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Production system efficiency optimization through application of a hybrid 
artificial intelligence solution
Joao Henrique Cavalcanti , Tibor Kovacs, Andrea Ko and Károly Pocsarovszky

Department of Information Systems, Corvinus University of Budapest, Budapest, Hungary

ABSTRACT
Industry 4.0 seeks waste reduction via the optimization of production systems integrating technol-
ogy and process. In addition to evaluating existing methods and technologies, academia also 
develops new ones. This research proposes a new hybrid artificial intelligence (AI) solution for 
production system efficiency optimization that combines data envelopment analysis (DEA), 
machine learning (ML)-based simulation and genetic algorithms (GAs) using real-world sensor 
data from a thermoelectric power plant. In the proposed method, DEA is employed to identify the 
production system’s efficient frontier, which is used to build an ML model that predicts production 
efficiency through simulation. A genetic algorithm is then utilized to propose those settings that 
result in optimized production efficiency. Although the possibility of combining DEA-ML and ML- 
GA has been discussed in the literature, no research was found that combines these three methods 
for production efficiency optimization. The proposed solution was tested and validated using real- 
world data. The benefits of the hybrid AI solution were measured by comparing its predicted 
efficiency with the efficiencies achieved by running production with conventional control-loops 
based control systems. The results show that considerable efficiency improvement can be achieved 
using the proposed hybrid AI solution.
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1. Introduction

Energy is one of the most important commodities in 
the world. Many products or services utilize energy 
either directly or indirectly; therefore, energy genera-
tion efficiency has a substantial impact on global 
economies. Lower energy generation efficiency and 
the subsequent increase in energy costs result in 
increased prices of multiple products/services, gener-
ating inflation, loss of purchasing power, and in 
extreme cases, even economic recession. Increasing 
energy generation efficiency contributes to sustain-
able economic development. Consequently, acade-
mia constantly proposes new methods, applying 
scientific knowledge to improve production efficien-
cies and focusing on the reduction of energy produc-
tion costs.

Lean manufacturing uses a collection of tools and 
techniques to eliminate waste in production systems 
as much as possible, and consequently, to reduce 
production costs. As science and technology advance, 
more cutting-edge technologies are used to support 

lean production systems, leading to the fourth indus-
trial revolution or Industry 4.0. Industry 4.0 utilizes 
a wide range of technological tools, such as artificial 
intelligence (AI), robotics, the Internet of Things, and 
cloud computing, aimed at cost/waste reductions and 
product enhancements. Aimed at extending lean 
manufacturing and Industry 4.0 capabilities, this 
research has the goal of developing a hybrid AI solu-
tion to optimize production efficiency to be tested 
with the real-world data of a thermoelectric power 
plant. The hybrid AI solution combines data envelop-
ment analysis (DEA), machine learning (ML) based 
simulation and genetic algorithms (GA). DEA is used 
to identify the production system’s efficient frontier to 
be applied in the second step of building an ML 
model that predicts production efficiency through 
simulation. The GA proposes the corresponding opti-
mal settings of inputs and process control para-
meters. The proposed hybrid AI solution aims to 
reduce waste and increase production efficiency, sub-
sequently contributing to lower energy production 
costs and creating a positive impact on the 
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environment and society. The research applies a novel 
approach and demonstrates through a real-world 
practical example how such a hybrid AI solution 
could increase production efficiency, which can also 
be applied in other fields. The AI model was tested in 
two test cases, and they are referred as model 1 and 
model 2.

The manuscript is organized as follows: Section 1 
provides a brief overview of the current state of the 
art of optimization problems for energy generation 
production systems using technology and artificial 
intelligence. Section 2 describes the methods 
employed in the hybrid AI solution, followed by 
Section 3, which discusses the specificities of the 
dataset and the variables. Section 4 describes the 
implementation steps of the model (data preparation, 
DEA, ML model creation, and GA), followed by 
Section 5, where the results are presented. Section 6 
discusses the results of the final model by comparing 
it with the current way of working that uses conven-
tional control-loops based process control, highlight-
ing the achievable efficiency increments and the 
implementation boundaries. Section 7 concludes the 
article with benefits, limitations, and potential future 
steps of the research.

1.1. Literature review

This proposed AI solution uses DEA, ML and GA. DEA 
a widely utilized, well-established nonparametric 
method for estimating the relative efficiencies from 
observed, historical data by using linear programming 
to identify the distance of each decision-making unit 
(DMU) to the frontier, composed of a set of the most 
efficient DMUs (Ahmed et al. 2019). Moreover, ML is 
a multidisciplinary subject that combines knowledge 
of probability theory, statistics, approximation theory, 
convex analysis, and algorithm complexity theory. ML 
specializes in how computers simulate or implement 
human learning behaviours to acquire new knowl-
edge or skills and reorganize existing knowledge 
structures to continuously improve their performance 
(Zhu, Zhu, and Emrouznejad 2020). GA is the last 
component of the proposed hybrid AI solution. GA is 
a well-known metaheuristic optimization algorithm 
inspired by the biological evolution process. The GA 
mimics the Darwinian theory of survival in nature by 
selecting the best set of variables (Bataineh, Kaur, and 
Jalali 2022).

In the literature review, Scopus database was 
examined as one of the main search engines for ana-
lysing relevant academic articles. Data collection was 
performed in August 2022, focusing on the previous 
10 years of articles. The present study used the follow-
ing keywords to search for the relevant research out-
puts: ‘production efficiency’, ‘DEA’ and ‘machine 
learning’. The authors did not obtain any paper con-
taining all three keywords. When the keywords were 
limited to two of the three previously mentioned, the 
following output was obtained:

The combination of ‘production efficiency’ and 
‘DEA’ in the keyword search generated 331 papers, 
displaying an increasing trend in the number of docu-
ments published per year. Environmental science was 
the main subject domain area, followed by the agri-
cultural domain. The business and management as 
well as the engineering subjects were also relevant. 
The top 10 articles (based on the number of citations) 
include econometrics-related papers on various 
industries (Ding et al. 2020; Han et al. 2021; Sağlam  
2018; Wang and Feng 2021) and environmental pro-
blems, such as pollution treatment, waste disposal 
(Sun, Guo, and Wang 2019), environmental pollution 
and land surface damage (Ying, Chiu, and Lin 2019), 
are also discussed. From these articles, six detail 
Chinese environmental challenges.

The combination of ‘production efficiency’ and 
‘machine learning’ in the keyword search produced 
70 papers, also displaying an increasing trend over 
the years. The main subject areas were engineering 
and computer science. In the top 10 articles (based on 
the number of citations), the most popular topic was 
the application of deep neural networks in industry 
and agriculture (Zheng et al. 2019; Liu et al. 2020; Lee 
et al. 2019; He et al. 2021).

For ‘DEA’ and ‘machine learning’, keyword searches 
yielded 88 papers, again with an increasing trend in 
documents published per year. The main subject 
areas were computer science and engineering. In 
the top 10 articles (based on the number of citations), 
the most popular subject is related to the industry 
and financial sector. Salehi et al., (2020) combined 
DEA and the MLP approach to investigate and 
improve the adaptive capacity of resilient systems in 
a petrochemical plant. Mirmozaffari et al., (2020) sug-
gest the combination of DEA and innovative cluster-
ing algorithms for DMU efficiency comparison of 24 
cement companies. Tayal et al., (2020) apply DEA and 
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K-mean clustering to evaluate the total energy con-
sumption and CO2 emissions for an efficient sustain-
able facility layout. Li et al., (2017) extend the cross- 
sectional DEA models to time-varying Malmquist DEA 
to evaluate multiple decision-making units (DMUs or 
companies). Saberi et al., (2013) combine artificial 
neural networks (ANNs) and DEA in credit scoring. 
Zhong et al., (2021) propose a combination of ML 
algorithms and DEA to manage the problem of statis-
tical noise in data. The researchers compared 15 ML 
algorithms, and the BPNN (backpropagation neural 
network) had the best performance in the DEA.

While the number of papers increased significantly 
in the last 4 years (doubled or produced even higher 
growth), research on production efficiency using 
a combination of DEA and ML is lacking. Key subject 
areas of the SCOPUS keyword search can be found in 
table 1.

To examine the identified articles more closely, 
Hafeez et al., (2020) used deep learning to forecast 
electric load and heuristics optimized ML model tun-
ing. The model offers guidance for energy production 
systems by giving maximum capabilities of energy 
generation, therefore avoiding waste of energy that 
cannot be stored or dispatched to the grid. Similarly, 
Wen et al., (2019) and Zhou et al., (2020) aimed to 
predict photovoltaic power output by using ML meth-
ods and a GA to improve the prediction accuracy of 
the model, hence enabling the grid administrator to 
prepare the grid for energy loads and avoiding the 
waste of energy that has no grid or storage to be 
dispatched to. Merei et al., (2013) optimized the GA 
by changing the component sizes and model settings 
of solar/wind/diesel energy production systems with 

different battery technologies. The results indicated 
that optimization is possible and economical.

Furthermore, Król and Ocłoń (2018) measured 
costs and energy efficiency for heat and energy gen-
eration by evaluating different approaches for com-
bined heat and power (CHP) plants in Poland. In this 
kind of power plant, steam that would otherwise be 
wasted is used for heating purposes. In this case 
study, the cost efficiency of the CHP plant is improved 
if natural gas engines are used. Han et al., (2021) 
proposed a method for selecting input variables by 
applying DEA to measure the energy efficiency of 
a chemical process. Moreover, the approach of Xu 
et al., (2019) aimed at reusing heat in a solid-state 
thermoelectric generator (TEG), converting the waste 
heat to electricity using the Seebeck phenomenon. 
ML models have been widely utilized in the model-
ling, designing, and predicting for energy systems. 
Ten major ML models are frequently employed in 
energy systems: ANN, MLP, ELM, SVM, WNN, ANFIS, 
decision trees, deep learning, ensembles, and 
advanced hybrid ML models (Mosavi et al. 2019).

Combining ML with GA and DEA with ML has been 
widely discussed in the literature. DEA and ML were 
selected to measure and predict efficiency in manu-
facturing, finances and supplier selection (L. Liu, 
Huang, and Zhan 2019; Cheng et al. 2017; Hong, 
Leem, and Kim 2019; Salehi, Veitch, and Musharraf  
2020). Furthermore, a GA was integrated into ML 
models to identify optimal features/hyperparameters 
(Badnjević et al. 2019; Di Noia et al. 2020; Ko et al.  
2017). ML was utilized within the GA to explore 
advantages in accelerating searches. In the case of 
having a complex fitness function with high calcula-
tion costs, using an ML model as a fitness function 
could reduce the computing time.

Although combining two of the three methods 
(DEA, ML, GA) has been discussed and used in diverse 
research, combining DEA, ML, and GA has never been 
implemented, according to the literature review. 
Hence, this gap in the literature leads to a new field 
of application to be explored in this manuscript.

Moreover, combining two methods (DEA-ML, DEA- 
GA, or ML-GA) would result in very different capabil-
ities. As mentioned, each combination can be used for 
different purposes, but none of them could be used 
effectively for production system optimization. It is 
worth mentioning that while GA can be used for 
production system optimization, its implementation 

Table 1. Key subject areas of the SCOPUS keyword search (N. 
B. one document may belong to multiple subject areas).

production 
efficiency 
and DEA

production 
efficiency 
and ML

DEA 
and 
ML

Engineering 67 32 33
Environmental Science 109 7 8
Agricultural and Biological Sciences 88 13 2
Computer Science 31 27 39
Business, Management and Accounting 71 6 16
Social Sciences 55 4 10
Economics, Econometrics and Finance 63 - 4
Energy 51 6 10
Mathematics 31 3 21
Decision Sciences 29 3 17
Chemical Engineering 6 10 3
Total documents 331 70 88
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in non-linear systems is problematic where input and 
output relations are complex and cannot be easily 
described mathematically, leading to incorrectly opti-
mized systems.

As proposed in this research, combining DEA-ML 
can address this problem by using AI to model the 
system mathematically based on historic data. It is 
worth mentioning that the proposed approach of 
using DEA-ML to predict efficiencies of production 
systems based on inputs, control parameters, and 
outputs was not found in previous studies.

Furthermore, since optimization algorithms rely 
on objective functions that describe input–output 
relations, their usage is not possible in complex 
systems that cannot be easily described mathema-
tically as state-space equations. Hence, control 
loops are used in such cases for the controllable 
sub-systems, being the main competition to the 
proposed hybrid AI model. No other AI or optimi-
zation model was found in the literature for further 
comparisons.

The AI solution applied in this research is aimed 
at providing optimal input and process control set-
tings for complex processes, in our real-world case 
for a thermoelectric power plant. Feedback loop 
control models, such as the proportional-integral- 
derivative (PID) controller model, are widely used 
for controlling and optimizing production systems. 
However, they may not be sufficient for controlling 
more complex processes, especially if they are non-
linear systems or contain significant delay compo-
nents, resulting in suboptimal settings. Modern 
control theory heavily relies on the state space 
representation, where a control system is described 
by a set of inputs, outputs, and state variables con-
nected by a set of differential equations (Liu and 
Barabási 2016). The state space model can be 
described as the state and output equations, as 
shown in Equation 1. 

_x tð Þ ¼ f t; x tð Þ; u tð Þ; θð Þ

y tð Þ ¼ h t; x tð Þ; u tð Þ; θð Þ

�

(1) 

Where the state vector x tð Þ 2 R N represents the inter-
nal state of the system at time t, the input vector 

u tð Þ 2 R R captures the known input signals, and the 

output vector y tð Þ 2 R R captures the set of experi-
mentally measured variables. The functions f(·) and h 
(·) describe the behaviour of the complex system, and 

Θ collects the system’s parameters. Our method is 
aimed at approximating the function h(·), where the 
output y(t) is estimated using data envelopment ana-
lysis. Feedback control loops, such as PID controllers 
that continuously calculate an error and apply 
a corrective action to minimize that error, will be 
used (Chia 2018; Moshayedi, Shuvam Roy, and Liao  
2019), at lower levels of the system, controlling simple 
processes. The aim of the proposed hybrid AI system, 
therefore, is to improve the overall control process of 
the complex system by considering efficiencies, redu-
cing arbitrariness, and consequently raising produc-
tion efficiency. The comparison of achieved efficiency 
between the conventional system and the proposed 
AI model was used to validate the new approach.

2. Materials and methods

The objective of this study is to propose a hybrid AI 
solution that is capable of raising the production 
efficiency of a complex system, in our real-world 
case for a thermoelectric power plant that is con-
trolled by conventional control loops. Data were col-
lected from sensors of the plant, pre-processed, and 
a hybrid AI solution composed of DEA-ML-GA was 
applied to it, recommending the optimal production 
settings for a certain desired output. The performance 
of the proposed new hybrid AI solution was measured 
by comparing the efficiency achieved in the past with 
the predicted efficiency expected from applying the 
hybrid AI solution’s recommended settings.

2.1. Dea

DEA can be performed by two different models, the 
DEA-CCR model (Charnes, Cooper, and Rhodes 1978) 
and DEA-BCC model (Banker, Charnes, and Wager 
Cooper 1984), where DEA-BCC should mostly be 
applied when DMUs are measured in heterogeneous 
conditions and scaling. For this research, the DEA-CCR 
model was selected considering the homogeneity of 
the DMU conditions and scaling. Moreover, DEA can 
be input- or output-oriented; for this research, the 
input-oriented DEA-CCR model was chosen to mini-
mize the consumption of production inputs, and effi-
ciency was calculated in that sense. CCR model can be 
described by Equation 2 (Mustafa, Ullah Khan, and 
Mustafa 2021) 
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θ� ¼ minθ

s:t:
Pn

q¼1
xpqλq � θxpop ¼ 1; 2; 3; . . . ; k

Pn

q¼1
yrqλq � yror ¼ 1; 2; 3; . . . ; l

λq � 0r ¼ 1; 2; 3; . . . ; l

(2) 

Where xpo, yro, are the pth input and rth output of the 
DMU under study;

λq stands for those variables which indicate the 
effect of prominent factors which of efficient DMUs 
are used as reference by other DMUs to compare their 
efficiency with.

θ�, is the comparative technical efficiency of DMU.
By comparing the efficiency of a specific unit with 

the performance of a group of similar DMUs, it is 
possible to create a rank of most efficient DMUs 
which can be later investigated, and the efficiency of 
inefficient DMUs can be increased by copying the 
behaviour of the most efficient ones. pyDEA (Raith, 
Rouse, and Seiford 2019), a software package devel-
oped in Python for conducting data envelopment ana-
lysis (DEA), was employed to apply the DEA-CCR model.

2.2. Machine learning

This research proposes the use of elastic net (LN 
method), gradient boosting (RT method) and support 
vector machine (RT method), which are well-known, 
successfully implemented ML methods. They are 
widely used to predict continuous data based on 
continuous dependent variables (Laref et al. 2019; 
Mokhtari, Navidi, and Mooney 2020; Touzani, 
Granderson, and Fernandes 2018).

Moreover, Robust Scaler, Min-Max Scaler, Standard 
Scaler, Max-Abs Scaler, Robust Scaler, Quantile 
Transformer (Normal), Quantile Transformer (Uniform), 
and Power Transformer, widely utilized pre-processing 
methods were selected as potential candidates for the 
AI pipeline (Singh and Singh 2022). Grid Search Cross 
Validation was done by dividing the dataset into multi-
ple folds and training the model on each fold while 
using the remaining folds for validation based on some 
scoring metric. The employment of R-squared is cho-
sen as one of the standard statistical measures to eval-
uate regression analyses in any scientific area, and this 
study complies with it (Chicco, Warrens, and Jurman  
2021). Therefore, the performance of the models was 
evaluated based on R-squared, and the best perform-
ing combination of ML and pre-processing methods 

were selected. Gradient boosting proved to be the best 
scoring model for each of the ML models trained.

Gradient boosting is a machine learning algorithm 
that has gained popularity in recent years due to its 
ability to handle complex datasets and to produce accu-
rate predictions. It is an ensemble method that com-
bines multiple weak learners to create a strong learner. 
The algorithm iteratively adds new trees to the model, 
with each new tree correcting the errors of the previous 
tree. It calculates the negative gradient of the loss func-
tion with respect to the predicted values and uses this as 
the target variable for the next tree. The final prediction 
is a weighted sum of the predictions of all the trees, 
where each tree is given a weight proportional to its 
contribution to the overall accuracy of the model. 
Gradient boosting can handle complex datasets and 
produce accurate predictions (Zhang et al. 2019).

Scikit-learn, a free ML software library for the Python 
programming language, was used to create the ML 
pipelines, including ML models and pre-processing 
methods.

2.3. Genetic algorithm

The basic elements of the GA are chromosome repre-
sentation, fitness selection, and biological-inspired 
operators. Chromosomes are composed of a set of dif-
ferent values, which are referred to as genes, and repre-
sent one possible solution for the optimization problem. 
The fitness function is applied to assign a score for all the 
chromosomes in the population. The biological-inspired 
operators are selection, mutation, and crossover 
(Katoch, Singh Chauhan, and Kumar 2021).

In selection, the chromosomes are selected based on 
their score calculated by the fitness function; there are 
different selection methods, such as the rank-based 
selection technique, roulette wheel, and tournament 
selections. Since the rank-based selection technique 
led to better performance, it was applied to the hybrid 
AI model. In this strategy, individuals in the population 
are ranked first based on their fitness values, which 
reflect how well they solve the problem at hand. The 
ranking process provides a way to differentiate the indi-
viduals based on their relative fitness, allowing for the 
creation of a probability distribution that takes the rank-
ing into account. The probability distribution is then 
used to select a set of individuals for reproduction, 
with the fittest individuals having a higher probability 
of being selected. However, this method also allows for 
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the selection of lower-ranked individuals, providing 
a chance for diversity in the population and avoiding 
premature convergence to sub-optimal solutions. This 
helps to balance the exploration and exploitation of the 
solution space, leading to a more thorough search for 
optimal solutions (Hussain, Shad Muhammad, and 
Nauman Sajid 2017; Orong, Sison, and Medina 2018).

The crossover operator, which is a random locus 
that changes the sub-sequences between two chro-
mosomes to create offspring, is chosen. Mutation ran-
domly flips chromosomes based on a probability rate, 
low mutations could lead to local optimum and very 
high mutations could lead to random non-optimal 
results, hence different mutations were applied, and 
results were checked to assert that there was conver-
gence towards a global optimum (Lawal et al. 2021).

2.4. Z-score method

Outliers were removed from the dataset because they 
have the potential to distort the calculations and to 
lead to incorrect conclusions. Outliers are data points 
that differ significantly from the rest of the data, and 
they can arise from measurement errors, missing data 
or natural variability. Measurement error is a common 
problem in industrial IoT systems where a single event 
can lead to loss of data from a number of sensors (Y. Liu 
et al. 2020). Removing outliers from a dataset can 
improve the accuracy and reliability of statistical analy-
sis and predictions. Outlier removal was done using 
z-score method. The Z-score is a statistical measure 
that shows how far a data point is from the mean of 
a dataset. It is calculated by subtracting the mean from 
a data point and dividing the result by the standard 
deviation. A Z-score of 0 indicates that the data point is 
exactly at the mean of the dataset, while higher 

Z-scores indicate data points that are further away 
from the mean. In statistics, a commonly used thresh-
old for identifying outliers is a Z-score of ±3. This means 
that any data point that falls outside of 3 standard 
deviations from the mean was considered an outlier.

3. Database and production system variables

3.1. Production system variables

Two hybrid AI models were built and tested to evaluate 
the benefits of process optimisation. Four different types 
of sensor data are distinguished in the dataset contain-
ing information about the production system: input 
parameters are the main sources that feed the produc-
tion system, process control parameters are settings used 
to adjust production, state variables are measurements 
resulting from the production system, and output para-
meters are the main result of the production process 
(Figure 1). The input efficiency of the production system 
can be defined as the ratio of inputs to outputs.

In our real-world example, the thermoelectric 
power plant, there are three inputs used for combus-
tion, for both models: wood infeed A (t/h), wood 
infeed B (t/h), and oil infeed (kg/h). Wood A and 
Wood B receive the same raw material, but each 
feeds the furnace from different points. The process 
control parameters that are used to adjust the perfor-
mance of the combustion process in our dataset are 
the fluid bed primary air pressure (bar), burner pri-
mary air pressure (bar), burner secondary pressure 
(bar), and burner tertiary air pressure (bar). State vari-
ables that describe the secondary outputs of the sys-
tem are listed as follows: steam pressure (bar), steam 
temperature (°C), furnace temperature A (°C), furnace 
temperature B (°C), pre-ECO flue gas temperature 

Figure 1. Conceptual model of the production system.
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A (°C), pre-ECO flue gas temperature B (°C), flue gas 
temperature A (°C), flue gas temperature B (°C), flue 
gas NOx conc. (ppm), flue gas CO conc. (ppm), and 
flue gas flow rate (m3/h). Temperatures measured by 
different sensors located in different positions are 
alphabetically enumerated (A, B, etc.). These tempera-
tures are consequences of the production process 
and are important indicators for the process, as they 
can act as constraints for production. Each of these 
indicators may have a range of desired values and 
running production with process indicators outside 
of their allowed range can cause accidents and/or 
environmental damage and should be avoided. The 
output parameter in the first model is the generated 
steam production (MJ/h), while the output for 
the second model is the generated electricity (MW/ 
hr). The output of the first model (steam production 
with the corresponding steam pressure and steam 
temperature) could be taken as the additional process 
control parameter for the second model. Figure 2 
illustrates the process plant of our real-world case, 
indicating the various sensor measurements.

3.2. Database structure and cleaning

The dataset contains values of sensor measurements 
(input parameters, output parameters, process control 
parameters, and state variables) of a thermoelectric 

power plant as a regular time series dataset for 
every day and hour during 2020. As the data were not 
validated, a data cleaning process was needed as the 
first step of the research. Data duplications identified in 
the raw dataset were removed, data duplications could 
happen during the data collection due to errors in the 
information system and data warehousing. Moreover, 
measurement errors such as negative values or values 
close to zero did not reflect reality, these errors occurred 
when sensors were malfunctioning; hence, these values 
were also removed from the dataset. On the other hand, 
for some records in the dataset, the sum of production 
inputs measured by sensors (wood infeed A, wood 
infeed B, and oil infeed) was equal to 0, which seems 
to be the incorrect measurement, as it is impossible to 
generate electricity without using the mentioned pro-
duction inputs; therefore, these cases were also 
removed from the dataset. Outlier removal was applied 
by the Z-score method for each set of sensor data types.

4. Proposed AI solution

In this research, a unique combination of DEA, GA, and 
ML was implemented, creating a hybrid artificial intelli-
gence solution capable of optimizing the production 
efficiency of a thermoelectric power plant using manu-
facturing sensor data. All components of the hybrid AI 
solution have their own purpose: DEA estimates the 

Figure 2. Schematic diagram of the thermoelectric plant.
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production system’s efficient frontier and calculates DEA 
efficiency for all time periods – measured states, ML 
approximates the relationship between the input, out-
put, process control parameters, and state variables and 
predicts production efficiency through simulation, 
finally, the GA proposes the optimal input and process 
control parameter settings corresponding to the desired 
output. Implementing such an AI solution can reduce 
production costs by optimizing resource usage and deli-
vering economic and environmental benefits. The 
implementation of such a unique and new AI model 
can be utilized in other production plants, as a digital 
twin, providing decision support for the SCADA (super-
visory control and data acquisition) system.

The proposed AI solution as applied to the thermo-
electric power plant reads a dataset containing sensor 
measurements. Using domain expert knowledge, vari-
ables of the dataset were selected and classified into 
four data types: inputs, outputs, process control para-
meters, and state variables. Outliers were removed 
using the z-score method followed by the DEA effi-
ciency calculation. Constant return to scale with free 
disposability assumptions were used for the DEA effi-
ciency calculations. The DMUs in the DEA consist of 
hourly measurements of inputs and outputs. For 
modelling the plant’s behaviour, multiple ML models 
were created with their respective hyperparameters 
and pre-processing methods to predict production 
efficiencies for different inputs and process control 
parameters. Corresponding production outputs and 
state variables were also predicted by the ML models 
created. At the same time, the prediction of produc-
tion efficiency was performed also considering the 
previously predicted output in addition to inputs 
and process control parameter values. All prediction 
ML Models were validated, and the validations are 
presented in Section 5.2. Figure 3 summarizes the 
DEA and ML model training phases of the AI solution.

The GA component of the model searches for the 
feasible input and process control parameter combina-
tions for any given output and predicts efficiencies to 
find the optimal one. The fitness function of the GA is the 
previously trained ML model, capable of predicting effi-
ciencies. Additionally, state variables have a range of 
maximum and minimum desired values are considered 
as constraints in the GA. For each solution generated by 
the GA, state variables were predicted using previously 
trained ML models, and solutions with state variable 

values beyond the desired range were considered 
unfeasible.

Furthermore, considering that in energy generation 
contracts, there are specific minimum values of energy 
to be generated and not achieving this minimum 
amount can lead to the breach of the contract, the 
predicted energy generation for each possible solution 
should always be greater than the contracted energy 
generation plan. Hence, if the GA solution predicts an 
energy generation slightly smaller than the desired/con-
tracted output, this solution is considered infeasible. In 
contrast, if the predicted energy is greater than the 
desired/contracted output, the solution is considered 
feasible, and the excess energy production is considered 
waste and penalizes the efficiency of the solution. 
Figure 4 shows how the GA engine is programmed.

Figure 3. DEA efficiency estimation and ML training phases of 
the hybrid AI solution.
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Exceeding energy generation is penalized according 
to Equation 2, where efficiency is equal to 1 minus the 
division of planned output by the predicted output. 

e ¼ 1 � Planned=Predictedð Þ (3) 

The combination of the three main components of the 
model, DEA, ML and GA, works as a powerful AI solution 
capable of predicting the relative production efficiencies 
and searching different settings and configurations to 
select the optimal one (Cavalcanti, Kovács, and Kő 2022).

5. Results

5.1. DEA

For this research, DEA efficiency was calculated con-
sidering the inputs of the production system wood 

infeed A, wood infeed B, and oil infeed and the output 
the steam production for model 1 and electricity pro-
duction for model 2. DMUs are measurements of 
inputs and output at a certain time, measured for 
each hour of the day. The result of DEA was appended 
to the raw dataset; hence, the dataset is extended to 
contain a new column with the DEA efficiency calcu-
lated for each record.

Since DEA only calculates relative efficiency, the 
best efficiency achieved may not mean the best pos-
sible efficiency, but the best efficiency identified in 
the historical dataset. Figure 5 shows the histogram of 
DEA relative efficiency scores throughout year 2020. 
The goal of the AI solution proposed in this research is 
to reduce efficiency loss and push it to as much as 
possible to 100%. It is worth to note that the distribu-
tion of efficiencies for model 2, with electric output is 
bimodal. The distribution with lower efficiencies was 
for the winter period. Further modelling may be 
required to separate the two distinct states and 
develop separate ML models.

The measure of the correlation coefficient provides 
information about the closeness of two variables; 
high/low correlations indicate high/low impact of 
the x variable on the y variable, whether causal or 
not (Senthilnathan 2019). To obtain a better overview 
of how different sensor data can positively or nega-
tively correlate with each other and with the DEA 
efficiency, correlations between them were obtained. 
Figure 6 shows the correlation coefficients between 
selected inputs, the output, control parameters, state 
variables, and DEA efficiency for model 1 and 2, 
respectively. It is possible to determine which para-
meters have the most impact on each other and on 
the relative efficiency score by obtaining the highest 
positive and negative correlation values in the table. 
To improve the visualization, a red‒blue colour scale 
was applied: blue means a higher positive correlation 
in contrast with red, representing high negative 
correlations.

The inputs wood and oil infeed have the stron-
gest negative correlation with efficiency for both 
models; hence, a larger number of inputs resulted 
in lower efficiency. In addition to the input para-
meters, the process control parameters fluid bed 
primary air pressure (bar), burner secondary pres-
sure (bar), burner tertiary air pressure (bar) showed 
a negative correlation with efficiency, in contrast 
with the burner primary air pressure (bar), which 

Figure 4. The Genetic algorithm optimisation phase of the 
hybrid AI solution.
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showed a slightly positive correlation with effi-
ciency. The state variable flue gas temperatures 
showed a considerable positive correlation with effi-
ciency, indicating that the efficiencies are higher 
when these gas temperatures are increased. 
Another interesting conclusion from the correlation 
table is that while the steam production is positively 
correlated with efficiency the correlation between 

electric output and DEA efficiency is almost insignif-
icant. However, as the production system has out-
put limitations, increasing production output 
deliberately is not possible.

To better understand and illustrate how certain 
inputs, process control parameters and state variables 
interact, four-dimensional charts were produced 
including DEA efficiencies. Figure 7 illustrates how 

Figure 5. DEA relative efficiency distributions of the two models for year 2020.

Figure 6. Correlation table of selected input, output, process control and state variables of the two models.
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a process control parameter: the primary fluid bed air 
pressure affects DEA efficiency and the state variables: 
furnace fluid bed temperature and the NOx concen-
tration of the flue gas (visualised with the colour scale 
ranging from dark brown through red to yellow). It 
looks like that the highest DEA efficiencies are 
achieved at a certain combination of fluid bed pres-
sure and fluid bed temperature with a corresponding, 
optimal flue gas NOx concentration. Both lower and 
higher NOx concentrations indicate lower efficiencies. 
The GA phase of the hybrid AI model will search for 
the optimal production setup and recommend input 
and process control parameters within the constraints 
of desired output and state variables.

5.2. Machine learning models

After the DEA calculation, three kinds of ML models 
were created to predict production output, state vari-
ables, and production efficiency. Production output 
and state variables were predicted based on inputs 
and process control parameter values. On the other 
hand, the prediction of production efficiency was 
performed considering the previously predicted out-
put in addition to inputs and process control para-
meter values.

The AI solution uses grid search to search various 
combinations of pre-processing methods (robust sca-
ler, min-max scaler, standard scaler, max-abs scaler, 

robust scaler, normal quantile transformer, uniform 
quantile transformer and power transformer), ML 
methods (gradient boosting, elastic net and support 
vector machine) and hyperparameters’ possible 
values. Grid search is a hyperparameter optimization 
method that performs a complete search over a given 
subset of the hyperparameter space and selects the 
best solution based on a performance score. This 
subset of parameters has a well-known possible 
range of values for each ML model, and the process 
of choosing the optimal value is an empirical process; 
therefore, a grid search of these possible values is 
a common practice (Shekar and Dagnew 2019). The 
proposed AI solution extends the capability of grid 
search and uses it not only for hyperparameter opti-
mization but also for ML and pre-processing method 
selection.

R-squared (R2) was the chosen scoring method for 
the grid search for the optimal model. In addition, the 
mean squared error (MSE) was calculated to further 
understand the model’s errors. The hyperparameter 
space used for the grid search varied depending on 
the ML model. Gradient boosting had possible hyper-
parameter learning rates of 0.05, 0.1, 0.15, and 0.2. 
Moreover, the elastic net model had possible hyper-
parameters alpha and L1 ratio, constituting a linear 
space from 0 to 1 and logarithm space from −1 to 1, 
respectively. The support vector machine, on the 
other hand, had c and gamma hyperparameter values 

Figure 7. Relationship between process control and state variables as well as DEA efficiency achieved.
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of 0.1 or 2. All possible combinations of models, pre- 
processing methods, and hyperparameters were 
tested, R scores were measured for each possible 
combination, and the best scoring models were 
selected, producing a set of optimal models capable 
of predicting steam outputs, relative efficiencies, and 
state variables.

Gradient boost was the method that had the best 
performance for each trained model; hence, predict-
ing efficiency, steam/electricity output and state vari-
ables will use gradient boosting as the base method. 
Table 2 shows the learning rate, optimal pre- 
processing method, and R2/MSE scores of each 
trained ML model. ML models for predicting state 
variable values can be used for both models 1 and 2, 
on the other hand, predicting efficiencies and outputs 
(steam and electricity) requires distinct ML models.

The optimal pre-processing method had some var-
iation; on the other hand, the learning rate had, in the 
majority, a value of 0.2 with a few cases of 0.15 R2 

scores. Some low R2 values were observed for flue gas 
NOx conc., flue gas CO conc., steam pressure, and 
steam temperature. However, considering that the 
possible range of values constraining the production 
is quite large compared with the MSE and that the 
production constraints are flexible, meaning that cer-
tain deviations from the ideal range do not cause such 
an impact, the models can be considered to have 
sufficient performance for this specific production 
system. Since feature selection for the models was 
performed using expert domain knowledge, raising 
the efficiency of those MLs can be achieved by adding 
new unknown, relevant independent variables at the 
cost of more calculation time. Another way to raise 
the performance of ML models is to increase the 

possible values space for hyperparameters, such as 
the learning rate, or even to test different ML models. 
However, as previously mentioned, these ML model 
performances were considered sufficient for this spe-
cific case.

5.3. Genetic algorithm

The final step of the model is the application of the 
GA. To run the GA, the min and max constraints of 
each input, process control parameter and state vari-
able were needed, to create the gene space of the 
solution’s possible values. Therefore, the GA only gen-
erated solutions with inputs and process control para-
meter values within the stated ranges.

For this research, a simulation was performed for 
a production demand of 168 MJ/h steam output for 
model 1 and electricity generation of 48 MW/hr for 
model 2. Each generation of the GA receives a set of 
chromosomes, of which it contains a set of genes that 
in this case, have different values of production inputs 
and process control parameters. Moreover, the fitness 
function was calculated for each possible solution to 
optimize efficiency. First, the steam/electricity output 
are predicted using the previously created ML model. 
If the predicted steam output is lower than the 
desired output demanded (168 MJ/h for model 1 
and 48 MW/hr for model 2), the fit value of the chro-
mosome is 0. Otherwise, the fit value is calculated by 
predicting efficiency based on the chromosome’s 
genes that contain both production inputs and pro-
cess control parameters, and the predicted steam 
output calculated by the previously mentioned ML 
model. Excess energy generation that surpasses the 

Table 2. ML model optimal parameters and performance.
Dependent variable Learning rate Pre-processing method R2 MSE

steam pressure (bar) 0.20 Power Transformer 0.2808 6.9069
steam temperature (°C) 0.20 Quantile Transformer (Uniform) 0.3029 5.4983
furnace temperature A (°C) 0.20 Min-Max Scaler 0.6103 646.2882
furnace temperature B (°C) 0.20 Power Transformer 0.5485 449.4722
flue gas temperature A (°C) 0.20 Quantile Transformer (Normal) 0.5168 319.0069
flue gas temperature B (°C) 0.20 Power Transformer 0.8686 27.0330
flue gas NOx conc. (ppm) 0.20 Max-Abs Scaler 0.2363 473.2964
flue gas CO conc. (ppm) 0.15 Quantile Transformer (Normal) 0.2533 252467.0000
pre-ECO flue gas temperature A (°C) 0.20 Min-Max Scaler 0.6534 71.1030
pre-ECO flue gas temperature B (°C) 0.15 Power Transformer 0.6915 74.9431
flue gas flow rate (m3/h) 0.20 Quantile Transformer (Normal) 0.5446 14.9431
steam production (MJ/h) 0.20 Quantile Transformer (Normal) 0.5217 157.6350
generated electricity (MW/hr) 0.20 Quantile Transformer (Normal) 0.6616 8.1102
Predict efficiency (model 1) 0.20 Max-Abs Scaler 0.9960 0.000082
Predict efficiency (model 2) 0.20 Max-Abs Scaler 0.9981 0.000065
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desired output penalizes the fitness function accord-
ing to Equation 1.

For model 1, GA iterated for 1000 generations, 
while a similar simulation for model 2 required 
higher number of iterations, over 30,000 genera-
tions. A mutation rate of 10% was applied in both 
cases. Figure 8 shows the evolution of the fitness 
value over the generations of model 1 and model 
2, respectively.

As demonstrated in Figure 8, for model 1, by the 
end of the 1000th generation, the GA reaches an 
efficiency value of 70%, which is equivalent to the 
fitness value. Moreover, the best solution was 
achieved before the 200th generation indicating 
a quick convergence. Further generations have small 
or no improvement in production efficiency. On the 
other hand, model 2 reaches an efficiency of around 
93% by the end of the 10,000th generation indicating 
that longer time is required for convergence. Different 
mutation rates were used to test that the model did 
not converge to a local optimum. With different muta-
tion rates, such as 10-20-30-25%, the algorithm 
approximately converged to the same efficiency 
value, reinforcing that the global optimum was 
potentially achieved (Hassanat et al. 2019).

After convergence, the GA selects the best chromo-
some containing a set of optimal genes. Table 3 
shows the results for each input and process control 
parameter recommended by the AI solution for opti-
mal efficiency for models 1 and 2.

According to the proposed hybrid AI, to achieve 
optimal efficiency and produce a steam/electricity 
output of 168 MJ/h and 48 MW/hr for models 1 and 
2, respectively, the input parameters and process con-
trol parameters should be set as shown in Table 3. The 
GA also predicts the values of state variables, which is 
shown in Table 4 as an example for model 2.

6. Discussion

In the previous example, model 1 achieved an effi-
ciency of 70%, while model 2 achieved an efficiency of 
93% exceeding the average what was achieved in the 
past, using traditional, loop control-based method. 
Therefore, it indicates that the proposed hybrid AI 
method is superior to the traditional, loop control- 
based method. The past average efficiency for 
model 1 when the steam output ranged from 167 to 
169 MJ/h was 45.4% and for model 2 when the elec-
tricity output ranged from 47 to 49 MW/hr the effi-
ciency achieved was 37%, reinforcing that the hybrid 
AI solution can increase efficiency (by 25% for model 
1 and 58% for model 2) and reduce waste, if imple-
mented. Furthermore, the predicted state variables 
for the recommended input and process control set-
tings are all within the desired ranges, satisfying the 
production requirements (Table 4).

Once the DEA efficiency estimation and the ML 
training phases are completed, optimal input and 

Figure 8. Improvement of the fitness through generations of GA.
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process control settings can be calculated for multiple 
desired outputs. Therefore, GA phase can be 
decoupled from the DEA and ML model phases and 
the GA can be run multiple times to search for optimal 
solutions. This decoupling considerably reduces the 
calculation time, as the most time-consuming calcula-
tions are performed for the DEA and ML phases.

Calculation time was measured and is shown in 
Table 5. GA calculation time increased significantly 
as the number of generations went from 1000 to 
30,000. Caching results for different ranges of outputs 
can reduce the time for the production setting recom-
mendations, generating a table containing optimal 
settings for the most common outputs will eliminate 
the need of recalculating same results repeatedly. 
Another consideration about calculations time is 
that the time can vary depending on the system 
used for the calculation. For this research, a standard 
commercial notebook was utilized to test the model.

Figure 9 shows the efficiency that could be 
achieved with the hybrid AI solution in comparison 

with what was achieved using traditional loop con-
trol-based method, for different desired steam/ 
electricity outputs for models 1 and 2. The dotted 
line shows the estimated efficiency that could be 
achieved using the hybrid AI solution that corre-
sponds to the DEA efficiency frontier, while the 
dots represent the efficiency archived without it. 
The difference between the black and the grey 
dots is, that the grey ones represent observations, 
where constraints were violated for any of the 
state variables. Subsequently, they were excluded 
from the solution space. The area between the 
dots and the dotted line indicates how much effi-
ciency increase could be achieved using the hybrid 
AI solution. It can be observed that the hybrid AI 
solution searches for the most efficient settings, 
which was achieved in the past and giving recom-
mendations that leads to the most efficient DMUs 
located on the efficiency frontier. The area above 
the dotted line represents the waste of efficiency 
regardless of the usage of the hybrid AI solution. 
As seen in Figure 9, the efficiency improvements 
are significant using the hybrid AI solution. 
Moreover, it can be observed that there were mul-
tiple occasions when the production system oper-
ated in non-ideal conditions violating the state 
variable constraints, the AI solution not just 

Table 4. State variable values for the optimal solution.

State variable
Value for the optimal solution 

(model 1)
Value for the optimal solution 

(model 2)
Desired Min. 

value
Desired Max. 

value

Steam pressure (bar) 96.8 97.2 95 102
Steam temperature (°C) 532.1 534.3 532 535
Furnace temperature A (°C) 824.1 799.8 None 900
Furnace temperature B (°C) 824.4 787.9 None 900
Pre-ECO flue gas temperature A (°C) 432.2 414.2 None None
Pre-ECO flue gas temperature B (°C) 434.4 43.7 None None
Flue gas temperature A (°C) 15.2 181.3 120 None
Flue gas temperature B (°C) 137.9 123.7 120 None
Flue gas NOx conc. (ppm) 198.2 184.2 None 200
Flue gas CO conc. (ppm) 1083.2 348.6 None 5000
Flue gas flow rate (m3/h) 66.5 62.9 None None

Table 5. Calculation time of the AI solution for models 1 and 2.

Model
DEA Calculation 

Time
ML Model Calculation 

Time
GA Calculation 

Time

Model 1 2906.49s 1965.89s 248.86s
Model 2 2681.01s 2925.68s 3285.34s

Table 3. Optimal recommendations for an output of 168 MJ/h and 48 MW/hr (model 1 and 2).
Recommendation for optimal efficiency 

Model 1 for 168 MJ/h
Recommendation for optimal efficiency 

Model 2 for 48 MW/hr

Input wood infeed A (t/h) 32.4 28.30
wood infeed B (t/h) 39.6 28.56
oil infeed (kg/h) 0.0 0.0

Process  
control

burner primary air pressure (bar) 0.0 0.00084
burner secondary pressure (bar) 0.3 0.28
burner tertiary air pressure (bar) 0.0 0.00091
fluid bed primary air pressure (bar) 12.2 10.73
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increase efficiency but guarantees that the maxi-
mum efficiency is achieved without compromising 
state variables constraint. Investigating the area 
above the dotted line and trying different 
approaches to reduce it could lead to further 
improvements in production performance. 
Another interesting pattern visible on Figure 9 is 
that with the use of the hybrid AI solution, the 
correlation between efficiency and steam output 
diminishes, therefore low steam outputs can be 
as efficient or even more than running production 
at full capacity, producing high steam outputs. This 
gives more flexibility to the production system, 
allowing management to decide how much to 
produce without being concerned with getting 
penalised with higher waste. This research there-
fore demonstrated the benefits of the hybrid AI 
system, being able to optimise input and control 
parameters settings, leading to more efficient pro-
duction, and consequently reducing production 
costs and resource usage compared to the tradi-
tion loop control-based model. Considering that 
thermoelectric generated energy has a relatively 
high environmental impact, efficient usage of 
inputs can reduce CO2 emissions, leading to 
a cleaner production system, benefiting individuals 
and the society.

7. Conclusion

Although combining DEA-ML and ML-GA has been 
widely discussed for different purposes in the litera-
ture, the combination of the three methods was not 
identified in the literature. Neither general AI models 
capable of optimizing production systems by recom-
mending inputs and production settings were found. 
In this research, a hybrid AI solution was proposed 
combining DEA-GA-ML that is capable of learning 
from historic manufacturing sensor data and optimiz-
ing the production efficiency. The viability of the 
proposed hybrid AI solution was tested on the real- 
world data of a thermoelectric power plant. The com-
parison of the hybrid AI solution with the traditional 
loop control-based methods indicated, that it can 
improve the relative efficiency of the plant by some 
25–58%, reducing production costs and resource 
usage, hence resulting in economic and environmen-
tal benefits.

From implementation aspects, considerations 
should be given to calculation times as there 
might be limitations for larger models with more 
inputs, process control and state variables as well 
as higher numbers of observations. These limitations 
might be overcome by decoupling the DEA-ML 
phases of the proposed hybrid AI solution from 

Figure 9. Efficiencies with and without the AI solution for model 1 and 2 (grey points are observations violating state variable 
constraints).
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the GA phase. Running the DEA-ML phases less 
frequently could significantly improve the overall 
calculation time, with the penalty of leading to 
somewhat less accurate predictions, as some of the 
most recent data are not included in the ML model. 
The benefits of having a more up-to-date ML model, 
that is based on the most recent data should be 
balanced with the cost of calculation time. Reducing 
the dataset to include only the most recent sensor 
signals could also improve the calculation time, 
however it would impact prediction performance. 
Therefore, the size of the dataset size and the DEA- 
ML calculation frequency should be adjusted 
according to the requirements and the limitations 
of the production system.

Since the DEA-ML engine is trained on such 
historic data are the result of running the plant 
using the traditional loop control-based method, 
it consists of a set of inefficient production set-
tings. Once the hybrid AI solution is used, the 
plant should run on settings that are based on 
the recommendations of the GA. While these set-
tings are the best solutions based on the historic 
data, there could be better solutions with higher 
efficiency, that the DEA-ML engine could not iden-
tify. One way to overcome these limitations of the 
hybrid AI system is the implementation design of 
experiments (DOE). DOE could continuously gener-
ate a wide range of experimental data containing 
optimal and nonoptimal production settings, that 
can be utilized in training the DEA-ML engine, 
pushing the efficiency frontier further and leading 
to better relative efficiencies.
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