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Abstract

This article presents a numerical approach for solving the second kind of Volterra integro- dif-
ferential equation (VIDE). The multistep block-Boole’s rule method will estimate the solutions
for the linear and nonlinear problems of VIDE. The method computes two solutions for VIDE
along the interval. The proposed method is developed by derivation of the Lagrange interpo-
lating polynomial. The convergence and stability analysis of the derived method are discussed.
From the perspective of total function calls and time-saving, the computation results explained
that the derived method performs better than other existing methods

Keywords: diagonally implicit; block method; Boole’s rule; Volterra integro-differential equa-
tion.
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1 Introduction

The general form of the Volterra integro-differential equation will be discussed

y′(x) = F (x, y(x), z(x)), (1)

where

z(x) =

∫ x

0

K(x, s, y(s)) ds, y(x0) = y0. (2)

Volterra integro-differential equation occurs in several fields of science and engineering, in-
cluding chemical kinetics and fluid dynamics. Several decades ago, many researchers imple-
mented a variety of numerical methods to address VIDE issues.

Several authors have proposed the numerical solution for VIDE with numerical integration
approach. Day [5] proposed the trapezoidal rule and composite trapezoidal to find the solution
of the integro-differential equation. Meanwhile, Linz [12] employed Simpson’s rule to solve the
equation (1). Ishak and Ahmad [9] applied the extended trapezoidal method for solving the
first order VIDE and implemented it in the PECE scheme. Instead, Brunner and Lambert [2]
established a weak stability theory for VIDE. They introduced the general linear test equation of
VIDE. Chang and Day [3] studied the nonlinear VIDE properties and established the theorem
of existence and uniqueness. An implicit Runge-Kutta approach is suggested by Yuan and Tang
[19] for solving a nonlinear integro-differential equation. Thus, Tang [16] introduced the spline
collocation methods to solve VIDE in weakly singular kernels.

Filiz [8] proposed Runge-Kutta method for solving VIDE and applied the Newton-Cotes for-
mulae to solve the integrals termofVIDE. The author implemented the trapezoidal rule, Simpson’s
1/3 rule, Simpson’s 3/8 and Boole’s rule for the integral term. In 2015, some researchers were at-
tracted by the block method to apply this method in VIDE. Mohamed and Majid [14] proposed
the two points one-step block method for solving VIDE. While, Tunç and Tunç [17] introduced
the sufficient conditions for stability, boundedness, uniformly asymptotic stability, integrability
and square integrability of solutions of a few scalar nonlinear Volterra integrodifferential equa-
tions and a Volterra integro-differential system. Their approach is based on Lyapunov’s second
method. Janodi et al. [10] developed a one-step hybrid block method with quadrature rules for
solving linear and nonlinear problems in VIDE. The authors discussed the stability analysis of the
hybrid one step method, including the method’s order, consistency, zero stability, and stability
region of the method.

The fifth order numerical method and an appropriate numerical integration method for solv-
ing equation (1) and (2) are discussed in this paper. We demonstrate how to adapt this strategy
to the solution of both linear and nonlinear problems of VIDE.
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2 Derivation of Diagonally Multistep Block

Figure 1 describes the approximate solutions for yn+1 and yn+2 in a block of three back values,
respectively, at xn+1 and xn+2.

Figure 1: Diagonally multistep block method.

The formulae of the multistep block method was derived from the Lagrange interpolating
polynomial. For the first point corrector formula, yn+1 can be produced by integrating once over
[xn, xn+1] and yield to ∫ xn+1

xn

y′(x) dx =

∫ xn+1

xn

F (x, y(x), z(x)) dx,

y(xn+1)− y(xn) =

∫ xn+1

xn

F (x, y(x), z(x)) dx. (3)

Thus, the degree four Lagrange interpolating polynomial will be associated with F (x, y(x), z(x)).
The set of interpolation points used to acquire the first point of the corrector formula, yn+1, is
{xn−3, xn−2, xn−1, xn, xn+1}. It takes x = xn+1 + sh and gets the dx = hds substitute. The inte-
gration limit from −1 to 0 will be fixed. The first correcter formulation point can be written by
simplifying the integration using MAPLE software as follows,
First point of corrector formula:

yn+1 = yn + h

[
− 19

720
Fn−3 +

53

360
Fn−2 −

11

30
Fn−1 +

323

360
Fn +

251

720
Fn+1

]
. (4)

The sameprocedurewill be applied to develop the secondpoint of the corrector formula. Equation
(1) will be integrated over [xn, xn+2] once gives,∫ xn+2

xn

y′(x) dx =

∫ xn+2

xn

F (x, y(x), z(x)) dx,

y(xn+2)− y(xn) =

∫ xn+2

xn

F (x, y(x), z(x)) dx. (5)

For the second point of the corrector formula, five points will be considered in the Lagrange in-
terpolating polynomial i.e. {xn−2, xn−1, xn, xn+1, xn+2} and then substitute F (x, y(x), z(x)) with
the polynomial. Therefore, take dx = hds and fix the range of the integration limit from −2 to 0.
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The MAPLE software is applied to evaluate the integrals for the implementation of the corrector
formula for the second point of the multistep block method as follows;
Second point of corrector formula:

yn+2 = yn + h

[
− 1

90
Fn−2 +

2

45
Fn−1 +

4

15
Fn +

62

45
Fn+1 +

29

90
Fn+2

]
. (6)

The proposed method is a combination of predictor and corrector formulae. When four points
are involved in the Lagrange interpolating polynomial, the predictor formulae will be established.
The formulation of the predictor formulae of the first point and second point can be obtained from
the same process as described above and gives the predictor formulae as follows;

yn+1 = yn + h

[
−3

8
Fn−3 +

37

24
Fn−2 −

59

24
Fn−1 +

55

24
Fn

]
, (7)

yn+2 = yn + h

[
−8

3
Fn−3 +

31

3
Fn−2 −

44

3
Fn−1 + 9Fn

]
. (8)

The following corrector formulae can be expressed into a matrix form, which is equivalent to the
equation (4) and (6)

[
0 0 0 −1 1 0
0 0 0 −1 0 1

]

yn−3
yn−2
yn−1
yn
yn+1

yn+2

 = h

[− 19
720

53
360 − 11

30
323
360

251
720 0

0 − 1
90

2
45

4
15

62
45

29
90

]

Fn−3
Fn−2
Fn−1
Fn

Fn+1

Fn+2

 . (9)

Regarding [11], the order of the method can be discovered
k∑

j=0

[αjy(x+ jh)− hβjy′(x+ jh)] = Cpy
p +O(hp+1), (10)

where p is the order of the linear multistep method, O(hp+1) is the local truncation error and Cp

is developed as follows;

Cp =

k∑
j=0

(
jpαj

p!
− j(p−1)βj

(p− 1)!

)
. (11)

Definition 2.1. The numerical method is said to be in order p if,

C0 = C1 = C2 = · · · = Cp = 0, Cp+1 6= 0, (12)

where the error constant for the method is called as Cp+1, [11].

The coefficients of αj and βj can be obtained from (9),

α0 =

[
0
0

]
, α1 =

[
0
0

]
, α2 =

[
0
0

]
, α3 =

[
−1
−1

]
, α4 =

[
1
0

]
, α5 =

[
0
1

]
,

β0 =

[
− 19

720
0

]
, β1 =

[
53
360
− 1

90

]
, β2 =

[
− 11

30
2
45

]
, β3 =

[
323
360
4
15

]
, β4 =

[
251
720
62
45

]
, β5 =

[
0
29
90

]
.
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Therefore, by equation (11), the order and error constant of the derived method will be gen-
erated as follows,

C0 =

5∑
j=0

1

0!
· j0 · αj =

[
0
0

]
,

C1 =

5∑
j=0

1

1!
· j1 · αj −

5∑
j=0

1

0!
· j0 · βj =

[
0
0

]
,

C2 =

5∑
j=0

1

2!
· j2 · αj −

5∑
j=0

1

0!
· j1 · βj =

[
0
0

]
,

C3 =

5∑
j=0

1

3!
· j3 · αj −

5∑
j=0

1

2!
· j2 · βj =

[
0
0

]
,

C4 =

5∑
j=0

1

4!
· j4 · αj −

5∑
j=0

1

3!
· j3 · βj =

[
0
0

]
,

C5 =

5∑
j=0

1

5!
· j5 · αj −

5∑
j=0

1

4!
· j4 · βj =

[
0
0

]
,

C6 =

5∑
j=0

1

6!
· j6 · αj −

5∑
j=0

1

5!
· j5 · βj =

[
− 3

160
− 1

90

]
.

The derived method is of order five concerning Definition 2.1 and the error constant is assessed.

Cp+1 = C6 =

[
− 3

160
− 1

90

]
6= [0 0]T . (13)

Definition 2.2. If the order of method is p ≥ 1, then the numerical method is consistent. The numerical
method will be consistent if and only if, [11],

k∑
j=0

αj = 0,

k∑
j=0

jαj =

k∑
j=0

βj . (14)

By referring to Definition 2.2, the consistency of the method can be proved. The proposed
method (9) is consistent if and only if it satisfies with two conditions as follows,

1.
k∑

j=0

αj = 0.

Proof:
5∑

j=0

αj =

5∑
j=0

1

0!
· j0 · αj = α0 + α1 + α2 + α3 + α4 + α5,

=

[
−1
−1

]
+

[
1
0

]
+

[
0
1

]
=

[
0
0

]
. (15)
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2.
k∑

j=0

j · αj =
k∑

j=0

βj .

Proof:
5∑

j=0

j · αj =

5∑
j=0

1

1!
· j1 · αj = 31 · α3 + 41 · α4 + 51 · α5,

= 3

[
−1
−1

]
+ 4

[
1
0

]
+ 5

[
0
1

]
=

[
1
2

]
.

5∑
j=0

βj =

5∑
j=0

1

0!
· j0 · βj = β0 + β1 + β2 + β3 + β4 + β5,

=

[
− 19

720
0

]
+

[
53
360
− 1

90

]
+

[
− 11

30
2
45

]
+

[
323
360
4
15

]
+

[
251
720
62
45

]
+

[
0
29
90

]
=

[
1
2

]
.

Hence,
5∑

j=0

j · αj =

5∑
j=0

βj =

[
1
2

]
. (16)

The equation (9) is also equivalent to

A0Ym = A1Ym−1 + h(B0Fm +B1Fm−1 +B2Fm−2),

where [
1 0
0 1

] [
yn+1

yn+2

]
=

[
0 −1
0 −1

] [
yn−1
yn

]
+ h

[
− 19

720
53
360

0 − 1
90

] [
Fn−3
Fn−2

]
+h

[
− 11

30
323
360

2
45

4
15

] [
Fn−1
Fn

]
+ h

[
251
720 0
62
45

29
90

] [
Fn+1

Fn+2

]
. (17)

Definition 2.3. A block method is said to be zero-stable if and only if providing the roots of Rj , j = 1(1)k
of the first characteristic polynomial, ρ(R) specified as

ρ(R) = det

 k∑
j=0

A(i)R(k−i)

 = 0, (18)

satisfies with |Rj | ≤ 1 and those roots with |Rj | = 1, [11].

Since the roots of themethod are | R | ≤ 1, thus the associatedmethod is zero stable concerning
Definition 2.3. The verification of the zero stability of the derivedmethod (9) is validated as below,

ρ(r) = det [RA0 −A1] = 0,

= det

[
R

[
1 0
0 1

]
−
[
0 −1
0 −1

]]
,

= det

[
R 1
0 R+ 1

]
,

= R(R+ 1). (19)
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Theorem 2.1. The method is said to be convergent if it is consistent and zero-stable, [11].

Corollary 2.1. The method of order five is consistent and zero stable, and then it converges on the theorem
2.1.

3 Implementation

The derived method requires three initial values before being used. The three initial values
were computed using the Adam Bashforth Moulton method. Then, the method derived can be
implemented until the end of the interval;

ypn+1 = yn + h

[
−3

8
Fn−3 +

37

24
Fn−2 −

59

24
Fn−1 +

55

24
Fn

]
,

ypn+2 = yn + h

[
−8

3
Fn−3 +

31

3
Fn−2 −

44

3
Fn−1 + 9Fn

]
,

ycn+1 = yn + h

[
− 19

720
Fn−3 +

53

360
Fn−2 −

11

30
Fn−1 +

323

360
Fn +

251

720
Fn+1

]
,

ycn+2 = yn + h

[
− 1

90
Fn−2 +

2

45
Fn−1 +

4

15
Fn +

62

45
Fn+1 +

29

90
Fn+2

]
. (20)

The appropriate numerical integration method for finding solutions for the integral part of VIDE
is adapted to the derived method. For the solution of the integral part, the composite Boole’s
rule (refer [18]) is implemented . This approach will be applied to the proposed method when
n = 0, 4, 8, 16, . . .,

zn+4 =
2h

45

n+4∑
i=0

ωs
iK(xn+4, xi, yi), (21)

zn+5 =
2h

45

n+4∑
i=0

ωs
iK(xn+5, xi, yi)

+
h

90

[
7K(xn+5, xn+4, yn+4) + 32K(xn+5, xn+ 17

4
, yn+ 17

4
)

+12K(xn+5, xn+ 9
2
, yn+ 9

2
) + 32K(xn+5, xn+ 19

4
, yn+ 19

4
)

+7K(xn+5, xn+5, yn+5)] . (22)

where ωs
i are Boole’s rule weights 7, 32, 12, 32, 14, 32, 12, 32, 14, . . . , 32, 12, 32, 7. The equations of

yn+ 17
4
, yn+ 9

2
and yn+ 19

4
can be obtained by Lagrange interpolating polynomial at points

{xn, xn+1, xn+2, xn+3, xn+4, xn+5},

yn+ 17
4

=
117

8192
yn −

765

8192
yn+1 +

1105

4096
yn+2 −

1989

4096
yn+3 +

9945

8192
yn+4 +

663

8192
yn+5,

yn+ 9
2

=
7

256
yn −

45

256
yn+1 +

63

128
yn+2 −

105

128
yn+3 +

315

256
yn+4 +

63

256
yn+5,

yn+ 19
4

=
231

8192
yn −

1463

8192
yn+1 +

1995

4096
yn+2 −

3135

4096
yn+3 +

7315

8192
yn+4 +

4389

8192
yn+5.

(23)
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Since n = 0, 4, 8, 16, . . ., another two values of z are required to satisfy the requirement of n. As
below are derived, two other formulae of z.

zn+6 =
2h

45

n+4∑
i=0

ωs
iK(xn+6, xi, yi)

+
h

90

[
7K(xn+6, xn+4, yn+4) + 32K(xn+6, xn+ 17

4
, yn+ 17

4
)

+12K(xn+6, xn+ 9
2
, yn+ 9

2
) + 32K(xn+6, xn+ 19

4
, yn+ 19

4
)

+7K(xn+6, xn+5, yn+5)]

+
h

90

[
7K(xn+6, xn+5, yn+5) + 32K(xn+6, xn+ 21

4
, yn+ 21

4
)

+12K(xn+6, xn+ 11
2
, yn+ 11

2
) + 32K(xn+6, xn+ 23

4
, yn+ 23

4
)

+7K(xn+6, xn+6, yn+6)] , (24)

zn+7 =
2h

45

n+4∑
i=0

ωs
iK(xn+7, xi, yi)

+
h

90

[
7K(xn+7, xn+4, yn+4) + 32K(xn+7, xn+ 17

4
, yn+ 17

4
)

+12K(xn+7, xn+ 9
2
, yn+ 9

2
) + 32K(xn+7, xn+ 19

4
, yn+ 19

4
)

+7K(xn+7, xn+5, yn+5)]

+
h

90

[
7K(xn+7, xn+5, yn+5) + 32K(xn+7, xn+ 21

4
, yn+ 21

4
)

+12K(xn+7, xn+ 11
2
, yn+ 11

2
) + 32K(xn+7, xn+ 23

4
, yn+ 23

4
)

+7K(xn+7, xn+6, yn+6)]

+
h

90

[
7K(xn+7, xn+6, yn+6) + 32K(xn+7, xn+ 25

4
, yn+ 25

4
)

+12K(xn+7, xn+ 13
2
, yn+ 13

2
) + 32K(xn+7, xn+ 27

4
, yn+ 27

4
)

+7K(xn+7, xn+7, yn+7)] . (25)

The unknown values of yn+ 17
4
, yn+ 9

2
and yn+ 19

4
can be solved by equation (23). Lagrange interpo-

lating polynomial at a set of points {xn+1, xn+2, xn+3, xn+4, xn+5, xn+6} are used to develop new
equations for yn+ 21

4
, yn+ 11

2
and yn+ 23

4
;

yn+ 21
4

=
117

8192
yn+1 −

765

8192
yn+2 +

1105

4096
yn+3 −

1989

4096
yn+4 +

9945

8192
yn+5 +

663

8192
yn+6,

yn+ 11
2

=
7

256
yn+1 −

45

256
yn+2 +

63

128
yn+3 −

105

128
yn+4 +

315

256
yn+5 +

63

256
yn+6,

yn+ 23
4

=
231

8192
yn+1 −

1463

8192
yn+2 +

1995

4096
yn+3 −

3135

4096
yn+4 +

7315

8192
yn+5 +

4389

8192
yn+6.

(26)
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The values of yn+ 25
4
, yn+ 13

2
and yn+ 27

4
will be obtained by Lagrange interpolating polynomial. The

interpolating points involved are {xn+2, xn+3, xn+4, xn+5, xn+6, xn+7} and the developed equa-
tions can be expressed as,

yn+ 25
4

=
117

8192
yn+2 −

765

8192
yn+3 +

1105

4096
yn+4 −

1989

4096
yn+5 +

9945

8192
yn+6 +

663

8192
yn+7,

yn+ 13
2

=
7

256
yn+2 −

45

256
yn+3 +

63

128
yn+4 −

105

128
yn+5 +

315

256
yn+6 +

63

256
yn+7,

yn+ 27
4

=
231

8192
yn+2 −

1463

8192
yn+3 +

1995

4096
yn+4 −

3135

4096
yn+5 +

7315

8192
yn+6 +

4389

8192
yn+7.

(27)

4 Stability Analysis

The stability of the derived method on Volterra integro-differential equation will be discussed.
The linear test equation of VIDE is considered as,

y′ = ξy(x) + η

∫ x

0

y(s) ds, (28)

where ξ, η are real constants. The solutions of (28) tend to zero as x→∞ if and only if ξ < 0 and
η < 0. Then, the region of absolute stability is the set of points (hξ, h2η) for which all zeros of the
stability polynomial lie in the interior of the unit disk.

The stability polynomial is developed using the derived method associated, including the
quadrature rule. The stability polynomial of the generated methods is determined after substi-
tuting the first characteristics polynomial into the general form of VIDE stability polynomial. The
general form of stability polynomial for VIDE, [2] is considered as,

π(r, hξ, h2η) = ρ̃(r) [ρ(r)− hξ σ(r)]− h2η σ̃(r)σ(r), (29)

where the parameter hξ, h2η ∈ R. By lettingH1 = hξ andH2 = h2η, hence the stability polynomial
of VIDE of the second kind will be,

π(r,H1, H2) = ρ̃(r) [ρ(r)−H1 σ(r)]−H2 σ̃(r)σ(r), (30)

where ρ(r) is the first characteristics polynomial and σ(r) is the second characteristic polynomial
of the linear multistep method and defined as

ρ(r) =

k∑
j=0

αjr
j , σ(r) =

k∑
j=0

βjr
j .

Hence, the characteristics polynomial of the associated method and Boole’s rule are given as,
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i) Corrector formula for the first point, yn+1,

ρ1(r) = r4 − r3,

σ1(r) =
251

720
r4 +

323

360
r3 − 11

30
r2 +

53

360
r − 19

720
. (31)

ii) Corrector formula for the second point, yn+2,

ρ2(r) = r5 − r3,

σ2(r) =
29

90
r5 +

62

45
r4 +

4

15
r3 +

2

45
r2 − 1

90
r. (32)

iii) Boole’s rule

ρ̃(r) = r4 − 1,

σ̃(r) =
14

45
r4 +

64

45
r3 +

24

45
r2 +

64

45
r +

14

45
. (33)

The stability polynomial for the corrector formulae is evaluated by substituting the characteristics
polynomial of the derived method and Boole’s rule into (30). Thus, the stability polynomial can
be obtain as follows;

π(r,H1, H2) =

(
19

64800
+

7279

64800
r8 − 10217

8100
r7 − 2339

4050
r6 +

20357

8100
r5 +

5303

6480
r4 − 10063

8100
r3

−2863

8100
r2 − 77

8100
r

)
H2

1 +

(
931

32805000
+

356671

32805000
r8 − 1279486

4100625
r7 +

13924927

8201250
r6

+
20115938

4100625
r5 +

55652293

16402500
r4 +

3789509

8201250
r3 − 35056

8201250
r2 − 11143

8201250
r

)
H2

2

+

(
+

50953

729000
r8 − 121201

182250
r7 − 63383

40500
r6 − 91513

182250
r5 +

446771

364500
r4 +

422917

364500
r3

+
49133

182250
r2 +

31

4500
r − 133

729000

)
H1H2 +

(
−161

240
r8 − 223

240
r7 +

697

720
r6 +

1319

720
r5

+
11

144
r4 − 631

720
r3 − 269

720
r2 − 19

720
r

)
H1 +

(
−1127

5400
r8H2 −

70319

16200
r7H2 −

59639

16200
r6H2

+
5069

1080
r5H2 +

797

200
r4H2 −

5849

16200
r3H2 −

1537

16200
r2H2 +

133

16200
rH2

)
H2 + r8

−r7 − 2r6 + 2r5 − r3 + r4 = 0. (34)

Substituting−1, 0, 1 and cos(θ)+ i sin(θ) for r in theH1−H2 plane yields the absolute stability
boundary. The stability region is illustrated usingMaple software and presented in Figure 2. From
Figure 2, it explained that the method is stable within the shaded region. The stability region
demonstrates that the proposed method could generate the appropriate results with the given
values of the time steps.
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Figure 2: Stability region of the proposed method in H1-H2 plane.

5 Numerical Results and Discussion

The mathematical results are tabulated in Tables 1 - 4. The notations implemented for the
following tables and figures are as below;

h : Step size.
MAXE : Maximum errors.
TS : Total of steps.
TFC : Total function calls.
Time : The execution time taken in second.
ABM5 : Adam-Bashforth-Moulton of fifth order method with Boole’s rule.
DIMBM : Diagonally implicit multistep block method of third order with Simp-

son’s rule by [1].
2P3BVIDE : Two-point three-step block method of fifth order with Boole’s rule in

[13].
MBBM5 : Multistep block-Boole’s rule method of fifth order in this research.

The maximum error can be determined as

MAXE = max
0≤n≤N

|y(xn)− yn|.

Contemplate the following problems, the efficiency of the proposed method can be contrasted
with existing methods.
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Problem 1 (Linear VIDE)

y′(x) = 1−
∫ x

0

y(s) ds,

y(0) = 0, 0 ≤ x ≤ 1.

Exact solution: y(x) = sin(x).
Source: [7]

Problem 2 (Linear VIDE)

y′(x) = − sin(x)− cos(x) +

∫ x

0

2 cos(x− s)y(s) ds,

y(0) = 1, 0 ≤ x ≤ 5.

The exact solution is y(x) = exp(−x).
Source: [4]

Problem 3 (Non-linear VIDE)

y′(x) = 2x− 1

2
sin(x4) +

∫ x

0

x2s cos(x2y(s)) ds,

y(0) = 0, 0 ≤ x ≤ 2.

with the exact solution, y(x) = x2.
Source:[6]

Problem 4 (Non-linear VIDE)

y′(x) = x exp(1− y(x))− 1

(1 + x)2
− x−

∫ x

0

x

(1 + s)2
exp(1− y(s)) ds,

y(0) = 1, 0 ≤ x ≤ 4.

The exact solution for this problem is y(x) = 1

1 + x
.

Source: [15]

All the computation results computed in C language on the Code::Blocks platform, where the
performance of DIMBM, ABM5, 2P3BVIDE andMBBM5 can be compared. The ABM5, 2P3BVIDE
andMBBM5 satisfied themethod of order five, while DIMBM ismethod of order three. Moreover,
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MBBM5 and DIMBM are diagonally implicit block methods, whereas 2P3BVIDE is a fully implicit
block method. Furthermore, all the methods are in the form of the multistep method and these
methods used the constant step size in their formulation. Tables 1 - 4 provide all of the numerical
results.

Table 1: Computational result for Problem 1.

h Method MAXE TFC TS Time

1

40

DIMBM 4.1354(-07) 42 21 0.0450
ABM5 4.4529(-09) 88 40 0.1020
2P3BVIDE 1.2349(-09) 50 22 0.0700
MBBM5 2.8892(-09) 42 22 0.0310

1

80

DIMBM 4.7815(-08) 82 41 0.1120
ABM5 2.3862(-10) 168 80 0.1579
2P3BVIDE 3.8642(-11) 90 42 0.1166
MBBM5 1.4990(-10) 82 42 0.0450

1

160

DIMBM 5.8390(-09) 162 81 0.1600
ABM5 1.4271(-11) 328 160 0.2622
2P3BVIDE 1.2080(-12) 170 82 0.2034
MBBM5 8.5145(-12) 162 82 0.1390

1

320

DIMBM 7.2152(-10) 322 161 0.2660
ABM5 8.6009(-13) 648 320 0.4222
2P3BVIDE 3.7751(-14) 330 162 0.3124
MBBM5 5.0404(-13) 322 162 0.2000

Figure 3: Graph of total function calls against MAXE for Problem 1.
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Figure 4: Graph of the execution time take against MAXE for Problem 1.

Problem 1 was solved by setting the step size to h = 1/40, 1/80, 1/160 and 1/320, respectively.
Table 1, the tabulated data shows the 2P3BVIDE achieved better accuracy than DIMBM, ABM5
andMBBM5. The 2P3BVIDE is the fully implicit block method compared to the MBBM5, which is
the diagonally implicit block method. Therefore, the 2P3BVIDE can have extra total function calls
even though the order of method is the same. With the least number of total function calls and
execution time taken, it gives advantages to the MBBM5 compared to the ABM5 and 2P3BVIDE,
visualised clearly in Figures 3 and 4.

Table 2: Computational result for Problem 2.

h Method MAXE TFC TS Time

1

4

DIMBM 1.8211(-02) 22 11 0.0140
ABM5 8.1337(-03) 85 20 0.0715
2P3BVIDE 6.1138(-03) 59 11 0.0462
MBBM5 6.0777(-04) 40 12 0.0030

1

8

DIMBM 3.4489(-03) 42 21 0.0410
ABM5 4.7616(-04) 165 40 0.1623
2P3BVIDE 3.9009(-04) 99 21 0.0900
MBBM5 9.9481(-05) 80 22 0.0060

1

16

DIMBM 4.6803(-04) 170 41 0.1170
ABM5 2.1034(-05) 325 80 0.2139
2P3BVIDE 1.6881(-05) 179 41 0.1930
MBBM5 5.1571(-06) 160 42 0.0370

1

32

DIMBM 6.0807(-05) 162 81 0.1480
ABM5 7.8509(-07) 645 160 0.3278
2P3BVIDE 6.1208(-07) 339 81 0.2494
MBBM5 2.0353(-07) 320 82 0.0990
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Figure 5: Graph of total function calls against MAXE for Problem 2.

Figure 6: Graph of the execution time take against MAXE for Problem 2.

Table 2 evaluate the performance of MBBM5 at the different step sizes to DIMBM, ABM5 and
2P3BVIDE in solving Problem 2. The MBBM5 demonstrated greater precision than other existing
methods. Figure 5 shows the MBBM5 obtained fewer function calls to complete the interval than
the other fifth order methods.
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Table 3: Computational result for Problem 3.

h Method MAXE TFC TS Time

2

9

DIMBM 8.8008(-03) 10 - 0.0050
ABM5 7.2747(-02) 41 7 0.0520
2P3BVIDE 6.8284(-02) 35 5 0.0470
MBBM5 6.2668(-02) 16 6 0.0010

2

17

DIMBM 8.6068(-04) 18 - 0.0280
ABM5 7.8868(-03) 73 15 0.0730
2P3BVIDE 8.4729(-03) 51 9 0.0352
MBBM5 8.5662(-03) 32 10 0.0040

2

33

DIMBM 1.7703(-04) 34 - 0.0350
ABM5 8.9015(-05) 137 31 0.1355
2P3BVIDE 9.3109(-05) 83 17 0.0780
MBBM5 9.2589(-05) 64 18 0.0060

2

65

DIMBM 6.6994(-06) 66 - 0.0420
ABM5 2.9296(-07) 265 63 0.2133
2P3BVIDE 3.0567(-07) 147 33 0.1560
MBBM5 3.3921(-07) 128 34 0.0530

Figure 7: Graph of total function calls against MAXE for Problem 3.
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Figure 8: Graph of the execution time take against MAXE for Problem 3.

The nonlinear problem of VIDE was solved numerically and the numerical results were tab-
ulated in Tables 3 and 4. In table 3, the accuracy achieved by DIMBM is significantly better than
MBBM5 at the step sizes, h = 2/9 and 2/17 due to its startingmethod, which is a one-stepmethod.
Meanwhile, the MBBM5 began with the Adam Bashforth Moulton method, which is also known
as the multistep method. The total function calls of DIMBM are lesser than MBBM5, as illustrated
in Figure 7. This is because the third order DIMBM does only one iteration, whereas the MBBM5
performed two iterations to obtain more accurate results. However, as the step size gets smaller,
the MBBM5 dominates other methods in terms of timing, as depicted in Figure 8.

Table 4: Computational result for Problem 4.

h Method MAXE TFC TS Time

1

40

DIMBM 3.6545(-06) 322 - 0.2610
ABM5 1.7212(-08) 645 160 0.3430
2P3BVIDE 8.3237(-08) 339 81 0.2850
MBBM5 1.1817(-08) 320 82 0.1990

1

80

DIMBM 4.6274(-07) 642 - 0.3010
ABM5 3.0551(-09) 1285 320 0.5544
2P3BVIDE 3.8384(-09) 659 161 0.3879
MBBM5 4.2375(-10) 640 162 0.3250

1

160

DIMBM 5.8216(-08) 1282 - 0.6740
ABM5 1.9089(-10) 2565 640 1.1720
2P3BVIDE 2.0775(-10) 1299 321 0.6778
MBBM5 1.4194(-11) 1280 322 0.6310

1

320

DIMBM 7.2999(-09) 2562 - 1.1050
ABM5 1.1926(-11) 5125 1280 1.8678
2P3BVIDE 1.2654(-11) 2579 641 1.4850
MBBM5 4.6324(-13) 2560 642 1.0990
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Figure 9: Graph of total function calls against MAXE for Problem 4.

Figure 10: Graph of the execution time take against MAXE for Problem 4.

The maximum errors for the MBBM5 with the existing methods are slightly better in Table 4.
The numerical results show that the total function calls by the MBBM5 are lesser than the existing
method. Moreover, theMBBM5 saves substantial time andmuch quicker than the existingmethod
due to the cost per step is much cheaper and less function evaluation required per step.

The order of convergence was calculated for all tested problems and yields,

Order of convergence for Problem 1:

= log


(

2.8892(−09)
1.4990(−10)

)
(

1
40
1
80

)
 = 4.2685.

Order of convergence for Problem 2:

= log


(

9.9481(−05)
5.1571(−06)

)
(

1
8
1
16

)
 = 4.2697.
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Order of convergence for Problem 3:

= log


(

8.5662(−03)
9.2589(−05)

)
(

2
17
2
33

)
 = 6.8256.

Order of convergence for Problem 4:

= log


(

4.2357(−10)
1.4194(−11)

)
(

1
80
1

160

)
 = 4.8992.

Problem 1 and 2 have achieved fourth order accuracy while Problem 3 and 4 has produced sixth
order accuracy and fifth order accuracy. In Problem 1 and 2, the implementation of Adam Bash-
forth method to estimate the first and second initial values may have affected the accuracy. The
order of themethod used is less than four due to lack of available points at the beginning. Further-
more, the accuracy of the proposed method also could be influenced by the lower order Lagrange
interpolating polynomial in the composite Boole’s rule.

6 Conclusions

The numerical results demonstrated that themaximum error ofMBBM5 produced better accu-
racy as the step size decreases. The MBBM5 outperforms the other methods in terms of execution
times and total function calls. Therefore, the MBBM5 is reliable in determining the approximate
solutions for the second kind of VIDE. This proposed method is both efficient and economical.
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