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Abstract
Diseases are one of the major constraints in commercial crop production. Genetic diversity in varieties is the best option to 
manage diseases. Molecular marker-assisted breeding has produced hundreds of varieties with good yields, but the resistance 
level is not satisfactory. With the advent of whole genome sequencing, genome editing is emerging as an excellent option 
to improve the inadequate traits in these varieties. Plants produce thousands of antimicrobial secondary metabolites, which 
as polymers and conjugates are deposited to reinforce the secondary cell walls to contain the pathogen to an initial infec-
tion area. The resistance metabolites or the structures produced from them by plants are either constitutive (CR) or induced 
(IR), following pathogen invasion. The production of each resistance metabolite is controlled by a network of biosynthetic 
R genes, which are regulated by a hierarchy of R genes. A commercial variety also has most of these R genes, as in resist-
ant, but a few may be mutated (SNPs/InDels). A few mutated genes, in one or more metabolic pathways, depending on the 
host–pathogen interaction, can be edited, and stacked to increase resistance metabolites or structures produced by them, to 
achieve required levels of multiple pathogen resistance under field conditions.

Keywords  Biotic stress resistance · Cell wall reinforcement · Innate immunity in plants · Metabolite biosynthetic genes · 
Multiple disease resistance · Transgene-free genome editing

Introduction

Atoms, since their origin about 13.7 billion years ago, have 
combined to form nucleic acids and genes, and evolved into 
life on earth, including prokaryotes and eukaryotes. Several 
microorganisms evolved as saprophytes or as plant patho-
gens. Domestication of plants for the last 10,000 years has 
led to the selection of the best phenotypes. Conventional 
breeding produced varieties that are dwarf in stature facilitat-
ing mechanical harvest, and plant response to high doses of 
fertilizers to develop high-yielding varieties, leading to the 
green revolution (Evenson and Gollin 2003). Lately, molecu-
lar breeding has produced hundreds of varieties, in different 
crops. To nourish the world’s constantly increasing popula-
tion, the high-yielding varieties with genetic uniformity are 

sought, whereas to meet the constantly evolving abiotic and 
biotic environmental stress agents with changing climate, the 
planting of varieties with high spatial and temporal genetic 
diversities is imperative, for sustainable crop production 
(Bailey-Serres et al. 2019; van Frank et al. 2020). Patho-
gens, being biotic agents, constantly evolve into more viru-
lent and aggressive races, depending on pathogen types and 
crop production systems (McDonald and Linde 2002). The 
genetic variability and evolution of both host and pathogen 
in a production system determine the durability of a cultivar 
(Mundt 2014). To develop a variety with high yield and at 
the same time with minimum crop failure is very challeng-
ing but made possible based on molecular breeding. These 
methods of breeding also lead to genetic erosion, especially 
the genes involved in traits that are not targeted in breeding. 
In genetically uniform high-yielding varieties, the genetic 
diversity for environmental stress resistance can be improved 
based on genome editing, to develop high-yielding varie-
ties with high levels of multiple pathogen resistance. Inad-
equate information on which genes to edit and how it can 
reduce pathogen progress in a plant is mainly limiting the 
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use of genome editing tools to improve resistance to multiple 
pathogens in plants.

This review covers the basic concept of resistance, and 
different steps involved in editing metabolic pathway genes 
to enhance multiple pathogen resistance in plants to encour-
age researchers to undertake genome editing to improve 
plants (Fig. 1): (1) concept of resistance in plants to patho-
gen attack; (2) selections of R genes for genome editing; 
(3) CRISPR-Cas9 based genome editing; (4) evaluation of 
enhanced resistance to multiple pathogens in plants.

Concept of resistance in plants to pathogen 
attack

Resistance is the ability of a plant variety to restrict the 
invisible and visible responses of cells and tissues to a patho-
genic organism that results in adverse changes in the form, 
function, and integrity of the plant, which may lead to partial 
impairment or death of plant part or the entire plant (Agrios 
2005). The genetic bedrock of resistance is very complex, 
but still, certain general principles of plant disease resist-
ance have been conceptualized. Three types of resistance 
have been recognized: (i) non-host resistance, defined as 
resistance in plants belonging to a taxonomic group outside 
the host range; (ii) apparent resistance or disease escape, 
which is generally controlled by the environment; (iii) true 
resistance, which is based on immune responses of plants to 
pathogen attack.

Plants have innate immunity, unlike animals which have 
both innate and adoptive immunities, and each cell responds 
to invasion by pathogens (Fig. S1). Following deposition, 

the plant pathogens produce elicitors or pathogen/microbe/
damage-associated molecular patterns (PAMPs/MAMPs/
DAMPs), and effectors, which are perceived by the plant 
membrane localized immune receptor proteins or R genes. 
These immune receptor R genes in turn generally trigger 
hierarchies of downstream regulatory R genes, such as 
MAPKs, phytohormones, microRNAs and transcription 
factors, which in turn regulate other R genes, such as resist-
ance protein-coding and metabolite biosynthetic genes 
(Kushalappa et al. 2016a). Following recognition of elici-
tors and effectors, the immune receptor R genes in plants 
trigger reactive oxygen species (ROS), hydrogen peroxide 
(H2O2), and callose (β-1-3-glucans) biosynthesis, the latter is 
a metabolite deposited to form papillae around the hypha to 
suppress the advancing pathogen, eventually inducing hyper-
sensitive response type of programed cell death (HR-PCD), 
leading to the pattern triggered immunity (PTI) and effec-
tor triggered immunity (ETI), respectively (Andersen et al. 
2018; Camagna and Takemoto 2018). However, the hier-
archies of genes involved in inducing the HR-PCD are still 
elusive. Generally, these types of specific resistance have 
been classified as qualitative resistance. If the HR-PCD fails 
to contain the pathogen, then the plant is susceptible or to 
have quantitative resistance (Andersen et al. 2018; Cowger 
and Brown 2019; Kushalappa et al. 2016b). However, sev-
eral transcriptomic studies have revealed high expressions 
of several downstream R genes during the manifestation 
of HR-PCD, confirming that the qualitative and quantita-
tive resistances are not distinct, rather a continued effort by 
the host to reduce the advancement of a pathogen, for an 
eventual reduction in invisible and visible cell responses 
and disease severity (Pollard et al. 2008). The pathogen 

Fig. 1   Schematic diagram of steps involved in the discovery of 
mutated R genes in commercial crop cultivars and genome edit-
ing to enhance multiple disease resistance. The major steps are: (1) 
identification of candidate genes for editing; (2) CRISPR-Cas9-based 

genome editing for gene correction; (3) delivery of CRISPR-Cas9 
construct components, plant tissue culture, and confirmation of edited 
genes; (4) confirmation of enhanced resistance and mechanisms
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perception by plants, however, is quite complex and involves 
hundreds of genes (Couto and Zipfel 2016). The external 
stimuli (PAMP/MAMP) may involve membrane immune 
receptor R genes, but the internal stimuli may involve a 
diverse array of non-receptor-mediated stimuli, including 
radiation, toxins, viral infections, hypoxia, hyperthermia, 
free radicals, and involves intracellular sub-compartments 
such as mitochondria, nucleus, or others (Emanuele et al. 
2018). Plants, following pathogen invasion, induce Ca2+ 
(Chen et al. 2015; Geng et al. 2013; Reape and McCabe 
2008). In response to toxins produced by the pathogens, with 
hemibiotrophic and necrotrophic lifestyles, plants induce 
Ca2+ in the apoplast which is transported to the cytosol and 
cell organelles to induce apoptotic-like PCD (AL-PCD), 
and following this, the pathogen feeds on the dead cells to 
advance further causing sever diseases (Danon et al. 2000; 
Kushalappa et al. 2022; Reape and McCabe 2008). The 
increased colonization also increases the amount of toxins 
produced by these pathogens. Often, these toxins suppress 
specific gene functions and thus the metabolite biosynthe-
sis (Chowdhury et al. 2017b). For example, in wheat, the 
pathogen Fusarium graminearum produces deoxynivalenol 
(DON), a protein biosynthesis inhibitor, which can inhibit 
resistance metabolite biosynthesis by R genes (Rocha et al. 

2005). Natural mutation or silencing of the gene HRC that 
induces AL-PCD in plants can reduce pathogen progress 
and disease severity, thus enhancing the level of resist-
ance in plants (Kushalappa et al. 2022). Transcriptome and 
metabolome profiling studies have revealed the expression 
of hierarchies of regulatory and biosynthetic R genes, that 
eventually code for resistance proteins and metabolites that 
reduce pathogen progress, leading to quantitative resistance 
(Karre et al. 2017; Kushalappa et al. 2016b; Neu et al. 2019). 
The resistance biochemicals, proteins and metabolites, may 
be constitutively present before pathogen invasion (CRP, 
CRM) or induced (IRP, IRM) following pathogen invasion 
(Karre et al. 2017). The constitutive biochemicals are also 
called phytoanticipins, which are either active or passive, 
the latter is often stored in vacuoles as glycoside conjugates, 
and the active compounds are released by simple hydrolysis, 
following pathogen perception. The biochemicals also form 
constitutive structures, such as cell membrane, wax, cuticle, 
epidermis, and secondary reinforced cell walls. The induced 
biochemicals are called phytoalexins, which are antimicro-
bial proteins and metabolites. The metabolites are biosynthe-
sized in a network of different metabolic pathways (Fig. 2). 
Some of these biochemicals polymerize and/or conjugate 
with others to form complex molecules, which are deposited 

Fig. 2   Satellite metabolic pathways, involved in the biosynthesis of 
resistance metabolites by plants, in response to biotic stress. These 
resistance metabolites are biosynthesized by the catalytic proteins 
that are coded by the plant R genes. The biosynthesis of resistance 

metabolites in a plant is controlled by a hierarchy or several hierar-
chies of R genes, which may have regulatory or resistance metabolite 
biosynthetic roles
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as structures reinforcing mainly the secondary cell walls, 
such as wax layers, cuticles, and epidermis to limit food 
supply to the pathogen in infected cells. The reinforced cell 
walls lead to the formation of abscission and cork layers 
limiting the food supply to the advancing pathogen, contain-
ing it to an initial infection area, forming only small necrotic 
lesions, instead of large necrosis involving tissues, organs or 
the entire plant (Cowger and Brown 2019; Kushalappa et al. 
2016a). The reduced disease severity, due to reduction in the 
survival ratio and rates of infection, sporulation, and dis-
semination processes (the monocyclic process) of the patho-
gen, leading to reduced disease severity and rates of disease 
progress (polycyclic process) is considered quantitative dis-
ease resistance. Thus, silencing some of these R genes to 
enhance biofuel production should be discouraged to reduce 
future epidemics (Houston et al. 2016; Soni et al. 2020). To 
achieve sufficient levels of multiple disease resistance under 
commercial conditions, there is no need for a commercial 
cultivar to have all the resistance metabolites or functional R 
genes known in the metabolic pathway of that plant species. 
A few important resistance proteins and metabolites, the R 
genes involved in their biosynthesis, can offer high levels 
of resistance, depending on the plant-pathogen interaction. 
Even to biosynthesize a single metabolite a hierarchy of R 
genes are required, and these R genes are not localized in a 
QTL or in a chromosome, rather they are localized in several 
chromosomes (Karre et al. 2017). Thus, transferring a QTL 
identified to have high level of resistance in one variety to 
another variety may not always result in increased resist-
ance, as the new variety may not have the other precursor 
metabolites, or hierarchy of genes to biosynthesize the resist-
ance metabolites. Accordingly, the molecular breeding must 
be complemented with genome editing to enhance multiple 
pathogen resistance in commercial varieties (Hu et al. 2018).

The commercial varieties generally have several mutated 
r genes that occur due to (i) hybridization of land races and 
other genotypes used in breeding; (ii) mutations induced by 
environmental agents; (iii) gene transfer by microbes; (iv) 
horizontal gene transfer. The R genes that are mutated in 
these commercial varieties can be identified based on RNA 
sequencing, and edited to produce varieties with high mul-
tiple pathogen resistance (Hegde et al. 2020, 2021; Kush-
alappa et al. 2016b). Different combinations of R genes with 
different mechanisms of resistance can be stacked in subsets 
of cultivars or in different cultivars, which can be tempo-
rally and spatially rotated to make them more resilient to 
changing climates and durable in a locality (Miedaner and 
Juroszek 2021; Mundt 2014). However, stacking of only the 
functional immune receptor R genes may lead to a ‘boom 
and bust cycle’ as the resistance breaks down in the field 
within a few years (Xin et al. 2012). The immune receptor 
R genes are mainly the surveillance R genes that perceive 
the pathogen, and in turn, regulate the downstream R genes 

that produce reactive oxygen species or callose to induce 
HR-PCD (Camagna and Takemoto 2018), or they induce 
other resistance proteins and metabolites to reduce pathogen 
progress in plants (Kushalappa et al. 2016b).

The resistance due to constitutive and induced metabo-
lites, as well their regulatory and biosynthetic R genes, will 
be focused here. Several R genes are also targeted by patho-
gens to suppress host resistance and invade further, which 
are generally referred to as the susceptibility genes (S-genes) 
(van Schie and Takken 2014; Zaidi et al. 2018) and these are 
not discussed.

Selection of R genes for genome editing

Genome editing is a technology to change the DNA of an 
organism, by adding, removing, or altering the genome 
at a specified location. There are several genome editing 
tools, but in this review, only the clustered regularly inter-
spaced short palindromic repeats (CRISPR-Cas9) will be 
addressed, as this is the simplest, cost-effective and versatile 
(Chen et al. 2019; Wada et al. 2020). The major concern is 
which gene(s) to edit to improve a given trait, such as disease 
resistance.

The commercially grown cultivars, with unsatisfactory 
levels of resistance, also have resistance R genes, as in resist-
ant genotypes, but some may be mutated, disabling the plant 
to code for resistance proteins or metabolites. Plants produce 
thousands of resistance metabolites, but only a few, depend-
ing on the plant-pathogen interaction, can offer high levels of 
resistance under commercial conditions. A cultivar may have 
functional R genes to biosynthesize a set of precursor mono-
mer metabolites, but if the genes to biosynthesize a complex 
metabolite from these monomers is mutated, it would be 
unable to biosynthesize that complex metabolite, rendering 
the plant susceptible. Each metabolite biosynthesis involves 
a hierarchy of R genes, including both regulatory and bio-
synthetic R genes (Kushalappa et al. 2016a). The mutated 
(SNPs/InDels) R genes in a cultivar can be identified, based 
on whole genome sequencing (WGS), genotype by sequence 
(GBS), exome capture (EC) or RNA sequencing (Chung 
et al. 2017; He et al. 2019; Soni et al. 2020). The resistance 
metabolites that are produced in high amounts in a resistant 
genotype relative to a susceptible commercial cultivar can be 
identified based on metabolic profiling. The reduction in the 
amount of specific resistance metabolite in a cultivar may 
be due to mutation in the R gene in the respective metabolic 
pathway. The selection of a few mutated genes for editing 
to enhance resistance metabolites to enhance resistance, is 
very challenging, because the metabolic pathway regulation 
is very complex. Often, if a mutated gene in a metabolic 
pathway is edited, the immediate biosynthetic metabolite 
may not be accumulated in that cultivar, as it may be used to 
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biosynthesize other downstream metabolites, such as poly-
mers and conjugated metabolites, depending on the R gene 
repertoire, the R genes induced following pathogen invasion 
and the current other needs of that cultivar (Hegde et al. 
2021). Thus, certain resistance metabolites that enhance 
resistance to one pathogen may render the plant susceptible 
to another. Cultivars can be developed with a set of a few 
specific metabolites that are effective to manage the most 
devastating pathogens in a region. Cultivars with different 
combinations of resistance metabolites or R genes can be 
developed for use in crop rotations, to reduce the possible 
population buildup of specific races or chemotypes of the 
pathogen (Singh et al. 2011; Zhang et al. 2013). This review 
will focus mainly on the R genes that biosynthesize polymer 
and conjugate phytoalexins, which reinforce the secondary 
cell walls in plants to contain pathogens to initial infection 
areas (Fig. 2, Table 1). The R genes proved to be effective 
for a specific plant-pathogen interaction can also be effec-
tive against other plant-pathogen systems, and accordingly, 
the paralogs and orthologs of these R genes in other plants 
can be searched and used as candidate R genes for genome 
editing to enhance multiple disease resistance.

Polysaccharide metabolites and R genes

Polysaccharides are polymers of sugars or carbohydrates that 
are biosynthesized from D-glucose (Fig. 2, Table 1). Cal-
lose: The primary cell walls of the Poaceae are mainly com-
posed of cellulose, arabinoxylans and (1,3;1,4)-β-glucans, 
whereas the other species, including dicotyledonous plants, 
contain mainly cellulose, xyloglucan and pectin. Callose is 
a polymer of β-1,3-glucan biosynthesized by callose syn-
thase (CalS) or glucan synthase-like (GSL) using UDP glu-
cose as a substrate. The HvGSL6 enhances pre-penetration 
resistance to powdery mildew in barley (Chowdhury et al. 
2016). In Arabidopsis, the GSL5, GSL6, and GSL11 enhance 
resistance to powdery mildew (Jacobs et al. 2003). In citrus 
CsCalS2 and 7 enhance resistance to Psyllid insect-transmit-
ted bacteria (Granato et al. 2019). The role of fucosylated-
xyloglucans and galactomannans was discussed recently 
(Molina et al. 2021). It was reported that these cell wall-
derived xyloglucans are potential DMAPs which can trigger 
plant immunity (Molina et al. 2021) Pectin: This is a struc-
tural polysaccharide that contains 1,4-linked α-D-galactosyl 
uronic acid residues. In Arabidopsis, the powdery mildew 
resistant 5 (PMR5) acetylation protein transfers acetyl groups 
from acetyl-CoA to oligogalacturonides to resist powdery 
mildew (Chiniquy et al. 2019). Glycoside conjugates: Het-
eroxylans are (1,4)-β-xylan backbone and, depending upon 
the species and tissue type, the backbone is substituted to 
varying degrees with α-arabinofuranosyl (Araf) residues, 
α-glucuronosyl residues (GlcA), and with feruloylated ara-
binofuranosyl residues. Sugar glycosides of heteroxylans are 

biosynthesized by glucosyltransferases (GT43 and GT47) 
which are deposited to form papillae to resist early penetra-
tion of powdery mildew in barley (Chowdhury et al. 2017a). 
UDP-glycosides: HvUGT13248, the UDP glucose, conju-
gates with the deoxynivalenol (DON) to detoxify this myco-
toxin, the virulence factor, to resist fusarium head blight in 
wheat (Li et al. 2017b).

Phenylpropanoid metabolites and R genes

In the Shikimic acid pathway, the precursor metabolite phe-
nylalanine is used to biosynthesize several complex phyto-
alexins by R genes (Fig. S2, Table 1) (Kashyap et al. 2021; 
Xin and Herburger 2021; Yadav et al. 2020). The enzyme 
phenylalanine ammonia-lyase (PAL) converts L-phenylala-
nine to trans-cinnamic acids and is the first dedicated step 
in the pathway. Genes encoding PAL were characterized 
and were confirmed to have cassava brown streak disease 
(CBSD) resistance in cassava (Kavil et al. 2021). Mono-
mers and polymers: Of primary importance are the cinnamic 
acid thioesters and monolignols, biosynthesized by 4CL and 
CAD genes, in this pathway, that can polymerize and con-
jugate with other metabolites to reinforce cell walls, thus 
containing the progress of the pathogen. 4CL biosynthesizes 
cinnamic acid thioesters, which depending on the down-
stream functional genes lead to the biosynthesis of hydrox-
ycinnamic acid amides (HCAAs), lignins and/or lignans in 
wheat to contain Fusarium (Dhokane et al. 2016); in beans 
to contain Sclerotinia (Oliveira et al. 2015); in potato to 
contain Phytophthora (Yogendra and Kushalappa 2016) and 
in rice to contain Magnaporthe (Liu et al. 2017). The CAD 
gene biosynthesizes monolignols, which depending on the 
downstream functional genes biosynthesizes lignins, lignans 
and/or glycoside conjugates in wheat to contain Rhizoctonia 
(Rong et al. 2016), in Arabidopsis to contain Pseudomonas 
(Tronchet et al. 2010), and in Populus to contain Fusar-
ium and Rhizoctonia (Bagniewska-Zadworna et al. 2014). 
Coniferyl and sinapoyl aldehydes and alcohols are biosyn-
thesized by CCoAOMT and CCR​ in maize, potato, tobacco 
and Arabidopsis to defend against several pathogens (Hegde 
et al. 2021; Lauvergeat et al. 2001; Maury et al. 1999; Yang 
et al. 2017). Scopoletin and scopolin are biosynthesized by 
F6’H1 in potato and soybean to defend against Phytophthora 
and Phakopsora, respectively (Beyer et al. 2019; Hegde 
et al. 2021; Kai et al. 2008). Phenol-glycosides: The phe-
nol monomers crosslink with polysaccharides and lignin to 
reinforce the cell walls (de O. Buanafina 2009; Reem et al. 
2016). Scopoletin-glucoside biosynthesized by the UDP-
Glc:phenylpropanoid glucosyltransferases (UGT​s) enhanced 
resistance to tobacco mosaic virus and late blight of potato 
(Chong et al. 2002; Hegde et al. 2021). Hydroxycinnamic 
acid amides (HCAAs): The HCAAs or phenylamides either 
directly or as conjugates with hemicellulose are deposited 
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to reinforce the cell wall to contain progressing patho-
gens (Kage et al. 2017a, b; Macoy et al. 2015). The cou-
maroylagmatine biosynthesized by TaACT​ is regulated by 
TaWRKY70 to resist fusarium head blight in wheat (Kage 
et al. 2017a, b). Several HCAAs biosynthesized by StTHT 
and StTyDC were regulated by StWRKY1, StNAC43 and 
StMYB8 enhancing late blight resistance in potato (Pushpa 
et al. 2013; Yogendra et al. 2014, 2015, 2017a; b). In wheat, 
TaMYB4 is involved in the defense response against Puccinia 
striiformis (Al-Attala et al. 2014). Hydroxy-hordatine B is a 
dimer of feruloylagmatine that is biosynthesized by the gene 
peroxidase, which is regulated by HvWRKY23 in barley to 
resist F. graminearum (Karre et al. 2019). Overexpressing 
SlTHT (tyramine N-hydroxycinnamoyltransferase) in tomato 
plants increased the hydroxycinnamic acid amide levels and 
enhanced resistance to Pseudomonas syringae (Campos 
et al. 2014). Lignin: This is the major metabolite for sec-
ondary cell wall reinforcement and is controlled by several 
biosynthetic and regulatory genes (Didi et al. 2015). The 
laccase (LAC) genes use oxygen, and the peroxidase (POD) 
genes use H2O2 to polymerize p-coumaroyl, coniferyl and 
sinapoyl alcohols, the monolignols, to hydroxy (H), guaiacyl 
(G) and syringyl (S) lignins, respectively. The lignin bio-
synthesized by TaLAC4 in wheat gives high level of resist-
ance to the spread of F. graminearum from the inoculated 
spikelet to other spikelets in the spike through rachis and this 
gene is regulated by TaNAC032 (Didi et al. 2015; Soni et al. 
2020, 2021). GhLAC1 enhanced resistance to Verticillium 
wilt and is regulated by GhWEKY1 TF (Hu et al. 2018). 
OsNAC122, 131 enhanced resistance in rice to Magnaporthe 
grisea (Sun et al. 2013). Lignan: Are phenylpropanoids with 
C6C3 coupling products, such as (+)-pinoresinol, podophyl-
lotoxin, medioresinol, glucopyranoside and threocarolignan 
(Gunnaiah and Kushalappa 2014). GmDIR22 and TaDIR13 
enhanced biotic stress resistance in soybean and wheat (Li 
et al. 2017a; Ma and Liu 2015). Lignan biosynthesis is regu-
lated by IiWRKY34 (Xiao et al. 2020). However, suppres-
sion of a polymer metabolite biosynthetic R gene can alter 
the metabolic fluxes, as the precursor metabolites can be 
used by other metabolic pathways, leading to an increase 
or decrease in resistance to a specific pathogen. The down-
regulation of constitutive hydroxycinnamoyl CoA: shikimate 
hydroxycinnamoyl transferase (HCT) in Medicago sativa 
increased flavonoids enhancing resistance to Colletotri-
chum sp. (Gallego-Giraldo et al. 2011). Aromatic suberins: 
Are polyester fractions of phenylpropanoids (aromatic) and 
ω-hydroxy fatty acids (aliphatic), the former is mainly com-
posed of hydroxycinnamic acids, monolignols and lignans 
(Pollard et al. 2008; Vishwanath et al. 2015). Suberins are 
deposited in epidermis, endodermis, and periderm layers 
(Gunnaiah and Kushalappa 2014; Yogendra et al. 2014). The 
sugarcane TF ShMYB78 regulates caffeic acid methyltrans-
ferase (ShCOMT) to enhance aromatic suberin deposition 

(Figueiredo et al. 2020; Vishwanath et al. 2015). Stilbenes: 
Pinosylvin and resveratrol are synthesized by stilbene syn-
thase (STS) from three malonyl-CoA and one CoA-ester of 
a cinnamic acid derivative p-coumaroyl-CoA or cinnamoyl-
CoA (Chong et al. 2009). The VvSTS1, stilbene synthase bio-
synthesizes stilbenes, such as, resveratrol and pinosylvin to 
resist Plasmopara viticola (Chong et al. 2009). VqWRKY53, 
VqMYB13, and VqMYB14 regulate VqSTS32 and VqSTS41 
to synthesize resveratrol in grape vine to enhance resistance 
to powdery mildew (Wang et al. 2020).

Flavonoid metabolites and biosynthetic R genes

In the Shikimic acid pathway, the precursor metabolite 
p-coumaroyl CoA is used in the biosynthesis of chalcones, 
flavones, flavonols, anthocyanins, and anthocyanidins, 
which after glycosylation, methylation and acylation form 
different conjugated metabolites (Fig. S3, Table 1) (Saito 
et al. 2013; Tohge et al. 2017). Monomers and polymers: 
CHS, Chalcone synthase, in potato and barley, biosynthe-
size naringenin chalcone, which is further used in the bio-
synthesis of complex metabolites, to resist Phytophthora, 
Blumaria and Fusarium (Dao et al. 2011; Karre et al. 2019; 
Yogendra et al. 2015). FLS, Flavonol synthase, biosynthe-
sizes flavonol in potato to resist Phytophthora (Yogendra 
et al. 2017a). DFR, dihydroflavonol reductase, regulated by 
MYB10, biosynthesizes anthocyanidins and anthocyanins in 
apple to resist Gymnosporangium (Lu et al. 2017). GbANS 
(anthocyanidin synthase) reduced wilt in cotton (Long et al. 
2018). Flavonoid-glycosides: The HvUDPGT and HvLAC15 
are regulated by HvCERK1 and HvWRKY23 to biosynthe-
size flavonoid-glycosides to resist F. graminearum in barley 
(Karre et al. 2017, 2019). SsGT1, anthocyanin glucosyltrans-
ferase, over expression in flax significantly increased antho-
cyanidin, kaempferol and quercetin glycosides, enhancing 
resistance to Fusarium (Lorenc-Kukuła et al. 2009).

Fatty acid and lipid metabolites and biosynthetic R 
genes

The fatty acids are biosynthesized by acetyl-CoA carboxy-
lase (ACC​) and FA synthase (FAS) and lead to the formation 
of complex wax layers, cuticles, and aliphatic suberins (Fig. 
S4, Table 1) (Lim et al. 2017; Pollard et al. 2008). Wax: 
This is a polymer of fatty acids deposited on the cuticle and 
peridermal layers to prevent pathogen invasion. The C16 and 
C18 form very-long-chain fatty acids (VLCFA) and are bio-
synthesized by β-ketoacyl-CoA synthase, β-ketoacyl-CoA 
reductase, β-ketoacyl-CoA dehydratase, and enoyl-CoA 
reductase (Lim et al. 2017). The VLCFA biosynthesized by 
MdKCS1 is regulated by MdMYB30, which is deposited on 
cuticle as wax layers enhancing resistance in apple to Botry-
osphaeria dothidea (Zhang et al. 2019). TaKCS6 and TaECR 
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in wheat reduced the conidial germination of Blumeria 
graminis. Overexpression of ANAC046 in transgenic Arabi-
dopsis plants increased the suberin biosynthesis by regulat-
ing well-characterized suberin biosynthetic genes including 
CYP86A1 and CYP86B (Mahmood et al. 2019). Feruloyl 
transferase (StFHT) enhanced suberin-associated wax bio-
synthesis in potato tuber periderm (Jin et al. 2018; Serra 
et al. 2010). Cuticle: Are made up of cutin monomers, C16 
and C18 ω-hydroxy fatty acids, and polymers of ω-hydroxy 
fatty acids and glycerol (Pollard et al. 2008). Cutin is a 
major component of leaf, shoot and fruit epidermis. LACS2 
(Long-Chain Acyl-Coenzyme A Synthetase) in Arabidopsis 
biosynthesized cutin to resist Botrytis cinerea (Tang et al. 
2007), and GPAT4 and GPAT8 (glycerol-3-phosphate acyl-
transferase) to resist Alternaria brassicicola (Li et al. 2007). 
Cutin biosynthesized by LACS2, GPAT4, CYP86A4 and 
CYP86A7 are regulated by WAX1 (wax inducer-1 gene) and 
transported by WBC11 (ABC transporter) (Kannangara et al. 
2007). The CYP86A2, CYP89A2 and LACS2 are regulated 
by the HvWIN1 transcription factor to biosynthesize cutin 
in barley to enhance resistance to F. graminearum (Kumar 
et al. 2016). Aliphatic suberins: Are polyester fractions of 
ω-hydroxy fatty acids (aliphatic). Suberin is similar to cutin 
but it contains a wide range of more of α,ω-dicarboxylic 
acids with a wider range of chain lengths and varying oxy-
genation, and fatty alcohols and saturated aliphatic > C20 
(Pollard et al. 2008; Vishwanath et al. 2015). AtMYB107 and 
AtMYB9 regulated the biosynthesis of suberins in Arabidop-
sis, potato and tomato (Lashbrooke et al. 2016).

Terpenoid metabolites and their biosynthetic R 
genes

The terpenoids have five-carbon building blocks of isopen-
tenyl pyrophosphate (IPP) produced in the mevalonic acid 
pathway (Fig. S5, Table 1) (da Silva Magedans et al. 2021). 
Monomers and polymers: The acetyl-CoA (AcCoA) is the 
starting unit to biosynthesize farnesyl diphosphate (FDP) 
through the mevalonate (MVA) pathway. FDP is a central 
intermediate in the synthesis of triterpene saponins (da Silva 
Magedans et al. 2021). The OsTPS19 (terpene synthase) 
biosynthesized monoterpene limonene to suppress Magna-
porthe oryzae in rice (Chen et al. 2018). Sesquiterpenes: 
The MtTPS10 biosynthesized sesquiterpenes in Medicago 
to resist Aphanomyces euteiches (Yadav et al. 2019). The 
PtTPS5 biosynthesized two sesquiterpenes to resist Phy-
tophthora cactorum in Populus (Lackus et al. 2021). The 
NbTPS1 biosynthesized sesquiterpene to resist potato virus 
X in Nicotiana (Li et al. 2015). Farnesyl Diphosphate Syn-
thase (FPS) and ( +)-δ-cadinene synthase (CAD) were 
expressed in cotton suspension in response to Verticil-
lium dahliae elicitors (Liu et al. 1999). Triterpenes: The 
WsSQS (sesquiterpene synthase) regulated by WsWRKY1 

biosynthesized squalene to suppress Botrytis in Withania 
(Singh et al. 2015). The AsAAT1 (arabinosyltransferase) 
enhanced resistance to take-all disease in Avena (Louveau 
et al. 2018).

Alkaloid metabolites and their biosynthetic R genes

Alkaloids are nitrogen-containing compounds such as 
caffeine, nicotine, and cocaine (Fig. S6, Table 1) (Wink 
2019). Benzylisoquinoline alkaloids: Are biosynthe-
sized by StTYDC (tyrosine decarboxylase) which is regu-
lated by StWRKY8 in potato to defend against Phytoph-
thora (Yogendra et al. 2017a). Purine Alkaloids: Caffeine 
(1,3,7-trimethylxanthine) and theobromine (3,7-dimethyl-
xanthine) are biosynthesized by plants, including coffee, 
tea, and cacao. Tea caffeine synthase (TCS) biosynthesizes 
caffeine in tea to defend against Colletotrichum (Wang et al. 
2016). Indole-alkaloids: Camalexin is an indole-alkaloid 
biosynthesized by the PAD3 gene regulated by WRKY33 in 
Arabidopsis defends against Botrytis (Mao et al. 2011; Zhou 
et al. 2020). Cytochrome P450 monooxygenase (CYP71A13) 
catalyzed camalexin synthesis in Arabidopsis to resist Alter-
naria brassicicola (Nafisi et al. 2007). Serotonin-alkaloids: 
Serotonin is biosynthesized by the T5H gene and its con-
jugates feruloylserotinin by SHT in Capsicum to defend 
against Colletotrichum (Park et al. 2009).

CRISPR‑Cas9‑based genome editing 
to enhance multiple disease resistance

The CRISPR-Cas9 genome editing tool can be used either 
to knock out a gene, to make a functional gene to non-func-
tional, or to knock in a gene, to make a non-functional gene 
to functional (Fig. S7a, b). The knock-out strategy is based 
on the CRISPR-induced double-stranded break (DSB) and 
error-prone non-homologous end joining (NHEJ) repair 
mechanism. However, with this approach, the development 
of a loss-of-function phenotype may increase the recessive 
resistance in plants but is known to have negative side effects 
on growth and yield (Brown and Rant 2013). CRISPR-Cas9 
can also be utilized for gene targeting and generating gain-
of-function mutations. There are several gene editing tools, 
but only three commonly used gene-editing tools will be dis-
cussed here (Fig. S7c): (i) CRISPR/Cas9 homology-directed 
repair (HDR) based gene knock-in; (ii) Base editing; (iii) 
Prime editing (PE). HDR-based gene targeting to introduce 
the sequence of choice (repair template or donor) has been 
considerably improved. The use of geminiviral replicons 
that provide an abundant supply of donor copies proved to 
increase the abundance of repair templates and overall HDR 
efficiency (Baltes et al. 2014; Čermák et al. 2015). Also, 
efficient gene targeting was achieved in maize by supplying 
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the donor repair templates from pre-integrated T-DNA 
(Barone et al. 2020). Gene targeting was achieved in Arabi-
dopsis using the sequential transformation method (Miki 
et al. 2018). The method used egg cell- and early embryo-
specific DD45 gene promoters to express Cas9 in parental 
lines followed by delivering single-guide RNA and donor 
template. These methods generally require stable transfer 
DNA (T-DNA) integration. T-DNA elimination is possible 
in the case of sexually propagated plant species and not in 
vegetatively propagated plants. HDR efficiency can also be 
improved by using different Cas9s. However, the availability 
of relatively new tools including CRISPR-Cas9-based base 
editing and prime editing tools has widened the prospects 
of precise gene modifications. These tools can be more ver-
satile than the HDR-based CRISPR-Cas9 editing since they 
are simple, and no repair template is required. Adenine base 
editors (ABEs) were first used in Arabidopsis (Kang et al. 
2018). Similarly, cytosine base editors (CBEs) were dem-
onstrated first in wheat, rice, and potato (Zong et al. 2018), 
and the latter ones are being widely used in several other 
plant species. However, DNA base editors are restricted to 
only C to T and A to G substitutions and often result in off-
target editing (Rees and Liu 2018; Mao et al. 2019). Prime 
editing (search and replace method) uses engineered Cas9 
nickase (nCas9) fused to reverse transcriptase (RT) paired 
with a prime editing gRNA (pegRNA) for desired gene 
modification without DSBs and repair template (Anzalone 
et al. 2019). Prime editing was adopted in plants in both 
monocots and dicots with high efficiency (Lin et al. 2020; 
Lu et al. 2021; Wang et al. 2021). CRISPR-based prime 
editing has the potential to perform 12 possible base con-
versions or editing in plant cells (Hassan et al. 2020). Two 
Cas9 nickase variants, Cas9D10A nickase and a Cas9H840 
nickase were used to increase the efficiency of base edi-
tors and prime editors, respectively (Anzalone et al. 2019; 
Mishra et al. 2020). In plants, prime editors were unable to 
develop homozygous and biallelic edits and were subjected 
to optimization further. The use of plant-derived promoters, 
codon optimization of Cas9H840 and different versions of 
plant editors (PE1, PE2 and PE3) are expected to enhance 
the efficiency in plants. In addition, the improved PE-PE3 
system with engineered M-MLV-RT fused to the N terminal 
of the Cas9H840 nickase improved the editing efficiency in 
rice and maize (Sretenovic and Qi 2022). The use of paired 
pegRNAs and optimized melting temperature of the primer 
binding site (PBS) increased the editing efficiency in rice 
(Lin et al. 2020).

CRISPR‑Cas9 construct components delivery 
for transgene‑free genome editing

CRISPR-Cas9 can be delivered to plant cells using various 
methods including ribonucleoprotein (RNP) complexes, as 

virus particles, particle bombardment, and through Agro-
bacterium-mediated plant transformation. Delivery using 
Agrobacterium is the widely used method and is applicable 
in varieties of plant species, where different plant parts can 
be used as the explants. The Agrobacterium-mediated trans-
formation method is a favoured method for delivering donor 
templates and gene targeting (Barone et al. 2020; Danilo 
et al. 2019).

In seed-producing plants, the segregating population 
obtained from back crossing of edited plants with non-edited 
control can be used to screen out any vector DNAs. PCR can 
be used to screen plants for the absence of marker genes, 
Cas9, and other transgenes. It can be further confirmed 
based on deep sequencing (Zong et al. 2018). Transgene 
sequence elimination through segregation and genotyping to 
screen transgene-free edited plants is a time-consuming and 
laborious strategy. TKC (transgene killer CRISPR) technol-
ogy was developed to accelerate the screening of transgene-
free genome-edited plants (Yubing et al. 2019). TKC plas-
mid vectors were reported to perform self-elimination of 
transgenes without compromising editing efficiency. The 
technology was reported to be a promising tool to conduct 
transgene-free gene editing experiments in cereal crops.

However, there is a challenge to have the elegant 
transgene or marker excision systems to develop transgene-
free genome editing in clonally propagated crops. Only a few 
studies reported marker excision systems in plants using site-
specific recombination methods; two important site-specific 
recombination systems including, Cre-loxP derived from 
bacteriophage P1 and FLP/FRT derived from Saccharomy-
ces cerevisiae, have been used in plants to avoid marker gene 
or transgene integration (Chen et al. 2017; Woo et al. 2011). 
However, both systems are known to leave behind the recog-
nition sequence of the recombinase on the genome. Despite 
these challenges, the animal-derived PiggyBac transposon 
system has been validated in plants, where it retained no 
DNA footprint at the excision site, proving the potential 
of piggyBac to carry out transgene-free genome editing in 
plants (Nishizawa-Yokoi and Toki 2021; Nishizawa-Yokoi 
et al. 2015). In one of the recent developments, PE was com-
bined with piggyBac to produce transgene-free human cell 
lines, with very high efficiency (Eggenschwiler et al. 2021). 
In another study, the marker excision system using an I-SceI 
break and subsequent single-strand annealing (SSA)-medi-
ated DNA repair system, was developed (Endo et al. 2021). 
Overall, the frequency of occurrence of vector DNA in the 
recipient plant can be reduced using prime editing alone 
or in combination with piggyBac (Wolff et al. 2021). This 
approach can be an alternative to the piggyBac system, to be 
used along with different types of CRISPR-Cas9 systems to 
generate transgene-free plants. However, prime editing alone 
can be used to generate transgene-free plants as was reported 
with base editing (Veillet et al. 2019).
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Besides, transient expression of prime editors and base 
editors is achievable in plants and is useful in demonstrating 
transgene-free prime and base editing. DNA-independent 
delivery of prime editors is feasible since the particle bom-
bardment CRISPR-Cas9 delivery system was optimized using 
CRISPR/Cas9 DNA or RNA (TECCDNA or TECCRNA)-
based genome editing methods (Zhang et al. 2016). In addi-
tion, preassembled CRISPR-Cas9 Ribonucleoproteins (RNPs) 
are a well-established CRISPR delivery system in many plant 
cells for transgene-free genome editing (Zhang et al. 2021b). 
Recently, the prime editor was also delivered as RNPs in 
animal cells and a similar method can be tried in plant cells 
(Petri et al. 2022). Hence, prime, and base editors can be deliv-
ered either as a plasmid using biolistic and Agrobacterium or 
as an RNPs depending on the plant tissue types and regen-
eration. The antibiotic selection-free method developed by 
Bánfalvi et al. 2020, is also a suitable method in many plant 
species, to generate DNA-free plants using Agrobacterium 
transformation.

Plant regeneration and confirmation of edited 
genes

Irrespective of any available delivery methods, plant regen-
eration is always challenging in most plant species (Altpeter 
et al. 2016). The low plant regeneration restricts plant trans-
formation and genome editing, especially in monocots like 
wheat and barley (Altpeter et al. 2016). However, attempts 
have been made to improve regeneration efficiency by express-
ing developmental regulators like BABY BOOM (BBM) and 
WUSCHEL (WUS) (Lowe et al. 2016; Maher et al. 2020). 
Concomitant expression of WUS and gene editing reagents in 
dicots resulted in de-novo meristem induction (Maher et al. 
2020). Likewise, expression of BBM and WUS somatic cell 
embryogenesis (Lowe et al. 2016). Unfortunately, constitu-
tive expression of BBM is shown to inhibit the other major 
developmental pathways in monocots. But, two recent reports 
demonstrated the use of regulators GRF-GIF, GROWTH-
REGULATING FACTOR (GRF) and GRF-INTERACTING 
FACTOR (GIF), and their expression along with the gene-
editing reagents (Debernardi et al. 2020; Kong et al. 2020). 
Overexpression of these growth-regulating transcription fac-
tors increases the regeneration efficiency in both monocots 
and dicots (Debernardi et al. 2020; Kong et al. 2020). So, the 
expression of GRF-GIF chimera along with the base and prime 
DNA editors can be employed in the rapid transgene-free gene 
targeting to improve the disease resistance in varieties of plant 
species.

Confirmation of enhanced resistance 
and mechanisms

Resistance can be quantified using ecological or epide-
miological principles, the monocyclic (involves subproc-
esses: infection, sporulation and dissemination) and poly-
cyclic processes (several monocyclic processes over time 
and space) (Kushalappa and Gunnaiah 2013): (i) infec-
tion efficiency: proportion of spores infected or propor-
tion of host area infected, quantified as disease severity 
over time; (ii) lesion expansion: area of lesion or rate of 
lesion expansion; (iii) latent period: time in days since 
inoculation until sporulating lesion appearance; and (iv) 
sporulation: number of spores per unit plant area or rate 
of sporulation process. The polycyclic process quantifica-
tion involves the quantification of epidemics over time and 
space, in the field.

The edited genes and alleles can be screened based 
on PCR and HRM-PCR (high-resolution melting analy-
sis). Further, the putative clones or transformation events 
can be confirmed based on Sanger sequencing and chro-
matograms (Smedley et al. 2021). If any vector DNA is 
retained, the edited events can be screened to select the 
transgene-free plants. In the greenhouse, the edited and 
non-edited control plants can be inoculated with differ-
ent pathogens, and the disease severity can be assessed, 
both under lab and field conditions. The disease severity is 
assessed, visually or using image analysis tools, over time, 
which then can be used to calculate the area under the 
disease progress curve (AUDPC) (Mukherjee et al. 2010). 
The disease progress, both cell damage and external mani-
festation of internal colonization of pathogen, can be pre-
cisely quantified using several digital image analysis tools 
(Bock et al. 2020; Fordyce et al. 2018; Landeovillanueva 
et al. 2021; Sarić et al. 2022; Tanner et al. 2022; Thomas 
et al. 2022). The disease symptoms can be due to internal 
colonization by pathogens or may also be due to toxins 
produced by pathogens. The pathogen biomass in the dis-
eased area can be quantified, as mycelial or pathogen cell 
biomass, using several molecular tools (Ayliffe et al. 2013; 
Kulik et al. 2020; Lievens et al. 2006; Zhang et al. 2021a).

Resistance in plants is mainly due to resistance pro-
teins and resistance metabolites, which as biochemicals 
can be antimicrobial or as structures are deposited around 
the infected cell(s) to contain the pathogen. Confirmation 
of the mechanisms of resistance due to R genes is impor-
tant to have more confidence in its survival under field 
conditions. If the R gene is involved in metabolite biosyn-
thesis, it can be proved based on metabolic profiling (All-
wood and Goodacre 2010). The abundances of expected 
metabolite(s) and/or their further down conjugated metab-
olites can reveal the resistance functions (Kushalappa 



Journal of Plant Research	

1 3

et al. 2016a). The deposition of polymers and conjugated 
metabolites to reinforce cell wall can be proved based on 
histochemical analysis (Bhandari, et al. 2015; Tanner et al. 
2022). All the same, the metabolic pathway regulation and 
eventual accumulation of the types of resistance metabo-
lites at the site of infection is very complex. In Russet 
Burbank potato when the mutated StCCoCAMT gene was 
edited, instead of an increase in feruloyl-CoA metabolite 
accumulation, the plant accumulated several downstream 
conjugated metabolites to suppress the development of 
Phytophthora infestans (Hegde et al. 2021). A compre-
hensive study on gene functions, however, would require 
OMICs studies (Kushalappa et al. 2016a).

Conclusion and future perspectives

Plant diseases are one of the major constraints in commercial 
crop production. This is further exasperated by emerging 
new races and new pathogens in a region due to changing 
climate, thus further increasing greenhouse gases and air 
pollution t−1 of grain produced. To meet these challenges, 
we cannot always start from germplasms to develop new cul-
tivars, as this takes several years to develop, and we should 
promote genome editing of hundreds of cultivars already 
developed for each crop to improve some of the traits they 
may be lacking. Commercial varieties also have several 
mutated genes, introduced during the hybridization of par-
ents or landraces used in breeding (Wambugu et al. 2018). 
These mutated genes can be edited to make them functional 
to recover a given trait. Now that several models and crop 
plants are already genome sequenced, the number of genes 
with proven resistance functions is constantly increasing. 
CRISPR-Cas9 is a precise genome editing tool to improve 
plant traits but to meet all the regulatory requirements in dif-
ferent countries they need refinement. Patenting and royalty 
claimed is another major world concern. If the new knowl-
edge originates from the public knowledge accumulated 
over years, then, the cost of novelty must be reassessed. To 
meet world hunger, the values of life in our society must 
encompass humanity, if not, the edited genes in a crop plant 
would be another destructive combination of atoms in the 
evolution.
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