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A B S T R A C T   

The construction and building industry, one of the greatest emitters of greenhouse gases, is under tremendous 
pressure because of the growing concern about global climate change and its detrimental effects on societies. 
Given the environmental problems connected to cement production, geopolymer concrete has become a viable 
alternative. In addition, if the concrete strength results failed to meet the specified strength after being cast, 
modifications are impossible. Thus, it is particularly desirable to predict strength prior to casting concrete. This 
study presents the first effort in applying deep neural networks (DNN) of AI techniques to predict the mechanical 
strengths (GGBFS) of geopolymer concrete (GPC) produced from corncob ash and ground granulated blast 
furnace slag. The mixes were activated with 12–16 M of alkali solutions at ambiently cured conditions for 7–90 
days. Following that, back propagation learning algorithms were created for forecasting the concrete strengths 
based on concrete mix proportions. The mechanical strengths estimated by the DNN were verified by laboratory 
testing results. Results revealed that GGBFS, mix grade, curing days, and alkali precursor are variables that 
govern the mechanical strengths of the GGBFS-CCA-GPC. Forecasting the mechanical properties of GPC produced 
using DNN shows that the relationship between the input and output arguments could be most accurately pre-
dicted by a 10–20–20–20-1 network topology, evident by approximately 99% correlation coefficient between the 
actual and predictive values for compressive and flexural strengths. However, the 10–17–17–17-1 network ar-
chitecture showed the best DNN for predicting split tensile strength, with a 97% correlation coefficient between 
the actual and projected values. This study demonstrated that the DNN techniques are efficient in predicting the 
mechanical strengths of GPC based on the mix proportions. Application of these techniques will greatly advance 
concrete quality assurance.   

1. Introduction 

Through the ages, there has been an increasing awareness of the 
environmental impact of concrete’s dominance as a key building ma-
terial [1]. Because of the expanding population, there is a higher need 
for raw materials. According to projections, the global cement and 
concrete market would have doubled by 2050, increasing carbon 
emissions and harming biodiversity [2]. Portland cement (PC) produc-
tion requires a large amount of energy and has a large carbon footprint; 
research has focused on developing alternative binders [2]. Portland 
cement, the primary binding component of concrete, requires about 1.7 
tons of raw materials to produce, which results in the atmospheric 
release of about 0.8 tons of carbon dioxide [3]. These circumstances 
necessitate quick action to mitigate the negative effects of cement 

manufacturing on climate change [2]. Recycling agricultural and in-
dustrial wastes with natural compositions and origins to create building 
materials is one of the scientific and technological ways to achieve 
material sustainability [4]. Recycling agricultural and industrial waste 
materials as supplemental cementitious materials (SCMs) has positive 
effects on the environment, the economy, and the society [5,6]. It has 
been demonstrated that replacing PC with waste materials is a workable, 
affordable, and environmentally responsible way to reduce carbon 
footprint [7–9]. Even in radiation shielding, replacing PC with other 
materials has indicated to increase the effectiveness of the environ-
ment’s protection from dangerous radiation [9–11]. 

The fact that the PC has been completely removed from the mixture 
and substituted with other ingredients like recycled agro-industrial 
materials is a key characteristic of geopolymer concrete (GPC), a type 
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of environmentally friendly concrete [12,13]. This signifies that its 
manufacture is based on activating aluminosilicate-based source mate-
rials with alkali hydroxide/alkali silicate [14]. There is a wealth of 
literature that demonstrates the use of recycled agricultural and indus-
trial materials as promising geopolymer (aluminosilicate) precursors, 
including fly ash (FAS), ground granulated blast furnace slag (GGBFS), 
rice husk ash (RHA), silica fume (SF), red mud (RM), and metakaolin 
(MK) [15–20]. In contrast to GPC, the prospective application of GGBFS 
in the production of environmentally and economically viable concrete 
appears promising, yielding good cost benefit and very less environ-
mental impact [21,22], increased stiffness [23], and high resistance to 
chemical attacks [24,25] compared to conventional concrete. Corncob 
ash (CCA) utilization, however, is an emerging development. CCA’s high 
silica content opens up the possibility of employing it in addition to or 
instead of other pozzolanic materials that are frequently utilized, such as 
FAS and RHA. On the other hand, aluminosilicate materials are acti-
vated using alkaline activators such as sodium hydroxide (NaOH), 

potassium hydroxide (KOH), sodium silicate (Na2SiO3), and potassium 
silicate (K2SiO3) [20,26]. KOH displayed a higher amount of alkalinity 
than NaOH. However, it has been discovered that NaOH has a better 
capability for aluminosilicate monomer liberation [27–30]. Research is 
currently focused on the production of this green concrete at ambiently 
cured temperature to address the difficulties of site application of oven- 
cured GPC. It is also crucial to realize that material performance cannot 
be evaluated merely on the basis of meeting strength standards. Given 
that all structures are exposed to the elements and frequently endure 
difficult conditions, durability must be taken into account while esti-
mating their service life. Greater mechanical strengths and improved 
durability made by GPC make it a suitable concrete option for use in 
environmentally sensitive areas [31]. Thus, from literature standpoint, 
GPC has demonstrated favorable and higher mechanical and durability 
characteristics than PC concrete due to their distinctive chemical 
makeup [20,26,31]. Ambiently cured GPC exhibited higher compressive 
strength [32–34], greater flexural strength [35–37], higher tensile 

Table 1 
Several ML techniques of AI-based system in predicting concrete properties.  

S/ 
N 

Algorithm Input Output Dataset Reference 

1 ANN PC, curing age, water, aggregates, and micro air CS 144 [76] 
2 ANN PC, GGBFS, SP, aggregates, water, and sample age CS 225 [77] 
3 ANN PC, SF, water content, aggregates; SP, and sample age CS 240 [78] 
4 ANN FAS, NaOH solution, Na2SiO3 gel, and water CS 210 [79] 
5 ANN Sample age; NaOH concentration, NZ, SF; GGBFS CS 117 [18] 
6 ANN PC, GGBFS, FAS, SP, aggregates, water, and sample age CS 300 [80] 
7 ANN GGBFS, FAS, SP, aggregates, water, and sample age CS 1133 [81] 
8 ANN PC, GGBFS, FAS, SP, aggregates, water, and sample age TS 1133 [81] 
9 ANN GGBFS, FAS, SP, aggregates, water, and sample age CS 2817 [78] 
10 ANN Water/solid ratio, Alkaline activator/binder ratio, Na-Silicate/NaOH ratio, FAS/GGBFS ratio, and NaOH 

molarity 
CS 1030 [82] 

11 DT PC, GGBFS, FAS, SF, aggregates, water, and sample age CS 40 [83] 
12 DT PC, curing age, water, aggregates, and micro air CS 144 [76] 
13 RT Water/binder ratio, GGBFS/water ratio, FAS/water ratio, coarse aggregate/binder ratio, and coarse 

aggregate/fine aggregate ratio 
CS 1030 [84] 

14 DT PC, GGBFS, FAS, SP, aggregates, water, and sample age CS 300 [80] 
15 DT PC, GGBFS, FAS, SP, aggregates, water, and sample age CS 1030 [85] 
16 DT PC, GGBFS, FAS, SP, aggregates, water, and sample age CS 1030 [86] 
17 SVM, GPR RHA, FAS, curing time, and temperature CS 70 [87] 
18 SVM, GEP GGBFS, FAS, SP, NaOH and KOH solutions, Na2SiO3 gel, aggregates, water, oven-cured and ambiently 

cured temperatures, and sample age 
CS 1347 [88] 

19 SVM PC, GGBFS, FAS, SP, aggregates, water, and sample age CS 1030 [85] 
20 SVM PC, GGBFS, FAS, SP, water, and sample age CS 1030 [89] 
21 SVM PC, SP, aggregates, water, and sample age CS 239 [90] 
22 SVM PC, GGBFS, FAS, SP, aggregates, water, and sample age CS 1761 [91] 
23 SVM Water/solid ratio, Alkaline activator/binder ratio,Na-Silicate/NaOH ratio, FAS/GGBFS ratio, and NaOH 

molarity 
CS 1030 [82] 

24 ET, DT, GEP PC, FAS, SP, aggregates, water/binder ratio, and sample age CS 270 [92] 
25 ANN, ET, SVM, DT PC, GGBFS, FAS, SP, aggregates, water, and sample age CS 1030 [93] 
26 SVM PC, water, FAS, micro-silica, aggregates, flow, HWRR, and VMA CS 340 [94] 
27 SVM PC, FAS, SP, aggregates, and water Slump 115 [95] 
28 GEP PC, SP, aggregates, and water CS 357 [96] 
29 RF, GEP PC, SP, aggregates, and water CS 357 [97] 
30 ANN PC, CP, FAS, GGBFS, SF, RHA, aggregates, water, SP, and VMA CS 205 [98] 
31 GEP PC, RHA, aggregates, water, and SP CS 188 [99] 
32 GEP PC, SF, SP, aggregates, water, and sample age CS 1030 [100] 
33 GEP PC, BA, aggregates, and water/binder ratio CS 65 [101] 
34 GEP FAS, NaOH solution, and Na2SiO3 gel CS 210 [102] 
35 GEP FAS, GGBFS, SF, slump flow, T50 cm, L-box, V-funnel, and J-ring; Age CS, FS, 

TS 
105 [103] 

36 ANN, M5P-tree, LR, & 
MLR 

Activated alkaline solution to binder ratio, FAS content, SiO2/Al2O3 of FAS, aggregates content, NaOH and 
Na2SiO3 contents, NaOH/ Na2SiO3, molarity, curing temperature, and curing age 

CS 510 [72] 

37 ANN, M5P-tree, LR, & 
MLR 

Activated alkaline solution to binder ratio, FAS content, SiO2/Al2O3 of FAS, GGBFS content, SiO2/CaO of 
GGBFS, aggregates content, NaOH and Na2SiO3 contents, NaOH/ Na2SiO3, and molarity 

CS 220 [71] 

38 LR, GA, PSO, SVR, GWO, 
DE, & MRFO 

Water to binder ratio, GGBFS content, aggregates content, water content, curing temperature, and SP CS 268 [70] 

39 ANN, MEP, FQ, LR, & 
M5P-tree 

Alkaline solution to binder ratio, Nano-silica, aggregates, molarity, NaOH content, curing temperature, and 
concrete age 

CS 207 [69] 

40 ANN, MEP, FG, LR, MLR, 
& M5P-tree 

Alkaline solution to binder ratio, Nano-silica, aggregates, recycled plastic aggregates, molarity, NaOH 
content, curing regime, and concrete age 

CS 210 [68] 

TS and FS denote tensile and flexural strengths, HWRR is high water reducing retarder, SP is superplasticizer, VMA is viscosity-modifying admixture, BA is bagasse ash, 
CP is calcite powder, and NZ is natural zeolite. 
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strength [34,38,39], higher shear strength [40,41], and greater modulus 
of elasticity [42,43] than PC concrete. In terms of durability traits, GPC 
has additionally shown higher resistance to acidic attacks [44,45], 
greater resistance to sulfate attacks [46,47], lower carbonation and 
permeability [48,49], and lower level of corrosion activity [49,50] than 
PC concrete. Recently, GPC has been modified with Nano-silica and 
recycled plastic aggregates and the performance was promising 
[51–53]. 

The way engineers, scientists, researchers, and programmers create 

and enhance products and services is drastically changing as a result of 
artificial intelligence (AI). Today, AI is used in some capacity across all 
engineering disciplines, and many industrial difficulties require re-
searchers who are capable of integrating AI into their daily work. 
However, there were a number of drawbacks and performance issues 
with AI-based systems. They found it difficult to carry out activities that 
would normally come naturally to a normal person, such identifying 
objects or comprehending conversation [54]. Because of this, current AI 
systems have had difficulty developing substitute techniques for 
imparting intuition to computers. The aforementioned issues were 
addressed by incorporating machine learning (ML) into AI systems 
[54,55]. Machine learning algorithms enable machines to acquire the 
information they need to do a specific task by studying a sufficient 
number of data samples [56,57]. The properties that best characterize 
the most particular data must be retrieved before the method can be 
used. This procedure is known as feature extraction. The sample data 
utilized in the subsequent stage of the procedure, which instructs the 
system to transmit features and separate patterns using machine 
learning, is based on a particular training strategy [54,58,59]. Today’s 
research focuses on using statistical methods and AI to handle more 
complicated challenges in civil engineering. These AI and statistical 
techniques are mostly used in civil engineering to forecast the concrete 
compressive strength (CS) [17,60]. A few researchers have also used 
them to solve more challenging issues, including the strength and slump 
prediction in self-compacting concrete [61], the prediction of the axial 
behavior of various columns [62], the prediction of the shear behavior of 
beams [63], the prediction of chloride penetration [64], and others. The 
importance of these forecasts resides in the fact that it decreases the 
number of trial mixtures required for more study, reducing the cost and 
duration of studies. The most popular ML methods for predicting con-
crete strength are artificial neural networks (ANN), decision tree (DT), 
ensemble of tree (ET), Gaussian process regression (GPR), gene 
expression programming (GEP), random tree (RT), support vector ma-
chine (SVM), and others [65–67]. In addition to these, linear regression 
(LR), multi-logistic regression (MLR), full quadratic (FG), M5P-tree, 
genetic algorithms (GA), grey wolf optimization (GWO), particle 
swarm optimization (PSO), differential evolution (DE), multi-expression 
programming (MEP), and mantra rays foraging optimization (MRFO) 
have been recently engaged in the prediction of compressive strength of 
GPC [68–72]. The ANN model demonstrated more precision in the 
prediction of the compressive strength of GPC than the other models. 
Table 1 provides information on several ML techniques used to forecast 
concrete properties. 

To address the issues with manually created traits in sophisticated AI 
programs, deep learning techniques were developed [54,58]. Advances 
in neuroscience serve as inspiration for deep learning, which is 
congruent with how the nervous system interprets information and 

Fig. 1. Aluminosilicate precursor used.  

Fig. 2. Oxide compositions of aluminosilicate precursor.  
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Fig. 3. Particle size distribution of aluminosilicate precursor.  

Table 2 
Aggregates’ properties.  

Property FA CA 

Specific gravity  2.60  2.64 
Water absorption (%)  0.32  0.22 
Moisture content (%)  0.70  0.80  
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Fig. 4. Aggregates’ size distribution.  
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communicates. The hidden layers of an ANN and a number of intricate 
formulae are layers utilized in deep learning [73]. As a result, deep 
learning algorithms supports both feature extraction and correlations 
between features and intended output [54,73–75]. 

There is a gap from earlier studies illustrated in Table 1 due to 
meagre research into aluminosilicate binders used (GGBFS and CCA), 
concrete mix grades (M 30 and M 40), and concentrations of sodium 
hydroxide solutions (12, 14, and 16 M). Besides, previous studies 
showed a little or no application of deep neural network (DNN) of the AI 
technique in the prediction of GPC strengths. These are the motivations 
behind this study’s conduct. In general, concrete testing processes take a 

long time, and mistakes during experiments are inevitable. After the 
concrete has been cast and cured for 28 days, a normal compression test 
is conducted. If the test findings are below the acceptable strength, 
expensive remediation measures are unavoidable. As a result, it is 
crucial to forecast concrete’s strength before using it on construction 
sites. Using deep learning techniques, it is now possible to classify and 
generalize existing experimental results to forecast concrete strengths 
based on the mix’s constituents. Consequently, the effects of 10 pa-
rameters, including the contents of ground granulated blast furnace slag 
(GGBSF), corncob ash (CCA), fine aggregates (FA), coarse aggregates 
(CA), water (W), sodium hydroxide pellets (SHP), sodium silicate gel 

Table 3 
Mix design proportions.  

Grade Mix ID kg/m3 GGBFS CCA kg/m3 FA CA 12 M (kg/m3) Water SHP 14 M (kg/m3) Water SHP 16 M (kg/m3) Water SHP kg/m3 

SSG  

GC0 380 0 899 1045 37.86 20.74 35.16 23.44 32.64 25.96 146.4 

M 30 GC20 304 76 887 1045  37.86  20.74  35.16  23.44  32.64  25.96  146.4 
MPa GC40 228 152 874 1045  37.86  20.74  35.16  23.44  32.64  25.96  146.4 

GC60 152 228 865 1045  37.86  20.74  35.16  23.44  32.64  25.96  146.4 
GC80 76 304 852 1045  37.86  20.74  35.16  23.44  32.64  25.96  146.4  
GC100 0 380 841 1045  37.86  20.74  35.16  23.44  32.64  25.96  146.4  
GA0 488 0 805 1045  37.86  20.74  35.16  23.44  32.64  25.96  146.4 

M 40 GA20 390 98 788 1045  37.86  20.74  35.16  23.44  32.64  25.96  146.4 
GA40 293 195 772 1045  37.86  20.74  35.16  23.44  32.64  25.96  146.4 

MPa GA60 195 293 758 1045  37.86  20.74  35.16  23.44  32.64  25.96  146.4 
GA80 98 390 741 1045  37.86  20.74  35.16  23.44  32.64  25.96  146.4 
GA100 0 488 728 1045  37.86  20.74  35.16  23.44  32.64  25.96  146.4  

Fig. 5. Graphical representation of the flowchart engaged in this study.  
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(SSG), curing days, molarity concentrations (MC) of sodium hydroxide 
solution, and concrete grades were examined and evaluated on the 
compressive strength, flexural strength, and split tensile strength of 
GGBSFA-GPC. Deep neural network techniques of 3 hidden layers and 
2–10 neurons in each hidden layer were engaged. The experimental test 
results under ambiently cured circumstances were employed as predic-
tion models to forecast the compressive strength, flexural strength, and 
split tensile strength of GGBSF-CCA-GPC at 7, 28, 56, and 90 days. To 
achieve this, 288 experimental samples of cubes, beams, and cylinders 
were experimentally cast and processed for compressive, flexural, and 
split tensile strengths, respectively. Of these samples, 260 were utilized 
as training datasets, while the remaining 28 were used as untrained 
datasets to validate the new proposed model. After that, deep learning 
models were built using a variety of network topologies to forecast the 
concrete strengths. The predicted strengths were compared with 
experimental strengths. 

The research’s relevance is that it guarantees the usage of the 
developed models in the construction and building sector without any 
theoretical analysis. It performs statistical analysis and evaluates the 
effects of various parameters on the compressive strength, flexural 
strength, and split tensile strength of GGBSF-CCA-GPC. With composite 
blends comprising a wide variety of factors, the research quantifies and 
offers a deep neural network model to forecast the compressive strength, 
flexural strength, and split tensile strength of GGBSF-CCA-GPC. It aids in 
identifying the ideal network topology for GGBSF-CCA- GPC’s 
compressive strength, flexural strength, and split tensile strength pre-
diction from numerous hidden layers and neurons. Besides, conserving 
resources, time, and cost is made possible by the development of DNN 
tools and their use in the construction and building sector, particularly 
for forecasting the mechanical properties of geopolymer concrete. 
Finally, the utilization of recycled agro-industrial waste materials as full 
or partial replacement of cement in concrete production improves con-
crete’s properties and eases pressure on natural resources. 

2. Materials and methods 

2.1. Materials 

All materials used, aluminosilicate precursor (slag and corncobs), 
aggregates, water, and alkaline activating precursor (NaOH pellets 
[SHP] and Na2SiO3 gel [SSG]), were sourced locally. The blast furnace 
slag was processed by pulverizing it with Los Angeles Abrasion machine 
(Model: UTC-0600-T), producing GGBFS. Corncobs were processed in a 
closed combustion with a gas furnace at 600 ◦C for 2 h, yielding 
approximately 30 wt% CCA. To produce finer particle size, both CCA 

and GGBFS, as shown in Fig. 1, were then sieved with a 45-µm size. The 
aluminosilicate precursor’s physical properties, specific gravity and 
surface area, were determined in line with the BS EN standard [104], 
while their fineness was evaluated in consonant with BS EN code [105]. 
The results revealed 3.10 and 2.64 as specific gravity; 425 m2/kg and 
515 m2/kg as specific surface area; and 7.60% and 8.10% as fineness for 
GGBFS and CCA, respectively. Fig. 2 presents the results of chemical 
compositions analyzed with the aid of XRF spectrophotometer machine, 
Philips PW-1800 at 800 ◦C loss of ignition. Fig. 3 displays the particle 
size distribution of the aluminosilicate precursor as measured by the 
Laser diffraction, Model Beckman Coulter LS-100. The SG of CCA is 
lower than GGBFS. However, CCA showed higher fineness and SSA than 
GGBFS, indicating that additional CCA and water would be needed 
when GGBFS is partially replaced with CCA [106]. 

Granites with a particle size range of 12.5 to 19 mm and sharp sand 
with a particle size range of 0 to 4.5 mm were used as fine aggregates 
(FA) and coarse aggregates (CA), respectively. Table 2 provides the 
aggregates’ physical test results, and Fig. 4 displays the aggregates’ 
grade, including lower limits (LL) and upper limits (UL), as determined 
by the BS EN standard [107]. 

2.2. Mix design, preparation, and curing 

Contrary to Portland cement concrete, GPC requires a different mix 
design, and there is no any established standards for it yet. ACI 211-1 
[108]’s procedure was modified and used for the mix design pro-
portions as well as recommendations from literature [19,26,72,109]. In 
the course of mix design, specific gravity of all constituents, fineness 
moduli of fine aggregates, water absorption and moisture content of fine 
and coarse aggregates were put into consideration. The mixtures, known 
as GC0 and GA0, were cast for GPC sample made entirely of GGBFS as a 
control composite for grades 30 MPa and 40 MPa concrete, respectively. 
A replacement percent of 20–100 wt% of CCA was used to prepare 
subsequent mixes in place of GGBFS. The geopolymer mixtures were 
proportioned using different concentrations of NaOH (12 M, 14 M, and 
16 M), with a widely used 2.5 mass ratio of Na2SiO3 to NaOH solution 
[1,38,110,111]. The NaOH utilized was 99% pure, commercial grade, 
and in pellet form. As a result, 354 g, 400 g, and 443 g of SHP were 
mixed with 646 g, 600 g, and 557 g of water to produce 1 L solution 
[112], and then SSG was added to the mixture to get the desired con-
centration. For the attainment of exothermal heat solution at room 
temperature, the activating precursor was made 24 h prior to the casting 
of concrete [1,38]. To prevent NaOH from building up at the bottom of 
the container, the prepared solution was stirred thoroughly for 5 min. 
Thereafter, aluminosilicate precursor and aggregates were mixed for 3 

Fig. 6. A-3 hidden layer network [116].  
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Fig. 7. The best deep neural network structures for predicting (a) compressive and flexural strengths (10–20–20–20-1) and (b) split tensile strength 
(10–17–17–17-1). 
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min before activating precursor was added. This wet mixture was further 
mixed for 5 min to obtain uniform blend. Following that, the mixture 
was formed into cubes, prismatic beams, and cylinders in accordance 
with the applicable standards for determining compressive strength 
[113], flexural strength [114], and split tensile strength [115], respec-
tively. After 72 h, the samples were demolded, and they were all 
ambiently cured for 7 to 90 days at 23 ± 5 ◦C and 65 ± 5 RH. Table 3 
shows the mix design proportions of the concrete produced. 

2.3. Experimental tests 

The 150 mm3 concrete cube samples were crushed using a motorized 
COMTEST 3000 kN automated compression machine by applying the 
load gradually at 3 kN/s for the compressive strength test. The peak load 
applied when the failure occurred was recorded and the compressive 
strength was determined. 

Flexural strength was evaluated using a prismatic beam samples of 
500 mm × 100 mm × 100 mm size. For this test, prismatic samples were 
placed on an automated flexural testing equipment, which applied a 

three-point bending load on them. 
Cylindrical molds with a 100 mm diameter and 200 mm height were 

used for the split tensile strength tests. The specimens were positioned 
horizontally, a rate of 1.2 N/(mm2/min) to 2.4 N/(mm2/min) was used 
for continuous loading, and the failure load was taken. Two samples 
were cast for each mix proportion, and they were evaluated at ages 7, 28, 
56, and 90 days. Figure 5 provides a flowchart, which describes the steps 
for the work process. 

2.4. Artificial intelligence 

2.4.1. Deep neural networks (DNN) and datasets 
It is timely and costly to investigate concrete strength through lab-

oratory testing. It is challenging to determine strength accurately since 
various elements, like geopolymer, influence it. To accomplish this, we 
therefore need a numerical model, or soft computing methods. Conse-
quently, deep neural network has become extremely popular in scien-
tific computing, and businesses that deal with complicated issues 
frequently employ its techniques. In this study, a deep neural network 

Table 4 
Statistical parameters of slag-ash-based GPC used in the training datasets.  

Parameter Unit Minimum Maximum Median Mean SD Variable 

GGBFS kg/m3 0 488 228 218.65 153.61 Input 
CCA kg/m3 0 488 195 215.24 152.49 Input 
FA kg/m3 728 899 841 818.12 56.79 Input 
CA kg/m3 1045 1045 1045 1045 0 Input 
W kg/m3 32.65 37.86 35.16 35.22 2.15 Input 
SHP kg/m3 20.74 25.96 23.44 23.38 2.15 Input 
SSG kg/m3 146.40 146.40 146.40 146.40 0 Input 
CD Day 7 90 42 45.25 31.14 Input 
MC M 12 16 14 14 1.65 Input 
CG MPa 30 40 30 34.96 5 Input 
CS MPa 10.67 64.09 36.05 35.90 12.17 Output 
FS MPa 2.81 7.45 5.47 5.36 1.01 Output 
STS MPa 1.97 6.54 3.60 3.65 0.66 Output  

Fig. 8. Confusion matrix plots.  
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model was created in order to increase prediction accuracy with a bigger 
dataset sample size and the flexibility of employing multiple combina-
tions of input variables. The specimen geometry, GGBFS, CCA, FA, CA, 
water (W), SHP, SSG, molar concentration (MC), curing day (CD), and 
concrete grade (CG) are the 10 input parameters used to develop a DNN 
model to achieve this objective. The problem’s targets were the GPC’s 
produced compressive strength (CS), flexural strength (FS), and split 
tensile strength (STS). A 288 datasets altogether was obtained from the 
experimental results for each strength. Of the 260 datasets utilized for 
learning, 70%, 15%, and 15% were used for training, validation, and 
testing, respectively. The remaining 28 datasets were used as untrained 
datasets for validating the developed deep neural network model. The 
multilayer perceptron, train by the backpropagation algorithm, is 
currently the most popular neural network [116], hence the Levenberg- 
Marquardt of backpropagation training algorithm was used to train the 
developed deep neural network. Compared to single-layer networks, 
multilayer networks are more powerful. For example, it is possible to 
train a two-layer network with a sigmoid first layer and a linear second 
layer to mimic the majority of functions arbitrarily well. This is not 
possible with single layer networks [116]. Most realistic neural net-
works only contain two or three layers, on average. Rarely are four or 
more layers employed [116–118]. On this basis, a 3-hidden layer with 
2–20 neurons in each layer was engaged to investigate the influence of 

varying neurons in deep neural network architecture. However, because 
of the additional abstraction classes, which enable them to train datasets 
in a way that is rare-dependent, the deep neural network model is 
vulnerable to overfitting [119]. As a result, a function was fitted and set 
with a random stream in this study to prevent overfitting. Fig. 6 cascades 
a typical deep neural network with 3-hidden layer network. According 
to Fig. 5, the third network receives the second network’s output as its 
input, and the first network’s output serves as the input for the second 
network. The number of neurons in each layer and even the transfer 
function might vary. The output of the third network is thus shown in 
Eq. (1): 

a3 = f 3(W3f 2( W2f 1( W1p + b1)+ b2 + b3 ) (1) 

In multilayer networks, one layer’s output serves as the next layer’s 
input. Eq. (2) provides an illustration of this operation. 

am+1 = f m+1( Wm+1am + bm+1) for m = 0, 1,⋯,M − 1 (2)  

where M represents the network’s layer number. 
According to Eq. (4), the first layer’s neurons get inputs from 

external sources. This gives Eq. (3) its starting point. 

a0 = p (3) 

Fig. 9. Response plots between the target (compressive strength) and (a) GGBFS, (b) CCA, (c) FA, (d) CA, (e) W, (f) SHP, (g) SSG, (h) CD, (i) MC, and (j) CG.  
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The final layer’s neurons’ outputs, as given in Eq. (4), are referred to 
as the network outputs: 

a = aM (4)  

2.4.2. Performance index 
The Levenberg-Marquardt algorithm is a generalization of the 

backpropagation algorithm for multilayer networks, and both tech-
niques employ the same performance metric, mean square error (MSE). 
A set of appropriate network behavior examples are given to the algo-
rithm in Eq. (5): 

{p1, t1}, {p2, t2},⋯,
{

pq, tq
}
, (5)  

where pq is a network input and tq is the intended target output. 
The network output is compared to the target as each input is applied 

to the network. According to Eq. (6), the algorithm should modify the 
network settings to reduce mean square error: 

F(x) = E
[
e2] = E

[
(t − a)2 ] (6)  

where x represents the weights and biases vector for the network. 
In the event that the network has several outputs, this generalizes to 

the relationship shown in Eq. (7), while Eq. (8) represents the MSE 
approximation based on the Levenberg-Marquardt technique, where the 
squared error at iteration k has taken the place of the expected squared 
error. 

F(x) = E
[
eT e

]
= E

[
(t − a)T

(t − a)
]

(7)  

F(x)= (t(k) − a(k))T
(t(k) − a(k) ) = eT(e)e(k) (8) 

Ultimately, MSE and R (correlation coefficient) demonstrated the 
DNN models’ efficiency to forecast with accuracy. Mathematically, DNN 
models are more accurate when the R-value is close to 1 and the MSE 
value is close to 0. These performance metrics are illustrated in Eqs. (9) 
and (10). Fig. 7 displays the best DNN architecture in terms of perfor-
mance metrics, with 10 inputs, 3 hidden layers, each with 10 neurons, 
and one output (10–10–10–10-1). 

Fig. 9. (continued). 

Fig. 10. The connection amongst compressive, flexural, and split ten-
sile strengths. 

Fig. 11. Sensitivity analysis for the CS of GGBFS-CCA- based GPC.  
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MSE =
1
n

∑n

i=1
(ypred

i − ytrue
i )

2 (9)  

R = 1 −
∑n

i=1

(
ypred

i − ytrue
i

)

∑n
i=1

(
ypred

i − ytrue
i

) (10)  

3. Results and discussion 

3.1. Statistical datasets 

In order to run the deep neural networks, a total of 260 pairs of 
input/target values were constructed using different GPC mix design 
proportions. The statistical analysis the experimental datasets are sum-
marized in Table 4. The statistical findings in Table 4 provide succinct 
and clear values to illustrate trends or patterns in the predictive analysis. 
This affirms the matrix displayed in Fig. 8. 

Using Fig. 7, 182 samples are correctly recognized as the training 
matrix. This is the same as 70% of all samples. In sum, all of the forecasts 
are 100% true. In addition, 39 samples, or 15% of all samples, are also 
designated as test matrices and validation matrices, respectively. 
Overall, every prediction was exact (100%). Finally, 260 samples are 
identified as being part of the full-trained matrix, and all predictions are 
100% accurate. 

3.2. Concrete mix constituents responses 

The anticipated response is shown in Fig. 9 in comparison to the 
input arguments to show the relationship between the various predictors 
and the response (compressive strength), which is also comparable to 

flexural strength and split tensile strength. The majority of predictors 
were seen in Fig. 9 to have an impact on the strength performance. These 
results, in accordance with pertinent studies, demonstrate that the 
aluminosilicate precursor’s chemical and mineralogical compositions, 
the ratio of an alkaline activating precursor to a binder, the concentra-
tion of a sodium hydroxide solution, the ratio of a sodium silicate to 
sodium hydroxide solution, the amount of extra water present, the 
curing temperature, and the specimen age are the variables that have the 
greatest direct influence on the compressive strength of GPC [120,121]. 

When finely ground, GGBFS exhibits outstanding characteristics and 
can replace 35–70% of the OPC content. It is then mixed with other 
precursor to manufacture GPC [122]. The mono-silicates of Qo-type 
found in the glass particles of GGBFS, along with its amorphous nature 
with irregularly shaped particles and the relatively wider hump, are the 
same ones found in OPC clinker and dissolve in any media once initiated, 
generating higher reactivity compared with pozzolan (CCA in this case) 
and enhancing the mechanical properties of GPC [123,124]. Consid-
ering all of these advantages reveals the rationale behind why GGBFS 
enhances strength in Fig. 9(a) whereas CCA decreases strength in Fig. 9 
(b) with increasing content in GPC mixture. The easy availability of free 
Ca2+ ions, which react with alumina and silica to produce calcium- 
aluminate-silica-hydrate (C-A-S-H) gel and with geopolymer gels cau-
ses alkaline activating precursor series to increase as GGBFS content 
rises, resulting in an increase in compressive strength [125,126]. In 
addition, the reaction between the alkaline activating precursor and 
GGBFS is exothermic, producing heat that aids in the geopolymerization 
process. As a result, the compressive strength of GPC rose as the content 
of GGBFS increased [127]. Due to this, findings from experimental tests 
showed that 60% GGBFS and 40% CCA provided the best compressive 

Fig. 12. MSE outputs for (a) compressive strength, (b) flexural strength, and (c) split tensile strength.  
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strength (64.09 MPa). This is in line with relevant study, which found 
that 70% GGBFS and 30% fly ash mix proportion provided the best 
compressive strength of 66 MPa [128]. 

From Figs. 9(c) and (d), it was clear that the strength improved with 
increasing aluminosilicate precursor to aggregates ratio due to the 
packing capability between the constituents. The aggregated pro-
portions in this investigation are consistent with prior research, where 
the best compressive strength of GPC was attained at 70% optimal 

coarse aggregates and the maximum fine aggregates to coarse aggre-
gates ratio was 35% [129]. The components of coarse and fine aggre-
gates, according to pertinent studies, did not appear to have a sizable 
impact on strength because the shape, particle size distribution, and 
interface transition zone (ITZ) of aggregates had a greater impact on 
strength growth than their contents [17,130,131]. Additionally, it is 
clear from Fig. 9(h) that the strength grew as the number of curing days 
rose from 7 to 90 days. 

Fig. 13. Coefficient of correlation (R) outputs for (a) compressive strength, (b) flexural strength, and (c) split tensile strength.  
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Researchers have also extensively examined the molarity of sodium 
hydroxide solution as a subject that influences the performance of GPC. 
When compared to normal concrete, GPC’s compressive strength in-
creases as the molarity of sodium hydroxide solution increases 
[132,133]. This could be because Si and Al particles completely disin-
tegrate during the polymerization process; Al and Si particles dissolve 
faster when the sodium hydroxide molarity is higher. This results in 
stronger GPC mixes with more sodium hydroxide solution [120]. 
Regarding the 14 M shown to be the top performing activator in this 
investigation (see Fig. 9(i)), earlier studies also found that 14 M supplied 
the highest compressive strength to GPC [42,124,126,127,134]. As a 
result, increasing the molar concentration of the sodium hydroxide so-
lution generally increased the compressive strength, especially when it 
exceeded 12 M [17]. A few research, however, asserted that the 10 M 
[129], 12 M [135], and 16 M [136] of sodium hydroxide yielded GPC 
with the highest compressive strength. Additionally, different studies 
indicated that the 2.5 ratio of sodium silicate gel to sodium hydroxide 
solution, which was chosen for this investigation, performed better than 
the 1 and 3 ratios [129,136]. 

According to Fig. 9(j), the rise in compressive strength of GPC for M 
40 compared to M 30 with alkaline activating agent to aluminosilicate 
precursor was due to the reduction in alkaline activating agent to 
aluminosilicate precursor from 0.54 to 0.42. This supports earlier 
research that found that increasing the alkaline liquid to binder ratio 
decreased the compressive strength of GPC [137]. However, relevant 
results showed that the compressive strength of GPC rose with a rise in 
the alkaline solution/binder ratio up to 0.40 before being reversed 
[136]. In a similar vein, the compressive strength of GPC was increased 
to an alkaline solution to binder ratio of 0.55 [129]. 

The piecewise linear association between compressive, flexural, and 
split tensile strengths is depicted in Fig. 10. It is clear from Fig. 10 that as 

the compressive strength rises, the flexural and split tensile strengths 
rise as well. As a result, the flexural and split tensile strengths were also 
impacted by the variable parameters that were mentioned above that 
affect the performance of the compressive strength of GPC. Ultimately, 
according to relevant research, the ratio between fine and coarse ag-
gregates, as well as between sodium silicate and sodium hydroxide so-
lutions, should be thoroughly assessed before the GPC production 
process to prevent adverse effects on strength growth [138]. 

3.3. Sensitivity analysis 

Sensitivity analysis approach was used to quantify the impact of 
input factors on the output parameter (compressive strength). This 
technique identifies the input parameters that the output parameter in 
the desired network is most sensitive to, in order to specify the index that 
will have the greatest impact on the network’s output. Fig. 11 shows the 
findings of the output sensitivity analysis of the model in relation to the 
input parameters. In relation to Fig. 11, GGBFS and CCA parameters 
yielded, respectively, the greatest and the least impact on the 
compressive strength of the deep neural network model. The findings 
are in line relevant studies, where fly ash yielded about 28% [60] and 
36% [138] sensitivity indexes in the production of GPC. Moreover, 
Ahmed et al. [71] applied soft computing models to forecast the 
compressive strength of GGBFS-fly ash-based geopolymer concrete. The 
sensitivity analysis signified that the contents of fly ash, GGBFS, sodium 
silicate, and sodium hydroxide are the most influencing variables for 
predicting the compressive strength of the GGBFS-fly ash GPC with 
0.209, 0.203, 0.204, and 0.204 magnitudes, respectively. 

Fig. 14. Best performance validation for (a) compressive strength, (b) flexural strength, and (c) split tensile strength.  
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3.4. Performance indicators of network topology 

Figs. 12 and 13 display the training effectiveness for each network 
architecture with 10-input layers, 3-hidden layer, and 2–20 neuron 
counts. The training process uses the Levenberg-Marquardt performance 
function of multiple perception neurons. Comparing the performance 
outputs from Figs. 12 and 13, the 10–20–20–20-1 network topology 
generated the best metrics for forecasting the compressive and flexural 
strengths of GPC modified with GGBFS and CCA. Whereas, 
10–17–17–17-1 network structure gave the best performance metrics for 
predicting the split tensile strength. The results showed that the per-
formance metrics improved as the number of neurons in the hidden 
layers increased, which is consistent with past research [139]. 
Comparing the best neuron count with the performance indices of 
greater and lower neuron counts, the mean squared error (MSE) per-
formance for 20-neuron count was 56.52% and 99. 99% lower than 13 
and 1 neuron counts in Fig. 12(a) and 14.29% and 99.66% lower than 18 
and 1 neuron counts in Fig. 12(b), while MSE for 17-neuron count (the 
best for predicting split tensile strength) in Fig. 12(c) was 86.36% and 
99.90% lower than 8 and 1 neuron counts, respectively. In the same 
vein, the corresponding regression coefficients (R) for training, valida-
tion, test, and all R were 99.99%, 99.53%, 98.91%, and 99.80% in 
Fig. 13(a), 99.96%, 98.24%, 98.11%, and 99.53% in Fig. 13(b), and 
98.78%, 95.68%, 98.41%, and 98.30% in Fig. 13(c). Hence, Figs. 12 and 
13 evidently signified that training, validating, and testing of GGBFS- 

CCA-GPC datasets using a 3-hidden layer with 20-neuron for compres-
sive and flexural strengths and 3-hidden layer with 17-neuron in each 
layer for split tensile strength attained their best learning structures and 
yielded the best MSE and R. These metric results can be connected to 
several layers’ generalization capabilities, which let them learn every 
feature between the input matrices and advanced categorization. 

3.5. Validation of performance metrics for the best DNN topologies 

Fig. 14 displays the best validation performance for the deep neural 
network structures engaging the Levenberg-Marquardt backpropagation 
training algorithm for multiple perception layers. The best validation 
performances gave 1.2864 at epoch 8, 0.029814 at epoch 6, and 0.11088 
at epoch 7 for Figs. 14(a)–(c), respectively. Similarly, the error differ-
ence between the predicted and actual values are indicated in Fig. 15 
with total error range divided into 20 smaller bins. Figs. 15(a)–(c) 
demonstrate bins corresponding to the errors of 0.1471, 0.005695, and 
0.01327, respectively. For instance, the bin height lies to 170 for 
training datasets, and between 180 and 200 for validation and test 
datasets in Figs. 15(a) and (c), while the bin height lies to 90 for training 
datasets, and between 100 and 115 for validation and test datasets in 
Figs. 15(b). Hence, zero error points fell under the bin with centres 
0.1471, 0.005695, and 0.01327 for Figs. 15(a)–(c). The assessment of 
strength and direction of linear relationships predicted and target vari-
ables are showed in Fig. 16. The combined correlation coefficients 

Fig. 15. Histogram errors for (a) compressive strength, (b) flexural strength, and (c) split tensile strength.  
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revealed that the developed deep neural network can predict the 
compressive, flexural, and split tensile strengths with strong correlations 
99.80%, 99.53%, and 97.57% at 95% confidence and predictive in-
tervals for Figs. 16(a)–(c), respectively. According to the performance 
metrics mentioned above, R-values are approximately closer to 1 while 
MSE values were far from zero. These statistical outputs demonstrated 
the ability of the constructed deep neural network model to forecast the 
intended strengths (compressive, flexural, and split tensile strengths), 
resulting in correct precision and reduced error efficiency. 

3.6. Validation of developed DNN models 

It is essential to validate the accuracy and precision of any generated 
model using untrained datasets. In this regard, the untrained datasets 
generated from the experimental tests were used to validate the 
10–20–20–20-1, which created the optimal network structure for fore-
casting CS and FS, and the 10–17–17–17-1 for forecasting STS. Table 5 
provides information about the untrained datasets as well as the pre-
dicted values. Table 6 displays the absolute errors (AB) and relative 
error (RE) resulting from the correlation between the actual and pre-
dicted strengths. The magnitude of the difference between the actual 
and predicted values for compressive, flexural, and split tensile strengths 
and the percentage of error introduced during the prediction, as shown 
in Table 6, are absolute and percentage errors, respectively. About 18% 
of the datasets in Table 6 had absolute error over the zero line when 
predicting the compressive strength of GPC. The remaining 82% of the 
values demonstrated precise accuracy in comparing the magnitude be-
tween the actual and predicted strengths. This showed a strong corre-
lation. However, there was no discernible difference between the actual 
and predicted flexural and split tensile strengths of the GPC generated. 
In addition, the predicted compressive strength, flexural strength, and 
split tensile strength of GGBFS-CCA-GPC with 10–20–20–20-1 and 

10–17–17–17-1 network structures, as shown in Table 6, were within +
15.22% and − 3.12%, +4.75% and − 5.09%, and + 10.77% and − 7.83%, 
respectively, for validating the developed deep neural networks. These 
findings support a related investigation in which the predicted 
compressive strengths of the GGBFS-fly ash-based GPC with the ANN 
model were within + 10% and − 15% of the measured compressive 
strength for the training datasets. However, this value was increased to 
± 20% for the other remaining models (LR, MLR, and M5P-tree) [71]. 
Another pertinent study revealed that the datasets of fly ash-based GPC 
had error lines of + 15% and − 20% for the training data, +10% and 
− 20% for the testing data, and + 15% and − 10% for the validating 
datasets [72]. Ultimately, the deep neural network architectures created 
for forecasting the compressive, flexural, and split tensile strengths of 
the GPC modified with GGBFS and CCA are zero-efficient errors. 

The relationship between the actual and predicted values were 
further analyzed and the results are shown in Fig. 17. The performance 
indexes revealed that a 10–20–20–20-1 deep neural network model 
developed for compressive and flexural strengths could accurately pre-
dict the input and output variables, yielding 98.61% R2 for CS and 
98.11% R2 for FS. In the same vein, a 10–17–17–17-1 deep neural 
network model created for split tensile strength could forecast the 
strength’s variables at 96.94% R2. These performance indicators are in 
line with the outputs of the pertinent ANN model, which produced R2 

and RMSE values of 96.47% and 3.32 for training, 97.99% and 3.04 for 
testing, and 98.45% and 1.8381 for validating the correlation between 
the predicted and actual compressive strengths of fly ash-based concrete 
[72]. This is also consistent with the relationship between the predicted 
and actual compressive strengths of geopolymer concrete modified with 
fly ash and GGBFS; whose ANN model generated R2 and RMSE of 
98.81% and 2.478 for training, 99.46% and 2.15 for testing, and 99.79% 
and 0.9484 for validating the datasets [71]. These statistical results 
showed that the input and target arguments for the established network 

Fig. 16. Correlation coefficient outputs of the best deep neural network topology for (a) compressive strength, (b) flexural strength, and (c) split tensile strength.  
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topologies had a high correlation. The strength prediction of GPC 
modified and synthesized with agro-industrial wastes and alkaline 
activating solutions under ambiently cured settings can ultimately be 
done using these deep neural network architectures. 

4. Conclusions 

This study applied the 3-hidden layer of deep neural networks with 
2–20 neuron counts to predict the mechanical properties of GGBFS-CCA 
based-GPC synthesized with alkaline activating precursor at ambiently 
cured conditions. Ten different input variables from mix design pro-
portions were used for the modeling, including GGBFS, CCA, FA, CA, W, 

SHP, SSG, CD, MC, and CG. The output arguments for the target were 
compressive strength, flexural strength, and split tensile strength. MSE 
and R were used to assess each neuron count’s performance, and un-
trained datasets from the experiments were used to validate the gener-
ated models. These inferences can be drawn from the results obtained: 

1. By employing GGBFS at 60% and CCA at 40% optimum as alumi-
nosilicate precursors, geopolymer concrete with acceptable 
compressive, flexural, and split tensile strength values for structural 
applications could be produced.  

2. The mechanical strengths of the GGBFS-CCA-GPC are significantly 
impacted by the GGBFS, concrete mix grade, curing days, and alkali 

Fig. 16. (continued). 
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precursors; however, the GGBFS provided the biggest significant 
contribution to the mechanical strengths with about 39% of the 
sensitivity factor.  

3. 14 M Concentration of sodium hydroxide solution exhibited the best 
mechanical strengths compared to 12 M and 16 M 

4. A 10–20–20–20-1 deep neural network structure gave the best per-
formance indicators for predicting the compressive strength with 

99.80% R and flexural strength 99.53% R compared to other network 
structures. 

5. With a 10–17–17–17-1 deep neural network topology, the split ten-
sile strength of the GGBFS-CCA-GPC could be predicted with the 
highest accuracy (97.57% R) compared to other network structures.  

6. The evaluation and comparison of performance metrics (R2 and 
MSE) for all training, testing, and validation datasets successfully 
confirmed the precision of the developed models.  

7. The predicted compressive strength, flexural strength, and split tensile 
strength with the developed deep neural network model were within +
15.22% and − 3.12%, +4.75% and − 5.09%, and + 10.77% and 7.83% 
of the actual compressive, flexural, and split tensile strengths.  

8. Strong correlation and precise precision are obtained when the 
developed deep neural network models are validated with untrained 
datasets, producing an R-value of appropriately 99%, 98%, and 97% 
for compressive, flexural, and split tensile strengths. 

Using deep neural network techniques to forecast the strengths of 
GGBFS-CCA-based GPC can supplement the conventional empirical 
models by showing the prediction findings, more quickly and simply, 
enabling the concrete performance prediction with unknown mix pro-
portions through deep neural network. This technique can help with 
timesaving, improved time efficiency, and theoretical and practical di-
rection for optimizing concrete mix proportions. The research has 
demonstrated that the deep neural network can accurately predict the 
strengths despite the complexity and limitedness of the experimental 
data, and a concrete mix designer can utilize it as a new tool to help and 
enhance the decision-making process. It can also facilitate reductions in 
experimental effort, labor, and material consumption. Through these 
approaches, it will be easier to create and use sustainable concrete 
formulation that use different binding materials, including geopolymers, 
and have a smaller negative impact on the environment and operational 
expenses. Despite all of these advantages, it would be recommended to 
apply other AI approaches and a larger dataset containing data on the 
characteristics of the GPC’s components to further enhance the models’ 
performance. 

Table 5 
Untrained statistics from experimental tests with actual and predicted values.  

S/ 
N 

GGBFS CCA FA CA W SHP SSG CD MC CG (kg/m3) Actual CS 
(MPa) 

Pred. CS 
(MPa) 

Actual FS 
(MPa) 

Pred.FS 
(MPa) 

Actual STS 
(MPa) 

Pred. STS 
(MPa) 

1 304 76 887 1045 37.86 20.74 146.4 7 12 30 26.25 26.44 4.77 4.62 2.98 3.01 

2 228 152 874 1045  35.16  23.44  146.4 7 14 30 24.35 24.63 4.47 4.46 3.12 3.1 
3 152 228 865 1045  32.64  25.96  146.4 7 16 30 18.13 17.98 3.89 3.85 2.82 2.83 
4 380 0 899 1045  37.86  20.74  146.4 28 12 30 43.17 43.38 5.91 5.93 4.2 4.23 
5 76 304 852 1045  35.16  23.44  146.4 28 14 30 27.11 26.99 4.43 4.41 3.19 3.2 
6 0 380 841 1045  32.64  25.96  146.4 28 16 30 19.42 19.23 3.68 3.68 2.77 2.71 
7 152 228 865 1045  37.86  20.74  146.4 56 12 30 28.85 29.04 4.98 5.05 3.53 3.47 
8 228 152 874 1045  35.16  23.44  146.4 56 14 30 39.98 40.09 6.02 6 3.98 4.04 
9 304 76 887 1045  35.16  23.44  146.4 56 14 30 44.12 43.75 6.2 6.22 4.2 4.25 
10 152 228 865 1045  32.64  25.96  146.4 56 16 30 30.01 29.84 4.9 4.92 3.6 3.58 
11 380 0 899 1045  37.86  20.74  146.4 90 12 30 46.77 45.2 6.25 6.19 4.35 4.31 
12 228 152 874 1045  35.16  23.44  146.4 90 14 30 41.29 41.25 6 6.05 4.2 4.15 
13 76 304 852 1045  32.64  25.96  146.4 90 16 30 24.49 21.16 4.25 4.42 3.19 3.23 
14 390 98 788 1045  37.86  20.74  146.4 7 12 40 34.59 34.74 5.42 5.45 3.52 3.61 
15 98 390 741 1045  32.64  23.44  146.4 7 14 40 23.13 19.67 4.34 4.42 2.93 2.73 
16 98 390 741 1045  32.64  23.44  146.4 7 14 40 23.2 19.67 4.3 4.42 2.97 2.73 
17 0 488 728 1045  32.64  25.96  146.4 7 16 40 18 17.91 3.91 3.54 2.6 2.32 
18 390 98 788 1045  37.86  20.74  146.4 28 12 40 50.38 51.95 6.29 6.61 4.37 4.22 
19 195 293 758 1045  35.16  23.44  146.4 28 14 40 42.77 42.48 5.88 5.95 3.65 3.71 
20 390 98 788 1045  35.16  23.44  146.4 28 14 40 52.7 52.66 6.5 6.55 4.44 4.38 
21 293 195 772 1045  32.64  25.96  146.4 28 16 40 46.7 42.44 6.2 5.97 4.02 4 
22 0 488 728 1045  37.86  20.74  146.4 56 12 40 27.44 27.54 4.63 4.61 3.21 3.26 
23 293 195 772 1045  35.16  23.44  146.4 56 14 40 50.4 50.39 6.4 6.4 4.4 4.37 
24 488 0 805 1045  32.64  25.96  146.4 56 16 40 54.3 54.25 6.8 6.8 4.6 4.96 
25 98 390 741 1045  37.86  20.74  146.4 90 12 40 38.69 38.69 5.66 5.66 3.91 3.7 
26 195 293 758 1045  35.16  23.44  146.4 90 14 40 46.74 47 6.21 6.21 4.2 4.15 
27 0 488 728 1045  35.16  23.44  146.4 90 14 40 32.19 32.26 5.13 5.1 3.69 3.69 
28 195 293 758 1045  32.64  25.96  146.4 90 16 40 44.5 45.85 6.1 5.81 4 4.01  

Table 6 
Absolute and relative errors between the actual and predicted strengths.  

S/N Absolute error CS FS STS Relative error (%) CS FS STS 

1 − 0.19 0.15 − 0.03 − 0.72 3.14 − 1.01 

2  − 0.28  0.01  0.02  − 1.15  0.22  0.64 
3  0.15  0.04  − 0.01  0.83  1.03  − 0.35 
4  − 0.21  − 0.02  − 0.03  − 0.49  − 0.34  − 0.71 
5  0.12  0.02  − 0.01  0.44  0.45  − 0.31 
6  0.19  0.00  0.06  0.98  0.00  2.17 
7  − 0.19  − 0.07  0.06  − 0.66  − 1.41  1.70 
8  − 0.11  0.02  − 0.06  − 0.28  0.33  − 1.51 
9  0.37  − 0.02  − 0.05  0.84  − 0.32  − 1.19 
10  0.17  − 0.02  0.02  0.57  − 0.41  0.56 
11  1.57  0.06  0.04  3.36  0.96  0.92 
12  0.04  − 0.05  0.05  0.10  − 0.83  1.19 
13  3.33  − 0.17  − 0.04  13.60  − 4.00  − 1.25 
14  − 0.15  − 0.03  − 0.09  − 0.43  − 0.55  − 2.56 
15  3.46  − 0.08  0.20  14.96  − 1.84  6.83 
16  3.53  − 0.12  0.24  15.22  − 2.79  8.08 
17  0.09  0.37  0.28  0.50  9.46  10.77 
18  − 1.57  − 0.32  0.15  − 3.12  − 5.09  3.43 
19  0.29  − 0.07  − 0.06  0.68  − 1.19  − 1.64 
20  0.04  − 0.05  0.06  0.08  − 0.77  1.35 
21  4.26  0.23  0.02  9.12  3.71  0.50 
22  − 0.10  0.02  − 0.05  − 0.36  0.43  − 1.56 
23  0.01  0.00  0.03  0.02  0.00  0.68 
24  0.05  0.00  − 0.36  0.09  0.00  − 7.83 
25  0.00  0.00  0.21  0.00  0.00  5.37 
26  − 0.26  0.00  0.05  − 0.56  0.00  1.19 
27  − 0.07  0.03  0.00  − 0.22  0.58  0.00 
28  − 1.35  0.29  − 0.01  − 3.03  4.75  − 0.25  
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5. Data and code availability 

Experimental data used in this study and code generation are 
available at https://github.com/Sotech281/AI-based-strength-predictio 
n-of-geopolymer-concrete. 
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