diverse networks with a high accuracy of 96.2% for synthetic

graphs and 94.8% for real-world graphs. The following observations are the potential

reasons behind the success of the proposed models:

1. Our proposed graph neural network based models follow a similar architecture to

that of message-passing graph neural networks, which are proved to be universal

under sufficient conditions [108]. Our model meets those conditions, and we

believe that the universal characteristics of the message passing graph neural

network enable our model to capture the relevant features that are important

for discovering SHSs, which is confirmed from our experimental results.

2. We train the proposed model in an end-to-end manner with the exact betweenness

centrality values as ground truth. Similar to successful applications of deep

learning on text or speech, the model generally learns and performs well if

provided with sufficient training data.

In addition, theoretically, we showed that the depth of the GraphSHS should be at

least Ω(
√
n/ log n). However, practically, deep GNNs suffer from the over-smoothing

issue that leads to the embeddings of nodes indistinguishable from each other. We

conduct parameter sensitivity analysis to investigate the effect of model depth (number

of layers) on the accuracy of discovering SHSs in the network. Our experimental results

showed that after a few layers, the performance of GraphSHS starts deteriorating.

The reason for the dropping performance of GraphSHS is similar node embeddings,

which results in the model being unable to differentiate between the nodes and, hence,
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mislabel them. Therefore, in our experiments, we made the necessary adjustments

and used four layers instead in order to avoid the over-smoothing problem.

5.7 Chapter Summary

Structural hole spanner identification problem has various real-world applications such

as information diffusion, community detection etc. However, there are two challenges

that need to be addressed; 1) to discover SHSs efficiently in large-scale networks; 2) to

discover SHSs effectively across diverse networks. This chapter investigated the power

of message-passing GNNs for identifying SHSs in large-scale networks and diverse

networks. We first transformed the SHS identification problem into a learning problem

and designed an efficient message-passing GNN-based model, GraphSHS, that identifies

SHS nodes in large-scale networks with high accuracy. We then proposed another

effective meta-learning model, Meta-GraphSHS, that discovers SHSs across different

types of networks. Meta-GraphSHS learns general transferable knowledge during the

training process and then quickly adapts by fine-tuning the model parameters for each

new unseen graph. We used an inductive setting that enables the proposed models to

be generalizable to new unseen graphs. Theoretically, we showed that the proposed

graph neural network model needs to be at least Ω(
√
n/ log n) deep to calculate the

SHSs discovery problem. To evaluate the model’s performance, we performed empirical

analysis on various datasets. Our experimental results demonstrated that the proposed

models achieved high accuracy. GraphSHS is at least 167.1 times faster than the

baselines on large-scale real-world networks, showing a considerable advantage in run

time over the baseline algorithms.
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Chapter 6

Discovering Top-k Structural Hole Spanners

in Dynamic Networks

Related publication:

This chapter is based on our following three papers titled:

1. “Maintenance of Structural Hole Spanners in Dynamic Networks” published in

the 46th IEEE Conference on Local Computer Networks (LCN), 2021 [70].

2. “Discovering Structural Hole Spanners in Dynamic Networks via Graph Neural

Networks” published in The 21st IEEE/WIC/ACM International Conference on

Web Intelligence and Intelligent Agent Technology (WI-IAT), 2022 [67].

3. “Discovering Top-k Structural Hole Spanners in Dynamic Networks” [68].

Chapter 5 studied the graph neural network models for determining bottleneck struc-

tural hole spanner nodes in large-scale and diverse networks. However, real-world

networks are dynamic in nature. Therefore, this chapter aims to discover the SHSs

in dynamic networks. This chapter first develops a Tracking-SHS algorithm for up-

dating SHSs in dynamic networks. Our algorithm reuses the information obtained
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during the initial runs of the static algorithm and avoids the recomputations for the

nodes unaffected by the updates. We also design a Graph Neural Network model,

GNN-SHS, to discover SHSs in dynamic networks. We provide a theoretical analysis of

the Tracking-SHS algorithm, and our theoretical results prove that the Tracking-SHS

algorithm attains high speedup compared with the static algorithm. We perform ex-

tensive experiments on various datasets to demonstrate the efficiency of our proposed

algorithm and model. Our results show that the proposed techniques are more efficient

than the baselines.

6.1 Introduction

With the emergence of large-scale networks, researchers are designing new techniques

to analyze and study the properties of large-scale networks [74, 21]. These networks

inherently possess a community structure where the nodes within the community

share close interests, characteristics, behaviour, and opinions [168]. The absence of

connection between different communities in the network is known as Structural

Holes (SH) [33]. A community needs to have connectivity with other communities to

access novel information [125]. The structural hole theory states that the users who fill

the “holes” between various users or groups of users that are otherwise disconnected

get positional advantages in the network, and these users are known as Structural

Hole Spanners [107]. SHSs have many applications, including information diffusion,

opinion control, identifying central hubs, preventing the spread of rumours, community

detection and identifying critical nodes in tactical environments [105, 7, 169, 166, 179,

4]. A large number of centrality measures, such as pairwise connectivity [23], closeness

centrality [15], degree centrality, constraint [29] etc., exist in literature to discover

critical nodes in the network. However, SHS acts as a bridge between the nodes of

different communities [124] and controls information diffusion in the network [107].

Therefore, we have an important observation that removing SHS will disconnect a

maximum number of node pairs in the network and block information propagation
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Figure 6.1: Comparison of centrality measures.

among them. Figure 6.1 illustrates that node i plays a vital role, and removing node

i will disconnect maximum node pairs in the network, in turn blocking information

propagation among the maximum number of nodes in the network, whereas the impact

of the removal of other nodes is less significant. Therefore, we define SHS as a node

whose removal minimizes the Pairwise Connectivity (PC) of the residual network, i.e.,

the node with the maximum pairwise connectivity score. This SHS definition aims to

capture the nodes located between otherwise disconnected groups of nodes.

Various solutions [107, 124, 72, 73, 81, 154, 153, 138, 45] are developed to discover

SHSs in static networks. Nevertheless, the real-world network changes over time. For

example, it is essential to handle outdated web links in web graphs or obsolete user

profiles in a social network; these are examples of decremental updates in the networks.

In contrast, on Facebook and Twitter, links appear and disappear whenever a user

friend/unfriend others on Facebook or follow/unfollow others on Twitter; which is an

example where decremental as well as incremental updates happen in the networks. As

a result, the discovered SHSs change. The limitation here is that in the literature, there

is no solution available to discover SHS nodes in dynamic networks. The classical SHS

identification algorithms are considerably time-consuming and may not work efficiently

for dynamic networks. In addition, the network may have already been changed by

the time classical algorithms recompute SHSs. Hence, designing a fast mechanism that
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can efficiently discover SHSs as the network evolves is crucial.

We aim to propose efficient algorithms for discovering structural hole

spanner nodes in dynamic networks. We formulate the problem of discovering

SHS nodes in dynamic networks as Structural hole Spanner Tracking (SST)

problem . While the traditional SHS problem focuses on discovering a set of SHSs

that minimizes the PC of the network, the SST problem intends to update the already

discovered set of SHSs, as the network evolves. In order to track SHS nodes in dynamic

networks, we first propose an efficient Tracking-SHS algorithm that maintains

Top-k SHSs for decremental edge updates in the network by discovering a set of

affected nodes. Tracking-SHS aims to maintain and update the SHS nodes faster than

recomputing them from the ground. We obtain some properties to identify the set of

affected nodes due to changes in the network. In addition, we reuse the information

from the initial runs of the static algorithm in order to avoid the recomputations for the

unaffected nodes. Tracking-SHS executes greedy interchange by replacing an old SHS

node with a high PC score node from the network. Besides, the use of priority queues

saves the repetitive computation of PC scores. Our theoretical and empirical results

demonstrate that the proposed Tracking-SHS algorithm achieves higher speedup than

the static algorithm. In addition, inspired by the recent advancements of Graph Neural

Network on various graph problems, we propose another model GNN-SHS (Graph

Neural Networks for discovering Structural Hole Spanners in dynamic networks), a

graph neural network-based framework that discovers SHSs in the dynamic network.

Our proposed model works for both incremental and decremental edge updates of

the network. We regard the dynamic network as a sequence of snapshots and aim to

discover SHSs in these snapshots. Our proposed GNN-SHS model uses the network

structure and features of nodes to learn the embedding vectors of nodes. Our model

aggregates embedding vectors from the neighbors of the nodes, and the final embeddings

are used to discover SHS nodes in the network. GNN-SHS aims to discover SHSs in

dynamic networks by reducing computational time while achieving high accuracy. We
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perform a detailed theoretical analysis of the proposed Tracking-SHS algorithm, and

our results show that for a specific type of graph, the Tracking-SHS algorithm achieves

1.6 times of speedup compared with the static algorithm. Besides, we validated the

performance of Tracking-SHS algorithm and GNN-SHS model by performing extensive

experiments on real-world and synthetic datasets. Our experimental results show that

the Tracking-SHS algorithm is at least 3.24 times faster than the static algorithm. In

addition, the results demonstrate that the proposed GNN-SHS model is at least 31.8

times faster and up to 2996.9 times faster than the baseline, providing a considerable

efficiency advantage in run time.

Contributions: In this chapter, we make the following contributions.

• Tracking-SHS algorithm. We propose an efficient algorithm Tracking-SHS,

that maintains SHS nodes for decremental edge updates in the network. We

derive some properties to discover the set of nodes affected due to updates in

the network and avoid recomputation for the unaffected nodes, so as to enhance

the efficiency of the proposed algorithm. In addition, we extend our proposed

algorithm from a single edge update to a batch of updates.

• GNN-SHS model. We propose an efficient graph neural network-based model

GNN-SHS, for discovering SHSs in dynamic networks. Our model considers

both the incremental and decremental edge updates in the network. GNN-SHS

model preserves the network structure and node feature, and uses the final node

embedding to discover SHSs.

• Theoretical analysis. We theoretically show that the depth of the proposed

graph neural network-based model GNN-SHS should be at least Ω(n2/ log2 n) to

solve the SHSs problem. In addition, we analyze the performance of the proposed

Tracking-SHS algorithm theoretically, and our theoretical results show that for

specific types of graphs, such as Preferential Attachment graphs, the proposed

algorithm achieves 1.6 times of speedup compared with the static algorithm.
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• Experimental analysis. We validate the performance of the proposed Tracking-

SHS algorithm and GNN-SHS model by conducting extensive experiments on

various real-world and synthetic datasets. The results demonstrate that the

Tracking-SHS algorithm achieves a minimum of 3.24 times speedup on real-world

datasets compared with the static algorithm. Besides, GNN-SHS model is at

least 31.8 times faster and, on average, 671.6 times faster than the Tracking-SHS

algorithm. However, this significant speedup with the GNN-SHS model comes

at the cost of a potential decrease in accuracy.

Chapter organization. Section 6.2 presents the preliminaries and background of

the problem. Section 6.3 presents the problem description. Section 6.4 discusses the

proposed Tracking-SHS algorithm for tracking SHSs in dynamic networks. Section 6.5

discusses the proposed model GNN-SHS for discovering SHSs in dynamic networks.

Section 6.6 presents the theoretical performance analysis of Tracking-SHS algorithm,

and Section 6.7 discusses the extensive experimental results. Finally, Section 6.8

concludes the chapter.

6.2 Preliminaries and Background

This section discusses the preliminaries and background of the problem.

Network model. A graph is defined as G = (V,E), where V is the set of nodes

(vertices), and E ⊆ V × V is the set of edges. Let n = |V | and m = |E|. We have

considered unweighted and undirected graphs1. A path pij from node i to j in an

undirected graph G is a sequence of nodes {vi, vi+1, ....., vj} such that each pair (vi, vi+1)

is an edge in E. A pair of nodes i, j ∈ V is connected if there is a path between i

and j. Graph G is connected if all pair of nodes in G are connected. Otherwise, G is

disconnected. A connected component or component C in an undirected graph G is a

maximal set of nodes in which a path connects each pair of node. A dynamic graph

G can be modelled as a finite sequence of graphs (Gt, Gt+1, ..., GT ). Each Gt graph
1We consider only graphs without self-loops or multiple edges.
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represents the network’s state at a discrete-time interval t. We refer to each of the

graph in the sequence as a snapshot graph. Each snapshot consists of the same set of

nodes, whereas edges may appear or disappear over time. Hence, each graph snapshot

can be described as an undirected graph Gt = (V,Et), containing all nodes and only

alive edges at the time interval under consideration. Due to the dynamic nature of the

graph, the edges in the graph may appear or disappear, due to which the label of the

nodes (SHS or normal node) may change. Therefore, we need to design techniques

that can discover SHSs in each new snapshot graph quickly. Let x⃗(i) denotes the

feature vector of node i, N(i) denotes the neighbors of node i, h(l)(i) represents the

embedding of node i at the lth layer of the model. Let l represents the index of the

aggregation layer, where l = (1, 2, ..., L).

Definition 6.1. Pairwise connectivity. The pairwise connectivity u(i, j) for any

node pair (i, j) ∈ V × V is quantified as:

u(i, j) =


1 if i and j are connected

0 otherwise
(6.1)

Definition 6.2. Total pairwise connectivity. The total pairwise connectivity P (G),

i.e., pairwise connectivity across all pair of nodes in the graph, is given by:

P (G) =
∑

i,j∈V×V,i ̸=j

u(i, j). (6.2)

Definition 6.3. Pairwise connectivity score. The pairwise connectivity score c(i)

of node i is the contribution of node i to the total pairwise connectivity score of the

graph. Pairwise connectivity score c(i) of node i is computed as follows:

c(i) = P (G)− P (G\{i}). (6.3)
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Graph Neural Networks (GNNs). GNNs [151] are designed by extending the

deep learning methods for the graph data and are broadly utilized in various fields,

e.g., computer vision, graph mining problems, etc. GNNs usually consist of graph

convolution layers that extract local structural features of the nodes [145]. GNNs learn

the representation of nodes by aggregating features from the ego network of node.

Every node in network is described by its own features, and features of its neighbors

[94].

Figure 6.2: Embedding of node i.

Network Embedding. Network embedding [42] is a procedure with which network

nodes can be described in a low-dimensional vector. Embedding intends to encode

the nodes so that the resemblance in the embedding, approximates the resemblance in

the network [3]. Embedding can be used for various graph mining problems, including

node classification, regression problems, graph classification, etc. Figure 6.2 depicts an

example of node embedding in low-dimensional space.

6.3 Problem Description

In this section, we formally state the structural hole spanner problem for static and

dynamic networks.

Structural Hole Spanner Problem for Static Networks

This section discusses the greedy algorithm for discovering SHSs in the static network.

Selecting a set of SHS nodes in one observation may not be a correct approach due to
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the influence of cut nodes. Therefore, the algorithm works iteratively by identifying

one SHS node in each iteration.

Definition 6.4. Structural Hole Spanner Problem. Given a graph G = (V,E),

and a positive integer k, the SHS problem is to identify a set of SHSs Top-k in G(V,E),

where Top-k ⊂ V and |Top-k |= k, such that the removal of nodes in Top-k from G

minimizes the total pairwise connectivity in the residual subgraph G(V \Top-k).

Top-k = min {P (G\Top-k)}, (6.4)

where Top-k ⊂ V and |Top-k |= k.

Algorithm 6.1 describes a greedy heuristic for identifying the SHSs in the static

networks. The algorithm repeatedly selects a node v′ with a maximum PC score, i.e.,

the node which when removed from the network minimizes the total PC of the residual

network. In step 3, for computing the PC score of each node v ∈ V , the algorithm

initiates a depth-first search (DFS) and selects a node with the maximum PC score.

The selected node is then eliminated from the network and added to the SHS set

Top-k. The process repeats until k nodes are discovered. The run time of Algorithm

6.1 is O(kn(m+ n)). DFS takes O(m+ n) time, and the PC score is calculated for n

nodes. The process repeats for k iterations, and hence, the complexity follows.

Algorithm 6.1 Structural hole spanner identification.
Input: Graph G(V,E), k
Output: SHS set Top-k
1: Initialize Top-k = ϕ
2: while |Top-k| < k do
3: v′ = argmaxv ∈V c(v)
4: G = G\{v′}
5: Top-k =Top-k

⋃
{v′}

6: end while
7: return Top-k

Theorem 6.1 (Dinh et al. [47]). Discovering SHS problem is NP-hard.
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Proof. We present an alternative proof, where we reduce the SHS model to vertex

cover instead of β-Vertex Disruptor used in Dinh et al. [47]. The reason for this

alternative proof is that it will be used as a foundation for Theorem 6.2. We show

that the Vertex Cover (VC) problem is reducible to the SHS discovery problem. The

definition of Structural Hole Spanners states that SHSs are the set of k nodes, which,

when deleted from the graph, minimizes the total pairwise connectivity of the subgraph.

Let G = (V,E) be an instance of a VC problem in an undirected graph G with V

vertices and E edges. VC problem aims to discover a set of vertices of size k such

that the set includes at least one endpoint of every edge of the graph. If we delete

the nodes in vertex cover from the graph, there will be no edge in the graph, and the

pairwise connectivity of the residual graph will become 0, i.e., P (G) is minimized. In

this way, we can say that graph G has a VC of size k if and only if graph G have

structural hole spanners of size k (that makes the residual graph’s connectivity to be

0). Therefore, discovering the exact k SHSs problem is NP-hard as a similar instance

of a vertex cover problem is a known NP-hard problem.

Figure 6.3: Illustration of graph snapshots.

Structural Hole Spanner Problem for Dynamic Networks

We represent the dynamic network as a sequence of snapshots of graph (Gt, Gt+1, ..., GT )

and each snapshot graph describes all the edges that occur between a specified discrete-

time interval (e.g., sec, minute, hour). Figure 6.3 illustrates four snapshots of graph

taken at time t, t+1, t+2, t+3. Due to the dynamic nature of the graph, SHSs in the

graph also change, and it is crucial to discover SHSs in each new snapshot graph quickly.

Traditional SHSs techniques are time-consuming and may not be suitable for dynamic
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graphs. Therefore, we need fast algorithms to discover SHSs in dynamic networks. We

formally define the structural hole spanner problems for dynamic networks as follows:

Problem 1: Tracking Top-k SHS nodes in Dynamic Networks (Structural

Hole Spanner Tracking Problem).

Given: Given a graph G = (V,E), SHS set Top-k, and edge update ∆E.

Goal: Design a Tracking-SHS algorithm to identify SHS set Top′-k with cardinality k

in G′ = (V,E+∆E) by updating Top-k such that the removal of nodes in Top′-k from

G′ minimizes the total pairwise connectivity in the residual subgraph G′(V \Top′-k).

Problem 2: Discovering Top-k SHS nodes in Dynamic Networks.

Given: Given snapshots of graph Gt = (V,Et), Gt+1 = (V,Et+1),...

GT = (V,ET ) and integer k > 0.

Goal: Train a model GNN-SHS to discover SHS set Top-k with cardinality k in

the dynamic network (snapshots of graph) such that the removal of nodes in Top-k

from the snapshot of graph minimizes the total pairwise connectivity in the residual

subgraph. We aim to utilize the pre-trained model to discover SHSs in each new

snapshot of the graph quickly.

Theorem 6.1 showed that discovering the exact k SHSs in the network is an NP-hard

problem. Therefore, we adopted a greedy heuristic, as discussed in Algorithm 6.1 for

finding the Top-k SHS nodes. It should be noted that the greedy algorithm, despite

being a heuristic, is still computationally expensive with a complexity of O(kn(m+n)).

Nevertheless, real-world networks are dynamic, and they change rapidly. Since these

networks change quickly, the Top-k SHSs in the network also change continuously. A

run time of O(kn(m + n)) of the greedy algorithm is too high and not suitable for

practical purposes where speed is the key. For instance, it is highly possible that the

network might already change by the time greedy algorithm computes the Top-k SHSs.

Therefore, we need an efficient solution that can quickly discover Top-k SHSs in the

changing networks. A natural approach for the SST problem is to run Algorithm 6.1
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after each update, providing us with a new set of SHSs. Nevertheless, computing SHS

set from scratch after every update is a time-consuming process which motivates us to

design Tracking-SHS algorithm that can handle the dynamic nature of the networks.

Tracking-SHS algorithm focuses on updating the Top-k SHSs without explicitly running

Algorithm 6.1 after every update. We also propose a GNN-based model to discover

SHSs in dynamic networks by transforming the SHS discovery problems into a learning

problem. While our proposed Tracking-SHS algorithm only considers decremental

edge updates in the network, our second proposed model, GNN-SHS considers both

incremental as well as decremental edge updates of the network. The main idea of

our second model GNN-SHS, is to rely on the greedy heuristic (Algorithm 6.1) and

treat its results as true labels to train a graph neural network for identifying the Top-k

SHSs. The end result is a significantly faster heuristic for identifying the Top-k SHSs.

Our heuristic is faster because we only have to train our graph neural network model

once, and thereafter, whenever the graph changes, the trained model can be utilized

to discover SHSs. Table 6.1 presents the comparison of both the proposed models for

discovering SHS nodes in dynamic networks.

Table 6.1: Comparison of proposed models for discovering SHSs in dynamic networks.

Proposed algo-
rithm/ model

Decremental
update

Incremental
update

Batch
update

Tracking-SHS ✓ × ✓

GNN-SHS ✓ ✓ ✓

6.4 Proposed Algorithm: Tracking-SHS

In the real world, it is improbable that the network evolves drastically within a short

time. The similarity in the structure of the network before and after updates leads to

a similar SHS set. We propose an efficient Tracking-SHS algorithm, that maintains

Top-k SHSs in the dynamic network. This algorithm considers the situations where it

is crucial to handle the decremental updates in the network, such as outdated web

links in web graphs or obsolete user profiles in a social network. As a result, the
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discovered SHSs change due to the dynamic nature of the network. Therefore, it is

vital to design an algorithm that quickly discovers SHSs as the network evolves. Our

proposed Tracking-SHS algorithm addresses this issue. Instead of constructing the

SHS set from the ground; we start from old Top-k set and repeatedly update it. Our

algorithm aims to maintain and update the SHS set faster than recomputing it from

scratch. This section first discusses the mechanism to find the set of affected nodes and

various cases due to updates in the network. We also present a method to compute

the PC score of the nodes efficiently and the procedure to update Top-k SHSs for

decremental edge updates in the network. Later, we extend our proposed single-edge

update algorithm to a batch of updates.

6.4.1 Finding Affected Nodes

Whenever there is an edge update in the network, by identifying the set of affected

nodes, we need to recompute the pairwise connectivity scores of these nodes only.

Definition 6.5. Affected Nodes. Given an original graph G(V,E), and an updated

graph G′ = G(V,E\(a, b)), affected nodes are the set of nodes whose pairwise con-

nectivities change as a result of the deletion of edge (a, b). More precisely, the set of

affected nodes A is defined as A = {y ∈ V such that c(y) ̸= c′(y)}.

Figure 6.4: Illustration of affected and unaffected nodes due to network updates (a) Original
network (b) Updated network.

When an edge (a, b) is deleted from the network, affected nodes A are the set of nodes

reachable from node a, in case edge (a, b) is a non-bridge edge. On the other hand, if
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edge (a, b) is a bridge edge, we have two set of affected nodes Aa and Ab, representing

the set of nodes reachable from node a and b, respectively. Let G(V,E) be the original

network, as shown in Figure 6.4(a), and Figure 6.4(b) shows the updated network

G′ = G(V,E\(g, h)). We first show the case where edge deletion changes the PC score

of some nodes v, i.e., c(v) ̸= c′(v). When an edge (g, h) is deleted from G, the PC

score of nodes {f, g, k, l, h, i, j,m} changes as shown in Figure 6.4(b), and these nodes

are called affected nodes. Next is the case where edge deletion does not change the PC

score of the other set of nodes u, i.e., c(u) = c′(u). Figure 6.4(b) shows that on the

deletion of edge (g, h), the PC score of the nodes {a, b, c, d, e} does not change, and

therefore, these nodes are unaffected nodes. On deletion of edge (g, h) in Figure 6.4,

set of affected nodes are Ag = {f, g, k, l} and Ah = {h, i, j,m}.

Lemma 6.1. Given a graph G = (V,E) and an edge update (a, b), any node

v ∈ V is an affected node if u(v, a) = 1 or u(v, b) = 1, resulting in c(v) before

deletion not equal to c′(v) after deletion. Otherwise, the node is unaffected.

Proof. Node v is affected if it is either reachable from node a or b via any path in the

graph. Nodes that are not reachable either from node a or b are not affected as these

nodes do not contribute to the PC score of node a or b.

6.4.2 Various Cases for Edge Deletion

This section enumerates various cases that may arise due to the deletion of an edge

from the network.

Case 1: No change in connected component (Non-bridge edge)

When the deleted edge (a, b) is a non-bridge edge, there is no change in the connected

components of the updated network, and node a and b still belong to the same

connected component. The PC score of only few nodes in the component changes,

i.e., c(r) ̸= c′(r), r ∈ C(a). Here, the maximum number of affected nodes are the

nodes in the connected component containing node a, i.e., | A | = | C(a) |. Let Figure
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Figure 6.5: Illustration of cases after edge deletion.

6.5(a) shows the original network Gt, when an edge (b, c) is deleted at Gt+1, node b

and c belong to the same connected component. However, the PC score of some nodes

changes as highlighted in Figure 6.5(b).

Case 2: Split connected component (Bridge edge)

When edge (a, b) is a bridge edge, its deletion splits the connected component into two

new connected components. The PC score of the nodes in the component containing

node a and node b changes, i.e., c(r) ̸= c′(r) ∀ r ∈ C(a) or C(b). Here, the number

of affected nodes | Aa | and | Ab | are the number of nodes reachable from node a

and node b, respectively, and total affected nodes | A |=| Aa | + | Ab |. Let Figure

6.5(b) be the original network at Gt+1. When edge (d, e) is deleted at Gt+2, the

connected component splits into two and the PC score of all the nodes in both the

split components changes, as shown in Figure 6.5(c).

6.4.3 Fast Computation of Pairwise Connectivity Score

We have previously shown the method to calculate the PC score of the nodes. However,

as the structure of the network changes, it is important to update the PC score of the

affected nodes. PC score of node i is computed as:

c(i) = P (G)− P (G\{i}).
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Let v ∈ R be a set of nodes not reachable from node i, i.e., u(i, v) = 0 ∀ v ∈ R.

Therefore, nodes in R do not contribute to the PC score of node i. Hence, it is not

required to traverse the whole network to compute the PC score of node i, instead

traversing the component to which node i belongs is sufficient. This makes the PC

score computing mechanism faster since we consider only the component to which the

node belongs while ignoring the rest of the network. Updated PC score for node i can

be calculated as:

c(i) = P (C(i))− P (C(i)\{i}),

c(i) =
(|C(i)|

2

)
−
∑

1≤j≤r

(|Cj |
2

)
. (6.5)

Let node i connects the component C1, .., Cr, where r denotes the number of distinct

components containing neighbors of node i. The first term in Equation 6.5 gives the

PC score of the component containing node i, and the second term gives the PC score

of this component without node i. The difference between both the terms gives the

PC score of node i. Here, P (C(i)) denotes the PC score of the component containing

node i.

6.4.4 Updating Top-k SHSs

This section discusses the procedure for updating Top-k SHSs. We use Algorithm 6.1

to obtain the initial SHS set and PC score of the nodes in the original network. In

addition, we use max-heap priority queue Q, where the nodes are sorted by their PC

score. The top node w in the priority queue has the highest PC score c(w), among

all the nodes in the network. After every update, the PC scores in the priority queue

Q change according to Lemma 6.2 and Lemma 6.3. Besides, we have maintained a

min-heap priority queue for the SHS nodes in Top-k.

Lemma 6.2. Given a graph G = (V,E) and an edge update (a, b), if the deleted

edge (a, b) is a non-bridge edge, then c′(v) ≥ c(v), ∀ v ∈ A.
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Proof. Deletion of a non-bridge edge (a, b) may bring some nodes of the graph into

the bridging position, which leads to a higher PC score of these nodes compared to

their previous PC score. For the rest of the nodes, their new PC score remains the

same.

Lemma 6.3. Given a graph G = (V,E) and an edge update (a, b), if the deleted

edge (a, b) is a bridge edge, then c′(v) < c(v), ∀ v ∈ A.

Proof. Deletion of a bridge edge (a, b) splits the connected component into two com-

ponents. In the updated graph, the nodes in the split connected components are now

pairwise connected to a smaller number of nodes, due to which their updated PC score

is less as compared to their previous PC score, i.e., c′(v) < c(v), ∀ v ∈ A.

Algorithm 6.2 presents the Tracking-SHS procedure for updating Top-k SHSs. The

algorithm works as follow. When an edge (a, b) is deleted from the network, it is first

determined if it is a bridge or non-bridge edge. We run DFS from a and stop as we hit

b. If we hit b, it indicates that edge (a, b) is a non-bridge edge, otherwise bridge edge.

We then identify the set of affected nodes using the procedure discussed in Section

6.4.1. We now compute the new PC score of the affected nodes using Equation 6.5

and update the PC score of these nodes into the priority queue Q. The PC score of

the nodes in Top-k may also change due to updates in the network, and therefore, we

need to update the PC score of affected nodes in Top-k. Once we have updated the

PC scores of all the nodes in the network, we update the Top-k SHS set. Following

Lemma 6.2, we know that the updated PC score of the affected nodes either increases

or remains the same (in the case of non-bridge edge). Since the PC score of some

nodes in the network may increase, we need to determine if any of these affected nodes

have a higher PC score than existing SHS nodes in Top-k and add such nodes in the

SHS set. Besides, following Lemma 6.3, we know that the updated PC score of the

affected nodes is always less compared to their previous PC score (in case the deleted

edge is a bridge edge). Since the updated PC score of the affected nodes decreases, we
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Algorithm 6.2 Tracking-SHS algorithm: Updating Top-k SHSs on deletion of an
edge
Input: Graph G(V,E), Old SHS set Top-k, Deleted edge (a, b), Priority queue Q with

nodes sorted by PC score c (The PC scores in Q change according to Lemma 6.2
and 6.3)

Output: Updated SHS set Top-k
1: Determine if edge (a, b) is a bridge or non-bridge edge
2: Identify set of affected nodes A
3: for all v ∈ A do
4: Compute c′(v)
5: Q(v)← c′(v)
6: end for
7: for all v ∈ Top-k do
8: Compute c′(v)
9: end for

10: while Q is not empty do
11: w ← Q.getMax()
12: if c(w) ≤ Top-k.getMin() then
13: return Top-k
14: else if w ∈ Top-k then
15: G = G\{w}
16: update Q
17: else
18: Top-k.removeMin()
19: Top-k.insert(c(w), w)
20: G = G\{w}
21: update Q
22: end if
23: end while

need to replace the affected nodes present in Top-k with the high PC score non-SHS

nodes in the network.

Let w denotes the node with the maximum PC score in Q. Now, we compare the

PC score of w, i.e., c(w) with the minimum PC score node in Top-k, and if c(w) ≤

Top-k.getMin(), we terminate the algorithm and return Top-k. In contrast, if c(w) >

Top-k.getMin(), and node w is already present in Top-k, we remove w from the

network and update the PC score of the nodes in the component containing node w in

Q. On the other hand, if node w is not present in Top-k, we remove the minimum PC

score node from Top-k and add node w to Top-k. Finally, w is removed from G, and

the PC score of the nodes in the priority queue is updated.
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Lemma 6.4. Given a graph G = (V,E) and an edge update (a, b), Algorithm

6.2 replaces a maximum of (k − k′) nodes from the Top-k SHS set on the

deletion of a bridge edge.

Proof. Following Lemma 6.3, when the deleted edge (a, b) is a bridge edge, the PC

score c(i)∀ i ∈ A decreases, whereas the PC score c(i) ∀ i /∈ A remains the same. There

may be some nodes that are affected and are present in Top-k SHS set. Such nodes

need to be replaced with high PC score non-SHS nodes from the network. Consider

Top-krem, of size |Top-krem |= k′ as the set of nodes in Top-k which are not affected,

i.e., Top-krem = Top-k\A. Therefore, we have (k− k′) affected nodes in Top-k, and at

most (k − k′) nodes in Top-k can be replaced by high PC score non-SHS nodes in the

network.

6.4.5 Updating Top-k SHSs for Batch Updates

In the case of batch updates, a number of edges may be deleted from the network.

One solution to update Top-k SHSs for a batch update is to apply our proposed single

edge update algorithm, i.e., Tracking-SHS after every update. However, this approach

may not be efficient for a large number of updates. Therefore, we propose an efficient

method that works as follows.

Let us consider that a set of batch updates consists of l individual updates where

l ∈ (1,m). When a batch of l edges is deleted from the network, each edge can

either be a bridge edge or a non-bridge edge. We first determine the set of connected

components in the network after the deletion of a batch of edges. Then, identify the

set of affected nodes due to the updates in the network. For l single updates, each

update i has its own affected node set Ai, i = 1, 2, 3, ...l. For batch update, the total

affected node set A is the union of Ai, for all i ∈ (1, l).

A =
l⋃

i=1

Ai.
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Once we have an affected node set due to batch updates, the PC scores of the affected

nodes are recomputed using the efficient PC score computing function (Equation 6.5).

Finally, update Top-k SHSs set using the procedure discussed in Section 6.4.4. In the

case of a large number of updates, processing batch updates is more efficient than

sequentially processing each update. For instance, if a node is affected several times

during serial edge update, we need to recompute its PC score every time it is affected.

However, in the case of a batch update, we need to recompute its PC score only once,

making the batch update procedure more efficient.

6.5 Proposed Model: GNN-SHS

Inspired by the recent advancement of graph neural network techniques on various graph

mining problems, we propose GNN-SHS , a graph neural network-based framework

to discover Top-k SHS nodes in the dynamic network. This model considers the

situations where it is important to handle incremental as well as decremental updates

in the network, such as Facebook, where links appear and disappear whenever a user

friend/unfriend others. Due to dynamic nature of network, discovered SHSs change;

therefore, it is crucial to design a model that can efficiently discover SHSs as the

network evolves. Figure 6.6 represents the architecture of the proposed GNN-SHS

model. We divided the SHSs identification process into two parts, i.e., model training

and model application. The details of the GNN-SHS model are discussed below.

6.5.1 Model Training

This section discusses the architecture of the proposed model and the training proce-

dure.

Architecture of GNN-SHS

In order to discover SHS nodes in dynamic network, we first transform the SHSs

identification problem into a learning problem. We then propose a GNN-SHS model
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Algorithm 6.3 Generating node embeddings for GNN-SHS
Input: Graph G(V,E), Input features x⃗(i), ∀i ∈ V , Depth L, Weight matrices

W l, ∀l ∈ {1, .., L}, Non-linearity σ
Output: Node embeddings z(i), ∀i ∈ V
1: h0(i)← x⃗(i), ∀i ∈ V
2: for l = 1 to L do
3: for i ∈ V do
4: Compute h(l)(N(i)) using Equation 6.6
5: Compute h(l)(i) using Equation 6.7
6: end for
7: end for
8: z(i) = h(L)(i)

that uses the network structure as well as node features to identify SHS nodes. Our

model utilizes three-node features, i.e., effective size [29], efficiency [29] and degree, to

characterize each node. These features are extracted from the one-hop ego network

of the node. Given a graph and node features as input, our proposed model GNN-

SHS first computes the low-dimensional node embedding vector and then uses the

embedding of the nodes to determine the label of nodes (as shown in Figure 6.6). The

label of a node can either be SHS or normal. The procedure for generating embeddings

of the nodes is presented in Algorithm 6.3. The model training is further divided

into two phases: 1) Neighborhood Aggregation, 2) High Order Propagation. The two

phases of the GNN-SHS model are discussed below:

Neighborhood Aggregation. The neighborhood aggregation phase aggregates

the features from the neighbors of a node to generate node embeddings. The node

embeddings are the low dimensional representation of a node. Due to distinguishing

characteristics exhibited by the SHSs, we considered all the one-hop neighbors of the

node to create embedding. We generate the embeddings of node i by aggregating the

embeddings from its neighboring nodes, and we use the number of neighbors of node i

as weight factor:

h(l)(N(i)) =
∑

j∈N(i)

h(l−1)(j)

| N(i) |
, (6.6)

where h(l)(N(i)) represents the embedding vectors captured from the neighbors of
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node i. Embedding vector of each node is updated after aggregating embeddings from

its neighbors. Node embeddings at layer 0, i.e., h0(i) are initialized with the feature

vectors x⃗(i) of the nodes, i.e., Effective size, Efficiency and Degree. Each node retains

its own feature information by concatenating its embedding vector from the previous

layer with the aggregated embedding of its neighbors from the current layer as:

h(l)(i) = σ
(
W l
(
h(l−1)(i) ∥ h(l)(N(i))

))
, (6.7)

where W l are the training parameter, ∥ is the concatenation operator, and σ is the

non-linearity, e.g., ReLU.

High Order Propagation. Our model employs multiple neighborhood aggregation

layers in order to capture features from l-hop neighbors of a node. The output from

the previous layer acts as input for the current layer. Stacking multiple layers will

recursively form the representation h(l)(i) for node i at the end of layer lth as:

z(i) = h(l)(i), ∀i ∈ V

where z(i) denotes the final node embedding at the end of lth layer. For the purpose

of classifying the nodes as SHS or normal node, we pass the final embeddings of each

node z(i) through the Softmax layer. This layer takes node embeddings as input and

generates the probability of two classes: SHS and normal. We then train the model to

distinguish between SHS and normal nodes.

Training Procedure

To discover SHS nodes in the network, we employ binary cross-entropy loss to train

the model with the actual label known for a set of nodes. The loss function L is

computed as:

L = −1

r

r∑
i=1

(
y(i) log ŷ(i) + (1− y(i)) log (1− ŷ(i))

)
,
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Figure 6.6: Architecture of proposed GNN-SHS model.

where y is the true label of a node, ŷ is the label predicted by the GNN-SHS model,

and r is the number of nodes in the training data for which the labels are known.

6.5.2 Model Application

We first train the GNN-SHS model using the labelled data as discussed in Section

6.5.1. Once the model is trained, we then utilize the trained GNN-SHS model to

quickly discover SHS nodes in each snapshot of graph (snapshot obtained from the

dynamic network). The discovered SHSs are nodes removal of which minimizes the

total pairwise connectivity in the remaining subgraph.

Theorem 6.2. The depth of the proposed graph neural network-based GNN-

SHS model with width = O(1) should be at least Ω(n2/ log2 n) to solve the

SHSs problem.

Proof. In Theorem 6.1, we proved that if we can discover SHS nodes in the graph, then

we can solve the VC problem. Corollary 4.4 of Loukas [108] showed that for solving

the minimum VC problem, a message-passing GNN with a width = O(1) should have

a depth of at least Ω(n2/ log2 n). Therefore, the lower bound on the depth of the VC
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problem also applies to our SHSs problem. Here, the depth describes the number of

layers in the GNN-SHS model, and width indicates the number of hidden units.

6.6 Theoretical Analysis of Tracking-SHS algorithm

This section presents the theoretical performance analysis of the proposed Tracking-

SHS algorithm. We first analyze the run time of the single edge update algorithm for

various cases discussed in Section 6.4. We then give an overall run time of the proposed

algorithm. Later, we analyze the performance of the batch update algorithm. When

there are more connected components in the network, the time to update Top-k SHSs

will be less as there will be fewer affected nodes. In addition, the time to recompute

the PC score of a node will also be less due to the small size of connected components.

We consider the worst-case by assuming only one connected component in the initial

network. We take the value of k as 1. It takes (n+m) time to determine if edge (a, b)

is a bridge or non-bridge. We run DFS to identify the affected node set, and the time

required for the same is (n+m). The PC score of a node is calculated using Equation

6.5. Notably, the time to update Top-k SHSs is the time to recompute the PC scores

of the affected nodes, i.e., (| A | ×m), and a detailed analysis of A and m is shown

below.

Lemma 6.5. Given a graph G = (V,E), old SHS set Top-k and an edge

update (a, b), Algorithm 6.2 takes mn time to update the Top-k SHS set (In

case of non-bridge edge).

Proof. In this case, the number of affected nodes | A |=| C(a) | and since there is

only 1 connected component in the graph, the number of edges m(a) in the connected

component containing node a after an edge update (a, b) is (m− 1) and the number of

affected nodes | A | can be at most n. Therefore, the time Tab required to update the

spanner set can be at most m(a)× | A |, i.e., mn. Here, Tab denotes the time required
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by the proposed algorithm Tracking-SHS to update Top-k SHSs after an edge update

(a, b).

Theorem 6.3. Given a graph G = (V,E), old SHS set Top-k and an edge

update (a, b), Algorithm 6.2 takes 5mn
8

time to update Top-k SHS set in the

expected case (In case of bridge edge).

Proof. Deletion of a bridge edge (a, b) splits the connected component into two com-

ponents, one containing node a and the other containing node b. The probability

of deletion of any edge from the graph is uniform, i.e., 1
m

. Then, the size of each

connected component after deletion of edge (a, b) is:

m(a) = i

m(b) = (m− 1− i)

where 0 ≤ i≤ m−1
2

Here, we assume that deletion of a bridge edge (a, b) results in two components and the

number of edges in each split component follow the uniform distribution. Using this

assumption, the expected size m̄(a), m̄(b) of the connected components is computed

as:

m̄(a) =

m−1
2∑

i=0

i× 2

m+ 1

=
(m− 1)

4

m̄(b) =

m−1
2∑

i=0

(m− 1− i)× 2

m+ 1

=
3(m− 1)

4
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After an edge update (a, b), the affected nodes are the set of nodes reachable from

node a and b. We use the property that the maximum number of nodes that may span

i edges in one connected component are (i + 1) to compute the number of affected

nodes. The expected number of affected nodes | Āa |, | Āb | in both the components is

calculated as:

| Āa | =
m−1

2∑
i=0

(i+ 1)× 2

m+ 1

=
(m− 1)

4
+ 1

| Āb | =
m−1

2∑
i=0

(n− i− 1)× 2

m+ 1

= n− (
m− 1

4
)− 1

To compute the number of affected nodes, we take the upper bound on the number of

edges. Using the same property, we know that m edges can be spanned by a maximum

of (m+ 1) nodes, but we have a maximum of n nodes in the graph.

We put m = n− 1 to compute the expected number of affected nodes.

| Āa | =
n− 2

4
+ 1

| Āb | = n− (
n− 2

4
)− 1

Therefore, the expected time T̄ab required to update the SHS set for this case is:

T̄ab =| Āa | × m̄(a)+ | Āb | × m̄(b)

T̄ab =
5mn

8

Hence proved.
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Theorem 6.4. For the general case, the overall time Tab required by the

proposed algorithm to update Top-k SHSs after an edge update (a, b) is

Pab(
5mn
8
) + (1− Pab)(mn).

Proof. Let Pab be the probability that edge (a, b) is a bridge edge, removal of which

splits the connected component into two components (Case 2), then the probability of

an edge being a non-bridge is (1− Pab) (Case 1). Using the results of Lemma 6.5 and

Theorem 6.3, the overall time for updating Top-k SHSs after an edge update (a, b) is

given by Tab = Pab(
5mn
8
) + (1− Pab)(mn).

The following special case stems from Theorem 6.4.

Special case. For the bridge-edge dominating graph where all the edges in the

graph are bridges, the probability of an edge being a bridge is 1, i.e., Pab = 1

and non-bridge edge is 0. Theoretically, the speedup of the proposed algorithm is

Pab(
5mn
8
) + (1 − Pab)(mn) and substituting the values of Pab and (1 − Pab) gives us

the overall update time, i.e., Tab = 5mn
8

. In contrast, the time required for static

recomputation is T ′
ab = (kn(m + n)), i.e., mn where k is constant. Therefore, the

proposed algorithm achieves an overall speedup of 1.6 times (speedup = T ′
ab

Tab
) over

recomputation. An example of such a graph is the Preferential Attachment graph.

We use experimental analysis to validate our theoretical results, and the experimental

results support our arguments.

Theorem 6.5. Given a graph G = (V,E), old SHS set Top-k, and a batch of l

edge updates, the batch update algorithm, i.e., Tracking-SHS algorithm for

batch updates takes (N_CC ×S_CC ×A_CC ×Pl) time to update the Top-k

SHS set. Here, N_CC refers to the number of connected components in

the resulting graph, A_CC is the number of affected nodes in the connected

component, S_CC is the size of the connected component, and Pl is the

probability that deletion of l edges results in N_CC in the updated graph.
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Proof. The proof is straightforward and thus omitted. In Section 6.7.3, we will show

that our batch update algorithm produces good results over static recomputation.

6.7 Experimental Results

This section analyzes the performance of the proposed Tracking-SHS algorithm and

GNN-SHS model. We first discuss the datasets used to evaluate the performance.

We then evaluate the performance of the Tracking-SHS algorithm for single update

followed by the batch of updates. Later, we discuss the performance of GNN-SHS

model. We implemented our algorithms in Python 3.7. The experiments are performed

on a Windows 10 PC with CPU 3.20 GHz and 16 GB RAM.

6.7.1 Datasets

We measure the update time of the proposed Tracking-SHS algorithm, static recompu-

tation and GNN-SHS model by conducting extensive experiments on various real-world

and synthetic datasets. The details of the datasets are discussed below.

Real-World Datasets

We analyze the performance of the proposed algorithms on four real-world networks

having different sizes. Karate [167] is a friendship network among the members of the

karate club. Dolphin [109] is a social network representing the frequent association

between 62 dolphins of a community. American College Football [65] is a football games

network between Division IA colleges, and HC-BIOGRID2 is a biological network. The

characteristics of the real-world datasets are summarized in Table 6.2.

Synthetic Datasets

We analyze the performance of proposed algorithms by conducting experiments on

synthetic datasets. We generate synthetic networks using graph-generating algorithms

2https://www.pilucrescenzi.it/wp/networks/biological/

https://www.pilucrescenzi.it/wp/networks/biological/


143

Table 6.2: Summary of real-world datasets.

Dataset Nodes Edges Avg degree
Karate 34 78 4.59
Dolphins 62 159 5.13
Football 115 613 10
HC-BIOGRID 4039 14342 7

Table 6.3: Summary of synthetic datasets.

Dataset Nodes Edges Avg degree
PA (500) 500 499 2
PA (1000) 1000 999 2
PA (1500) 1500 1499 2
ER (250, 0.01) 250 304 2
ER (250, 0.5) 250 15583 124
ER (500, 0.04) 500 512 2
ER (500, 0.5) 500 62346 249

and vary the network size to determine its effect on algorithms performance. We

conduct experiments on synthetic networks with diverse topologies: Preferential

Attachment (PA) networks and Erdos-Renyi (ER) [55] networks. We generate PA(n)

network with 500, 1000 and 1500 nodes, where n denotes total nodes in the network.

For ER(n, p), we generate networks with 250 and 500 nodes, where p is the probability

of adding an edge to the network. In PA(n) network, a highly connected node is more

likely to get new neighbors. In ER(n, p) network, parameter p acts as a weighting

function, and there are higher chances that the graph contains more edges as p increases

from 0 to 1. The properties of synthetic datasets are presented in Table 6.3.

6.7.2 Performance of Tracking-SHS algorithm on Single Update

Performance on Real-World Dataset

To evaluate the performance of the Tracking-SHS algorithm for single edge update, we

compare it against static recomputation. Table 6.4 shows the speedup achieved by the

Tracking-SHS algorithm over recomputation. Speedup is the ratio of the speed of the

static algorithm to that of Tracking-SHS algorithm, which is proportional to the ratio
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Table 6.4: Speedup of Tracking-SHS algorithm on static recomputation over 50 edge
deletions on real-world datasets.

Dataset k = 1 k = 5 k = 10
Gmean Min Max Gmean Min Max Gmean Min Max

Karate 2.35 1.73 3.1 3.92 2.98 4.18 5.02 4.98 5.17
Dolphins 3.34 2.11 4.18 4.16 3.06 5.33 7.52 5.21 9.22
Football 3.72 3.42 4.21 10.17 9.6 11.47 17.26 15.45 19.84
HC-BIOGRID 3.76 1.85 4.11 11.16 10.21 11.89 21.79 20.23 22.65
Mean (Geometric) 3.24 2.19 3.87 6.56 5.47 7.42 10.91 9.49 12.1

of computation time used by the static algorithm to that by the proposed Tracking-

SHS algorithm. In order to determine how the two algorithms (static algorithm and

proposed dynamic Tracking-SHS algorithm) perform for the dynamic network, we

start with a full network and randomly remove 50 edges, one at a time.

We then compute the geometric mean of the speedup for the proposed Tracking-SHS

algorithm in terms of its execution time against the static algorithm. For instance, if

the Tracking-SHS algorithm takes 10 seconds to execute for an edge update, whereas

the static algorithm takes 50 seconds to execute for the same update, we say that

the Tracking-SHS algorithm is 5 times faster than static recomputation. The column

“Gmean” has the geometric mean of the achieved speedup (over 50 edge deletions),

“Min” contains minimum achieved speedup and, “Max” contains maximum speedup.

We run our Tracking-SHS algorithm for 3 different values of k, i.e., k = 1, 5 and 10.

For real-world networks, the gmean speedup is always at least 2.35 times for k = 1,

3.92 for k = 5 and 5.02 for k = 10. The experimental results demonstrate that speedup

increases with the value of k. The average speedup reaches 21.79 times for k =10

from a speedup of 3.76 for k = 1 (HC-BIOGRID dataset), which shows a significant

improvement for a larger value of k. The average speedup over all tested datasets is

3.24 times for k = 1, 6.56 for k = 5, and 10.91 for k = 10. The minimum speedup

achieved by the proposed Tracking-SHS algorithm is 1.73 times for the Karate dataset,

and the maximum speedup achieved is 22.65 times for HC-BIOGRID dataset. In

addition, it has been observed that the speedup also increases with the size of the

network. For a small size network (Karate dataset), the speedup is 5.02 times for k =
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Table 6.5: Speedup of Tracking-SHS algorithm on static recomputation over 50 edge
deletions on synthetic datasets.

Dataset k = 1 k = 5 k = 10
Gmean Min Max Gmean Min Max Gmean Min Max

PA (500) 3.24 2.75 3.39 4.76 4.44 5.65 6.35 5.79 7.24
PA (1000) 3.32 3.08 3.83 5.3 4.46 6.12 8.31 7.75 9.31
PA (1500) 3.54 3.22 4.02 5.46 4.57 6.13 8.95 7.54 10.6
ER (250, 0.01) 4.22 3.98 4.65 6.15 5.82 6.62 10.65 10.1 11.25
ER (250, 0.5) 4.08 3.9 4.17 11.66 10.42 13.15 20.4 18.34 22.21
ER (500, 0.04) 4.41 4.02 4.88 7.83 5.08 9.51 9.81 8.06 11.78
ER (500, 0.5) 3.95 3.78 4.35 11.39 10.33 12.52 21.44 20.35 29.08
Mean (Geometric) 3.8 3.5 4.16 7.07 6.02 8.05 11.16 10.04 12.95

10. In contrast, for the same value of k, the speedup increases significantly to 21.79

times for the large size network (HC-BIOGRID dataset).

Performance on Synthetic Dataset

We perform the similar experiments on diverse synthetic datasets of varying scales.

We start with a full network and randomly remove 50 edges, one at a time. Table 6.5

shows the speedup of the proposed Tracking-SHS algorithm over static recomputation.

For synthetic datasets, the gmean of the achieved speedup is always at least 3.24 times

for k = 1, 4.76 for k = 5 and 6.35 for k = 10 (over 50 edge deletions). Similar to

the real-world dataset, the speedup increases with the increase in the value of k for

the synthetic dataset. For instance, in ER (500, 0.5) network, the average speedup

increases to 21.44 times for k = 10 from a speedup of 3.95 for k = 1. The average

speedup over all tested datasets is 3.8 for k = 1, 7.07 for k = 5, and 11.16 for k =

10. Besides, speedup for ER dataset is relatively higher than the PA dataset of the

same scale. Take an example of the PA dataset of 500 nodes, the mean speedup is

6.35 times, whereas, for ER dataset of 500 nodes, the mean speedup is at least 9.81

for k=10.
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Figure 6.7: Speedup of Tracking-SHS algorithm on batch update.

6.7.3 Performance of Tracking-SHS algorithm on Batch Update

We now demonstrate the performance of the batch update algorithm, i.e., Tracking-SHS

algorithm for batch updates. Initially, we consider all the edges are present in the

network and compute the Top-k SHSs using Algorithm 6.1. We then randomly remove

a set of 50 edges from the network. These edges are considered as a batch of updates,

and our goal is to update Top-k SHS set corresponding to these updates. To evaluate

the performance of our batch update algorithm, we performed experiments on the

football and HC-BIOGRID dataset, and set the value of k to 1, 5 and 10. Figure 6.7

shows the speedup achieved by the Tracking-SHS algorithm on batch updates. We

attained a speedup of 5.29 times for the football dataset and 7.51 times for the HC-

BIOGRID dataset (for k =1). Experimental results demonstrate that for batch update,

the speedup increases with the increase in the value of k, e.g., for HC-BIOGRID,

speedup is 7.51 times for k =1, whereas it is 30.35 times for k =10.

6.7.4 Performance of GNN-SHS model

In dynamic network, as the graph changes with time, we get multiple snapshots of

graph. The trained model can be used to identify the SHSs in each snapshot of the

dynamic graph. Even if it takes some time to train the model, we need to train it only

once, and after that, whenever the graph changes, the trained GNN-SHS model can

be used to discover the updated SHSs in a few seconds.
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Baseline

In the literature, there is no solution that addresses the problem of discovering SHSs

in dynamic networks. Therefore, we compare the performance of our model GNN-SHS

with the proposed Tracking-SHS algorithm (as discussed in Section 6.4).

Evaluation Metrics

We measure the efficiency of our proposed GNN-SHS model in terms of speedup

achieved by GNN-SHS over Tracking-SHS algorithm. The speedup is computed as

follows:

Speedup =
Run time of Tracking-SHS algorithm

Run time of proposed GNN-SHS model
.

In addition, we measure the effectiveness of our model in terms of classification

accuracy achieved by the model.

Ground Truth Computation

To compute the ground truth labels, we first calculate the pairwise connectivity score

c using Equation 6.3 for each node and then label Top-k nodes with the highest score

as SHS nodes and rest as normal nodes. For experimental analysis, we set the value of

k to 50.

Training Settings

We implemented the code of GNN-SHS in PyTorch and fixed the number of layers to

2 and the embedding dimension to 32. The model parameters are trained using Adam

optimizer, learning rate of 0.01 and weight decay of 5e− 4. We train GNN-SHS model

for 200 epochs. We used 60% of the nodes for training, 20% for validation, and 20%

for testing. In addition, we used an inductive setting where test nodes are unseen to

the model during the training phase.
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Performance of GNN-SHS on Synthetic Dataset

Tracking-SHS algorithm works for a single edge deletion update. Therefore, we analyze

GNN-SHS performance on a single edge deletion update only so that we can compare

the speedup of GNN-SHS over Tracking-SHS algorithm. To determine the speedup of

the proposed GNN-SHS model over the proposed Tracking-SHS algorithm, we start

from the whole network and arbitrarily delete 50 edges; we only delete one edge at

a time. In this way, we obtain multiple snapshots of graph. We set the value of k

(number of SHS) to 50 and make use of the trained GNN-SHS model to discover

SHS nodes in each new snapshot graph. We calculate the geometric mean of the

speedup achieved by GNN-SHS over the Tracking-SHS algorithm. Table 6.6 reports

the classification accuracy (SHS detection accuracy) achieved by GNN-SHS on various

synthetic graphs. GNN-SHS achieves a minimum accuracy of 94.5% on Preferential

Attachment graph PA(500) and 86% classification accuracy for Erdos-Renyi graph

ER(250, 0.01). The results from the table show that graph neural network-based

models achieve high SHS classification accuracy.

Table 6.7 reports the speedup achieved by the proposed GNN-SHS model over the

Tracking-SHS algorithm. GNN-SHS model achieved high speedup over the Tracking-

SHS algorithm while sacrificing a small amount of accuracy. The proposed model

GNN-SHS is at least 31.8 times faster for ER(250, 0.01) network and up to 2996.9

times faster for PA(1500) over the Tracking-SHS algorithm, providing a considerable

efficiency advantage. The geometric mean speedup is always at least 37.5 times, and

the average speedup over all tested datasets is 671.6 times. Results show that our

graph neural network-based model GNN-SHS speeds up the SHS identification process

in dynamic networks. In addition, it has been observed from the results that the

speedup increases as network size increases, e.g., for PA graphs, the geometric mean

speedup is 1236.4 times for a graph of 500 nodes, 1930.6 times for a graph with 1000

nodes and 2639.7 times for a graph with 1500 nodes. In Theorem 6.2, we showed that

the depth of GNN-SHS should be at least Ω(n2/ log2 n) to solve the SHSs problem.
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Table 6.6: Classification accuracy of GNN-SHS on synthetic datasets.

Dataset Accuracy
PA (500) 94.5%
PA (1000) 95.33%
PA (1500) 96.5%
ER (250, 0.01) 86%
ER (250, 0.5) 90%
ER (500, 0.04) 87%
ER (500, 0.5) 92%

Table 6.7: Speedup of GNN-SHS model over Tracking-SHS algorithm over 50 edge deletions
on synthetic datasets.

Dataset Geometric Mean Min Max
PA (500) 1236.4 1012.5 1532.7
PA (1000) 1930.6 1574.2 2141.4
PA (1500) 2639.7 2432.1 2996.9
ER (250, 0.01) 37.5 31.8 40.2
ER (250, 0.5) 287.3 263.6 301.2
ER (500, 0.04) 368.2 354.5 379.3
ER (500, 0.5) 2466.6 2015.3 2845.9
Mean (Geometric) 671.6 584.1 745.9

Nevertheless, a deeper graph neural network suffers from an over-smoothing problem

[103, 158], making it challenging for GNN-SHS to differentiate between the embeddings

of the nodes. In order to avoid the over-smoothing problem, we only used 2 layers in

our GNN-SHS model.

Performance of GNN-SHS on Real-world Dataset

We perform experiments on real-world datasets to determine the proposed model GNN-

SHS performance for incremental and decremental batch updates. In the literature,

no solution discovers SHSs for incremental and decremental batch updates; therefore,

we can not compare our results with other solutions. We only report the results

obtained from our experiments. We set the value of k = 5 (number of SHSs). For each

real-world dataset, we initiate with the whole network and then arbitrarily delete 5

edges from the network and add 5 edges to the network at once. In this manner, we

obtain a snapshot of the graph. We then use our trained model GNN-SHS to discover
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Table 6.8: Run time and classification accuracy of GNN-SHS on real-world datasets.

Dataset Run time (sec) Accuracy
Dolphin 0.002 76.92%
Football 0.009 86.96%

SHSs in the new snapshot graph. Our empirical results in Table 6.8 show that our

model discovers updated SHSs in less than 1 second for both Dolphin and American

College Football datasets. Besides, our model achieves high classification accuracy in

discovering SHSs for batch updates.

6.8 Chapter Summary

The structural hole spanner discovery problem has various applications, including

community detection, viral marketing, etc. However, the problem has not been

studied for dynamic networks. In this chapter, we studied the SHS discovery problem

for dynamic networks. We first proposed an efficient Tracking-SHS algorithm that

maintains SHSs dynamically by discovering the affected set of nodes whose connectivity

score updates as a result of changes in the network. We proposed a fast procedure

for calculating the scores of the nodes. We also extended our proposed single edge

update Tracking-SHS algorithm to a batch of edge updates. In addition, we proposed

a graph neural network based model GNN-SHS, that discovers SHSs in the dynamic

networks by learning low-dimensional embedding vectors of nodes. Finally, we analyzed

the performance of the Tracking-SHS algorithm theoretically and showed that our

proposed algorithm achieves a speedup of 1.6 times over recomputation for a particular

type of graph, such as Preferential Attachment graphs. Besides, our experimental

results demonstrated that the Tracking-SHS algorithm is at least 3.24 times faster

than the recomputation with static algorithm, and the proposed GNN-SHS model is

at least 31.8 times faster than the comparative method, demonstrating a considerable

advantage in run time.
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Chapter 7

Conclusion

In this thesis, we studied the problem of designing effective, efficient and scalable

approaches for discovering bottleneck nodes and edges in the network. We aim to

improve the overall network resilience by focusing on cyber defense and information

diffusion application domains. Along this line, this thesis investigated two critical

graph-combinatorial optimization problems. We first studied a cyber defense graph-

combinatorial optimization problem, where we addressed the problem of hardening

active directory systems by discovering bottleneck edges in the network. We then

investigated the problem of identifying bottleneck structural hole spanner nodes, which

are crucial for information diffusion in the network. We transformed the problems into

graph-combinatorial optimization problems and designed machine learning approaches

for discovering bottleneck nodes and edges essential for enhancing network resilience.

This chapter first summarizes the key findings of this thesis and later suggests future

research directions.

7.1 Thesis Summary

The key contributions of this thesis are summarized as follows.
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1. In Chapter 3, we focused on designing defensive policies to discover bottleneck

edges that can be blocked to defend active directory graphs. We studied a

Stackelberg game model between one attacker and one defender on an AD graph.

The attacker aims to maximize their chances of reaching the domain admin, and

the defender seeks to block a constant number of edges to minimize the attacker’s

success rate. We first showed that the problem of computing an optimal attacking

and defensive policy is #P-hard; therefore, intractable to solve exactly. We

proposed a kernelization procedure that converts the AD attack graph into a

smaller condensed graph. We train a neural network to solve the attacker’s

problem and design an evolutionary diversity optimization based policy to solve

the defender’s problem of determining which edges to block. Once the neural

network is trained, it acts as a fitness function for the defender’s policy. On the

other hand, the defender’s policy generates a diverse set of blocking plans that

are used to train the neural network. The diversity of training samples plays

a crucial role in training the neural network and prevents the neural network

from getting stuck in the local optimum. Overall, the attacker’s and defender’s

policies assist each other in improving. Our experimental results on synthetic

AD graphs demonstrate that the proposed approach generates effective defensive

plans.

2. In Chapter 4, we proposed another effective and scalable edge-blocking policy

for hardening large-scale active directory graphs. We studied a Stackelberg game

model between one attacker and one defender on an AD graph in configurable

environment settings. Each environment configuration denotes an edge-blocking

plan. The defender aims to find the best environment configuration for defending

the AD graphs. In contrast, the attacker plays against the environment configu-

rations for devising an attacking policy to maximize their chances of successfully

reaching the domain admin. We proposed a reinforcement learning based policy

to solve the attacker’s problem and a critic network assisted evolutionary diversity
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optimization based policy to solve the defender’s problem. At regular intervals,

the defender evaluates the environment configurations, replicating those that are

good for the defender and discarding the bad ones. The attacker and defender

play against each other parallelly. Our extensive empirical results show that the

proposed defensive policy is scalable to large AD graphs, accurately approximates

the attacker’s problem and generates effective defensive plans.

3. The increasing size of networks poses a significant runtime challenge to the

existing solutions for discovering SHS nodes in large-scale networks. Moreover,

conventional approaches fail to discover SHS nodes across diverse networks.

Therefore, in Chapter 5, we proposed effective and efficient graph neural network

models for discovering SHS nodes in large-scale and diverse networks. We first

designed GraphSHS, a graph neural network model to discover SHS nodes in

large-scale networks. GraphSHS utilizes the network structure and node features

to learn the SHS nodes in the network. GraphSHS considers an inductive

setting where the model is generalizable to new nodes of the same graph or new

graphs from the same network domain. In addition, we proposed another graph

neural network model, Meta-GraphSHS, to identify SHS nodes across diverse

networks. Meta-GraphSHS model is based on the concept of Meta-Learning. The

model learns generalizable parameters from diverse graphs in order to create a

customized model that adapts its parameters according to the new unseen graphs.

Theoretically, we proved that the depth of our proposed graph neural network

models should be at least Ω(
√
n/ log n) to discover SHS nodes accurately. Our

experimental results demonstrate that the proposed models are highly efficient

and effective in discovering SHS nodes in large-scale and diverse networks.

4. Real-world networks are highly dynamic in nature and change over time, due

to which bottleneck SHS nodes also change. Currently, there is no solution

that identifies SHS nodes in dynamic networks. Moreover, traditional SHS

identification algorithms are considerably time-consuming and may not work
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efficiently for dynamic networks. Therefore, in Chapter 6, we developed efficient

approaches for discovering SHS nodes in dynamic networks. We first designed

a decremental Tracking-SHS algorithm that dynamically updates Top-k SHS

nodes in the network. The algorithm reduces the number of re-computations

by discovering affected nodes due to updates in the network and performing

re-computations for the affected nodes only. In addition, we proposed GNN-SHS,

a graph neural network model to identify SHS nodes in dynamic networks. GNN-

SHS considers the dynamic network as a sequence of snapshots and discovers

SHS nodes in these snapshots. The GNN-SHS model is able to discover SHS

nodes for incremental and decremental edge updates of the network. In order to

determine the efficiency of our proposed Tracking-SHS algorithm, we performed

a theoretical analysis of the algorithm, and our results proved that the Tracking-

SHS algorithm attains high speedup over static algorithms. In addition, we

performed experiments on various synthetic and real-world datasets, and our

results demonstrate that the proposed approaches achieve high speedup over

re-computations.

7.2 Future Research Directions

This thesis makes significant contributions towards enhancing network resilience by

discovering key nodes and edges in the network. Moreover, this thesis also identified

several possible research directions that can be explored in future. Some of the future

research directions are discussed below:

• Determining hardness of problem - defending exact tree-like active

directory graphs. In this thesis, we proved that the problem of computing

optimal defensive policy is #P-hard. However, we can explore some special cases

in order to determine the hardness of the problem, such as when the active

directory graph is an exact tree. We can consider using Monte Carlo tree search
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algorithms [39] or graph neural networks [130] to design defensive policies for

defending such AD graphs.

• Hardening dynamic active directory graphs. In Chapter 3 and Chapter

4, we devised various defensive policies for defending active directories in static

graphs. However, active directory graphs are highly dynamic in nature, where

a large number of edges are added to the network whenever a user logs in to

an account/computer. One future direction is to design defensive policies that

can handle large-scale dynamic active directories. We can consider exploring

continual learning [118], meta-learning [144] or reinforcement learning [90] for

defending dynamic active directory graphs.

• Discovering structural hole spanner nodes in dynamic networks by

efficiently updating node embeddings. We designed a graph neural network

model in Chapter 6 to discover SHS nodes in dynamic networks by considering

the network as a sequence of snapshots. Another efficient approach could be

to compute the embedding vectors of the nodes and then update the node

embeddings whenever there are changes in the network. Therefore, in our future

work, we will consider designing graph neural network models that discover SHSs

in dynamic networks by efficiently updating the node embeddings whenever there

are updates in the network.

• Incremental maintenance of structural hole spanner nodes in dynamic

networks. In Chapter 6, we designed an algorithm for decremental maintenance

of SHS nodes in dynamic networks and provided a theoretical analysis of the

speedup achieved by the algorithm. Along this line, another research direction

could be designing incremental algorithms for maintaining SHS nodes in dynamic

networks. We can use various data structures, such as trees and disjoint-set

[63], to store intermediate data of nodes and later use this data to find patterns

between old and new scores of the affected nodes in order to efficiently update

structural hole spanner nodes in dynamic networks.
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