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          Networks science is one of the most considerable research areas in social, natural 

and computer sciences as well as engineering. Most networks have vertices organized in 

groups called communities, modules or clusters. Communities are groups of vertices which 

probably share similar properties and/or play common roles within a graph. Modularity 

maximization is one of the most popular approaches in community detection. However, 

modularity maximization solution has practical problems such as resolution limit and 

degeneracy. Recently, an alternative clustering measure called modularity density has been 

proposed to overcome the resolution limit of modularity maximization. 

             Modularity Density Maximization (MDM) aims to reduce the out links between 

clusters. So, the less out connections are the better. In this research, the out connections are 

perceived as a distance. Thus, we propose a Modified Modularity Density Maximization 

(MMDM) as we consider minimizing the deep out connection instead of minimizing the 

out links. Modified Modularity Density Maximization (MMDM) is formulated as a Mixed 

Integer Linear Programming (MILP). The model is solved by GAMS software and the 

obtained results are compared with MDM using internal cluster validation approach.  

 



xv 

 

          A clustering heuristic algorithm named Density Radio Heuristic DR is proposed to 

solve larger data sets that cannot be solved by MILP or take very long time to be solved. 

The heuristic is applied on both MMDM and MDM approaches and the obtained results 

are compared using internal cluster validation approach. 
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 ملخص الرسالة

 
 

  زياد حامد عبدالجليل صالح  :الاسم الكامل
 

 تحقيق أعلى قدر من النمطيه بواسطة استخدام البرمجه الرياضيهاستقصاء حول  :عنوان الرسالة
 

 صناعيةهندسة  التخصص:
 

  2019 ديسمبر :تاريخ الدرجة العلمية
 

 .علوم الشبكات هي واحدة من أهم مجالات البحث في العلوم الاجتماعية والطبيعية وعلوم الكمبيوتر وكذلك الهندسة

تحتوي معظم الشبكات على رؤوس منظمة في مجموعات تسمى المجتمعات أو الوحدات أو المجموعات. المجتمعات 

هي مجموعات من القمم التي تشترك على الأرجح في خصائص متشابهة و تلعب أدوارًا مشتركة في الرسم البياني. 

مجموعات، لكن تحقيق اعلى قدر من النطيه تحقيق اعلى قدر من النمطيه هو احد أكثر الطرق شيوعا في اكتشاف ال

 قرار الحد والتنكس. لديك مشاكل في الحلول مثل 

في الآونة الأخيرة ، تم اقتراح بديل لتجميع الوحدات في مجموعات بما يسمى كثافة الوحدات للتغلب على الحد الأقصى 

لذلك  .الروابط الخارجية بين المجموعاتتقليل  (MDM) سيحاول تعظيم كثافة الوحدات .لقرار زيادة الحد الأقصى

كلما قل عدد الروابط الخارجية بين المجموعات كلما كان أفضل. في هذا البحث يمكن اعتبار الروابط الخارجية بين 

( عندما فكرنا بأن بتقليل الاتصال العميق MDMMالمجموعات كنوع من المسافه. لذالك اقترحنا تعديل كثافة الوحدات )

( تمت صياغته MDMMوعات بدلاً من  الروابط الخارجيه. تعديل تحقيق أعلى قدر من كثافة المجموعات )المجمبين 

، ثم تمت مقارنة النتائج مع  (GAMSكبرمجة خطية عددية مختلطه.  وتم حل النموذج الرياضي بإستخدام برنامج )

(MDM .من حيث نهج التحقق من جودة تقسيم المجموعات ) 

الغرض ( . لقد كان DRخوارزمية نسبة الكثافه ) كتشاف المجموعات وسميناهالا ذلك ، اقترحنا خوارزميةبالإضافة إلى 

أو يستغرق وقتاً  MILP هو حل مجموعات البيانات الكبيرة التي لا يمكن حلها بواسطةه الخوارزمية الرئيسي من هذ

وتمت مقارنة النتائج التي تم الحصول  MDM و MMDM كل من النهجه الخوارزمية تم تطبيق هذ .طويلاً للغاية لحلها

 التحقق من جودة تقسيم المجموعات.لح عليها في مصط
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1 CHAPTER 1 

INTRODUCTION 

1.1 Background  

Network science stands out as one of the most fruitful research fields which has 

applications in social, natural and computer sciences as well as engineering. Graphs, or 

networks, originally are a set of vertices connected by links called edges. Networks occur 

in a huge diversity of contexts. For example, Twitter, Facebook and Instagram are large 

social networks, where millions if not billions of people are connected through virtual 

acquaintanceships. Another example is the internet used in computers connected thorough 

cables or wireless signals. Many other applications are in physics biology, engineering, 

economics, ecology, computer science, marketing, political and social sciences, etc. Most 

networks have vertices organized in groups called communities, modules or clusters. 

Communities are groups of vertices which probably share similar properties and/or play 

common roles within a graph. For example, communities could represent proteins with a 

similar function in protein–protein interaction networks and groups of friends in social 

networks, websites on similar topics on the Web graph, and so on [1]. Identifying clusters 

in networks can give an indication on how they are organized. Clustering helps to group 

the nodes, support their role with regard to the communities they belong in an unsupervised 

learning fashion. Nevertheless, clustering or community detection in networks is a 
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nebulous problem. There is no comprehensive definition or clear-cut guidelines on how to 

compare different community detection algorithms and judge their performance. On one 

hand, such opacity, open the freedom to propose varied approaches to the problem, which 

often depend on the specific research question and (or) the particular system at study. 

Modularity maximization is one of the most popular approaches in community detection. 

Modularity can be defined as a quality metric that measures the difference between the 

actual density of edges within the cluster and the density of the subgraph in a randomized 

graph with equivalent number of nodes and edges [12]. However, modularity maximization 

solution has practical problems such as resolution limit and degeneracy [1]. Recently, an 

alternative clustering measure called modularity density has been proposed to overcome 

the resolution limit of modularity maximization. So, modularity maximization and 

modularity density maximization, standing as one of the most reviewed clustering methods, 

will be the base of our work. We propose that there is a gap in operations research literature 

especially for modularity density maximization and conduct the problem statement in the 

next section. 
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1.2 Problem Statement  

Given a graph 𝐺 =  (𝑉, 𝐸) where V is the set of vertices and E is the set of edges. 

Forming subgraphs having similar properties, based on particular criteria, is called 

community detection. One of the most popular criterion of community detection is via 

modularity maximization. However, modularity maximization has some issues such as 

resolution limit and degeneracy. Resolution limit is the possibility of not detecting 

communities that are smaller than a scale, which depends on the network size and 

interconnection between clusters, because they could be  merged with other lager 

communities [59]. Modularity function Q is  also suffering from degeneracies which is the 

difficulty of finding an optimal solution because of the existence of many near optimal 

solutions [60]. To overcome this issue a new measure called modularity density 

maximization is used. Much research has been done in this area. However, there are some 

gaps in operations research literature. Modularity Density Maximization (MDM) aims to 

reduce the out links between clusters. So, the less out connection the better it is. The out 

connections can also be perceived as a distance. Thus, in our model we consider 

minimizing the deep out connection instead of minimizing the out links. For example, we 

don’t want someone to be deeply rooted to someone else in another cluster because we 

want them to be in separate clusters. Moreover, we observe in the literature that modularity 

density maximization solution can have negative values for some communities which 

indicates a weak definition of MDM. Thus, we notice that most papers on MDM talk about 

the scale and computational time, however MDM is still not proved to result in accurate 

community detection. Hence, the problem is that the community information being hidden 

inside the network representation and there is always a need to extract different 
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communities which maybe closer to ground-truth ones. So, developing mathematical 

programming formalism to address community detection more accurately for some 

scenarios and also solution methodologies under the formalism will result in better 

outcomes for some data sets.      

1.3 Research Objectives 

The main objective of this work is to provide a Modified Modularity Density 

Maximization (MMDM) approach that can address community detection more accurately. 

In the first part we formulate the problem as MILP and solve the model optimally for some 

data sets. In the second part we propose a heuristic that can solve larger instances that 

cannot be solved by MILP or take a long time to solve. Lastly, we bench mark the obtained 

results of Modified Modularity Density Maximization (MMDM) With Modularity Density 

Maximization (MDM). 

The milestones of this research are the following: 

1. Reinvestigate current MDM formulations and column generation approaches to 

apply on different data sets.  

2. Investigate MILP formulations of modularity density maximization to modify 

objective function and/or add new constraints that may reflect some facts in the 

used data sets. 

3. Propose a heuristic to solve larger data set of the proposed model.  

4. Validating the results of the new model by applying some clustering quality 

metrics. 
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1.4 Approach 

To achieve our objectives, the work will be divided into steps as following: 

1. Real data sets can be collected from many popular network data sets website such 

as SNAP. Moreover, we can simulate datasets. 

2. Applying optimization solution techniques for ILP and MILP problems.  

3. Use optimization solvers such as CPLEX and BONMIN to solve the mathematical 

formulation. 

4. Use one of most common programing languages such as python to code our 

heuristic algorithm.  

5. Comparison between modified modularity density maximization MMDM with 

modularity density maximization MDM in term of cluster validation.  

6. Concluding and proposing future studies.  
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2 CHAPTER 2 

LITERATURE REVIEW 

The purpose of this chapter is to present the literature related to community detection 

in networks. First, we review older methods proposed to detect communities such as 

hierarchal, spectral, divisive and dynamic clustering. Then we cover the literature of 

detecting communities through modularity maximization which is one of the most popular 

methods. Finally, we introduce the literature that focuses on modularity density 

maximization which is one of the most recently studied community detections metric. 

2.1 Traditional Methods    

2.1.1   Graph Partitioning 

 

Graph partitioning problem is dividing the vertices into k clusters of predefined 

size, in a way that the number of edges lying between the clusters is minimal. These number 

of edges connecting the different clusters are called cut size. Imposing a partition with the 

minimal cut size without specifying the number of clusters gives a trivial solution, so it is 

very important to constraint on the number of clusters. Most variants of the graph 

partitioning problem are NP-hard [2]. Nevertheless, there are many algorithms that can 

partition a network efficiently, even if their solutions are not optimal [3]. Most of these 

algorithms depend on algebraic, geometric and multilevel ideas. One of the earliest 

proposed algorithms is the Kernighan-Lin algorithm [4]. This algorithm is still used 
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because of its low computational time. Kernighan-Lin algorithm is extended to get 

partitions for any number of parts [5]. However, the run-time and storage costs increase 

rapidly with the number of clusters. Maximum flows concept was used by Flake et al [6] 

to identify clusters. Although these partitioning algorithms are efficient, they have certain 

ambiguities in clustering such as requiring that the number of clusters and their sizes are 

known in advance.  

2.1.2 Hierarchal Clustering  

 

Hierarchical clustering is a widely used tool in data analysis. The idea of this 

method is to build a binary tree of data that combine similar groups of points [3]. As other 

clustering techniques, hierarchal clustering intents to find a group of vertices having high 

similarity. Hierarchal clustering can be classified in two categories [1]: 

1. Agglomerative algorithms are bottom-up techniques, where at the beginning every 

object belongs to an individual cluster and then clusters are iteratively merged based on 

their high similarity until all objects form a single cluster; 

2. Divisive algorithms, are top-down techniques where at the beginning all objects belong 

to a single cluster and then clusters are iteratively split by removing edges connecting 

vertices with low similarity [1] until every object belongs to an individual cluster.  

2.1.3 Partitional Clustering 

 

In partitional clustering the goal is to separate objects in to k communities such that 

a given cost function of distance from points to centroid or between points is 

maximized/minimized, as in reference [1]. The most popular partitional technique in the 
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literature is k-means clustering [7]. The idea of this algorithm depends on starting with a k 

groups and each group consists of only one random point. Then iteratively assign each new 

data point to the cluster with the nearest mean and the mean of each new group is 

recalculated. This procedure is repeated until no points change cluster memberships. There 

are many variations of k-means algorithm such as fuzzy k-means [8].  

2.1.4   Spectral Clustering 

In 1973 Donath and Hoffmann [9] propose the first algorithm on spectral clustering. 

They use eigen vectors of the adjacency matrix to partition the graph. Spectral clustering 

makes use of eigen values of the similarity matrix of the data. The similarity matrix is 

provided as an input and consists of a quantitative assessment of the relative similarity of 

each pair of points in the dataset [3]. Andrew Y. Ng et. al [10] propose a particular manner 

to use the k eigenvectors simultaneously. They also present the conditions when the 

algorithm will perform efficiently.   

 

2.2 Divisive Algorithms   

Detecting edges which connect vertices of different clusters and remove them to 

disconnect clusters from each other is the essence of divisive algorithms [1]. Girvan and 

Newman [11], [12] proposed one of most popular algorithms using divisive approach. This 

algorithm initially removes edges from the network by using one of edge betweenness 

measures, such as standard shortest path betweenness of Freeman [1]. The second step is 

called recalculation step in which betweenness scores are re-evaluated after the removal of 

an edge [12].   
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2.3 Spectral Algorithms  

Slanina and Zhang [13], through empirical study, have shown that if the graph has 

a clear community structure, then one can localize eigen vectors of the adjacency matrix. 

Capocci et al [14] use a spectral technique to detect communities in directed graphs. They 

have converted the directed graph into undirected weighted graph and performed the 

analysis. Alves [15] uses eigen values and eigen vectors of the Laplacian matrix to compute 

the effective conductance for pairs of nodes in a graph. 

2.4 Dynamic Algorithms  

 2.4.1   Spin Models  

Reichardt and Bornholdt [16] propose an algorithm by combining the idea of graph 

bi-partitioning by Fu and Anderson with a modified Ising Hamiltonian and Potts model 

clustering of multivariate data by Blatt et al. [17]. They alter a q-state Potts Hamiltonian 

by adding a global constraint that forces the spins into communities. 

2.4.2   Random Walk  

Hughes [18] shows that random walk can be useful to detect the clusters in a graph. 

However, if a graph consists of many communities, a random walker spends a long time 

inside a community due to the high intra-connections among all the vertices. One of the 

advantages of random walk algorithms is that it can be easily extended for weighted graphs.  

Zhou and Lipowsky [19] use biased random walkers, where the bias happens to the fact 

that walkers usually move towards the nodes sharing a large number of neighbors with the 

starting node in a graph. A proximity index is defined to show that how much a pair of 
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nodes is closer to all other nodes in the graph. The procedure is called Net Walk and is 

used to detect the communities in a graph, where Net Walk is a hierarchical clustering 

method, and the proximity defines the similarity.  
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2.5 Modularity Maximization   

Modularity (Q) maximization is one of the most popular community detection 

methods. Modularity is one of the quality metrics that measures the difference between the 

actual density of edges within the cluster and the density of the subgraph in a randomized 

graph with equivalent number of nodes and edges. Modularity is based on the idea that the 

actual subgraphs should have more links between themselves than a random one. Thus, 

when the value of Q is close to 1 it means the nodes in the community is highly connected. 

On the other hand, Q closing to 0 indicates that the fraction of edges inside communities is 

no better than the random case [20]. According to M. E. J. Newman and M. Girvan [12] 

modularity can be defined as 𝑄 =  ∑ (𝑒𝑖𝑖 − 𝑎𝑖
2)𝑖   where 𝑎𝑖 = ∑ 𝑒𝑖𝑗𝑗   represents the fraction 

of edges that connect to vertices in community 𝑖 and 𝑒𝑖𝑗 = 𝑎𝑖𝑎𝑗 is the fraction of all edges 

in the network that link vertices in community 𝑖 to vertices in community  𝑗. So, modularity 

can be represented as  

𝑄 = ∑ [
|𝐸𝑐𝑖

𝑖𝑛|

|𝐸|
− (

2|𝐸𝑐𝑖
𝑖𝑛|+|𝐸𝑐𝑖

𝑜𝑢𝑡|

2|𝐸|
)

2

]𝑐𝑖∈𝐶    (2-1), 

where 𝐶 is the set of all the subgraphs, and |E| is the total number of edges in the network, 

𝑐𝑖 is a specific cluster in C, 𝐸𝑐𝑖

𝑜𝑢𝑡 is the number of edges from the nodes in cluster 𝑐𝑖 to the 

nodes outside 𝑐𝑖, 𝐸𝑐𝑖

𝑖𝑛 is the number of edges between nodes within cluster 𝑐𝑖. Modularity 

also can be represented, according to M. E. J. Newman [21] , as   

𝑄 =  
1

2|𝐸|
∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2|𝐸|
] 𝛿𝑐𝑖,𝑐𝑗𝑖𝑗    (2-2), 
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 where 𝐴𝑖𝑗 is an element belonging to row 𝑖 column 𝑗  of the adjacency matrix, 𝑘𝑖 is the 

degree of node 𝑖, 𝑐𝑖 is the label of the community to which node 𝑖 is assigned  𝛿𝑐𝑖,𝑐𝑗
 is the 

Kronecker delta symbol where 𝛿𝑐𝑖,𝑐𝑗
= 1 if 𝑖 and 𝑗 are in the same cluster and 𝛿𝑐𝑖,𝑐𝑗

= 0 

otherwise.  To illustrate the concept of modularity we give a numerical example and show 

how we can calculate the 𝑄 value. Consider a network with 8 nodes and 19 edges as in 

figure 2-1. Using fast greedy approach in RStudio we get a graph partition of two 

communities as in figure 2-2. The set of the blue nodes represents community one and the 

orange represents community two. According to expression (2-1) we calculate the 𝑄 as: 

𝑄 = ∑ [
|𝐸𝑐𝑖

𝑖𝑛|

|𝐸|
− (

2|𝐸𝑐𝑖
𝑖𝑛|+|𝐸𝑐𝑖

𝑜𝑢𝑡|

2|𝐸|
)

2

]𝑐𝑖∈𝐶 = [(
3

19
− (

(2)(3)+8

38
)

2

) + (
8

19
− (

(2)(8)+8

38
)

2

)] = 0.0221 

+ 0.0222=  0.0443. For expression (2-2) 𝑄 =  
1

2|𝐸|
∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2|𝐸|
] 𝛿𝑐𝑖,𝑐𝑗𝑖𝑗  e.g.   for 𝑖 =  1 and 

𝑗 =  3, [𝐴13 −
𝑘1𝑘3

2|𝐸|
] 𝛿2,2,  =  1 −

(6)(6)

(2)(19)
 (1) =

1

19
 . We do same procedure for all pairs of 

nodes and sum up all the results to get the value of 𝑄which is equal to 0.0443 in this 

example. 

 

 

 

 

 

 

 Figure 2-1 A Toy Graph of 8 Nodes and 19 Edges Figure 2-2 Community Detection via Fast 

Greedy Approach 
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The modularity formulations above are suitable only for unweighted and undirected 

graphs. modularity can be modified and applied for weighted and directed graphs. The 

modified definition of modularity  for directed networks is as follows [22]:   𝑄 =

 
1

|𝐸|
∑ [𝐴𝑖𝑗 −

𝑘𝑖
𝑖𝑛𝑘𝑗

𝑜𝑢𝑡

|𝐸|
] 𝛿𝑐𝑖,𝑐𝑗𝑖𝑗  (2-3) where and 𝑘𝑗

𝑜𝑢𝑡 and 𝑘𝑖
𝑖𝑛 are the out- and in- degrees. For 

weighted graphs someone can apply the same general techniques of un weighed graphs by 

mapping weighted networks onto multigraphs [23]. As mentioned earlier, high value of 

modularity (Q) indicates a good community structure so it is natural to optimize Q in a 

maximizing fashion. However, one of the disadvantages of this optimization is that it 

requires high computational time because of the large number of possible partitions 

specially in complex networks. Modularity optimization is shown to be NP hard [24]. 

Therefore, many heuristic methods are proposed to find high-modularity partitions in a 

reasonable time. These methods are as follows: 

2.5.1   Greedy Algorithms 

Newman [25] proposed the first greedy algorithm based on agglomerative 

hierarchical clustering method. Initially, every node is considered as a cluster, creating 

altogether |𝑉 | clusters. Next, the algorithm merge pairs of clusters that form the largest 

modularity. Then continue repeating this step until all the nodes in the network are in a 

single community after (|𝑉 |  −  1) steps of merging. One of the advantages of Newman’s 

algorithm [25] is that it is much faster than the algorithm of Newman and Girvan [12]. 

However, when the network is sparse its matrix will have a lot of zeros involving many 

unnecessary operations to update the adjacency matrix at each step has. Clauset et al. [26] 

introduce special data structures to perform better matrix updating for sparse matrices. 

However, greedy algorithm proposed by Clauset et al. is not applicable for networks larger 
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than 500,000 nodes. Wakita and Tsurumi [27] discover that merging clusters in an 

unbalanced manner, which yields very unbalanced dendrograms, is the reason behind this 

limitation. The paper introduces three heuristics that attempt to balance the size of clusters 

being merged. It has successfully removed this size limitation and obtained community 

structures of a large network consists of more than 5,000,000 nodes. Another algorithm 

was introduced by Blondel et al. [28] which is divided into two phases that are repeated 

iteratively. Initially, every node is considered as a cluster itself, so there are |𝑉| clusters. In 

the first phase, every node is merged with neighboring cluster that forms the largest positive 

gain. The node stays in its cluster if all possible gains associated with the merging of this 

node are negative. This merging procedure repeats iteratively until there is no increase in 

the value of Q. The resulting 𝑄 from the first phase is considered as a local maximum. 

Then, the second phase make use of the results of the first phase to build a community 

network.   

2.5.2   Spectral Algorithms 

Spectral algorithms of modularity maximization can be categorized into two types:  the 

first type is based on Laplacian matrix and the other is based on the modularity matrix of a 

network.  

A. Modularity optimization using the eigenvalues and eigenvectors of the 

modularity matrix. 

Modularity (Q) can be expressed as 𝑄 =  
1

4|𝐸|
∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2|𝐸|
] 𝑠𝑖𝑠𝑗 =

1

4|𝐸|
 𝑠𝑇𝐵𝑠 𝑖𝑗  (2-4) where 

𝑠 is the column vector representing any division of the network into two groups, 𝐴𝑖𝑗 are 

the elements of adjacent matrix 𝐴, 𝑠𝑖  =  −1 if it belongs to the second group and 𝑠𝑖  =  +1 

if node 𝑖 belongs to the first group [21]. 𝐵 is the modularity matrix with elements 𝐵𝑖𝑗  =
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 𝐴𝑖𝑗  −
𝑘𝑖𝑘𝑗

2|𝐸|
  (2-5). However, the spectral algorithm described above has two drawbacks. 

First, instead of getting all the clusters directly in a single step, it divides a network into 

more than two communities by repeated division. Second, only leading eigenvector of the 

modularity matrix is used, and the other eigenvectors are ignored. Using multiple leading 

eigenvectors, Newman [29], propose an algorithm to divide a network into a set of clusters 

C with |𝐶|  ≥  2 directly. Richardson et al. [30] presents a computationally-efficient 

method called spectral tri partitioning where they divide the plane of node vectors into 

three groups in a single partitioning step using the leading pair of eigenvectors of a 

modularity matrix. 

     B. Modularity optimization using the eigenvalues and eigenvectors of the 

Laplacian matrix 

Given a set of clusters C and the corresponding “cluster-assignment” matrix 𝑆 =  (𝑠𝑐), 

White and Smyth [31] rewrite modularity (Q) as follows: 𝑄 =  −𝑇𝑟(𝑆𝑇𝐿𝑄𝑆) (2-6), where 

the matrix 𝐿𝑄  =  �̌�  −  𝑊  (2-7) is called the “Q-Laplacian”. Finding the clusters 

assignment matrix 𝑆 which maximizes 𝑄 above is NP-complete. However, by relaxing the 

discreteness constraints of the elements of 𝑆  we can find a good approximation. However, 

because of running k-means partitioning the two algorithms, especially “Algorithm 

Spectral-1”, is not efficient for large networks. Ruan and Zhang [32] proposed the Kcut 

algorithm which is efficient computationally and improves the quality of the identified 

clusters.  At each recursive step, Kcut adopts a k-way partition (𝑘 =  2, 3, . . . , 𝑙) to the 

subnetwork induced by the nodes and edges in each community using “Algorithm Spectral-

1” of White and Smyth [31]. Then, it selects the 𝑘 that achieves the highest 𝑄. Newman 

[33] shows that with hyper ellipsoid relaxation, the spectral modularity maximization 
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method using the eigenvalues and eigenvectors of the modularity matrix can be formulated 

as the spectral algorithm that relies on the eigenvalues and eigenvectors of Laplacian 

matrix. He also shows that there is no difference in term of computational time between 

the spectral algorithms of modularity maximization, normalized cut graph partitioning and 

likelihood maximization.  

2.5.3   Simulated Annealing Algorithms  

Simulated annealing (SA) is a probabilistic procedure for solving unconstrained 

and bound-constrained optimization problems. This method was adopted for community 

detection problems in [34],[35],[36] and [37]to maximize modularity (Q). All the 

algorithms in [34],[35],[36] and [37]start with partitioning of nodes into clusters, even 

including |𝑉 | clusters where each node belongs to its own cluster. A community c and a 

node 𝑖 is chosen randomly in each iteration. This community could be a currently existing 

community, or an empty community introduced to increase the number of communities. 

Then, node 𝑖 is moved from its original community to this new community 𝑐, which would 

change 𝑄 by ∆𝑄. If ∆𝑄 is greater than zero, this update is accepted, otherwise it is accepted 

with probability 𝑒𝛽∆𝑄 where 𝛽 in [34],[35],[36] and [37]represents the inverse of 

temperature T and 𝛽 in [20] is the reciprocal of pseudo temperature 𝜏. In addition, in [38], 

there is one more condition for the move of a node when c is not empty. Shifting node 𝑖 to 

𝑐 is considered only if there are some edges between node 𝑖 and the nodes in 𝑐. 
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2.5.4   Mathematical Modeling  

Graph clustering can be defined as an optimization problem where there is a 

specific objective function to optimize and some constraints to satisfy  [38]. Agarwal and 

Kempe [39] propose two novel algorithms for modularity maximization based on a linear 

programing (LP) relaxation of an integer programing(IP) and vector program (VP) 

relaxation of a quadratic program (QP). The integer programing formulation as follows: 

Max 
1

2|𝐸|
∑ 𝐵𝑖𝑗(1 − 𝑥𝑖𝑗)𝑖𝑗     (2-8) 

s.t 

𝑥𝑖𝑗 ≤  𝑥𝑖𝑗 + 𝑥𝑗𝑘   ∀ 𝑖, 𝑗, 𝑘      (2-9) 

𝑥𝑖𝑗 ∈  {0, 1}∀ 𝑖, 𝑗                  (2-10) 

Where  𝑥𝑖𝑗   is a binary variable that 𝑥𝑖𝑗 = 1 if   𝑖 and 𝑗 belong to different communities and 

𝑥𝑖𝑗 =  0 if they are in the same community, and  𝐵= 𝑎𝑖,𝑗 −
𝑑𝑖𝑑𝑗

2𝑚
  is the modularity matrix. 

Constraint (2-9) requires that 𝑖 and 𝑘 are in the same community if and only if 𝑖, 𝑗, and 𝑘 

are in the same community.  Agarwal and Kempe employ a linear programing, which can 

be solved in polynomial time, by replacing constrain (2-10) – that  𝑥𝑖𝑗 ∈  {0, 1}  – with  

𝑥𝑖𝑗 ∈ [0,1]. However, if the solution is fractional, rounding of the LP is needed. The second 

algorithm is a vector program (VP) relaxation of a quadratic program (QP) by dividing a 

network into two communities which is similar to the approach proposed by Newman [29].  

The quadratic program (QP) can be written as:  

Max 
1

4|𝐸|
∑ 𝐵𝑖𝑗(1 + 𝑠𝑖𝑠𝑗)𝑖𝑗    (2-11) 

s.t 

𝑠𝑖
2 = 1 ∀𝑖           (2-12), 



18 

 

where constraint 𝑠𝑖
2 = 1 ensures that 𝑠𝑖 = ±1 which implies that node 𝑖 belongs either to 

the first or the second community. Since quadratic programming is NP-complete, it has 

been relaxed to a vector program by standard technique of relaxing the QP. According to 

[40]  modularity maximization was formulated as a mixed integer quadratic programming 

(MIQP)  as follows : 

 

max 𝑄 = ∑ [
𝐿𝑚

𝐿
− [

𝐷𝑚

2𝐿
]

2

]𝑚       (2-13) 

s.t 

𝐿𝑚 = ∑ 𝑋𝑙𝑚𝑙      ∀ 𝑚      (2-14) 

𝐷𝑚 = ∑ 𝑑𝑛𝑛 𝑌𝑛𝑚   ∀ 𝑚     (2-15) 

𝐸𝑚 ≤ 𝐸𝑚−1    ∀ 𝑚 = 2, … , 𝑀     (2-16) 

∑ 𝑋𝑙𝑚𝑙 ≥ 𝛼𝐸𝑚   ∀ 𝑚      (2-17) 

∑ 𝑋𝑙𝑚𝑙 ≤ 𝛽𝐸𝑚   ∀ 𝑚      (2-18) 

𝐿𝑚 − 𝐿𝑘 ≤  휀 + 𝛽(1 − 𝐸𝑘)   ∀ 𝑚, 𝑘 > 𝑚   (2-19) 

𝐿𝑚 − 𝐿𝑘 ≤  휀 + 𝛽(1 − 𝐸𝑘)   ∀ 𝑚, 𝑘 > 𝑚   (2-20) 

𝑋𝑙𝑚 ≤ 𝑌𝑛𝑚   ∀ 𝑙 =  {𝑛, 𝑒}, 𝑚 ∈  𝑀𝐿𝑙    (2-21) 

𝑋𝑙𝑚 ≤ 𝑌𝑒𝑚   ∀ 𝑙 =  {𝑛, 𝑒}, 𝑚 ∈  𝑀𝐿𝑙    (2-22) 

𝑋𝑙𝑚 = 0   ∀ 𝑙, 𝑚 𝑛𝑜𝑡 ∈  𝑀𝐿𝑙      (2-23) 

∑ 𝑌𝑛𝑚𝑚∈𝐴𝑀𝑛
=    1  ∀ 𝑛 ∈ 𝑆     (2-24) 

∑ 𝑌𝑛𝑚𝑚 = 1     ∀ 𝑛 ∈ 𝑆     (2-25) 

𝑌𝑛𝑚 ≤ ∑ 𝑌𝑒𝑚−1𝑒∈(𝐵𝑛∩𝐴𝑣𝑚−1)       ∀𝑛 ∈ 𝑆, 𝑛 ≥ 3, 𝑚 = 3. . . , |𝐴𝑀𝑛|    (2-26) 

𝐸𝑚 , 𝑋𝑙𝑚, 𝑌𝑛𝑚  ∈ {0,1} ∀ 𝑚, 𝑙, 𝑛        (2-27) 

𝐿𝑚, 𝐷𝑚 > 0    ∀ 𝑚        (2-28), 
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where  𝐿𝑚 is number of links among nodes within module 𝑚 , 𝐿 is the number of links and 

𝐷𝑚 is degree of module 𝑚. The proposed model results in an efficient computational 

performance, and this can be attributed to the special symmetry-breaking constraints. These 

constraints eliminate the equivalent solution resulting from renumbering the modules by 

allowing each node to be allocated to one of a particular set of modules. Moreover, 

modularity maximization can be reformulated as a clique partitioning problem [41]. D. 

Aloise introduces two types of formulations the row generation formulation and the column 

generation formulations. We will  present the two  formulations briefly and for more details 

you may refer to  [41] 

 

Row generation formulation 

𝑚𝑎𝑥 ∑ 𝑤𝑖𝑗𝑥𝑖𝑗 − 𝐶𝑖,𝑗∈𝑉      (2-29) 

s.t 

𝑥𝑖𝑗 + 𝑥𝑗𝑘 − 𝑥𝑖𝑘 ≤ 1        ∀ 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑛   (2-30) 

𝑥𝑖𝑗 − 𝑥𝑗𝑘 + 𝑥𝑖𝑘 ≤ 1        ∀ 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑛   (2-31) 

−𝑥𝑖𝑗 + 𝑥𝑗𝑘 + 𝑥𝑖𝑘 ≤ 1     ∀ 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑛   (2-32) 

𝑥𝑖𝑗  ∈ {0,1}            ∀ 1 ≤ 𝑖 < 𝑗 ≤ 𝑛       (2-33) 

Column generation formulation 

Max ∑ 𝑐𝑡𝑧𝑡 − 𝐶𝑡∈𝑇      (2-34) 

St. 

∑ 𝑎𝑖𝑡𝑧𝑡 = 1𝑡∈𝑇   ∀ 𝑖 = 1 , … , 𝑛   (2-35) 

𝑧𝑡  ∈ {0,1}           ∀ 𝑡 ∈ 𝑇     (2-36) 
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In addition  the author introduces a column generation reformulation of the (MIQP 

)  [41]  which appears to be the best choice because of its lower computational time and its 

ability to  solve optimally  network with 104 nodes. 

2.5.5   Modularity Limits  

 

Notwithstanding its NP-hardness, modularity maximization solution has practical 

problems such as resolution limit and degeneracy. Li and Zhang [42] propose an alternative 

clustering measure called modularity density which overcome the resolution limit of 

modularity maximization. The modularity density of a partition is defined as the sum of all 

average modularity degrees of 𝐺𝑖  𝑓𝑜𝑟 𝑖 = 1, . . . , 𝑚. Let D denote the modularity density 

called( the D value in this paper) of a partition of a network G into communities 

𝐺1 , . . . , 𝐺𝑚. Then, in contrast to 𝑄, 𝐷 can be calculated as 𝐷 = ∑ 𝑑(𝐺𝑖) =𝑚
𝑖=1

 ∑
𝐿(𝑉𝑖,𝑉𝑖)−𝐿(𝑉𝑖,𝑉�̅�)

|𝑉𝑖|
𝑚
𝑖=1  (2-37), where 𝐿(𝑉𝑖, 𝑉𝑖) is the sum of degrees of the nodes inside 

community 𝑉𝑖, 𝐿(𝑉𝑖, 𝑉�̅�) is the number of connections between nodes within the community 

𝑉𝑖and the nodes outside the 𝑉𝑖 community, |𝑉𝑖| is the number of nodes in community 𝑉𝑖. 

According to the clustering in figure 2, modularity density 𝐷 can be calculated as 𝐷 =

 (
16−8

5
) + (

6−8

3
) = 0.933. Thus, modularity density D metric has higher value compared 

to Q.  Using this definition of modularity density function Li and Zhang [42] propose a 

nonlinear integer programming model for optimizing the D value as following:  

𝑚𝑎𝑥 𝑓 =  ∑
∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑙𝑥𝑗𝑙

𝑛
𝑗=1

𝑛
𝑖=1 − ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑙(1−𝑥𝑗𝑙)𝑛

𝑗=1
𝑛
𝑖=1

∑ 𝑥𝑖𝑙
𝑛
𝑖=1

𝑘
𝑙=1    (2-38) 

s.t 

0 ≤ ∑ 𝑥𝑖𝑙
𝑛
𝑖=1 ≤ 𝑛   𝑙 = 1, … , 𝑘      (2-39) 
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∑ 𝑥𝑖𝑙
𝑘
𝑙=1 = 1 𝑖 = 1, … , 𝑛       (2-40) 

𝑥𝑖𝑙  ∈ {0,1}      𝑙 = 1, … , 𝑘         and  𝑖 = 1, … , 𝑛    (2-41) 

Where 𝑘 is the number of communities, 𝑎𝑖𝑗 is the elements of the adjacency matrix A, and 

𝑥𝑖𝑙 is a binary variable where 𝑥𝑖𝑙 = 1 denotes that the node 𝑣𝑖 belongs to the 𝑙𝑡ℎ 

community. However, it seems that modularity density maximization (MDM) as a 0-1 NLP 

formulation is more complicated than modularity maximization (MM) because it is not 

straight forward to employ the clique partitioning formulation for MDM. In other words, 

given a clique with n nodes, maximizing modularity density does not divide it into two or 

more parts. This is proved by contradiction in [42]. Costa [43] reformulates the 0-1 NLP 

model as a mixed integer linear programing (MILP). He introduces four mathematical 

models, but we will briefly present the first model and you may refer to the paper for other 

models.  

Max ∑ 𝛼𝑐𝑐∈𝐶          (2-42) 

s.t 

2 ≤ ∑ 𝑌𝑖,𝑐 ≤ |𝑉| − (|𝐶| − 1)𝑣𝑖∈𝑉        ∀ 𝑐 ∈ 𝐶    (2-43) 

∑ 𝑌𝑖,𝑐 = 1𝑐∈𝐶            ∀𝑣𝑖 ∈ 𝑉    (2-44) 

𝑊𝑖,𝑗,𝑐 ≤ 𝑌𝑖,𝑐            ∀ 𝑐 ∈ 𝐶 , ∀{𝑣𝑖, 𝑣𝑗} ∈ 𝐸  (2-45) 

𝑊𝑖,𝑗,𝑐 ≤ 𝑌𝑗,𝑐            ∀ 𝑐 ∈ 𝐶, ∀{𝑣𝑖, 𝑣𝑗} ∈ 𝐸  (2-46) 

4 ∑ 𝑊𝑖,𝑗,𝑐{𝑣𝑖,𝑣𝑗}∈𝐸 − ∑ 𝑌𝑖,𝑐𝑘𝑖𝑣𝑖∈𝑉 > ∑ 𝑆𝑖,𝑐𝑣𝑖∈𝑉       ∀ 𝑐 ∈ 𝐶  (2-47) 

𝐿𝛼𝑌𝑖,𝑐 ≤ 𝑆𝑖,𝑐 ≤ 𝑈𝛼𝑌𝑖,𝑐                 ∀ 𝑐 ∈ 𝐶 ,  ∀𝑣𝑖 ∈ 𝑉 (2-48) 

𝛼𝑐 − 𝑈𝛼(1 − 𝑌𝑖,𝑐) ≤ 𝑆𝑖,𝑐 ≤ 𝛼𝑐 − 𝐿𝛼(1 − 𝑌𝑖,𝑐)  ∀ 𝑐 ∈ 𝐶 ,  ∀𝑣𝑖 ∈ 𝑉 (2-49) 

𝑊𝑖,𝑗,𝑐 ∈ 𝑅           ∀{𝑣𝑖 , 𝑣𝑗} ∈ 𝐸, ∀ 𝑐 ∈ 𝐶    (2-50) 

𝑆𝑖,𝑐 ∈ 𝑅              ∀𝑣𝑖 ∈ 𝑉,  ∀ 𝑐 ∈ 𝐶     (2-51) 
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𝛼𝑐 ∈ [𝐿𝛼 , 𝑈𝛼]    ∀ 𝑐 ∈ 𝐶      (2-52) 

𝑌𝑖,𝑐 ∈ {0,1}        ∀ 𝑐 ∈ 𝐶,  ∀𝑣𝑖 ∈ 𝑉     (2-53) 

This model has an issue of solving the auxiliary binary Non-Linear Programs (NLPs) which 

is required as input for MILP. This issue will affect the computational time significantly 

when the network size becomes larger. Costa reformulates the auxiliary problem as a MILP  

to overcome this , so that MDM becomes a  MILP [44]. This has been done by employing 

some reformulation techniques, e.g., linearization of bilinear terms [45], [46], [47], 

expansion of integers in power of two [48], and reformulation of fractional programs [49]. 

MILP in [43] has some challenges in which a 0–1 NLP auxiliary problem needs to be 

solved  and the number of communities need to be fixed in advance. A variant of a 

semidefinite programming called 0-1SDP is proposed by [50]. He reformulates the MILP 

in [43] and show it is equivalent to semidefinite programming. The 0-1 SDP is given as  

maximize T𝑟((2𝐴 − 𝐷)𝑍) (2-54) 

s.t 

𝑍 𝑒𝑛 = 𝑛    (2-55) 

Tr (𝑍) = 𝑡    (2-56) 

𝑍2 = 𝑍    (2-57) 

𝑍 ∈ 𝑁𝑛    (2-58) 

One of the advantages of this formulation is that the size of the problem is 

independent of the number of edges of the graph. In order to obtain an upper bound on the 

modularity density, they propose to relax 0-1SDP to a semidefinite programming problem 

with non-negative constraints. The relaxation problem obtained, can be solved in 

polynomial time, and also does not require the number of communities in contrast to MILP 
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formulations. Moreover, they develop a method based on the combination of spectral 

heuristics and dynamic programming to construct a feasible solution from the solution 

obtained by the relaxation problem. In addition to its   0-1 NLP auxiliary problem difficulty, 

MILP in [45] can only solve up to 40 nodes. Thus, six column generation algorithms was 

proposed by [51] to find exact solution for MDM. The wonder of this algorithm is that it 

provides only integer solution, hence no need for further rounding procedure such as 

branch and price. The column generation formulation  of MDM in [51] is derived from 

MM formulation in  [41] is as follows: 

Max ∑ 𝑐𝑡𝑧𝑡𝑡∈𝑇      (2-59) 

St. 

∑ 𝑎𝑣𝑡𝑧𝑡 = 1𝑡∈𝑇   ∀ 𝑖 𝑣 ∈ 𝑉   (2-60) 

𝑧𝑡 ≥ 0          ∀ 𝑡 ∈ 𝑇     (2-61) 

𝑐𝑡 =
4 ∑ 𝑎𝑢𝑡𝑎𝑣𝑡𝑤𝑢𝑣𝑢,𝑣∈𝑉:𝑢<𝑣 −∑ 𝑑𝑣𝑎𝑣𝑡𝑣∈𝑉

∑ 𝑎𝑣𝑡𝑣∈𝑉
   (2-62) 

Where 𝑇 = {1, … , 2|𝑣|} is all the possible clusters, and 𝑧𝑡 is a binary variable as in MM 

but it was relaxed to obtain the dual problem. 𝑎𝑣𝑡 Variables are binary. If 𝑎𝑣𝑡 = 1, the node 

v ∈ V belongs to the cluster t , and when 𝑎𝑣𝑡 = 0 , the node v does not belong to this cluster. 

For all u, v ∈ V, the constant 𝑤𝑢𝑣 = 1 if the u and v are adjacent and 𝑤𝑢𝑣 = 0{u, v} 

otherwise. 

Izunaga [52] proposes a branch-and-price frame work for MDM that is formulated as an 

ILP of a set covering problem. He proposes a column generation of a simple MILP 

combined with set-packing relaxation and the multiple-cutting-planes to solve the 

subproblem. The proposed algorithm is able to solve instances with over 100 vertices in a 

reasonable computational time. The previously mentioned algorithms find exact solution 
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of MDM. However, there are many proposed heuristics that can give a good solution for 

MDM problem. One of the most famous heuristics is the hierarchical divisive heuristic by 

A. Costa [53]. The proposed heuristic mainly depends on the idea that firstly employed for 

modularity maximization by S. Cafieri [54], [55] and extended by A. Costa and P. Hansen  

[56], of starting by putting all vertices in one community and then recursively split it into 

two communities by maximizing the modularity density. To obtain the optimal splitting, 

the author derives four mathematical models (repetitive resolutions of an ILP or MILP) 

with two different symmetry breaking strategies. The hierarchical divisive heuristic 

provides a near optimal solution for MDM problem. Another heuristic for MDM is 

introduced by R. Santiago [57]. The author proposes seven scalable heuristics which are 

faster than many other heuristics such as BMD- λ in [50]. In addition, these heuristics can 

find the high objective value partitions for the largest instances up to 105 nodes. Although 

there are many algorithms to solve modularity density maximization problem (MDM), 

most of them are unable to handle large scale networks. Recently, Shang presents a new 

strategy based on  pre-partitioning and optimizing an improved modularity density 

increment ∆𝐷 [58]. The method starts by searching for the core nodes and pre-partitions 

the network according to the node similarity. Secondly, they use the improved modularity 

density increment ∆𝐷 as an objective function to proceed clusters integration. According 

to [58] Improved modularity density increment ∆𝐷 is defined as  

∆𝐷 = [
𝑙𝑖(𝑢)−𝑙0(𝑢)−𝑙0(𝑣)+3𝑙𝑢𝑣

𝑑𝑢+𝑑𝑣
] − [

𝑙𝑖(𝑢)−𝑙0(𝑢)

𝑑𝑢
+

𝑙𝑖(𝑣)−𝑙0(𝑣)

𝑑𝑣
] (2-63) where 𝑢 and 𝑣 are the 

merged communities, 𝑙𝑖(𝑢) is the number of connections within the community 𝑢, 𝑙0(𝑢) 

is the number of connections outside the community 𝑢, 𝑙𝑢𝑣 is the number of connections 
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between the community 𝑢 and 𝑣, 𝑑𝑢 is the sum of node degree of the nodes within the 

community 𝑢. 
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3 CHAPTER 3 

MODIFIED MODULARITY DENSITY MAXIMIZATION 

APPROACH   

Modularity density maximization was proposed to overcome the issue of resolution 

and degeneracy limits appearing in modularity maximization. Much research has been 

done in this area. However, there are some gaps in operations research literature. 

Modularity Density Maximization (MDM) aims to reduce the out links between clusters. 

So, the less out connection is the better . The out connection can also be seen as a kind of 

distance. Thus, in the Modified Modularity Density Maximization (MMDM) we minimize 

the deep connection instead of the out links which works as out connection measure. For 

example, we don’t want someone in a group to be deeply connected (distant connection) 

to someone else in another group because we want them in separate clusters. In this chapter 

we modify modularity density maximization in this sense and propose a mixed integer 

linear programing (MILP) of MMDM then we discuss the optimal results obtained by 

solving the mathematical model. 

3.1 Minimizing Longest Shortest Path Model (ML)  

In this section, we propose ML model which minimizes the longest shortest path 

between each pair of nodes in different clusters. In community detection, clusters need to 

be separated from each other’s. This mathematical model will create kind of separation 

between clusters which will be used in the next section as a separation measure between 
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clusters instead of number of out links between clusters. ML model can be formulated as 

following:   

𝑚𝑖𝑛 ∑ 𝐿𝑐𝑐             (3-1) 

s.t 

𝐿𝑐 ≥  𝑑𝑖𝑗𝑥𝑖𝑐𝑥𝑗𝑐  ∀𝑖, 𝑗, 𝑐, 𝑘  , 𝑖 ≠ 𝑗, 𝑐 ≠ 𝑘                 (3-2) 

∑ 𝑥𝑖𝑐 = 1          ∀𝑖 𝑐         (3-3) 

∑ 𝑥𝑖𝑐 ≥ 2         ∀𝑐 𝑖       (3-4) 

𝑥𝑖𝑐  ∈ {0,1}       (3-5) 

𝐿𝑐 is the longest shortest path between each pair of nodes in different clusters. Hence 

minimizing this variable will create kind of separation between clusters. 𝑑𝑖𝑗 is the distance 

matrix between the nodes of the whole graph and 𝑥𝑖𝑐 is a binary variable that will be equal 

to 1 if node i belongs to cluster c and 0 otherwise. Constraint (3-2) will check if node i and 

j are in different clusters then it will take the value of the distance between them otherwise 

it will be equal to 0. Thus, the constraint will keep updating the value of 𝐿𝑐 and with 

objective function it will pick up the highest value. Constraint (3-3) is forcing each node 

to belong to only one cluster to avoid overlapping. Constraint (3-4) is assigns at least 2 

nodes for each cluster. Nonlinear constraints (3-3) can be linearized as: 

𝐿𝑐 ≥  𝑑𝑖𝑗(𝑥𝑖𝑐+𝑥𝑗𝑘 − 1) ∀𝑖, 𝑗, 𝑐, 𝑘  , 𝑖 ≠ 𝑗, 𝑐 ≠ 𝑘       (3-5). 
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3.2 Modified Modularity Density Maximization (MMDM) 

As it is known that modularity density maximization (MDM) will try to reduce the 

out links between clusters. So, the less out connection is the better. The out connection is 

also can be seen as a kind of distance. Thus, in our model we thought of having the paths 

instead of the out links which will work as out connection measure. The  modified 

modularity density function is defined as   𝑀𝐷 = ∑ (
2𝑚𝑐−𝐿𝑐

𝑛𝑐
𝑐∈𝐶 )     ( 3-6)    where 𝑛𝑐 is the 

number of nodes inside cluster 𝑐 , 𝑚𝑐 is the number of  inside connection of each cluster, 

and 𝐿𝑐  longest shortest path between each pair of nodes of 𝑐 and different clusters. This 

expression can be written as 𝑀𝐷 = ∑ (
∑ ∑ 𝑎𝑖𝑗𝑦𝑖𝑐𝑦𝑗𝑐𝑗𝑖 −𝐿𝑐

∑ 𝑦𝑖𝑐𝑖
)𝑐∈𝐶      (3-7), where 𝑦𝑖𝑐 is a binary 

variable equals to 1 if node i belongs to cluster c and 0 otherwise and 𝑎𝑖𝑗 is the adjacency 

matrix for graph G.  A nonlinear formulation of maximizing the objective function in (3-

7) is as following:  

max ∑ (
∑ ∑ 𝑎𝑖𝑗𝑦𝑖𝑐𝑦𝑗𝑐𝑗𝑖 −𝐿𝑐

∑ 𝑦𝑖𝑐𝑖
)𝑐∈𝐶       (3-8) 

s.t 

2 ≤ ∑ 𝑌𝑖,𝑐 ≤ |𝑉| − (|𝐶| − 1)𝑖∈𝑉        ∀ 𝑐 ∈ 𝐶   (3-9) 

∑ 𝑌𝑖,𝑐 = 1𝑐∈𝐶            ∀𝑖 ∈ 𝑉   (3-10) 

𝐿𝑐 ≥  𝑑𝑖𝑗(𝑦𝑖𝑐 + 𝑦𝑗𝑐 − 1) ∀𝑖, 𝑗, 𝑐, 𝑘  , 𝑖 ≠ 𝑗, 𝑐 ≠ 𝑘   (3-11) 

𝑦𝑖𝑐  ∈ {0,1}        (3-12) 
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Constraint (3-9) decides on the upper and lower size of each cluster. Constraint (3-10) is 

forcing each node to belong to only one cluster and preventing overlapping. Constraint (3-

11) compute the largest distance between nodes of different clusters.  

3.3 Mixed Integer Linear Programing Formulation (MILP) of 

MMDM  

 

MMDM (0-1NLP) formulation can be reformulated as MILP. Nonlinearity  from 

the product of y binary variables in (3-8) can be linearized by introducing a new 𝑊𝑖𝑗𝑐 

variables using Fortet inequalities [61]. Thus, the term 𝑦𝑖𝑐𝑦𝑗𝑐 is replaced by the variables 

𝑊𝑖𝑗𝑐 adding two sets of constraints 

𝑊𝑖,𝑗,𝑐 ≤ 𝑦𝑖,𝑐            ∀ 𝑐 ∈ 𝐶  (3-13) 

𝑊𝑖,𝑗,𝑐 ≤ 𝑦𝑗,𝑐            ∀ 𝑐 ∈ 𝐶  (3-14) 

The second nonlinearity is due to the fraction, and this can be reformulated by introducing 

new variable called 𝛼𝑐 which will be maximized. Thus, we can write (3-8) as 

 
∑ ∑ 𝑎𝑖𝑗𝑊𝑖𝑗𝑐𝑗𝑖 −𝐿𝑐

∑ 𝑦𝑖𝑐𝑖
≥ 𝛼𝑐   ∀ 𝑐 ∈ 𝐶  which can be simplified as  

∑ ∑ 𝑎𝑖𝑗𝑊𝑖𝑗𝑐𝑗𝑖 − 𝐿𝑐 ≥ ∑ 𝑦𝑖𝑐𝑖 𝛼𝑐       ∀ 𝑐 ∈ 𝐶    (3-15). 

We still need to linearize the product 𝑦𝑖𝑐𝛼𝑐 which can be done by introducing a new 

variable 𝑆𝑖𝑐 which will replace each 𝑦𝑖𝑐𝛼𝑐 term and the McCormik inequalities will be 

added to the model [63]. 

𝐿𝛼𝑦𝑖,𝑐 ≤ 𝑆𝑖,𝑐    (3-16) 

𝑆𝑖,𝑐 ≤ 𝑈𝛼𝑦𝑖,𝑐        (3-17) 

𝛼𝑐 − 𝑈𝛼 (1 − 𝑦𝑖,𝑐) ≤ 𝑆𝑖,𝑐               (3-18) 
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𝑆𝑖,𝑐 ≤ 𝛼𝑐 − 𝐿𝛼(1 − 𝑦𝑖,𝑐)   (3-19) 

We still need upper 𝑈𝛼 and lower  𝐿𝛼 bound on the variable 𝛼𝑐 but this will be discussed 

later. The final MILP formulation of MMDM can be written as:  

𝑚𝑎𝑥 ∑ 𝛼𝑐𝑐∈𝐶           (3-20) 

s.t 

2 ≤ ∑ 𝑌𝑖,𝑐 ≤ |𝑉| − (|𝐶| − 1)𝑖∈𝑉         ∀ 𝑐 ∈ 𝐶     (3-21) 

∑ 𝑌𝑖,𝑐 = 1𝑐∈𝐶             ∀ 𝑖 ∈ 𝑉    (3-22) 

𝐿𝑐 ≥  𝑑𝑖𝑗(𝑦𝑖𝑐 + 𝑦𝑗𝑐 − 1)     ∀𝑖, 𝑗, 𝑐, 𝑘  , 𝑖 ≠ 𝑗, 𝑐 ≠ 𝑘  (3-23) 

𝑊𝑖,𝑗,𝑐 ≤ 𝑌𝑖,𝑐             ∀ 𝑐 ∈ 𝐶, ∀ 𝑖, 𝑗 ∈ 𝑉 , 𝑎𝑖𝑗 = 1  (3-24) 

𝑊𝑖,𝑗,𝑐 ≤ 𝑌𝑗,𝑐             ∀ 𝑐 ∈ 𝐶, ∀ 𝑖, 𝑗 ∈ 𝑉 , 𝑎𝑖𝑗 = 1   (3-25) 

∑ ∑ 𝑎𝑖𝑗𝑊𝑖𝑗𝑐𝑗∈𝑉𝑖∈𝑉 − 𝐿𝑐 ≥ ∑ 𝑆𝑖,𝑐𝑖∈𝑉         ∀ 𝑐 ∈ 𝐶     (3-26) 

𝐿𝛼𝑌𝑖,𝑐 ≤ 𝑆𝑖,𝑐 ≤ 𝑈𝛼𝑌𝑖,𝑐                 ∀ 𝑐 ∈ 𝐶 ,  ∀ 𝑖 ∈ 𝑉  (3-27) 

𝛼𝑐 − 𝑈𝛼(1 − 𝑌𝑖,𝑐) ≤ 𝑆𝑖,𝑐 ≤ 𝛼𝑐 − 𝐿𝛼(1 − 𝑌𝑖,𝑐)  ∀ 𝑐 ∈ 𝐶 ,  ∀ 𝑖 ∈ 𝑉  (3-28) 

𝑊𝑖,𝑗,𝑐 ∈ 𝑅           ∀ 𝑐 ∈ 𝐶, ∀ 𝑖, 𝑗 ∈ 𝑉 , 𝑎𝑖𝑗 = 1     (3-29) 

𝑆𝑖,𝑐 ∈ 𝑅              ∀ 𝑖 ∈ 𝑉,  ∀ 𝑐 ∈ 𝐶      (3-30) 

𝛼𝑐 ∈ [𝐿𝛼, 𝑈𝛼]    ∀ 𝑐 ∈ 𝐶       (3-31) 

𝑌𝑖,𝑐 ∈ {0,1}        ∀ 𝑐 ∈ 𝐶,  ∀ 𝑖 ∈ 𝑉      (3-32). 
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3.4 Upper 𝑼𝜶  and Lower 𝑳𝜶  Bounds. 

 

In the proposed MILP our objective variables 𝛼𝑐  are constrained by upper 𝑈𝛼 and 

lower  𝐿𝛼 bounds. So, having a good upper and lower bound will affect the performance of 

the model. As it is stated in Costa[43],  it is difficult to derive a tight upper and lower bound 

theoretically. A good upper bound can be found by maximizing the positive part of the 

objective function  max (
∑ ∑ 𝑎𝑖𝑗𝑦𝑖𝑐𝑦𝑗𝑐𝑗𝑖

∑ 𝑦𝑖𝑐𝑖
). Similarly, a good lower bound can be derived by 

minimizing the negative part of the objective function 𝑚𝑖𝑛 ∑ 𝐿𝑐𝑐 .  

Upper Bound 𝑼𝜶 

𝑚𝑎𝑥 ∑ 𝑋𝑐𝑐∈𝐶          (3-33) 

s.t 

𝑋𝑐 =
∑ ∑ 𝑎𝑖𝑗𝑦𝑖𝑐𝑦𝑗𝑐𝑗𝑖

∑ 𝑦𝑖𝑐𝑖
           ∀ 𝑐 ∈ 𝐶       (3-34) 

2 ≤ ∑ 𝑌𝑖,𝑐 ≤ |𝑉| − (|𝐶| − 1)𝑖∈𝑉        ∀ 𝑐 ∈ 𝐶    (3-35) 

∑ 𝑌𝑖,𝑐 = 1𝑐∈𝐶            ∀𝑖 ∈ 𝑉     (3-36) 

𝑦𝑖𝑐  ∈ {0,1}                                    ∀ 𝑐 ∈ 𝐶,  ∀ 𝑖 ∈ 𝑉  (3-37) 

The upper bound will be the 𝑈𝛼 = max {𝑋𝑐}       (3-38) 
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Lowe Bound 𝑳𝜶 

𝑚𝑖𝑛 ∑ 𝐿𝑐𝑐         (3-39) 

s.t 

𝐿𝑐 ≥  𝑑𝑖𝑗𝑥𝑖𝑐𝑥𝑗𝑐 ∀𝑖, 𝑗, 𝑐, 𝑘  , 𝑖 ≠ 𝑗, 𝑐 ≠ 𝑘                (3-40) 

∑ 𝑥𝑖𝑐 = 1          ∀𝑖 𝑐         (3-41) 

∑ 𝑥𝑖𝑐 ≥ 2         ∀𝑐 𝑖       (3-42) 

𝑥𝑖𝑐  ∈ {0,1}       (3-43) 

The lower bound will be  𝐿𝛼 =
−max {𝐿𝑐}

2
  (3-44) We divide by 2 because the minimum 

number of nodes in each cluster will be 2. 
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  3.5   MMDM Results and Discussion 

 

          In this section we present the results obtained by solving the Mixed Integer Linear 

Programing of the Modified Modularity Density Maximization (MMDM) explained in the 

previous chapter. The experiment was performed on a PC with 8 gigabytes RAM and core 

i 5 processor. The mathematical models used in the paper are solved using CPLEX solver 

for both MILP model and ML model [62]. For the upper bound model, BONMIN solver 

was used. Both solvers are used in GAMS software [63], while all visualization are 

performed using R and igraph library[64]. The data sets was collected from Pajek website 

(http://vlado.fmf.uni-lj.si/pub/networks/data/). In order to obtain connected undirected and 

unweighted graphs some edges were removed, like in Korea2 data set, and the orientation 

of arcs were ignored. Strike data set refers to the employees in a wood-processing facility 

starting strike because of the new changes to their compensation package. The vertices 

representing the employees and the edges representing the frequently communication 

between employees to negotiate the administration about their statement. Karate is a well-

known network which represent the friendship relationship between the members of 

Zachary karate club. In Korea 2 data set the vertices represent women and the edges are 

the discussion between them about the family planning. Mexico represents the Mexican 

political elites as the nodes and friendship, kinship or business ties as the connections 

between nodes. Chesapeake represent road-Chesapeake’s link structure. Table 3-1 contains 

summary of network data sets providing number of nodes, number of edges. It also shows 

the optimal solution of Modified Modularity Density Maximization (in term of modified 

modularity density value  𝑀𝐷 and number of clusters |𝐶| ), the upper bound (𝑈𝛼) and lower 

bound (𝐿𝛼) used in MILP of MMDM and the computational time in seconds (t) to find the 

http://vlado.fmf.uni-lj.si/pub/networks/data/
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optimal solution. In addition, we represent the optimal solution of Modularity Density 

Maximization (MDM) (in term of modularity density value  𝐷 and number of clusters |𝐶| 

), since they are strongly related.  

Table 3-1 The optimal solution of MMDM and MDM obtained by MILP in term of number of clusters, MD and 

D 

  MMDM MDM 

Data Set V E 𝑈𝛼 𝐿𝛼 |𝐶| MD t[s] |𝐶| D 

Strike  24 38 3.11 -2 3 6.458 24.53 4 8.861 

Karate  34 78 4.13 -4 2 7.411 86399.01 3 7.845 

Korea 2 35 84 4.85 -3  5  9.448 86000.08 5 11.143 

Mexico 35 117 5.33 -1.5 3 13.078 3597.00 3 8.718 

Chesapeake  39 170 6.67 -1 3 15.100 86328.5 3 7.470 
 

      For illustration purposes and graph configuration figures 3-1 and 3-2 show the optimal 

solution of MMDM and MDM for Karate network where each cluster is identified by 

different color. As seen, the optimum value of MMDM occurs when Karate network is 

clustered into 2 groups. However, MDM optimum value was with 3 clusters. Similar graph 

visualization was made for the other networks in appendix A.  

   

     

Figure 3-2 Optimal solution obtained by MILP of 

MMDM for Karate data set Figure 3-1 Optimal solution obtained by MILP of 

MDM for Karate data set 
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  Since we have different objective function from modularity density maximization D it is 

not correct to compare the two objective functions as a numerical value. Thus, the 

comparison between the two clustering methods is done through cluster validation 

approach which will be clearly discussed in cluster validation section. 

 "Difficulty”, as computational complexity of MILP, is affected by the number of 

constraints and number of variables. Table 3-2 compares the size of MMDM and MDM 

models in term of number of constraints and number of variables as equations where  𝑣 is 

number of nodes, 𝑘 is number of clusters and 𝑎𝑖𝑗  is the elements of adjacency matrix for 

graph G. As seen in table 3-2 MDM model has a smaller number of constraints and 

variables which reflects better computational time. 

Table 3-2 MILP Computational Complexity 

MMDM 

Number of constraints   𝑘𝑣(𝑣 − 1)(𝑘 − 1)

4
+ 𝑎𝑖𝑗𝑘(𝑣 − 1)𝑣 + 4𝑘𝑣 + 𝑣 + 5𝑘 

Number of variables   𝑎𝑖𝑗𝑘(𝑣−1)𝑣

2
+ 2𝑘(𝑣 + 1)  

MDM 

Number of constraints   𝑎𝑖𝑗𝑘(𝑣 − 1)𝑣 + 4𝑘𝑣 + 𝑣 + 5𝑘  

Number of variables    𝑎𝑖𝑗𝑘(𝑣−1)𝑣

2
+ 𝑘(𝑣 + 1)  
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4 CHAPTER 4 

DENSITY RATIO HEURISTIC ALGORITHM  

Modularity density maximization was proposed as a binary nonlinear programing (0-1 

NLP) which is very difficult for many solvers. Recently, Modularity density maximization 

(MDM) was formulated as mixed integer linear programing (MILP) [43]. However, the 

proposed model can solve optimally only up to 40 instances. Thus, many heuristics has 

been developed to solve larger data sets. Santiago [51] proposed six exact algorithms for 

MDM using column generation methods. The algorithms provide only integer solution 

thus, branch and price are no longer needed for further procedures. The algorithms were 

able to provide solutions up to 105 nodes only. Another exact heuristic proposed a branch-

and-price framework to solve the ILP of MDM [52]. The heuristic is deterministic and can 

solve cases over 100 nodes. In addition to the exact algorithms, a hierarchical divisive 

heuristic that works by splitting recursively a community into two new communities by 

maximizing the modularity density, was introduced by Costa [53]. Recently, Santiago 

presents seven saleable heuristics that can solve up to hundred thousand instances such as 

“Stanford Large Network Dataset Collection” [57]. In this Chapter we are going to propose 

a new heuristic algorithm named Density Ratio Heuristic that can solve larger instances 

for Modified Modularity Density Maximization. 
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4.1 Density Ratio Heuristic (DRH)  

Given a graph G (V, E) where V is the set of nodes and E is the set of edges. The 

algorithm starts by finding a set of initial solutions I where every initial solution has 

different number of clusters. K-means algorithm was a very good choose to give initial for 

our case since it needs few parameters to set such as distance matrix between nodes in the 

graph and number of clusters.  Then for each node 𝑖 in cluster k, where 𝑘 is from 1 to 

number of clusters, we compare two density ratios, Inter Density Ratio and Intra Density 

Ratio. Inter Density Ratio (𝐷𝑅𝑖𝑛𝑡𝑒𝑟) =
𝑒𝑖

|𝑐𝑙|+1
 where 𝑒𝑖 is number of connections between 

node 𝑖   in cluster 𝑘 and other nodes in other cluster l  and  |𝑐𝑙| the number of nodes in 

cluster l. Intra Density Ratio (𝐷𝑅𝑖𝑛𝑡𝑟𝑎) =
𝑎𝑖

|𝑐𝑘|
  where 𝑎𝑖 is number of connections between 

node 𝑖   in cluster 𝑘 and its neighbor nodes in the same cluster  and  |𝑐𝑘| the number of 

nodes in cluster k. If Inter Density Ratio (𝐷𝑅𝑖𝑛𝑡𝑒𝑟) is greater than Intra Density Ratio 

(𝐷𝑅𝑖𝑛𝑡𝑟𝑎), we move the node 𝑖 from its current cluster k to the new cluster l and update the 

initial solution I(P). We repeat this iteration for all nodes in each cluster 𝑘 and calculate 

the objective function value (𝑀𝐷) of MMDM. Then we repeat for all initial solutions and 

return best 𝑀𝐷 value along with its updated initial solution. The algorithm was also applied 

to evaluate the objective function value 𝐷 of MDM. Figure 4-1 shows the heuristic 

algorithm pseudo code as applied to evaluate the objective function 𝑀𝐷 of MMDM. The 

pseudo code of the heuristic will be the same for MDM with evaluating 𝐷 instead of 𝑀𝐷. 
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Figure 4-1 Density Ratio Heuristic pseudo code 
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4.2 Density Ratio Heuristic Results and Discussion  

In this section we present the results obtained by solving the Density Ratio heuristic 

explained in the previous chapter. The code was run on google colaboratory  

https://colab.research.google.com/notebooks/intro.ipynb#scrollTo=bJyydlZ5lZe3  with 

given 12 gigabyte RAM. The heuristic was solved by python using Networkx package, and 

Matplot library was used for graph visualization[65]. We applied our heuristic on 3 

different data sets with variant size. Football data set was collected from M. Girvan and M. 

E. J. Newman paper [11]. Email data set and Facebook data set was collected from 

“Stanford Large Network Dataset Collection”[66]. Football data contains the network of 

American football games between Division IA colleges during regular season Fall 2000. 

Two edges were erroneously duplicated in this data set and have been removed. Facebook 

data set consists of circles (or friends lists) from Facebook. The data was collected from 

survey participants using a Facebook app. Table 4-1 contains networks data set details such 

as number of nodes, number of edges. It also shows the value of 𝑀𝐷 obtained by our 

heuristic as we run the heuristic with changing number of clusters starting from 2 clusters 

up to 20 clusters. We also applied our heuristic to evaluate 𝐷 as objective function instead 

of 𝑀𝐷. As seen the best values of 𝑀𝐷 and 𝐷 is highlighted in bold. Big O notation is used 

in Computer Science to describe the performance or complexity of an algorithm. Big O 

specifically describes the worst-case scenario and can be used to describe the execution 

time required or the space used (e.g. in memory or on disk) by an algorithm. In worst case 

scenario DR heuristic will have number of clusters 𝑘 equals number of nodes 𝑁. So, the 

complexity of our proposed heuristic is given by 𝑂(𝑁2) where 𝑁 is the total number of 

nodes in the given graph G.  

https://colab.research.google.com/notebooks/intro.ipynb#scrollTo=bJyydlZ5lZe3
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Table 4-1 The obtained results of Density Ratio heuristic as applied to MMDM and MDM 

Data set Football Email Facebook 

C N E MD D N E MD D N E MD D 

2  115  613 19.065 17.083 1133  5451 13.495 10.997  4039 88234  89.797 88.655 

3 26.667 22.038 15.694 8.989 127.167 125.635 

4 33.851 26.397 23.591 14.176 177.442 176.688 

5 40.307 28.913 24.420 10.225 197.397 196.682 

6 47.235 33.076 32.059 16.843 195.349 180.493 

7 52.362 33.468 36.481 17.325 231.887 196.642 

8 57.323 34.876 41.231 19.395 262.218 245.297 

9 65.140 40.130 40.819 11.348 261.021 245.240 

10 72.186 44.340 47.492 15.573 328.723 310.623 

11 76.447 44.388 50.710 12.899 327.142 262.984 

12 73.290 30.781 51.303 5.217 409.405 345.366 

13 72.625 21.114 54.200 8.774 474.864 389.984 

14 71.950 11.406 59.406 11.364 442.211 344.403 

15 74.400 9.228 63.624 10.849 591.872 495.944 

16 73.003 -2.209 62.868 2.505 542.103 443.452 

17 74.890 -6.026 73.802 10.139 614.246 332.325 

18 70.223 -6.456 72.947 1.984 498.416 327.782 

19 69.333 -6.994 72.329 5.351 567.228 322.354 

20 66.324 -7.044 76.009 -0.348 524.662 261.470 
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           For illustration purposes and graph configuration figure 4-2 and 4-3 show the best 

solution given by Density ratio heuristic of MMDM and MDM for Facebook network 

where each cluster is identified by different color. As seen, the best value of MMDM occurs 

when Facebook network is clustered into 17 groups. However, MDM best value was with 

15 clusters. Similar graph visualization was made for the other networks in appendix A.  

Since different community detection algorithms will exhibit different results that is 

affected by the features of the data sets and their predefined groups. It is very challenging 

task to judge on the performance community detection algorithm. Evaluating the results of 

the proposed community detection algorithm will be done by cluster validation approach 

explained in the next chapter. 

Figure 4-3 Best value obtained by applying Density 

Ratio heuristic on MMDM for Facebook data set 

Figure 4-2 Best value obtained by applying Density 

Ratio heuristic on MDM for Facebook data set 
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5 CHAPTER 5 

 CLUSTER VALIDATION   

In data mining, different community detection algorithms will exhibit different 

results that is affected by the features of the data sets and their predefined groups. So, it is 

very challenging task to judge on how community detection algorithm is good. Evaluating 

the results of community detection algorithms and goodness judgment is called cluster 

validation[67]. There are three types of cluster validation named as internal validation, 

external validation, and relative validation[68]. The internal validation cares about the 

internal information of the clustering process regardless of any external clustering 

information. It can be also used for determining the right number of clusters. The external 

validation is comparing the clustering of the proposed community detection algorithm with 

the real partitioning of the datasets. The relative validation is about evaluating clustering 

structure by changing different parameter values such as varying the number of clusters c 

for the same community detection algorithm. Since external validation requires a ground 

truth which is not provided in most data sets and relative cluster validation is not commonly 

used in the literature, we are going to use internal cluster validation to evaluate our 

proposed model and heuristic. Internal cluster validation is much more realistic and 

efficient in many real-world scenarios as it does not refer to any assumed references from 

outside which is not always feasible to obtain. Particularly, with the huge increase of the 

data size, one can hardly claim that a complete knowledge of the ground truth is available 

or always valid. 
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5.1 Internal Cluster Validation   

    Internal validation measure always refers to separation and compactness of the 

detected communities. Compactness of a cluster is a measure of how the instances inside 

the cluster are close to each other [69]. Many validation indices consider the distance 

measures, such as the variance between instances, as a closeness measure. Thus, lower 

variation between the instances belongs to the same cluster represents good compactness. 

However, separation of a clusters points how different clusters are separated from each 

other. In many validation indices they reflect this separation by conducting the distance 

between cluster’s centroids or the minimum distance between each pairs of instances 

belong to different clusters. In this paper we will use Dunn index, which is based on 

diameter and distances, and Silhouette index which depends on node’s neighborhood. 

Generally, most indices of cluster internal validation  represented as 
𝛼 x 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛

𝛽 x 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 
  where  

𝛼  and  𝛽 are weights. 

5.1.1 Dunn Index  

        Dunn index is one the most common used cluster internal validation indices. It is 

defined as the ratio between the minimum distance between clusters(min.separation) to the 

maximum diameter (intra-compactness) as following  𝑫 =
𝒎𝒊𝒏.𝒔𝒆𝒑𝒂𝒓𝒂𝒕𝒊𝒐𝒏

𝒎𝒂𝒙.𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓
. If the dataset has 

well-separated and compact clusters, the distance between the clusters is expected to be 

large and the diameter of the clusters is expected to be small [70]. Thus, based on the 

Dunn’s index definition, large values of the index represents well-separated and compact 

clusters. On the other hand, bad separated and less compact clusters will give low index 

value close to 0. In table 1, the obtained results from MMDM is compared with the results 

provided by MDM model from the literature in terms of Dunn Index. Table 5-1 shows that 
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MMDM method has higher Dunn index value than MDM for Karate network as well as 

Korea network. This indicates that our MMDM method detected communities that are 

more compact and well separated than what MDM detected. For Mexico and Chesapeake 

data sets MMDM and MDM give the same value of Dunn index. For Strike data sets, MDM 

gives higher Dunn index value  

Table 5-1 Comparison between MMDM and MDM in term of Dunn index 

Data sets 

MMDM MDM 

|𝐶| Dunn index  |𝐶| Dunn index 

Strike 
3 0.167 4 0.333 

Karate 
2 0.250 3 0.091 

Mexico 
3 0.250 3 0.250 

Korea2 
5 0.250 5 0.167 

Chesapeake  
3 0.333 3 0.333 

 

  

5.1.2 Silhouette index  

Silhouette index is also considered as one of the most famous internal validation 

indices, that estimates the average distance between clusters. Silhouette width of the 

instance i is given as  𝑆𝑖 =
𝑏𝑖−𝑎𝑖

𝑚𝑎𝑥(𝑏𝑖,𝑎𝑖)
  where 𝑏𝑖 is the inter-dissimilarity and 𝑎𝑖 is the intra-

dissimilarity of the instance i [71]. The value of Silhouette index is between -1 and 1. The 

larger 𝑆𝑖 (value closer to 1) means the instance is very well clustered and the negative value 

of 𝑆𝑖 indicates wrong cluster for that instance. In table 5-2 we compare the results of our 

model (MMDM) and the results of the MDM model from the literature in terms of 

Silhouette index. Table 2 shows that MMDM method has higher Silhouette index value 
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than MDM for Karate, Mexico and Korea 2 data sets. For Strike and Chesapeake data sets 

MDM has slightly higher Silhouette index value than MMDM. 

Table 5-2 Comparison between MMDM and MDM in term of Silhouette index 

Data sets 

MMDM MDM 

|𝐶| 
Silhouette index  

|𝐶| 
Silhouette index  

Strike 
3 0.400 4 0.413 

Karate 
2 0.329 3 0.140 

Mexico 
3 0.220 3 0.210 

Korea2 
5 0.291 5 0.247 

Chesapeake 
3 0.120 3 0.210 

 

5.1.3 Modularity Index  

Modularity (Q) is one of the quality metrics that measures the difference between 

the actual density of edges within the cluster and the density of the subgraph in a 

randomized graph with equivalent number of nodes and edges. Thus, when the value of Q 

is close to 1 it means the nodes in the community is highly connected. On the other hand, 

Q begins close to 0 indicates that the fraction of edges inside communities is no better than 

the random case. In table 5-3 we compare the results of our model (MMDM) and the results 

of the MDM model from the literature in terms of modularity. Table 5-3 shows that 

MMDM method has higher modularity value than MDM for Mexico and Chesapeake data 

set. It also shows that MMDM has lower modularity value than MDM for Strike, Karate 

and Korea2 data sets.  
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Table 5-3 Comparison between MMDM and MDM in term of Modularity index 

Data sets 

MMDM MDM 

|𝐶| Modularity index |𝐶| Modularity index 

Strike 
  3 0.521 4 0.561 

Karate 
2 0.372 3 0.402 

Mexico 
3 0.359 3 0.354 

Korea2 
5 0.425 5 0.439 

Chesapeake  
3 0.266 3 0.229 
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5.2 Heuristic Validation  

The main purpose of introducing the heuristic approach was to solve large data sets that 

can’t be solved optimally or take very long time to solve. After we stablish the heuristic 

idea, we tested it on the small data sets that we solved optimally. Table 5-4 shows a 

comparison of MMDM value achieved optimally and by the heuristic. Compare function 

in R software was used to check for the equality. The function gives a ratio between 0 and 

1, where the value close to 1 means the tow values are similar while value close to 0 means 

the tow object are different from each other. As it is shown in table 4 most of the ratios are 

close to 1 which means the values are almost similar which indicates that our heuristic is 

working properly.    

 

Table 5-4 Comparison of MMDM value achieved optimally and by the heuristic 

Data sets |𝑪| MMDM Heuristic  Compare Ratio 

Strike 3 8.073 6.35 0.87 

Karate 2 7.411 7.411 1.00 

Korea 2 5  9.448 9.448 1.00 

Mexican 3 13.078 13.01 0.94 

Chesapeake 3 15.010 14.828 0.94 

 

       For large data set, we present the best results obtained by Density Ratio Heuristic 

applied to MMDM and MDM and compare them in term of internal cluster validation. 

Table 5-5 shows Dunn Index, Silhouette Index and modularity for the results obtained by 

Density Ratio Heuristic. 
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Table 5-5 Density Ratio Heuristic applied to MMDM and MDM and compare them in term of internal cluster 

validation 

 MMDM  MDM 

Data set |𝐶| MD t(s)  Dunn 

index  

Silhoue

tte 

 index  

Modu

larity  

|𝐶| D t(s) Dunn 

index  

Silhouet

te 

 index  

Modul

arity  

Football  11 76.447 2.74 0.333 0.341 0.603 11 44.388 2.71 0.333 0.341 0.603 

Email  20 76.009 9.8 0.143 0.022 0.448 8 19.395 3.8 0.143 0.031 0.455 

Facebook  17 614.246 285.8 0.25 0.136 0.712 15 495.944 10.5 0.125 0.095 0.778 

 

As seen in table 5-5, for football network, applying Density Ratio Heuristic to 

MMDM gives almost similar values to MDM in term of Dunn, silhouette and modularity 

indices. Similarly, for email network the results were very close to each other with   slight 

priority of MDM in Silhouette and modularity indices. For Facebook network, applying 

the heuristic to MMDM gives better solution than applying it to MDM in terms of Dunn 

index and Silhouette indices and lower value in term of modularity index. Table 5-5 also 

shows that the computational time of applying Density Ratio heuristic on both MMDM 

and MDM. As seen, our proposed heuristic, beside it solves large networks, it has very low 

computational time compared to the computational time of solving the problem optimally 

specially when we apply it to MDM.   
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6 CHAPTER 6 

 CONCLUSION AND RECOMMENDATIONS    

In this work, we proposed a modified modularity density maximization clustering 

method. We consider minimizing the deep furthest connection instead of the total out links 

which works as an out-connection measure. A MILP formalism was introduced to 

maximize the modified modularity density value MD and we obtain optimal value for 

instances up to 39. The obtained results were compared with MDM results in term of 

internal clustering validation approach.   Unfortunately, large data sets cannot be solved by 

this MILP, so we proposed what we called Density Ratio heuristic. The main idea of the 

heuristic was to move each node, that has Intra Density Ratio (𝐷𝑅𝑖𝑛𝑡𝑟𝑎) less than Inter 

Density Ratio (𝐷𝑅𝑖𝑛𝑡𝑒𝑟) , from its current cluster to the other cluster. Density Ratio heuristic 

was applied to both Modified Modularity Density Maximization (MMDM) and Modularity 

Density Maximization MDM approaches. The obtained results were compared using 

internal cluster validation approach. 

          We proposed a Mixed Integer Linear Programing (MILP) for Modified Modularity 

Density Maximization MMDM. The mathematical model was applied to data sets from the 

literature and solved by GAMS software. Our model was able to solve, optimally, instances 

up to 40 nodes. In the proposed MILP our objective variable 𝛼𝑐  is constrained by upper 

𝑈𝛼 and lower  𝐿𝛼 bound. So, having a good upper and lower bound will make the model 

performance very good. However, it is very difficult to derive an upper and lower bound 

theoretically as stated in the literature. MMDM obtained results were compared with MDM 
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in term of cluster validation approach. It was found that in most data sets MMDM got 

higher Dunn, silhouette and modularity indices than MDM got. This indicates that 

Modified modularity density maximization was able to detect communities that are more 

compact and well separated from each other than what MDM detected. 

       The proposed Mixed Integer Linear Programming (MILP) of Modified Modularity 

Density Maximization (MMDM) was able to solve, optimally, networks with up to 40 

instances. Thus, Density Ratio heuristic was proposed to solve large data sets that can’t be 

solved optimally or take very long time to solve. The main idea of the heuristic was to 

move each node, that has Intra density ratio (𝐷𝑅𝑖𝑛𝑡𝑟𝑎) less than Inter density ratio (𝐷𝑅𝑖𝑛𝑡𝑒𝑟) 

, from its current cluster to the other cluster. Density Ratio heuristic was applied to both 

Modified Modularity Density Maximization (MMDM) and Modularity Density 

Maximization MDM approaches. The obtained results were compared using internal 

cluster validation approach. It has been found that applying Density Ratio heuristic on 

MMDM approaches can find better Dunn and Silhouette values than applying Density 

Ratio heuristic on MDM for some data sets and similar for some other data sets. For 

modularity, applying the heuristic to MDM is giving higher values than applying it to 

MMDM. 

         Some of the future work would be to introduce a pre-partitioning method before 

applying the MILP of MMDM. This could help in improving the ability of MILP to solve 

larger data sets. Also, more enhancement could be done to the MILP of MMDM by 

applying constrained clustering approach. In addition, improving the upper and lower 

bound for MILP of MMDM could be a significant future contribution. For Density Ratio 

heuristic, finding a good initial solution could improve the results significantly. Someone 
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could run the heuristic with different initial solutions from Lagrangian relaxation, 

hierarchical clustering or any similar approaches.   

.   
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APPENDIX A 

 

 

 

 

  

Figure A-1 Optimal solution obtained by MILP of 

MMDM for Strike data set Figure A-2 Optimal solution obtained by MILP of MDM 

for Strike data set 

Figure A-3 Optimal solution obtained by MILP of 

MMDM for Korea2 data set 

Figure A-4 Optimal solution obtained by MILP of 

MDM for Korea2 data set 
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Figure A-5 Optimal solution obtained by MILP of 

MMDM for Mexico data set 

Figure A-6 Optimal solution obtained by MILP of 

MDM for Mexico data set 

Figure A-7 Optimal solution obtained by MILP of 

MMDM for Chesapeake data set 

Figure A-8 Optimal solution obtained by MILP of 

MDM for Chesapeake data set 
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Figure A-9 Best value obtained by applying Density Ratio 

heuristic on MMDM for Football data set 
Figure A-10 Best value obtained by applying Density 

Ratio heuristic on MDM for Football data set 

Figure A-11 Best value obtained by applying Density 

Ratio heuristic on MMDM for Email data set 

Figure A-12 Best value obtained by applying Density 

Ratio heuristic on MDM for Email data set 
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