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Abstract
The catastrophic consequences of increased power consumption, such as drastically rising  CO2 levels, natural disasters, 
environmental pollution and dependence on fossil fuels supplied by countries with totalitarian regimes, illustrate the urge 
to develop sustainable technologies for energy generation. Photocatalysis presents eco-friendly means for fuels production 
via solar-to-chemical energy conversion. The conversion efficiency of a photocatalyst critically depends on charge carrier 
processes taking place in the ultrafast time regime. Transient absorption spectroscopy (TAS) serves as a perfect tool to track 
those processes. The spectral and kinetic characterization of charge carriers is indispensable for the elucidation of photo-
catalytic mechanisms and for the development of new materials. Hence, in this review, we will first present the basics of 
TAS and subsequently discuss the procedure required for the interpretation of the transient absorption spectra and transient 
kinetics. The discussion will include specific examples for charge carrier processes occurring in conventional and plasmonic 
semiconductors.
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Abbreviations
CB  Conduction band
DFT  Density functional theory
EPR  Electron paramagnetic resonance
GSB  Ground state bleach
KWW  Kohlrausch–Williams–Watts
LUMO  Lowest unoccupied molecular orbital
LSPR  Localized surface plasmon resonance
NIR  Near-infrared
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PIA  Photoinduced absorption
PITCT   Plasmon-induced transit charge transfer
RhB  Rhodamine B
SE  Stimulated emission
SP  Surface plasmon
TAS  Transient absorption spectroscopy
TRDRS  Time-resolved diffuse reflectance spectroscopy
VB  Valence band
XPS  X-ray photoelectron spectroscopy
XUV  Extreme ultraviolet

1 Introduction

The first photocatalytic reactions were reported in the sec-
ond decade of the twentieth century (1910–1920) [1]. The 
oxidative degradation of organic molecules (e.g. dye and 
pigments) was observed on the illuminated surfaces of 
metal oxides, such as zinc oxide, ZnO, and titanium diox-
ide,  TiO2. Subsequent research focused on the development 
of photocatalytic materials for the cleaning of surfaces, air, 
and water. After Honda and Fujishima discovered in 1972, 
the photosensitizing effect of a  TiO2 electrode for the elec-
trolytic splitting of water, photocatalysis gained additional 
significance as a potential method to convert solar into 
chemical energy [2]. In a typical photocatalytic reaction, 
a photocatalyst is exposed to light, whose energy excites 
electrons from the filled valence band (VB) to the conduc-
tion band (CB). The charge carriers thus generated, that is, 
the electron in the CB (a reducing species) and the hole in 
the VB (an oxidizing species), migrate to the surface where 
they can undergo redox reactions with adsorbed molecules. 
Herein, the photocatalytic activity represents the ability 
of a photocatalyst to convert a certain amount of absorbed 
photons into the respective redox products. Many semicon-
ducting materials show the ability to directly convert light 
energy into chemical or electrical energy; however, their 
photocatalytic activity is determined by the character of the 
photogenerated charge carriers.

Just 12 years after the discovery made by Honda and 
Fujishima, the active species responsible for  TiO2 photo-
catalysis, namely electrons and holes, were characterized. 
Bahnemann et al. [3] reported in 1984 for the first time the 
spectral identification of the charge carriers formed in col-
loidal  TiO2 by means of nanosecond transient absorption 
spectroscopy (TAS, denoted at this time as flash photolysis). 
Herein, the photocatalyst was excited by a pulsed laser in 
the nanosecond range resulting in the photogeneration of 
the electron–hole pairs, which were subsequently monitored 
through their respective transient optical absorption signa-
ture. Nowadays, TAS is a standard characterization method 
and enables the explanation of material-dependent photo-
catalytic efficiencies. The decay time or rather the lifetime 

of the charge carriers varies depending on the morphological 
and physical properties of the photocatalyst, thus determin-
ing its photocatalytic activity.

Transient absorption spectroscopy has significantly 
advanced over the years, allowing the generation and 
probing of charge carriers from THz frequencies to hard 
X-rays in time regimes down to femtosecond time scales 
and beyond [4]. Several reviews and books provide excel-
lent descriptions of most time-resolved techniques [4–7]. 
Recently published reviews with a focus on the use of TAS 
for in situ and operando studies for advanced photoelectro-
chemical and photocatalytic applications are also available 
[8–10].

This review is devoted to the interpretation and under-
standing of the physical properties of charge carriers as 
observed by time-resolved optical spectroscopy, which still 
remains an important and frequently far-from-trivial scien-
tific task. The review starts with the basic principle of TAS. 
The transient absorption features of the electrons and holes 
photogenerated in organic and inorganic semiconductors are 
summarized and discussed, followed by the characterization 
of charge carrier processes in recently developed plasmonic 
materials. The second part of the review offers a discus-
sion of the mathematical and physical meaning of the tran-
sient decay kinetics and its importance for the mechanistic 
understanding of photocatalytic processes. This overview is 
intended to be helpful to those working in the field and 
should stimulate new research activities aiming to elucidate 
fundamental charge carrier processes occurring in a pho-
tocatalyst under illumination, to correlate those processes 
with the structural and optoelectronic properties and thus 
to establish a solid platform for the design of novel efficient 
photocatalysts.

2  Working principle of transient absorption 
spectroscopy

Transient absorption spectroscopy is a well-established 
method to study dynamic processes in a wide range of 
solar energy conversion materials. Time-resolved spectros-
copy as we know it today was developed in the 1950s and 
early 1960s as flash photolysis and relaxation methods, 
a development that culminated with the Nobel Prize in 
Chemistry 1967 to Porter, Norrish, and Eigen [11]. The 
fundamental idea of the method is to use a pulsed exci-
tation source, often denoted as pump source, to excite a 
sample from the ground to the excited state. The optical 
absorption of the excited state or other photogenerated 
intermediates is then spectroscopically monitored by 
a probe beam at certain time delay after its generation 
through a second excitation source. In particular, the 
probe beam intensity before I0(�) and after the excitation 
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I∗(�, �) of the sample is detected and passed to the tran-
sient recorder, oscilloscope, which allows the temporal 
resolution of the signal (see Fig. 1). Hence, the quantity 
of interest is ΔA, the difference between the ground state 
absorption A0(�) and the excited state absorption A∗(�, �).

If the experiment is conducted in transmission mode, 
ΔA is directly proportional to the concentration c of the 
photogenerated species in accordance with the Beer-Lam-
bert law:

where � is the extinction coefficient of the formed intermedi-
ate, d the beam path length, and I0 = I∗

0
.

To obtain quantitative information from TA experi-
ments, it is necessary to measure the extinction coefficients 
of the species formed in the semiconductor upon excita-
tion. For example, Durrant et al. [12] applied a spectro-
electrochemical method to determine the extinction coef-
ficient of the electron and holes in  TiO2.

If the experiments are performed in diffuse reflectance 
mode (time-resolved diffuse reflectance spectroscopy, 
TRDRS), then for the quantification of the intermediate’s 
concentrations, several considerations must be taken into 
account. For an optically dense sample, the reflected light 
is measured. The reflectance, R , is defined as the quotient 
of the incident intensity of the analyzing light, I0(�) , and 
the diffusely reflected light, J0(�) : R0(�) = J0(�)∕I0(�) . If 
the laser excitation generates a transient species that has an 
absorption at wavelength � , this will result in the decrease 
of J0(�) to J∗(�, �) , while I0(�) remains constant. Hence, 

(1)
ΔA = A∗(�, �) − A0(�) = log

(

I∗
0

I∗

)

− log
(

I0

I

)

= log
(

I

I∗

)

= �cd,

the reflectance will be reduced to R∗(�, �) . Mathematically, 
this can be summarized as: [13]:

where R∗
T
(�, �) = R∗(�, �)∕R0(�) . More detailed descriptions 

of the TRDRS working principle are available elsewhere 
[3, 13, 14].

In most TRDRS experiments, the concentration of excited 
states as a function of the distance from the sample sur-
face follows an exponential decay [13]. This is because the 
experiments are mostly performed at conditions in which the 
ratio of the number of absorber units to the number of the 
exciting photons is high; thus, a low conversion percentage 
of the ground state to the transient state is expected. For the 
description of the exponentially falling-off concentration, 
the system can be divided into a series of “thin slices”, for 
which the Kubelka–Munk model is valid. Numerical solu-
tions for this approach predict that a linear relationship exists 
between the reflectance change ( 1 − R∗

T
(�, �) ) and the total 

transient species concentration, as long as ( 1 − R∗
T
(�, �) ) 

remains below 0.1 [15].
Most time-resolved studies on the reaction dynamics 

of photogenerated charge carriers in semiconductors have 
been performed in transmission mode, on transparent col-
loidal dispersions or on transparent films [3, 16–22]. TRDRS 
allows the observation of the charge carrier dynamics of 
photocatalyst powders or opaque suspensions [23–25]. A 
major advantage is that the obtained kinetic data can be 
directly correlated with the outcome of photocatalytic tests 
with these samples, since they are used in powdered form 
in both cases.

Independently from the mode in which the TAS measure-
ments were conducted, the time-resolved absorption changes 
can be recorded as a function of the probe wavelength. The 
transient absorption spectra are obtained by plotting ΔA , 
monitored at a fixed time after the laser pulse excitation, as 
a function of the wavelength. The obtained transient absorp-
tion spectra normally contain three main contributions, the 
ground state bleach (GSB), stimulated emission (SE) and the 
so-called photoinduced absorption (PIA) arising from the 
absorption of the intermediates formed after the excitation, 
such as the excited states, positive or negative polarons, and 
trapped states (see Fig. 2).

In transient spectra, GSB appears as a negative band due 
to the depletion of the ground state occupancy (caused by 
laser excitation). Accordingly, more light can be transmitted 
after the sample was excited: I∗(�, �) > I0(�) . In luminescent 
samples, after laser excitation, the probing light can induce 
the stimulated emission (working principle of lasers) which 
results in higher light intensity reaching the detector, I∗(�, �) 
> I0(�), and thus in a negative TA band. PIA is a positive TA 
signal: here I∗(�, �) < I0(�) , since the formed intermediates 

(2)ΔR =
R0(�)−R

∗(�,�)

R0(�)
= 1 − R∗

T
(�, �),

Fig. 1  Principle of transient absorption spectroscopy. Excitation of 
a sample by a laser pulse leads to the formation of an excited state, 
the electronic transitions of which are induced by a probe beam and 
are spectroscopically monitored at a certain time delay after the 
laser pulse by a detector. Here, the probe beam intensity is measured 
before I0(�) and after excitation I∗(�, �) and are applied in Eq.  (1) 
to determine ΔA . The transient signal, ΔA , represents the difference 
between ground state A0(λ) and excited state A*(λ, τ) absorption
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harvest the probing light. PIA bands occur in such systems 
where successful charge separation has occurred; hence, 
these are transient bands which are relevant for the discus-
sion of photocatalytic processes. The detailed discussion on 
the origin of PIA bands reported for organic and inorganic 
semiconductors will be thus presented in the next section, 
where we will denote PIA as a transient absorption.

3  Transient absorption spectra 
of photogenerated electrons and holes

3.1  Conventional organic and inorganic 
semiconductors

The electrons and holes photogenerated in a semiconductor 
drive the photocatalytic redox reactions. The spectroscopic 
tracking of these charge carriers may provide important 
knowledge to elucidate the photocatalytic reaction mech-
anisms and to reveal factors influencing the efficiency of 
the initial steps in photocatalysis. Since the photogenerated 
charge carriers are transient species, their spectroscopic 
characterization requires techniques such as TAS. The analy-
sis and interpretation of the electron’s and hole’s transient 
absorption spectra are demanding and involve the separa-
tion of their transient absorption bands, knowledge of the 
intermediate’s chemical identity, and the assignment of the 
corresponding electronic transitions.

Under inert atmosphere, both electrons and holes are 
present after the excitation of the sample, and the recorded 
TA spectra are typically broad and featureless. The addition 
of an electron donor or an acceptor enables the separation 
of the individual wavelength regions where photogenerated 
electrons and holes absorb. By reacting with electron donors 
or acceptors, holes or electrons (respectively) are consumed, 
and thus their contribution to the transient absorption spec-
tra is reduced, in addition to the suppression of undesired 
recombination reactions.

Alcohols act as perfect electron donors to scavenge pho-
togenerated holes in inorganic semiconductors [26, 27]. 
For example, Tamaki et al. [27] investigated the reaction 
dynamics of trapped holes in  TiO2 with different alcohols, 
and observed a rapid decay of their transient absorption. 
The lifetime of the trapped holes in methanol, ethanol, and 
2-propanol was found to be 300, 1000, and 3000 ps, respec-
tively. Generally, it is assumed that the hole-induced alcohol 
oxidation includes the cleavage of the C–H bond, resulting 
in the formation of the respective α-hydroxyalkyl radicals, 
while the formation of the respective aldehyde occurs in 
a second step after injection of an electron into the CB of 
the semiconductor (“current doubling”) [28]. For organic 
polymers used as photocatalysts, alcohols were found to be 
less active for hole scavenging. Here, basic amines, such 
as trimethylamine or tri-ethanolamine, are most commonly 
used as electron donors [29].

Recently, combined experimental and theoretical studies 
have demonstrated the hole scavenging ability of water [30]. 
In spherical anatase  TiO2 nanoparticles, water adsorbates 
trap photogenerated holes. On the contrary, holes formed in 
faceted  TiO2 are unaffected by the presence of water. The 
low-coordinated Ti sites, present on nanoparticles, but lack-
ing on faceted surfaces, were found to play a decisive role 
in water dissociation, which contributes to hole trapping at 
low-coordinated Ti–OH sites. Hence, water molecules were 
identified as active species in realistic aqueous operation 
conditions.

A prominent example of electron scavengers is molecu-
lar oxygen, which forms upon reaction with photogenerated 
electrons a superoxide radical [31, 32]. The reduction of 
molecular oxygen by electrons trapped in  TiO2 has been 
reported to occur within less than 100 ns [21], while the 
reduction process with the free CB electrons occurs 10–100 
times slower [32, 33]. These different reaction dynamics can 
be explained by the fact that the trapped electrons are mostly 
localized at the surface and thus can be faster transferred to 
the surface bound oxygen atoms than the bulk located free 
CB electrons, although the former exhibit a lower reduction 
potential than the latter. However, to be an efficient electron 
scavenger, the reaction of the photogenerated electrons with 
the electron acceptor should be faster than the recombina-
tion. Platinum is an alternative electron scavenger, captur-
ing photogenerated electrons within a few picoseconds. A 
homogeneous deposition of Pt on the semiconductor surface 
is challenging; typically, there is an unequal distribution of 
Pt islands [3, 34]. Their formation and optical absorption 
might affect the transient absorption spectra of the electrons, 
causing misleading interpretations of the TA results [34]. 
Silver cations,  Ag+, have also been applied as electron scav-
engers. Upon reaction with photogenerated electrons, they 
are reduced to Ag [35, 36]. However, the silver nanoparti-
cles exhibit a strong plasmon absorption at around 430 nm, 

Fig. 2  A plot of ∆A vs. wavelength involving three main contribu-
tions to the transient absorption spectra
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i.e., in the wavelength region where photogenerated holes 
absorb in  TiO2 [34, 37].  Cu2+ ions have as well the ability 
to scavenge electrons, forming  Cu+ ions, which have the 
advantage that no light is absorbed at wavelengths longer 
than 350 nm [35].

In addition to the chemical scavenging of charge carri-
ers, the photogenerated electrons or holes can be extracted 
potentiostatically. Under applied cathodic bias the holes are 
scavenged, while anodic bias removes the electrons from 
the system. However, applying a bias to an electrode causes 
band bending, which might affect the trapping behavior of 
charge carriers [38]. A recently published review provides a 
broad overview on the use of transient absorption spectros-
copy for in situ and operando studies of photoelectrodes [9].

In summary, it is obvious that there is no optimal scav-
enger for the photogenerated electrons and holes. For the 
identification of the spectroscopic regions of electron and 
holes, a scavenger is indispensable. However, it must always 
be taken into account that the scavenger might cause chemi-
cal or optical changes of the studied material, and thus leads 
to wrong conclusions [39]. Table 1 summarizes the spectro-
scopic regions of photogenerated electrons (free or trapped) 
and holes obtained for various semiconductors in the pres-
ence of electron/hole scavengers.

After identifying the spectral region in which electrons 
and holes absorb, their chemical identity has to be deter-
mined to assign the transient absorption spectra to the cor-
responding transitions. Electron paramagnetic resonance 
spectroscopy (EPR), an experimental technique to monitor 
the formation of paramagnetic species, is commonly applied 
to chemically characterize the electrons and holes in a pho-
tocatalyst [90–92]. For example, in  TiO2, the electrons are 
localized at  TiIV centers converting it to a paramagnetic 
 TiIII species, characterized by g tensor components ranging 
between 1.9640 and 2.0025. In metal oxides, photogenerated 
holes are trapped at oxygen centers forming either surface 
adsorbed ·OH radicals or lattice bound  O·− radicals. The lat-
ter species show a strong EPR signal as well [93]. However, 
except for a few examples [94], most EPR measurements 
are conducted at very low temperatures, cooling either with 
liquid nitrogen or liquid helium. These conditions are very 
different to the TA experiments, so a direct correlation of the 
results is sometimes challenging.

Today, with the availability of large-scale facilities spe-
cializing in the generation of ultrashort pulses in a wide 
spectral range, like free electron lasers, or high-power laser 
facilities, femtosecond pulses can be generated from THz 
frequencies to hard X-rays [4]. This enables the probing 
of light–matter interactions over a broad range of time-, 

Table 1  Transient absorption band maxima for holes and electrons recorded in the presence of scavengers in different semiconducting materials

Material TA maxima/nm Scavengers References

htr
+ etr

− eCB
− e—donors e−-acceptor

TiO2 (colloidal) 350–550 500–650 – Polyvinyl alcohol
Dichloroacetate
SCN−

Pt [3, 20, 40–43]

TiO2 (film) 350, 520/1200 800, 770 < 1000 nm Methanol AgNO3 [17, 21, 37, 44–46]
TiO2 (powder) 430, 470–500 500–770 < 1000 nm Methanol Pt,  O2 [23, 47–51]
Ba5Ta4O15 (powder) 310 650 – Methanol – [26]
WO3 (film) 430–500 < 750 – Bias

Methanol
AgNO3
Bias

[22, 52–55]

α-Fe2O3 (film) 575–650 575 – Bias – [56–63]
ZnO (colloidal/film) – 700 – – N2O [64, 65]
Cu2O (film) > 475 – < 850 Na2SO3 AgNO3 [66]
BiVO4 (film) 470, 550, 633 – – Na2SO3

Bias
AgNO3
Fe3+

[36, 67–70]

BiVO4 (powder) 580 – 3435 Methanol
NaI

AgNO3 [71–73]

BiFeO3 (film) – – ∼ 539 – – [74, 75]
SrTiO3 (powder/crystal) 500–689 885–909/4000 – Methanol O2 [76–78]
CdS (colloidal) 470–500 300/680 – NaI

Thiophenol
Zwitterionic violo-

gen compound
[79–83]

CdSe (quantum dots) 1300–1938 900–1300/2480 – 1-Octanethiol 1,4-Benzoquinone [84, 85]
g-C3N4 (dispersions) 750 < 700 – Triethanolamine

Methanol, oxalate
Bias

Pt
AgNO3

[86–89]
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energy-, and length-scales. Hence, Baker et al. [95] applied 
femtosecond extreme ultraviolet (XUV) spectroscopy in 
conjunction with X-ray photoelectron spectroscopy (XPS) 
to study ultrafast surface electron dynamics in NiO. XUV 
spectroscopy probes core-to-valence transitions, which are 
element-specific and provide detailed electronic structure 
information, including the transient oxidation state of the Ni 
metal centers. The findings from this study resolved impor-
tant questions related to the mechanisms of carrier trapping 
and subsequent recombination in NiO, and provided param-
eters for the design of efficient materials.

After the chemical identity of the charge carriers was 
clarified, the corresponding electronic transitions must be 
assigned. In general, free electrons are delocalized within 
the CB [21, 96]. After the absorption of light with certain 
energies, the free electrons can be excited from a lower state 
in the CB to a higher state in the CB, known as an inter-
band transition. These transitions are usually observed in the 
infrared range [21]. The energy levels of the trapped charge 
carriers are normally located within the band gap [21, 96]. 
For trapped electrons, their optical transitions correspond 
to the excitation from the trap state to the CB. For  TiO2, 
the localized  Ti3+ electrons undergo d–d transitions upon 
excitation [97]. The possible transitions of trapped holes  are 
still controversial. Trapped holes represent defect electrons 
(missing electrons at a certain energy state). In the case of 
metal oxides, holes correspond to oxygen centered radicals, 
which could originate either from terminal hydroxyl groups 
or lattice oxygen [98]. The TA of these radicals can be attrib-
uted either to transitions from the trap states to the CB, form-
ing unstable O atoms in the lattice, or from the VB to the 
trap states. Henderson et al. assumed that the latter transi-
tion may not be optically allowed [96]. However, recently 

published DFT (density functional theory) calculations on 
 TiO2 demonstrate that the TA of trapped holes is due to 
the transition of electrons from the VB to trap states [97]. 
Fig. 3 shows the comparison of experiments and theoretical 
calculations, with the corresponding electronic transitions 
responsible for the TA spectra of electrons and holes trapped 
in  TiO2.

In summary, we can conclude that TAS is an excellent 
tool to track the short-lived photoactive species. However, 
it should be considered that the observed transient spectra 
might be affected by photothermal effects [100] and irre-
versible changes of the semiconductor caused through laser 
excitation. For example, Schneider et al. [51, 101] observed 
irreversible changes of  TiO2 powders induced by the laser 
excitation in TRDRS, related to the formation of nonreac-
tive trapped electrons accompanied by the release of oxy-
gen atoms from the  TiO2 matrix. The irreversible changes 
were identified by means of UV–Vis and electron paramag-
netic resonance spectroscopies. Moreover, in the case of 
pure anatase samples, some  TiO2 nanoparticles located in 
the inner region showed a phase transition to rutile. Fur-
thermore, the laser-induced irreversible changes drastically 
affected the transient signals. In case of  TiO2, a considerable 
deceleration of the decay kinetics and a strong increase of 
the TA signal recorded in the wavelength region where the 
trapped holes absorb were found. Although for anatase sam-
ples, such changes disappear at weak excitation conditions,  
in the case of rutile, they cannot be avoided.

3.2  Plasmonic semiconductors

With the rapid development of semiconductor-related nano-
science, a new class of low-cost plasmonic semiconducting 

Fig. 3  a Experimental transient absorption spectra after high inten-
sity excitation, reprinted from reference [99]. Copyright 2010 Else-
vier. b Computed absorption spectra of the  (TiO2)38– and  (TiO2)38+ 
clusters, representing an excess electron and excess hole, respectively, 
in the relaxed D1,e/D1,h (orange solid and green dashed curves) and 
unrelaxed S0 geometries (blue dashed and green dotted curves). The 

solid blue line is the sum of the trapped electron, trapped hole, and 
CB electron contributions. Inset: Electronic transitions of the trapped 
holes, from VB to trap state and of the trapped electrons from the trap 
state to the CB, reprinted from reference [97]. Copyright 2016 Amer-
ican Chemical Society
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materials for solar fuel generation has emerged. Plasmonic 
semiconductors offer new opportunities to overcome some 
limitations of conventional semiconductors and plasmonic 
metals. These are heavily doped semiconductors, with a 
high concentration of free charge carriers. Similar to metals, 
these free charge carriers can be excited upon illumination, 
a process known as localized surface plasmon resonance 
(LSPR). The LSPR phenomenon has been observed in many 
heavily doped semiconductor nanostructures and quantum 
dots, including  Cu2−xS, B-/P-doped Si,  Cu2−xSe, Sn–In2O3, 
 MoO3−x, and  Bi2O3−x [102–108]. Unlike metals, plasmonic 
semiconductors show broadly tunable plasmon frequen-
cies (from visible to infrared) and rich surface chemistry. 
Especially, the infrared activity of plasmonic semiconduc-
tors is of high interest as it allows to capture an untapped 
energy source that accounts for 49% of solar irradiation, and 
thus opens a new avenue for green fuel generation by fully 
exploiting solar light.

By means of TAS, Zhou et al. [109] demonstrated for 
the first time plasmon-driven hot electron generation, and 
transfer from plasmonic metal oxide nanocrystals to sur-
face adsorbed molecules. Here, F and In co-doped CdO 
nanocrystals were excited with a 1650 nm laser pulse, and 
the hot electron injection to the adsorbed electron acceptor 
(Rhodamine B, RhB) was probed in the visible wavelength 
region (400–700 nm). A strong ground state bleach band 
matching exactly with RhB absorption, and transient absorp-
tion at ~ 412 nm arising from the RhB radical anion, were 
observed (see Fig. 4a). The analysis of RhB GSB kinetics 
revealed an electron transfer time of < 50 fs (rise) and 407 fs 
for a subsequent back electron transfer process (decay). 
Together with the excitation wavelength- and power-depend-
ent studies, the authors provided a mechanistic picture of the 
process occurring upon infrared light illumination (Fig. 4c). 
After photoexcitation, the plasmon resonance damps its 

energy and excites electrons from the states near Fermi level, 
Ef, thus depopulating those states in < 10 fs through Landau 
damping. Subsequent indirect hot electron transfer from the 
plasmonic semiconductor occurs before electron thermali-
zation. The number of hot electrons above the RhB low-
est unoccupied molecular orbital (LUMO) was found to be 
tunable via the excitation fluence (energy per excited area).

The rich surface chemistry of plasmonic semiconductors 
enables the coupling not only with molecules as shown in 
the aforementioned example but also with other photoactive 
semiconductors. Plasmonic semiconductor nanostructures 
can be easily assembled onto active supports through a fac-
ile wet chemical method. Zhang et al. [110] have fabricated 
 W18O49 nanowires (as branches) onto  TiO2 electrospun 
nanofibers (as backbones). These materials exhibited plas-
mon enhanced photocatalytic activity for hydrogen genera-
tion from ammonia borane upon excitation by low-energy 
infrared photons. For the elucidation of the photoinduced 
processes, TAS was performed in combination with theo-
retical calculations. The 800 nm excitation of pure  W18O49 
resulted in a broad transient absorption band with a maxi-
mum at 1045 nm. This transient absorption was assigned to 
the LSPR, by which free electrons around the Fermi level 
could reach a virtual high-energy surface plasmon (SP) state 
to form energetic hot electrons. When  W18O49 was coupled 
with  TiO2 to form a branched heterostructure, the transient 
absorption disappeared. This observation indicated the 
LSPR-excited hot electron transfer from  W18O49 branches 
to the adherent  TiO2 backbones. A thorough kinetic analysis 
of the transients monitored at various wavelengths confirmed 
the hot electron transfer process, with fast rate constants of 
3.8 ×  1012 to 5.5 ×  1012  s−1. Such an ultrafast transfer process 
should hinder the relaxation of hot electrons to low energy 
levels in plasmonic  W18O49 and therefore boost the genera-
tion of active electrons for executing the catalytic reaction.

Fig. 4  a Transient absorption spectrum of F and In co-doped CdO 
and RhB showing RhB ground state bleach (GSB) and anion radi-
cal induced transient absorption. b Transient absorption kinetics of 
RhB GSB (empty circles) and the exponential fitting (blue line) in 
F and In co-doped CdO–RhB complex.  c) Scheme of hot electron 
transfer with two excitation energies (0.75 and 0.85 eV) after Landau 
damping before electron thermalization. The gray region shows the 

undisturbed filled states in the conduction band. The orange and blue 
regions represent the excited electrons and empty states left, respec-
tively, after Landau damping under different excitation photon ener-
gies. Higher excitation energy leads to more electrons above the bar-
rier height. Reprinted from reference [109]. Copyright 2020 Springer 
Nature
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Among the development of photocatalysts based on the 
plasmon-induced hot electron transfer, materials conducting 
plasmon-induced hole transfer were also studied. A novel 
series of p-type semiconductors such as copper chalcoge-
nide nanocrystals, which show excellent tunable hole-based 
LSPR absorption in the near-infrared (NIR) region, have 
attracted much attention as candidates for infrared-respon-
sive photocatalysts [111, 112]. For example, time-resolved 
infrared spectroscopy enabled the direct observation of hot 
hole transfer in a LSPR-excited CdS/CuS system [113]. Fig-
ure 5a, b show the transient absorption signal obtained for 
CuS and CdS/CuS upon excitation with 1200 nm laser pulse. 
The observed bleaches in both systems were attributed to the 
LSPR bleaching caused through LSPR-excitation-induced 
sequential events such as hole dephasing, hole–hole scat-
tering, hole–phonon coupling, and lattice heat dissipation. 
In both systems, a blue shift of the bleaching signals in 
comparison to the LSPR band occurred. The authors have 
attributed this phenomenon to the change in the concentra-
tion of holes induced either by trapping processes or by hole 
transfer from CuS to CdS in the heterostructure. A further 
evidence for the hole transfer from CuS to CdS was a broad 
and featureless absorption derived from the trapped holes in 
the CdS phases, detected as a positive signal in the visible 
region, see Fig. 5b. The kinetic analysis of the bleaching 
kinetics revealed that hot holes were not directly injected 
into CdS but instead transferred stepwise via the carrier trap-
ping state. The process was named plasmon-induced tran-
sit charge transfer (PITCT). The occurrence of this PITCT 
process enabled a long-lived charge separation (9.2 μs) with 
high quantum yields (19%). The PITCT mechanism is sum-
marized in Fig. 5c.

As the aforementioned examples demonstrate, plasmonic 
photocatalysts exhibit promising potential for enhancing the 

efficiency and solar light harvesting of important chemical 
transformations. Transient absorption spectroscopy has 
served as a perfect tool to elucidate the mechanism of the 
underlying reaction processes through the analysis of the 
transient absorption bands and decays. However, the mecha-
nism of plasmonic photocatalysis is still poorly understood 
and requires more investigation. Especially, the contribu-
tions of non-photothermal (i.e., hot carrier) and photother-
mal pathways remain a question of intense debate [114].

4  Charge carrier kinetics

4.1  Overview

The assignment of TA signals to specific species, as 
described in Sect. 3, allows extracting important qualita-
tive information from a photocatalytic system. As a further 
step, the analysis of the kinetic profiles provides quantita-
tive information on the timescale of the processes. This is 
generally done by fitting the profiles to a mathematical func-
tion that (ideally) captures the main physical characteristics 
of the system [10, 115]. Thus, the functional form of the 
profiles already provides physical insights. Moreover, the 
fitting yields kinetic parameters (e.g., rate constants) that 
can be used to characterize samples and compare different 
materials.

When approaching kinetic data, it is important to have 
in mind the approximate time scale of the different pro-
cesses. As summarized in Fig. 6 for  TiO2, while excitation 
is practically instantaneous, charge carrier trapping at the 
surface (shallow traps) occurs in a few hundred fs, while 
trapping in the bulk is considerably slower (~ 50 ps) [116]. 
Recombination starts as soon as 1 ps, and can reach the ns 

Fig. 5  Time-resolved infrared spectroscopy (TR-IR) spectral changes 
for CuS (a) and CdS/CuS (b) nanocrystals from visible to near-infra-
red regions in the microseconds (μs) time scale. c Schematic illustra-
tion of the LSPR-induced stepwise hole transfer process. The pink 
arrows mean plasmon excitation by near-infrared (NIR) light. For 
CuS NCs, the generated hot holes decayed via hole–hole and pho-
non–hole scattering (1) or ultrafast hole trapping to the shallow (2) 

or deep trapping state (3), followed by relaxation to the intrinsic hole 
state. In CdS/CuS heterostructured nanocrystals, the holes in the deep 
trapping state transferred to the valence band of the CdS phases (4, 
PITCT) and the holes in the CdS phases moved to the trapping state, 
showing structureless absorption in the visible region and recombina-
tion to the initial state. PITCT: plasmon-induced transit carrier trans-
fer. Reprinted from reference [113]. Copyright 2018 Springer Nature
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range for bulk-trapped species. Finally, interfacial charge 
transfer is strongly dependent on the specific reaction, with 
e.g., electron transfer to Pt islands occurring in ~ 10 ps, 
and molecular oxygen reduction occurring in ns to µs time 
scales. An important consequence is that, except for ultra-
fast experiments or under strong biases, recombination 
will most likely be the main observed process, as could 
be expected from the low quantum yields of photocatalytic 
reactions (typically below a few percent [117]).

Although the physics of charge carrier dynamics are 
a complicated subject, a simple picture can provide a 
good initial overview. Excitation of a photocatalyst, thus, 
leads to the formation of a bound electron—hole pair: an 
exciton. The high dielectric constant of typical inorganic 
photocatalysts (e.g.,  TiO2) shields their mutual attrac-
tion, and thus thermal energy is enough to dissociate the 
pair in two separate entities, each with a characteristic 
mobility. Subsequent encounters of the electron and hole 
results in recombination, which can then be considered as 

a bimolecular process. From chemical intuition, it can be 
expected that the kinetics of the process follows a second-
order rate law:

where [c] represents the charge carrier (electron or hole) 
concentration at time t , [c]t=0 its concentration at t = 0 (i.e., 
right after excitation), and kr the second-order rate con-
stant. Indeed, second-order kinetic profiles are commonly 
observed in TA studies of different photocatalysts [20, 51, 
118–120].

This model, however, predicts that the charge carrier con-
centration reaches zero at long times, in contrast with typi-
cal observations. This long-lived absorption has thus been 
accounted for by including an additional constant term εf ε 
[120]. This results in a functional behavior termed “second-
order with a baseline”, that is, possibly, the most widely 
applied in the analysis of TA decays:

(3)[c] =
[c]t=0

[c]t=0kr t+1
,

Fig. 6  Scheme of differ-
ent photoinduced processes 
observed in transient absorption 
studies on  TiO2 photocatalysts, 
and approximate time scales. 
Adapted with permission from 
reference [116]. Copyright 2014 
American Chemical Society
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Illustrating the complexity of recombination processes, it 
has been observed that the kinetic profiles usually depend on 
experimental parameters such as the laser pulse intensity or 
the semiconductor’s particle size. These parameters define 
the average number of photogenerated charge carriers per 
particle. Serpone et al. [20] analyzed colloidal  TiO2 sols and 
observed that, when the average number of electron–hole 
pairs per particle was lower than ~ 0.5, the decays followed 
first-order kinetics:

Contrarily, when the average number of pairs per particle 
was greater than ~ 30, the decays were fitted by the “second-
order with a baseline”, Eq. (4).

To understand this behavior, it is necessary to recall that 
the derivation of classical kinetic laws implies that the spe-
cies of interest are present in numbers large enough to con-
sider their concentrations as continuous variables. In TA 
experiments, however, the photocatalyst particles act as 
micro-reactors, where the number of electron–hole pairs is 
usually much smaller than that limit, thus rendering the basic 
assumptions of classical kinetic models invalid. The correct 
treatment then involves stochastic kinetics tools, as was real-
ized by Grätzel and co-workers in 1985 [42]. By assuming a 
Poisson distribution of electron–hole pairs in colloidal  TiO2 
particles, and an exponentially decaying survival probabil-
ity for single electron–hole pairs, it was possible to obtain 
an equation that reproduced the charge carrier decays, and 
correctly reduced to first-order and second-order rate laws 
under very low or very high initial charge carrier numbers, 
respectively.

A related stochastic approach was also used to explain the 
baseline behavior (Eq. (4)). Grela and Colussi performed 
numerical modeling of charge carrier recombination at 
the surface of colloidal  TiO2 particles, and found that the 
“baseline” is the consequence of recombination taking place 
in a 2-dimensional space, i.e., the particles surface [121]. 
Electron–hole pairs which are initially close together recom-
bine quickly, while those far apart live much longer, giving 
rise to a phenomenon known as fractal kinetics, typical of 
low-dimensional media [122]. According to this analysis, 
recombination at the surface never follows second-order 
kinetics: single electron–hole pairs decay exponentially, 
while multiple pairs decay in a second-order fashion where 
the rate constant is actually time-dependent (and thus should 
be called rate coefficient).

Processes in which the rate coefficient kr are time-depend-
ent are said to follow dispersive kinetics, since, equivalently, 
it can be considered that there is not a unique value for 
(time-independent) kr but rather a distribution of them [123]. 

(4)[c] =
[c]t=0

[c]t=0kr t+1
+ f .

(5)[c] = [c]t=0e
−kr t.

A well-known example is the model of Kohlrausch–Wil-
liams–Watts (KWW model) [124, 125]. Although it was 
initially employed in 1854 by Kohlrausch to describe the 
discharge of a capacitor [124], it can be applied to chemi-
cal reactions with dispersive kinetics, by assuming a Lévy 
distribution (approximately, an asymmetric Gaussian-like 
distribution with a ‘heavy’ tail) for kr [126]. The KWW func-
tion can then be seen as the superposition of many first-order 
reactions, each with a unique rate constant. The concen-
tration of charge carriers thus follows a so-called stretched 
exponential behavior:

where � represents the distribution width ( 0 < 𝛽 ≤ 1 ). In 
the � = 1 limit, the expression reduces to the classical first-
order rate law.

A related model is that by Albery and co-workers, ini-
tially used to fit interfacial electron transfer kinetics on semi-
conductor nanoparticles, in which the values of kr follow a 
log-normal distribution [127]:

Here � characterizes the distribution width and k0 is the 
mean rate coefficient. As � approaches zero, the dispersion 
diminishes, and the model approaches a first-order expo-
nential decay.

Sieland et al., while analyzing charge carrier decays in 
 TiO2 powders, observed that the application of the second-
order scheme leads to different kinetic parameters when 
employing different time windows [128]. To solve this 
problem, they utilized a fractal kinetic equation that can be 
understood as a second-order law, modified to account for 
dispersion in the rate constant [129]:

where h ( 0 ≤ h ≤ h ) is the parameter dictating the width of 
the distribution. By setting h = 0 the equation reduces to the 
classical second-order behavior (Eq. (3)). It is noteworthy 
that this function has correctly described transient absorp-
tion decays of  TiO2 powders spanning the 50 ns to 1 ms 
time range.

At long times, the right-hand side of the divisor in the 
fractal model (Eq. (8)) becomes negligible, reducing the 
expression to a power law dependence [123]:

where � could be associated with 1 − h in the previous equa-
tion. This model was, for instance, used by Cowan et al. 
[12] to describe charge carrier decays in the microsecond 
to second time range in nanocrystalline  TiO2 films under 

(6)[c] = [c]t=0e
−(krt)

�

,

(7)[c] ∝ ∫ ∞

0

e−(ln(kr )−ln(k0))
2
∕�2

kr
e−kr tdkr .

(8)[c] =
[c]t=0(1−h)

[c]t=0kr t
1−h+(1−h)

,

(9)[c] ∝ t−� ,
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applied bias. From a physical point of view, the function 
has been rationalized on the basis of the so-called trap-
ping—detrapping model of charge carrier transport, which, 
as continuous-time random walk simulations show [130], 
yields the same kinetic profile. Briefly, the model is based 
on an energetic distribution of trap states, in which electrons 
are continuously trapped and later de-trapped with help from 
thermal energy. The assumption of an exponential density of 
trap states leads to a power law behavior for the recombina-
tion kinetics [130, 131].

In the following, we give a more detailed view and a few 
applications for each of these models.

4.2  Classical kinetics models

We start with the simplest case, i.e., a first-order reaction 
representing the decay of a charge carrier c (an electron or a 
hole), with a rate constant kr:

The rate r for a first-order reaction in a homogeneous 
medium is:

The derivative here implies that [c] is a real variable, a 
valid assumption when e.g., dealing with an Avogadro’s 
number of molecules. However, this is not true for photogen-
erated charge carriers in transient absorption experiments, 
since laser excitation produces at most a couple hundred per 
particle. Omitting this issue for the moment, the equation 
can be integrated to yield the familiar first-order equation, 
or exponential decay:

From the physical point of view, this simple model 
could be related to primary geminate recombination, that 
is, before charge carriers migrate on separate paths. This is 
relevant for semiconductors with a low dielectric constant 
(e.g., organic), or in low temperature experiments. Expo-
nential decays are also observed in experiments with low 
average numbers of photogenerated charge carriers [20, 42, 
132]. For example, Tamaki et al. [132] analyzed transparent 
nanocrystalline  TiO2 films at different excitation intensities, 
and determined that pulses with energies below 160 nJ led 
to average numbers of photogenerated pairs of one or less 
per particle (Fig. 7). An important point is that the profiles 
measured under these conditions fall on top of each other 
upon normalization, a signature of true mono-exponential 
decays [10].

(10)c
kr
→ (recombination).

(11)r = −
d[c]

dt
= kr [c].

(12)[c] = [c]t=0e
−kr t.

When analyzing TA kinetics, it is often found that they 
can be fitted with a linear combination of exponential 
decays. This could be the result of consecutive reactions. An 
example is the situation in which charge carriers recombine 
only in their trapped state:

In this case we have:

Equation (14) is solved in the same way as Eq. (11):

For Eq. (15), assuming 
[

ctrapped
]

t=0
= 0 and kr ≠ kr,2 , after 

some algebra [133] we get:

If both cf ree and ctrapped give rise to transient absorption, 
the observed signal ΔA will be a linear combination of both 
concentrations (accounting for possibly different absorption 
coefficients, A and B):

After rearranging and grouping constants together, we 
get a functional dependence known as double-exponential 
or biphasic decay:

(13)cf ree
kr
→ ctrapped

kr,2
→ (recombination).

(14)d[cf ree]
dt

= −kr
[

cf ree
]

,

(15)d
[

ctrapped
]

dt
= kr

[

cf ree
]

− k
r,2

[

ctrapped
]

.

(16)
[

cf ree
]

=
[

cf ree
]

t=0
e−kr t.

(17)
[

ctrapped
]

=
kr [cf ree]t=0
kr,2−kr

(

e−kr t − e−kr,2t
)

.

(18)ΔA = A
[

cf ree
]

+ B
[

ctrapped
]

.

Fig. 7  Transient absorption decays for nanocrystalline  TiO2 films. 
Excitation was performed at 355 nm and detection at 2500 nm. The 
intensity of the excitation pulse varied from 590 to 40 nJ  pulse−1, 
from top to bottom. Republished with permission of the Royal Soci-
ety of Chemistry, from reference [132]; permission conveyed through 
Copyright Clearance Center, Inc.
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An alternative mechanism that results in a multi-expo-
nential decay originates when similar species decay by 
different pathways. For instance, we could consider that 
charge carriers trapped in the surface or in the bulk, while 
resulting in similar transient absorption spectra, could 
decay with different rates:

Both species decay exponentially:

If both species present transient absorption, then the 
total signal will be given by:

Combined with Eqs. (22) and (23), and grouping con-
stants, it again results in a double exponential decay:

This type of behavior has been observed, for instance, 
by Zhang et al. for colloidal CdS suspensions [134], and 
by Horikoshi et al. for oxygen-vacancy rich  TiO2 powders 
[135]. In the latter case, illustrated in Fig. 8, the authors 
analyzed the decays in the presence or absence of a micro-
wave field. For dry samples, it made no difference, but 
in wet pastes, recombination significantly slowed down 
under microwave irradiation. Moreover, the observation 
of a double-exponential decay was explained in terms of 
the recombination mechanism: the fast component was 
attributed to recombination of free or shallowly-trapped 
electrons with holes, while the slow decay was related to 
recombination of deeply trapped electrons with (free or 
trapped) holes [135].

A mechanism that does not result in multi-exponential 
profiles is that of parallel decay channels. For instance, we 
could assume that charge carriers recombine through two 
separate pathways (e.g., radiative and non-radiative):

The corresponding differential equation is now:

(19)ΔA = Ce−kr t + De−kr,2t.

(20)csurf trapped
kr,surf
→ (recombination),

(21)cbulktrapped
kr,bulk
→ (recombination).

(22)
[

csurf trapped
]

=
[

csurf trapped
]

t=0
e−kr,surf t,

(23)
[

cbulktrapped
]

=
[

cbulktrapped
]

t=0
e−kr,bulk t.

(24)ΔA = A
[

csurf trapped
]

+ B
[

cbulktrapped
]

.

(25)ΔA = Ce−kr,surf t + De−kr,bulk t

(26)c
kr
→ (recombination) and c

kr,2
→ (recombination)

(27)−
d[c]

dt
= kr [c] + kr,2[c] = (kr + kr,2)[c] = k

�

r
[c].

which can then be integrated to obtain a mono-exponen-
tial decay, with a rate constant k�

r
= kr + kr,2 . It is clear then 

that a parallel decay channel does not change the kinetic 
profile but only its apparent rate constant.

In cases where the electron—hole pairs dissociate into its 
components, is perhaps more meaningful to consider a second-
order mechanism. In the equal-concentration case, the differ-
ential equation reads:

After rearrangement and integration, we get:

There are many examples of its use from femtosecond to 
microsecond time windows [20, 51, 118–120]. An important 
observation is that the derived second-order kinetic constants 

(28)d[c]

dt
= −kr [c]

2.

(29)[c] =
[c]t=0

[c]t=0kr t+1
.

Fig. 8  Transient absorption decays for oxygen-vacancy rich  TiO2 
powders, in dry or wet conditions (top and bottom, respectively). 
Excitation was performed at 532 nm, and detection at 550 nm. Blue 
and red circles correspond to data points in absence or presence of 
microwave irradiation, respectively. Lines show double-exponential 
fittings. The material was prepared by heat-treating commercial  TiO2 
in the presence of molecular hydrogen. Republished with permission 
of the Royal Society of Chemistry, from reference [135]; permission 
conveyed through Copyright Clearance Center, Inc.
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for recombination are frequently correlated with the photonic 
efficiency of photocatalytic processes [26, 49, 136], justify-
ing its wide application despite the simplicity of the physical 
model.

4.3  Dispersive kinetics models

The previous section deals with classical first-order or 
second-order mechanisms, with a distinct rate constant for 
each elementary step. However, in reaction media that are 
not spatially and energetically homogeneous, the rate con-
stants are not unique but instead follow a distribution. A 
typical example is the hydrogen abstraction reaction by alkyl 
radicals in organic glasses [137], which instead of following 
(pseudo) first-order kinetics, is empirically described by a 
function termed stretched exponential or Kohlrausch–Wil-
liams–Watts (KWW) function [124, 125]:

where 0 < 𝛽 ≤ 1 . In the � = 1 limit, the equation is 
reduced to an exponential decay (Eq. (10)). One way to look 
at this equation is by assuming that kr is not a constant but 
instead changes over time, kr = k

�

r
(t) . Thus, the exponential 

factor in the last equation can be rewritten as:

This implies that the reaction follows a first-order equa-
tion, where the time-dependent rate coefficient k�

r
(t) equals 

kr
� t�−1 , i.e., the apparent rate constant gets progressively 

smaller over time.
An alternative interpretation assumes that the rate coef-

ficient is time-independent, and instead of a unique value, 
there is a distribution of them. In nanocrystalline photo-
catalysts, this could be caused e.g., by particle polydisper-
sity. Under this view, stretched exponential function can be 
understood as the summation of mono-exponential decays 
with different kr values, representing an ensemble of parti-
cles where recombination occurs at distinct rates [126, 138]:

Here gKWW(kr , �) is the probability distribution describ-
ing the possible values of kr and their associated probability. 
The corresponding function for the KWW model is called 
a Lévy positive alpha-stable distribution. There are closed-
form expressions only for a small set of � values, such as 
� = 1∕2 [138]. More generally, it can be calculated as [138]:

(30)[A] = [A]t=0e
−(kr t)

�

,

(31)−
(

kr t
)�

= −kr
� t� = −kr

� t�−1t = −k
�

r
(t)t.

(32)[c] ∝ e−(kr t)
�

= ∫ ∞

0
gKWW

(

kr , �
)

e−kr tdkr .

(33)
gKWW

(

kr , �
)

=
1

�
∫ ∞

0
e−u

�cos(��∕2)cos
[

kru − u�sin
(

��

2

)]

du.

From a qualitative point of view, the distribution function 
shows an asymmetric, approximately Gaussian shape, with 
a ‘heavy’ tail.

The KWW model was applied, for instance, by Kamat 
et al. [139] to describe electron injection from CdSe quan-
tum dots to  TiO2 nanoparticles, as observed in femtosecond 
transient absorption experiments, or by Durrant et al. [32], 
who studied interfacial electron transfer from  TiO2 films to 
molecular oxygen in the presence of ethanol (hole scaven-
ger). Another interesting example is that by Castellano et al. 
[140], who applied time-resolved photoluminescence and 
transient absorption spectroscopies to pyrenyl-functional-
ized CdSe quantum dots, and found stretched-exponential 
decays (with similar kinetics) for both sets of experiments 
(Fig. 9).

Other rate constant distributions lead to different mod-
els. For instance, the one from Albery and co-workers [127] 
assumes a log-normal distribution of the first-order rate 
constant. The physical meaning is that instead of a unique 
activation energy ΔG† there is a (Gaussian) distribution of 
them [126]:

Here � determines the width in energy dispersion (with 
� = 0 leading to the first-order case), while the possi-
ble values of x follow a Gaussian distribution function 
( p(x) ∝ e−x

2 ). By substituting into the Arrhenius equation, 
we get [126]:

(34)ΔG† = ΔG†

0
+ �xRT .

Fig. 9  Transient absorption decay of 2.4  nm CdSe quantum dots 
functionalized with 1-pyrene-carboxylic acid (PCA). Excitation was 
performed at 488 nm with a 2 mJ pulse, and detection at 430 nm. The 
red lines show the fit to a stretched-exponential function. The inset 
compares the fitted function to that obtained from the fitting of pho-
toluminescence data. Reprinted by permission from Springer Nature: 
Nature Chemistry, reference [140], Copyright 2017
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where k0 represents the mean rate constant. The rate law 
is obtained by summing over all possible values of kr , or, 
equivalently, all possible values of x [126]:

Changing variables, this equation can be expressed 
in terms of the explicit form of the distribution function 
gAlbery(kr ) , in a similar way as for the KWW model [126]:

With:

The equation shows that kr follows a log-normal distribu-
tion. To fit experimental data, Eq. (36) must be integrated. 
This can be done using the extended Simpson’s rule, result-
ing in [127]:

where f (�) = �−1e−(ln�)
2

(e−k0t�
�

+ e−k0t�
−�

) . Both � and k0 are 
used as fitting parameters.

This model was applied, for instance, by Draper and Fox 
to analyze the transient absorption profiles of photoinduced 
reactions over aqueous suspensions of  TiO2 powders (par-
ticularly, photooxidation reactions) [141, 142]. The distribu-
tion in rate constant values was attributed to the dispersion 
in particle radii. Among other examples [143], the Albery 
model was also employed by Peek et al. [144] to analyze the 
emission decay of Cr(VI) ions supported on silica. Interest-
ingly, they found a significant change in the dispersion width 
values � when reducing the temperature to 77 K, conclud-
ing that at low temperature there is a wider distribution of 
emitting sites, caused by a larger number of emitting sites.

The Albery and KKW models, as described above, are 
ultimately based on first-order kinetics. Other models are 
derived instead from dispersive second-order kinetics. The 
fractal model of Sieland et al. [128] can be understood in 
these terms by assuming a time-dependent rate coefficient k′

r
 

for the classical second-order expression (Eq. (29)):

The equation for the fractal model is thus:

(35)kr ∝ e
−

ΔG
†
0

RT
−�x = k0e

−�x,

(36)[c] ∝ ∫ ∞

−∞
e−x

2

e−k0te
−�x

dx.

(37)[c] ∝ ∫ ∞

0
gAlbery(kr )e

−kr tdkr .

(38)gAlbery
(

kr
)

=
e
−
(ln(kr )−ln(k0))

2

�2

kr
.

(39)

[c]

[c]t=0
=

(

0.2

3�
1
2

)

{2
[

f (0.1) + f (0.3) + f (0.5) + f (0.7) + f (0.9)
]

+f (0.2) + f (0.4) + f (0.6) + f (0.8) + e−k0t}
,

(40)k
�

r
= kr t

−h.

(41)[c] =
[c]t=0(1−h)

[c]t=0kr t
1−h+(1−h)

.

Similarly to the previous models, h ( 0 ≤ h < 1 ) describes 
the dispersion in the recombination rates, related by the 
authors to spatial heterogeneity [128]. This model was 
applied to transient absorption measurements of  TiO2-based 
powders, performed in reflectance mode on a microsecond 
time scale (Fig. 10). Although these decays could be fitted 
with the “second-order with a baseline” classical model, the 
authors noted that this only worked for short time windows, 
and the kinetic parameters depended on the chosen windows. 
This is in line with observations from other authors [145], 
and was analyzed by Grela and Colussi in their stochastic 
model [121]. The fractal model, on the contrary, was suc-
cessfully applied to different time windows and laser exci-
tation energies. Moreover, the calculated kr values were 
strongly correlated with the photonic efficiencies for NO 
degradation over different  TiO2 samples [146], although this 
correlation was not observed for other photocatalytic reac-
tions (e.g., acetaldehyde degradation).

As described above, the Albery model assumes a Gauss-
ian distribution of activation energies. Alternatively, the 
assumption of an exponential distribution ( p(x) ∝ e−x , with 
x ≥ 0 ), leads, in analogy with Eq. (37), to [126]:

(42)[c] ∝ ∫ ∞

0
e−xe−k0te

−�x

dx.

Fig. 10  Transient absorption decays observed at 500 nm for commer-
cial anatase  TiO2 powders (Top: Kronos1001, bottom: PC500). The 
orange lines show the fits to the fractal model. Excitation was per-
formed at 355 nm. Reprinted with permission from reference [128]. 
Copyright 2017 American Chemical Society
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In the limit k0t ≫ 1 , the integral can be solved to get the 
power law time dependence [147]:

With � = 1∕� and 0 < 𝛼 ≤ 1 determining the width in 
energy dispersion. In the same way as for the KWW and 
Albery models, the power law decay can be interpreted as a 
superposition of first-order processes with unique rate con-
stants [126]:

With:

where Γ is the gamma function. An interesting observation 
is that, at long times, the fractal model (Eq. (41)) reduces to 
a power law time dependence for [c].

Cowan et al. observed [12] power law decays on TA 
measurements of nanocrystalline  TiO2 electrodes under 
applied potentials. By means of the bias, the authors manip-
ulated holes lifetimes; without bias, recombination was the 
main process, and it followed power law kinetics. However, 
at positive potentials the lifetime of holes was long enough 
for water oxidation to compete with recombination. Under 
these conditions, fittings were only successful when adding 
a second decay component given by a stretched exponential 
function (Eq. (30)), and related to the consumption of holes 
by the water oxidation reaction.

4.4  Stochastic models

In both classical and dispersive kinetic models, an under-
lying assumption is that charge carrier concentration [c] 
is a continuous real-valued function of time. However, in 
nanocrystalline materials, each particle acts as a micro-
reactor where the number of photogenerated charge carriers 
is at most a couple hundred, and thus [c] is integer-valued. 
As an example, if 10 electron–hole pairs were generated in 
100 particles, the classical view would wrongly assume that 
all particles would be populated with 0.1 pairs. The cor-
rect description of 90% empty particles and 10% particles 
with one electron–hole pair (neglecting the small number 
of particles populated with two or more pairs) thus calls for 
stochastic kinetics to be employed.

Indeed, Rothenberger et al. [42] derived a stochastic rate 
equation from simple assumptions, the most important being 
that the survival probability of a single electron–hole pair 
decreases exponentially with time, and that the initial distri-
bution of pairs follows Poisson statistics. Using this expres-
sion, the authors successfully described the kinetic profiles, 

(43)[c] ∝ t−� .

(44)[c] ∝ t−� = ∫ ∞

0
gPower Law

(

kr
)

e−kr tdkr .

(45)gPower Law
(

kr
)

= Γ(�)−1
(

kr

k0

)�−1

,

including the limiting cases of very low and very high initial 
occupancies, which result in first-order and second-order 
behaviors, respectively. These approximations were deter-
mined to be valid for an average number of pairs lower than 
0.5 and larger than 30 per particle, respectively.

Another good example of stochastic treatments is that 
by Grela and Colussi, who performed numerical mod-
eling of electron–hole recombination (and reactive pro-
cesses) on the surface of colloidal  TiO2 particles [121]. 
In this simple but elegant model, the surface is modeled 
as a square 2D periodic lattice, and electron and holes are 
initially generated at random positions. Moreover, holes 
perform a random walk on the surface, while electrons 
are fixed (thus assuming that they are deeply trapped in 
colloidal  TiO2). Under these conditions, recombination in 
particles with multiple pairs follows dispersive second-
order kinetics, with the rate coefficient approaching a t−1∕2 
dependence. This behavior is explained by the inhomoge-
neity in the initial distribution of charge carriers on the 
surface: while electron and hole pairs generated at close 
positions promptly recombine, those farther apart survive 
for longer times. Electron–hole pairs with very long life-
times are then responsible for the “baseline” behavior pre-
viously mentioned (Eq. (4)). Under low average numbers 
of photogenerated electron–hole per particle, the simula-
tions correctly reproduce the experimentally observed [42] 
mono-exponential decays.

A remarkable success of this work is that, using a sin-
gle set of kinetic parameters, it can correctly fit transient 
absorption decays for  TiO2 colloids of different sizes, in 
the presence or absence of molecular oxygen, and at low 
and high laser irradiances. On the other hand, the model 
is built on assumptions (mobile holes, immobile electrons) 
that may be valid only for colloids, and not, for instance, 
for powders such as Evonik P25  TiO2, where electrons 
freely diffuse [148].

Related models based on charge carriers random walk 
were also developed, by Nelson and others [130, 131, 
149, 150], to understand recombination processes in 
dye-sensitized solar cells. They pay special attention to 
electron traps, as they have been observed to reduce elec-
tronic conductivity by several orders of magnitude [149]. 
The specific charge transport model is indeed central to 
these methods. In the trapping–detrapping model [150], 
electrons are assumed to move through delocalized states 
in the CB, sporadically getting trapped and subsequently 
released by thermal fluctuations. In both rutile and anatase 
 TiO2, the charge of photogenerated electrons produces a 
distortion of the lattice that leads to self-trapping at  TiIV 
sites (also called small polaron formation) [151–153]. 
There is thus a potential energy barrier for electron 
migration to another  TiIV site. Random walk simulations 
employing this model and an exponential distribution of 
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trap states nicely result in power law kinetics for recombi-
nation (Eq. (43)) [130], thus providing a physical basis for 
the application of this model. In addition, they can explain 
the strong dependence of the recombination rate in dye-
sensitized systems on the applied bias, and have in some 
cases shown a remarkable agreement with experimental 
data using just one fitting parameter (Fig. 11) [130].

4.5  Practical considerations

From the above discussion, it may be concluded that the 
proper description of charge carrier kinetics requires a 
stochastic analysis. However, the development and appli-
cation of such models is a big task on itself, and thus it is 
often outside the scope of TAS investigations. Moreover, 
fitting experimental data with these models is not straight-
forward, complicating the analysis. On the other hand, fit-
ting to either classical or dispersive kinetic schemes tends 
to be much easier, and thus these models are more wide-
spread, even while they are not physically as sound as 
stochastic ones.

Looking at their functional form, these different kinetic 
models may seem unrelated to each other. However, as 
described above, they are closely interrelated. Employing 
classical kinetics, and depending on the specific mechanism, 
mono-, multi-exponential, and second-order decays can be 
easily obtained (e.g., Equations (11), (18), and (28)). The 
“second-order with a baseline” function (Eq. (4)) is sim-
ply an empirical correction on the latter. As a step further 
in complexity, dispersive kinetic schemes are based on 

two alternative interpretations: the rate coefficient is time-
dependent, or equivalently, it is constant but there is a dis-
tribution on its values. Thus, a superposition of first-order 
decays in which the rate constant follows a Lévy distribu-
tion leads to the KWW model. If the rate constants follows 
instead a log-normal distribution, we obtain the Albery 
model. The assumption of a distribution in the rate con-
stants for a second-order decay leads to the fractal model. 
This model, in turn, is reduced to a power law decay at long 
times.

Depending on the system and processes of interest, any of 
these models could result in an adequate fitting to the experi-
mental data. However, as in any reaction kinetics problem, 
a good fit to a specific model does not allow to establish 
a mechanism. Often, kinetic schemes with different physi-
cal justifications result in similar functional forms [154], a 
problem exacerbated by the often noisy profiles obtained 
from TA. To illustrate this point, in Fig. 12, we show the 
transient absorption decay of a commercial  TiO2 photocata-
lyst powder; six different models yield a satisfactory fitting. 
In other situations, the simultaneous occurrence of multi-
ple processes requires the combination of several models to 
adequately describe the kinetic profiles [12].

Transient absorption spectroscopy is often used as a char-
acterization tool in sets of photocatalytic materials, where 
correlations are sought between, e.g., decay lifetimes and 
photocatalytic rates. Therefore, if a particular model ade-
quately describes the kinetics of the entire series, its appli-
cation may be useful to obtain kinetic parameters and cor-
relate with reactions rates, even though the physical basis 
of the model may not be clear. Nevertheless, in this case, 
it may be worth considering the use of a more transparent 
parameter, such as the time needed for the transient signal 

Fig. 11  Normalized transient absorption decays for  TiO2 electrodes 
under different applied electrical potentials. Black dots show experi-
mental data and gray lines are the results of continuous-time random 
walk simulations. Reprinted figure with permission from reference 
[130]. Copyright 2001 by the American Physical Society

Fig. 12  Transient absorption decay at 500  nm for a Millennium 
PC105 anatase  TiO2 powder (circles), together with fittings to six 
different kinetic models (colored lines). Excitation was performed at 
355  nm and at a 5.1  mJ   cm−2 intensity, and detection was done in 
reflectance mode
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to reach 50% of its initial value [57, 155]. The same metric 
can be used in situations where the kinetic profiles are not 
easily described by these models, such as in the presence of 
electron donors or acceptors [156].

A prerequisite to apply these kinetic models is infor-
mation on the spectral signatures on the charge carriers of 
interest (Sect. 3.1). TA signals are thus typically analyzed 
at a wavelength where contributions are mainly related to a 
specific species. Alternatively, an interesting approach that 
combines signal assignment and kinetic modeling is the so-
called global target analysis [157]. Briefly, the full spectral 
data (“global”) are fitted as a function of time, on the basis 
of a pre-established kinetic model (“target”). Although not 
commonly employed for photocatalytic systems, there are 
some recent interesting examples, such as the ultrafast stud-
ies on graphitic carbon nitrides by Corp and Schlenker [87] 
or the work of Larsen et al. on CdSe/CdS core/shell quantum 
dots [158].

5  Conclusion

In this review, we have provided an overview of the applica-
tion of the transient absorption spectroscopy to characterize 
charge carrier processes in various semiconductor nanomate-
rials serving a photocatalyst or photoelectrode. The analysis 
of photocatalysts by TAS starts with the assignment of the 
transient spectrum features to photogenerated electrons and 
holes. The main strategy to differentiate their contributions 
is to employ scavenger compounds that selectively react 
either with electrons or holes. For instance, the observed 
transient spectrum in presence of a hole scavenger can be 
attributed to photogenerated electrons. It is important to bear 
in mind, however, that the presence of the scavenger will 
most likely have a strong influence on the physicochemical 
and optical properties of the studied system. In general, there 
are no “innocuous” scavengers, and one should consider how 
the chosen scavenger may affect the system beyond their 
main function. As an alternative to chemical scavengers, if 
the semiconductor is configured as an electrode, it is also 
possible to apply bias to selectively remove charge carriers. 
For deeper characterization of the charge carriers, analysis 
with additional methods is required, such as EPR or TAS 
with advanced spectroscopic resolution.

The analysis of charge carrier kinetic profiles commonly 
entails the fitting of experimental data with an appropriate 
function. It is important to bear in mind that, in chemical 
kinetics, a good fit to a model cannot exclude the occurrence 
of other, perhaps more complex ones. In a best-case sce-
nario, the strongest conclusion that could be reached is that 
the chosen model is adequate to describe the data. It is also 
important to recognize that, not rarely, kinetic schemes with 
different physical justifications can result in similar or even 

indistinguishable functional shapes. This problem may be 
exacerbated by the rather noisy profiles normally obtained 
in TA experiments.

The interpretation of the TAS data presented in this 
review should be helpful to characterize the reaction dynam-
ics of charge carriers photogenerated in different photo-
catalysts, and thus to understand the properties of differ-
ent photocatalytic systems and to specifically develop new 
photocatalysts with higher activities, longer charge carrier 
lifetimes or other improved properties.
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