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A B S T R A C T   

The lack of readily available methods for estimating high-resolution near-surface relative humidity (RH) and the 
incapability of weather stations to fully capture the spatiotemporal variability can lead to exposure misclassi
fication in studies of environmental epidemiology. We therefore aimed to predict German-wide 1 × 1 km daily 
mean RH during 2000–2021. RH observations, longitude and latitude, modelled air temperature, precipitation 
and wind speed as well as remote sensing information on topographic elevation, vegetation, and the true color 
band composite were incorporated in a Random Forest (RF) model, in addition to date for capturing the temporal 
variations of the response-explanatory variables relationship. The model achieved high accuracy (R2 = 0.83) and 
low errors (Root Mean Square Error (RMSE) of 5.07%, Mean Absolute Percentage Error (MAPE) of 5.19% and 
Mean Percentage Error (MPE) of - 0.53%), calculated via ten-fold cross-validation. A comparison of our RH 
predictions with measurements from a dense monitoring network in the city of Augsburg, South Germany 
confirmed the good performance (R2 ≥ 0.86, RMSE ≤ 5.45%, MAPE ≤ 5.59%, MPE ≤ 3.11%). The model dis
played high German-wide RH (22y-average of 79.00%) and high spatial variability across the country, exceeding 
12% on yearly averages. Our findings indicate that the proposed RF model is suitable for estimating RH for a 
whole country in high-resolution and provide a reliable RH dataset for epidemiological analyses and other 
environmental research purposes.   

1. Introduction 

Relative humidity (RH) refers to the water vapor content of air and 
quantifies how far the atmosphere is from its saturation point. RH is a 
key parameter for many fields such as agriculture (Zhang et al., 2015), 
hydrology (Forootan, 2019) and climatology (Sherwood et al., 2010) as 
it contributes among others to the soil moisture, the hydrological cycle 
and the weather and climate conditions. Thus, RH plays an important 
role in plant and animal life (Xiong et al., 2017) as well as in human 
comfort and well-being (Davis et al., 2016; Yang et al., 2018). 

RH has mostly been used as a confounder or effect modifier in studies 

focusing on air temperature (Tair) (Armstrong, 2006; Zeng et al., 2017), 
or as part of an index, e.g., apparent temperature (Analitis et al., 2008). 
Nevertheless, there is evidence that RH is potentially an independent 
risk factor for mortality (Ou et al., 2014) and morbidity (Luo et al., 
2020). In epidemiology, RH data are usually retrieved from weather 
monitors. But their locations are irregularly distributed over space, 
usually in rural areas, and their number is limited. Hence, weather 
stations are inadequate to fully represent the spatiotemporal RH varia
tions in complex geo-climatic urban and rural landscapes, and by using 
their observations, error is introduced in the exposure assessment of 
study participants leading to estimates biased towards the null (Zeger 
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et al., 2000). Climate reanalysis data could be an alternative source for 
environmental health research (Mistry et al., 2022), but the resolution is 
usually coarser than 9 km and the data fail to capture the city-level 
exposure variability effectively. We therefore suggest to extend the 
methods and datasets in order to improve the predictions of RH exposure 
for people participating in epidemiological studies, such as prospective 
cohorts with data on the residential addresses of the participants. 

There is a clear methodological gap in RH modeling, especially for 
high spatiotemporally-resolved RH predictions and for timespans up to 
multiple years. Li et al. (2014) mapped RH every 3 h at 1 km by using a 
two-step interpolation procedure of re-analysis data based on a partial 
thin-plate spline (TPS) and simple kriging (Root Mean Square Error 
(RMSE) = 11.06%). The traditional interpolation techniques have 
limited efficiency when mapping meteorological exposures in spatially 
highly heterogeneous areas, and are characterized by neighbouring ef
fects on exposures predictions, without being capable of capturing 
small-scale and intra-city variations. Li and Zha (2018) used a Random 
Forest (RF) model and satellite data, to estimate RH during the summer 
of 2009 (R2 = 0.70, RMSE = 7.4%). Spatiotemporal predictors which 
could explain a large amount of the remaining RH variance, e.g., Tair, 
were not included. Longer periods and more predictors need to be tested 
to capture the full annual and inter-annual RH variability. For China, the 
RF model had better results than TPS and kriging, but improvements are 
needed for better RH variability representation, higher prediction ac
curacy and further temporal extension to the annual level. 

Remote sensing data are progressively used in environmental expo
sures modeling (Rosenfeld et al., 2017; Yao et al., 2022) being publicly 
available in high spatiotemporal resolution. There is also a growing 
body of machine learning (ML) methods applied in the field (Jin et al., 
2022; Silibello et al., 2021; Stafoggia et al., 2019). 

The specific objectives of this study were (a) to estimate highly 
spatiotemporal resolved RH for Germany based on Tair and other 
observation, remote sensing and modelled data by using a RF model, (b) 
to evaluate the model’s performance and (c) to produce a reliable 
German-wide RH dataset for subsequent epidemiological analyses and 
various research purposes. Thereby, we aimed to extend the current 
literature and provide a generalizable method for other countries to 
produce highly resolved RH datasets. 

2. Materials and methods 

2.1. Study domain 

Germany extends in an area of 357,021 km2, having a strongly 
diverse landscape and a high elevation range (− 3.54 to 2962 m). In the 
south-eastern regions, the climate is classified as warm summer humid 
continental, while in north-western regions it is characterized as 
temperate oceanic (Beck et al., 2018b). We divided Germany’s land area 
into 366,536 grid cells of 1 × 1 km resolution, following the European 
INSPIRE (Infrastructure for Spatial Information in the European Com
munity) standard for gridded datasets and using the Lambert Azimuthal 
Equal-Area (LAEA) projection, EPSG: 3035 (©GeoBasis-DE/BKG 
(2021)). 

2.2. Input data 

Large amounts of input data were incorporated in the RF modeling 
process. We used meteorological observations, remote sensing and 
spatiotemporally resolved modelled data, all retrieved from 2000 to 
2021 across the study area. 

2.2.1. RH data 
We used daily mean RH observations (DWD, 2022a) from 406 

weather stations of the German Meteorological Service (DWD) https://o 
pendata.dwd.de/climate_environment/CDC/observations_germany/ 
climate/daily/kl/historical/ (Figure S1). The RH data has been quality 

controlled by the DWD and all the needed information such as station 
location as well as relocations was included in their metadata files. 

2.2.2. Tair data 
In our previous work (Nikolaou et al., 2022), we estimated daily 

mean Tair in high-resolution (1 × 1 km) across Germany using a 
regression-based method incorporating two linear mixed models. In 
brief, we predicted Tair by calibrating the strong relationship between 
the weather stations’ Tair observations and the satellite-based land sur
face temperature (LST) also adjusting for various spatial predictors. We 
also applied a TPS interpolation in Tair data in order to achieve a full 
German-wide coverage. Extensive validation showed high performance 
(R2 ≥ 0.96) and low errors (RMSE ≤ 1.41 ◦C). 

2.2.3. Elevation data 
We downloaded elevation data at 30-arc-second spatial resolution 

https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital- 
elevation-global-30-arc-second-elevation-gtopo30, provided by the U.S. 
Geological Survey’s Earth Resources Observation Systems (EROS) Data 
Center (Gesch et al., 1999). We aggregated these data to a 1 × 1 km grid, 
including the land borders and the shorelines in the North and Baltic 
Seas to match our intended spatial resolution (Figure S2). 

2.2.4. Greenness data 
The normalized difference vegetation index (NDVI) is a proxy of 

vegetation greenness on the Earth surface, quantifying the vegetation 
cover and quality over space. We retrieved NDVI data of 1 × 1 km from 
the TERRA MODIS product MOD13A3v006 https://lpdaac.usgs.gov/pr 
oducts/mod13a3v006/ (Didan, 2015). These are monthly data - 
weighted temporal average values through the month, which is suffi
cient, as vegetation does not change considerably during a month. 

2.2.5. True color band composite data 
The visible red, green and blue light bands demonstrate how we see 

Earth’s surface from space. We retrieved the daily true color band 
composite, i.e. the surface spectral reflectance for the red (band 1), blue 
(band 3) and green (band 4) bands at 500 m spatial resolution from the 
TERRA MODIS product MOD09Gav006 https://lpdaac.usgs.gov/produ 
cts/mod09gav006/, corrected for atmospheric conditions (Vermote, 
2015). We aggregated the data to a 1 × 1 km grid, to suit the output’s 
spatial resolution. 

2.2.6. Precipitation data 
We used daily precipitation data of 1 × 1 km developed by the 

REGNIE (Regionalisierte Niederschlagshöhen) method which are pub
licly available from the DWD Climate Data Center https://opendata. 
dwd.de/climate_environment/CDC/grids_germany/daily/regnie/ 
(DWD, 2022b). REGNIE is based on the interpolated DWD weather 
station precipitation measurements, using a combination of multiple 
linear regressions and Inverse Distance Weighting (IDW), with 
orographic conditions considered (Rauthe et al., 2013). In a recent up
date, the REGNIE dataset has been substituted with HYRAS-DE-PRE 
(DWD, 2023), which shares the same methodology and references the 
identical paper by Rauthe et al. (2013). 

2.2.7. Wind speed data 
We retrieved daily mean wind speed (DWD, 2022a) of the same 406 

weather stations as for the RH data https://opendata.dwd.de/clim 
ate_environment/CDC/observations_germany/climate/daily/kl/histori 
cal/ (Figure S1). We interpolated this dataset to 1 × 1 km spatial reso
lution using TPS, since studies have suggested that TPS outperformed 
other interpolation methods such as kriging or IDW for mapping climate 
variables (Wu et al., 2013, 2015). Details regarding the spatiotemporal 
distribution and the assessment of wind speed interpolation are avail
able in the Supplementary material (Figure S3 and Table S1). 
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2.3. Modeling 

RF (Breiman, 2001) is a well-known and powerful supervised 
ensemble ML algorithm, utilized for solving both classification and 
regression tasks - based on the bagging principle. For regression, random 
sub-samples of the given dataset (i.e., the training set in most applica
tions) are selected (with replacement). Then, the algorithm constructs 
decision trees - one for every sub-sample, also including a subset of the 
specified features (i.e., the model predictors). Each decision tree will 
generate an output/prediction of the target variable. The main model’s 
output is calculated by averaging all the outputs of the individual de
cision trees. 

The RF algorithm copes greatly with big data, with potentially 
correlated predictors and their non-linearity, and with overfitting. RF is 
also considered as a robust method against outliers. 

In our study, we trained the RF model, trying to evaluate its effi
ciency in reproducing the observed RH values measured by the weather 
stations, i.e., the ground-based truth. As RF inherent robustness allevi
ates the need for complex hyperparameter tuning, we did not proceed 
with highly sophisticated methodologies for hyperparameters tuning 
but rather some trial and error by deviating from the default settings. We 
did not observe any strong differences to the model performance by 
testing different sets of hyperparameters. Eventually, we used 500 trees 
and 8 randomly sampled variables as candidates at every split (num. 
trees = 500, mtry = 8), training the model for each year separately to 
capture annual variations. The daily observed mean RH (%) at the DWD 
stations was the response variable. The predictors were our previously 
modelled daily mean Tair (Celsius), the daily red, green and blue bands 
(dimensionless), the daily mean precipitation height (mm) and the daily 
mean wind speed (m/s) as well as elevation (meters) and monthly NDVI 
(dimensionless). We also integrated the geographical coding informa
tion [i.e., longitude (◦) and latitude (◦)] to account for spatial variations 
that might not be fully represented by other spatial features in the 
model, and we included the day of the year (1–365|366) in order to 
capture daily variations in the response-predictor variables relationship. 

2.3.1. Model performance 
Ten-fold cross-validation (CV) was used to assess the model perfor

mance by randomly dividing the set of the DWD weather monitors to a 
training and a testing set (90:10) ten times. Each time, the model was re- 
fitted using the training set and then the RH was predicted in the 
respective testing set. Our aim was to estimate a full time series of RH in 
locations without weather stations and therefore in grid cells where the 
RF model was not previously trained, and consequently to simulate the 
prediction step of the modeling procedure. Regressing the observed 
mean RH vs. the predicted mean RH by the RF model’s testing set, we 
calculated the corresponding R2, RMSE, Mean Absolute Percentage 
Error (MAPE) and Mean Percentage Error (MPE) (formulations are 
written in the Supplementary), each of them ten times and then we took 
their average to represent each year’s CV-R2, CV-RMSE, CV-MAPE and 
CV-MPE. 

In the prediction step, we applied the RF model to all grid cells and 
days combinations without available RH measurements of DWD 
weather stations in order to obtain a complete RH dataset for entire 
Germany. 

2.3.2. Validation with external data 
An additional validation was conducted by comparing our daily 

mean RH predictions with measurements of an independent dense 
monitoring network during 2015–2019. The network included RH 
measurements of 4 min temporal resolution from 82 HOBO-Logger de
vices (ONSET, Type Pro v2), which were located in the city of Augsburg 
and in two adjacent counties (Augsburg county and Aichach-Friedberg) 
(Figure S4). Detailed information for the monitoring network and the 
measurements’ quality assurance can be found in the corresponding 
paper (Beck et al., 2018a). For our comparison, we aggregated the 4-min 

RH values to daily means and then 7-day averages. We generated the 
corresponding R2, RMSE, MAPE and MPE as derived from linearly 
regressing the predicted RH from the model against the observed RH 
from the HOBO-Logger monitors. 

The majority of the HOBO-Logger stations were located in the city 
center of Augsburg or close to it, where no DWD measurements were 
available in the training step of the RF model (closest stations were 
approx. 10 and 18 km apart from the city center, see Figure S4). Thus, 
we investigated the performance of the model in an area without prior 
information but of great epidemiological interest since highly populated 
implicating that more people are exposed here. 

2.4. Descriptive analyses and case study 

Descriptive statistics [mean, standard deviation (SD), minimum 
(min), first quartile (Q1), median, third quartile (Q3) and maximum 
(max)] were calculated from our German-wide RH predictions and from 
the DWD observations. We also investigated the spatiotemporal RH 
patterns over the last 2 decades, overall and by season. 

To demonstrate the improvement in our exposure assessment, we 
compared the spatial distributions of the daily mean RH predictions 
from the RF model and the daily mean RH measurements from the DWD 
stations in an urban location for the two last decades. The city of 
Regensburg covers an area of 80.76 km2 with about 150,000 in
habitants, and, as one of the study sites of the German National Cohort 
(NAKO) (German National Cohort Consortium, 2014), has also an 
epidemiological research interest. 

We performed our analysis in R, v. 4.2.2 (R Core Team, 2022). The 
RF model was developed with the R package “ranger” (Wright and 
Ziegler, 2017). 

3. Results 

Figure S5 shows the Spearman correlation coefficients for the 
models’ variables. Briefly, RH was found to be highly and positively 
associated with the true color band composite (r ≈ 0.5) while there was a 
strong negative correlation with Tair (r ≈ - 0.5). In Figure S6, we 
demonstrate the variable importance plot findings. Date played a very 
important role. We also observed that Tair and the blue band were the 
most important spatiotemporal predictors of the RF model for esti
mating RH. They were followed by precipitation, green band, wind 
speed and longitude, and then elevation, latitude, NDVI and red band. 
The order of the predictors was slightly different through the years, but 
there were main trends as described. 

3.1. Model performance 

The model achieved high accuracy [22-year average R2 = 0.83 
(range: 0.77–0.88)] and small errors [22-year average RMSE = 5.07% 
(range: 4.44%–6.27%), MAPE = 5.19% (range: 4.45%–6.93%) and MPE 
= - 0.53% (range: - 0.35% - - 0.89%), Table 1]. We observed an increase 
of the model performance (increase of R2 and decrease of errors), 
together with an increase of the total number of available weather sta
tion data over the years. Scatterplots depicting the example years with 
the lowest and highest fitting scores, specifically 2001 and 2020, have 
been included in the Supplementary material (Figure S7). Autumn 
months (September–November) had the lowest RMSE = 4.65% (range: 
3.89%–5.83%) while spring months (March–May) had the highest 
RMSE = 5.32% (range: 4.60%–6.44%) (Fig. 1). We also observed that 
predictions belonging to the lower 10% of the dataset gave higher errors 
[RMSE = 7.85% (range: 6.86%–9.28%)] compared to the predictions of 
the upper 10% of the dataset [RMSE = 5.38% (range: 4.47%–6.79%] 
(Fig. 1). The corresponding results for MAPE and MPE are available in 
the Supplementary (Figure S8 and S9). 
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3.2. Validation with external data 

We found a strong correspondence between our RH model pre
dictions and the external HOBO-Logger network measurements with a 5- 
year average R2 of 0.86 (range: 0.82–0.89) and a 5-year average RMSE 
of 5.45% (range: 5.14%–6.16%), MAPE of 5.59% (range: 5.19%–6.42%) 
and MPE of 2.98% (range: 1.82%–4.47%) for the daily average RH 

exposure (Table 2). For the 7-day average RH exposure, as expected, the 
accuracy was even higher [R2 = 0.87 (range: 0.84–0.92)] and the errors 
lower [RMSE = 4.49% (range: 4.06%–5.29%), MAPE = 4.59% (range: 
4.08%–5.51%), MPE = 3.11% (range: 1.77%–4.81%)]. Density scatter
plots confirmed the good correlation (Figure S10). 

3.3. Case study - Regensburg 

In Fig. 2, we display the average spatial RH patterns for the region of 
Regensburg for the period 2000–2021. The city area showed up to 4.5% 
lower RH values than the surrounding rather rural county area. How
ever, the variability of the daily values which will be also considered in 
subsequent epidemiological analysis is much larger than the 22-year 
average - e.g., up to 9% (randomly selected example day in 
Figure S11). Yet, the rural region was characterized by variations even 
in neighbouring tiles. The average RH exposure in Regensburg measured 
by the available DWD weather station of the region was far below the Q1 
of the RH predictions of the RF model for the region (Fig. 3). 

3.4. Spatiotemporal RH patterns 

Table 3 shows descriptive statistics of measured and modelled RH 
across Germany for 2000–2021. Germany was characterized by high RH 
values with Q1 of both DWD stations’ and model’s RH distribution to be 
71% and 71.91%, respectively. The observed and predicted 22-year 
average RH derived by the DWD stations and the RF model were 
79.05% (SD = 12.38%) and 79.00% (SD = 10.46%), respectively. 

Fig. 4 displays the 22-year averaged predicted RH output map of 
Germany (plot 1) which indicates spatial RH patterns, including ur
banization, mountainous regions, rivers, forests and coastlines. Metro
politan areas such as those of Berlin, Hamburg and Munich and the 
extended and other dense urban cores (e.g., from Karlsruhe to Frankfurt) 
had much lower RH values compared to the neighbouring rural settings. 

Table 1 
Prediction accuracy for the RF model: 10-fold CV results for the daily mean RH 
predictions over Germany during 2000–2021.  

Year R2 RMSE 
(%) 

MAPE 
(%) 

MPE 
(%) 

Sample size (number of 
cell-days) 

2000 0.78 5.71 5.88 − 0.64 100,699 
2001 0.78 5.53 5.50 − 0.52 121,225 
2002 0.77 5.69 5.77 − 0.59 123,946 
2003 0.81 6.27 6.93 − 0.89 123,364 
2004 0.78 5.64 5.74 − 0.61 126,604 
2005 0.81 5.21 5.26 − 0.51 134,386 
2006 0.82 5.28 5.37 − 0.65 135,600 
2007 0.84 4.81 4.89 − 0.48 139,482 
2008 0.83 5.00 5.14 − 0.52 140,135 
2009 0.82 5.06 5.15 − 0.49 142,295 
2010 0.86 4.72 4.73 − 0.39 142,629 
2011 0.86 4.91 5.04 − 0.56 141,781 
2012 0.84 4.74 4.81 − 0.48 141,820 
2013 0.84 4.80 4.72 − 0.44 140,928 
2014 0.85 4.55 4.47 − 0.38 142,641 
2015 0.85 4.91 5.03 − 0.52 142,908 
2016 0.83 4.72 4.65 − 0.41 139,491 
2017 0.83 4.69 4.64 − 0.41 143,206 
2018 0.87 4.94 5.32 − 0.57 143,026 
2019 0.85 5.09 5.37 − 0.62 140,866 
2020 0.88 4.87 5.26 − 0.53 116,670 
2021 0.85 4.44 4.45 − 0.35 116,544 
Overall 0.83 5.07 5.19 ¡0.53 133,648  

Fig. 1. Seasonal RMSE and RMSE to extremes for the model’s RH predictions in Germany during 2000–2021.  
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In Figure S12, we zoomed in the Augsburg region, which consists of the 
city center and two adjacent counties, to give an example of the high 
spatial difference between a city center and its neighbouring but less 
urbanized areas. Additionally, dense mountainous regions such as the 
Alps and Harz, coastlines as the North Sea coast and rivers as Elbe in a 
large part of it, had the highest RH values country-wide (Fig. 4). 
Furthermore, we included the spatial distribution map exhibiting the 
interannual change of RH (Figure S13) to ensure comprehensive 

coverage. Significant interannual spatial variations were not discernible 
and the spatial variability which remained mostly constant through the 
years, aligned with the patterns observed and described in the averaged 
map (Fig. 4, plot 1). Also, the temporal RH variability in Germany is 
presented for 2001–2021, by exhibiting the differences between the 
predicted RH yearly averages and the 21-year average (Fig. 4, plot 2). 
We excluded the year 2000 because the model predictions are only 
available from late February of that year due to the missing Tair values 

Table 2 
Accuracy results from the validation with external data using the HOBO-Logger daily mean RH observations and 7-day averages over the Augsburg region during 
2015–2019.   

7-day average 

Year R2 RMSE (%) MAPE (%) MPE (%) R2 RMSE (%) MAPE (%) MPE (%) 

2015 0.87 5.14 5.22 2.07 0.89 4.06 4.08 2.15 
2016 0.82 5.23 5.19 2.48 0.84 4.14 4.10 2.58 
2017 0.84 5.15 5.43 1.82 0.84 4.30 4.34 1.77 
2018 0.89 5.58 5.67 4.07 0.92 4.68 4.93 4.25 
2019 0.86 6.16 6.42 4.47 0.87 5.29 5.51 4.81 
Overall 0.86 5.45 5.59 2.98 0.87 4.49 4.59 3.11  

Fig. 2. Spatial pattern of the averaged predicted RH in Regensburg during 2000–2021.  

N. Nikolaou et al.                                                                                                                                                                                                                               



Environmental Research 238 (2023) 117173

6

until then. There were some fluctuations over the years but without 
indication of an increasing or decreasing trend. The most humid years 
were 2001 (81.30%), 2014 (81.20%) and 2013 (80.94%) while the most 
arid were 2003 (75.31%), 2020 (75.53%) and 2018 (75.52%), which are 
known hot and dry years from the recent climatological record. 

Mapping the 22-year average RH by season (Figure S14) identified 
winter and fall as the most humid seasons. High spatial RH variability 
was also observed within each season. 

4. Discussion 

In this paper, we introduced an approach for spatial and temporal 
modeling of RH using RF, a popular ML method for prediction tasks. The 
approach goes beyond the conventional interpolation of meteorological 
observations and uses several other data sources. We produced a reliable 
spatiotemporally-resolved RH dataset at 1 × 1 km spatial resolution 
across Germany for the period 2000–2021. The RF model achieved good 
performance with high predictive accuracy and low errors, validated 
with both internal data using cross-validation (R2 = 0.83, RMSE =
5.07%, MAPE = 5.19%, MPE = - 0.53%), and with independent obser
vational data (0.86 ≤ R2 ≤ 0.87, 4.49% ≤ RMSE ≤ 5.45%, 4.59% ≤
MAPE ≤ 5.59%, 2.98% ≤ MPE ≤ 3.11%). A case study for the city of 
Regensburg shows that our dataset is capable of capturing the full range 
of spatial variability of RH compared to the standard use of meteoro
logical observations. These DWD station observations could not repre
sent the high RH values of the peripheral areas in Regensburg, but also 
not the very low RH values of the city center. This clearly demonstrates 
the added value of our approach and how the use of additional data 
sources supplementing the conventional use of meteorological obser
vations improved the RH prediction. It is especially important to capture 
the RH spatial variability for assessing differences in human’s individual 
exposure in epidemiological studies. We also presented an analysis of 
the spatiotemporal RH patterns in Germany during 2000–2021. 

The RH-health relevance has not been clarified adequately (Bind 
et al., 2014). RH adverse effects on human health could be partially 
explained by its interplay with the excessive heat stress and the body 
dehydration, as described in Davis et al. (2016). During extended and 
excessive heat events such as heatwaves, the human body struggles 
against heat-driven physiological responses and a key mechanism for its 
temperature regulation is evaporation. However, when RH is high and 
therefore air contains a lot of moisture, it is difficult for the sweat to be 
relieved and thus cooling becomes insufficient. Hence, the body core 
temperature increases while this increase is associated with a variety of 
detrimental health effects (Schneider et al., 2017). Additionally, low RH 
can affect the human skin sensitivity to mechanical stress (Engebretsen 
et al., 2016). RH is also associated with the transition of vector-borne 
diseases e.g., from mosquitos and ticks (Davis et al., 2016) as well as 
with the development and stability of microorganisms in aerosols, 
facilitating airborne diseases (Božič and Kanduč, 2021). 

So far there is a literature gap in the investigation of the RH expo
sure’s direct effects on human health and the accompanying underlying 
mechanisms. Further and more detailed research is needed. Hence, it is 
critically important for epidemiologists to have access to high-resolution 
and reliable RH datasets. 

Most epidemiological studies retrieve the participants’ exposure in
formation, in this case RH, from available meteorological stations that 
do not capture the full variability of RH, especially at the city scale. In 
the Regensburg area, an epidemiological study would usually assign RH 
measurements from the station most closely located to each partici
pant’s residential address but fails to account for the spatial variability 
of RH that is actually occurring. Therefore, some measurement error 
would be introduced and the variability would be lost. Focusing on the 
city area, participants who live there would be assigned with a higher 
RH value than their actual one. At the same time, those living outside the 
city center would be assigned with RH values that are too low. This 
clearly demonstrates the urgent need for high spatiotemporal RH data
sets for health studies for less biased exposure estimates. 

Compared to other studies that use interpolation techniques such as 
TPS or kriging, our RF model is capable of reducing errors by half. Li 
et al. (2014) introduced a two-step procedure to map RH every 3 h at 1 
km resolution over China during 1958–2010. They fitted a partial TPS 
interpolation to reanalysis data, location and elevation as predictors, to 
estimate a trend surface, and then a simple kriging was applied to the 
residuals for trend surface correction. They reported a RMSE of 11.06% 
whereas our model showed a RMSE of 5.07%. More recently, Li and Zha 
(2018) also used an RF model, combining station and satellite data, to 

Fig. 3. Distribution of predicted RH in the Regensburg region for 2000–2021 (histogram in blue and corresponding boxplot above).  

Table 3 
Observed and predicted mean RH (%) over Germany during 2000–2021.  

Source Mean SD Min Q1 Median Q3 Max 

DWD stations 
(n = 406) 

79.05 12.38 3.00 71.00 81.00 88.75 100.00 

RF model (n 
= 366,536 
cells) 

79.00 10.46 13.70 71.91 80.56 87.44 100.00  
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Fig. 4. Spatiotemporal RH patterns in Germany during 2000–2021. Plot 1: Spatial patterns of the predicted RH in Germany, averaged for 2000–2021. Plot 2: 
Difference between the predicted RH yearly averages and the predicted RH 21-year average (2001–2021), German-wide. 
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estimate RH during the hot summer of 2009 over China. Elevation and 
vegetation were found to be the most important predictors for RH. 
Comparing our model with their work, it seems that our additional in
clusion of Tair, date information, precipitation and wind speed data in 
the modeling process, significantly improved the model’s performance. 
Li and Zha (2018) reported a R2 = 0.70 and RMSE = 7.4%, whereas our 
model could improve the R2 to 0.83 and lower the errors to RMSE =
5.07%. In addition, our RF model allowed us to model RH for entire 
years and not only for one season. Lately, Kloub (2022) used an 
auto-encoder residual neural network, incorporating monitor, 
re-analysis and satellite data, to estimate various meteorological factors 
including RH for China in 2015. The accuracy of their RH model 
considerably improved from 0.77 to 0.86 upon including the monthly 
index, highlighting the importance of diverse temporal variables for RH 
models (we also incorporated the day of the year index). Kloub (2022) 
achieved a fairly good model performance of R2 = 0.86, Mean Absolute 
Error (MAE) = 5.58% and RMSE = 7.41%, whereas our model yielded 
an R2 of 0.83, MAPE of 5.19%, and notably lower RMSE of 5.07%. It is 
important to consider that Kloub (2022) predicted RH only for a single 
year, while our model covered a 22-year period. For instance, we also 
reported an R2 of 0.88 for the year 2020. Significantly, the confidence 
for our model’s performance benefited from the conducted external 
validation using a dense and independent monitoring network in 
Augsburg, a distinctive advantage not present in other studies. 

This study was also subject to limitations. Satellite-derived pre
dictors like NDVI and the true color band composite may encounter 
resampling errors, whereas precipitation and wind speed data involve 
spatial interpolation errors. Nevertheless, these datasets maintain a high 
standard of quality and are extensively employed in existing literature. 
Furthermore, the external validation set was not representative of the 
whole Germany. The HOBO-Logger monitoring network was placed in 
Augsburg, South Germany. However, we used the Augsburg’s greater 
region which consists of a dense city center and two adjacent rural 
settings and therefore the validation area was characterized by high 
spatial RH variability. Additionally, we were already able to measure the 
model’s predictive accuracy country-wide due to our monitor-based 
split in the applied CV scheme (2.3.1 Model performance). The 1 × 1 
km spatial resolution could be too coarse for some studies, especially for 
local and small-scale analyses. However, as we demonstrated in the case 
study of the city of Regensburg, the RF model of 1 × 1 km provided a 
valid representation of the RH spatiotemporal variation at the city scale. 
For future analyses, we could consider downscaling methods especially 
for cities (Hough et al., 2020). 

For future applications, there is a potential to enhance the predictive 
capabilities of a RH model by augmenting its array of predictors to 
include re-analysis data or wind direction for instance, which were ab
sent in our study due to the lack of appropriate data for Germany. This 
could be advantageous if these variables achieve higher spatial resolu
tions in upcoming developments. However, we do not expect consider
able improvements as humidity is predominantly governed by 
temperature and by the vertical/horizontal mixing of wind which have 
already been integrated into our model. Additionally, other ML meth
odologies, such as eXtreme Gradient Boosting (XGBoost) or Neural 
Networks, could be explored if they align more effectively with distinct 
spatial contexts and the datasets at hand. These methodologies have 
been examined in the literature for various exposure scenarios (Ma et al., 
2020; Tian et al., 2022). 

5. Conclusion 

We showed how observation, remote sensing and modelled data can 
be combined under a RF modeling scheme to reliably estimate RH in 
high temporal and spatial resolution across a country. Our product 
contributes substantially to reduce exposure errors for subsequent 
epidemiological studies, by better representing the spatiotemporal RH 
variability. For cohort studies using geocoded participant address 

information for exposure assessment, the investigation of changes over 
time and space is considerably improved by such a spatiotemporal 
model compared to relying solely on data from measurement stations. 
We provide a reliable RH dataset for Germany and a well-founded and 
generalizable approach for RH prediction for other study domains and 
countries. 
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Božič, A., Kanduč, M., 2021. Relative humidity in droplet and airborne transmission of 
disease. J. Biol. Phys. 47 (1), 1–29. https://doi.org/10.1007/s10867-020-09562-5. 

Beck, C., Straub, A., Breitner, S., Cyrys, J., Philipp, A., Rathmann, J., Schneider, A., 
Wolf, K., Jacobeit, J., 2018a. Air temperature characteristics of local climate zones in 
the Augsburg urban area (Bavaria, southern Germany) under varying synoptic 
conditions. Urban Clim. 25, 152–166. https://doi.org/10.1016/j. 
uclim.2018.04.007. 

Beck, H.E., Zimmermann, N.E., McVicar, T.R., Vergopolan, N., Berg, A., Wood, E.F., 
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