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ABSTRACT 

Tikhonov regularization, which is a new technique for converting time-concentration data into concentration-
reaction rate data, was applied to the kinetic analysis of n-hexane aromatization on Platinum/Alumina Catalyst.The 
technique was used for the conversion of the experimental concentration-time data to rate-concentration data. Due to 
the ill-posed nature of the problem of obtaining of reaction rates from experimental data, conventional methods will 
lead to noise amplification of the experimental data. Hence, Tikhonov regularization technique is preferably 
employed because it is entirely independent of reaction rate models and it also manages to minimize noise 
amplification, thus, leading to more reliable results. The kinetic parameters obtained by the application of the 
Nelder-Mead simplex optimization technique to formulated mechanistic models was used to discriminate among 
rival kinetic models based upon physicochemical criteria and thermodynamic tests to give the rate of conversion of 
adsorbed hexene-1 to adsorbed methylcyclopentane when hydrogen is adsorbed as a bi-molecular specie as the rate 
determining step. 
 
Keywords: Tikhonov regularization technique; Nelder-Mead simplex method; Hexane reforming; Mechanistic 
kinetic models; Kinetic and equilibrium parameters. 
 
1. INTRODUCTION 
 In the investigation of the kinetics of chemically reacting systems, it is often necessary to convert experimental 
time-concentration data into concentration-reaction rate data in order to determine the kinetic parameters of 
postulated reaction rate models.A variety of procedures has been developed to perform this task. For otherreactions 
it may be possible to deduce the rate constants by examining the initial slope of the time-concentration data.  
Another approach is to modify or simplifythe kinetic model if this can be physically justified. A more general 
technique is to treat the rate equations as ordinary differential equations. These equations are integratedto give the 
concentration of the reactants and products as a function of time with the rate constants appearing as unknown 
parameters. These parameters are then adjusted tominimize the deviation of the computed time-concentrationprofile 
from its experimentally observedcounterpart. 
Integration of simple rate equations can be performedanalytically leading to simple expressions for the time-
concentration profiles. However, for many rate equations analytical solution cannot be foundandthey have to be 
integratednumerically. Determination of the rate constants to minimize the deviation from experimental data 
becomes correspondingly more complicated to the extent that they cannot be determined to a reasonable degree of 
accuracy. Therefore, if inappropriate methods are used, the conversion procedure becomes an ill-posed problemin 
the sense thatthe noise in the original data will be amplified leading to unreliable results. 
Hadamard [9] defined a linear problem to be well posed if itsatisfies the following three requirements: (a) 
existence,(b) uniqueness, and (c) stability. A problem is said to beill -posed if one or more of these requirements are 
not satisfied.Yeow et al. [3]showed that Tikhonov regularization is a reliable procedure for processing the time-
concentration data of reaction kinetics. This procedure has been successful in keeping noise amplification under 
control and meets the important requirement that it does not require the assumption of a model to describe the 
original experimental data.This procedure was first used by Yeow and Taylor [4] for obtaining velocity profiles 
from various experimentally measured velocity data. Yeowet. al. [3] carried out further application of the procedure 
to reactions ranging from first order reactions to chain reactions involving a number of intermediate steps with rate 
equation of the rate determining process. Omowunmi and Susu [5] used the Tikhonov regularization technique in 
converting the concentration-time data for n-eicosane pyrolysis data procured by Susu and Kunugi [6] to generate 
the kinetic parameters for this homogeneous autocatalytic chain reaction. In addition, Omowunmi and Susu [7] also 
used the same technique in determining the kinetic parameters for the reforming of n-heptane, n-heptene and 3-
methylhexane on Pt/Alumina catalyst.   
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The aim of this paper is to more exhaustively apply Tikhonov regularization to the conversion of the concentration-
time data of the complex reaction of the aromatization of n-hexane on Platinum/Alumina catalyst to concentration-
rate data at temperatures 440°C, 460°C, 480°C, 500°C using the well documented experimental data from the work 
ofAgbajelola and Aberugba [8]. Rate equations of the Langmuir-Hinselwood type will be generated and the values 
for the respective  kinetic parameters would be generated by fitting the rate equations into the resulting 
concentration-reaction rate profile. Thus, the performance of this new procedure can be demonstrated by showing 
that these parameters conform to the expected trend in the kinetic investigation under study. 
 
2. THE GOVERNING EQUATION  
The relationship between the reaction rate r(t) and the time-concentration profile C(t) can be written as: 

r ݐ =
ݐ݀ ݐ ܥ݀  1  

This can be rewritten as: ܿ ݐ = ݐ ݎ  ݐ݀ ′ ′ + 0ܥ

ݐ
ݐ ′                                                                                                                             (2) 

where0ܥ is the initial concentration. This equation can be regarded as a Volterra integral equation for the unknown 
reaction rate ݐ ݎ  and initial concentration 0ܥ if this quantity is not measured directly or if the experimental 
measurement is considered to be unreliable. This is an integral equation of the first kind. The mathematical nature of 
this equation shows that the problem of obtaining r(t) is an ill-posed problem in the sense that if inappropriate 
methods are to inaccurate results [2].  
Instead of solving Equation (2) directly for ݐ ݎ , this equation, through integration by parts, can be transformed into: ݐ ܿܥ = ݐ ݀   ′ ݐ ݎ ′ ݐ݀   ′ − ݐ ݐ ݂′ ݐ݀  ′ ′ + ݐ 3 0ܥ

ݐ ′ =0

 

           = − ݐ ݎݐ ݐ   ݐ ݂′ ݐ݀ ′ ′ + 0ܥ

ݐ
ݐ ′ =0

 4           = ݐ ݐ ݂   ݐ݀ ′ ′ + 0ݎ

ݐ
ݐ ′ =0

 − ݐ  ݐ ݂′ ݐ݀ ′ ′ + ݐ 5 0ܥ
ݐ ′ =0

 

= ݐ   − ݐ ݐ ݂ ′ ݐ݀ ′ ′ + 0ܥ + ݐ 6 0ݎݐ
ݐ ′ =0

 

where݂ = ݐ 
0ݎ and  ݐ݀ ݐ ݎ݀ =  .is the initial rate  0 ݎ

Equation  6  can be regarded as a Volterra integral equation of the first kind to be solved for the unknown function ݂ ݐ and the constants 0ܥand 0ݎ. Superscript ܥ is used to distinguish the computed concentration given by this 
equation from its experimentally measured counterpart which will be denoted by superscript ܯ. The computational 
procedure developed here will obtain 0ܥand 0ݎ as part of the solution to the integral equation. However, if the initial 
concentration is exactly known, e.g. when the initial mole fraction is zero or unity, then 0ܥtakes on this exact value 
and is not treated as an unknown. Similarly if there are physical reasons to suggest that the initial reaction rate is 
identically zero then 0ݎ is assigned this value and not treated as an unknown. 
Once ݂  can be obtained by direct numerical integration. Since numerical  ݐ ܥ and  ݐ ݎ ,0are knownݎ 0andܥ , ݐ 
integration does not suffer from noise amplification, the ݐ ݎ  thus obtained can be expected to be relatively free 
from the influence of experimental noise. 
Equation (6) is the starting point of the present investigation. Inputs to this equation are the experimentally measured 
time-concentration data points:  1ݐ, 1ܥ

, ܯ ,2ݐ  2ܥ
, ܯ ,3ݐ  3ܥ

, ܯ …… . , ܦܰݐ  , ܦܰ . ܯܦܰܥ is the number of points in the 
set and is usually a relatively small number, typically around 10 − 50. The data points may or may not be regularly 
spaced out in time. From the way Equation  6  was obtained it is clear that this equation is independent of the order 
of the reaction and its nature. 
 
3. DISCRETIZING THE VOLTERRA INTEGRAL EQUATION  
In discretized form Equation  2  becomes: ݅ܥ ܿ = 0ܥ + 0ݎ݅ݐ +  �݆݅ ݅ݐ  − ݐ݆  ݂݆ ݐ∆ ݆ݐ′ ′ ݅ݐ=

݆ݐ ′  ݅ = 1,2, … , ܦܰ ,        ݆ = 1,2, … , where݂ 7 ܭܰ 1, 2݂, 3݂, … , ݂ܰ  The independent variable . ݐ ݂ are the discretizedܭ
0 ൑ ݐ ′ ൑ ݔܽ݉ݐ is divided into ܰ ݐ∆ uniformly spaced discretization points with step size ܭ ′ = ݔܽ݉ݐ ܭܰ / −

1 ∆t′.ݔܽ݉ݐ = ܦܰݐ is the largest ݅ݐ  in the data set. �݆݅ is the coefficient arising from the numerical scheme used to 

approximate the integral in Eq. 2. For Simpson’s 1 3  rule, used throughout the present investigation, �݆݅ = 2
3  for 

odd ݆  (except �݆݅ = 1
3 ) and 4 3  for even ݆. Depending on whether the ݅ݐ  of the ݅ݐℎ experimentaldata point 
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coincides with a discretization point, the last �݆݅  associated with this point may have to be adjusted, by interpolation, 
to allow for fractional step size. 

The deviation of ܥܥ from ܯܥ is given by 

�݅ = ܯ݅ܥ − 0ܥ  + 0ݎ݅ݐ +  �݆݅ ݅ݐ  − ݐ ′݆ ݂݆ ݐ∆ ݐ′ ′ ݆ ݅ݐ=
ݐ ′ ݆=0

  8  
�݅ = ܯ݅ܥ − 0ܿ݅ܥ − 0ݎ݅ܤ +   �݆݅ ݅ݐ  − ݐ ′݆ ݂݆ ݐ∆ ݐ′ ′ ݆ ݅ݐ=

ݐ ′ ݆=0

  9  
or, in matrix notation,  δ =CM - Cc0- Br0 -Af.                                                                                      (10)              

C and B are ND× 1 column vectors and A is a ND× NK matrix of coefficients of the unknown column vector. 
f = [f1, f2, f3,….,fNK ]T.                                                                                                                                 (11) 

whileC, B and A are given by 
Ci = 1         (12)        

Bi = ti                                                                                                                                                           (13)   ݆݅࡭ = �݆݅ ݅ݐ  − ݐ݆ ′ ݐ∆  ′ for݅ݐ ൒ ݐ ′݆ = 0 for ݅ݐ ൑ ݐ ′݆ (14) 

In Equation (14) ݅ݐ , ݅ = ͳ, ʹ, ͵, ….., ND are the times at which theconcentration is measured and ݐ ′݆ , j = 1, 2, 3, …., 
NK are then uniformly discretized time 0 ൑ ݐ ൑ ݔܽ݉ݐ . NK generally exceedsthe number of data points ND, thus A is 
not a squarematrix and Equation (9) cannot be inverted to give a unique ݂ 0ܥ , ݐand 0ݎ. Instead, these unknowns are 
selected to minimize the sum of squares of �݅, i.e. to minimize  �݅2

= �ܶ� = ܯܥ  − 0ܿܥ − ݎܤ − ܶ ݂ܣ × ܯܥ  − 0ܿܥ − 0ݎܤ −   15  ݂ܣ
 
4.TIKHONOV REGULARIZATION  
To obtain smooth solutions to ill-posed problems, the standard Tikhonov regularization method is most often used. 
Ill-posed problems are frequently encountered in science and engineering. The term itself has its origins in the early 
20th century. It was introduced by Hadamard [9] who 
investigated problems in mathematical physics. According to his beliefs, ill-posed problems did not model real 
world problems, but later it appeared how wrong he was. Hadamard [9] defined a linear problem to be well posedif 
it satisfies the following three requirements: (a) existence, (b) uniqueness, and (c) stability. A problem is said to be 
ill -posedif one or more of these requirements are not satisfied. A classical example of an ill-posed problem is a 
linear integral equation of the first kind in L2 (I) with a smooth kernel. A solution to this equation, if it exists, does 
not continuously depend on the right-hand side and may not be unique. When a discretization of the problem is 
performed, we obtain a matrix equation in Cm,  ݇ݑ = ݂                                                                                                                                                          16  
where݇  is an ݉ × ݊ matrix with a large condition number, ݉ ൒ ݊. A linear least squares solution of the system  17  
is a solution to the problem  

minݑ݇  ݊ܥ∋ݑ − ݂ 2 +   17  2 ݑ 2�
where the Euclidean vector norm in Cmis used. We say that the algebraic problems  16  and  17  are discrete ill-
posed problems. 
The numerical methods for solving discrete ill-posed problems in function spaces and for solving discrete ill-posed 
problems have been presented in many papers. These methods are based on the so-called regularization methods. 
The main objective of regularization is to incorporate more information about the desired solution in order to 
stabilize the problem and find a useful and stable solution. The most common and well-known form of 
regularization is that of Tikhonov [16]. It consists in replacing least-squares problem  17  by that with a suitably 
chosen Tikhonov functional. The most basic version of this method can be presented as 

minݑ݇  ݊ܥ∋ݑ − ݂ 2 +   18  2 ݑ 2�
whereα ∈R is called the regularization parameter. The Tikhonov regularization is a method in which the regularized 
solution is sought as a minimizer of a weighted combination of the residual norm and a side constraint. The 
regularization parameter controls the weight given to the minimization of the side constraint. 
Minimizing δTδ in Equation (15) will not in general result in a smooth f(t) because of the noise in the experimental 
data. To ensure smoothness, additional conditions have to be imposed. In the present investigation, the additional 
condition is the minimization of the sum of squares of the second derivative d2f/dt′2 at the internal discretization 
points. In terms of the column vector f, this condition takes on the form of minimizing  
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 (d2f/dt′2)j
2

Nk−1

j=2

=  �� � �� = �T�T��                                                                                       19  
whereβ is the tri-diagonal matrix of coefficients arising from the finite difference approximation of d2f/dt′2 

� =

   
   
 1 −2 1

1 −2 1

1 −2 1

. . . . . . .

. . . . . . .

1 −2 1

1 −2 1    
   
 

ݐ∆ 1 ′ 2  20  
In Tikhonov regularization [2] instead of minimizing δTδ and fTȾT Ⱦf separately, a linear combination of these two 
quantities R = δTδ + λfTȾT Ⱦf is minimized. λ is an adjustable weighting/regularization factor that controls the extent 
to which the noise in the kinetic data is being filtered out. It balances the two requirements on f(t): 
a. fitting the experimental data  
b. remaining as smooth as possible. 

A large λ will give a smooth f(t) but at the expense of the goodness of fit of the kinetic data and vice versa.  
Minimizing R becomes: �ܴ�݂݆ = 0     ݆ = 1,2, … , R∂C0∂  21 ܭܰ

= 0                                                                                                                                                        22  ∂R∂r0

= 0                                                                                                                                                       23  
These give rise to a set of linear algebraic equations for f, C0 and r0 (assuming that both initial conditions are 
unknown). It can be shown [10] that the f, C0 and r0that satisfy Equations (21) to (23) are given by �′ =  �′ T�′ +  λ�′ T�′ −1�′ T

CM                                                             (24) 

For convenience f′is used to denote the column vector [f1, f2, f3,….,fNK , C0; r0]T incorporating C0 and r0 into f. A′is the 
composite matrix (A,C,B) derived from Equations (21)to (23) to reflect the inclusion of C0 and r0 in f. Similarly Ⱦ′is the composite matrix (Ⱦ, 0, 0) where 0 is a (NK−2)×1column vector of 0 to allow for the fact that C0 and r0 
playno part in the smoothness condition in Equation (19). The f′given by Equation (24) can now be substituted 
intoEquation (6) to give C(t). It can also be substituted in the definingequation dr(t)/dt = f(t) and integrated to 
give the reactionrate r(t). 
As f(t) is known at a large number ofclosely spaced discretization points the integration for r(t)and c(t) can be 
carried out using any of the standard numericalintegration procedures. Since integration is a smoothingprocess, the 
resulting r(t) and c(t) can be expected to bewell-behaved smooth functions. This has been observed inall the 
examples investigated. 
 
5.   REGULARIZATION PARAMETER IDENTIFICATION 
A suitable choice of the regularization parameter λ has to be provided by the user in order to apply Tikhonov 
regularization [2]. The regularization parameter controls the weight given to the minimization of the side constraint. 
Thus, the quality of the regularized solution is controlled by the regularization parameter. An optimal regularization 
parameter should fairly balance the perturbation error and the regularization error in the regularized solution. 
There are several possible strategies that depend on additional information referring to the analysed problem and its 
solution, e.g., the discrepancy principle and the generalized cross-validation method. The discrepancy principle is an 
a-posteriori strategy for choosing Ƚas a function of an error level (the input error level must be known). The 
generalized cross validation method is based on a-prioriknowledge of a structure of the input error, which means 
that the errors in fcan be considered to be uncorrelated zero-mean random variables with a common variance, i.e., 
white noise. 
Another practical method for choosing Ƚwhen data are noisy is the L-curve criterion [11,12]. The method is based 
on the plot of the norm of the regularized solution versus the norm of the corresponding residual. The practical use 
of such a plot was first introduced by Lawson and Hanson [13]. The idea of the L-curve criterion is to choose a 
regularization related to the characteristic L-shaped “corner” of the graph. 
The most appropriate value of λ depends on factors such as the noise level in the experimental data, the number of 
data points ND, and discretization points NK, and the numerical schemes used to approximate the integral in Equation 
(6) and the second derivative in Equation (19). It is neither a property of the reaction under investigation nor a 
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constant determined by the concentration measurement technique or instrument employed [2]. If λ is set toosmall the 
determinant of the matrix A′TA′ + λȾ′TȾ′in Equation(24) may become close to zero and the inverse of the 
matrixbecomes ill conditioned. This is a manifestation of theill-posed nature of the problem of obtaining reaction 
rates from time-concentration data. 
 
6.   APPLICATION TO N-HEXANE AROMATIZATION ON PLATINUM/ALUMINA CATALYST AT 
DIFFERENT TEMPERATURES 
Agbajelola and Aberuagba [8] investigated the kinetics of hydrogen influence on n-hexanearomatization over 
platinum/alumina catalyst. Applying quasi-steady state approximation for the adsorbed species since conditionson 
the catalyst surface are stationary, the mechanistic rate equations will be obtained for the reaction, assuming eight 
possible rate controlling steps .The experimental data(Appendix A)to be used for discrimination among rival 
kinetics models forn-hexane aromatization were gathered in a pulsed microcatalytic tubular reactorwith plug flow 
total pressure of 391.8kpa  and a temperature range of 420-500°C. 
Based on the behavior of these parameters over the temperature range, the models will be  discriminated to 
determine the model that best fits the data. The kinetic rate and equilibriumconstants for all theeight kinetic models 
will be obtained using the optimization routine of Nelder-Mead modified simplex algorithm by minimizing the sum 
of squares of all errors between experimentaland predicted rates. The selection criteria used were: (1) the increase 
and decrease with temperature of the kinetic rate and equilibrium constants, respectively, (2) statistical and 
thermodynamicscrutiny. 
From the experimental data from this work, concentrations and reaction rates will be computed  
independent of the rate model by applying equations (6), (24) as described in Section 3 
6.1   The step wise analysis of the conversion of concentration-time data to reaction rate-concentration data 
The experimental data from the work of Agbajelola and Aberuagba [8] was presented in the form of x, the mole 
fraction of exit products, (n-hexane, cracked fraction, methylcyclopentane, benzene) and their concentration against 
the residence time (Appendix A). The data was for the reaction occurring at temperatures: T1 = 4400C, T2  =

 4600C, T3 = 4800C, T4 = 5000C   
The step wise analysis of the conversion of the data from concentration-time data to reaction rate-concentration 
data,is as follows: 
tmax = 3.75, ND=5, take Nk = 20 
Step one: Divide the independent variable, time(t), where Ͳ ൑ t′ ൑tmaxis divided uniformly  
                 spaced discretization points Nk with step size ∆t′ = tmax / (NK–1). 

Step two: Generate Ƚij from Simpson’s 1/3 rule, where Ƚij = 2/3 for odd j  except Ƚi1 = 1/3) 
                 and 4/3 for every even j 
Step three: Compute (ti –tj′  in Equation (14) 
Step four: Compute ∆t′ in Equation (14) 
Step five: Compute Aij using Equation (14) 
Step six: Compute matrix A, where A is a 5 x 20 matrix of coefficients of unknown column  
                vector 
Step seven: Compute matrix C, where C is a 5 x 1 matrix of ones 

࡯ =

















1

1

1

1

1

 

Step eight: Compute matrix B using Equation (13), where B is a 5x1 matrix of ti’s. 

࡮ =

















5

4

3

2

1

t

t

t

t

t
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Step nine: Compute A using Equation (14) 

A = 

݆݅ܣ  �ℎ݁݁ݎ  ݅=1,݆=1 . . . ݆݅ܣ  �ℎ݁݁ݎ  ݅=1,݆=20

. . . . .

. . . . .

. . . . .

Aij  where  i=5,j=1 . . . ݆݅ܣ ݁ݎℎ݁ݓ   ݅=5,݆=20

 

Step ten: Compute composite matrix A′ where 
A′ = ܣ, ,ܥ  which is a 5 x 22 matrix ܤ
Step eleven: Compute the transpose of A′. 
Compute β using Equation (20), where Ⱦ is a tri-diagonal matrix of 20 x 20 square matrix 
Step twelve: Compute matrix 0 where matrix 0 is a18 x 1 column vector of 0 
Step thirteen: Compute β′ where β′ is a composite matrix  Ⱦ, Ͳ, Ͳ . 
Step fourteen: Compute f′ using Equation (24) for each value of CM 
Step fifteen: Compute Cc(t) using Equation (6) which is solved by Simpson’s numerical  
                        method of integration 
Step sixteen: Calculate r(t) using equation r t  = ∫ f t dt using Simpson’s numerical method 
Steps one to sixteen is carried out by MATLAB software package by imputing different mole fractions of each of 
the exit streams at the respective temperatures. 
Simulated results for the conversion of concentration time data to reaction rate data are presented in the following 
forms: 

(a) Graph of rate versus concentration at each temperature for n-hexane in the exit stream 
(b) Graph of back calculated concentration against measured concentration for each component in the exit 

stream at different temperatures. 
 
6.1.1   Aromatization of n-hexane on Platinum/Alumina catalyst at temperature 440°C 
Figure 1a shows a linear relationship between the reaction rate and concentration of n-hexane at temperature 440°C. 
The best model which fits the description of the catalytic reforming of n-Hexane over Platinum/Alumina Catalyst, 
after discriminating it among many other models is given as: −r5 =

K5f K1f K4f K10f
2 N  H2 − K5r  H2 3 B 

K6f K7f K8f K9fK10f
6

1 + K1f N  1 +
K4f K10f

2 H2  +
 CP  
K3f

+
 H2 2 B 

K8f K9f K10f
4   H2 

K6f K7f K10f
2 +

1

K7f
+ 1 +

 B 
K9f

+
 H2 1 2 

K10f

     (25) 

The parameters in this model are obtained by the Nelder-Mead Simplex method of multivariable optimization. The 
best fit Equation (25) is shown in Figure 1a as a smooth curve in which the rate of reaction increases smoothly to 
3.63589ml/mg.min as the concentration of n-hexane in exit stream changes from 0.379 to 0.372gmol/m3 in a non-
linear fashion. The time-concentration profile back calculated from the best-fit rate equation is shown as a 
continuous curve in Figure 1b. Good correlation is seen between the calculated concentration and the measured 
concentration of n-hexane. 

 
Figure 1a: Graph of measured concentration of n-Hexane in exit stream versus rate at                      

440°C 
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Figure 1b: Experimental concentration, calculated concentration versus time for n-hexane at 440°C 

 
6.1.2   Aromatization of n-hexane on Platinum/Alumina catalyst at temperature 460°C 
Figure 2a shows a linear relationship between the reaction rate and Concentation of n-Hexane in exit stream at 
temperature 460°C.  
The best fit Equation (25) is shown in Figure 2a as a smooth curve in which the rate of reaction decreases smoothly 
to -0.62657ml/mg.min as the concentration of n-hexane in exit stream changes from 0.416 to 0.743gmol/m3 in a 
non-linear fashion. The time-concentration profile back calculated from the best-fit rate equation is shown as a 
continuous curve in Figure 2b. Good correlation is seen between the calculated concentration and the measured 
concentration of n-hexane. 
 

 
Figure 2a: Measured concentration of n-Hexane in exit stream versus rate at460°C 

 

 
Figure 2b: Experimental concentration, calculated concentration versus time for 2-hexane at 460°C 
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6.1.3   Aromatization of n-hexane on Platinum/Alumina catalyst at temperature 480°C 
Figure 3a shows a linear relationship between the reaction rate and concentration of n-hexane in exit stream at 
temperature 480°C. The best fit Equation (25) is shown in Figure 3a as a smooth line in which the rate of reaction 
increases smoothly to 2.91272ml/mgmin as the concentration of n-hexane in exit stream changes from 0.2610 to 
0gmol/m3 in a linear fashion. The time-concentration profile back calculated from the best-fit rate equation is shown 
as a continuous curve in Figure 3b. Good correlation is seen between the calculated concentration and the measured 
concentration of n-hexane. 
 

 
Figure 3a: Measured concentration of n-hexane in exit stream versus rate at 480°C 

 

 
Figure 3b: Experimental concentration, calculated concentration versus time for n-hexane at 480°C 

 
6.1.4Aromatization of n-hexane on Platinum/Alumina catalyst at temperature 500°C 
Figure 4a shows a linear relationship between the reaction rate and concentration of n-hexane in exit stream at 
temperature 500°C. The concentration of n-hexane in the exit stream is 0gmol/m3 which implies all the n-hexane 
coming into the reaction is completely converted. The best fit Equation (25) is shown in Figure 4a as a smooth line 
in which the rate of reaction is constantly at 0ml/mg.min. The time-concentration profile back calculated from the 
best-fit rate equation is shown as a continuous line in Figure 4b. Good correlation is seen between the calculated 
concentration and the measured concentration of n-hexane. 
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Figure 4a: Measured concentration of n-hexane in exit stream versus rate at 500°C 

 

 
Figure 4b: Experimental concentration, calculated concentration versus timefor n-hexane at 500°C 

 
7.   Kinetics of the Aromatization of n-hexane on Platinum/Alumina Catalyst 
The reforming of n-Hexane on Pl/Al2o3 is proposed to undergo the following steps 

1. ܰ + ܵ  →←  ܰܵ                                                                                     K1 = KN =
K1f

K1r
   (26) 

2݇                                                                                             ܵ�ܥ ←→  ܵܰ .2 = ݇ܰܽ =
ݎ2ܭ2݂݇            (27) 

�ܥ ←→ ܵ�ܥ  .3 + 3ܭܵ = �ܥܭ = ݎ3ܭ/3݂ܭ  (28)  
4. ܰܵ + 2ܵ→←ܰ−ܵ + 4ܭ                                                                      ܵ�2 = ܽܰܭ  =   (29)ݎ4ܭ/4݂ܭ
5. ܰ−ܵ ←→ܵܯ 5ܭ = −ܰܭ = ݎ5ܭ/5݂ܭ               (30)      

ܵܯ .6 + 2ܵ ←→ܵ−ܯ + 6ܭܵ�2  = ܯܭ  =
ݎ6ܭ6݂ܭ       (31)  

←→ܵ−ܮ  ܵ−ܯ .7 7ܭ = −ܯܭ =
7݂ܭ  (32)  ݎ7ܭ

ܵ−ܮ .8 +4ܵ →← ܵܤ + 8ܭ                                                                       ܵ�4 = −ܮܭ =
8݂ܭ  (33) ݎ8ܭ

ܤ←→ܵܤ .9 + 9ܭ                                                                                       ܵ = ܤܭ =
9݂ܭ  (34)      ݎ9ܭ
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10. �ܵ→← 1

2
�2 + 10ܭ                                                                                 ܵ = �ܭ =

10݂ܭ     (35)  ݎ10ܭ

The site balance is 
1 = ܵ + ܰܵ + ܵ�ܥ + ܰ−ܵ + ܵܯ + ܵ−ܯ + ܵ−ܮ + ܵܤ + �ܵ                                                    (36) 

The construction of model 1 is based on the assumption that adsorption of n-Hexane is the rate determining step 
while other elementary reactions are in quasi-equilibrium. 1ݎ = − ܵܰ 1݂ܭ  (37)                                                                                                               ܵ  ܰ ݎ1ܭ

r1 =

K1f  CP  
K2K3

− K1r N 
1 +

 CP  
K2K3

 1

K2
+ 1 +

K410ܭ
2 CP  

K2K3 H2  1 + K5 +
K5K610ܭ

2 H2 +
K5K6K710ܭ

2 H2  +
 B 
K9

+
 H2 1

2

K10

 (38) 

The construction of model 2 is based on the assumption that conversion of adsorbed n-Hexane to Hexene-1 is rate 
determining. The rate expression is: 4ݎ = 2 ܵ�  ܵ−ܰ 4݂ܭ −  (39)                                                                                 ܵ  ܵܰ ݎ4ܭ

4ݎ =

4݂ܭ 10ܭ9ܭ8ܭ7ܭ6ܭ5ܭ ܤ 4 2� 
8 −  ܰ 1ܭݎ4ܭ

 1 + + ܰ 1ܭ
3ܭ �ܥ 

+
10ܭ9ܭ8ܭ ܤ 2 2� 

4 10ܭ7ܭ6ܭ5ܭ 2�  
2 +

10ܭ7ܭ6ܭ 2� 
2 +

7ܭ1
+ 1 +

9ܭ ܤ 
+

 �2 1
10ܭ2
 3

                  (40) 

 
Model 3 is based on the assumption that the conversion of adsorbed hexene-1 to adsorbed Methylcyclopentaneis rate 
determining 5ݎ = 5݂ܭ  − ܵܯ  ݎ5ܭ   ܰ−ܵ                                                                                                                 (41) 

r5 =

K5f  B 
K6K7K8K9K10

6 − K5r K1K4K10
2 N  H2 

1 + K1 N  1 +
K4K10

2 H2  +
 CP  
K3

+
 H2 2 B 

K8K9K10
4   H2 

K6K7K10
2 +

1

K7
+ 1 +

 B 
K9

+
 H2 1 2 

K10

     (42) 

Model 4 is based on the assumption that the conversion of adsorbed methylcyclopentane to adsorbed 
methylcyclopentene 6ݎ = 2 ܵ�  ܵ−ܯ 6݂݇ − 2 ܵ  ܵܯ ݎ6ܭ                                                                                        (43)  

r6 =

k6f  H2 3 B 
K7K8K9K10

6 − K6r K1K4K5K10
2 N  H2  1 + K1 N +

K1K4K10
2 N  H2  1 + K5 +

 CP  
K3

+
 H2 2 B 

K8K9K10
4   H2 

K6K7K10
2 +

1

K7
+ 1 +

 B 
K9

+
 H2 1

2 
K10

 3
 (44) 

 
Model 5 is based on the assumption that the conversion of adsorbed methylcyclopentene to adsorbed cyclohexene is 
rate determining. 

r7 = k7f L−S − k7r M−S                                                                                                               (45) 

r7 =

k7f  H2 2 B 
K8K9K10

4 − K7r K1K5K6K10
4 N  H2 2

1 + K1 N +
K1K4K10

2 N  H2  1 + K5 +
K5K6 H2  +

 CP  
K3

+
 H2 2 B 

K8K9K10
4 +

 B 
K9

+
 H2 1

2 
K10

              (46) 

Model 6 is based on the assumption that the conversion of adsorbed cyclohexene to adsorbed benzene is rate 
determining. 8ݎ = 4 ܵ�  ܵܤ 8݂ܭ − ݎ8ܭ 4 ܵ  ܵ−ܮ                                                                                                (47) 

r8 =

k8f  B 
K9K10

4 − K8r K1K4K5K6K7K10
4 N  H2 2

1 + K1 N +
K1K4K10

2 N  H2  1 + K5 +
K5K6K10

2 H2 +
K5K6K7K10

2

K7
 +

 CP  
K3

+
 B 
K9

+
 H2 1

2

K10
]5

(48) 

Model 7 is based on the assumption that the conversion of adsorbed benzene to benzene is rate determining. 9ݎ = − ܵ  ܤ 9݂݇   (49)                                                                                                                 ܵܤ ݎ9ܭ

r9 =
k9f B − K9r K1K4K6K7K8K10

8 N  H2 4

1 + K1 N +
K1K4K10

2 N  H2  1 + K5 +
K5K6K10

2 H2 +
K5K6K7K10

2 H2 +
K5K6K7K8K10

6 H2 4
 +

 CP  
K3

+
 H2 1

2 
K10

         (50) 
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Model 8 is based on the assumption that the conversion of adsorbed Hydrogen to Hydrogen is rate determining. 10ݎ = ݇10݂ �2 1

2 ܵ −  (51)                                                                                                   ܵ� ݎ10݇

r10 =
K10f H2 1

2 − K10r  H2 1
2

K10f

1 + K1f N +
K1f K4f K10f

2 N  H2  1 + K5f +
K5f K6f K10f

2 H2 +
K5f K6f K7f K10f

2 H2 +
K5f K6f K7f K8f K10f

6 H2 4
 +

 CP  
K3f

+
 H2 1

2 
K10f

(52) 

 
8.   PARAMETER ESTIMATION AND OPTIMIZATION TECHNIQUE 
Estimating the kinetic parameters of a rate model is a very important aspect of any kinetic investigation. This can be 
accomplished by least-square fitting of the rate equation into the concentration-reaction rate curve. The polyhedron 
method of Nelder and Mead is used to achieve this using FORTRAN software package. 
The general objective in optimization is to choose a set of values of variables (or parameters) subject to the various 
constraints that produce the desired optimum response for the chosen objective function [5]. For the polyhedron 
method of Nelder and Mead used in this investigation, the objective function is the sum of squares of residuals 
between experimental and predicted rates of reaction. ܵ = 

n

i 1

ݎ݅) ݈ܿܽܿ − ݎ݅ ݏܾ݋ )2                                                                                                                      (53) 

The smaller the value of S, the better the model and the more reliable the values of the kinetic parameters thus 
obtained. This method incorporates portions of the polyhedron method with the additional advantage of not 
restricting intermediate iteration to the feasible region. This method alters the shape of the simplex to suit local 
topology. The tolerance criterion is reduced within the region of an optimum till it reaches a preset small value.  
The results for the kinetic parameters estimated for each of the models is presented as tables 1-8 
 

Table 1: kinetic parameters and objective functions for model I 
 TEMPERATURE ( OC) 

440 460 480 500 
K1f 2.075E+04 3.228E+01 7.493E+00 5.000E+01 
K1r 1.521E+05 3.551E+00 1.443E+00 5.072E+00 

K1(K1f/ K1r) 1.364E-01 9.090E+00 5.193E+00 9.858E+00 
K2 6.605E+04 2.941E+01 2.3480E+01 2.551E+01 
K3 7.151E+04 1.089E+01 7.882E+00 1.107E+01 
K4 8.380E+04 8.724E+00 9.001E+00 7.214E+00 
K5 2.239E+03 2.549E+00 2.689E+00 2.560E+00 
K6 1.493E+05 5.743E+00 4.598E+00 4.865E+00 
K7 -4.574E+05 4.313E+00 4.489E+00 5.172E+00 
K9 6.856E+04 7.321E+00 6.412E+00 3.270E+00 

              K10 3.561E+04 1.017E+01 9.841E+00 1.021E+01 
Objective function -0.4574443E+06 6.945E-05 4.2782E-05 1.4039E-05 

 
 
 
 
 
 
 
 
 
 
 

Table2: kinetic parameters and objective functions for model II 
 TEMPERATURE ( OC) 

440 460 480 500 
K4f 2.125E+02 7.661E+00 4.374E+01 4.022E+01 
K4r 7.776E+01 7.607E+00 7.407E+00 7.000E+00 
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K4 2.732E+00 1.007E+00 5.906E+00 5.746E+00 
K1 3.268E+01 1.350E+00 2.589E+00 1.447E+00 
K3 3.684E+01 2.325E+00 6.120E+00 5.789E+00 
K5 3.991E+01 4.632E+00 9.641E+00 7.231E+00 
K6 -9.234E-01 1.477E+01 2.198E+01 1.344E+01 
K7 3.183E+02 1.866E+01 2.476E+01 2.065E+01 
K8 5.554E+01 2.068E+01 3.391E+01 2.355E+01 
K9 1.360E+02 2.486E+01 3.778E+01 2.777E+01 
K10 8.508E+01 2.794E+01 4.161E+01 3.130E+01 

Objective Function 5.554091E+01 5.670E-01 3.410E-01 8.920E-01 
 

Table 3: Kinetic parameters and objective functions for model III 
 TEMPERATURE ( OC) 

440 460 480 500 
K5f 6.444E+02 8.209E+02 9.508E+02 9.600E+02 
K5r 3.487E+03 5.305E+03 7.124E+03 9.068E+02 
K5 1.848E-01 1.515E-01 1.334E-01 1.059E+00 
K1 1.512E+03 0.005E+00 3.500E-02 3.900E+00 
K3 -7.131E+02 2.222E+02 1.721E+02 2.045E+01 
K4 1.654E+03 2.632E+02 2.537E+02 3.500E+00 
K6 1.908E+03 3.816E+02 3.774E+02 2.777E+01 
K7 4.851E+01 1.338E+02 1.089E+02 3.130E+01 
K8 3.668E+03 1.333E+02 1.127E+02 3.891E+00 
K9 -1.022E+04 2.016E-03 2.092E-03 8.890E-01 
K10 1.681E+03 4.199E-02 7.320E-02 3.760E-04 

Objective  function -1.0221E+04 2.8310E-09 2.899E-09 1.447E+00 
 

Table 4: Kinetic parameters and objective functions for model IV 

 
TEMPERATURE ( OC) 

440 460 480 500 

K6f 2.125E+02 1.440E-01 2.200E-01 2.870 E-01 
K6r 7.776E+02 6.170E-01 0.542 E-01 7.210E-01 
K6 2.732E+00 2.333E-01 4.059E+00 3.980E-01 
K1 3.268E+01 2.780E-01 0.169 E-01 1.610 E-01 
K3 3.684E+01 6.700E-01 0.239 E-01 6.340 E-01 
K4 3.991E+01 2.610E-01 0.106 E-01 2.180 E-01 

K5 -9.234E-01 7.300E-01 0.184 E-01 2.940 E-01 

K7 3.183E+02 1.280E-01 0.041 E-02 6.390 E-01 

K8 5.554E+01 3.920E-01 0.111 E-01 1.990 E-01 

K9 1.360E+02 8.010E-01 0.135 E-01 7.550 E-01 

K10 8.508E+01 2.300E-01 0.445 E-01 4.000 E-01 

Objective function 5.554091E+01 4.921E-02 4.544 E-04 4.544 E-04 

 
 
 
 
 

Table 5: Kinetic parameters and objective functions for model V 

 TEMPERATURE ( 0C) 
440 460 480 500 

K7f 2.075E+04 4.355 E+01 4.218 E+01 1.028E+02 
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Table6: kinetic parameters and objective functions for model VI 
 TEMPERATURE ( OC) 

440 460 480 500 
K1 2.080E+02 1.363 E+01 1.3740 E+01 1.3740 E+01 
K3 5.008E-01 4.755E+00 4.990 E+00 4.990 E+00 
K4 1.180E+02 2.810E+00 2.754E+00 2.754E+00 
K1 1.243E-01 1.270E+00 1.757 E+00 1.757 E+00 
K3 8.537E-01 8.584E+01 8.5700 E+01 8.5700 E+01 
K4 5.000E-03 6.760E+01 6.7480 E+01 6.7480 E+01 
K5 1.705E+00 5.6810 E+01 5.6810 E+01 5.6810 E+01 
K6 2.406E+02 5.366E+01 5.343 E+01 5.343E+01 
K7 3.000E+02 8.590 E+01 8.570 E+01 8.570E+01 

              K9 1.000E+02 5.710E+01 5.681 E+01 5.681E+01 
K10 1.000E+02 1.584E+01 1.533 E+01 1.533E+01 

Objective function 1.000E+01 2.600E-03 2.646 E-01 4.01E-02 
 

Table7: kinetic parameters and objective functions for model VII 
 TEMPERATURE ( OC) 

440 460 480 500 
K9f 2.075E+04 6.943E+00 7.611 E+01 7.290 E+01 
K9r 1.521E+05 3.661 E+00 3.543 E+01 3.524 E+01 
K9 1.364E-01 1.896E+00 2.150E-01 2.069E+00 
K1 6.605E+04 1.450E+00 1.580E+01 1.443 E+00 
K3 7.151E+04 1.276E+01 1.141E+01 1.149 E+01 
K4 8.380E+04 1.413E+01 1.481E+01 1.755 E+01 
K5 2.239E+03 1.977E+01 16.980E+01 2.354 E+01 
K6 1.493E+05 2.126E+01 2.176 E+01 2.865 E+01 
K7 -4.574E+05 2.860E+01 26.905 E+01 3.145 E+01 
K8 6.856E+04 3.086E+01 30.782 E+01 3.477 E+01 
K10 -3.561E+04 3.607 E+00 3.707 E+00 1.600 E+00 

Objective function -4.574443E+05 5.470 E-01 3.710 E-01 8.420 E-01 
 

 
 
 
 
 
 

Table8: kinetic parameters and objective functions for model VIII 
 TEMPERATURE ( OC) 

440 460 480 500 
K10f 7.375 E+00 7.691 E+00 7.543 E+01 6.624 E+01 

K7r 1.521E+05 2.521 E+00 1.041 E+00 7.092E+01 
K7 1.364E-01 1.727E+01 4.052E+01 1.449E+00 
K1 6.605E+04 7.858E+01 9.552E+01 9.997E+01 
K3 7.151E+04 4.729E+01 2.894E+01 2.088E+01 
K4 8.380E+04 4.889E+01 5.279E+01 6.017E+01 
K5 2.239E+03 2.728E+01 1.500E-02 0.089E-02 
K6 1.493E+05 4.025E+01 5.548E+01 1.097E+02 
K8 -4.574E+05 4.340E+01 6.678E+01 6.345E+01 
K9 6.856E+04 2.9167E+01 3.636E+01 1.237E+01 
K10 -3.561E+04 2.3435E+01 2.735E+01 2.265E+01 

Objective function -4.574443E+05 4.270E+02 9.23 E-05 5.410E-05 
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K10r 1.560 E+00 2.907 E+00 3.707 E+01 3.610 E+01 
K1 1.701E+00 1.550E+00 1.590E+00 1.493E+00 
K3 1.481E+01 1.112 E+01 1.491E+01 1.157 E+01 
K4 1.731 E+01 1.572 E+01 1.858 E+01 1.694 E+01 
K5 2.024 E+01 1.825 E+01 2.177 E+01 1.825 E+01 
K6 2.347 E+01 2.063 E+01 2.391 E+01 2.375 E+01 
K7 2.644 E+01 2.488 E+01 2.878 E+01 2.687 E+01 
K8 2.999 E+01 2.794 E+01 3.261 E+01 29.390 E+01 

Objective  function 3.520E-01 5.470E-01 3.710E-01 8.620E-01 
 
9.   DISCUSSION 
Tikhonov regularization computation has been applied to the experimental time-conversion ofn-hexane 
aromatization on Pt/Al2O3 at a temperature range of 440-500°c in hydrogen carrier. Eq. (24) was used to perform all 
the data conversion. The data as generated by Eq. (24)  
are in the form of a discrete set of reaction rate data points at uniformly and closely spaced time intervals. These 
discrete data points, without assuming any rate model, were used to back calculate the time-concentration profiles. 
The back-calculated profiles, for all the examples considered, are in good agreement with the original experimental 
data. As the back calculations were performed using commercial software independent of that developed for the 
Tikhonov computation, they provide a quick check against possible errors introduced during the derivation and 
solution of Eq. (24). 
The outcome of the Tikhonov regularization computation can now be put in theform of a set of closely spaced 
concentration versus reactionrate points.As can be seen from figures 1a, 2a, 3a&4a,the best fit Eq. (42) is shown as a 
smooth curve in which the rate of reaction changes as the concentration of n-hexane in exit stream changes in a non-
linear fashion. 
The smooth curves were used to determine the parameters inthe models. Irrespective of the nature of the reaction, 
thekey step involved is the fitting of the rate expression ofthe model to the well-behaved concentration-rate 
curve.This was accomplished by the flexible tolerance search method. Based on the behavior of these parameters, 
the rate models were screened in order to determine the model that fits the data best. The parameter estimates were 
in no means unique, but were expected to follow a general trend.  
The discrimination amongst the rival models using the generated results from 8.0 is based on the following factors: 

(a) The agreement of estimated rate constants with the expected trend of increasing rate constants as 
temperature increases. 

(b) The agreement of estimated equilibrium constants with the expected trend of its decrease with temperature 
increase. 

(c) The respective values of the objective function at each temperature, over the whole temperature range. 
(d) Thermodynamic scrutiny. This involves assessing the kinetic models against the Boudart-Mears-Vannice 

guidelines [14,15]. 
This criterion is given as: 

10˂ − ∆Sads ˂ 12.2 –  0.014∆Hads                                               (54) 
where 

ln K =    
−∆H

RT
 +   

∆S

R
                             (55)        

The result for the estimation of the rate constants and equilibrium constants for model3 as presented in Table 1 
shows an increase in value for the rate constants of the forward and backward reaction from temperatures 440-500°c 
while the equilibrium constants showed a consistent decrease in value across the temperature range. 
Furthermore, model 3 was tested for its thermodynamic adequacy using Eq.(54).From Figure5 (Model 3) the plot of 
lnK against 1/T gave values for ∆H/R as the slope and ∆S/R as the intercept of the graphs respectively. The slope of 
the Vant Hoff plot for Model 1 is 1.6916E+08 and the intercept 5.0E+01. The slope of the Vant Hoff plot for Model 
3 is 1.803357E+02 and the intercept is -1.25 
Model 3 is the only model that satisfied the afore mentioned criteria. This model is the rate of conversion of 
adsorbed hexene-1 to adsorbed methylcyclopentane when hydrogen is adsorbed as a bi-molecular specie. From the 
Vant Hoff plot for this model (Fig. 5), the enthalpy of reaction, ∆Hrxn, for the aromatization of n-hexane was 
computed to be -1499.311J/mol. The activation energy for forward and backward reaction was obtained from Figure 
6 as -1.497E+03J/mol and -3.491E+03J/mol while the Arrhenius constants are 15s-1 & 7s-1 
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Figure 6: Arrhenius plot of lnK4f and ln K4r against 1/T for Model 3 

 

 
Figure 5: Vant Hoff plot of lnK4 against 1/T for Model 3 

 
10.   CONCLUSION 
In the analyses carried out on n-hexane aromatization, the similarity between the experimental data and the 
concentration vs. W/F data reproduced by Tikhonov regularization (Figures 1b-4b) can be considered as satisfactory, 
in view of the entirely different approach by which they were obtained. Therefore, Tikhonov regularization 
technique is a reliable procedure for converting experimental time-concentration data into concentration-reaction 
rate data. It does not require the assumption of a rate model to describe the experimental data and it also manages to 
keep noise amplification under control. Thus, it leads to a more reliable concentration-reaction rate profile and 
allows the kinetic parameters in the rate models to be determined with greater ease and also with a higher degree of 
certainty. Based on the fact that the rate constants of Model 3 increased consistently with temperature  and 
satisfaction of the thermodynamic criterion, the assumption that the rate of conversion of adsorbed hexene-1 to 
adsorbed methylcyclopentane when hydrogen is adsorbed as a bi-molecular specie is the rate determining step while 
other reactions are in quasi equilibrium best describes the process of n-hexane aromatization. 
 
11.   NOMENCLATURE 
A ND x Nk matrix of coefficient of unknown column vector f 
αij  A coefficient arising from the numerical integration of equation (2) 
β A tri-diagonal matrix of coefficients arising from the finite difference approximation of   
            d2f/dt2 
Ci, Bi The coefficients of C0 and r0 representing the column matrices C and B respectively  
Cc Computed Concentration 
CM Experimentally measured concentration 
C(t) Concentration at specific time t 
C0 Initial concentration 
δi The deviation of Cc from CM 
ND Number of data points 
Nk Number of Uniformly-spaced discretization points  
r(t)  Rate of reaction 
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r 0 Initial rate of reaction 
S The objective function 
t Time 
t i The times at which the concentration is measured 
λ The regularization parameter 
x Conversion 
N N-Hexane 
Σ Summation 
N 2-hexane 
CP Cracked products 
B Benzene 
M  Methylcyclopentane 
T Toluene 
N- N-Hexene 
M - Methylcyclopentene 
L - Cyclohexene   
S Vacant site on catalyst surface 
s subscript denoting adsorbed specie on the catalyst 
K f Rate constant of forward reaction 
Kr Rate constant of reverse reaction 
K  Equilibrium constant 
°C Unit of Temperature in Celsius 
∆H Enthalpy of reaction 
∆S Entropy change for the reaction 
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