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A B S T R A C T   

Local buckling of steel and excessive spalling of concrete have necessitated the need for the evaluation of 
reinforced concrete columns subjected to axial compression loading. Thus, this study investigates the behaviour 
of concrete filled steel tube (CFST) columns and reinforced concrete filled steel tube (RCFST) columns under the 
axial compression using the finite element modelling and machine learning (ML) techniques. To achieve this aim, 
a total of 85 columns from existing studies were analysed utilising the finite element modelling. The ultimate 
load of the generated datasets was predicted employing various ML techniques. The findings showed that the 
columns’ compressive strength, ductility, and toughness were improved by reducing transverse reinforcement 
spacing, increasing the number of reinforcing bars, and increasing the thickness and yield strength of outer steel 
tube. Under the axial compression loading, the finite element modelling analysis provided an accurate assess-
ment of the structural performance of the RCFST columns. Compared to other ML approaches, gradient boosting 
exhibited the best performance metrics with R2 and root mean square error values of 99.925% and 0.00708 and 
99.863% and 0.00717 respectively in training and testing stages, to predict the columns’ ultimate load. Overall, 
gradient boosting can be applied in the ultimate load prediction of CFST and RCFST columns under the axial 
compression, conserving resources, time, and cost in the investigation of the ultimate load of columns through 
laboratory testing.   

1. Introduction 

Numerous civil engineering structures are assessed as closed systems 
where additional mass spatial distribution can vary according to the 
basic continuity and energy equations [1]. Environmental forces like 
wind and earthquakes can affect civil engineering structures, which can 
change their modal features including natural frequency and mode 
shape [2]. These have led to the principles of concrete-filled and rein-
forced concrete filled steel-tube columns to stop the concrete from 
buckling or collapsing during an earthquake and seismicity. The benefits 
of reinforced concrete filled steel tube (RCFST) columns in the building 

industry have drawn increased attention from academics and re-
searchers. The behaviour and strength of RCFST columns under axial 
compression were investigated [3]. The results demonstrated that for 
axially compressed circular RCFST columns, the steel tube yielded at the 
peak load point, whereas for square RCFST columns, the steel tube 
yielded at the post peak stage. Besides, the ductility decreased with 
increasing the compressive strength for both circular and square RCFST 
columns [3]. In another study, CFST columns displayed substantial 
seismic resistance behaviour and offered significant energy dissipation 
under earthquake stress [4]. A relevant study examined how to improve 
the compressive behaviour of reinforced concrete (RC) walls under both 
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centric and eccentric loads [5]. The findings revealed that, in compari-
son to control specimens, the expanded or glass fibre wire mesh fer-
rocement tested specimens increased ultimate loads. Compared to glass 
fibre mesh reinforcement, expanded steel wire reinforcement had a 
higher ductility ratio. However, in comparison to expanded wire mesh, 
glass fibre wire mesh exhibited higher initial breaking loads, service-
ability loads, load carrying capacities, and energy absorption. Finally, 
the structural performance of nonlinear ferrocement RC walls was 
accurately estimated by the finite element modelling [5]. El-Sayed [6] 
studied the axial compression behaviour of ferrocement geopolymer 
HSC columns. The ferrocement geopolymer HSC columns performed as 
expected, according to the results. Additionally, the use of welded or 
expanded columns had a significant impact on ultimate failure loads 
with the welded wire mesh showing a difference of nearly 28.10% from 
the expanded wire mesh. The analytical and experimental findings were 
well aligned [6]. The finite element approach was used to investigate the 
shear strength of a steel-concrete composite beam with angle connec-
tions at high temperatures [7]. The outcomes illustrated that the shear 
strength and slide, among other test results, were properly predicted by 
the finite element modelling. The maximum shear force error between 
analytical and laboratory values was found to be 21.6%, while the 
minimum shear force error in some samples was found to be very close 
to zero [7]. Concrete filled steel tube (CFST) columns have been 
emerging in structural applications because of the major advantages in 
their behaviour. The difficulties of local steel buckling, excessive con-
crete spalling, and the requirement to reduce formwork during con-
struction in order to save construction costs have made the use of CFST 
columns necessary [8]. Contrary to normal RC columns, the steel tube in 
concrete-filled columns serves two purposes. It enhances the 
load-bearing, deformable, and seismic capabilities of RC columns and 
prevents the concrete cover from collapsing during an earthquake [8].  
Fig. 1 depicts RCFST column and confinement by hoop reinforcement 
and steel tube. 

Compared to RC columns, RCFST columns have additional benefits. 
Transverse reinforcement confines the concrete in a typical RC column 
but does not contain concrete cover, which will spall off in seismic 
events. The transverse reinforcement cannot prevent the longitudinal 
bars from buckling when the cover spalls off unless they are extremely 
and closely spaced [9]. A hollow steel tube (HST) shear connector of 
circular, square, and rectangular shapes indicated a 20% higher shear 
resistance with a longer width in the load direction for the rectangular 
HST in comparison with that in the smaller dimension. The energy ab-
sorption capacity values displayed 23% and 18% improvements with the 

square HST rather than a headed shear stud when embedded in the 
concrete strengths of 25 MPa and 40 MPa, respectively [10]. 

Studies have shown that RCFST columns perform better than CFST 
columns in terms of toughness, load carrying capacity, and ductility [11, 
12]. Moreover, a structure built with RCFST columns performs better 
against earthquakes than a comparable CFST structure [13]. In fact, it is 
possible to say that RCFST columns were created primarily to combine 
the benefits of RC columns with CFST columns. The earthquake response 
of RCFSTs with a shear span to depth ratio of one was examined and the 
steel tubes were found to be quite successful in avoiding shear failure in 
short columns [14]. Eight square RCFSTs with a shear span to depth 
ratio ranging from one to two were the subject of an investigation by 
Sakino et al. [15]. It was discovered that the confinement created by the 
steel tubes diminished as the ratio of width to thickness of tube and/or 
strength of concrete rose. The cyclic behaviour of three rectangular 
RCFST beam-columns were studied by Aboutaha et al. [16]. Their 
findings revealed that while confinement of a rectangular tube boosted 
columns’ ductility, it had little impact on their flexural strength. In order 
to make a comparison, Zhang and Liu [17] studied the seismic response 
of four square RCFST beam-columns and compared with one normal RC 
column. The confinement of tube to concrete was demonstrated to in-
crease the columns’ ductility and flexural strength. A research work 
examined the seismic response of eight RCFST beam-columns including 
four square and four circular columns [18]. According to the test results, 
the RCFST beam-columns indicated outstanding ductility at high axial 
load ratios, and the circular RCFSTs provided superior ductility than the 
square RCFSTs. Furthermore, a study evaluated the behaviour and 
strength of tubed RC stub columns under axial compression [19]. The 
results illustrated that when the axial compression was applied to cir-
cular tube RC stub columns, the steel tube yielded at the peak load point; 
however, for square tube RC stub columns, the steel tube yielded at the 
post peak stage. In addition, for circular and square tube RC stub col-
umns under the axial compression, ductility declineed with an increase 
in the diameter/width to thickness ratio or compressive strength of 
concrete. Moreover, Wang et al. [20] conducted experimental research 
on the behaviour of eccentrically loaded short circular RCFST columns. 
The findings displayed that the average confining stress in the columns 
with low eccentricity was comparable to that in the columns exposed to 
axial load at the peak load. A comparison of CFSTs was made in an 
experimental study on the behaviour of axially compressed spirally 
reinforced CFST columns [21]. A spirally reinforced CFST column 
showed noticeably better post-yield behaviour than a CFST column. 
Besides, a reduction in the pitch spacing rate considerably enhanced the 

Fig. 1. (a) RCFST column; (b) Confinement by hoop reinforcement and steel tube [8].  
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post-yield behaviour of the spirally reinforced CFSTs. Hasan et al. [22] 
studied the mechanical behaviour of CFST columns reinforced with steel 
reinforcing bars under axial compression. The results demonstrated that 
stiffened CFST specimens had fewer lateral distortions than reinforced 
CFST specimens. The reinforced CFST specimens could not be used 
effectively because early buckling in the steel tubes occurred. On the 
contrary, the stiffened CFST specimens were less ductile and had lower 
strength capabilities than the reinforced CFST specimens. Furthermore, 
the compression loading against end shortening curves of the CFSTs 
revealed that when the number of reinforcing bars and/or steel tube 
thickness increased, the strength capacity, ductility, stiffness, and 
toughness also improved. Besides, the specimens with thick tubes had 
the strength to eliminate the negative impacts of early local buckling and 
were suitable to meet the performance requirements of the CFST col-
umns. Despite several studies on CFST and RCFST columns, machine 
learning (ML) modelling and nonlinear finite element simulation of 
RCFST columns under the axial compression still need appropriate 
experimental data. This is the rationale behind the current investigation. 

Over the past few decades, ABAQUS and ANSYS have been increas-
ingly popular for the finite element modelling of steel tube RC columns. 
As the material technology develops, engineering structures are 
increasingly using better construction materials like high-performance 
steel and concrete. Besides, the finite element analysis is commonly 
utilised to resolve design and research difficulties [23,24]. To account 
for the expansion of materials, new finite element models (FEMs) are 
required to improve the prediction accuracy. 

The literature has documented a number of ML techniques that 
predict the ultimate load for structural elements made of composite 
materials, including CFST columns. For instance, a support vector ma-
chine (SVM) was engaged to predict the load capacity of CFST columns 
[25]. The outcomes indicated that SVM is a powerful replacement for 
theoretical and empirical formulations. A gene expression programming 
(GEP) and artificial neural network (ANN) were applied to predict the 
CFST columns’ bearing capacity. The input variables included external 
diameter, concrete compressive strength, steel tensile yield stress, steel 
thickness, and sample length [26]. The findings illustrated that GEP 
exhibited better performance indexes than the ANN model. The ultimate 
load capacity of CFST short columns subjected to axial compression 
made of carbon fibre-reinforced plastic (CFRP) was predicted using 
several ML algorithms [27]. In comparison to ANN, SVM, linear 
regression (LR), K-nearest neighbour (KNN), random forest (RF), Ada-
Boost, gradient boosted decision trees (GBDT), and light gradient 
building (LGB), XGBoost yielded the best prediction performance with 
an R2 value of 0.9719. 

There is a gap in the earlier studies due to the paucity of finite 
element and ML modellings of RCFST columns under axial compression 
loading. Besides, previous studies displayed a little or no application of 
combined RF, gradient boosting (GB), KNN, gaussian process regression 
(GPR), ANN, extreme learning machine (ELM), and emotional neural 
network (ENN) as the ML tools in the prediction of ultimate load of 
RCFST columns subjected to concentric loading. This is the rationale 
behind this study. In this research, FEMs were created for 26 columns in 
the ABAQUS software from the experimental data obtained from the 
reviewed literature [19–22]. In addition to these 26 FEMs of columns, 59 
more FEMs of columns were created by changing some parameters and 
subjecting to axial compression. The considered parameters are the 
thickness of steel tubes, centre-centre spacing of transverse steel bar, and 
yield strength of outer steel tube. Additionally, 7 ML models (RF, GB, 
KNN, GPR, ANN, ELM, and ENN) were constructed with the database 
obtained from FEMs and with 7 input features to predict the ultimate 
load of CFST and RCFST columns subjected to axial compression. The 
main goal of this study is to examine how these 85 columns respond to 
axial compression while being affected by the aforementioned 
characteristics. 

The research is important because it ensures that generated models 
can be used in the building and construction industry without any 

theoretical examination. It applies the FEM and ML analysis and assesses 
the effects of various factors such as ratio of vertical rebar to yield 
strength, the ratio of lateral hoops to yield strength, the area of concrete 
core that is inside the steel tube, the strength of the concrete, the area of 
the steel tube, the yield strength of the steel tube, and the height of the 
columns on the output parameter (ultimate load) of RCFST columns 
under axial compression loading. The creation of ML tools and their 
utilisation in the building and construction industry, notably for pre-
dicting the ultimate loads of RCFST columns, have the potential to 
reduce the costs, time, and resources used to run experiments. 

2. Research methodology 

There were three phases in this research methodology. For the CFST 
and RCFST columns, 26 FEM models were created in Stage 1. These 
models were used to calculate the ultimate load as well as the behaviour 
of the CFST and RCFST columns during axial compression. Stage 2 
produced an additional 59 FEM models for the CFST and RCFST columns 
by calculating factors for the output of each FEM model’s best-fitting 
hyperbolic curve. The configurations of each FEM model and the 
accompanying ultimate load were then entered into a database. The 
ultimate load (target value) was predicted using several ML approaches 
in Stage 3 utilizing the ratio of the vertical rebar multiplied by its yield 
strength, ratio of the lateral hoop multiplied by its yield strength, area of 
the concrete core that is inside the steel tube, the concrete strength, area 
of the steel tube, the yield strength of the steel tube, and the columns’ 
height as input variables. Each stage of the research is fully described in 
Sections 2.1 to 2.3. Fig. 2 depicts the research methodology in a graphic 
format. 

2.1. Details of FEMs 

As stated earlier, 26 FEMs were created from the experimental data 
provided by the reviewed literature [19–22]. From Hamidian et al. [21] 
data, 5 FEMs were created, the specimens CFT-1, CFT-2, and CFT-3 were 
created as the first FEM specimen and named as S1; S45–1, S45–2, and 
S45-3 were created as the second FEM specimen and named as S2; 
S35–1, S35–2, and S35-3 were created as the third FEM specimen and 
named as S3; S25–1, S25–2, and S25-3 were created as the fourth FEM 
specimen and named as S4; and S15–1, S15–2, and S15-3 were created 
as the fifth FEM specimen and named as S5. From Hasan et al. [22] data, 
14 FEMs were created and named as S6–S19. From Wang et al. [20] 
data, 2 FEMs were created and named as S20 and S21. From Liu et al. 
[19] data, 5 FEMs were created and named as S22–S26. The specimens, 
materials details, and FEM labels are presented in Table 1 [19–22]. From 
Table 1, fc′ represents the concrete’s compressive strength; D, t, and fy 
represent the diameter, thickness, and yield strength of the steel tube; db 
and n represent the diameter and number of the longitudinal steel bars; 
dp and cp represent the diameter and centre to centre spacing of the 
transverse steel bars, and sp is the clear pitch spacing. 

As mentioned earlier, in addition to these 26 FEM columns (S1–S26), 
59 more FEM columns (S27–S85) were simulated, and the details are 
given in Table 2. 

2.2. Modelling of FEMs 

2.2.1. Modelling of mesh size and steel rebar 
After the mesh sensitivity analysis, the calibrated and default plas-

ticity values and mesh sizes employed in this study were the shape factor 
of 0.67 (default) and the viscosity parameter of 0.0005.. A convergence 
problem was addressed by calibrating the viscosity parameter. For the 
concrete, steel tube, and steel rebar, the mesh sizes of 25, 34, and 15 mm 
were used, respectively [28]. The density of 7850 kg/m3, Young’s 
modulus of 200000 MPa, and Poisson’s ratio of 0.3 were utilised for the 
steel rebars[29]. The stress-strain relation was obtained by using 
Ramberg-Osgood, as expressed in Equation (1) [30], and the 
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stress-strain curve is depicted in Fig. 3. The elongation of the steel rebar 
was determined with the help of the model suggested by Tao et al. [31]. 

ε =
σ
E
+ 0.002

(
σ

Fty

)n

(1)  

2.2.2. Modelling of loading plates and steel tube 
The density of 7850 kg/m3, Young’s modulus values of 300000 MPa 

and 200000 MPa, and Poisson’s ratios of 0.00001 and 0.3 were 
respectively used for the loading plates and steel tube in accordance 
with the relevant studies [29,32]. The stress-strain relation of the steel 
tube was determined with the help of the model suggested by Tao et al. 
[31]. 

2.2.3. Modelling of concrete 
For example, the density, Young’s modulus, and Poisson’s ratio of 

M52 grade concrete were taken as 2400 kg/m3, 34108.515 MPa, and 
0.2, respectively [32–36]. When a CFST column is compressed axially, 
the steel tube confines the concrete core’s lateral expansion. The con-
cretes’ ductility and strength can be improved by this passive 

confinement. The process between concrete and steel tube is called 
“composite action” and is widely engaged [37]. It is believed that when 
two components interact, the constrained concrete enters a triaxial 
condition and the steel enters a biaxial stress state. Therefore, to model 
this behaviour, the concrete damaged plasticity (CDP) model was 
employed in ABAQUS. The key material characteristics for this model 
included the ratio of the second stress invariant on the tensile meridian 
to that on the compressive meridian (Kc), the dilation angle (ψ) illus-
trated in Equation (2), flow potential eccentricity (e), modulus of elas-
ticity (Ec), ratio of compressive strength under biaxial loading to 
uniaxial compressive strength (fbo/f’c), viscosity parameter, and 
stress-strain relation of concrete under compression and tension. 
Therefore, the effects of fbo/f’c, Kc, and ψ on the load-axial compression 
curve based on the sensitivity analysis are indicated in Fig. 4 (a), (b), and 
(c), respectively. 

ψ = 25.331ξs
− 0.345 (2) 

ξs is the confinement factor and can be determined using Equation 
(3): 

Fig. 2. Flowchart showing research methodology.  
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ξs =
Asfy

Acfc
′ (3)  

where Ac and As are the cross-sectional areas of the concrete and steel 
tube, respectively, and fy is the steel yield strength and fc′ is the con-
cretes’ cylinder compressive strength. In this study a new relation for 
determining the parameter (Kc) is given in Equation (4) as: 

Kc = − 0.019 ln(fc
′) + 0.7891 (4) 

Modulus of elasticity (Ec) can be calculated utilising Equation (5) 
[38]: 

Ec = 4730
̅̅̅̅

fc
′

√

(5)  

fb0
/
fc′ can be calculated using Equation (6) [39]: 

fbo

f ′
c
= 1.5(fc

′)− 0.075 (6) 

The viscosity parameter and flow potential eccentricity (e) were set 
to 0 and 0.1, respectively [31]. Fig. 5 shows the stress-strain relationship 
of the concrete under compression for FEM S1. A new 3-stage model was 
used to represent the stress-strain relation of the concrete under 
compression demonstrated in Fig. 5. There is minimal to no interaction 
between the concrete and steel tube in the early stage, i.e., from point O 
to point A (Fig. 5). Therefore, up until the peak strength fc

′ is achieved, 

ascending branch of the stress-strain relationship of the unconfined 
concrete is suitable to be utilized to depict the OA curve. After that, the 
increased peak strain of the concrete from confinement is represented as 
a plateau, i.e., from point A to point B. At this stage, any increase in the 
strength of the concrete from confinement is represented in simulation 
by the concrete and tube interaction. A softening region with the 
increased ductility due to confinement is specified beyond point B. 

The ascending curve, OA, is obtained by a model and is presented in 
Equation (7) [40]: 

σ =
xr

r − 1 + xrfc
′ (7)  

where 

x=
ε

εco
(8) 

The strain at peak stress under uniaxial compression (εco) and the 
secant modulus of concrete are calculated using Equations 9–11 [41]: 

εco = 0.00076 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(0.626fc
′ − 4.33) × 10− 7

√

(9)  

r=
Ec

Ec − Esec
(10)  

Esec =
fc

′

εco
(11) 

Table 1 
Specimens, materials details, and FEMs labels.  

No. Specimen label FEM label fc′ (MPa) Properties of steel tube Properties of longitudinal steel bar Properties of transverse steel bar 

D (mm) D/t fy (MPa) db (mm) n dp (mm) sp (mm) cp (mm) 

1 CFT-1 S1 52 140 50 355 – – – – – 
CFT-2 
CFT-3 

2 S45-1 S2 52 140 50 355 6 6 3.2 45 48.2 
S45-2 
S45-3 

3 S35-1 S3 52 140 50 355 6 6 3.2 35 38.2 
S35-2 
S35-3 

4 S25-1 S4 52 140 50 355 6 6 3.2 25 28.2 
S25-2 
S25-3 

5 S15-1 S5 52 140 50 355 6 6 3.2 15 18.2 
S15-2 
S15-3 

6 C-1 S6 39.77 113 36 460 – – – – – 
7 1-3-8-W S7 39.77 113 36 460 8 3 – – – 
8 1-3-12-W S8 39.77 113 36 460 12 3 – – – 
9 1-4-8-W S9 39.77 113 36 460 8 4 – – – 
10 1-4-12-W S10 39.77 113 36 460 12 4 – – – 
11 1-6-8-W S11 39.77 113 36 460 8 6 – – – 
12 1-6-12-W S12 39.77 113 36 460 12 6 – – – 
13 C-2 S13 39.77 113 20 410 – – – – – 
14 2-3-8-W S14 39.77 113 20 410 8 3 – – – 
15 2-3-12-W S15 39.77 113 20 410 12 3 – – – 
16 2-4-8-W S16 39.77 113 20 410 8 4 – – – 
17 2-4-12-W S17 39.77 113 20 410 12 4 – – – 
18 2-6-8-W S18 39.77 113 20 410 8 6 – – – 
19 2-6-12-W S19 39.77 113 20 410 12 6 – – – 
20 c-200-0-1 S20 44.64 200 133 364.3 20 6 8 192 200 

c-200-0-2 
c-200-0-3 

21 c-240-0-1 S21 44.64 240 160 364.3 20 6 8 192 200 
c-240-0-2 
c-240-0-3 

22 c-150-3-80-a-235 S22 61.52 150 50 254 10 4 – – – 
23 c-210-3-80-a-235 S23 61.52 210 70 254 14 4 – – – 
24 c-200-2-80-a-235 S24 61.52 200 100 263 12 5 – – – 
25 c-210-3-50-a-235 S25 46.32 210 70 254 14 4 – – – 
26 c-210-3-80-a-345 S26 61.52 210 70 346 14 4 – – –  
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The strain at B (εcc) can be determined employing Equation (12) 
[40]: 

εcc

εco
= ek, k =(2.9224 − 0.00367fc

′)

(
fB

fc
′

)0.3124+0.002fc′

(12)  

fB =

(
1 + 0.027fy

)
e− 0.02D

t

1 + 1.6e− 10(fc
′)4.8 (13) 

According to a relevant research work, an exponential function was 
utilized for the descending branch of the concrete model BC (Fig. 5) 
[42]. This is illustrated in Equation (14), and β is taken as 1.2 [31]. Fig. 6 

displays the stress-strain relationship of concrete under tension for FEM 
S1. 

σ = fr +(fc
′ − fr)exp

[

−
(ε − εcc

α

)β
]

ε ≥ εcc (14)  

where 

fr = 0.7
(
1 − e− 1.38ξs

)
fc

′ ≤ 0.25fc
′ (15)  

α= 0.04 −
0.036

1 + e6.08ξs − 3.49 (16) 

Fig. 6 was obtained using Equation (17) [43]: 

σt = ft

(εct
′

ε

)0.85
(17)  

where 

εct
′ =

ft

Ec
(18)  

ft = 0.26(1.25fc
’)

2 /

3 (19)  

2.2.4. Details of FEM structure 
The element used to model the concrete and loading plates was solid 

homogenous. Truss element was utilised to model the reinforcing rebars 
including vertical and spirals, while shell element was used for the steel 
tube. The thickness integration points for the steel tube were nine, and 
the thickness integration rule used was Simpson. Because the steel tube 
acts as a shell element and does not carry compression loads, the 
diameter of the loading plates was maintained at the same level as the 
diameter of the concrete. As a result, we did not make the loading plates 
attached to the steel tube, as depicted in Fig. 7. 

The element shape for mesh controls of the concrete and loading 
plate was hex, technique was sweep, and algorithm was advancing front. 
The element shape for mesh controls of the steel tube was quad and 
technique was sweep. The mesh size of the concrete, loading plate, and 
steel tube was approximately equal to D/15. The mesh size of the spirals 
and vertical rebars was taken approximately double 2D/15. The element 
type of the concrete and loading plates was 3D Stress “C3D8R: an 8-node 
linear brick, reduced integration, hourglass control”. The element type 
of the steel tube was Shell “S4R: a 4-node doubly curved thin or thick 
shell, reduced integration, hourglass control, finite membrane strains”. 
The element type of the spirals was Truss “T3D2: a 2-node linear 3-D 
truss”. The element type of the vertical rebars was Truss “T3D2: a 2- 

Table 2 
Details of FEMs S27–S85.  

No. FEM label Similar to Changed parameter 

1 S27 S1 f
y 
changed to 600 MPa 

2 S28 S2 fy changed to 600 MPa 
3 S29 S3 fy changed to 600 MPa 
4 S30 S4 fy changed to 600 MPa 
5 S31 S5 fy changed to 600 MPa 
6 S32 S6 fy changed to 600 MPa 
7 S33 S7 fy changed to 600 MPa 
8 S34 S8 fy changed to 600 MPa 
9 S35 S9 fy changed to 600 MPa 
10 S36 S10 fy changed to 600 MPa 
11 S37 S11 fy changed to 600 MPa 
12 S38 S12 fy changed to 600 MPa 
13 S39 S13 fy changed to 600 MPa 
14 S40 S14 fy changed to 600 MPa 
15 S41 S15 fy changed to 600 MPa 
16 S42 S16 fy changed to 600 MPa 
17 S43 S17 fy changed to 600 MPa 
18 S44 S18 fy changed to 600 MPa 
19 S45 S19 fy changed to 600 MPa 
20 S46 S20 fy changed to 600 MPa 
21 S47 S21 fy changed to 600 MPa 
22 S48 S22 fy changed to 600 MPa 
23 S49 S23 fy changed to 600 MPa 
24 S50 S24 fy changed to 600 MPa 
25 S51 S25 fy changed to 600 MPa 
26 S52 S26 fy changed to 600 MPa 
27 S53 S20 cp changed to 25 mm 
28 S54 S21 cp changed to 25 mm 
29 S55 S20 cp changed to 50 mm 
30 S56 S21 cp changed to 50 mm 
31 S57 S20 cp changed to 75 mm 
32 S58 S21 cp changed to 75 mm 
33 S59 S20 cp changed to 100 mm 
34 S60 S21 cp changed to 100 mm 
35 S61 S20 cp changed to 125 mm 
36 S62 S21 cp changed to 125 mm 
37 S63 S20 cp changed to 150 mm 
38 S64 S21 cp changed to 150 mm 
39 S65 S20 cp changed to 175 mm 
40 S66 S21 cp changed to 175 mm 
41 S67 S46 cp changed to 25 mm 
42 S68 S47 cp changed to 25 mm 
43 S69 S46 cp changed to 50 mm 
44 S70 S47 cp changed to 50 mm 
45 S71 S46 cp changed to 75 mm 
46 S72 S47 cp changed to 75 mm 
47 S73 S46 cp changed to 100 mm 
48 S74 S47 cp changed to 100 mm 
49 S75 S46 cp changed to 125 mm 
50 S76 S47 cp changed to 125 mm 
51 S77 S46 cp changed to 150 mm 
52 S78 S47 cp changed to 150 mm 
53 S79 S46 cp changed to 175 mm 
54 S80 S47 cp changed to 175 mm 
55 S81 S1 t changed to 5.6 
56 S82 S2 t changed to 5.6 
57 S83 S3 t changed to 5.6 
58 S84 S4 t changed to 5.6 
59 S85 S5 t changed to 5.6  

Fig. 3. Stress-strain curve of steel rebar.  
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node linear 3-D truss”. 
In the interaction among the steel tube, loading plates, and concrete, 

the steel tube and loading plates were the master surface, and the con-
crete was the slave surface. In the interaction, the tangential and normal 
behaviours were considered, and the friction coefficient was 0.6. In the 
interaction between the vertical rebar, spirals, and concrete, the 
embedded region was considered as the steel reinforcement and the host 
region was considered as the whole model including the concrete part. 
In the interaction between the vertical rebar and spirals, the tie 
constraint was used between the vertical rebars and the spirals consid-
ering the surface region of the two materials to be tied. The loads were 
directly applied on the top and bottom loading plates. The top plate was 
fixed from translation and rotation except the translation in the Z-axis. 
The bottom surface was fixed against translation as well as rotation, 
aspresented in Fig. 8. 

In loading, the step was static general, and the nonlinear deformation 
was set on. In the step, automatic stabilization was employed, and 

dissipated energy fraction was specified as 0.0002. In addition, adaptive 
stabilization with a maximum ratio of stabilization to strain energy of 
0.05 was used. For the incrementation of the steps, automatic type was 
selected, and the maximum number of increments was 10000. The 
initial increment size was 0.05, and the minimum and maximum 
increment sizes were 0.00000001 and 0.1, respectively. 

Fig. 4. Relationship between: (a) fb0
/
fc′ vs. f′

c, (b) Kc vs. f′
c, and (c) ψ vs. ξs.  

Fig. 5. Stress-strain curve of concrete under compression.  

Fig. 6. Stress-strain curve of concrete under tension.  

Fig. 7. Connection between loading plate and steel tube.  
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2.3. Assessment of FEM with test specimens 

After modelling, FEMs (S1–S26) were subjected to axial compression 
as prescribed in the literature [19–22]. Fig. 9 shows the relationship 
between the load applied on FEMs and the load applied on the test 
specimens. According to Fig. 9, the finite element modelling analysis can 
predict the experimental loads of RCFST columns at 98.90% confidence 
and predictive intervals, indicating a strong relationship. The axial load 
versus axial displacement curves of these FEMs were compared with the 
outcomes of the experimental tests following the application of axial 
compression, and the results are shown in Fig. 10. Fig. 10 demonstrates 
that the results of the experimental tests and FEMs are correlated. 

2.4. ML models 

2.4.1. Data processing and analysis 
The input parameters are the ratio of the longitudinal steel bar 

multiplied by its yield strength (input 1), ratio of the lateral hoop 
multiplied by its yield strength (input 2), area of the concrete core that is 
inside the steel tube (input 3), the concrete strength (input 4), area of the 
steel tube (input 5), the yield strength of the steel tube (input 6), and 
height of columns (input 7). The descriptive statistics of the input pa-
rameters and output parameter (ultimate load) are listed in Table 3. The 
results can be seen to represent a wide variety of experimental datasets. 
When all the parameters were analysed, as indicated by Pearson corre-
lation in Fig. 11, the correlation among the output and parameters (in-
puts 3 and 7) were greater than other parameters. In contrast, it was 
discovered that there is a negative association between input 5 and 
output (ultimate load). This discrepancy may be explained by the ma-
terials’ properties and constitutive behaviour in the theoretical model, 
which differed from the actual values. 

2.4.2. Used learning techniques 

a. RF. For the classification and regression applications, the most 
advanced ensemble learning methodologies are the RF and GB algo-
rithms. An ensemble learning strategy combines predictions from 
different ML algorithms, often known as base learners, to produce pre-
dictions that are more accurate. A technique called RF creates numerous 
decision trees concurrently. These trees serve as the RF’s foundational 
learners, and each tree is constructed using an independent bootstrap 
sample of the entire data set. This process is known as bagging. A specific 
number of variables is chosen at random from each node to serve as 
candidate for each split. Then, from among this random collection of 
variables, the optimal split point is chosen. This method is referred to as 
feature sampling. Before the forest grows, the number of variables is 
fixed. The trees in RF are completely developed (no pruning step), in 
contrast to the categorisation and regression trees of previous studies 
[44,45]. Feature sampling and bagging are the basic principles of RF. 
There are two randomizing processes that make sure the trees are 
distinct from one another and have lower correlations. The final forecast 
of a RF regressor is determined by averaging the results of all the 
separate trees, while in classification, the majority rule is applied. The 
number of trees and number of randomly selected variables at each split 
when generating the trees are the two most crucial RF hyper parameters 
[46,47]. 

b. GB. GB sequentially trains a large number of weak learners to pro-
duce a precise estimation of response variable. A ML model is considered 
a weak learner if its performance is barely above the chance. The 
shallow decision trees in the case of GB trees are the weak learners. The 
ensemble model’s loss function is reduced by adding each subsequent 
tree to the model, which is a combination of all prior trees. The loss 
function, which user can select, is dependent on the nature of the task 
being performed. The squared loss is the usual selection for regression. 
By following the gradient of the overall loss function, trees that mini-
mize the loss function are sequentially added, resulting in a decrease in 
the total prediction error. In previous studies, GB trees were described in 
detail that was more technical [45,48]. The GB trees have a large 
number of hyper parameters that must be adjusted in order to achieve 
optimal performance. Some of these hyper parameters govern the GB 
procedure itself, such as the number of trees and the learning rate, while 
others govern the tree-building procedure itself, such as the minimum 
node size, the dataset sample, and the maximum depth [49,50]. 

c. KNN. Finding the k items in the training dataset that are most similar 
to the data object being tested is the difficult ML technique known as 
KNN [75]. The datasets were normalised using Euclidean distance to 
overcome this issue. Labels are given based on the frequency of a 
particular class in this location. The number of neighbours is represented 
by small positive integer k. Euclidean distance, also known as stand-
ardised Euclidean distance, is calculated using standardised data in the 
KNN technique. This measurement of distance is provided in Equation 
(20): 

Dx,y =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

n=1

1
S2

n
(xn − yn)

2

√
√
√
√ (20) 

Two n-dimensional vectors are compared using the standardised 
Euclidean distance, where sn stands for sample standard deviation of nth 
variable. In this investigation, best result was chosen for the prediction 
purpose after testing the 1 to 10 (k = 1, 2, …,10) nearest neighbours. 

d. GPR. GPR is a probabilistic regression framework that models 
random variables as gaussian distributions. GPR predicts outcomes 
based on the mean and covariance functions of input features. It assumes 
stationary and additive noise that follows a gaussian distribution. The 

Fig. 8. Boundary conditions of top and bottom loading plates.  

Fig. 9. FEM loads vs. tested loads.  
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GPR model uses input values and a latent variable to calculate output. 
The advantages of GPR include its ability to interpolate and its prior 
gaussian assumption. The mean function is utilised in cases of missing or 
unobserved input space, while the covariance function determines the 
correlation between inputs. Hyper-parameters are employed to define 
the maximum allowable covariance, the decay in correlation with dis-
tance, and the unknown variance. These hyper-parameters are grouped 
together as a random realisation vector and are used for predictions 
[51–54]. 

e. ANN. ANN is frequently employed to address limitations of tradi-
tional algorithms when handling complicated issues. By creating an 
input-output mapping for simulations, ANN can gain hidden informa-
tion from the supplied data samples without having a precise mathe-
matical explanation of the underlying process to be addressed. There is a 
plethora of distinct ANN variation kinds in the earlier literature [55–59]. 
This research chooses to use a feed-forward network trained with 
back-propagation. The input layer receives the external signal; hidden 
layer processes the data in an orderly manner, and output layer exports 
result. These three types of layers are frequently present in feed-forward 

Fig. 10. Comparison of axial load against axial displacement curves of experimental results and FEMs for: (a) S1–S5, (b) S6–S12, (c) S13–S19, (d) S20 and S21, and 
(e) S22–S26. 
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ANN. A feed-forward artificial neural network (FFANN) training process 
involves two essential steps [60,61]. In first method, from input layer, 
data are transmitted forward through the hidden layers to the output 
layer. The second method is the reverse method, which distributes the 
derivatives of objective function with respect to the weights among all 
the network nodes. Based on the discrepancy between goal outputs and 
network’s simulated outputs, weights and biases are dynamically 
adjusted. Each node in a layer using a transfer function, producing an 
accumulated result that is then transmitted to the following layer, 
computes the inner product of weight vector and input vector. While 
connections between neurons in the same layer do not occur, rather all 
the neurons in the following layer are connected to the neurons in the 
layer before. 

f. ELM. Since the FFANN approach’s back-propagation learning in-
volves a lot of processing work, the ELM technique has been used to 
address this. Huang et al. [62] provided a detailed mathematical proof of 
ELM. In contrast to the gradient-based iterative neural network tech-
nique, the single step learning process in ELM is achieved through 
non-iterative tuning of hidden neurons. In order to make ELM compa-
rably faster than ANN-based backpropagation learning approaches, 
Moore-Penrose generalised inverse is applied [63]. The ELM learning 
method operates in 3 steps if the training set {(xi, ti)

⃒
⃒xi ∈ Rd, ti ∈ Rm, i =

1, 2,…,n}, as well as the activation function G and hidden unit number n′ 

are provided. The hidden unit parameters {(ai, bi), i= 1, 2,…, n′} are 
assigned at random in the first phase with i equals 1 to n′. During the 
second stage of the method, the output matrix H (Equation (21)) of the 
hidden layer is generated. Output weight β is determined in third step. In 
order to find a non-linear relationship among inputs and outputs, the 
ELM learning algorithm used in the current study made use of the radial 
basis activation function: 15 hidden neurons, 1 output neuron, and 7 
input neurons make up the final structure of ELM. 

⎧
⎪⎨

⎪⎩
H =

⎡

⎢
⎣

h(x1)

h(x2)

⋮
h(xn)

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
(21)  

. 

g. ENN. ENN has improved the traditional feedforward neural network 
(FFNN). In ENN, the network’s performance is enhanced by using an 
emotional system to modify the neuron’s operation rather than the 
synthetic hormones utilised in the conventional FFNN. The ith output 
neuron can be quantitatively described as per Equation (22) when the 

Table 3 
Statistical descriptive of input and output parameters.  

Parameter Maximum Minimum Std. Dev. Variance Mean Median Mode Skewness Kurtosis 

Input 1 39.54 0 10.87 118.30 15.86 17.70 29.51 0.261 − 0.997 
Input 2 12.765 0 2.70 7.31 1.75 0 0 2.11 4.994 
Input 3 44132.79 8069.12 13389.63 179282297.40 21073.2 14192.64 9012.46 0.571 − 1.223 
Input 4 61.52 39.77 6.94 48.21 45.99 44.64 39.77 1.079 0.164 
Input 5 2365.44 935.78 426.76 182130.5 1379.15 1207.36 1091.47 0.831 − 0.754 
Input 6 600 254 117.04 13698.77 457.69 410 600 0.084 − 1.393 
Input 7 720 258.98 179.60 32257.02 452.03 400 260.82 0.226 − 1.573 
Output 6091.23 1063.5 1223.31 1496500 2533.43 1961.45 1161.9 0.656 − 0.726  

Fig. 11. Pearson correlation with heat map.  
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hormonal glands Ha, Hb, and Hc are considered as dynamic coefficients 
[64–66].  

where, i = input, h = hidden, j = output, and f = transfer function.
Equations (23) and (24) were employed to evaluate and enforce the 

model hormone values (Hh) on the neuron network, as proposed by 
Nourani [65]. 

Hh =
∑

i
Hi,h, (h= a, b, c) (23)  

Hi,h = glandityi,h × Yi (24)  

2.4.3. Computation of performance indicators 
The computation of the models’ performance was done by consid-

ering two statistical parameters. These parameters are coefficient of 
determination (R2), and root mean square error (RMSE) given in 
Equations (25) and (26), respectively. The ideal value of R2 is 1 and 
RMSE is zero. 

R2 =

∑n

i=1
(yi − ymean)

2
−
∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − ymean)

2
(25)  

Fig. 12. Effect of steel tubes’ yield strength on compression behaviour for: (a) S1–S5 and S27–S31, (b) S6–S12 and S32–S38, (c) S13–S19 and S39–S45, (d) S20, S21, 
S46, and S47, and (e) S22–S26 and S48–S52. 

Yi =

(

ρi +
∑

h
θi,hHh

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
1

× f

⎛

⎜
⎜
⎜
⎜
⎝

∑

j

(

αi +
∑

h
ψi,hHh

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
2

×

(

βi,j +
∑

h
φi,j,kHh

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
3

Xij

⎞

⎟
⎟
⎟
⎟
⎠

+

(

λi +
∑

h
φi,hHh

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
4

+

(

δi +
∑

h
ρi,hHh

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
5

(22)   
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑n

i=1
(yi − ŷi)

2

√

(26) 

where yi and ŷi are the actual and predicted ith values, and N is 
number of the data sample. 

3. Results and discussion 

3.1. Effect of yield strength of steel tube 

Fig. 12 illustrates the impact of the steel tubes’ yield strength on the 
FEMs’ performance under axial compression. From Fig. 12(a), it can be 
observed that FEM S1, whose steel tube has an yield strength of 355 
MPa, has a compression capacity of 1390.04 kN, whereas FEM S27, 

whose steel tube has an yield strength of 600 MPa, has a compression 
capacity of 1766.95 kN. Similar to this, for FEMs S2, S3, S4, and S5, 
where the steel tubes’ yield strength is 355 MPa, the compression ca-
pacities are 1493.99 kN, 1503.65 kN, 1495.97 kN, and 1535.81 kN, 
respectively, and for FEMs S28, S29, S30, and S31, where the steel tubes’ 
yield strength increased to 600 MPa, the compression capacities are 
1894.25 kN, 1905.14 kN, 1892.05 kN, and 1915.81 kN, respectively. 

FEM S1 has an axial displacement of 1.7 mm at the compression 
capacity level, while FEM S27 exhibits additional ductility and has an 
axial displacement of 3.6 mm. At the same compression capacity level, 
FEMs S2, S3, S4, and S5 have an axial displacement of 1.7 mm, 1.7 mm, 
1.7 mm, and 2.7 mm, respectively, while FEMs S28, S29, S30, and S31 
have axial displacements of 3.2 mm, 3.1 mm, 3.2 mm, and 3.6 mm, 
respectively. Fig. 10 (b)–(e) display a similar pattern. Despite consistent 

Fig. 13. Effect of transverse reinforcement spacing on compression behaviour for: (a) S1–S5, (b) S27–S31, (c) S20, S53, S55, S57, S59, S61, S63, and S65, (d) S21, 
S54, S56, S58, S60, S62, S64, and S66, (e) S46, S79, S77, S75, S73, S71, S69, and S67, (f) S47, S80, S78, S76, S74, S72, S70, and S68, and (g) S81, S82, S83, S84, 
and S85. 
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Fig. 14. Effect of amount of longitudinal reinforcements: (a) S1 (Mises stress distribution), S2 (longitudinal stress distribution), S3 (plastic strain equivalent dis-
tribution), and S4 (active yield), (b) plastic strain magnitude, and (c) axial stress. 
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confinement provided by the steel tube, the column’s failure mode is 
dependent on the degree of axial compression. However, the results of 
this study are consistent with most experimental studies where the 
stiffness and ductility of the section, as well as the load and energy 
dissipation capacities, increased with an increase in the steel tube yield 
strength [67,68]. 

It is important to state that the core concrete was normally crushed in 
the tension region, while the localised buckling of the steel tube mostly 
occurred in the mid-height section. As a result, an improvement in the 
ductility and compression capacity with increasing the steel tube yield 
strength could be explained. This is because the steel tube exhibited 
strong lateral compressive stress due to larger dilatation of the concrete 
with higher yield strength. Additionally, due to the positive impact of 
high strength steel tube on the ductility, the RCFST columns with larger 
steel yield strength behaved in a good ductile manner. Ultimately, the 
ultimate load capacity and ductility of the RCFST columns were 
improved with increasing the yield strength of the steel tube. 

3.2. Effect of spacing of transverse reinforcement 

Fig. 13 demonstrates the effect of the transverse reinforcement 
spacing on the behaviour of FEMs when subjected to axial compression. 
From Fig. 13(a), it can be seen that all the FEMs share a similar 
ascending portion, however, the descending portion of the FEMs is 
where there is the main difference. The use of a transverse reinforcement 
in the columns clearly has a substantial impact on the columns’ post- 
yield behaviour. Furthermore, the post-yield behaviour of the columns 
is significantly impacted by spacing of the transverse reinforcement. 
Similar pattern is witnessed when the yield strength of the outer steel 
tube increased to 600 MPa (Fig. 13(b)) and when the thickness of the 
steel tube increased to 5.6 mm in Fig. 13(g). 

Fig. 13(d) depicts that FEM S21, with a transverse reinforcement 
spacing of 200 mm, has a compression capacity of 3939.77 kN, while 
FEM S54, with a transverse reinforcement spacing of 25 mm, has a 
compression capacity of 5600.84 kN. At compression capacity level, S21 
has axial displacement of 2.94 mm, while S54 behaved in a more ductile 
manner and has the axial displacement of 30 mm. The compression 
capacity and axial displacement attained for FEM S66, S64, S62, S60, 
S58, and S56 are 3962.72 kN and 2.9 mm, 3992.31 kN and 2.9 mm, 
4033.03 kN and 2.9 mm, 4078.8 kN and 2.9 mm, 4164.87 kN and 2.9 
mm, and 4306.96 kN and 3.42 mm, respectively. According to these 

observations, it is demonstrated that the compression capacity increases 
as the transverse reinforcements’ spacing reduces, whereas the axial 
displacement for S21, S66, S64, S62, S60, and S58 remains constant and 
increases for S56 and S54. Fig. 13(c), (e), and (f) show a similar pattern. 
Because the outer steel tube diameter for FEMs in Fig. 13(d) is larger 
than FEMs in Fig. 13(c), it performs better than FEMs in Fig. 13(c). Due 
to an increase in the yield strength of the steel tubes, FEMs in Fig. 13(e) 
and (f) perform better than FEMs in Fig. 13(c) and (d). 

In line with the earlier research, the CFST columns with the widest 
transverse reinforcement spacing had smaller steel ratios, and the 
confining effect on the core concrete was insufficient. It had an impact 
on the increase in its bearing capacity [69]. The strain development of 
the longitudinal reinforcement was greater than that of the steel tube at 
the start of loading [69], while the strain development speed slowed 
down, the steel tube yielded, and the longitudinal strain increased 
before the peak point, delaying the excessive deformation of the steel 
tube and the quick decline in the specimens’ bearing capacity. The 
transverse cage’s reinforcing confinement impact on the core concrete 
became more apparent as the transverse reinforcement spacings became 
smaller (80 mm – 50 mm), which increased the specimens’ bearing ca-
pacity and peak strain. Besides, performance in terms of the energy 
dissipation and ductility was also enhanced [69]. Similarly, lower lateral 
displacements for close range explosions or small-scale distances come 
from reduced transverse reinforcement spacing in RC columns under 
blast and axial loading [70]. Overall, it can be mentioned that the RCFST 
columns’ compression capacity increased as the transverse reinforce-
ment spacing decreased. 

In Fig. 14(a), for example, S1 is FEM with no longitudinal and 
transverse reinforcements. It can be observed from S1 that the specimen 
yielded at Mises stress of 0.126 MPa from the central region to both ends 
under the ultimate axial compression compared to S2 and S3 in Fig. 14 
(a), where the specimens did not yield at the ultimate axial compression 
based on Mises stress and plastic strain equivalent. The reasons are that 
the load was gradually increased, which caused the longitudinal stress in 
the steel tube to be generally distributed in a band. Eventually, the steel 
tube reached the proportional limit because the tension side of the steel 
tube was under less stress than the compression side. At this moment, 
the longitudinal stress was dispersed in a band, the specimen was 
crushed, and the concrete was equally stressed. The concrete columns 
and steel tubes caused the elastic-plastic and yield stages, respectively, 
at a load increase to 75% of the peak load. When the specimen reached 

Fig. 14. (continued). 
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its peak load, the concrete’s plastic strain started to concentrate in the 
central region, while the Mises and longitudinal stress concentrations 
started at the middle of the specimen (tension zone) and gradually 
moved to both ends of the columns (compression zone). In addition, 
because the maximum stress was zero, the longitudinal stress had no 
impact on the yielding of the specimens S2–S4 (Fig. 14(a)). In compar-
ison, the specimens S2, S3, S4, and S5 in Fig. 14(b) were FEMs with the 
transverse reinforcement spacings of 45 mm, 35 mm, 25 mm, and 15 
mm, respectively. It is evident from Fig. 14(b) that the plastic strain 
magnitude decreased with increasing spacing of the transverse re-
inforcements. There were 0.66%, 1.32%, and 3.95% reductions in the 
plastic strain magnitude as the longitudinal and transverse reinforce-
ment spacings reduced by 22.22%, 44.44%, and 66.67%, respectively. 
These results revealed that the capacity of the RCFST columns to resist 
permanent distortion, when their yield strength was exceeded, declined 
with increasing the transverse reinforcement spacing, resulting in the 
columns’ buckling or failure. 

Fig. 14(c) shows the specimens S6 to S11 with different numbers of 
the longitudinal reinforcements. It can be noticed from Fig. 14(c) that 
lower spacing of the transverse reinforcements increased the confine-
ment effect on the concrete core, which increased the friction between 
the surfaces after cracking. These results indicated that the longitudinal 
and transverse reinforcements were principally in charge of resisting the 
horizontal and vertical forces in the tension zone, allowing the concrete 
inside the steel tube to transfer the compressive force, thereby 
increasing the loading area and decreasing the stress in the compression 
region [71]. Therefore, there was more resistance to the axial 
compressive load because of the larger friction forces and consequently, 
specimens performed better in the post-yield behaviour. 

3.3. Effect of amount of longitudinal steel bars 

The impact of the longitudinal steel bar quantity on the FEMs’ per-
formance under axial compression is presented in Fig. 15. As seen in 
Fig. 15(a), FEM S6 has a compression capacity of 1079.35 kN without 
the longitudinal steel bars, while S11, which is reinforced with six 8 mm 
diameter bars, has a compression capacity of 1249.5 kN. Both S6 and 
S11 have an equal axial displacement of 2.6 mm at the compression 
capacity level. Similar to S6 and S11, FEMs S7 and S9 have gradually 
increasing compression capacities of 1166.16 kN and 1194.31 kN, 
respectively, while maintaining the same axial displacement of 2.6 mm. 
The compression capacities of FEMs were further enhanced when the 
diameter of the bar was raised to 12 mm (Fig. 15 (b)); for S8, S10, and 
S12, the compression capacities are 1239.68 kN, 1291.85 kN, and 
1416.78 kN, respectively. The axial displacements for S8 and S10 
reduced to 2.28 mm at the compression capacity level; however, they 
increased to 20 mm for S12. Fig. 15(c) and (d) display a similar pattern, 
but with increased compression capacity values due to the increase in 
the steel tube thickness to 5.63 mm. Similar results are seen when the 
outer tube’s yield strength was raised to 600 MPa, but with a substan-
tially larger increase in the compression capacity values (Fig. 13(e)–(h)). 
These results are in line with the earlier research, which demonstrated 
that increasing the number and diameter of the longitudinal bars 
improved the columns’ ability to support axial compression [69,71]. 

3.4. Effect of thickness of steel tube 

Fig. 16 illustrates the influence of the steel tube thickness on the 
performance of FEMs under axial compression. In Fig. 16, the thickness 
of the outer steel tube for FEMs S1–S5 is 2.8 mm and for S81–S85, it is 
5.6 mm. Fig. 16 depicts that when the steel tube thickness increased, the 
compression capacity of the FEMs enhanced as well. The reason is that 
using the steel tubes with a lower diameter to thickness ratio improves 
the confinement effect of the RCFST columns, increasing their ultimate 
axial strength. This supports a relevant study that found the compression 
capacity of RCFST slender columns was significantly lowered when the 

diameter to thickness ratio of steel tubes increased [72]. In addition, 
according to a comparison of the literature with the present findings, an 
experimental study and mechanism analysis of square steel tubular 
columns reinforced by rhombic stirrups under axial compression 
demonstrated an improvement in the bearing capacity, energy dissipa-
tion, and ductility performance [69]. However, the peak strain and 
initial stiffness decreased with the increase of the steel tube thickness 
due to a considerable discrepancy in the strain of the longitudinal re-
inforcements, affecting the specimens’ initial stiffness to a certain 
magnitude [69]. Despite these positive results, the thickness of the steel 
tube would be experimentally assessed to prevent local buckling or early 
failure if it exceeded a predetermined value. 

3.5. Hyper parametric configuration of ML models 

A trial-and-error tuning strategy was engaged to determine hyper 
parameters, architectures, and functions of the models during the 
training phase. Based on these results, the model with the highest 
average prediction accuracy over the entire training set was chosen. 
Table 4 summarises the optimal values of the resulting hyper parameter 
for the GB, RF, and KNN models. Using the trial-and-error method, the 
GPR model was tweaked, and two significant parameters were found: a 
gaussian noise of 0.05 and a width of the radial basis function of 0.38. 
There were 7 input nodes, 1 output node, and 6 hidden layer nodes in the 
ANN model. With 15 hidden neurons and a radial basis activation 
function, the ELM model provided the highest possible output. The ENN 
model’s two emotional parameters were employed to achieve the best 
outcomes, and their values were determined through a process of trial 
and error as follows: the confidence value was 0.61, whereas the anxiety 
parameter was 0.36. 

3.6. Performance indicators 

The findings of the models developed for determining the ultimate 
load are presented in this section. Table 5 provides the R2 and RMSE 
performance parameter values for each of the seven models for both the 
training and testing stages. 

It should be emphasised that the goodness of fit of the built-in models 
was expressed by each model’s training subset performance. It is evident 
from Table 5 that all the models performed very well in training stage. 
The performance of the ELM and ENN models was slightly lower when 
compared to the other five models in both the training and testing 
stages. The KNN model, whose performance was second best in the 
training stage, failed to do well in the testing stage. With R2 = 0.99925 
and RMSE = 0.00708 in the training stage and R2 = 0.99863 and RMSE 
= 0.00717 in the testing stage, the highest modelling prediction per-
formance was achieved by the GB model. Fig. 17 indicates the scatter 
plots of the developed models (GB, RF, KNN, GPR, ANN, ELM, and ENN) 
in the training and testing stages. 

As displayed in Fig. 18, the performance of the developed models for 
both the training and testing stages can be examined using the Taylor 
diagram [73]. All the proposed models, with the exceptions of ELM and 
ENN, had good training performance, as evidenced by their positions in 
the Taylor’s diagram (Fig. 18(a)), which were all relatively close to the 
reference point. Fig. 18(b) illustrates that the position of GB is closest to 
the reference point, corroborating the statistical findings that demon-
strated the best performance of the GB model [45,49]. 

In the case of the current dataset, it was revealed that ANN out-
performed both the ELM and ENN models. While ELM and ENN are seen 
as improvements above the ANN model, the specific qualities and 
complexities of the dataset might have benefited the ANN model’s 
performance. It is vital to note that the performance of different models 
can vary depending on the nature of the dataset and the specific problem 
being addressed. Therefore, in this particular circumstance, the ANN 
model provided greater performance compared to the ELM and ENN 
models for the supplied dataset. The results of weights and biases of the 
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Fig. 15. Effect of amount of longitudinal steel bars on compression behaviour for: (a) S6, S7, S9, and S11, (b) S6, S8, S10, and S12, (c) S13, S14, S16, and S18, (d) 
S13, S15, S17, and S19, (e) S32, S33, S35, and S37, (f) S32, S34, S36, and S38, (g) S39, S40, S42, and S44, and (h) S39, S41, S43, and S45. 
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ANN model are presented in Equations 27–30: 

w1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.08 − 0.46 1.34 1.04 0.30 0.25 0.98
0.88 − 0.19 − 0.09 0.58 0.34 0.49 − 0.37
0.07 1.03 0.70 − 0.19 − 0.04 − 0.68 1.30
− 0.40 0.61 − 0.30 − 0.26 0.92 0.70 − 0.87
0.67 − 1.30 1.20 0.98 0.22 0.94 0.83
− 0.69 1.02 1.39 0.71 − 0.47 0.10 1.16

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(27)  

w2 = [ 0.12 − 0.02 0.20 − 0.21 0.36 0.57 ] (28)  

b1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1.39
− 0.45
0.64
− 0.75
0.64
1.26

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(29)  

b2 = [0.49] (30) 

According to the ANN technique, the percentages of the relative 
relevance of the input parameters (inputs 1, 2, 3, 4, 5, and 7) are 6.79, 

9.09, 39.26, 4.41, 8.21, and 21.24, respectively. The results from the RF 
model are 1.85, 5.89, 50.61, 2.20, 1.82, 1.78, and 35.83, respectively. 
Based on the relative relevance value derived using the ANN and RF 
models, inputs 3 and 7 are the most significant or have the greatest 
impact on the output. The network topology of ANN, depicted in Fig. 19, 
allows one to observe the relative importance of the input parameters. 
The considerable width of connections in black, which denotes their 
dominance in deciding the outputs, makes it clear that inputs 3 and 7 
have a noticeable relative relevance, which is also indicated by their 
significance in influencing the outputs. 

This finding is consistent with the observation from the Pearson 
correlation heat map (Fig. 11), which demonstrates that inputs 3 and 7 
have the highest correlation with the output variable. The high corre-
lation suggests a strong linear relationship between these inputs and the 
output. Therefore, any changes or variations in inputs 3 and 7 are likely 
to have a significant impact on the predicted output of the model. 
Furthermore, using the SHAP analysis process, the contribution of fea-
tures to each prediction is explained using Shapley values, which are 
obtained through the application of the game theory coalitions [74]. 
Figs. 20 and 21 show the SHAP global explanations and mean absolute 
SHAP values of the KNN model, which indicate the dominance of inputs 
3 and 7 in predicting the output. 

4. Conclusions 

The axial compressive behaviour- of the RCFST columns was exam-
ined in this research work. The used parameters were the steel tube’s 
yield strength, transverse reinforcements’ pitch spacing, number of the 
longitudinal bars, and thickness of the steel tube. Furthermore, seven ML 
models were created using data from FEMs and seven input features to 
predict the ultimate load. The following conclusions can be drawn:  

i. Compression capacity of the RCFST columns increased with 
decreasing the transverse reinforcement spacing.  

ii. The compressive strength and ductility of the RCFST columns 
were improved by increasing the yield strength and thickness of 
the steel tube as well as the number of the longitudinal rein-
forcing bars.  

iii. Relationship between the FEMs and experimental results yielded 
a strong correlation with R2 of 98.90%.  

iv. All the ML models performed very well in the training stage. 
However, in both the training and testing stages, the ELM and 
ENN models’ performance was marginally lower than that of the 
other five models. The GB model had the best modelling predic-
tion performance in both the training and testing stages with R2 

of 0.99925 and 0.99863, respectively.  
v. According to the relatively significant value calculated using the 

ANN and RF models, any variations in the concrete core areas and 
columns’ height remarkably affected ultimate load. 

The study demonstrated the effectiveness of the finite element 
analysis to model the relationship between the axial load and axial 
displacement. The FEMs suggested in this work could accurately depict 
the behaviour of the RCFST columns because findings from the literature 
supported the prediction accuracy of the finite element modelling. Using 
the ML techniques to predict the ultimate load of the RCFST columns can 
enable the columns’ performance prediction with unknown properties 
by ML technique; this can augment the standard empirical models by 
providing the prediction findings, more quickly and easily. This method 
can help with timesaving, increased time efficiency, and theoretical and 
practical guidances for improving the RCFST columns’ properties. 
Despite all these benefits, environmental conditions (temperature and 
humidity) and other materials’ properties, which may influence the 
behaviour of the RCFST columns can be investigated in future research. 

Fig. 16. Effect of steel tube thickness on compression behaviour.  

Table 4 
Hyper parameters of GB, RF, and KNN.  

Model Hyper parameter Optimised value 

GB n_estimators 75 
max_features 3 
learning_rate 0.4 
min samples_leaf 5 
max depth 14 

RF n_estimators 80 
min_samples split 2 
max features 5 
max_depth 14 

KNN n _neighbours 3 
weights distance 
leaf size 30 
p 1  

Table 5 
Performance of ML models in training and testing stages.  

Model Training Testing 

R2 RMSE R2 RMSE 

GB 0.99925 0.00708 0.99863 0.00717 
RF 0.99657 0.01583 0.98656 0.02264 
KNN 0.99905 0.00793 0.9754 0.03113 
GPR 0.99893 0.00842 0.98968 0.01942 
ANN 0.99708 0.01393 0.98068 0.02646 
ELM 0.97665 0.0427 0.96678 0.04086 
ENN 0.98943 0.02694 0.97367 0.03163  
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Fig. 17. Scatter plots for: (a) GB, (b) RF, (c) KNN, (d) GRP, (e) ANN, (f) ELM, and (g) ENN models.  
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Notations 

Ac Cross-sectional area of concrete 
As Cross-sectional area of steel tube 
CDP Concrete damaged plasticity 
CFST Concrete filled steel tube 
cp Centre-centre spacing of transverse steel bar 
D Diameter of steel tube 
db Diameter of longitudinal steel bar 
dp Diameter of transverse steel bar 
e Flow potential eccentricity 
Ec Modulus of elasticity of concrete 
Esec Secant modulus of concrete 
fB Confining stress 
fc′ Cylinder compressive strength of concrete 
FEM Finite element model 

Fig. 19. Proposed architecture of ANN.  

Fig. 20. SHAP global explanation of KNN model.  
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ft Tensile strength of concrete 
fy Yield strength of steel tube 
fb0
/
fc′ Ratio of compressive strength under biaxial loading to uniaxial compressive strength 

Kc Ratio of second stress invariant on tensile meridian to compressive meridian 
n Number of longitudinal steel bar 
RC Reinforced concrete 
RCFST Reinforced concrete filled steel tube 
t Thickness of steel tube 
sp Clear pitch spacing 
β Concrete stress block’s effective height factor 
k Initial stiffness 
ξs Confinement factor 
εco Peak strain of unconfined concrete 
εcc Peak strain of confined concrete 
εct Tensile strain of unconfined concrete corresponding to ft 
α Ratio for reducing strength of concrete stress block 
αt Concrete area to steel tube ratio 
ψ Dilation angle 
ε Strain 
σ Stress 

References 
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