
Computational Statistics (2022) 37:2671–2692
https://doi.org/10.1007/s00180-022-01207-6

ORIG INAL PAPER

Regularized target encoding outperforms traditional
methods in supervised machine learning with high
cardinality features

Florian Pargent1 · Florian Pfisterer2 · Janek Thomas2 · Bernd Bischl2

Received: 30 April 2021 / Accepted: 7 February 2022 / Published online: 4 March 2022
© The Author(s) 2022

Abstract
Since most machine learning (ML) algorithms are designed for numerical inputs, effi-
ciently encoding categorical variables is a crucial aspect in data analysis. A common
problem are high cardinality features, i.e. unordered categorical predictor variables
with a high number of levels. We study techniques that yield numeric representations
of categorical variables which can then be used in subsequent ML applications. We
focus on the impact of these techniques on a subsequent algorithm’s predictive per-
formance, and—if possible—derive best practices on when to use which technique.
We conducted a large-scale benchmark experiment, where we compared different
encoding strategies together with five ML algorithms (lasso, random forest, gradient
boosting, k-nearest neighbors, support vector machine) using datasets from regres-
sion, binary- and multiclass–classification settings. In our study, regularized versions
of target encoding (i.e. using target predictions based on the feature levels in the train-
ing set as a new numerical feature) consistently provided the best results. Traditionally
widely used encodings that make unreasonable assumptions to map levels to integers
(e.g. integer encoding) or to reduce the number of levels (possibly based on target
information, e.g. leaf encoding) before creating binary indicator variables (one-hot or
dummy encoding) were not as effective in comparison.

Keywords Supervised machine learning · Benchmark · High-cardinality categorical
features · Target encoding · Dummy encoding · Generalized linear mixed models

B Florian Pargent
florian.pargent@psy.lmu.de

1 Department of Psychology, Psychological Methods and Assessment, LMU Munich,
Leopoldstraße 13, 80802 Munich, Germany

2 Department of Statistics, Statistical Learning and Data Science, LMU Munich, Ludwigstraße 33,
80539 Munich, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-022-01207-6&domain=pdf
http://orcid.org/0000-0002-2388-553X
http://orcid.org/0000-0001-8867-762X
http://orcid.org/0000-0003-4511-6245
http://orcid.org/0000-0001-6002-6980


2672 F. Pargent et al.

1 Introduction

While increasing sample size is usually considered the most important step to improve
the predictive performance of a machine learning (ML) model, using effective fea-
ture engineering comes as a close second. One remaining challenge is how to handle
high cardinality features—categorical predictor variables with a high number of dif-
ferent levels but without any natural ordering. While categorical variables with only
a small number of possible levels can often be efficiently dealt with using standard
techniques such as one-hot encoding, this approach becomes inefficient as the number
of levels increases. Despite this inefficiency, simpler strategies are often favored in
practice because other methods are either not known, implementations are missing or
because of a lack of trust due to missing validation studies. Although domain knowl-
edge can sometimes be used to reduce the number of theoretically relevant levels,
finding strategies that work well on a large variety of problems is highly important
for many applications as well as in automated ML (Feurer et al. 2015; Thomas et al
2018; Thornton et al. 2013). Optimally, strategies should be model-agnostic because
benchmarking encoding methods together with ML algorithms from different classes
is often necessary for applications. While a variety of strategies exist, there are very
few benchmarks that can be used to decide which technique is expected to yield good
predictive performance. Furthermore, there has recently been increasing attention on
scientific benchmark studies that compare different methods to provide a clearer pic-
ture in light of a large number of methods available to practitioners (Bommert et al.
2020; Fernández-Delgado et al. 2014), as they can provide at least partial answers to
such questions. The goal of this study is to provide an overview of existing approaches
for encoding categorical predictor variables and to study their effect on a model’s pre-
dictive performance. Following calls in the computational statistics community for
neutral benchmark studies (Boulesteix et al. 2017), which do not introduce a new
method, thus reducing the risk of cherry picking methods (Dehghani et al. 2021)
and reporting over-optimistic performance (Nießl et al. 2021), we present a carefully
designed experimental setting to discern the effect of encoding strategies and their
interaction with different ML algorithms.

1.1 Notation

We consider the classical setting of supervised learning from an i .i .d. tabular dataset
D of size N sampled from a joint distribution P(x, y) of a set of features x and
an associated target variable y. Here, x consists of a mix of numeric (real-valued
or integer-valued) features and categorical features, the latter of which we seek to
transform feature-wise to numeric features using a categorical encoding technique.
Let x be a single unordered categorical feature from a feature spaceX with cardinality
card(X ) ≤ card(N). It holds either y ∈ R (regression), y ∈ C from a finite class
space C = {c1, . . . , cC } with C = 2 (binary classification) or C > 2 (multiclass
classification). We always assume to observe all C classes in our training sample,
however we might only observe a subset Ltrain ⊆ X of a feature’s available L levels,
Ltrain = {l1, . . . , lL} for categorical features. We denote the observed frequency of

123



Regularized target encoding outperforms traditional… 2673

Fig. 1 Taxonomy of common
categorical variable encoding
techniques

class c in the training set with Nc and the observed frequency of a level l in the
training set with Nl . We investigate categorical encoding techniques to transform each
nominal feature xtrain into numerical features x̂ train which are then used for training.
If clear from the context, we use x̂l as the encoded value for an observation with level
l. Although datasets might contain multiple high cardinality features, we encode each
feature separately but with the same strategy.

1.2 Related work

We broadly categorize feature encoding techniques into target-agnostic methods and
target-based methods (Micci-Barreca 2001). Figure 1 contains a taxonomy of our
considered encodingmethods.Target-agnosticmethods do not rely on any information
about the target variable and can therefore also be used in unsupervised settings. Simple
strategies from this domain e.g. one-hot or dummy encoding are widely used—in the
scientific literature (Hancock and Khoshgoftaar 2020; Kuhn and Johnson 2019) but
also on Kaggle1 to embed variables for classical ML algorithms as well as (deep)
neural networks. Such indicator methods map each level of a categorical variable to a
set of dichotomous features encoding the presence or absence of a particular level. An
obvious drawback of indicator encoding is that it adds one additional feature per level
of a categorical variable. When indicator encoding leads to an unreasonable number
of features, levels are often mapped to integer values with random order (integer
encoding). Alternatively, the “hashing trick” (Weinberger et al. 2009) can be used to
randomly collapse feature levels into a smaller number of indicator variables (Kuhn
and Johnson 2019), or levels can be encoded by using the observed frequency of a
given level in the dataset (frequency encoding).

Target-based methods try to incorporate information about the target values asso-
ciated with a given level. Early strategies aimed to reduce the number of levels by
methods like hierarchical clustering or decision trees based on statistics of the tar-
get variable, although this has been rarely described in the scientific literature (for a
brief mention, see Micci-Barreca 2001). The basic idea of more advanced methods

1 https://www.kaggle.com.

123

https://www.kaggle.com


2674 F. Pargent et al.

called target, impact, mean, or likelihood encoding is to use the training set to make
a simple prediction of the target for each level of the categorical feature, and to use
the prediction as the numerical feature value x̂l for the respective level. An early for-
mal description of this strategy is (Micci-Barreca 2001). In simple target encoding
for regression problems, the mean target value in the training set from all observa-
tions with a certain feature level is used to encode that level for all observations:

x̂l =
∑

i :xtraini =l
ytraini

Nl
. Simple target encoding often does not perform well with rare

levels, where it tends to overfit to the training data and fails to generalize well for new
observations. In the extreme case of a categorical feature with unique values (e.g. some
hashed ID variable) studied in Prokhorenkova et al. (2018), the mean target for each
level of this feature in simple target encoding is similar to the true target value of a
single observation. Based on the encoded feature, all observations can be predicted
perfectly in the training set, even if the original variable did not contain any useful
information. ML models would place a high priority on such an encoded feature dur-
ing training but would perform badly on test data. To avoid this, practitioners often
use regularized target encoding with a smoothing parameter that shrinks those effects
towards the global mean (Micci-Barreca 2001). An alternative strategy is to combine
target encoding with cross-validation (CV) techniques (Prokhorenkova et al. 2018).

1.3 Categorical encoding benchmarks

Several small-scale studies have been previously conducted. Thoseworks did not yield
conclusive results due to narrower scopes or not considering high cardinality variables.
One benchmark (6 datasets) on encoding high cardinality features (cardinality between
103 and 9095) in combination with gradient boosting has been published on the Kag-
gle forums (Prokopev 2018). Different versions of target encoding are compared with
indicator, integer, and frequency encoding. They recommend combining the smoothed
version of target encodingwith 4- or 5-fold CV, never using simple target encoding and
using indicator encoding only for small datasets. Interestingly, frequency encoding did
perform well in many cases. Coors (2018) performed a benchmark (12 datasets) on
encoding high cardinality features (maximum number of levels per dataset between 10
and 25,847) when developing the automatic gradient boosting (autoxgboost) library
(Thomas et al 2018). They compared different variants of target encoding with inte-
ger and indicator encoding. In their benchmarks, target encoding only improved over
target-agnostic methods on 2 datasets, while it led to worse results on 4 datasets. For
a smaller number of levels, indicator and integer encoding yielded similar results. As
those studies only consider gradient boosting and a limited amount of datasets, it is
unclear whether results generalize to other datasets andML algorithms. A recent study
(15 datasets) found good performance of target encoding, but they only investigated
categorical features in regression settings (Seca and Mendes-Moreira 2021). Several
other publications studied encoding text data based on similarity (Cerda et al. 2018;
Cerda and Varoquaux 2020) and employed indicator or target encoding as baselines.
Another line of work studies variable encodings employed within specific ML mod-
els. Wright and König (2019) study treatments for categorical variables in random
forests together with dummy and integer encoding (18 datasets, cardinality between

123



Regularized target encoding outperforms traditional… 2675

3 and 38), concluding that indicator and integer encoding perform subpar in compar-
ison to methods that re-order levels according to the target variable. Prokhorenkova
et al. (2018) compared their new CatBoost variant of target encoding to smoothed
target encoding without CV, hold-out, and leave-one-out CV on 8 datasets. While the
CatBoost method performed best, hold-out came second and target encoding without
CV performed worst. An overview of encoding techniques tailored towards neural
networks (e.g. the widely adopted entity embeddings by Guo and Berkhahn 2016) is
provided inHancock andKhoshgoftaar (2020). They present a survey of indicator- and
embedding-based methods but no benchmark study. In contrast, our work is the first to
focus on high cardinality variables and techniques that are agnostic to the subsequent
ML method. We study this problem on a larger variety of datasets and settings.

The main goal of our study is to assess the impact different categorical encoding
techniques have on subsequentmodels’ predictive performance. As the optimal encod-
ing might differ depending on the ML algorithm, we consider various state-of-the-art
algorithms, regularized linear models (LASSO), random forests (RF), gradient tree
boosting (GB), k-nearest neighbors (KNN), and support vector machines (SVM). To
find default settings for high cardinality features, we analyze a variety of datasets
with different characteristics including regression, binary classification, and multi-
class classification problems. Because our methods vary in runtime and complexity,
we are interested in whether more complex methods are to be preferred, or if simpler
approaches suffice. We also study the relationship between a feature’s cardinality and
the choice of encoding technique by varying the minimum number of levels above
which features are transformed.

1.4 Contributions

Wesurvey a broad set of categorical encoding techniques and conduct a comprehensive
benchmark study with a focus on high cardinality features. We carefully design a
benchmark scenario as well as a preprocessing scheme allowing us to study 7 different
encoding techniques in conjunction with 5 commonly used ML algorithms across 24
diverse datasets, both from a classification and a regression regime. We give a detailed
description of our study design to highlight important considerations for studying high
cardinality features. Our results provide an overview of the performance of various
approaches heavily used in the literature. After a discussion of results concerning
predictive performance, we provide further analyses seeking to inform practitioners
which methods to apply. This includes an important discussion of runtimes.

2 Encodings

Pseudocode for all encoders is presented in the SupplementaryMaterial. An important
detail is how encoding techniques treat new levels during the prediction phase.

123



2676 F. Pargent et al.

2.1 Integer encoding

The simplest strategy for categorical features is integer encoding (also called ordinal
encoding). Observed levels from the training set are mapped to the integers 1 to L .
Although new levels could be mapped to L + 1 or 0, model predictions would be
arbitrary as the integer order does not carry information. Thus, we encode new levels
as missing values and use mode imputation to obtain the integer which matches the
most frequent level in the training set. Integer encoding should only be an acceptable
strategy for tree-based models, which can separate all original levels with repeated
splits.

2.2 Frequency encoding

Frequency encoding maps each level to its observed frequency in the training set
(x̂l = Nl ). This assumes a functional relationship between the frequency of a level
and the target. It implicitly reduces the number of levels, and the subsequent model can
best differentiate between levels with dissimilar frequencies. This approach is heavily
used in natural language processing to encode token or n-gram counts. We encode
new levels with a frequency of 1.

2.3 Indicator encoding

We use indicator encoding as an umbrella term for two common strategies to encode
categorical features with a small to moderate number of levels: one-hot and dummy
encoding. One-hot encoding transforms the original feature into L binary indicator
columns, each representing one original level. An observation is coded with 1 for
the indicator column representing its level (xtraini = l) and 0 for all other indicators.
Dummy encoding results in only L −1 indicator columns. A reference feature level is
chosen that is encoded with 0 in all indicator columns. For one-hot encoding, the zero
vector can be used to encode new levels which were not observed during training. For
dummy encoding, it is not useful to collapse new levels to the often arbitrary reference
category; in our case the first level in alphabetical order. We replace new levels in
the prediction phase with the most frequent level in the training set. As constructing
all indicator variables is practically infeasible for high cardinality variables, we limit
their number by collapsing rare levels beyond a varying threshold to a single other
category before encoding.

2.4 Hash encoding

Hash Encoding can be used to compute indicator variables based on a hash function
(Weinberger et al. 2009). The basic idea is to transform each feature level l into an inte-
ger hash(l) ∈ N, based on its label. This integer is then transformed into an indicator
representation, with 1 in indicator column number (hash(l) mod hash.si ze)+1 and
0 in all remaining columns (Kuhn and Johnson 2019). Some levels are hashed to the

123



Regularized target encoding outperforms traditional… 2677

same indicator representation. The smaller the hash.si ze, the higher the number of
collapsed levels. The number of indicators is often effectively lower than hash.si ze,
as some indicators can be constant in the training set (we remove those columns for
both training and prediction). Although we could jointly hash multiple features, we
hash each feature separately to improve comparability with the other encoders.

2.5 Leaf encoding

Leaf encoding fits a decision tree on the training set to predict the target based on
the categorical feature. Each level is encoded by the number of the terminal node,
in which an observation with the respective level ends up. In that way, leaf encoding
combines feature levels with similar target values. We use the rpart package in R
(Therneau and Atkinson 2018) which grows CARTs with categorical feature support
that can be pruned based on internal performance estimates from 10-fold CV. Thus,
our leaf encoder automatically uses an “optimal” number of new levels. To speed up
the computation for multiclass classification, our implementation uses the ordering
approach presented in Wright and König (2019). New levels are encoded with the
arbitrary number of the terminal nodewithmost observations during training. Encoded
values are treated as a new categorical feature and encoded by one-hot encoding.
Our leaf encoder can be thought of as a simplification of the approach suggested by
Gra̧bczewski and Jankowski (2003).

2.6 Impact encoding

An early formal description of a so-called impact, target or James-Stein encoder was
provided by Micci-Barreca (2001). The basic idea is to encode each feature level with
the conditional target mean (regression) or the conditional relative frequency of one or
more target classes (classification). The impact encoder for classification uses a logit
link and transforms the original feature into C numeric features, each representing
one target class. A smoothing parameter ε is introduced to avoid division by zero.
This parameter could be used to further regularize towards the unconditional mean.
We choose a small ε = 0.0001 as we want to compare simple target encoding with the
regularized encoder introduced next. Weights of evidence encoding from the credit
scoring classification literature (Hand and Henley 1997) is almost identical to impact
encoding, but without regularization or centering.

2.7 GLMM encoding

Smoothed target encoding (Micci-Barreca 2001) can be interpreted as a simple (gen-
eralized) linear mixed model (glmm) in which the target is predicted by a random
intercept for each feature level in addition to a fixed global intercept. This connection
is described in Kuhn and Johnson (2019). To achieve regularized impact encoding, we
implemented glmm encoders for regression, binary, and multiclass classification. The
encoded value for each level is based on the spherical conditional mode estimates. In

123



2678 F. Pargent et al.

regression, the conditional modes are similar to the mean target value for each level,
weighted by the relative observed frequency of that level in the training set (Bates
2020). The estimate of the fixed intercept can be used during the prediction phase to
encode new feature levels not observed in the training set. In multiclass classification,
we fit C one vs. rest glmms resulting in one encoded feature per class. An impor-
tant advantage of using a glmm over impact encoding with a smoothing parameter is
that a reasonable amount of regularization is determined automatically and tuning the
complete ML pipeline is not necessary.

Overfitting can be further avoided through combination with cross-validation (CV)
to train the encoder on independent observations without limiting the data to train
the MLmodel. We provide an implementation which combines target encoding based
on glmms with CV. During the training phase, we partition the data using CV into
n. f olds and fit a glmm on each resulting training set. For each observation, there is
exactly one glmm that did not use that observation for model fitting and can be safely
used for encoding. Note that the n. f olds CV models (for n. f olds > 1) are only used
during the training phase. In the prediction phase, feature values are always encoded
by a single glmm fitted to the complete training set. We study this method in three
different settings: without CV (noCV), with 5− (5CV) and with 10− fold CV (10CV).
In our study, we use the lmer (regression) and glmer (classification) functions from
the lme4 package in R (Bates et al. 2015) as an efficient way to fit glmms.

2.8 Control conditions

We include three control conditions to better understand the effectiveness of the investi-
gated encoders: The performance of a featureless learner (FL condition)was estimated
as a conservative baseline for each dataset. In regression problems, FL predicts the
mean of the target variable in the training set for each observation in the test set. In
classification problems, the most frequent class of the target within the training set
is predicted. For each dataset, we also consider a RF without encoding (none con-
dition), to compare the use of encoding methods with a natural categorical splitting
approach. The ranger (Wright et al. 2017) implementation provides efficient categori-
cal feature support by ordering levels once before starting the tree growing algorithm
(Wright and König 2019). In the remove high cardinality features control condition,
we omit features with a high number of levels above some threshold and use one-hot
encoding (without collapsing rare levels) for the remaining features. This condition
reflects on whether including high cardinality features does indeed improve predictive
performance. Otherwise, the best encoding might just provide the least impairment
compared to not including any high cardinality features. We include an overview of
available implementations in widely used ML frameworks for R and python in the
Supplementary Material.

123



Regularized target encoding outperforms traditional… 2679

3 Benchmark setup

3.1 Datasets

A table showing a detailed summary of all benchmark datasets can be found in the
Supplementary Material. We specifically investigate datasets that contain categorical
variables with a large number of levels, includingmanywell-known datasets from pre-
vious studies (Cerda et al. 2018; Coors 2018; Kuhn and Johnson 2019; Prokhorenkova
et al. 2018). All datasets can be downloaded from the OpenML platform Vanschoren
et al. (2013) based on the name or the displayed OmlId. The datasets include 8 regres-
sion, 10 binary classification, and 6 multiclass classification problems (between 3
and 12 classes). To assess the imbalance in categorical variables we computed the
normalized entropy for each categorical variable. The maximum normalized entropy
is 1, which corresponds to a uniform distribution, while a lower number indicates a
larger imbalance. Sample sizes range between 736 and 1224158 observations. The
total number of features ranges between 5 and 208. Datasets contain between 1 and
20 categorical features with more than 10 levels, with the maximum number of levels
for a feature ranging between 14 and 30,114. Missing values are present in about half
of the datasets.

3.2 High cardinality threshold

It is often assumed that advanced encoding methods are only advantageous for vari-
ableswith a high number of levels,while simple indicator encoding ismore appropriate
for a small number of levels. To reflect this in our benchmark, a high cardinality
threshold (HCT) parameter with values of 10, 25, and 125 was introduced deter-
mining varying configurations for the different encoders. For indicator encoding, the
HCT − 1 most frequent levels are encoded together with a single collapsed cate-
gory for the remaining levels. For integer, frequency, hash, leaf, impact, and glmm
encoders, only features with more than HCT levels in the training set were encoded
with the respective strategy, while the remaining categorical features were one-hot
encoded. HCT is used as the hash size in hash encoding. In the remove control con-
dition, features with more than HCT levels in the training set are removed from the
feature set.2

3.3 Machine learning pipeline and algorithms

In total, we investigate 5 ML algorithms. We kept tuning their hyperparameters to a
minimum because we were interested in the effect of the encoding techniques instead
of a comparison of ML algorithms. LASSOs were fitted with glmnet (Friedman

2 Based on the number of categorical features and levels per feature, some HCT settings were removed
from the benchmark for some combinations of dataset X encoder. This ensured that encoders always affect
at least one feature and that the remove condition always removes at least one feature. If settings where an
encoder would lead to identical encoding strategies for all features of a dataset, we only kept the condition
with the smallest HCT value.

123



2680 F. Pargent et al.

et al. 2010), internally tuning the regularization using 5-fold CV. RFs with 500 trees
were trained using ranger (Wright et al. 2017) without tuning, because RFs can be
expected to give reasonable resultswith default settings (Probst et al. 2019).GBmodels
were trained using xgboost (Chen et al. 2018), setting the learning rate to 0.01 and
determining the number of iterations using early stopping on a 20% holdout set.
KNNwas taken from package kknn (Schliep and Hechenbichler 2016) standardizing
features and using a constant k = 15 for the number of nearest neighbors, together
with an information gain filter (Brown et al. 2012) to limit the number of features to 25.
SVMswith radial basis function kernel were trainedwith liquidSVM (Steinwart and
Thomann 2017). The bandwidth and regularization parameters were internally tuned
using 5-fold CV. We used a one-vs-all approach for multiclass-settings.

The ML pipeline outlined below was used for all experimental conditions. It was
carefully designed to ensure consistent results for extreme conditions (e.g. some levels
only existing in the training data).

Imputation I Create a new factor level for missing values in categorical features
with more than two categories. Impute missing values in binary features using the
mode and missing values in numerical features using the mean feature value in the
training data.

Encoding Transform the complete categorical features by the respective encoder. In
the no encoding condition, the encoder simply passes on its input. The leaf and remove
conditions still return categorical features, while the remaining encoders return only
numerical features. Encoders only affect categorical variables above the specifiedHCT
value.

Imputation II To handle new levels observed during prediction, impute missing
values obtained during encoding.

Drop constants Drop features that are constant during training. As none of the
original datasets includes constant columns, this step only removes constant features
that are produced by the encoders or the CV splitting procedure.

Final one-hot encoding Transform all remaining categorical features via one-hot
encoding (skipped for no encoding condition).

Learner Use the transformed data from each training set to fit the respective ML
algorithm. In the prediction phase, transformed feature values (based on the trained
encoder) for new observations in each test set are fed into the trainedmodel to compute
predictions.

3.4 Performance evaluation

We perform all analyses in the open-source statistical software R (R Core 2021).
To enable a fair and reliable comparison in our study, we implemented all encoding
methods on top of the mlrCPO package (Binder 2018). The pre-processing, as well
as the final ML algorithm described in Sect. 3.3, were trained and resampled using
the mlr framework (Bischl et al. 2016) together with the batchtools package
(Lang et al. 2017) to scale the benchmark analysis to HPC compute infrastructure.

123



Regularized target encoding outperforms traditional… 2681

All materials for this study, including reproducible code for this manuscript and result
objects can be downloaded from our online repository. 3

Throughout our experiments, we use 5-fold CV to obtain estimates of predictive
performance. Depending on the target variable, we report root mean squared error
(RMSE) for regression, area under the curve (AUC) for binary classification, and its
extension AUNU (Ferri et al. 2009) for multiclass problems.

In our benchmark study, each encoding method listed in Sect. 2 is combined with
all ML algorithms (c.f. Sect. 3.3) across high cardinality thresholds (HCT) 10, 25,
125. While we only report results for the best HCT setting for each ML algorithm
× dataset combination in Sect. 4, we study the effect of the HCT parameter in more
detail in Sect. 4.5.

4 Benchmark results

Our main question is which encoding methods generally work well across various
datasets. We report results for regression and classification datasets separately, as the
associated metrics differ in scale.

For 6 datasets, some conditions with the SVM led to unexpected crashes due to
memory problems or numerical errors. We completely removed those datasets for the
SVMwhen computing ranks or other statistics that compare encodings across datasets.

4.1 Encoder performance

Mean performance estimates along with minimum and maximum performance are
reported for all datasets in Figs. 2 (regression), 3 (binary classification), and 4 (mul-
ticlass classification). To reduce the complexity induced by the hyperparameter HCT
we only display the parameter condition with the best performance for each combi-
nation of dataset × encoding × ML algorithm. The y-axis differs for all datasets and
is reversed for the RMSE for better visual comparison. For some datasets, the remove
condition performed very similar to the other encodings (e.g. ames-housing, porto-
seguro), suggesting that categorical features were not informative. Performance in
some CV folds was below the FL learner for flight-delay-usa-dec-2017 (RMSEFL =
48.81) and nyc-taxi-green-dec-2016 (RMSEFL = 2.22).

On datasets with substantive performance differences, target encoding with the
glmm encoder was generallymost effective. The worst encoder differed by ML algo-
rithm and dataset. For datasets Click_prediction_small, KDDCup09_upselling, kick,
and okcupid-stem some encoder × ML algorithm conditions performed worse than
simply removing high cardinality features.

4.2 Meta rankings and dataset clustering

To further analyze our results, we used statistical inference methods inspired by the
benchmark community in computational statistics (e.g., Hothorn et al. 2005). First,

3 https://github.com/slds-lmu/paper_2021_categorical_feature_encodings.

123

https://github.com/slds-lmu/paper_2021_categorical_feature_encodings


2682 F. Pargent et al.

integer frequency dummy one−hot hash leaf impact glmm−noCV glmm−5CV glmm−10CV none remove

20000

30000

40000

50000

60000

R
M
S
E

ames−housing

10000

15000

20000

25000

employee_salaries

0.15

0.20

0.25

0.30

R
M
S
E

avocado−sales
2.0

2.2

2.4

2.6

wine−reviews

2000

4000

6000

R
M
S
E

medical_charges
10.0

10.5

11.0

particulate−matter−ukair−2017

43

45

47

49

LASSO RF GB KNN SVM

R
M
S
E

flight−delay−usa−dec−2017

1.5

1.8

2.1

LASSO RF GB KNN SVM

nyc−taxi−green−dec−2016

Fig. 2 Performance estimates from 5-CV for regression (mean, min, max). For each combination, only the
best HCT condition is displayed. Note the reversed y-axis to ease visual interpretation

we present meta rankings for each ML algorithm in Fig. 5: We defined an encoder
relation within each dataset, based on corrected resample t-tests (Nadeau and Bengio
2003). An encoding was defined to beat another encoding if the one-sided p-value of
the t-test was < .05. This allowed us to compute a weak-order consensus ranking R
defined by the optimization problem:

arg min
R∈C

B∑

b=1

d(Rb, R)

where d is the symmetric difference distance and Rb is the relation for dataset b (Hornik
and Meyer 2007; Meyer and Hornik 2018). The symmetric difference between two
relations is the number of cases one encoding beats another encoding in one relation
but not in the other one.

Although the presented solutions of the optimization problem are not unique, rank-
ings were highly stable for the high and low ranks. Meta rankings seem to be highly
consistent with the individual patterns of encoder performances reflected in Figs. 2
to 4. Looking at meta-rankings, approaches based on GLMM’s in combination with

123



Regularized target encoding outperforms traditional… 2683

integer frequency dummy one−hot hash leaf impact glmm−noCV glmm−5CV glmm−10CV none remove

0.84

0.88

0.92

0.96

AU
C

churn

0.90

0.92

0.94

0.96

kdd_internet_usage

0.5

0.6

0.7

0.8

AU
C

Amazon_employee_access

0.45

0.50

0.55

0.60

0.65

0.70
Click_prediction_small

0.87

0.88

0.89

0.90

0.91

0.92

AU
C

adult

0.6

0.7

0.8

KDDCup09_upselling

0.70

0.72

0.74

0.76

AU
C

kick

0.5

0.6

0.7

0.8

0.9

open_payments

0.50

0.55

0.60

0.65

0.70

0.75

LASSO RF GB KNN

AU
C

road−safety−drivers−sex

0.550

0.575

0.600

0.625

LASSO RF GB KNN SVM

porto−seguro

Fig. 3 Performance estimates from 5-CV for binary classification (mean, min and max). For each combi-
nation, only the best HCT condition is displayed

cross-validation outperform all other approaches across all algorithms. A further inter-
esting detail omitted in Fig. 5 for clarity is that the none encoding strategy for the RF
was beaten by all strategies except for the remove condition. This implies, that even
if the algorithm provides a mechanic for treating categorical variables, it might often
be optimal to use a different strategy instead.

In a second exploratory analysis, we tried to find clusters of datasets based on sys-
tematic patterns of encoder performance (independent of the employedMLalgorithm).
We computed a partial-order consensus relation acrossML algorithms for each dataset
and hierarchically clustered the dataset consensus relations using the symmetric dif-
ference distance in combination with the complete linkage agglomeration method.
The resulting dendrogram is displayed in Fig. 6. Although the cluster structure is
somewhat ambiguous, roughly three clusters can be described: The first 9 datasets

123



2684 F. Pargent et al.

integer frequency dummy one−hot hash leaf impact glmm−noCV glmm−5CV glmm−10CV none remove

0.85

0.90

0.95

1.00

AU
N
U

eucalyptus

0.70

0.75

0.80

0.85

0.90

Midwest_survey

0.75

0.80

0.85

0.90

0.95

AU
N
U

hpc−job−scheduling

0.70

0.75

0.80

video−game−sales

0.76

0.78

0.80

0.82

LASSO RF GB KNN SVM

AU
N
U

okcupid−stem

0.600

0.625

0.650

0.675

0.700

LASSO RF GB KNN SVM

Diabetes130US

Fig. 4 Performance estimates from 5-CV for multiclass classification (mean, min and max). For each
combination, only the best HCT condition is displayed

dumm frqCV10CV5 noCV hashimp intleafoh rm

dummfrqCV10CV5 noCV hashimp int ho fael rm

dumm frqCV10CV5noCV hashimp intleaf oh rm

dummfrqCV10CV5 noCV hash tni pmi leafoh rm

dummfrqCV10CV5 noCV hashimp intleaf oh rmGB

KNN

LASSO

RF

SVM

1 2 3 4 5 6 7 8 9 10 11

integer

frequency

dummy

one−hot

hash

leaf

impact

glmm−noCV

glmm−5CV

glmm−10CV

remove

Fig. 5 Consensus rankings across all datasets for each algorithm. Lower ranks indicate better performance.
The rank of the none control condition of the RF (rank 11 of 12) was omitted from the figure

from the top of the dendrogram are characterized by a medium to high number of
levels, low performance of the remove condition (indicating the importance of high
cardinality features) and clear performance advantage of target encoders. For the next
13 datasets which contain the smallest number of levels, traditional encodings can
compete with target encoding. This biggest cluster also includes 9 datasets with zero
distances, in which no significant performance differences could be observed between

123



Regularized target encoding outperforms traditional… 2685

Click_prediction_small
KDDCup09_upselling

Diabetes130US
adult

nyc−taxi−green−dec−2016
porto−seguro

flight−delay−usa−dec−2017
particulate−matter−ukair−2017

kick
kdd_internet_usage

churn
eucalyptus

ames−housing
hpc−job−scheduling

avocado−sales
okcupid−stem

open_payments
Amazon_employee_access

road−safety−drivers−sex
Midwest_survey

employee_salaries
video−game−sales

wine−reviews
medical_charges

0 20 40 60

Fig. 6 Hierarchical cluster analysis of benchmark datasets. The symmetric difference distance between two
datasets reflects differences in performance patterns between encodings (independent of the employed ML
algorithm)

any encoding conditions (nor with the remove condition, indicating that high cardi-
nality features are less informative). The last two datasets with the highest number
of levels formed a separate cluster, in which target encoding without strong regular-
ization (impact, glmm-noCV) showed severe overfitting. Note that clusters were not
determined by problem type, again suggesting that encoder rankings are somewhat
similar for regression and classification settings.4

4.3 Summary of encoder performance

Regularized target encoding was superior or at least competitive on all datasets. We
could not observe a setting in which regularized target encoding was convincingly
beaten by target agnostic methods. Especially effective was glmm encoding with 5-
fold-CV, which ranked first place for all ML algorithms except SVM. Performance
often did not improve with glmm-10CV, suggesting that 5 folds might be a good
regularization default in practice. In line with earlier research (Micci-Barreca 2001;
Prokhorenkova et al. 2018), target encoding with regularization (glmm) performed
better or equally well in comparison with the unregularized impact encoder. When
glmm performed better, impact encoding not only performed worse than glmm with
CV but was sometimes also inferior compared to other encoders.

4 We tried to corroborate this observation by comparing meta-rankings between problem types. Unfortu-
nately, problem type specific consensus relations did not converge (probably due to the reduced number of
datasets) and were uninterpretable.

123



2686 F. Pargent et al.

The following observationswere also interesting: Surprisingly, integer encoding did
not perform well with GB and target-based encoders (especially the glmm encoder)
seem to be preferable. For LASSO, previous studies have suggested that indicator
encoding works well, even with a very high number of levels (Cerda et al. 2018).
Although the glmm encoders ranked first in our benchmark for the LASSO, it was
the only algorithm where the indicator encoders achieved the next best ranking. Note
that for computational reasons we limited the maximum amount of indicator variables
per feature to 125 in our experimental design. The HCT = 125 setting performed
best for LASSO with indicator encoding in a large number of datasets, indicating that
performancemight have further improvedwith higher values.BothKNNandSVMrely
on numerical distances in feature space and tend to perform poorly in the presence of
high dimensionality. Thus,we expected that target encoding shouldworkwell here as it
transforms categories into a single, smooth numerical feature. This was backed by our
benchmark results. For some datasets (medical_charges, road-safety-drivers-sex, and
Midwest_survey) KNN (without tuning of the optimal number of nearest neighbors)
could compete with the more sophisticatedML algorithms when combined with target
encoding, but performed poorly with other encoders. Although consistent with the big
picture, SVM results have to be considered with care, as some experimental conditions
resulted in unexpected computational errors. In RF, a widely used strategy to deal with
categorical features is to order levels by average target statistics for a given level. For
a small number of levels, this approach has been reported superior to indicator and
integer encoding (Wright and König 2019), while we observed poor performance for
datasets with a larger number of levels.

When looking for a simple default encoding, indicator encoding in combination
with collapsing small levels seems a robust alternative, although the glmm encoders
performed better.We found that one-hot encoding usually gave a slightly better perfor-
mance than dummy encoding, which has also been observed by Chiquet et al. (2016);
Tutz and Gertheiss (2016) (p. 254). Our results suggest that one-hot encoding is the
better standard compared to dummy encoding when applying nonlinear regularized
models like RF, GB or SVM with (high cardinal) categorical features. We provide a
more detailed comparison for indicator encoding in the Supplementary Material.

4.4 Runtime analysis

To determine whether traditional encodings are preferred when facing limited com-
putational resources, we further analyzed runtimes of the whole analysis pipeline for
different encoders and ML algorithms. Aggregated results are shown in Table 1. To
enable a meaningful comparison, we report runtime as the fraction of a full pipeline’s
strategy compared to the one-hot encoding condition and then further aggregate across
datasets using the median. Again, we only report the best HCT setting. Absolute run-
times are hard to interpret and aggregate because runtime distributions across datasets
are heavily skewed as proportionally larger runtimes are observed for big datasets.
While a pipeline’s runtime can be dominated by the encoder for small datasets, the
training of the consecutive ML algorithm is dominating for large datasets, which
might render differences during encoding irrelevant. Therefore we aim to report what

123



Regularized target encoding outperforms traditional… 2687

Table 1 Proportional increase in runtime compared to one-hot encoding

Encoding LASSO RF GB KNN SVM

Integer 0.41.40 0.591.10 0.670.90 0.851.50.4 1.011.60.6

Frequency 0.342.10 0.541.70 0.541.50 0.791.10.2 1.111.70.5

Dummy 1.132.80.8 0.911.70.5 0.975.70.4 1.051.60.6 1.021.50.7

One-hot 111 111 111 111 111
Hash 0.872.60.2 1.033.30.4 0.987.30.4 0.932.20.5 1.1620.5
Leaf 0.461.70 0.672.30 0.859.10 0.972.20.5 1.011.90.6

Impact 0.51.90.1 0.61.50.1 0.82120.50 1.11240.3 1.061.80.7

glmm-noCV 0.582.80 0.573.80.1 1.65120 1.0910.30.3 1.12.10.7

glmm-5CV 0.832.20.1 0.6615.30.1 7.2169.30 2.7750.10.7 1.414.60.6

glmm-10CV 1.074.20.1 0.9628.40.1 12.71127.60 5.3797.90.8 1.554.60.5

None 0.21.40

Remove 0.41.70 0.481.10 0.581.30 0.821.20.2 1.0920.6

Median max
min across datasets of the proportional increase in runtime from 5-CV, when comparing the respec-

tive encoder with one-hot encoding. Only the best HCT conditions are reported

is important in practice, the time differences for training the full pipeline. The results
clearly show that regularized target encoding does not consistently yield slower run-
times compared to simple strategies like indicator encoding. Supposedly, the more
efficient representations produced by target encoding lead to faster runtimes of subse-
quentML algorithms. This suggests that a possible runtime vs. predictive performance
trade-off might also be in favour of target encoding, especially for large datasets where
a high number of indicator variables increases computational load. We did observe
a substantial increase in runtimes when using regularized glmm with GB (with little
tuning), where runtimes are relatively short in comparison to the time required to fit
categorical encoders. In other settings (LASSO, RF), the glmm encoders have been
observed to be even faster than indicator encoding.

4.5 Analysing high cardinality thresholds

Until now, we ignored the HCT parameter by reporting only the condition with the
best performance. An interesting question is whether target encoding is only useful for
features with a very high number of levels or also for fewer levels, where most practi-
tioners would routinely use indicator encoding. We tested this using HCT thresholds
of 10, 25 and 125, but the results are not easy to interpret. In general, the optimal
threshold seemed to strongly depend on the dataset, but we also observed some weak
patterns: LASSO improved for larger HCT, indicating that its internal regularization
can efficiently deal with the sparseness induced by indicator encoding. In comparison,
other methods generally yielded better performance if features above the very low
HCT of 10 were encoded using one of the target encoding strategies. Differences in
regularization for the target based encoders seemed not to prefer different HCT values.

123



2688 F. Pargent et al.

5 Discussion

In our benchmark, we compared encoding strategies for high cardinality categori-
cal features on a variety of regression, binary, and multiclass classification datasets
with different ML algorithms. Regularized target encoding was superior across most
datasets and ML algorithms. Although the performance of other encoding strategies
was comparable in some conditions, target encoding was never outperformed. In gen-
eral, our results suggest that regularized target encoding based on glmms with 5-fold
CV (glmm-5CV) works well for all kinds of algorithms and should be a reason-
able default strategy. It sometimes leads to slightly longer runtimes (in comparison
to indicator encoding), but especially for larger datasets this is often offset by the
more efficient representation produced by target encoding. The glmm encoder has a
clear advantage over target encodingwith a smoothing hyperparameter (Micci-Barreca
2001), as costly tuning the whole ML pipeline with different smoothing values is not
required.

What constitutes a “high” cardinality problem is a difficult question that might not
only depend on the number of levels but also on other characteristics of the dataset
and its features. Supposedly, the number of datasets in our study was too small to
discover consistent patterns between encoder performance and dataset characteristics.
Target encoding features with only 10 levels seemed to be effective in a substantive
number of conditions, but for other datasets, higherHCTvalues performedbetter. Thus,
some form of hyperparameter tuning seems necessary to decide the level threshold
for target encoding at this point, as no suitable defaults seem to be available. Note
that we compared different HCT values but then used the same encoding strategy for
all affected features alongside one-hot encoding for the remaining ones. A further
improvement could be to decide whether to use target encoding on a feature by feature
basis. ML pipelines could introduce a categorical hyperparameter for each feature
that represents which encoding is used. To make this complicated meta optimization
problem feasible, only a small number of encoders can be included. Our study can
help to decide which encoders could be safely omitted from consideration.

5.1 Limitations

Several design decisions were necessary to make answering our research questions
computationally feasible: We used minimal tuning for our ML algorithms, as we
were not interested in comparing their performance against each other. This probably
led to suboptimal performance for the GB, KNN, and SVM learners. When inter-
preting our results, we assume that the encoder rankings are comparable when more
extensive tuning is used. This is plausible because the meta rankings between algo-
rithms were highly stable. We only used 5-fold-CV without repetitions to estimate
predictive performance, but due to a small variance between folds, we could confi-
dently detect performance differences of encoders for many datasets. Because we are
interested in model-agnostic methods that can be combined with any supervised ML
algorithm, we did not investigate recent model-specific strategies (Guo and Berkhahn
2016; Prokhorenkova et al. 2018). We did not include deep neural networks in our

123



Regularized target encoding outperforms traditional… 2689

benchmark because they are still rarely applied in the statistical learning community
and more dominant in computer science. We do not differentiate between nominal and
ordinal categorical features: Most publicly available datasets simply do not contain
any high cardinal ordinal features. For many applications, ordinal feature informa-
tion is not available as metadata which makes it less relevant for some applications
like automatic ML. Thus, our benchmark does not include specific ordinal encoding
methods like Helmert and Polynomial contrasts (Chambers and Hastie 1992) or ordi-
nal penalization methods (Tutz and Gertheiss 2016). We only investigate traditional
categorical variables and do not extend our analysis to multi-categorical variables or
text-strings (Cerda et al. 2018; Cerda and Varoquaux 2020), where other encoding
techniques can harvest additional information. We only investigate univariate encod-
ings, i.e. we always encode each variable separately. Levels with comparable main
effects can not be distinguished based on the transformed feature, which prevents
the consecutive ML algorithm from learning interactions for specific levels. Methods
that jointly encode features and therefore leverage correlational structures between
features are an interesting avenue for future research: Recent approaches use target-
based encoding strategies to learn a vector-valued representation of a level, similar to
neural network embeddings (Guo and Berkhahn 2016; Rodríguez et al. 2018). Those
should be compared to classical approaches from the optimal scaling literature (e.g.
De De Leeuw et al. 1976; Young et al. 1976) or the subsequent aspect framework
(Mair and Leeuw 2010), which are unfortunately unfamiliar to many ML researchers.

5.2 Conclusion

This benchmark study compared the predictive performance of a variety of strategies
to encode categorical features with a high number of unordered levels for differ-
ent supervised ML algorithms. Regularized versions of target encoding, which uses
predictions of the target variable as numeric feature values, performed better than
traditional strategies like integer or indicator encoding. Most effective, with a consis-
tently superior performance across ML algorithms and datasets, was a target encoder
which combines simple generalized linear mixed models with cross-validation and
does not require hyperparameter tuning. GLMMs are a major workhorse in applied
statistics but not well understood and often neglected by the ML community. Refining
target encoders that use statistical models for more efficient regularization and study-
ing their theoretical properties could be a valuable research topic for the computational
statistics community.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00180-022-01207-6.

Funding Open Access funding enabled and organized by Projekt DEAL. This work has been funded by
the German Federal Ministry of Education and Research (BMBF) under Grant No. 01IS18036A and by
the Bavarian Ministry of Economic Affairs, Regional Development and Energy through the Center for
Analytics–Data–Applications (ADA-Center) within the framework of, BAYERN DIGITAL II“ (20-3410-
2-9-8).

Data Availability All benchmark datasets are publicly available at https://www.openml.org/.

123

https://doi.org/10.1007/s00180-022-01207-6
https://doi.org/10.1007/s00180-022-01207-6
https://www.openml.org/


2690 F. Pargent et al.

Code Availability All analysis code is publicly available at https://github.com/slds-lmu/paper_2021_
categorical_feature_encodings.

Declaration

Conflicts of interest The authors declare no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Bates D (2020) Computational methods for mixed models. Vignette for lme4. https://cran.r-project.org/
web/packages/lme4/vignettes/Theory.pdf

Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat
Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

Binder M (2018) mlrCPO: Composable preprocessing operators and pipelines for machine learning. R
package version 0.3.4-2. https://github.com/mlr-org/mlrCPO

Bischl B, Lang M, Kotthoff L, Schiffner J, Richter J, Studerus E, Casalicchio G, Jones ZM (2016) mlr:
machine learning in r. J Mach Learn Res 17:1–5

Bommert A, Sun X, Bischl B, Rahnenführer J, Lang M (2020) Benchmark for filter methods for feature
selection in high-dimensional classification data. Comput Stat Data Anal. https://doi.org/10.1016/j.
csda.2019.106839

Boulesteix A-L, Binder H, Abrahamowicz M, Sauerbrei W et al (2017) On the necessity and design of
studies comparing statistical methods. Biomet J Biomet Zeitschrift 60:216–218. https://doi.org/10.
1002/bimj.201700129

Brown G, Pocock A, Ming-Jie Z, Luján M (2012) Conditional likelihood maximisation: a unifying frame-
work for information theoretic feature selection. J Mach Learn Res 13:27–66

Cerda P, Varoquaux G (2020) Encoding high-cardinality string categorical variables. IEEE Trans Knowl
Data Eng. https://doi.org/10.1109/TKDE.2020.2992529

Cerda P, Varoquaux G, Kégl B (2018) Similarity encoding for learning with dirty categorical variables.
Mach Learn 107:1477–1494. https://doi.org/10.1007/s10994-018-5724-2

Chambers J, Hastie T (1992) Statistical models. Chapter 2 of statistical models in S, 1st edn. Routledge.
https://doi.org/10.1201/9780203738535

Chen T, He T, Benesty M, Khotilovich V,Tang Y, Cho H, Chen K, Mitchell R, Cano I, Zhou T, Li M, Xie J,
Lin M, Geng Y, Li Y (2018) Xgboost: Extreme gradient boosting. R package version 0.71.2. https://
CRAN.Rproject.org/package=xgboost

Chiquet J, Grandvalet Y, Rigaill G (2016) On coding effects in regularized categorical regression. Stat
Modell 16:228–237. https://doi.org/10.1177/1471082X16644998

Coors S (2018)Automatic gradient boosting (Master’sthesis). LMUMunich. https://epub.ub.uni-muenchen.
de/59108/1/MA_Coors.pdf

De Leeuw J, Young FW, Takane Y (1976) Additive structure in qualitative data: an alternating least squares
method with optimal scaling features. Psychometrika 41:471–503

DehghaniM, TayY,GritsenkoAA, Zhao Z,HoulsbyN,Diaz F,Metzler D,Vinyals O (2021) The benchmark
lottery. arXiv preprint arXiv:2107.07002

Fernández-Delgado M, Cernadas E, Barro S, Amorim D (2014) Do we need hundreds of classifiers to solve
real world classification problems? J Mach Learn Res 15:3133–3181

123

https://github.com/slds-lmu/paper_2021_categorical_feature_encodings
https://github.com/slds-lmu/paper_2021_categorical_feature_encodings
http://creativecommons.org/licenses/by/4.0/
https://cran.r-project.org/web/packages/lme4/vignettes/Theory.pdf
https://cran.r-project.org/web/packages/lme4/vignettes/Theory.pdf
https://doi.org/10.18637/jss.v067.i01
https://github.com/mlr-org/mlrCPO
https://doi.org/10.1016/j.csda.2019.106839
https://doi.org/10.1016/j.csda.2019.106839
https://doi.org/10.1002/bimj.201700129
https://doi.org/10.1002/bimj.201700129
https://doi.org/10.1109/TKDE.2020.2992529
https://doi.org/10.1007/s10994-018-5724-2
https://doi.org/10.1201/9780203738535
https://CRAN.Rproject.org/package=xgboost
https://CRAN.Rproject.org/package=xgboost
https://doi.org/10.1177/1471082X16644998
https://epub.ub.uni-muenchen.de/59108/1/MA_Coors.pdf
https://epub.ub.uni-muenchen.de/59108/1/MA_Coors.pdf
http://arxiv.org/abs/2107.07002


Regularized target encoding outperforms traditional… 2691

Ferri C, Hernández-Orallo J, Modroiu R (2009) An experimental comparison of performance measures for
classification. Pattern Recogn Lett 30:27–38. https://doi.org/10.1016/j.patrec.2008.08.010

FeurerM,KleinA,EggenspergerK,Springenberg J,BlumM,Hutter F (2015)Efficient and robust automated
machine learning. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in
neural information processing systems 28. Curran Associates Inc, New York, pp 2962–2970

Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate
descent. J Stat Softw 33:1–22. https://doi.org/10.18637/jss.v033.i01

Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge
University Press, Cambridge

Gra̧bczewski K, Jankowski N (2003) Transformations of symbolic data for continuous data orientedmodels.
In: Kaynak O, Alpaydin E, Oja E, Xu L (eds) Artificial neural networks and neural information
processing – ICANN/ICONIP 2003. Springer, Berlin, Heidelberg, pp 359–366

Guo C, Berkhahn F (2016) Entity embeddings of categorical variables. arXiv preprint arXiv:1604.06737
Hancock JT, Khoshgoftaar TM (2020) Survey on categorical data for neural networks. J Big Data 7:1–41.

https://doi.org/10.1186/s40537-020-00305-w
Hand DJ, Henley WE (1997) Statistical classification methods in consumer credit scoring: a review. J R

Stat Soc A Stat Soc 160:523–541. https://doi.org/10.1111/j.1467-985X.1997.00078.x
Hornik K, Meyer D (2007) Deriving consensus rankings from benchmarking experiments, In: Advances in

data analysis. Springer, pp 163–170. https://doi.org/10.1007/978-3-540-70981-7_19
Hothorn T, Leisch F, Zeileis A, Hornik K (2005) The design and analysis of benchmark experiments. J

Comput Graph Stat 14:675–699. https://doi.org/10.1198/106186005X59630
Kuhn M, Johnson K (2019) Feature engineering and selection: a practical approach for predictive models.

Hall/CRC, Chapman
Lang M, Bischl B, Surmann D (2017) Batchtools: tools for r to work on batch systems. J Open Source

Softw. https://doi.org/10.21105/joss.00135
Mair P, de Leeuw J (2010) A general framework for multivariate analysis with optimal scaling: the r package

aspect. J Stat Softw 32:1–23. https://doi.org/10.18637/jss.v032.i09
Meyer D, Hornik K (2018) Relations: data structures and algorithms for relations
Micci-Barreca D (2001) A preprocessing scheme for high-cardinality categorical attributes in classification

and prediction problems. SIGKDD Explor Newsl 3:27–32. https://doi.org/10.1145/507533.507538
Nadeau C, Bengio Y (2003) Inference for the generalization error. Mach Learn 52:239–281. https://doi.

org/10.1023/A:1024068626366
Nießl C, Herrmann M, Wiedemann C,Casalicchio G, Boulesteix A-L (2021) Over-optimism in benchmark

studies and the multiplicity of design and analysis options when interpreting their results. WIREs Data
Mining and Knowledge Discovery, e1441. https://doi.org/10.1002/widm.1441

Probst P, Wright MN, Boulesteix A-L (2019) Hyperparameters and tuning strategies for random forest.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. https://doi.org/10.1002/
widm.1301

Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A (2018) CatBoost: Unbiased boosting with
categorical features, in: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R
(Eds.), Advances in Neural Information Processing Systems 31. Curran Associates, Inc., pp. 6638–
6648

Prokopev V (2018) Mean (likelihood) encodings: a comprehensive study. Kaggle Forums
R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria
Rodríguez p, Bautista MA, Gonzàlez J, Escalera S (2018) Beyond one-hot encoding: lower dimensional

target embedding. Image Vis Comput 75:21–31. https://doi.org/10.1016/j.imavis.2018.04.004
Schliep K, Hechenbichler K (2016) Kknn: Weighted k-nearest neighbors R package version 1.3.1. https://

CRAN.R-project.org/package=kknn
Seca D, Mendes-Moreira J (2021) Benchmark of encoders of nominal features for regression. In: Rocha Á,

Adeli H, Dzemyda G, Moreira F, Ramalho Correia AM (eds) Trends and applications in information
systems and technologies. Springer International Publishing, Cham, pp 146–155

Steinwart I, Thomann P (2017) liquidSVM: A fast and versatile SVM package. arXiv: 1702:06899
Therneau T, Atkinson B (2018) Rpart: recursive partitioning and regression trees. R package version 4.1-13.

https://CRAN.R-project.org/package=rpart
Thomas J, Coors S, Bischl B (2018) Automatic gradient boosting. arXiv preprint arXiv:1807.03873

123

https://doi.org/10.1016/j.patrec.2008.08.010
https://doi.org/10.18637/jss.v033.i01
http://arxiv.org/abs/1604.06737
https://doi.org/10.1186/s40537-020-00305-w
https://doi.org/10.1111/j.1467-985X.1997.00078.x
https://doi.org/10.1007/978-3-540-70981-7_19
https://doi.org/10.1198/106186005X59630
https://doi.org/10.21105/joss.00135
https://doi.org/10.18637/jss.v032.i09
https://doi.org/10.1145/507533.507538
https://doi.org/10.1023/A:1024068626366
https://doi.org/10.1023/A:1024068626366
https://doi.org/10.1002/widm.1441
https://doi.org/10.1002/widm.1301
https://doi.org/10.1002/widm.1301
https://doi.org/10.1016/j.imavis.2018.04.004
https://CRAN.R-project.org/package=kknn
https://CRAN.R-project.org/package=kknn
http://arxiv.org/abs/1702:06899
https://CRAN.R-project.org/package=rpart
http://arxiv.org/abs/1807.03873


2692 F. Pargent et al.

Thornton C, Hutter F, Hoos HH, Leyton-Brown K (2013) Auto-WEKA: Combined selection and hyper-
parameter optimization of classification algorithms, In: Proceedings of the 19th ACM SIGKDD
international conference on knowledge discovery and data mining, KDD ’13. ACM, New York, NY,
USA, pp 847–855. https://doi.org/10.1145/2487575.2487629

Tutz G, Gertheiss J (2016) Rejoinder: Regularized regression for categorical data. Stat Model 16:249–260.
https://doi.org/10.1177/1471082X16652780

Vanschoren J, van Rijn N, Bischl B, Torgo L (2013) OpenML: networked science in machine learning.
SIGKDD Explor 15:49–60. https://doi.org/10.1145/2641190.2641198

Weinberger KQ, Dasgupta A, Langford J, Smola AJ, Attenberg J (2009) Feature hashin for large scale
multitask learning. In: Proceedings of the 26th Annual International Conference onMachine Learning
(ICML ’09). Association for Computing Machinery, New York, NY, USA, 1113–1120. https://doi.
org/10.1145/1553374.1553516

Wright MN, König IR (2019) Splitting on categorical predictors in random forests. PeerJ 7. https://doi.org/
10.7717/peerj.6339

Wright MN, Ziegler A (2017) Ranger: a fast implementation of random forests for high dimensional data
in C++ and R. J Stat Softw 77:1–17. https://doi.org/10.18637/jss.v077.i01

Young FW, De Leeuw J, Takane Y (1976) Regression with qualitative and quantitative variables: an alter-
nating least squares method with optimal scaling features. Psychometrika 41:505–529. https://doi.org/
10.1007/BF02296972

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1177/1471082X16652780
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/1553374.1553516
https://doi.org/10.1145/1553374.1553516
https://doi.org/10.7717/peerj.6339
https://doi.org/10.7717/peerj.6339
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1007/BF02296972
https://doi.org/10.1007/BF02296972

	Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features
	Abstract
	1 Introduction
	1.1 Notation
	1.2 Related work
	1.3 Categorical encoding benchmarks
	1.4 Contributions

	2 Encodings
	2.1 Integer encoding
	2.2 Frequency encoding
	2.3 Indicator encoding
	2.4 Hash encoding
	2.5 Leaf encoding
	2.6 Impact encoding
	2.7 GLMM encoding
	2.8 Control conditions

	3 Benchmark setup
	3.1 Datasets
	3.2 High cardinality threshold
	3.3 Machine learning pipeline and algorithms
	3.4 Performance evaluation

	4 Benchmark results
	4.1 Encoder performance
	4.2 Meta rankings and dataset clustering
	4.3 Summary of encoder performance
	4.4 Runtime analysis
	4.5 Analysing high cardinality thresholds

	5 Discussion
	5.1 Limitations
	5.2 Conclusion

	References




