
CHAPTER 5

SYSTEM EVALUATION

In this chapter, we first explain our experiments setup. We also describe the com-

puters and data sets used to evaluate the performance of our proposed framework.

Finally, the results and analysis of our experiments are presented.

5.1 Experiments Setup

The lab of KFUPM Information and Computer Science department is used for

running our experiments (see Figure 5.1).
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Figure 5.1: KFUPM/ICS Rack used for running our experiments
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Three physical machines of Intel Xenon CPU running at 2.00GHz and 64GB

RAM each are dedicated for performing our experiments. Each machine is of

2-processors, each processor has 12-cores (see Table 5.1).

Table 5.1: Physical Hardware Specifications

Property Specification

No. of physical machines 3

CPU Type Intel Xenon

CPU Speed 2.0GHz

No. of processors/Machine 2

No of Cores/Processor 12

RAM/Machine 64GB

Ethernet 2 of 100.0 MBPS

28-Virtual machines are created on the 3-physical machines. Each virtual

machine has 2-cores and 6.0GB RAM (see Table 5.2).

Table 5.2: Virtual Machines Specifications

Property Specification

No. of virtual machines 28

No. of Cores/Machine 2

RAM/Machine 6GB

Table 5.3 describes in details the software installed for each node in the cluster.
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Table 5.3: Software Specifications

Type version

Oracle Linux 7.6

Hadoop 3.1.0

Yarn 3.1.0

Spark 2.3.0

TensorFlow 1.12

TensorFrames 1.1

Python 3.6.0

VMWare workstation version 14.0 for windows platform software has been

installed and configured for the three physical machines. One physical machine

has been configured to contain one virtual Hadoop master node and eight virtual

Hadoop workers, while the other two physical machines configured to contain ten

virtual Hadoop workers for each (i.e., total of one Hadoop master node and 28

Hadoop workers). Table 5.4 shows the configuration details of Hadoop cluster

nodes. A snapshot of Hadoop cluster can also be seen in Figure 5.2.
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Table 5.4: Cluster Configuration Details

Node Type Host Name Host IP RAM OS Pcs H.Disk

Master master 10.23.32.234 8GB Oracle Linux 7.6 2 1 TB

Worker node101 10.23.32.165 6GB Oracle Linux 7.6 2 50GB

Worker node102 10.23.32.166 6GB Oracle Linux 7.6 2 50GB

Worker node103 10.23.32.167 6GB Oracle Linux 7.6 2 50GB

Worker node104 10.23.32.168 6GB Oracle Linux 7.6 2 50GB

Worker node105 10.23.32.169 6GB Oracle Linux 7.6 2 50GB

Worker node106 10.23.32.170 6GB Oracle Linux 7.6 2 50GB

Worker node106 10.23.32.171 6GB Oracle Linux 7.6 2 50GB

Worker node107 10.23.32.172 6GB Oracle Linux 7.6 2 50GB

Worker node108 10.23.32.173 6GB Oracle Linux 7.6 2 50GB

Worker node201 10.23.32.174 6GB Oracle Linux 7.6 2 50GB

Worker node202 10.23.32.175 6GB Oracle Linux 7.6 2 50GB

Worker node203 10.23.32.176 6GB Oracle Linux 7.6 2 50GB

Worker node204 10.23.32.177 6GB Oracle Linux 7.6 2 50GB

Worker node205 10.23.32.178 6GB Oracle Linux 7.6 2 50GB

Worker node206 10.23.32.179 6GB Oracle Linux 7.6 2 50GB

Worker node207 10.23.32.180 6GB Oracle Linux 7.6 2 50GB

Worker node208 10.23.32.181 6GB Oracle Linux 7.6 2 50GB

Worker node209 10.23.32.182 6GB Oracle Linux 7.6 2 50GB

Worker node210 10.23.32.183 6GB Oracle Linux 7.6 2 50GB

Worker node301 10.23.32.184 6GB Oracle Linux 7.6 2 50GB

Worker node302 10.23.32.185 6GB Oracle Linux 7.6 2 50GB

Worker node303 10.23.32.186 6GB Oracle Linux 7.6 2 50GB

Worker node304 10.23.32.187 6GB Oracle Linux 7.6 2 50GB

Worker node305 10.23.32.188 6GB Oracle Linux 7.6 2 50GB

Worker node306 10.23.32.189 6GB Oracle Linux 7.6 2 50GB

Worker node307 10.23.32.190 6GB Oracle Linux 7.6 2 50GB

Worker node308 10.23.32.191 6GB Oracle Linux 7.6 2 50GB

Worker node309 10.23.32.192 6GB Oracle Linux 7.6 2 50GB

Worker node310 10.23.32.193 6GB Oracle Linux 7.6 2 50GB
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Figure 5.2: Hadoop Cluster Nodes

5.2 Data Sets

Mnist, Higgs, and Molecular are the three datasets used to evaluate our frame-

work. For more details (see Table 5.5 and Figure 5.4).

Table 5.5: Datasets

Data set Rows size Descriptions

Mnist Data 60,000 47.0M Small number of rows

Higgs Data 10,000,000 280M Large number of rows

Molecular Data 150,000 430M Large number of model size
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5.2.1 MNIST Dataset

Mixed National Institute of Standards and Technology (MNIST) dataset is a

database of handwritten digits used for training image processing systems (see

Table 5.3). It has a training set of 60,000 images and a test set of 10,000 images.

It is a subset of a larger set available from NIST. The black and white images

have been size-normalized to fit into a 28 x 28 box in order to be used for machine

learning [104].

 

Figure 5.3: Mnist Dataset
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5.2.2 Higgs Dataset

Higgs dataset was generated using Monte Carlo simulations. The first 21 features

(columns 2-22) are properties measured by the particle detectors in the accelerator.

The last seven features are functions of the first 21 features; these are high-level

features derived by physicists. [105]. Higgs challenge is a classification problem re-

lated to discovering of exotic particle result from collisions at high-energy particle

which requires solving complex signal-versus-background classification [106].

5.2.3 Molecular Dataset

Molecular dataset consists of 15 biological activity data sets. Each row of data

corresponds to a chemical structure represented by molecular descriptors. The

challenge is to predict the activity value for each molecule combination in the test

set in order to minimize new medication side effects [107].
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Figure 5.4: Datasets in HDFS Browser

5.3 Framework Models

To evaluate our framework we build 3 different types of models. These models

use different datasets with different sizes. For more details see Table 5.6.

Table 5.6: Models and Datasets

No Model Name Data set

1 Mnist Model Mnist Data

2 Higgs Model Higgs Data

3 Molecular Model Molecular Data

Our models are designed using reusable functions which make them more useful
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and flexible in such a way that different parameters and arguments values can be

used for different testing purposes. For example, the model parameter repartition

is used to control the repartitioning of training data after each training epoch.

For other model global parameters and their purpose (see Table 5.7).

Table 5.7: Models Global Parameters

Parameter Type Parameter Value Purpose

No. of epochs 80 training session epochs

Block size 50 mini-batch size

Learning rate 1e-4 training learning rate

repartition False/True repartition of training data after each epoch

5.4 Experiment Results

Our experiments were performed using different cluster and model sizes. In this

section, we are going to show the results obtained by our framework.

5.4.1 Mnist Model

The structure of the BPNN Mnist model has an input layer, 2 hidden layers, and

an output layer of sizes [784, 1024, 1024, 10]. The Mnist dataset which has 60,000

rows of size 47.0 MB is used to evaluate our framework. Our framework accuracy

and execution time is evaluated using different sizes of data parallelism which vary

between 4, 8, 20, and 40. Table 5.8 describes the important parameters for this

model.
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Table 5.8: Mnist Model Parameters

Parameter Type Parameter Value

Model Size [784, 1024, 1024, 10]

No of Layers 4

No. of Hidden Layers 2

Input Layer size 784

Output Layer size 10

Total Parameter size 1.8M

(A) Mnist Model: 4-Partitions Results:

The results of evaluating the performance of our framework using Mnist model

with data parallelism of size 4 and repartition option set to True is shown in Table

5.9. For models evaluation, data size, BPNN model execution time, MLR model

execution time, framework total execution time, and framework accuracy for each

partition using Mnist dataset are computed.

Table 5.9: Mnist Model: 4-Partitions Experiment Results

PID Data size BPNN E. time MLR E. Time Total E. Time Accuracy

0 14978 10:55.3528 0.027219 10:55.38 96.00

1 14999 8:52.95056 0.059435 8:53.01 96.07

2 15014 9:39.00305 0.037804 9:39.04083 96.314

3 15009 9:25.31036 0.097922 9:25.40826 95.81

Our framework uses Spark hash partition method which attempts to load an

equal amount of data in each partition. For example, partition 0 has data of size

14978 rows, partition 1 has data of size 14999 rows, ... etc (see Figure 5.5).
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Figure 5.5: Mnist Model: 4-Partitions Data Size (no of rows)

To study the execution time of MLR and BPNN models using Mnist dataset

with data parallelism of size 4, the execution time of MLR model is compared to

the execution time of BPNN model for each partition using the Mnist dataset.

The final result shows that the execution time of MLR model is very low compared

to the execution time of BPNN model. For example, For 80 epochs the execution

time for MLR model of partition 0 is 0.027219 msecs compared to 655353 msecs

for BPNN model (see Figure 5.6).
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Figure 5.6: Mnist Model: 4-Partitions Elapsed Time (msecs)

To study the accuracy obtained by our framework using Mnist dataset with

data parallelism of size 4, the accuracy of BPNN model is compared to the ac-

curacy of the final output of the framework (BPNN + MLR) for each partition

using Mnist dataset. The comparison results show that, the employment of the

MLR model increase the final accuracy of our framework by 3% - 4% compared

to the accuracy obtained by BPNN model only (see Figure 5.7).
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Figure 5.7: Mnist Model: 4-Partitions Accuracy

Yarn resource manager uses 4 different cluster nodes to complete Mnist model

training processes. Each node assigns the task of processing BPNN and MLR

algorithm on its own data partition, while the optimization process is done using

one task running in the master node. Figure 5.8 shows how tasks are assigned to

different nodes of the Hadoop cluster.
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Figure 5.8: Yarn: Scheduling tasks to Hadoop workers

(B) Mnist Model: 8-Partitions Results:

To evaluate our framework models, we compute the data size, BPNN model

execution time, MLR model execution time, framework total execution time, and

framework accuracy using Mnist dataset. The results of evaluating the perfor-

mance of our framework using Mnist model with data parallelism of size 8 and

repartition option set to True are shown in Table 5.10.
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Table 5.10: Mnist Model: 8-Partitions Experiment Results

PID Data size BPNN E. time MLR E. Time Total E. Time Accuracy

0 7500 5:44.9766 0.023278 5:44.99994 94.03

1 7478 6:50.383 0.024409 6:50.4074 94.89

2 7506 6:48.79846 0.029138 6:48.82764 94.50

3 7493 6:47.96765 0.024418 6:47.99207 94.55

4 7505 4:25.13953 0.057339 4:25.19687 94.10

5 7509 5:52.2153 0.022014 5:52.23724 94.62

6 7504 4:22.48776 0.070625 4:22.55838 93.98

7 7505 6:32.943 0.063437 6:33.0064 93.71

Our framework partitioning process using Mnist dataset with parallelism of

size 8, generates partitions of almost equal sizes. That happens because it uses

Spark hash partition method which attempts to load an equal amount of data in

each partition. For example, partition 0 has a data size of 7500 rows, partition 1

has a data size of 7478 rows, ... etc (see Figure 5.9).

Figure 5.9: Mnist Model: 8-Partitions Data Size (no of rows)
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To study the execution time of MLR and BPNN models using Mnist dataset

with data parallelism of size 8, the execution time of MLR model is compared to

the execution time of BPNN model for each partition using Mnist dataset. The

final result shows that the execution time of MLR model is very low compared to

the execution time of BPNN model. For example, For 80 epochs the execution

time for MLR model of partition 0 is 0.023278 msecs compared to 344977 msecs

for BPNN model (see Figure 5.10).

Figure 5.10: Mnist Model: 8-Partitions Elapsed Time (msecs)

To study the accuracy obtained by our framework using Mnist dataset with

data parallelism of size 8, the accuracy of BPNN model is compared to the ac-

curacy of the final output of the framework (BPNN + MLR) for each partition

using Mnist dataset. The comparison results show that, the employment of the
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MLR model increase the final accuracy of our framework by 3% - 4% compared

to the accuracy obtained by BPNN model only (see Figure 5.11).

Figure 5.11: Mnist Model: 8-Partitions Accuracy

(C) Mnist Model: 20-Partitions Results:

The results of evaluating the performance of our framework using Mnist model

with data parallelism of size 20 and repartition option set to True is shown in Table

5.11. For models evaluation, data size, BPNN model execution time, MLR model

execution time, framework total execution time, and framework accuracy for each

partition are computed.
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Table 5.11: Mnist Model: 20-Partitions Experiment Results

PID Data size BPNN E. time MLR E. Time Total E. Time Accuracy

0 3000 449.5605 0.041814 449.60233 90.38

1 2996 504.14792 0.037349 504.18527 90.69

2 3000 510.8083 0.037149 510.84546 90.60

3 2995 526.6572 0.026876 526.6841 90.67

4 2987 501.9434 0.040785 501.9842 92.63

5 3013 514.8201 0.024984 514.84515 91.33

6 2994 501.64133 0.037749 501.67908 90.27

7 2991 531.69415 0.03307 531.7272 90.42

8 3007 453.71613 0.037766 453.7539 90.59

9 2994 516.5516 0.025814 516.5774 90.90

10 3014 328.2883 0.06679 328.3551 91.21

11 3003 454.54425 0.040927 454.58517 90.59

12 2990 448.4523 0.044744 448.49704 90.47

13 3004 526.1988 0.019451 526.21826 90.87

14 3003 502.39572 0.029512 502.42523 91.24

15 3003 401.88535 0.065201 401.95056 90.53

16 2998 523.19684 0.026287 523.22314 90.88

17 3007 513.1345 0.026183 513.16064 90.53

18 2999 517.6213 0.024409 517.6457 90.70

19 3002 311.3553 0.085796 311.44107 89.16

Our framework uses Spark hash partition method which attempts to load an

equal amount of data in each partition. For example, partition 0 has data of size

3000 rows, partition 1 has a data size of 2996 rows, ... etc (see Figure 5.12).
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Figure 5.12: Mnist Model: 20-Partitions Data Size (no of rows)

To study the execution time of MLR and BPNN models using Mnist dataset

with data parallelism of size 20, the execution time of MLR model is compared

to the execution time of BPNN model for each partition using the Mnist dataset.

The final result shows that the execution time of MLR model is very low compared

to the execution time of BPNN model. For example, For 80 epochs the execution

time for MLR model of partition 0 is 0.037066 msecs compared to 278401 msecs

for BPNN model. For more details see Figure 5.13.
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Figure 5.13: Mnist Model: 20-Partitions Elapsed Time (msecs)

66



To study the accuracy obtained by our framework using Mnist dataset with

data parallelism of size 20, the accuracy of BPNN model is compared to the

accuracy of the final output of the framework (BPNN + MLR) for each partition

using the Mnist dataset. The comparison results show that, the employment of

the MLR model increase the final accuracy of our framework by 2% - 3% compared

to the accuracy obtained by BPNN model only (see Figure 5.14).

Figure 5.14: Mnist Model: 20-Partitions Accuracy

(D) Mnist Model: 40-Partitions Results:

To evaluate our framework models, we compute the data size, BPNN model

execution time, MLR model execution time, framework total execution time, and

framework accuracy using Mnist dataset. The results of evaluating the perfor-

mance of our framework using Mnist model with data parallelism of size 40 and
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repartition option set to True are shown in Table 5.13.

Table 5.12: Mnist Model: 8-Partitions Experiment Results - 1

PID Data size BPNN E. time MLR E. Time Total E. Time Accuracy

0 1500 438.40128 0.037066 438.43832 87.45

1 1500 447.55243 0.030421 447.58286 88.20

2 1505 436.09845 0.067311 436.16574 87.08

3 1491 450.03778 0.024003 450.06177 87.96

4 1504 420.82083 0.185372 421.0062 87.95

5 1496 335.67252 0.08609 335.7586 87.97

6 1495 452.73676 0.026059 452.7628 88.57

7 1500 439.2488 0.035932 439.28476 87.82

8 1489 447.45917 0.033579 447.49274 88.85

9 1498 417.4352 0.058094 417.49332 89.23

10 1506 409.705 0.056274 409.76126 87.87

11 1507 410.8439 0.101399 410.9453 89.55

12 1502 251.37236 0.11748 251.48984 88.40

13 1492 406.21255 0.100754 406.3133 87.17

14 1499 406.92175 0.105456 407.02722 88.39

15 1492 409.8996 0.155266 410.05484 88.64

16 1499 441.37222 0.031766 441.404 87.99

17 1508 458.81604 0.039578 458.85562 86.06

18 1494 408.67935 0.101665 408.781 87.45

19 1500 433.35034 0.246572 433.59692 88.31

20 1510 437.19513 0.03474 437.2299 88.60

21 1504 257.54373 0.10122 257.64496 88.15

22 1502 436.98187 0.097225 437.0791 87.84

23 1501 355.05017 0.060227 355.1104 87.66

24 1488 421.89145 0.127192 422.01865 87.44
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Table 5.13: Mnist Model: 40-Partitions Experiment Results - 2

PID Data size BPNN E. time LR E. Time Total E. Time Accuracy

25 1502 230.3202 0.072398 230.39261 88.73

26 1499 454.54895 0.070694 454.61963 88.62

27 1505 433.78244 0.040688 433.82315 88.17

28 1498 447.09134 0.023049 447.11438 87.5

29 1505 416.13266 0.048166 416.18085 88.58

30 1507 413.69913 0.043712 413.74283 88.20

31 1496 403.07788 0.044641 403.12253 87.66

32 1493 449.4208 0.029532 449.45035 87.69

33 1505 217.83989 0.059265 217.89915 88.81

34 1503 221.04248 0.168456 221.21094 87.70

35 1504 411.69122 0.046329 411.73755 88.27

36 1501 251.72954 0.31963 252.04916 86.79

37 1498 502.87888 0.033761 502.91266 87.45

38 1506 418.8834 0.037127 418.9205 87.81

39 1496 434.25623 0.037624 434.29385 85.13

Our framework partitioning process using Mnist dataset with parallelism of

size 40, generates partitions of almost equal sizes. That happens because it uses

Spark hash partition method which attempts to load an equal amount of data in

each partition. For example, partition 0 has a data size of 1500 rows, partition 1

has a data size of 1500 rows, ... etc (see Figure 5.15).
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Figure 5.15: Mnist Model: 40-Partitions Data Size (no of rows)

To study the execution time of MLR and BPNN models using Mnist dataset

with data parallelism of size 40, the execution time of MLR model is compared to

the execution time of BPNN model for each partition using Mnist dataset. The

final result shows that the execution time of MLR model is very low compared

to the execution time of BPNN model. For example, for 80 epochs the execution

time for MLR model of partition 0 is 0.037066 msecs compared to 278401 msecs

for BPNN model. For more details see Figure 5.16.
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Figure 5.16: Mnist Model: 40-Partitions Elapsed Time (msec)
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To study the accuracy obtained by our framework using Mnist dataset with

data parallelism of size 40, the accuracy of BPNN model is compared to the

accuracy of the final output of the framework (BPNN + MLR) for each partition

using Mnist dataset. The comparison results show that, the employment of the

MLR model increase the final accuracy of our framework by 2% - 3% compared

to the accuracy obtained by BPNN model only (see Figure 5.17).

Figure 5.17: Mnist Modelt: 40-Partitions Accuracy

(E) Mnist Model: Result Analysis:

According to our framework experimental results, Mnist model Scalability is

very good. The training execution time and accuracy have been monitor while the

cluster is scaling up. For example, for 80 training epochs, the execution time is

decreased from 650.21 seconds for 4-partitions to 221.25 seconds for 40-partition.
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For more details (see Table 5.14).

Table 5.14: Mnist Model; Scaleup and Speedup

No of Partitions E. Time (Secs)

4 655.21

8 410.03

20 301.03

40 221.25

Mnist model gains 65.97% speedup as a result of scaling up from 4 to 40

partitions (see Figure 5.18 and Figure 5.19).
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Figure 5.18: Mnist Model: Scaleup vs Speedup (1)
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Figure 5.19: Mnist Model: Scaleup vs Speedup (2)

The implementation of the parallel multivariate linear regression algorithm

improves our model accuracy by 3% - 4% (see Figure 5.20).

Table 5.15: Mnist Model; Scaleup and Accuracy

No of Partitions Accuracy

4 97,83

8 96,51

20 94,85

40 92,78
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Figure 5.20: Mnist Model: Scaleup and Accuracy

Since the Mnist model is small in size (i.e., 60,000 rows of size 47MB) and

data can fit in one machine memory, then using one machine with GPU can give

better results than parallel computing.

5.4.2 Higgs Model

The structure of the BPNN Higgs model has an input layer, 3 hidden layers, and

an output layer of sizes [28, 1024, 1024, 1024, 1]. The evaluation process uses the

Higgs dataset which has 10,000,000 rows of size 280 MB. The framework accuracy

and execution time are evaluated using different data parallelism sizes which vary

between 4, 8, 20, and 40. Table 5.16 describes the important parameters for this

model.
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Table 5.16: Higgs Model Parameters

Parameter Type Parameter Value

Model Size [28, 1024, 1024, 1024, 1]

No of Layers 5

No. of Hidden Layers 3

Input Layer size 28

Output Layer size 1

Total Parameter size 2.08M

Higgs Model: Result Analysis:

While increasing the data parallelism size (i.e., number of partitions) of our

framework, the Higgs model speed increases accordingly. The framework gains

63.70% speedup as a result of scaling up from 4 to 40 partitions (ee Table 5.17).

Table 5.17: Higgs Model; Scaleup and Speedup

No of Partitions E. Time (Secs)

4 15690.22

8 10447.32

20 6434.3

40 5695.34

The data size used to train Higgs model is larger than Mnist data size. Since

Spark and Hadoop clusters divide data into chunks of 128 MB, at least 3 partitions

are required to store Higgs data. However, too many logical partitions slow down

the model and may prevent convergence (see Figure 5.21 and Figure 5.22).
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Figure 5.21: Higgs Model: Scaleup vs Speedup (1)
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The implementation of the parallel multivariate linear regression algorithm

improve our model accuracy by 3% - 5% (see Figure 5.23).

Table 5.18: Higgs Model; Scaleup and Accuracy

No of Partitions Accuracy

4 92.6

8 91.01

20 88.05

40 85.55
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Figure 5.23: Higgs Model: Scaleup vs Accuracy
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5.4.3 Molecular Model

The structure of the BPNN Molecular model has an input layer, 3 hidden layers,

and an output layer of sizes [2871, 1024, 1024, 1024, 15]. The evaluation process

uses the Molecular dataset which has 150,000 rows of size 430MB. The model

accuracy and execution time are evaluated using different data parallelism sizes

vary between 4, 8, 20, and 40. Table 5.19 describes the important parameters for

this model.

Table 5.19: Molecular Model Parameters

Parameter Type Parameter Value

Model Size [2871, 1024, 1024, 1024, 15]

No of Layers 5

No. of Hidden Layers 3

Input Layer size 2871

Output Layer size 15

Total Parameter size 5.05M

Molecular Model: Result Analysis:

Molecular model gains 60.29% speedup as a result of scaling up from 4 to 40

partitions. For 80 training epochs, the execution time decreased from 38494.93

seconds for 4-partitions to 15287.74 seconds for 40-partitions. For more details

(see Table 5.20).
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Table 5.20: Molecular Model; Scaleup and Speedup

No of Partitions E. Time

4 38494.93

8 24470.11

20 17947.82

40 15287.74

Scaling up with too many partitions reduce data parallelism gains. For exam-

ple, scaling up with data parallelism size greater than 20 decreases speedup and

slow convergence speed (See Figure 5.24 and Figure 5.25).
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Figure 5.24: Molecular Model: Scaleup vs Speedup (1)
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Figure 5.25: Molecular Model: Scaleup vs Speedup (2)

The implementation of the parallel multivariate linear regression algorithm

improve our model accuracy by 3% - 4.6% (See Figure 5.26).

Table 5.21: Molecular Model; Scaleup and Accuracy

No of Partitions Accuracy

4 91.6

8 89.12

20 86.22

40 83.01
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Figure 5.26: Molecular Model: Scaleup and Accuracy

5.5 Framework Evaluation Results Analysis

According to the experimental results our framework scaleup is very good (see

Figure 5.27 and Figure 5.28). Three models were built to evaluate the framework

including Mnist, Higgs, and Molecular. The speed and accuracy are evaluated in

a variety of configurations such as datasets size, data parallelism size, and model

size. Result analysis for each model can be found in sections (5.4.1, 5.4.2, 5.4.3).

Our framework evaluation results can be summarized as follows:

(1) Excluding models with small data size all models can benefit from data

parallelism.

(2) Too many data parallelism sizes can lead to network issues overhead and
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slow of convergence speed.

(3) Slow down in training speed as model size increases.

(4) Training performance can scale up with data parallelism size to a factor

limited by the network traffic overhead.

(5) The implementation of the parallel multivariate linear regression (MVLR)

algorithm improves our framework accuracy.
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Figure 5.27: Framework: Scaleup vs Speedup
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Figure 5.28: Framework: Scaleup vs Accuracy

5.6 Frameworks Comparison

DistBelief is a distributed computation of neural networks proposed by Dean et al.

in [17]. The computation takes place on worker nodes. The framework manages

communication, synchronization, and data transfer between cluster workers. The

architecture of the framework is shown in Figure 5.29.
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Figure 5.29: DistBelief Framework Architecture

Under the same environment and the same configuration parameters our

framework execution time and accuracy are compared to DistBelief framework.

The models Mnist, Higgs, and Molecular are developed to evaluate both frame-

works. Two types of implementations are performed including session implemen-

tation and epoch implementation. For session implementation (BPNN + MLR)

the synchronization process is performed at the end of the training session, while

the synchronization process is performed at the end of each epoch for the epoch

implementation (BPNN + MLR (epoch)). The accuracy and training execution

time are evaluated and compared using different data parallelism sizes (i.e., num-

ber of partitions) vary between 4, 8, 20, and 40.
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5.6.1 Frameworks Comparison: Mnist Model

The experiment results of our framework using Mnist model show that, while

scaling up data parallelism size from 4 to 40, our framework gains 65.97% and

60.79% speedup compared to 54.26% gained by DistBelief framework (see Figure

5.30 and Figure 5.31).

 

Figure 5.30: Frameworks Comparison: Mnist Model
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Figure 5.31: Frameworks Comparison: Mnist Model Scaleup vs Speedup
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While scaling up the accuracy of our framework and DistBelief framework is

decreased. However, the implementation of parallel MLR increases our framework

accuracy by 3%-4%. The results are shown in Figure 5.32.
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Figure 5.32: Frameworks Comparison: Mnist Model Scaleup vs Accuracy

Since one partition is enough to store Mnist model dataset using one machine

with GPU may give better results than parallel computing. This point has been

added to our future works due to the lack of GPU environment.

5.6.2 Frameworks Comparison: Higgs Model

The experiment results of our framework using Higgs model show that, while

scaling up data parallelism size from 4 to 40, our framework gains 63.70% and
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56.74% speedup compared to 51.66% gained by DistBelief framework (see Figure

5.33 and Figure 5.34).

 

Figure 5.33: Frameworks Comparison: Higgs Model
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Figure 5.34: Frameworks Comparison: Higgs Model Scaleup vs Speedup

While scaling up the accuracy of our framework and DistBelief framework is

decreased. However, the implementation of parallel MLR increases our framework

accuracy by 3%-5% (see Figure 5.35).
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Figure 5.35: Frameworks Comparison: Higgs Model Scaleup vs Accuracy

At least 3 partitions are required to store Higgs dataset. However, too many

logical partitions slow convergence speed due to the network traffic overheads since

the model parameter size is 2.08MB.

5.6.3 Frameworks Comparison: Molecular Model

The experiment results of our framework using Molecular model show that, while

scaling up data parallelism size from 4 to 40, our framework gains 60.29% and

52.91% speedup compared to 48.46% gained by DistBelief framework (see Figure

5.36 and Figure 5.37).
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Figure 5.36: Frameworks Comparison: Molecular Model
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Figure 5.37: Frameworks Comparison: Molecular Model Scaleup vs Speedup

While scaling up the accuracy of our framework and DistBelief framework is

decreased. However, the implementation of parallel MLR increases our framework

accuracy by 3%-4.6% (see Figure 5.38).
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Figure 5.38: Frameworks Comparison: Molecular Model: Scaleup vs Accuracy

At least 4 partitions are required to store Molecular dataset. However, too

many logical partitions slowdown the model due to the network traffics overheads

since the model parameter size is 5.05MB.
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CHAPTER 6

CONCLUSIONS & FUTURE

WORK

BPNN algorithm is widely used to solve many problems in different domains. With

the massive amount of data collected nowadays the performance of the traditional

sequential versions of these algorithms are unable to handle this huge amount of

data. People easily spend hours, weeks or even months or maybe years to train

BPNN. A natural solution is parallel and distributed computing. Existing parallel

BPNN solutions make the trade-off between efficiency and accuracy. The main

drawback with these solutions is that they are computationally expensive and the

training phase is a bottleneck. Therefore, a different approach of a solution is

needed to improve BPNN algorithm efficiency and accuracy at the same time.

The main goal of the proposed framework is to improve BPNN performance in

term of accuracy and execution time in the context of massive data. It contains

two components. The first component partitions data and distributes the com-
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putation of BPNN algorithm between cluster node, while the second component

implements parallel multiple linear algorithms using linear algebra QR matrix de-

composition method and predicts the final output. Our framework is unique and

not like existing solutions. First, it benefits from the fast in-memory processing

power provided by the Spark cluster. Second, it is able to handle the extensive

computations of BPNN algorithm using the concept of mini-batches, while the em-

ployment of Tensorflow framework accelerates matrices computations and permits

the framework to easily run in GPU environment. Third, the implementation of

the parallel multiple linear regression algorithm improves our framework accuracy.

The experimental results show that our framework outperforms DistBelief

frameworks in term of accuracy and execution time. Using our framework with

data parallelism sizes vary between 4, 8, 20, and 40. Small models like Mnist

model gained 66% speedup, while these type of models gained 54% speedup using

DistBelief framework. Larger models with larger datasets like Molecular model

gained 63% speedup compared to 52% speedup gained using DistBelief framework,

while models with larger model parameters size gained 60% speedup compared to

42% speedup gained using DistBelief framework. DistBelief framework slowdown

when scaling above 40 data parallelism size, while our framework is stable. In

addition, the implementation of the parallel multiple linear regression algorithm

improves our model accuracy by 3-5% compared to DistBelief framework. In gen-

eral, our framework scaleup very well as it requires less computation time and less

network overhead compared to other models.
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Our framework is evaluated using three physical servers each of 24 cores, 2.0

GHz speed, and 2 network card of 100.0 MBPS. These resources are shared among

28 virtual machines which are used to build our Hadoop cluster. The maximum

data parallelism size used to evaluate our framework was limited to 40 only. This

was due to the limitations on the hardware available used for the training phase.

However, a real cluster environment with more physical nodes and GPU support

is required for performing all needed experiments to evaluate the performance of

our framework.

As future work, it is interesting to evaluate our framework on GPU, TPU environ-

ments since our framework evaluation models are capable to run in such type of

environments. It is also interesting to find a method of implementing our frame-

work using a tensor decomposition optimization technique which may help to deal

with the extensive computation of BPNN algorithm efficiently. Our framework

can also benefit from the services provided by Apache Ignite framework, a peer

to peer grid computing framework which provides a centric distributed shared

memory that can be used to synchronized Spark Workers.
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