
Citation: Feuser, A.-K.; Gesell-May,

S.; Müller, T.; May, A. Artificial

Intelligence for Lameness Detection

in Horses—A Preliminary Study.

Animals 2022, 12, 2804. https://

doi.org/10.3390/ani12202804

Academic Editors: Hilary Clayton

and Lindsay St. George

Received: 18 August 2022

Accepted: 12 October 2022

Published: 17 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

animals

Article

Artificial Intelligence for Lameness Detection in Horses—A
Preliminary Study
Ann-Kristin Feuser 1, Stefan Gesell-May 2, Tobias Müller 2 and Anna May 3,*

1 Equine Hospital in Parsdorf, 85599 Vaterstetten, Germany
2 Anirec GmbH, Artificial Intelligence Solutions in Veterinary Medicine, 80539 Munich, Germany
3 Equine Hospital, Ludwig Maximilians University, 85764 Oberschleissheim, Germany
* Correspondence: anna.may@pferd.vetmed.uni-muenchen.de

Simple Summary: In the expanding field of artificial intelligence, deep learning and smart-device-
technology, a diagnostic software tool was developed, which can help distinguish between lame
and sound horses and locate the affected limb. As lameness influences the welfare of horses and is
often difficult to detect, this tool can help owners and veterinarians in the process of evaluation. The
technology is based on pose estimation, which is already used in human and veterinary science to
study movement of limbs or bodies without the need to fix any devices onto the object of interest. In
this study, 22 horses with unilateral fore- or hindlimb lameness and a control group of eight sound
horses were analysed with the program. Based on the results of the program, it was possible to
differentiate between horses with fore- and hindlimb lameness and sound horses. Difficult light
settings, such as direct sunlight or darkness, or very even-coloured coats, complicate the precise
placement of reference points. The analysis and detection with software-generated movement
trajectories using pose estimation is very promising but requires further development.

Abstract: Lameness in horses is a long-known issue influencing the welfare, as well as the use, of
a horse. Nevertheless, the detection and classification of lameness mainly occurs on a subjective
basis by the owner and the veterinarian. The aim of this study was the development of a lameness
detection system based on pose estimation, which permits non-invasive and easily applicable gait
analysis. The use of 58 reference points on easily detectable anatomical landmarks offers various
possibilities for gait evaluation using a simple setup. For this study, three groups of horses were
used: one training group, one analysis group of fore and hindlimb lame horses and a control group
of sound horses. The first group was used to train the network; afterwards, horses with and without
lameness were evaluated. The results show that forelimb lameness can be detected by visualising the
trajectories of the reference points on the head and both forelimbs. In hindlimb lameness, the stifle
showed promising results as a reference point, whereas the tuber coxae were deemed unsuitable as a
reference point. The study presents a feasible application of pose estimation for lameness detection,
but further development using a larger dataset is essential.

Keywords: artificial intelligence; deep learning; pose estimation; lameness; equine

1. Introduction

Lameness is a term that describes a horse’s change in gait, usually caused by pain or
mechanical restriction. There are substantial economic losses attributed to lameness in the
equine industry, due to interrupted or truncated sports careers, costs of veterinary services,
drugs and additional treatment costs, as well as death [1]. Lameness is one of the most
common medical issue in equine veterinary medicine [2], and it can affect any horse at any
level of training [3,4].

As undetected lameness poses a significant welfare issue for the affected horse, owners
and veterinarians need to be capable of recognising changes of gait as early as possible.
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Studies have shown that owners are often unable to recognise lameness in their own
horses [5] and that identifying whether the horse experiences musculoskeletal pain resulting
in lameness can be very difficult, especially for inexperienced riders [6]. On the clinical side,
veterinary experience influences subjective lameness evaluation. Veterinary students and
recent graduates often exbibit difficulties in identifying the affected leg [7]. Even amongst
experienced veterinarians, there is often a lack of agreement on the affected leg in horses
with subtle lameness cases [8,9]. Further limitations to subjective lameness evaluation
are the inaccuracy of the human eye and the influence of bias due to the assessment and
interpretation of lameness after diagnostic anaesthesia [10,11].

Over the years, many technology-assisted methods have been developed to objectively
evaluate gait, movement and lameness in horses. These systems can be divided into two
major groups, depending on whether they are based on kinetic or kinematic measuring
techniques. Kinetics describes the movement of a rigid body, depending only on the action
of forces. In contrast, kinematic analysis characterises the spatio-temporal movement of a
rigid body, using time and distance as measurable parameters, without considering the
forces [12–14].

One of the first kinetic instruments for analysing lameness, which is still used in
research and clinical cases [15,16], is the force plate [17]. By recording the ground reaction
forces from a lame horse, asymmetrical distribution of body weight on the legs can be
measured [18]. Though offering very precise data, lameness analysis with the force plate
is expensive, time consuming and only applicable in institutions where this measuring
platform is available [12,13,19]. Nevertheless, it is still seen as the gold standard in equine
lameness evaluation [20,21]. Other options include a force-measuring horseshoe, which
can record ground reaction forces. However, the additional weight and size of the shoe
potentially influences the movement of the horse, which reduces its value in lameness
evaluation [13,22]. The instrumented treadmill located at the University of Zurich, Switzer-
land [15,18], offers the possibility to measure the ground reaction forces from several
consecutive strides and from all four limbs [21]. Still, horses need to be trained to walk
on the treadmill, which is time-consuming. In addition, because of its custom-made, rela-
tively expensive characteristics, the treadmill is not suitable for broad clinical use in the
field [13,20,21].

Most of the kinematic lameness evaluation systems can be assigned to one of two
groups: optical motion capture (OMC) and inertial measurement unit (IMU). OMC systems
use infrared cameras with a recording speed between 100–300 Hz, allowing the collection of
a large amount of three-dimensional (3D) coordinate data [21]. Most OMC systems capture
data using retro-reflective, spherical markers that are attached to the skin over anatomical
locations of interest [12,23,24]. In this setup, an OMC system enables precise recording of 3D
movement. However, the cost-intensive nature of the equipment and the time-consuming
setup largely limits the use of OMC systems to large clinics and universities [14]. In contrast,
the functionality of IMUs is based on gyroscopes and accelerometers [14,20]. Usually both
sensors work wirelessly and are attached to certain body segments of a horse, using straps
or double-sided tape [25]. The number of sensors and the exact placement differ across IMU
systems. While a gyroscope measures the angular velocity around an axis, accelerometers
measure the velocity and acceleration along a single axis or multiple axes [13,22]. Even
though IMUs are portable, they are still relatively cost-intensive and require a certain level
of expertise for data collection, analysis and interpretation. Furthermore, the accumulation
of drift errors, which are the sum of all minor measuring errors during one analysis, can
influence the results and thereby the outcome of the examination [26].

In the last few years, there has been increasing development of these systems [27,28].
Considering the fact that they require markers or inertial sensors, which need to be fixed
onto the object of interest, the studied body parts must be defined beforehand [29].

In this study, we attempt to combine pose estimation with lameness evaluation in
horses. This offers a new approach that ameliorates some of the disadvantages of other
objective lameness detection systems. The use of pose estimation offers a non-invasive
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way to track and record movements for further analysis. The development and use of
pose estimation are based on deep learning. As part of the broad scientific field of artificial
intelligence (AI), deep learning creates a neural network of multiple layers which relate
to each other. By constantly incorporating new data into the network, it can be trained
to recognise patterns in high-dimensional data. The significant difference in comparison
to other computer programs is the fact that the filtering criteria of these layers are built
autonomously from the algorithm itself, instead of by a software engineer [30].

The aim of this study was to evaluate the usability of pose estimation for detecting
and marking specific anatomical reference points, using cell-phone videos of horses being
lunged on a circle line. A secondary aim was to determine whether pose estimation can be
used to differentiate between sound horses and horses with fore- and hindlimb lameness.
We hypothesise that, using reference points on the head and forelimbs, it is possible to
distinguish between a forelimb-lame and a non-lame horse. Furthermore, we hypothesize
that a differentiation between hindlimb-lame horses and non-lame horses by using the
stifle and the tuber coxae as reference points is feasible.

2. Materials and Methods
2.1. Technology
2.1.1. Deep Learning

In veterinary science, deep learning is already used in many areas. It offers the
possibility to improve behavioural studies, for example of drosophila flies or mice [29],
or to aid in developing a pain detection model for stabled horses [31]. Other fields of
application are image recognition in radiology, such as the automatic classification of
canine thoracic radiographs [32], or in equine ophthalmology, integrated in a diagnostic
application with a focus on equine uveitis [33].

2.1.2. Pose Estimation

Pose estimation allows for the tracking and recording of the movement of humans,
animals, or objects without the need to fix any markers or sensors directly onto the subject
of interest [29]. For the study of human poses, several well-described programs such
as ArtTrack (Saarbrücken, Germany) or Open-Pose already exist [34,35]. After showing
promising results in prior studies with pose estimation on animals, the DeepLabCut (2.2rc3
and 2.2.0.6: https://github.com/DeepLabCut/DeepLabCut/tree/v2.2.0.6; accessed on 10
August 2022) program was used in this study [36]. DeepLabCut is a deep convolutional
network based on DeeperCut, which is considered one of the best algorithms for pose
estimation. In contrast to other pose estimation tools, such as the MPII Human Pose dataset,
with approximately 25,000 datasets, DeepLabCut only requires a relatively small number of
200 training images to train a network [29,37]. The functioning of DeepLabCut is based on
two main elements. On the one hand, it uses pre-trained residual neural networks (ResNets),
which are trained beforehand on ImageNet (resnet_50: http://download.tensorflow.org/
models/resnet_v1_50_2016_08_28.tar.gz; accessed on 10 August 2022), a database that
provides images for large-scale object recognition models. On the other hand, it is based
on deconvolutional layers, which help to increase the visual information inserted into the
network and reach spatial probability densities. After being trained with only a small
number of labelled images (~200), the algorithm can predict and mark body parts with
accuracy comparable to humans [29].

2.1.3. Reference Point Selection

For the pose estimation, 58 reference points, as listed in Figure 1, were determined.
Selection criteria were identifiable anatomical landmarks on the horse, with some of these
already used and proven in other lameness detection systems [14,38]. There were four
markers on the head, four markers on the neck and trunk, 11 on each forelimb from the
shoulder down to the hoof and 14 on each hindlimb between the tubera sacrale and the
hooves. Each reference point corresponded to one pixel in one picture.

https://github.com/DeepLabCut/DeepLabCut/tree/v2.2.0.6
http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz
http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz


Animals 2022, 12, 2804 4 of 20

Animals 2022, 12, x 4 of 21 
 

already used and proven in other lameness detection systems [14,38]. There were four 

markers on the head, four markers on the neck and trunk, 11 on each forelimb from the 

shoulder down to the hoof and 14 on each hindlimb between the tubera sacrale and the 

hooves. Each reference point corresponded to one pixel in one picture. 

 

Head 
Forelimb—proxi-

mal 
Forelimb—distal 

Hindlimb—

proximal 
Hindlimb—distal 

1 Nostril 

 

9 Spina scapulae 

left 

19 Os carpi acces-

sorium left 

31 Croup mid-

dle 
45 Tarsus left 

2 Eye left 
10 Spina scapulae  

right 

20 Os carpi acces-

sorium right 
32 T. sacrale left 46 Tarsus right 

3 Eye right 

11 Tub. supragle-

noidale 

left 

21 Carpus left 
33 T. sacrale 

right 
47 Calcaneus left 

4 Poll 

12 Tub. supragle-

noidale 

right 

22 Carpus right 34 Kink left 48 Calcaneus right 

Neck and 

trunk 

13 Shoulder joint 

left 
23 Fetlock left  35 Kink right 49 Fetlock left  

5 Withers 
14 Shoulder joint 

right 
24 Fetlock right  36 Tail root 50 Fetlock right 

6 Lowest 

back 
15 Elbow hock left 

25 Coronary band 

dorsal left 
37 T. coxae left 

51 Coronary band 

dorsal left 

7 T18/L1 
16 Elbow hock 

right 

26 Coronary band 

dorsal right  
38 T. coxae right 

52 Coronary band 

dorsal right 

8 Abdomen 17 Elbow joint left 
27 Coronary band 

palmar left 

39 Coxofemoral 

joint left 

53 Coronary band 

plantar left 

 
18 Elbow joint 

right 

28 Coronary band 

palmar right 

40 Coxofemoral 

joint right 

54 Coronary band 

plantar right 

  29 Hoof tip left  
41 T. ischiadi-

cum left 
55 Hoof pad left 

  30 Hoof tip right 
42 T. ischiadi-

cum right 
56 Hoof pad right  

   
43 Stifle joint 

left 
57 Hoof tip left  

   
44 Stifle joint 

right 
58 Hoof tip right 

Figure 1. Reference points. Different combinations of reference points can be chosen in the program
and offer multiple variations for gait analysis; the picture only shows a selection of the reference
points which are enlarged in the image for better visibility. In the program, one reference point
corresponds to one pixel. The accurate anatomical locations corresponding to the reference points of
the program are listed in Table A1.

2.2. Collection of Data in Investigated Groups

All horses used in this study were assigned to one of three groups: one training group,
one analysis group for lame horses and one analysis group for non-lame horses. Detailed
information regarding all three groups is summarised in Table A2. Ethical approval for
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this study was obtained from the ethics committee of Ludwig Maximilians University,
Munich, Germany.

Every horse of the three groups received a full orthopaedic lameness examination [39,40]
by an orthopaedic specialist (German specialists for equine medicine), including flexion tests.
All horses were examined on hard and soft ground in walk and trot on the straight line and
on the circle. Horses with any sign of visible gait asymmetry, a positive flexion test or any
pathological results in the lameness examination were excluded.

Lameness results were graded according to the AAEP lameness scale by the American
Association of Equine Practitioners on a scale from 1 to 5.

All horses of the training group (n = 65) were filmed in various environmental sur-
roundings, which included eight different indoor and 14 different outdoor riding arenas
with varying sand and soil surfaces. In order to obtain high recognition probabilities on
the labelled reference points, diversity in the coat colour of the horses and environmental
backgrounds was necessary. Furthermore, care was taken to film in different weather
conditions, such as under sunlight or clouded skies, and during different times of the day
to obtain a broad spectrum of different video settings. Horses were recorded in walk and
trot from the front, the back (11 s in walk and 7 s in trot, respectively), and from both sides
on a straight line (12 s in walk and 7 s in trot, respectively). Horses were also recorded on a
circle line with an approximate diameter of 12 m on soft ground (1 min in walk and trot) on
both hands.

All horses included in the lame group were privately owned horses presented for
lameness examination in the Equine Hospital in Parsdorf, Vaterstetten, Germany. In total,
22 horses were examined and included. Permission for the collection and use of data was
obtained from the owners beforehand, and detailed information about the lameness history
of the horses was documented. As part of the routine lameness examination in this clinic,
the horses were first filmed in walk and trot on both hands for one minute on a 12 m
diameter circle on soft ground. After performing flexion tests on concrete and examining
gait on firm, as well as on soft, ground, horses were subjected to diagnostic anaesthesia.
Depending on the results of the examination and the identified anatomical area, the horses
underwent diagnostic imaging (radiographs, ultrasound, computed tomography) and
treatment based on the diagnosis. The recorded lameness grades varied from 1 to 4 (AAEP).
Horses with a lameness degree ≥ 4/5 were excluded from the study, as well as horses that
showed lameness on more than one leg.

The non-lame group represents the reference group and consisted of eight horses. All
horses were privately owned by one owner/farm. The horses were filmed in walk and
trot on a left (CL) and right (CR) circle line for one minute in each gait. Two additional
horses were excluded due to positive flexion tests after lameness had been detected during
lunging. All video-recordings were taken with an iPhone 11 (Apple), with the resolution
set to 1080 p and 30 fps.

2.3. Training the Artificial Intelligence Tool Using Deep Learning
2.3.1. Data Processing and Training

For training the neural network, 454 still frames from 215 videos of the training
group were extracted and the predetermined points of interest (reference points, as defined
in Section 2.1.3) were labelled manually. To provide high diversity in the training data,
attention was paid to select still frames with different limb positioning combined with
varying overlay of limbs. Multiple intermediary trainings were conducted to find a suitable
network configuration for the neural network. Additionally, frames with predicted poses
that had a significant number of outliers were determined and labelled manually to improve
the performance of the network. For the final training set of 454 labelled still frames, the
ResNet50 network base architecture was utilised. Five percent of the images were reserved
for evaluation during training. These images were used to survey the training status of
the algorithm. As this application only had access to a limited amount of training data, the
evaluation ratio was left at this default value. All hyperparameters related to the neural
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network and training process were set to the default values of DeepLabCut. This was to
ensure that the neural network in this study was based on the stable results of DeepLabCut,
using pre-trained and tested networks [29].

Initial tests were conducted using full resolution images (1920 × 1080 pixels) to
preserve as much of the details as possible, but stable results could not be achieved. By
reducing the resolution of the input images, a significant improvement in training was
reached. In the end, a resolution of 768 × 432 pixels, which is 40% of the resolution of
the original images, was chosen. This represents a balance of reduced image size without
losing too much detail. The latest neural network was trained with 550,000 iterations with
a resulting loss of 0.0013 of the training data. This low value indicates that the model fit the
training data well. During training, the intention is to reach a preferably low value which
must not become zero. This would reveal that the algorithm has learned the data by heart.

However, a comparison of training and evaluation data with respect to error probabil-
ity showed that there was an average error of 2.6 pixels for training data, compared to as
many as 8.22 pixels for evaluation data. Given the resolution of 432 pixels in the vertical
axis, this error can make a difference of up to ~1.9% between training and evaluation
data. Removing outliers with a likelihood below 60% in the predicted points led to an
average error for training data of 2.59 pixels and 6.14 pixels for evaluation data. The small
difference in error values for the training data shows its already-high certainty, combined
with a distinctly lower certainty on unseen evaluation data. For the setup in this study, the
threshold for the exclusion of data was set at a certainty of 60% to obtain high reliability for
reference point detection, combined with a low error rate.

2.3.2. Data Analysis and Measurements and Mathematical Calculations in Trot Videos

For the following analysis, only the trot data were used. Each video included one
minute of filming time with an average number of 74 strides per video for Warmbloods
and 84 strides for German Riding Ponies. All horses of the second group were subdivided
in two categories: A = forelimb-lame, B = hindlimb-lame.

Forelimb Lameness

The movement pattern of forelimb lame horses is marked by certain, distinguishable
alterations. When trotting, a forelimb-lame horse demonstrates a typical, iterative head nod
compared to a sound horse [39–41]. In an attempt to shift weight away from the painful leg,
a left forelimb-lame horse lowers its head when stepping on the sound right leg and lifts
the head up when loading onto the lame left leg [40,41]. Thus, to detect forelimb lameness
in this study, the movement of the two forelimbs in comparison with the motion of the
head was recorded. Reference points on the forelimbs and the neck were chosen. Reference
points 17 (Elbow joint left) and 21 (Carpus left) were used for CL, and 18 (Elbow joint right)
and 22 (Carpus right) were used for CR. Reference point 4 (poll) shows the movement of
the head during trotting on both circles. To be able to distinguish between the left and
right stance phase, points 19 (Os carpi accessorium left), 20 (Os carpi accessorium right),
45 (Tarsus left) and 46 (Tarsus right) were selected. For each horse, the recorded trajectory
of the reference points from CL and CR were extracted from the program in csv-files and
presented in charts. These data were analysed visually.

Hindlimb Lameness

Horses with hindlimb lameness show significant changes in their kinematic pattern [42,43].
In this study, two separate analysis parameters were investigated based on these known changes.

Stifle Reference Point

Horses with hindlimb lameness often present with a decreased protraction of the lame
limb [39,42,43]. To compare the step length of both hindlimbs, the horizontal movement of
points 43 (Stifle left) and 44 (Stifle right) on CL and CR was recorded and measured. It was
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estimated that horses with a hindlimb lameness show a shortened stride on the lame leg
and, therefore, show a smaller difference between the measured minima and maxima of
the stifle point on the lame side.

Tuber coxae reference point

As an approved reference point [41,44], the movement of the tuber coxae along the
vertical axis was analysed. Studies have demonstrated that hindlimb-lame horses show
an increased vertical displacement of the tuber coxae on the lame side [41,44,45]. Thus, it
was estimated that horses with hindlimb lameness show a larger difference between the
measured minima and maxima on the affected side.

For each horse, the recorded trajectory of the reference points from the CL and CR
were extracted from the program in csv files and transferred into an Excel file (Microsoft
Excel, Version 16.63.1). To avoid false results due to inaccurate placement of markers by
the program, the maximum 5% (95–100%) and the minimum 5% (0–5%) of the recorded
frames were excluded from the analysis. The maxima represent the highest measured
values (90–95%) and the minima the lowest measured values (5–10%) of the stifle point and
the tuber coxae points.

For the analysis of the stifle point, MaxSt (mean value of the stifle maxima) and MinSt
(mean value of the stifle minima) for every horse were calculated for the left and the right
circle. The differences represent the length of the horizontal distance along which the stifle
point is recorded during trotting on each circle:

DSSt(CL)=
∣∣MaxSt(CL)−MinSt(CL)

∣∣
DSSt(CR)=

∣∣MaxSt(CR)−MinSt(CR)
∣∣

For the analysis of the tuber coxae point, MaxTcox (mean value of the tuber coxae
maxima) and MinTcox (mean value of the tuber coxae minima) were calculated for both
circles. The differences represent the length of the vertical distance between the highest
and lowest tuber coxae values during movement on each circle:

DTTcox(CL)=
∣∣MaxTcox(CL)−MinTcox(CL)

∣∣
DTTcox(CR)=

∣∣MaxTcox(CR)−MinTcox(CR)
∣∣

In the next step the difference for the Stifle as a reference point was calculated to
compare the CL and CR:

DSt =|DSSt (CL)− DSSt(CR)|

The values for the tuber coxae measurements were calculated the same way for
comparison of CL and CR:

DTcox =|DTTcox (CL)− DTTcox(CR)|

Mean values DSt were calculated by summing up the DSSt of the individual horses,
which should be compared, and dividing them by the number of included horses.

Mean values DTcox were calculated the same way with DSTcox.

2.3.3. Statistical Analysis

Diagnostic test properties based on the AI system in comparison to the clinical as-
sessment (reference) were separately assessed for forelimb lameness, hindlimb lameness
using the stifle reference point, and hindlimb lameness using the tuber coxae reference
point, using 2 × 2 tables. Estimates for diagnostic sensitivity (SE) were calculated as the
proportion of clinically lame horses that were correctly classified based on the AI results.
Specificity (SP) was calculated as the proportion of clinically healthy horses that were cor-
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rectly classified based on the AI results. Accuracy (ACC) was calculated as the proportion
of correct (positive + negative) classifications based on the AI results. Positive predictive
values (PPV), describing the probability that the AI positive result is correct, and negative
predictive values (NPV), describing the probability that the AI negative result is correct,
were evaluated. The agreement beyond chance (κappa), a statistical value for quantifying
inter-rater reliability, was used in this study to measure agreement between clinical scoring
of the horses and classification based on the AI. Kappa scores were calculated on the basis
of a 3 × 3-table, including forelimb lameness, hindlimb lameness (only using stifle refer-
ence point data) and the non-lame control group. Finally, an overall accuracy (OA) was
calculated as the percentage of all correctly classified horses based on the AI results [46].

3. Results

Of the 22 horses of the lame group, 13 horses were detected with forelimb lameness
and nine horses with hindlimb lameness. The results of their analysis, together with the
eight horses of the third group, are presented below.

3.1. Forelimb Lameness

In total, seven horses were diagnosed as left-forelimb-lame and six as right-forelimb-
lame. The lameness degrees ranged from AAEP 1–2/5 in ten horses and AAEP 3–4/5 in
three horses. As shown in Figure 2a), the upward and downward movement (“head nod”)
of the poll reference point was visually correlated with the loading of the lame and the
non-lame limb, respectively. The non-lame horses did not show any signs of repetitive
up-and-down motion of the head, as illustrated in Figure 2b).
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3.2. Hindlimb Lameness

The lameness degrees ranged from AAEP 1–2/5 in four horses and AAEP 3–4/5 in
five horses. Five horses were lame on the left hindlimb, four horses were lame on the right
hindlimb.

3.2.1. Stifle Reference Point

For every hindlimb-lame and every non-lame horse, the difference DSt was calculated.
Results are presented in Tables 1 and 2. The median score of all DSt of the non-lame
group was DSt(non− lame) = 0.55 To verify detectability of hindlimb lameness with the
stifle as reference point, a correlation between the lameness grade and the calculated DSt
was constructed. After all videos were analysed, horses 2, 4, 7 and 9, were all classified
with severe lameness and showed a clear difference in the calculated DSt compared to the
median DSt of the sound group. For horses 3, 5 and 8, graded with subtle lameness, a
smaller difference in the calculated DSt compared to the median DSt of the sound group
could be illustrated. Therefore, a relation between the degree of lameness and the calculated
DSt could be shown in all horses, except for horse 1.

Table 1. Stifle reference point—Hindlimb-lame horses.

Horse Lameness
Degree of Lameness (1–5)

CL/CR
DSSt(CL)
DSSt(CR)

Difference
DSt =|DSSt(CL)
− DSSt(CR)|

Classified Lame
Based on AI1–2 3–4

1 LH X CL
CR

42.50
44.17 1.67 No

2 RH X CL
CR

42.17
34.32 7.85 Yes

3 RH X CL
CR

31.16
29.69 1.47 Yes

4 LH X CL
CR

47.68
54.61 6.93 Yes

5 RH X CL
CR

43.32
42.09 1.23 Yes

6 LH X CL
CR

36.20
38.21 2.01 Yes

7 LH X CL
CR

48.03
51.12 3.09 Yes

8 LH X CL
CR

47.36
49.60 2.24 Yes

9 RH X CL
CR

49.90
38.55 11.35 Yes

RH = Right hindlimb, LH = Left hindlimb, CL = Circle left, CR = Circle right.
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Table 2. Stifle reference point—Non-lame horses.

Horse CL/CR DSSt(CL)
DSSt(CR)

Difference
DSt =|DSSt(CL)− DSSt(CR)|

Classified Sound
Based on AI

1 CL
CR

38.27
37.76 0.51 Yes

2 CL
CR

35.82
34.95 0.87 Yes

3 CL
CR

40.44
39.75 0.69 Yes

4 CL
CR

46.58
46.51 0.07 Yes

5 CL
CR

46.09
45.93 0.16 Yes

6 CL
CR

42.35
41.53 0.82 Yes

7 CL
CR

37.43
36.19 1.24 No

8 CL
CR

40.18
40.18 0. Yes

In the control group, with a calculated median DSt = 0.55, all horses only showed
small divergences in the comparison between CL and CR, except horse number 7.

3.2.2. Tuber Coxae Reference Point

For every hindlimb-lame and every non-lame horse, the difference DTcox was calcu-
lated. The results of the calculated DTcox for every hindlimb-lame horse are presented in
Table 3, with the non-lame group in Table 4. The median score of all DTcox of the control
group was DTcox(non-lame) = 1.30. In three out of nine lame horses (horse 3, 5 and 9), the
calculated DTcox corresponded with the lameness, as a larger difference between the mea-
sured minima and maxima on the lame side can be shown. In horses 1, 2, 4, 6, 7 and 8, DTcox
indicated lameness on the contralateral non-lame limb. Comparing the median values of
the detected lame, the non-detected lame and the non-lame horses, (DTcox(lame) = 1.21,
DTcox(non-detected lame) = 3.08 and DTcox(non-lame) = 1.30, respectively); therefore, no
correlation between lameness, lameness grade and the absence of lameness could be drawn.

The mean values for SE, SP, ACC, PPV and NPV according to the analysis of the
tuber coxae point of nine hindlimb-lame horses and eight non-lame horses are presented in
Table 5. In comparison to the clinical assessment, the classification based on AI calculation
was perfect (100% SE and SP) for forelimb lameness, close to 90% for hindlimb lameness
when using the stifle reference point, but poor for hindlimb lameness when using the tuber
coxae reference point (Table 5). The agreement beyond chance (κappa) was κ = 0.92573.
Due to the unreliable results and the inapplicability of tuber coxae as a reference point, it
was excluded in this setup. An overall accuracy (OA) of 95.3% could be reached (Table A1).
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Table 3. Tuber coxae reference point—Hindlimb-lame horses.

Horse Lameness
Degree of Lameness (1–5)

CL/CR
DSTcox(CL)
DSTcox(CR)

Difference
DTcox =|DTTcox(CL)
− DTTcox(CR)|

Classified Lame
Based on AI1–2 3–4

1 LH X CL
CR

11.29
19.21 7.92 No

2 RH X CL
CR

13.18
12.17 1.01 No

3 RH X CL
CR

11.81
14.62 2.81 Yes

4 LH X CL
CR

15.68
20.89 5.21 No

5 RH X CL
CR

9.22
9.95 0.73 Yes

6 LH X CL
CR

11.53
12.13 0.60 No

7 LH X CL
CR

13.69
15.02 1.33 No

8 LH X CL
CR

7.98
10.36 2.38 No

9 RH X CL
CR

11.18
11.27 0.09 Yes

Table 4. Tuber coxae reference point—Non-lame horses.

Horse CL/CR DSTcox(CL)
DSTcox(CR)

Difference
DTcox =|DTTcox(CL)
− DTTcox(CR)|

Classified Sound
Based on AI

1 CL
CR

11.13
11.82 0.69 Yes

2 CL
CR

12.06
11.55 0.51 Yes

3 CL
CR

14.28
19.06 4.78 No

4 CL
CR

13.99
14.49 0.50 Yes

5 CL
CR

11.38
11.81 0.43 Yes

6 CL
CR

9.96
10.64 0.68 Yes

7 CL
CR

8.45
9.59 1.14 No

8 CL
CR

8.15
9.79 1.64 No
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Table 5. Diagnostic test characteristics SE, SP, ACC, PPV and NPV of forelimb and hindlimb classifi-
cation based on AI calculations when compared to the full clinical assessment (reference) in a study
of 22 horses with lameness and eight horses without lameness (calculations of table contents based
on Tables A3–A6)).

Test True
Positive

False
Positive

False
Negative

True
Negative SE (%) SP (%) AC (%) PPV (%) NPV (%)

Forelimb AI 13 0 0 8 100 100 100 100 100

Hindlimb AI
stifle 8 1 1 7 88.9 87.5 88.2 88.9 87.5

Hindlimb AI
tuber coxae 3 3 6 5 33.3 62.5 47.1 50 45.4

4. Discussion

In this study, the usability of an AI-based program and its capacity, based on the
implementation of pose estimation, to detect specific anatomical landmarks of horses was
evaluated. Calculations were made based on these data to differentiate between non-lame
and unilateral fore- and hindlimb lame horses. Furthermore, the assessments made based
on the program were compared to clinical lameness examination.

We believe that the use of a smartphone application in a real-world, equestrian setting
would provide a great advantage to the standard lameness examination. Video analysis
is non-invasive, and videos can be obtained at any chosen location with no equipment
needed, except for a cell phone camera [29]. The ground surface and training facilities can
therefore be those to which the horse is accustomed. This is particularly relevant, as studies
have shown adaptations in equine movement and gait when, for example, a treadmill is
used [12,47]. Videos obtained using a smartphone are easy to transfer via the internet and
can be exchanged with veterinary colleagues all over the globe. Deep learning software is
a tool which can help to detect fore- and hindlimb lameness in horses. By applying pose
estimation to videos of horses filmed on a circle line and further evaluating the generated
data, it is possible to detect lameness without additional hardware.

4.1. Forelimb Lameness

With the application of the reference points on the forelimbs and the head, forelimb
lameness was detectable in this study. The data revealed head nodding as a result of
increased weightbearing on the non-lame limb during stance. By contrast, horses within
the non-lame control group did not show any consistent head movement asymmetry in
rhythm with the steps onto the right or left forelimbs. A sensitivity and specificity of 100%
shows that, by viewing the graphical charts, it is possible to differentiate a forelimb lame
from a non-lame horse with this application. The next step will be a further development
of the program to classify the extracted parameters of head and limb movement in relation
to the stride time. This will allow calculation of the measured values and the collection of
more specific data.

4.2. Hindlimb Lameness

For analysing hindlimb lameness in this setup, different equine anatomical landmarks
on the hindlimbs were considered as reference points. In the pre-evaluation, reference
points on the tuber coxae and stifle proved to be the most promising in the detection
of hindlimb lameness. The tuber coxae have been used as a reference point in various
locomotion studies [41,44,45], while the stifle has not been evaluated previously with
portable systems in the horse, as it is not feasible to fix an accelerometer onto this point.
To the authors’ knowledge, it has been used as a reference point only in studies with
OMC [42,48].
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4.2.1. Stifle

In this study, a correlation between the degree of lameness and the calculated DSt could
be shown in eight out of nine horses. Horse 1 displayed a slight difference between CL and
CR, which did not correspond to its lameness grade (3–4). This horse was a dark-brown
Warmblood with a very even-coloured coat. As mentioned below, the colour of the horses,
especially when showing little or no variance, influences the accuracy of the reference
points and, consequently, the results. Horse 7 of the control group was filmed during sunset
in an outdoor riding arena and part of the arena was still covered in sunshine. This can
affect the quality of the video with the sunbeams causing a glare effect. As mentioned
above, the error rate for data evaluation was higher compared to the training data when
these effects were present. Given the resolution of 432 pixels in the vertical axis, this error
can make a difference of up to ~1.9%. Consequently, the reference points cannot be detected
correctly in a few frames per circle, which results in a higher percentage of inaccurate
placement. A sensitivity and specificity of almost 90% when using the stifle reference point
provides promising results in this first setup. Using more labelled data will help to improve
and stabilise the placement of the markers despite disadvantageous light conditions and
horses with less well-defined anatomical landmarks.

4.2.2. Tuber Coxae

On the other hand, the tuber coxae point was not suitable for use with videos of horses
on a circle line. Comparing the median values between the horses detected as being lame,
the horses not detected as being lame and the non-lame horses, no correlation between
lameness, lameness grade and the absence of lameness could be drawn. Other studies
have shown that left and right tuber coxae should be compared at the same time to detect
asymmetry [42,44,49]. As videos of horses on a circle line only show one side of the horse,
a direct comparison using this setup was not possible. Furthermore, the large divergence
of the calculated values in the control group confirms the fact that the tuber coxae are not
suitable as a reference point for this purpose in the given setup.

Depending on the choice of reference points, the AI-based classification showed high
to perfect agreement with the clinical assessment. The use of pose estimation reduces
some of the limitations that contemporary lameness analysis systems must cope with. The
EquiMoves system® (www.equimoves.nl, accessed on 10 August 2022) uses four sensors
on the trunk and one sensor on each limb. It detects upper-body movement asymmetries
in horses. In comparison with other systems that employ fewer IMU sensors, it is possible
to determine stride length and certain limb angles for pro- and retraction and for ad- and
abduction [14]. Nonetheless, the sensors must be fixed onto the horse, and the number
of reference points is limited compared to the program evaluated in this study. Another
IMU system is the Equinosis Q Lameness Locator®, (Equinosis LLC, Columbia, MO, USA)
which uses two accelerometers on the poll and tuber sacrale to measure the vertical maxima
and minima of the head and pelvis during movement. A gyroscope attached to the right
forelimb detects the stance phase to differentiate between movements of the left and right
sides [25,50]. OMC systems such as QHorse from Qualisys Motion Capture Systems®

(Qualysis AB, Motion Capture Systems, Göteborg, Sweden) allow marker fixation on
different anatomical landmarks of the horse. With the need for a relatively large space to
set up the cameras, evaluation and analysis of horses by this method are limited to large
clinics and universities, reducing the flexibility and broad use of this system [18,51]. The
use of pose estimation for equine gait analysis offers the possibility to record and analyse
the movement of almost unlimited anatomical structures on a horse once the program has
been adequately trained. Reference points can be selected before and after recording the
horse and videos can be taken anywhere, with only a cellphone camera needed on site.

4.3. Limitations

There are some limitations in this study. Sample sizes were small, and larger studies
on a broader range of patients are needed to derive robust estimates for SE and SP. To this

www.equimoves.nl
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point, a differentiation of the anatomical origin of lameness is not possible due to small
study groups and a limited amount of data. With improvement and advanced training of
the program, further studies on the comparison of different causes of lameness are planned.

Using this software on a smartphone device, filming must be standardised, as multiple
factors can affect the quality of the videos. As mentioned before, bright sunlight and shade
lower the quality of the videos. This problem has also been discussed in other studies [29].
Consequently, the DeepLabCut software has been trained to learn how to robustly extract
body parts, even with a cluttered and varying background, inhomogeneous illumination,
or camera distortion [36]. In our study, evening light or bright sunshine made filming more
difficult, and the analysed data became more imprecise. To evaluate the performance of the
tool with videos that were not taken under perfect conditions, different light settings were
considered. The horses were filmed inside equestrian arenas with windows and other light
sources in different locations, as well as in outside riding arenas with different backgrounds
(trees, fields, grass, traffic). Nonetheless, the diversity of videos used to train the AI system
needs to be increased.

To find the most suitable filming position, 215 videos were evaluated. It showed that
filming the horse, trotting on a straight line, from in front, behind, or from the side, did not
offer enough steps for evaluation. However, videos filmed from the inner circle provided
good consistency and a sufficient number of strides for analysis. In a complete lameness
examination, horses should be evaluated on a straight line and on a circle line [39]. There
are differences in motion of the torso and the pelvic area when horses’ motions on a straight
line and on a circle line are compared [39,52]. With further development and improvement
of the program, it should be possible to analyse shorter video sequences on a straight line.

Irregular movements (horses shaking their heads, vocalising or becoming distracted
and showing horizontal or vertical head movements) or other horses in the vicinity de-
creased correct positioning of reference points by the program. This effect did not have
much impact on the results, as the chosen videos of horses on a circle line provided sufficient
data to evaluate the lameness, despite data outliers.

When the coat or hoof colour of the horse resembled the background, the sand or the
ground, it was difficult to recognise the anatomical markers and their locations became
imprecise, so they could not be used. The anatomical structures were less prominent in
horses that were completely black or white, especially when they were filmed in direct
sunlight, so that labelling became demanding or even impossible in some cases, and they
had to be excluded from the study. Apart from these rare cases, coat colour did not cause
any selection bias; there was variation of colour in all three categories and a large colour
spectrum was covered in non-lame and lame horses. The error rate increased when horses
were over-weight or had a long winter coat that made anatomical structures less visible.
By excluding the maximum and minimum 5% of the measured values, these small errors
could be removed from the data. While the reference points were difficult to evaluate under
the above circumstances, markers on the “edge” of the horse, as well as on easily visible
anatomical structures, such as the nostril, eye or coronary band, were reproducible.

Another limitation was the quality of footing. Deep sand was unstable, causing horses
to stumble or show irregular movements that could resemble lameness. This complicates
any lameness examination and is not unique to this study. This needs to be considered
with regard to the future use of the tool when videos taken by owners or inexperienced
veterinarians will be used. As the volume of labelled data grows, the reliability of the
program is expected to increase.

Evaluation of error values for training data showed that excluding outliers with a
certainty below 60% only reduced the average error from 2.6 pixels down to 2.59 pixels,
indicating that it is unlikely to improve with more training on the current model with
the same data. It also shows that the network has high uncertainty on unseen evaluation
data, which could be solved by having a greater variety of labelled images in the dataset.
With additional augmentation through modification of the images, for example, by adding
noise or changing colours or brightness, stability in difficult situations could be improved.
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Additionally, with more data and different hyperparameters this error can be reduced in
future iterations of the neural network.

4.4. Outlook for the Future

Pose estimation has the potential to improve gait analysis and lameness diagnostics
in equine medicine and veterinary science. It can be applied to various gait or training
assessments and can be used in various species such as horses, dogs, cats and dairy
cattle. Studies have shown that dairy farmers do not recognise lameness in their cattle,
even though it has a large impact on animal welfare, milk yield and, therefore, emerging
costs [53,54]. With the help of this new, easily applicable pose estimation program, objective
lameness evaluation can be efficiently executed, offering various possibilities for veterinary
students and veterinarians to improve their abilities to assess horses’ movements and,
therefore, improve welfare for the affected animals [31,55].

Studies have shown that the quality of lameness examination improves with years
of work experience, as veterinarians expand their skills and become better in detecting
lameness [7]. In addition to these years of training, this tool may serve as a valuable system
to improve learning quality and to refine and improve the veterinarian’s ability to evaluate
equine gait. Experienced veterinarians can use it for confirmation during daily clinical
work and to keep records for retrospective evaluation of treatment. With increasingly more
data being assessed and used to train the pose estimation tool, it may be possible to detect
subtle gait changes, such as mild lameness or ataxia. Another possible use for the tool could
be to compare different trainers or training methods. For example, gait analysis using all
reference points to show swinging back movements or different swing-phase trajectories
could be quantified to assess training efficacy.

5. Conclusions

This study demonstrated the feasibility of obtaining accurate measurements and data
that match the clinical presentation in moderately lame horses (grade 3–4/5 AAEP). For
horses that were only slightly lame (grade 1–2/5 AAEP), the smartphone app provided
less distinct measurements, a sign that the program needs more labelled data and training
to become more accurate and reliable. Furthermore, extended studies on the feasibility of
the different reference points must be obtained, but these preliminary results are regarded
as promising with regard to proof of concept.
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Appendix A

Table A1. Reference points of the program with the correct anatomical location.

Reference Point in the Program Anatomical Location Reference Point in the Program Anatomical Location

1. Nostril nostril 30. Hoof tip right hoof tip right forelimb

2. Eye left left eye 31. Croup middle midpoint between left and right
tuber sacrale

3. Eye right right eye 32. T. sacrale left left tuber sacrale

4. Poll poll 33. T. sacrale right right tuber sacrale

5. Withers withers 34. Kink left
midpoint between left tuber coxae
and left tuber sacrale (view from
behind)

6. Lowest back lowest part of the dorsal line 35. Kink right
midpoint between right tuber
coxae and right tuber sacrale
(view from behind)

7. T18/L1 position of the 18th thoracic
vertebra/first lumbar vertebra 36. Tail root tail root

8. Abdomen deepest part of the abdomen 37. T. coxae left left tuber coxae

9. Spina scapulae
left

scapular spine
left 38. T. coxae right right tuber coxae

10.
Spina scapulae
right

scapular spine
right 39. Coxofemoral joint left left coxofemoral joint

11 Tub. supraglenoidale
left

supraglenoid tubercle
left 40. Coxofemoral joint right right coxofemoral joint

12. Tub. supraglenoidale
right

supraglenoid tubercle
right 41. T. ischiadicum left left ischial tuberosity

13. Shoulder joint left left shoulder joint 42. T. ischiadicum right right ischial tuberosity

14. Shoulder joint right right shoulder joint 43. Stifle joint left left stifle joint

15. Elbow hock left left elbow hock 44. Stifle joint right right stifle joint

16. Elbow hock right right elbow hock 45. Tarsus left left tarsus

17. Elbow joint left left elbow joint 46. Tarsus right right tarsus

18. Elbow joint right right elbow joint 47. Calcaneus left left calcaneus

19. Os carpi accessorium left left accessory carpal bone 48. Calcaneus right right calcaneus

20. Os carpi accessorium right right accessory carpal bone 49. Fetlock left fetlock left hindlimb

21. Carpus left left carpus 50. Fetlock right fetlock right hindlimb

22. Carpus right right carpus 51. Coronary band dorsal left dorsal part of the coronet band
left hindlimb

23. Fetlock left fetlock left forelimb 52. Coronary band dorsal right dorsal part of the coronet band
right hindlimb

24. Fetlock right fetlock right forelimb 53. Coronary band plantar left plantar part of the coronet band
left hindlimb

25. Coronary band dorsal left dorsal part of the coronet band
left forelimb 54. Coronary band plantar right plantar part of the coronet band

right hindlimb

26. Coronary band dorsal right dorsal part of the coronet band
right forelimb 55. Hoof pad left heel bulb left hindlimb

27. Coronary band palmar left palmar part of the coronet band
left forelimb 56. Hoof pad right heel bulb right hindlimb

28. Coronary band palmar right palmar part of the coronet band
left forelimb 57. Hoof tip left hoof tip left hindlimb

29. Hoof tip left hoof tip left forelimb 58. Hoof tip right hoof tip right hindlimb
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Table A2. Horses of Groups 1–3 (classified into sex, median age, median height, breed and colour).

Group 1 Group 2 Group 3

Total Number 65 22 8

Sex
Mare 24 13 3

Gelding 41 9 5

Median Age (in years) 13.8 11.6 12.4

Median Height (in meter) 1.60 1.61 1.62

Breeds

Warmblood 31 16 6

Quarter Horse 7

PRE 5

Lusitano 3

Friese 1

Pinto 2

Knabstrupper 1

Arabian 1 1

Lewitzer 1

Haflinger 1

German Riding Pony 12 5 2

Colours

Black 8 1

Dark Bay 10 7 3

Bay 11 6 3

Chestnut 15 5 2

Flaxen Chestnut 3

Buckskin 1

Palomino 3

Grey 4

White 4 2

Tobiano 5

Leopard 1 1

Table A3. 3 × 3-Table and statistical evaluation of κ (without reference point tuber coxae).

Classified by AI
Non-Lame

Classified by AI
Forelimb-Lame

Classified by AI
Hindlimb-Lame Stifle Total

Clinically non-lame 20 0 1 21

Clinically forelimb-lame 0 13 0 13

Clinically hindlimb-lame
stifle 1 0 8 9

Total 21 13 9 43
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Appendix B

Table A4. Statistical classification of horses with and without forelimb lameness.

Forelimb Lameness Clinically
Forelimb-Lame Clinically Non-Lame Total

AI classified as
forelimb-lame

13 0 13
Positive predictive value

1

AI classified as
non-lame

0 8 8
Negative predictive

value

1

Total 13 8 21

AI diagnostic test
evaluation

Sensitivity of AI Specificity of AI Accuracy of AI

1 1 1

Table A5. Stifle reference point—Statistical classification of horses with and without
hindlimb lameness.

Hindlimb Lameness
Stifle

Clinically
Hindlimb-Lame Clinically Non-Lame Total

AI classified as
hindlimb-lame

8 1 9
Positive predictive value

0.888888889

AI classified as
non-lame

1 7 8
Negative predictive

value

0.875

Total 9 8 17

AI diagnostic test
evaluation

Sensitivity of AI Specificity of AI Accuracy of AI
0.888888889 0.875 0.882352941

Table A6. Tuber coxae reference point—Statistical classification of horses with and without
hindlimb lameness.

Hindlimb Lameness
Tuber Coxae

Clinically
Hindlimb-Lame Clinically Non-Lame Total

AI classified as
hindlimb-lame

3 3 6
Positive predictive value

0.5

AI classified as non-
lame

6 5 11
Negative predictive

value

0.454545455

Total 9 8 17

AI diagnostic test
evaluation

Sensitivity of AI Specificity of AI Accuracy of AI
0.333333333 0.625 0.470588235
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