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Mining association rules between data items is essential in the discovery of knowl-

edge hidden in datasets. There are many efficient association rules mining algo-

rithms. The problem is with the large number of rules they often discover. Large

number of rules make the discovery of knowledge very challenging because too

many rules are difficult to understand, interpret or visualize. To reduce the num-

ber of discovered rules, researchers proposed approaches such as meta rules, rules

pruning, rules grouping, etc.

With the advent of the era of big data, the frequency and size of big datasets

is growing by the day; and thus, the discovery of hidden knowledge from these

datasets is becoming essential. So far the solutions to the large number of associa-

tion rules are limited to the rules generated from traditional datasets. They can’t

xi



be applied to the huge number of rules discovered from big datasets. To bridge

this gap, in this thesis, we are proposing a parallel rule grouping algorithm based

on MapReduce. To the best of our knowledge, this is the first solution to the

problem of huge number of rules generated from big datasets. We implemented

the proposed algorithm in Hadoop and conducted many experiments to study its

performance. To measure the performance of the proposed algorithm, we used

elpased time, speedup, sizeup, and scaleup. We used benchmark datasets up to

4GB in size. The experimental results show that the proposed algorithm have

high performance.
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CHAPTER 1

INTRODUCTION

Knowledge discovery from databases (KDD) is a non-trivial, nine step process of

extracting valid and potentially useful knowledge from datasets. Data mining is

a major step in KDD and refers to the techniques used to discover useful patterns

hidden in datasets [7]. Association rule mining is a branch of data mining used

to discover frequent patterns, associations, correlations, and other relationships

between data items of a dataset [8]. In other words, for a given dataset, association

rule mining aims to find the rules which enable us to predict the occurrence of a

specific data item based on the occurrences of the other data items in the dataset.

An example of an association rule would be “If a customer buys bread, he is

75% likely to also buy milk” . An association rule (AR) is of the form X → Y ,

where X and Y are sets of data items in the same dataset and X∩Y = ∅. In a rule,

the set of data items to the left of the arrow is called the antecedent and the one

to the right of the arrow is called the consequent. For example, in the rule X →

Y , the antecedent is X and the consequent is Y . Not every discovered association
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rule is interesting or strong. Strong association rules are mainly identified by two

parameters, namely, support and confidence. A rule is considered strong, if its

support and confidence are above pre-specified thresholds.

Association rule mining has many applications in marketing, medicine, finance,

security, weather, bio-informatics, airline information systems, and many other

fields [9]. Specially, it is extensively used in market basket analysis, stock market

prediction, customer-behavior trend analysis, cross marketing, catalog design and

advertising [8]. Due to the above mentioned applications and many others, it has

attracted many researchers to propose different association rule mining algorithms

that extract rules from datasets [10].

Often, the number of strong rules discovered by association rule mining algo-

rithms is large, even from a moderately sized dataset. Large number of rules are

difficult to inspect, analyze, visualize, or interpret, which reduces the usefulness of

the discovered rules in decision making and other applications [11]. The number

of rules can be reduced by using higher support and confidence thresholds but that

will exclude some strong rules. To address the problem of large number of rules,

different solutions have been proposed in the literature [10, 11, 12, 13, 14, 15].

Some of the proposed solutions include constraint-based mining, meta-rules, rules

pruning, and rules grouping or clustering.
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1.1 Problem Statement

The huge volume of data that is generated daily has motivated database re-

searchers to propose many types of NoSQL and NewSQL database management

systems. The number of such databases is growing very quickly. At the time

of writing this thesis, there were more than 225 NoSQL and NewSQL database

management systems [16]. Some of the most popular NoSQL database manage-

ment systems are MongoDB, Cassandra, Redis, and HBase; and some of the top

NewSQL databases are CockroachDB, VoltDB, ClustrixDB, and MemSQL. Many

of these database management systems have currently been used by many com-

panies to handle big datasets. The need to discover knowledge from this big

data databases has attracted many researchers to propose knowledge discovery

algorithms [17]. Some researches proposed modifications to the traditional knowl-

edge discovery methods to handle big data whereas others proposed new ones.

Similarly, for mining association rules from big datasets, a number of researches

proposed new algorithms [18]. But no one has proposed a solution to deal with

the huge number of rules generated from these new algorithms. The only available

solutions are for rules generated from traditional datasets. Such solutions include

rules pruning, rules grouping or rules clustering, and others. However, these tra-

ditional solutions cannot be used to prune,group,cluster or summarize the huge

volume of rules discovered from big datasets. In this thesis, we are proposing the

first association rules clustering algorithm that can handle huge volume of rules

discovered from big datasets using Hadoop and MapReduce.

3



1.2 Motivation

We are in the era of big data. The volume, variety, and velocity of data generated

every second by individuals, businesses and others is unprecedented and is grow-

ing by the day. As mentioned above, a large number of discovered rules is very

challenging to process and benefit from. The number of association rules discov-

ered from traditional datasets is often large, hence it is reasonable to assume that

those extracted from big data will be much larger. The existing solutions to the

problem of large number of rules are limited to those extracted from traditional

datasets and they can’t be applied to those extracted from big datasets [17]. Al-

though there are solutions for mining association rules in big data, eg. [19, 20] to

the best of our knowledge there is no work done for parallelizing the grouping of

rules generated from big datasets. This motivated us to propose, in this thesis,

the first solution to the huge number of association rules generated from big data

using Hadoop and MapReduce.

1.3 Thesis Objectives and Contributions

As mentioned above, existing solutions to the problem of large number of associa-

tion rules are limited to those discovered from traditional datasets. No researcher

has proposed a solution to the challenges associated with the huge volume of as-

sociation rules discovered from big datasets. Hence, the objective of this thesis is

to propose a solution to this problem.

The main contributions of this thesis are:
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• Comprehensive literature survey of existing solutions to the problem of large

number of association rules.

• A new sequential algorithm which prunes strong association rules based on

their structure.

• A new MapReduce algorithm which prunes the discovered strong association

rules based on their structure.

• A new MapReduce algorithm which clusters the discovered strong associa-

tion rules based on their lift values.

• Conducting comparison and performance analysis of the proposed algo-

rithms.

• Publish and share our findings to the research community.

1.4 Methodology

We have followed the following phases in our methodology.

Phase 1: Conducting literature review

In the first phase, we extensively studied existing rule pruning, rule grouping,

and rule clustering algorithms. We identified the limitations and strengths of

each algorithm. This phase also enabled us to clearly state the scope and the

contributions of the thesis.

Phase 2: Proposal of new algorithms

5



In the second phase, we proposed two new association rule pruning algorithms,

one sequential and another parallel. We also proposed a new association rule

clustering algorithm.

Phase 3: Setting up hadoop cluster

In this phase, we installed and configured a Hadoop cluster that we used

to implement and run the proposed parallel algorithms. We also prepared the

benchmark datasets used in our experiments.

Phase 4: Implementation of the proposed algorithms

Here, the proposed sequential and parallel algorithms were implemented using

Java and Python respectively.

Phase 5: Evaluation of the proposed algorithms

During this phase, the proposed algorithms were experimented using bench-

mark datasets. From the collected experimental results, the performances of the

proposed algorithms were analyzed and their strengths and limitations were iden-

tified.

Phase 6: Drawing conclusions and suggesting some future directions

At the end, conclusions from the research work were drawn and future research

directions were highlighted for clustering association rules.

Phase 7: Thesis write up

The thesis writing process was done during all mentioned phases.

6



1.5 Thesis Organization

The rest of this thesis is organized as the follows. Chapter 2 presents basic ter-

minology and background information on association rule mining and big data.

We reviewed related works in Chapter 3. The proposed structure based pruning

algorithms are explained in Chapter 4; and the lift based clustering algorithm is

explained in Chapter 5. Chapter 6 presents performance analysis and compar-

isons of the proposed solutions. Finally, Chapter 7 concludes our thesis work and

suggests some future directions.
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CHAPTER 2

BACKGROUND

This chapter gives background information necessary to understand the ideas

presented in this thesis. It starts by a brief discussion of data mining in Section

2.1. The concepts behind mining association rules, which is the main topic of this

thesis, are discussed in Section 2.2. Section 2.3 gives a general overview of big

data and Hadoop.

2.1 Data Mining Overview

This section gives a brief explanation of knowledge discovery and data mining. It

then discusses association rules, association rule measures, and association rule

mining with some examples of association rule mining applications.

Knowledge discovery from datasets (KDD) is a multi-step process of extracting

valid and potentially useful knowledge from datasets. This process is illustrated

in Figure 2.1. Data mining appeared in the 1990s as a step in KDD, and refers

to the sophisticated tools and techniques used to discover useful but previously

8



unknown information hidden in large datasets [7, 21]. It is an interdisciplinary

field of Computer Science which involves machine learning, statistics, pattern

recognition, algorithms, databases and many others. Initially, the main goal of

using data mining was limited to create operational reports; later, when new

machine learning algorithms were developed, users started using it for knowledge

discovery and decision-making. Through the data mining process, different kinds

of knowledge, such as, classification rules, association rules, clustering and others

can be discovered [8].

Figure 2.1: KDD steps[1]

2.2 Association Rules

The recording of very detailed data about customer’s purchases in many super-

markets and other business centers spurred the need to further analyze and find
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valuable information about the items frequently purchased together. This infor-

mation helps businesses to understand customer behavior, design catalogs, and

tune promotions. Association rule mining can help obtain such information in the

form of if-then statements [11]. Association rule mining is a sub-field of data min-

ing that aims to extract hidden knowledge from datasets in the form of frequent

patterns, correlations, associations or causal structures [22]. Formally, Agrawal et

al. [11] formulated the standard base line for the problem of association rules as

follows: Let I = {I1, I2, . . . , In} be a set of items in a transactional database D

and |D| be the number of transactions in D. A transaction T in D contains a set

of n items such that T ⊆ I. Let X and Y be two sets of items in D. Formally

association rule is described in implication of X → Y , where X ⊂ I, Y ⊂ I, and

X ∩ Y = �. X is named as antecedent and Y as consequent of the rule.

2.2.1 Strong Association Rules

Often, association rule mining algorithms discover many association rules. Not

all discovered association rules are interesting or strong. To identify strong asso-

ciation rules, two types of measures, namely, subjective and objectives measures

are used [23, 23, 24]. The objective measures (data-driven measures) are quanti-

tative in nature and they rely mainly on statistical aspects of data, whereas the

subjective measures (user-driven measures) rely on user-beliefs. In practice, both

types of measures are used for finding strong rules [25]. In the literature, there are

many objective measures but the three most popular measures are support, confi-

10



dence, and lift. There are some uncommon objective measures in literature such

as improvement, validity, and influence [26]. However, we only use support,

confidence and lift which are intensively used in the literature and are explained

more precisely below.

Support, denoted as S, measures the generality of a given association rule in

a given dataset. In a transaction database D , the support of the rule X → Y is:

S
(
x→ Y

)
=
|X ∪ Y |
|D|

(2.1)

where |X ∪ Y | is the number of transactions in D which contain both X and Y ,

and |D| is the total number of transactions in D . The confidence, denoted as C,

of X → Y is:

C
(
X → Y

)
=
|X ∪ Y |
|X|

(2.2)

In other words, C
(
X → Y

)
is the proportion of transactions containing X that

also contain Y.

Support and confidence measures fail to filter out all uninteresting association

rules. To address this deficiency, data mining scholars used another measure called

lift [26]. Lift computes the correlation between the consequent and antecedent

of a rule and can be used to filter out more uninteresting rules. The advantage of

lift is that it does not pose the downward closure or the problem of rare itemsets.

Although the lift measure does not have the problem of rare itemsets, but still it

has some drawbacks especially when filtering out some rules which are made up

11



of highly frequent itemsets. The lift of X → Y is:

Lift
(
X → Y

)
=

S
(
X ∪ Y

)
S
(
X
)
∗ S
(
Y
) (2.3)

According to the above mentioned objective measures, an association rule is strong

if its support, confidence, and lift are above pre-specified thresholds (to be set

by the decision maker).

Unlike objective measures, subjective measures embody the subjective factors

which allow the integration of user participation in association rule evaluation.

The rule evaluation in the subjective-based measures is based on some subjective

emulation criteria such as simplicity, novelty, availability, unexpectedness, action-

ability, and so on. For example, novelty is one of the subjective indicators and it

can be used for evaluation of quality and the similarity of discovered rules [27].

The novelty of given association rules can be measured by calculating the differ-

ence between every item of antecedent and that of the consequent. The novelty

of a rule reflects the difference associated between rules of the knowledge base

and discovered rules. The key concept behind novelty is that it increases the user

knowledge by proving novel information about previously unknown interesting

rules.

2.2.2 Frequent Itemsets

In a transactional database, a transaction is a set of items (itemset). For instance,

in market basket analysis, an item can be sugar, milk, bread or others depending

12



on the database. A k− itemset is a set of k items. The supportscount (frequency)

of an itemset is n if it appears in n transactions of a given database. Mining

association rules in a transactional database can be achieved in three main steps

[28]. In the first step, all the frequent itemsets in a given database are extracted.

An itemset is frequent, if it appears a pre-specified minimum number of times

in the dataset (refered to as minsup). In the second step, all possible association

rules are generated from each frequent itemset. In the last step, strong association

rules are identified.

The number of frequent itemsets generated from a dataset can be large. How-

ever they can be compactly represented using two commonly used sets, namely,

closed itemset and maximal frequent itemset. An itemset is closed, if its

support count is higher than that of all its supersets [29]. An itemset X is su-

perset of an itemset Y if all items of Y are in X. We can also say Y is a subset

of X. From the support count of a closed itemset, the support counts of some of

its subset itemsets can be generated [29, 30, 31, 3]. A maximal frequent itemset

is a frequent itemset, and none of its supersets are frequent [32, 33, 34, 35, 36].

As shown in Figure 2.2, a maximal frequent itemset is a subset of closed frequent

itemset.

2.2.3 Association Rule Mining Algorithms

Association rules are discovered using association rule mining algorithms. Basi-

cally, most association rule mining algorithms are quite similar and have many

13



Figure 2.2: Closed and maximal frequent itemsets. [2]

common functionalities, however regarding to application-specific requirements,

their implementation features could differ. Some algorithms add certain improve-

ments and extra features to deal with specific application dependent requirements.

Initially association rule mining algorithms emerged during the time of central-

ized database systems where sequential processing methods were the first choice

in most applications. The process of applying association rule mining algorithms

primarily comes after or while the step of generating frequent itemsets. Different

algorithms follow different strategies to scan the dataset to extract the frequent

itemsets. Commonly, all algorithms try to decrease complexity by reducing the

number of database scans and by efficiently handling candidate itemsets. The

two most commonly used association rule mining algorithms are Apriori and FP-

growth.
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Apriori Algorithm

The Apriori algorithm goes through many database scans to generate frequent

itemsets [37]. First, it scans the database to extract frequent 1-itemsets. It

then combines the frequent 1-itemsets to generate candidate 2-itemsets. It scans

the database again to check which of the candidates 2-itemsets are frequent. It

combines the frequent 2-itemsets to generate candidate 3-itemsets. It scans the

database for the third time to find which of the candidate 3-itemsets are frequent

and so on until it finds all the frequent itemsets. The number of database scans

depends on the size of the largest frequent itemset. At last, Apriori generates rules

from the frequent itemsets. Figure 2.3 shows an illustrative example of Apriori

algorithm.

FP-growth Algorithm

The Frequent Pattern (FP) algorithm scans the database twice [38]. In the first

scan, it finds the support-count of each 1-itemset. In the second scan, it builds

a tree, FP-tree, out of all the transactions in the database as illustrated Figure

2.4. Each node of the tree represents an item. The root node is represented by

a null item. The items in a transaction form a branch in the tree. The items

in a branch are sorted in descending order of their support-count starting from

the root-node. This sorting is done to minimize the size of the tree. Each node

also keeps a count which represents the number of transactions which contain the

node and the nodes above it in the branch. After the tree is built out of all the
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Figure 2.3: Steps of Apriori algorithm when minsup = 2; itemsets with * are
non-frequent itemsets [3]

transactions in the database, the FP-growth algorithm systematically traverses

the tree to generate the frequent itemsets. The FP-growth algorithms is faster

than Apriori. Unlike Apriori, it doesn’t generate candidate itemsets and it doesn’t

scan the database more than two times.
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Figure 2.4: Construction of FP-tree [4]

With the advancement of technology, data is generated with huge velocity,

variety and volume than ever before by various sources, such as sensors, social

networks, global business, Internet of Things (IoT) and so on. Existing sequential

rule mining approaches, such as Apriori and FP-growth, can not be applied to

process such data; and thus parallel versions of Apriori and FP-growth algorithms

have been proposed by many researchers [18, 39].
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2.2.4 Association Rule Mining Applications

Beside the applications mentioned in Chapter 1, association rule mining tech-

niques are also used to analyze data stored in Health Information Systems col-

lected from various operations, such as, medical diagnostics, medical administra-

tive tasks, and medical financial information, and so on [40]. Association rules

mining is also used in information retrieval systems. Xin Li et al. [41] implemented

association rule mining to extract key phrases that are useful for capturing saved

contents in a document for retrieval purpose. They grouped frequencies that have

strong co-occurrence in order to reduce redundancy in the obtained result. By

adopting these two approaches they achieved higher performance of information

retrieval.

2.3 BigData Overview

The past few years witnessed several technological advances in social networks,

IoT, data storage, sensors, computing systems, such as, cloud computing, commu-

nication systems, financial and medical systems and others. This has consequently

resulted in the era of big data analytic. It is in a new era of revolution in data

analytics and data management that expands across several scientific fields. Al-

though there is no consensus on the definition of big data [42], it is commonly

used to describe data that cannot be stored or processed using the traditional

computing approaches within a given time frame. In 2014, Dobre and Xhafa [43]

reported that every day the world generates around 2.5 quintillion bytes of data.
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Now in 2018, the amount of data generated is significantly more. Over the last two

years alone, 90% of the data in the world was generated; and with the Internet of

Things, the pace will increase dramatically. According to Gantz and Reinsel [44],

by 2020, 40 zettabytes will be generated of which 90% is unstructured data. We

are definitely in the era of big data; and thus, big data processing has considerably

attracted a plethora of research efforts to address challenges pertaining to its 3V

characteristics (volume, variety, and velocity) in many applications, Figure 2.5.

We refer the reader to the work in [45] that provides a consolidated description of

big data and analytic methods used for big data.

Figure 2.5: Big data characteristics [5]

2.3.1 Hadoop

The era of big data raised challenges on big companies, such as, Google, Facebook

and Amazon [46]. Everyday they need to process petabytes of structured, semi-
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structured and unstructured data to meet consumer demands. Traditional appli-

cations are incapable of processing big data. Fortunetly, Hadoop came in time as

a solution to big data problems. Hadoop is a set of open-source software utilities

that facilitate using clusters of many computers to solve problems involving mas-

sive amount of data and computation [47]. It provides a software framework for

distributed storage and processing of big data using a simple programming model.

Initially, Hadoop was developed by Apache Software Foundation using Java pro-

gramming as a solution to data intensive distributed applications. Hadoop now

is in its third version, Hadoop 3. The rest of this section discusses the Hadoop

2.8.1 but for more coverage of all Hadoop versions, we refer the reader to [48].

Hadoop 2.8.1 has two core components, namely, HDFS and MapReduce. HDFS is

a distributed file system and MapReduce is a programming paradigm that enables

big data to be processed across thousands of nodes in a Hadoop cluster. Figure

2.6 shows a simple Hadoop 2.8.1 architecture.

20



Figure 2.6: A simple Hadoop architecture [6]
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HDFS

HDFS is a distributed block-structured file system where each file is divided into

128 MB blocks and stored across multiple nodes [46, 49]. HDFS automatically

optimizes high bandwidth streaming and deals with all kind of data formats, such

as, text, images, videos etc regardless of underlying architecture. To avoid loss

of data and a single point of failure, HDFS replicates each file block in at least

two nodes. HDFS is based on Master/Slave architecture. It has one master node

and several slave nodes. HDFS has three main daemons, namely, name-node,

secondary-name-node, and data-node. The name-node runs in the master-node

to manage the distribution of file partitions across Hadoop nodes. It frequently

checks the status of each data-node and instructs it what to do. Each data-node

runs in a single slave-node and it manages the storage of file blocks in that node. It

frequently updates the name-node about its file blocks. The secondary-name-node

is used as a fast backup of name-node meta-data.

MapReduce

The term “MapReduce” actually refers to two separate and distinct tasks that

Hadoop programs perform. The first is the map job, which takes a set of data

and converts it into another set of data, where individual elements are broken

down into tuples of the form key-value pairs. The second is the reduce job,

which takes the output from a map as input and combines those data tuples

into a smaller set of tuples. As the sequence of the name MapReduce implies,
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the reduce job is always performed after the map job [50]. Practically it is not

necessary that mapper and reducer interact sequentially. A reducer can start its

processing as any of mappers completes its task without waiting for the completion

of remaining mappers. The Hadoop framework takes the role of parallelization,

scheduling and distribution services. Also, before a reducer receives the mapped

data from a mapper, Hadoop framework performs some intermediate operations

such as sorting and shuffling. During map and reduce phases, the input, output,

and intermediate data are stored in the file system.

Like HDFS, MapReduce utilizes Master/Slave architecture [46]. It uses two

other daemons, namely Job-Tracker and Task-Tracker. The Job-Tracker runs on

the master-node and is responsible for various activities, such as, scheduling and

dividing jobs into the map and reduce tasks. It also monitors the running of Task-

Tracker on slave-nodes. Periodically the Task-Tracker sends heartbeat messages to

the Job-Tracker to indicate that its alive and executing its assigned task. Within a

stipulated time frame, if the Job-Tracker does not receive the expected heartbeat

message from a Task-Tracker, it will consider it dead and schedule that specific job

to another available Task-Tracker. In contrast to Task-Tracker, if the Job-Tracker

goes down, all executing jobs will be stopped. This limitation is now solved in the

new versions of Hadoop. The Task-Tracker runs on each slave-node of a cluster.

Based on the capacity, each Task-Tracker is assigned a limited number of tasks by

the Job-Tracker. The Job-Tracker monitors the number of tasks assigned to each

Task-Tracker running on a particular slave-node through the heartbeat protocol.
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CHAPTER 3

LITERATURE REVIEW

Several approaches have been proposed in the literature to solve the problem of

large number of association rules. In this chapter we will briefly discuss each

proposed approach.

Aijun et al. [10] proposed two domain knowledge-based methods to prune and

summarize the generated strong association rules. In the first method, to group

rules, the user defines the semantic distance between rules using data taxonomy.

The second method groups all rules that share an item in the antecedent and

consequent. The idea of domain ontologies is introduced to generalize association

rules. This concept facilitates the representation of mined rules in the form of is-a

hierarchy. Marinica et al. [51] proposed a post-processing method to prune and

filter association rules. They integrated user knowledge modeled in the form of

ontology connected to the data to improve the selection of interesting rules.

Martine Cadot and Alain Lelu [52] carried masive prunning to generate opera-

tional set of association rules. They proposed four principle meta-rule concept to
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eliminate conflicting and redundant rules. The proposed method allows the users

to combine rules for reasoning using common sense logic.

Liu et al. [53], Padmanabhan and Tuzhilin [54], and Silberschatz and Tuzhilin

[55] employed user domain knowledge to find unexpected rules. Torvonin et al.

[14] used a rule cover method to differentiate redundant rules from non-redundant.

Brijs et al. [56] enhanced the rule cover method using integer programming tech-

niques to maximize rule redundancy reduction amount in the generated rules.

Although these approaches help to prune interesting rules, they are depending on

domain knowledge to give users the ability to view interesting rules and discard-

ing the uninteresting rules. Unlike domain knowledge-based approaches various

subjective and objective interesting measures are introduced to segregate all in-

teresting rules from the rest of rules based on a given measure .

Bayardo et al. [57] came up with minimum improvement concept to prune

interesting rules. They measured the difference between the confidence of a rule

and that of its proper sub-rules to perform the rule pruning action. In this method,

choosing a low-minimum improvement threshold can loose sensitivity to catch

many overlapping rules.

Bay and Pazzani [58] considered contrast sets, that contain the conjunction

of meaningfully different attributes and values across their distribution in the set

of classes or groups of interest, to prune and remove insignificant contrast rules.

Huang and Webb [59] anatomically discarded the discovered insignificant rules in

the discretized quantitative attributes using search algorithm called OPUS.
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Liu et al [53] utilized the popular statistical test, chi-squared, as a base way

to prune the rules. He evaluated the dependence of antecedent and consequent of

a rule by measuring χ̃2 with respect to the whole data. To do pruning of the rule

result set, a pre-specified χ̃2 at the significance level c is compared with computed

χ̃2 -test of rule. In case chi-squared test value is 0 it indicates that the the

attributes are statistically independent. Using statistical chi-squared test suffered

from the issue of data sparsity to prune many rules. Liu et al. [53] enhanced the

approach by summarizing for the mined rules into a special set called the direction

setting rules. This set can preserve the general relationship in the domain.

Pruning can also be achieved using directed hypergraph and that is what

Chawla et al. [60] did through an adaptive local pruning method. Deducing the

structural strength of graph methods, association rules networks are represented

in the form of a graph and rule pruning becomes much easier to generate from

the graph nodes. The process of pruning in this approache is applied locally to

keep the importance of non-local rules separate from pruning process. However,

this method fails to maintain the global picture of association rules.

Unlike pre-processing algorithms, Huawen Liu et al. [61] proposed a post-

analyze approach that facilitates eliminating redundancy rules generated in the

association mining step using Galois Connection theory. The advantage of this

method is that it avoids information loss in the pruning process. The comparison

result showed that the computational cost of proposed method is much less than

the well-known Apriori method.
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There are couple of measures that are practiced to filter and obtain only inter-

esting association rules based on given threshold. The following approaches use

interesting measures to discover, from the large association rules, only interesting

rules. H. Yun et al. [62] presented a technique that uses relative support value

to discover rare data that tends to appear infrequent but are highly associated.

G. Hrovat et al. [63] formed interesting measures from analyzing time series data

over a long period of training. These interesting measures are used for sequen-

tial patterns. To enhance the rule quality in the frequency mining association

rules Hyeoncheol Kim et al. [64] suggest a measure named surprisal that before

association rule generation eliminates noisy data that can degrade the quality of

the rule result. The capability of proposed pruning method is tested on question-

response datasets and the result from the experiment shows this method produces

good quality association rules. Solving the problem of single based support in as-

sociation rule mining domain Hu. Ya-Han et al. [65] presented the concept of

multiple minimum supports(MMS), the proposed method allows users to select

multiple different nature items. They extended this algorithm to discover inter-

esting sequential patterns using multiple minimum support values. The proposed

method is compared with three traditional data mining algorithms named GSP,

MSCP-growth, and PLWAPtree on several data sets.

Tayal et al. [66] used a fuzzy based algorithm for mining association rules

for predicting diseases like cancer. In this method, after generating candidate

itemsets, K − meansclustering algorithm is employed to group itemsets around
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mid-points. From given centroids fuzzy membership is calculated. Finally using

fuzzy support and confidence value fuzzy rules are generated. This method reveals

good prediction result compared to conventional method.

Fernandes et al. [67] presented a visualization technique to be used as a

pre-processing step in the mining phase based on dual scale metric. This pre-

processing technique leads to dimensionality reduction by allowing users to remove

items from dataset without breaking the quality of extracted association rules.

Grouping and summarizing techniques are presented by An et al. [68] to solve

the problem of very large number of association rules that are difficulty to manage

and analyze easily. The first algorithm does grouping based on the structure of

rules and creates a group of clusters recursively. The second algorithm uses the

semantic tree-structure of items to group rules by their semantic distance. The

evaluation result shows that the two algorithms effectively reduce the large number

of association rules by grouping them.

Many researchers clustered rules based on some distance functions. Toivonen

et al. [14] assumed that the distance of association rules can be estimated in

term of the number of rules that are different in the overall rules to be grouped.

Gupta et al. [69] improved distance metric method by normalization to cluster

the rules. In contrast to that, Lent et al. [15] argued that it is possible to

utilize geometric properties to cluster association rules. This approach is restricted

to antecedents with only two attributes. Gupta et al. estimated the distance

between two rules using conditional probability [69]. They use a special case of
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the Agglomerative Chain algorithm named Dimensionless Agglomerative Chain

Clustering to cluster association rules. the proposed algorithm allows association

rule clustering without having dimensional information. Moreover, they utilize

Self Organizing Feature Map (SOM) to cluster points into a Euclidean space and

apply visualization technique.

Bo Li et al. [70] suggested alternative association rule method that can clas-

sify transaction databases using CFSFDP clustering approach in order to extract

useful association rules. This technique allows a parameterized selection using

predefined interesting measures.

To mine quantitative association rules of the high-dimensional telemetry data,

recorded for satellite performance analysis, Xin Dong et al. [71] proposed a new

improved APRIORI algorithm called QARC Apriori with partitioning. In order

to filter and produce more meaningful and concise result. Two pruning techniques

are employed after rule generating step. The proposed algorithm is suitable for

quantitative association rule mining.

Aswani Kumar [72] applied K − means clustering algorithm, before doing

association rule mining on the data set, to reduce the large number of formal

context outcome resulted from formal concept analysis mining process. S. Bedi

et al. [73] presented two clustering techniques, Association Rule Hypergraph

Partitioning and Principal Component Partitioning. They utilize the graph theory

to atomically discover association rules and document their similarities without

prompting any distance information. The two algorithms show that they are
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effective even in occasions where the dimensionality degree is high.

Quan et al. [74] proposed a new technique called Formal Concept Analyze

(FCA) to mine a special kind of association rules named concepts association

rules, which covey more semantic information than traditional association rules.

A clustering-based algorithm with distance metric is used to regionally group the

similar conceptual association rules in this method. Koh et al. [75] generated

rare association rules from database transaction records. He adopted clustering

step, prior to mining process, in order to classify and express solid groups that

form different patterns. The obtained result in this method is more informative

compared to non-clustered data sets.

To reduce the significant overhead of finding association rules, Liu et al. [76]

suggested to use clustering to minimize the required number of database scans,

by partition all similar transactions under one group before looking for any asso-

ciation in the data set. They perform summarizing of clustered data to get more

manageable result. The proposed algorithm requires only one pass of database

scanning.

Focusing on the field of binary data analyze Francesco Palumbo et al. [77]

illustrated a combined method of clustering and dimension reduction that can

identify the association of non-trivial structures hidden in binary data. The

proposed method gives analytical result and allows graphical representation

of the result. The drawback of this method is the possibility of losing small

information from the expected result.
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Visualization based techniques such as parallel coordinate plot [78] and

matrix-based visualization [79] are introduced as post-processing techniques to

analyze the discovered association rules. These techniques help to visualize the

interrelations between association rule categories in a great detail. Unfortunately,

the most of visualization techniques cant display large sets of rules.

Classification approaches have been practiced to classify association rules

based on classification classes (CBA). Liu et al. [80] created a class of attribute

constraint to control the consequent of rules before generating from association

rules. Similarly [80] introduced a novel method, to reduce the generated associ-

ation classes, using rule consequent constraint based on (NECR-tree). Han et al

[81] suggested an efficient classification method CMAR that classifies association

rules. CMAR finds rules from prefix tree structure like CR-tree CMAR using

FP-growth, and that leads finding more specific and lower level rules than CBA.

In contrast to CBA, CMAR measures the weighted analyze of multiple rules to

determine a class label which permits to have classification.

Omer M. Soysal [82] discovered mostly associated pattern (MAPS) from struc-

tured data by using heuristic approach. This method generates patterns, without

considering all combination of an item, by using maximal association constraint.

Unlike most of the data mining techniques, this method does not require pruning

step. This method also creates a tree like patterns that can help decision makers

to visual data easily. The proposed algorithm is tested against traffic accident
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data set.

Cutbill et al. [83] used Jaccard similarity technique as a method to identify

the redundancy constraints in optimization algorithms that can cause to steer the

algorithm from the feasible solution . The rules produced by this method are

found informative and correct.

Seol et al. [84] proposed wTabular-algorithm that removes unimportant rules

discovered in big data sets by assigning each rule a weight. The proposed method

employes Quine-Mccluskey method for rule reduction. The result of comparision

with existing schemes such as Apriori and FP-growth algorithm gives that the

proposed algorithm improves in the terms of processing time,support, credibility,

and rule reduction rate.

Djenouri et al. [20] Proposed a metarules discovery-based approach that gives

users the summary of rule space through a meta-rules representation. This method

uses the bees swarm optimization concept. The proposed approach gives an option

to prune rules to the users. The proposed method is extended using GPU-based

parallel programming to test with large datasets.
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Table 3.1: Literature Review Summary
Paper Year Algorithm Strengths Limitations Domain Perf. Mea-

sure
Zaki et
al. [85]

2000 closed frequent item
sets

Reduces redundant
rules exponentially
compared to old
one. .

Deals with rules
with single conse-
quent. .

General Time

B. Liu
et al.
[53]

1999 Direction set-
ting(DS) and Non-
direction setting
with correlation

Good with highly
correlated items.
Generates small
number of DS
instead of huge
number of associa-
ton rules

Discovers huge
rules

General Time

H. Yun
et al.
[62]

2003 Relative Support
Approach

Performs shorter
time than Apriori
by removing many
rules containing
unnecessary rare
data. .

Generates Large
Number of infre-
quent itemset. The
algorithm is slow
for large dataset.

General Time

Kim
and
Kwak
[64]

2005 Surprisal Measure Eliminates noisy in
the data to en-
hance the quality of
data to be manned.
Prunes uninterest-
ing attributed from
data set before min-
ing process

Sensitive for bias on
statistics aspects of
attribute.

General Rules

K.Tayal
and
V.Ravi
[66]

2015 Improved Algo-
rithm (Parallel)

Gives better pred-
ication for diseases
compared to con-
ventional methods.
.

Generates large
number of associa-
tion rules.

Health NA

Fernandes
and
Garc
[86] a

2012 Visualization Tech-
nique

This approache pro-
vides dimensional-
ity reeducation and
improves the qual-
ity of extracted as-
sociation rules. .

The mean shift
used in this algo-
rithm is sensible to
bandwidth selec-
tion. uses iterative
process which takes
long time. .

General Time

S. Khan
and X.
Huang
[68]

2006 Network Semantic
Technique

Uses grouping
and summeriza-
tion to reduce the
un-manageable
number of rules
generated in associ-
ation rule mining.

The semantic trees
used do not exactly
reflect the semantic
relationship of the
intended objects.

General Time

O.M.Soysal
[82]

2015 Heuristic Approach Searches best so-
lution by using
heuristic technique.
Prevents unneeded
generation of rules
in the first place.

Requires more
knowledge acqui-
sition for getting
experience be-
fore taking single
decision.

General NA

Djenouri
et al.
[20]

2017 GSum-BSO Employes paral-
lel processing to
process very large
data

Requires user in-
volvement and only
gives meta-rule
summary.

General Time
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CHAPTER 4

THE PROPOSED STRUCTURE

BASED RULE PRUNING

ALGORITHMS

The proposed association rules clustering approach consists of four MapReduce

algorithms. The first MapReduce algorithm is called PPrune. It prunes strong

association rules based one their structure. It is an optional step which is only

done if the number of strong association rules is too large. The second MapReduce

algorithm is calledCreate-ACM. This algorithm reads all the strong association

rules and transforms them into a 2-dimensional array called ACM, which stands for

Antecedent-Consequent Matrix. ACM is used to store the support count of strong

association rules. The support counts are then used to compute the lift values

of the strong association rules. Lift values of rules will be explained in the next

chapter. The third MapReduce algorithm,Compute-Lift, takes as input ACM and
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a transaction database and computes the lift values of the strong association rules.

The last MapReduce algorithm is Cluster-SAR which groups strong association

rules based on their lift values. Figure 4.1 show the block diagram of the proposed

approach.

Figure 4.1: Block diagram of the proposed approach.

Rule structure based pruning is a fast way of reducing the number of strong

association rules to be clustered. It is needed to speedup clustering rules that

are extremely large. In its conservative form, it prunes the rules without reading

the transaction database. The idea is based on structural rule cover which is

explained in [14]. A rule cover states that if X, Y , and Z are three itemsets of

a given transactional database D, then Φ(X,Y,Z) ⊆ Φ(X,Y), where Φ(x) is set of

transactions in D that match the itemset x. In other words, the transactions that

match the rule X,Z → Y are a subset of the transactions that match X → Y .

If rules such as X,Z → Y are removed from a rule cover, then the remaining set

which contains X → Y is a rule cover. A structural rule cover consists of the

most general rules of the original set of rules.

In this chapter we propose two structure based association rules pruning al-

gorithms called SPrune and PPrune. The other three MapReduce algorithms,

namely, Create-ACM, Compute-lift, and Cluster-SAR are discussed in the next
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chapter. SPrune is a sequential algorithm whereas PPrune is a parallel, MapRe-

duce, algorithm. Sprune is needed to compute the speedup of PPrune. SPrune is

explained in the next section and PPrune is explained in the one after.

4.1 Sequential Rule Pruning Algorithm

The proposed sequential association rules pruning algorithm, SPrune, goes

through two phases to prune given rules as shown in Figure 4.2. In Phase 1,

it reads a set of rules, R = {r1, r2, . . . r|R|}, and partitions the rules into a set

of partitions; and in Phase 2, it clusters the rules one partition at a time. The

output of SPrune is a set of general rules G = {g1, g2, . . . g|G|}. The partitioning

phase (Phase 1) is necessary to reduce the number of disk accesses needed during

the pruning, Phase 2.

Figure 4.2: The two phase of SPrune.

In Phase 1, SPrune partitions the rules twice. First, it partitions the rules

based on rule consequent. In other words, rules with the same consequent are

put into the same partition. Let P = {P1, P2, . . . P|P |} be the set of rule parti-

tions created as a result, where |P | is the total number of partitions which is also

equal to the number of distinct rules consequents. During partitioning, the size

of each rule antecedent (the number of items in a rule antecedent) is computed
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and items in the rule sorted in alphabetical order. For example, if a rule an-

tecedent, of size 3, is {milk, sugar, bread} before sorting, it will be {bread, milk,

sugar} after sorting. Sorting each rule antecedent is done to speeds up Phase

2 processing. SPrune again partitions each Pi into sub-partitions according to

the size of rule antecedent. Rules of the same antecedent size are put into the

same sub-partition. For example, rules of antecedent size two are put in the same

sub-partition and those of antecedent size 3 are put in another sub-partition. Let

{Pi,1, Pi,2, . . . , Pi,|Pi|} be the set of sub-partitions created from Pi, where |Pi| is

their total number. Also, let the size of a rule antecedent in Pi,j be less than that

of a rule in Pi,j+1. Figure 4.3 shows an example of a hierarchy of partitions that

can be created by Phase 1 of SPrune.

Figure 4.3: Partitions and sub-partitions of R created in Phase 1 of SPrune

Phase 1 of the SPrune algorithm is shown in Figure 4.3. The algorithm takes as

input R and gives as output sub-partitions. In lines 3 and 4, the function computes

the size of each rule antecedent and sorts it in alphabetical order. The function

partition, Line 5, puts each rule in the right partition according to its consequent.
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In Line 6, the function sub-partition, puts each rule in its sub-partition based on

its consequent and the size of its antecedent. At last, the algorithm returns the

sub-partitions.

Algorithm 1 Phase 1 of SPrune: Partitioning

Require: R = {r1, r2, . . . , r|R|}
Ensure: sub− partitions r ∈ R

1: r.consequent ← get-consequent(r)

2: r.antecedent ← get-antecedent(r)

3: r.size ← get-size(r.antecedent)

4: r.antecedent ← sort(r.antecedent)

5: partition(r, r.consequent)

6: sub-partition(r, r.size)

7: return sub-partitions

In Phase 2, SPrune prunes the rules in each partition; but before we explain

how SPrune prunes rules, let us define the terms subset and superset in the

context of SPrune.

Definition 4.1 A rule ri is a subset of a rule rj, if all the items of ri are also

items of rj.

Definition 4.2 A rule rj is a superset of a rule ri, if all the items of ri are also

items of rj.

SPrune prunes the rules in each partition independently of those in the other

partitions. This is because rules with different consequents can’t be mapped to
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the same general rule. Sprune starts with the first sub-partition of P1 which is

P1,1. It considers each rule in P1,1 as a general rule. Let G = {g1, g2, . . . , g|G|}

be the set of general rules after processing P1,1. Then the processing moves to

the rules in P1,2. If a rule in P1,2 is superset of any rule in G, then the rule is

pruned, otherwise it is added to G and |G| is incremented by 1. After all the rules

in P1,2 are processed, SPrune processes the rules in P1,3, then those in P1,4 and

so on until all the rules in P1 are completed. After SPrune is done processing all

the rules in P1, it will do the same with the rules of P2, then P3, and so on until

it finishes processing the the rules in P|P |. This is equivalent to processing all the

rules in R.

Phase 2 of SPrune is depicted in Algorithm 2. The algorithms takes as input

the sub-partitions created in Phase 1 and gives as outputG which is a set of general

rules. At Line 1, SPrune initializes the set of general rules G to null. From lines

4 and 9 it loops through each partition, pi, and each of its sub-partitions, Pi,j. At

Line 3 it initializes an empty set Gi of general rules of the current partition, Pi.

Then for each rule in Pi,j, it will do the following. If the rule belongs to the first

sub-partition, Pi,1, or the rule is not a superset of any of the rules in Gi, then the

rule is added to Gi, Lines 6 to 9. At last, at Line 10, all the rules in Gi are added

to G. Figure 2 shows how Phase 2 prunes strong association rules.
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Algorithm 2 Phase 2 of SPrune: Pruning

Require: Pi,j for i = 1, 2, . . . |P |, j = 1, 2, . . . , |P|Pi||
Ensure: G
1: G ← �

2: for i = 1; i ≤ |P |; i++ do

3: Gi ← �

4: for j = 1; j ≤ |Pi|; j++ do

5: for all r ∈ Pi,j do

6: if j == 1 then

7: Gi ← Gi ∪ r
! Cover(Gi, r)

8: Gi ← Gi ∪ r

9: end if

10: G ← G ∪ Gi

return G
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Figure 4.4: SPrune partitioning steps

Example 4.1

Figure 4.4 shows how SPrune partitions strong association rules in Phase 1.

Sprune first reads the rules inR and partitions them according to their consequents

in to Partitions P1 and P2. The consequent of the rules in P1 is X and those in P2

is Y . It again partitions the rules in P1 according to the size of their antecedents

in to three partitions, namely, P1,1, P1,2, and P1,3. Each rule antecedent in P1,1

has 2 items, those in P1,2 has 3 items and those in P1,3 has 4 items. Similarly,

Sprune partitions the rules in P2 into P2,1, P2,2, and P2,3 for the same reason.

Example 4.2

Figure 4.5 shows the steps of how SPrune prunes rules in Phase 2. Let us

consider the rules in R and assume that they are already partitioned in Phase 1
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Figure 4.5: SPrune pruning steps

as shown in Figure 4.4. In Phase 2, SPrune starts with an empty set G1 of general

rules. In Step 1, it reads the rules in P1,1 and puts all of them in G1. So after

Step 1, G1 will consists of 3 rules, namely, BC ⇒ X, AB ⇒ X, and AC ⇒ X. In

Step 2, SPrune will read each rule in P1,2 and check if the rule is already covered

by a rule in G1. All the rules in P1,2 are covered so none of them qualifies to be

a general rule. In Step 3, it will repeat what it did in Step 2 but with the rules

in P1,3. All the rules in P1,3 are also covered so none of them will be added to

G1. So by the end of Step 3, G1 will consists of the same three rules it added in

Step 1. After discovering all the general rules in P1, it starts searching for general

rules in P2. It starts with an empty G2 and the rules in P2,1. After processing

the rules in P2,1, G2 will consist of three rules, namely, AF → Y , EF → Y , and

AB ⇒ Y . Then it will search for general rules in P2,2. From the two rules in P2,2,

BEF → Y is covered by EF → Y , but ACD ⇒ Y is not covered by any rule and

thus added to G2. After processing P2,2, G2 will consist of AF → Y , EF → Y ,

AB ⇒ Y and ACD → Y . After SPrune is done processing all the rules in P2,2
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it will process the rules in P2,3. All the rules in P2,3 are covered so none of them

will be added to G2. At last SPrune puts all the rules of G1 and G2 in to G which

is the set of all the general rules. Out of the 14 rules in R, SPrune found seven

general rules and the remaining seven rules will be pruned.

4.2 The Proposed Parallel Association Rules

Pruning Algorithm

The proposed parallel association rules pruning algorithm, which we named

PPrune, is similar to SPrune but is implemented using MapReduce and runs

in Hadoop. For a given R, the general rules discovered by PPrune are the same

as those discovered by SPrune. The Map method of PPrune reads each r ∈ R

and identifies its antecedent and consequent, r.antecedent and r.consequent. It

then sorts r.antecedent and computes its size, r.size, which is the number of items

in r.antecedent. At last, it makes r.consequent as the key and r.antecedent and

r.size as the value and sends them to the reducer.

The Map method of PPrune is depicted in Algorithm 3. It takes r as input

and computes its antecedent, its consequent, and the size of its antecedent, lines

3 to 5. It then makes the consequent as the key and the antecedent and its size

as the value and sends them to the reducer, lines 7 to 9.

The Reduce method of PPrune takes as input a rule consequent as a key, K1,

and set of strong association rules with the same consequent as a value, V1. It
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Algorithm 3 The Map method of PPrune

Require: key, r
Ensure: k1, v1
1: Class Mapper

2: Method Map(key, r)

3: r.consequent ← get-consequent(r)

4: r.antecedent ← get-antecedent(r)

5: r.size ← get-size(r.antecedent)

6: r.antecedent ← sort(r.antecedent)

7: k1 ← r.consequent

8: v1 ← r.size + “,” + r;

9: Emit(k1, v1); =0

gives as output a set of general rules as output value, V2. It goes through two

phases. In Phase 1, it puts each r in V 1 with the same r.consequent and r.size

into the same sub-partition, S[r.size], lines 3 to 5. After it puts each rule in one

of the sub-partition of S, it deletes the empty sub-partitions of S by resizing and

re-indexing S, Line 6.

In Phase 2, PPrune prunes covered rules and starts at Line 7. First it initializes

the set of general rules G to null, Line 7. In lines 8 to 13, it loops through each

sub-partitions of S and each rule in a sub-partition and does the following. If a

rule belongs to the first sub-partition, S[1] or the rule is not a superset of any of

the rules in G, then the rule is added to G, otherwise it is pruned, Lines 10 to 12.

At last, at Line 16, it emits G.
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Algorithm 4 The Reduce method of PPrune

Require: k1, V1
Ensure: V 2
1: Class Reducer

2: Method Reduce(K1, V1)

3: for all r ∈ V 1 do

4: S[r.size] ← r

5: end for

6: S ← Re-index(S)

7: G ← �

8: for i = 1; i ≤ |S|; i++ do

9: for all r ∈ S[i] do

10: if i == 1 then

11: G ← G ∪ r
! Cover(G, r)

12: G ← G ∪ r

13: end if

14: k2 ← k1;

15: V2 ← G;

16: Emit(k2, V2)

17: end for
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CHAPTER 5

THE PROPOSED LIFT-BASED

RULE CLUSTERING

APPROACH

This chapter explains the proposed rule clustering approach. It consists of the re-

maining three MapReduce algorithms introduced in the previous chapter, namely,

Create-ACM, Compute lift, and Cluster-SAR. The approach is based on associa-

tion rules interest measure known as lift [87]. The lift of a rule A→ C is defined

as

lift(A→ C) =
support(A ∪ C)

support(A)support(C)
(5.1)

Lift measures the correlation of a rule with its antecedent and its consequent.

A lift of value one indicates that a rule is not correlated to its antecedent and con-

sequent; and a value much higher than one shows strong correlation. The proposed

clustering approach is based on the assumption that rules with antecedents that
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are highly correlated with the same set of consequents are similar and thus should

be clustered together [87]. Unlike the existing clustering approaches, this approach

clusters antecedents containing itemsets which are rarely purchased together. This

is because of the high correlation they have with the same consequents.

To perform the clustering efficiently, we created a 2-dimensional array (a ma-

trix), M . The size of M is |A| by |C|, where |A| is the number of distinct an-

tecedents and |C| is the number of distinct consequents of all the strong association

rules that are going to be clustered. The element mi,j of M contains the lift value

of the rule Ai → Cj, where Ai is the antecedent which corresponds to the ith row

of M and Cj is consequent which corresponds to the jth column of M . An element

of M which doesnt belong to a strong association rule is assigned to a lift value

of 1.

The distance between antecedents Ai and Aj is defined as:

dis(Ai, Aj) =

√√√√ |C|∑
k=1

mi,k −mj,k (5.2)

To cluster antecedents into set of K groups, namely G = 1, G2, . . . , Gk ,

we use k-means algorithm and minimize the within cluster sum of squares,

sumK
i=1sumAj∈Gi

dis(Aj, µi), where µi is the centroid of Gi.
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5.1 The Create-ACM MapReduce Algorithm

The Create-ACM MapReduce algorithm takes as input strong association rules

and initializes two 1-dimensional arrays called RHS and LHS, and a 2-dimensional

array called ACM. LHS is indexed by the distinct antecedents of the strong as-

sociation rules; and RHS is indexed by the distinct consequents of the strong

association rules. Let A = {A1, A2, . . . A|A|} be the set of all distinct antecedents

and C = {C1, C2, . . . C|C|} be the set of all distinct consequents in the strong

association rules, where |A| is the number of distinct antecedents and |C| the

number of distinct consequents. The size of ACM is |A| by |C|. Its rows are

indexed by the members of A and its columns are indexed by the members of C.

Let mi,j be an element of ACM indexed by Ai and Cj and corresponds to the rule

Ai → Cj.

The Map function of Create-ACM extracts the antecedent and the consequent

of each rule and emits them to the reducer function. The function also initializes

two global arrays called LHS and RHS. The size of LHS is |A| and the size of RHS

is |C|. LHS and RHS elements are initially set to 0. The map function of the

Create-ACM algorithm is depicted in Algorithm 5. At lines 3 and 4 the function

extracts the antecedent and the consequent of a rule. It then adds the consequent

of a rule to RHS and the antecedent to LHS, lines 5 and 6. At Line 7 the function

emits the antecedent and consequent of a rule to the reducer.

The Reduce function of Create-ACM, creates ACM array. It is depicted in

Algorithm 6. The function takes an antecedent and all its consequents from the
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Algorithm 5 The Map method of Init-ACM

Require: LHS, RHS, k1, v1
Ensure: k2, v2
1: Class Mapper

2: Method Map(k1, v1)

3: K2 ← get-antecedent(v1)

4: V2 ← get-consequent(v1)

5: LHS ← AddLHS(v1);

6: RHS ← AddRHS(v2);

7: Emit(k2, v2);

Mapper as input. It also uses a global lists LHS and RHS initialized by the reducer.

At Line 3, the reducer uses a function called ACM-Init to create a row of ACM

which contains |C| elements which are all initialized to -1. The row corresponds

to one of the antecedents and each of its elements corresponds to one of the |C|

consequents. Each element in a row correspond to a rule. At Line 4, each element

of ACM which corresponds to a strong rule is set to 0. At last, the Reducer emits

the current antecedent with its corresponding ACM row, Line 8.

5.2 The Compute-Lift MapReduce Algorithm

The Compute-Lift algorithm takes as input transactions and gives as output the

lift values of the strong association rules. It uses the three global arrays TXN-

count, LHS, RHS, and ACM to compute the lift values. The Map function of the

algorithm is depicted in Algorithm 7. It counts the number of input transactions
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Algorithm 6 The Reducer method of Init-ACM

Require: LHS, RHS, ACM, k2, V2
Ensure: k3, v3
1: Class Reducer

2: Method Reduce(K2, V2)

3: ACM-Init(k2, RHS, ACM);

4: for all v ∈ V 2 do
ACM [K2, v] = 0;

5:6: K3 ← k2;

7: V3 ← ACM[K2];

8: Emit(k3, V3);

At Line 3. At Line 4, it generates all the possible rules from a transaction. It

then, at Line 5, it extracts the antecedents and consequents of each rule generated

in Line 4. If the antecedent is in LHS, then the corresponding element in LHS is

incremented by 1, Line 10. Also If the consequent is in RHS, then the correspond-

ing element in RHS is incremented by 1, Line 11. At last, the map function emits

the current antecedent and consequent if they have a corresponding element in

ACM, Line 12.

The reducer function of Compute-Lift is shown in Algorithm 8. It takes an

antecedent and all its consequents. It also uses the global variables TXN-count,

ACM, LHS and RHS. The reducer function receives from the reducer, an an-

tecedent and all its consequents. For each consequent, it checks the corresponding

ACM element if it belongs to a strong association rule, Line 4. If it belongs to a

strong association rule, then the count of that element is incremented by 1, Line
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Algorithm 7 The Map method of Compute-Lift

Require: ACM, k1, v1, TXN-count, LHS, RHS
Ensure: K2, v2
1: Class Mapper

2: Method Map(k1, v1)

3: TXN-count++;

4: R ← generate-rules(v1)

5: for all r ∈ R do
c← r.consequent;
a ← r.antecedent;

6:7: update(LHS, a);

8: update(RHS, c);

9: if Exists(ACM, a, c) then

10: k2 ← a;

11: V2 ← c;

12: Emit(K2, V2);

13: =0
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4. At last, the reducer computes the lift values using the Compute-lifts function

At line 7, and emits the antecedent and the corresponding lift values.

Algorithm 8 The reducer method of Compute-Lift

Require: TXN-count, ACM, LHS, RHS, k2, v2

Ensure: K3, v3

1: Class Reducer

2: Method Reduce(k2, v2)

3: a ← = k2;

4: for all c ∈ V 2 do
if ( thenACM [a, c] >= 0)
ACM [a, c] + +;

5:6: k3 ← a;

7: V3 ← Compute-lifts(ACM, count, LHS, RHS, a, c);

8: Emit(K3, V3);

5.3 The Association Rules Clustering Algo-

rithm, Cluster-SAR

The Cluster-SAR algorithm takes as input the rows of the 2-dimensional array

ACM and returns as output the cluster of each strong association rule. Let us refer

to each row of ACM as a sample. As explained above, each sample corresponds

to a distinct antecedent and each element of a sample corresponds to a distinct

consequent. Each element mi,j of ACM contains the lift value of the rule Ai → Cj.
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Cluster-SAR uses K (a pre-specified value) and global variables, called cen-

troids, which are initialized by random values. The algorithm is a slight modifi-

cation of the one proposed in [87]. The Map function of the algorithm is depicted

in Algorithm 9. At Line 3, the function initializes the local variable index to -1

and the MinDistance to the highest real number. For each sample it reads, the

map function computes the distance of the sample from each of the K centroids.

It associates each sample with the index of the closest centroid, Lines 4 to 6. At

last, at Line 9, the function emits each centroid with its corresponding samples.

Algorithm 9 The Map method of Cluster-SAR

Require: centroid, k1, v1
Ensure: K2, v2
1: Class Mapper

2: Method Map(k1, v1)

3: Init(index, minDistance);

4: for i = 0; i ¡ k; i++ do

5: distance ← EuclideanDistance(V1, centroid[i])

6: if dis ≤ MinDistance then
minDistance ← distance;
index = i;

7: K2 ← index;

8: V2 ← to string(V1);

9: Emit(K2, V2);

The Reduce function of Cluster-SAR computes the new centroids. It takes
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as input each centroids and associated samples. For each centroid, it computes

the sum of the corresponding elements in its corresponding samples, Line 4. It

also counts the number of samples associated with each centroid, Line 6. It then

computes the average of the samples to generate the new centroids, Line 7.

Algorithm 10 The Reduce method of Cluster-SAR

Require: k2, v2
Ensure: K3, v3
1: Class Reducer

2: Method Reduce(k2, v2)

3: Init(SumV2, count);

4: for all v ∈ V 2 do
ComputeSum(SumV 2, 2);

5:6: count++

7: centroids ← ComputeCentroids(SumV2, count);

8: K3 ← k2;

9: V3 ← to string(centroids);

10: Emit(K3, V3);
=0
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CHAPTER 6

EXPERIMENTAL

EVALUATION

In this chapter, we present the experimental results and performance analysis of

the proposed algorithms. In Section 6.1, the experimental settings, such as the

computer system, the software tools, and the datasets used during the experiments

are discussed. Also in the same section, the performance measures used to evaluate

the proposed algorithms are discussed. The experimental results and performance

analysis of the four MapReduce algorithms are presented in subsequent sections.

6.1 Experimental Settings

In this section, the computer system, the pieces of software, the benchmark

datasets and the evaluation metrics used in the experiments are presented.
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Node Node Type Cores RAM Processor
Name Node Virtual 2 8 Intel i7-7600HQ CPU @ 2.80 GHz
Data Node 1 Virtual 2 4 Intel i7-7700HQ CPU @ 2.81 GHz
Data Node 2 Virtual 2 4 Intel i7-7700HQ CPU @ 2.81 GHz
Data Node 3 Virtual 2 4 Intel i7-7700HQ CPU @ 2.81 GHz
Data Node 4 Virtual 2 4 Intel i7-7700HQ CPU @ 2.81 GHz

Table 6.1: Configuration of Hadoop Cluster

6.1.1 The Computer System and Software Tools

The proposed algorithms were written in Java and Python. The experiments were

conducted on a local Hadoop 2.8.1 cluster. The cluster consisted of three physical

machines and 5 virtual nodes. The Name Node was in one machine, and the four

data nodes were in two other machines. Each two data nodes were in a machine.

Table 6.1 shows the specification of each node.

6.1.2 Experimental Datasets

To study the performance of the proposed algorithms, we experimented us-

ing five benchmark datasets, namely, Mushroom, Chess, T10I4D100K, Web-

docs, and AllElectronics. The first four datasets were downloaded from

the “ Frequent Itemset Dataset Repositoris, https://fimi.ua.ac.be/data and

http://fimi.uantwerpen.be/data/ ”. AllElectronics dataset is used in some re-

lated work and it was copied from [88]. We chose these datasets because they are

frequently used in related work and they have different characteristics. Table 6.2

shows the name, the number of items, the number of transactions, the average

transaction size, and the number of association rules in each dataset.
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Dataset Size Items Transactions Avg. Items per Transaction Rules
AllElectronics 1 KB 5 9 2.6 52

Chess 335 KB 75 3196 37 108061
Mushroom 558 KB 119 8124 23 111790

T10I4D100K 3928 KB 870 100000 10 5608
Webdocs 1.48 GB 5,267,656 1,692,082 61 1,231,984

Table 6.2: Experimental Datasets

TID Transaction
T100 I1, I2, I5
T200 I2, I4
T300 I2, I3
T400 I1, I2, I4
T500 I1, I3
T600 I2, I3
T700 I1, I3
T800 I1, I2, I3, I5
T900 I1, I2, I3

Table 6.3: AllElectronics Datasets

AllElectronics dataset: The AllElectronics dataset is a small synthetic

dataset of 9 transactions and 5 items, as shown in table 6.3. The first column

represents transaction number and the second column lists the items of each trans-

action.

Chess dataset: This dataset is a chess endgames database. It is frequently

used for machine learning experiments to classify positions. It contains game-

theoretic values for legal positions. The stores game-theoretic values denote

whether or not positions are won for either player, or the number of moves needed

to win according to the minimax-optimal play.

Mushroom dataset: This dataset consists of the description of hypothetical

samples of 23 gilled mushrooms species in the Agaricus and Lepiota Family. The

dataset describes the edibility of each species as edible, poisonous, unknown, and
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Dataset Name 1 GB 2 GB 3 GB 4 GB
AllElectronics D1 D1-1 D1-2 D1-3 D1-4

Chess D2 D2-1 D2-2 D2-3 D2-4
Mushroom D3 D3-1 D3-2 D3-3 D3-4

T10I4D100K D4 D4-1 D4-2 D4-3 D4-4

Table 6.4: Dataset Labels

not recommended. They were drawn from The Audubon Society Field Guide to

North American Mushrooms.

T10I4D100K dataset: T10I4D100K is one of the synthetic datasets which

is frequently used by related work. It was generated by IBM Almaden Quest

research group. The group named the datasets according to this convention: T:

average number of items per itemset, I: average size of itemsets in a transaction,

and D: the number of transaction in the dataset .

Webdocs dataset: The Webdocs is a real life transactions dataset. It is

a collection of web html documents. It contains 1,692,082 transactions and the

longest transaction contains 71,472 items.

As can be seen from Table 6.2, the first four datasets are very small; hence, we

replicated them and created 16 files of sizes 1GB, 2GB, 3GB and 4GB. We also

labeled each of these 16 files as shown in Table 6.4. For example, we refer to the

3 GB chess dataset as D2-3 and to the 2 GB Mushroom dataset as D3-2.

6.1.3 Evaluation Measures

To measure the performance of the proposed algorithms, we used four evaluation

measures, namely elapsed time, speedup, scaleup, and sizeup.
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Elapsed time refers to the amount of time a process takes from the time it was

submitted until the time it was completed.

Speedup refers to how much faster is a parallel algorithm than the correspond-

ing sequential algorithm; and is defined by Equation 6.1 as

Speedup =
T1
Tp

(6.1)

where T1 is the elapsed time of a task done by a single CPU, and Tp is the elapsed

time of the same task done in parallel by p CPUs. Ideally, we like the speedup to

be p

Scaleup refers to the ability to keep the same elapsed time when both workload

and resources increase proportionally; and is defined by Equation 6.2 as

Scaleup =
T1
Tn,n

(6.2)

where T1 is the elapsed time a single CPU takes to finish a workload, and Tn,n is

the amount n CPUs takes to accomplish n times the workload. Ideally we like

the scaleup to be 1.

Sizeup refers to how much longer a system takes if the workload increase n

times; and is defined by Equation 6.2 as

Sizeup =
Tn
T1

(6.3)

where T1 is the elapsed time to process a workload, and Tn is the elapsed time to
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process n times the original workload. Ideally we like the sizeup to be less than

or equal to n.

6.2 Performance Evaluation of Proposed Algo-

rithms

The cost of a MapReduce algorithm is the sum of its I/O, CPU, and communica-

tion costs. Higher communication cost reduces the performance of a MapReduce

algorithm. I/O cost scales well with the number of mappers so it has no negative

effect on performance. If the percentage of CPU cost is high, then communication

cost becomes less significant giving us better performance.

This section presents the experimental results and the performance analysis of

the proposed four MapReduce algorithms. Each algorithm was experimented with

16 different datasets and up to four nodes. The elapsed time, speedup, sizeup,

and scaleup figures of each algorithm are presented in the next subsection. In

the subsequent subsection, the performance of the same MapReduce algorithms

is presented using the Webdocs dataset and up to 16 data nodes.

6.2.1 Performance Evaluation of PPrune Algorithm

To study the performance of PPrune algorithm, we conducted many sets of ex-

periments. The first set of experiments was done to study how the execution time

of PPrune is affected by different datasets and different number of nodes. For this
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experiment, we used D1-1, D2-1, D3-1, and D4-1 and we varied the nodes from 1

to 4. The results of this set of experiments are shown in Figure 6.1. As expected,

as the number of nodes increases, the elapsed time of PPrune decreases. Also,

the elapsed time increases with the number of items in a dataset. This is because

transactions from datasets with more items require more time to compare. That

is why D4-1 and D3-1 required more processing time than D1-1 and D2-1.

Figure 6.1: PPrune elapsed time.

To study the speedup, sizeup, and scaleup of PPrune, we conducted twelve

sets of experiments. The first three sets were done to study the speedup, sizeup,

and scaleup of PPrune using the AllElectronics dataset, D1. Figures 6.2 to 6.4

show the obtained results.

To measure the speedup of PPrune, we kept the size of D1 constant and varied

the number of nodes from 1 to 4, as shown in Figure 6.2. The speedup of PPrune

improved as the size of D1 increased. With small datasets, the proportion of

the communication cost is higher to that of I/O and CPU. This is because the
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percentage of the communication cost decreases to that of I/O and CPU costs

when the dataset size increases.

To measure the sizeup of PPrune, we varied D1 size and the number of nodes

as shown in Figure 6.3. The results show sublinear performance and it improved

as the size of D1 increased. This is because higher percentage of time is spent on

CPU and I/O than in communication.

The scaleup measure of PPrune was obtained by increasing the size of D1 in

proportion with the number of nodes. Figure 6.4 shows the scaleup performance

of the algorithm. The figure shows PPrune scales well. Scaleup decreases as the

number of nodes and the size of D1 increase but it was always more than 80%.

From the experimental results, we can easily conclude that the performance

of PPrune was very good when processing dataset D1 which is characterized by

few items and short transactions or rules.

To study the performance of PPrune with a dataset with more items and longer

transactions than D1, we conducted three sets of experiments with D2. The re-

sults of the experiments are shown in Figures 6.5, 6.6 and6.7. The performance

of PPrune was even better than with D1 because the percentage of the commu-

nication cost was higher when processing D1 than when processing D2. Longer

transaction result in longer rules which demand more CPU time than shorter

rules.

Dataset D3 has more items but shorter transactions than D2. The performance

of PPrune when processing D3 was similar to that of D2. Having more distinct
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Figure 6.2: Speedup of PPrune on D1 Dataset.

items also increase the percentage of CPU cost of PPrune. This is because it adds

to the number of rules which demands longer searches. To study the performance

of PPrune with dataset D3. The results of the experiments are shown in Figures

6.8, 6.9 and 6.10. The performance of PPrune was also better than with D1

because the percentage of the communication cost was higher when processing

D1 than when processing D2.

To study the performance of PPrune with a dataset with many number of

distinct items, we conducted three sets of experiments using the dataset D4. D4

has 870 distinct items whereas D1 has only 5 distinct items. PPrune elapsed time

is slightly with D4 than with D1 as shown in Figure 6.1. The speedup, scaleup,

and sizeup measures of PPrune are similar or better when processing D4. This is
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Figure 6.3: Sizeup of PPrune on D1 Dataset.

again more percentage of CPU time is needed to process D4 which has far more

distinct items. The results of the experiments are shown in Figures 6.11, 6.12 and

6.13.

When computing speedup, any parallel algorithm must be compared with the

best sequential algorithm. So we wrote the SPrune, a sequential algorithm, to

compare it with PPrune. Before using SPrune to compute the speedup measure

of PPrune, we compared the elapsed time of SPrune with that of PPrune which

runs in 1 node. We found out that the elapsed time of SPrune was much higher in

all the experiments we conducted using D1, D2, D3, and D4. This is because of

the I/O cost of SPrune. Both algorithms have similar CPU and communication

costs. The I/O cost of SPrune is higher because of the data block size. PPrune
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Figure 6.4: Scaleup of PPrune on D1 Dataset.

used a data block size of 128MB whereas SPrune used 4KB. So SPrune needed

far more I/O than PPrune and that is why its elapsed time was much higher. As

a result, we decided to use PPrune that runs in a single node than using SPrune.

6.2.2 Performance Evaluation of Create-ACM Algorithm

To study the performance of Create-ACM algorithm, we conducted similar exper-

iments that we conducted for PPrune. The first set of experiments was done to

study how the elapsed time of PPrune is affected by different datasets and differ-

ent number of nodes. For this experiment, we used D1-1, D2-1, D3-1, and D4-1

and we varied the nodes from 1 to 4. The results of this set of experiments are

shown in Figure 6.14. Again similar to that of PPrune, as the number of nodes
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Figure 6.5: Speedup of PPrune on D2 Dataset.

increases, the elapsed time of Create-ACM decreases. Also, the elapsed time in-

creases with the number of items in a dataset. This is because transactions from

datasets with more items or longer rules require more time to compare. That is

why D4-1 and D3-1 required more processing time than D1-1 and D2-1.

To study the speedup, sizeup, and scaleup of Create-ACM, we conducted many

sets of experiments. The first three sets were done to study the speedup, sizeup,

and scaleup of Create-ACM using D1. Figures 6.15, 6.16, and 6.17 show the

obtained results. To measure the speedup of Create-ACM, we did the same as we

did with that of PPrune. We kept the size of D1 constant and varied the number

of nodes from 1 to 4, Figure 6.15. The speedup of Create-ACM improved as the

size of D1 increased. This is because the percentage of the communication cost
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Figure 6.6: Sizeup of PPrune on D2 Dataset.

decreases when the dataset size increases. To measure the sizeup of PPrune, we

varied D1 size and the number of nodes as shown in Figure 6.16. Again as that

of PPrune, the results show sublinear performance and it improved as the size of

D1 increased. This is because higher percentage of time is spent on CPU and I/O

than in communication.

To evaluate the scaleup measure of Create-ACM, we increased the size of D1 in

proportion with the number of nodes. Figure 6.17 shows the scaleup performance

of the algorithm. The figure shows the algorithm scales well. Scaleup decreases

as the number of nodes and the size of D1 increase but it was always more than

78%.

From the experimental results, we can safely conclude that the performance of
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Figure 6.7: Scaleup of PPrune on D2 Dataset.

Create-ACM was very good when processing datasets characterized by few items

and short transactions or rules such as D1.

Performance Evaluation of Create-ACM Algorithm With Dataset Of

More Items

To study the performance of Create-ACM with a dataset with more items and

longer transaction than D1, we conducted three sets of experiments with D2.

The results of the experiments are shown in Figures 6.18, 6.19 and 6.20. The

performance of Create-ACM was even better than with D1 because the percentage

of the communication costs is less when processing D2 than when processing D1.

This is because longer transaction or longer rules demand more CPU time.

As mentioned above, dataset D3 has more items but shorter transactions or
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Figure 6.8: Speedup of PPrune on D3 Dataset.

rules than D2. Again, the performance of Create-ACM when processing D3 is

similar to that of D2. This is because more items demands longer searches, hence

more CPU cost. We conducted three sets of experiments to study the performance

of Create-ACM with a dataset D3. The results of the experiments are shown in

Figures 6.21, 6.22 and 6.23. The performance of Create-ACM is better when pro-

cessing D3 than when processing D1 because the percentage of the communication

cost is lower.

To study the performance of Create-ACM with a dataset with many number

of distinct items, we conducted three sets of experiments using the dataset D4

which has 870 distinct items. As shown in Figure 6.14 the elapsed time of Create-

ACM is higher with D4 than with D1 which has only 5 distinct items; but the
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Figure 6.9: Sizeup of PPrune on D3 Dataset.

speedup, scaleup, and sizeup measures of Create-ACM are similar or better when

processing D4. This is because more percentage of CPU time is needed to process

D4 than to process D1. The results of the experiments are shown in Figures 6.24,

6.25 and 6.26

6.2.3 Performance Evaluation of Compute-Lift Algorithm

To study the performance of Compute-Lift algorithm, we conducted similar ex-

periments that we conducted for PPrune and Create-ACM. To study how the

elapsed time of Compute-Lift is affected by different datasets and different num-

ber of nodes, we experimented using D1-1, D2-1, D3-1, and D4-1 and we varied

the nodes from 1 to 4. The results are shown in Figure 6.27. As expected, as
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Figure 6.10: Scaleup of PPrune on D3 Dataset.

the number of nodes increases, the elapsed time of Compute-Lift decreases. Also,

the elapsed time increases with the number of items in a dataset because more

distinct items take longer time to compare. That is why processing D4 takes more

time than processing D1 as shown by Figure 6.27.

To study the speedup, sizeup, and scaleup of Compute-Lift we conducted

many sets of experiments. The first three sets of experiments were done using D1.

Figures 6.28, 6.29, and 6.30 show the obtained results. To measure the speedup of

Compute-Lift, we did the same as we did with that of PPrune and Create-ACM.

We kept the size of D1 constant and varied the number of nodes from 1 to 4,

Figure 6.28. The speedup of Compute-Lift improved as the size of D1 increased.

This is because the percentage of the communication cost decreases when the
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Figure 6.11: Speedup of PPrune on D4 Dataset.

dataset size increases. To measure the sizeup of Compute-Lift, we varied D1 size

and the number of nodes as shown in Figure 6.29. Again as that of Create-ACM

and PPrune, The results show sublinear performance and it improved as the size

of D1 increased. This is because higher percentage of time is spent on CPU and

I/O than in communication.

To find the scaleup measure of Compute-Lift, we increased the size of D1 in

proportion with the number of nodes. Figure 6.30 shows the scaleup performance

of the algorithm. The figure shows the algorithm scales well. Scaleup decreases

as the number of nodes and the size of D1 increase but it was always more than

77%.

Again from the above experimental results, we can safely conclude that the

72



Figure 6.12: Sizeup of PPrune on D4 Dataset.

performance of Compute-Lift was very good when processing D1.

To study the performance of Compute-Lift with a dataset with more items

and longer transaction than D1, we conducted three sets of experiments with D2.

The results of the experiments are shown in Figures 6.31, 6.32 and 6.33. The per-

formance of Compute-Lift was even better than with D1 because the percentage

of the communication cost is less when processing D2 than when processing D1.

As mentioned above, dataset D3 has more items but shorter transactions or

rules than D2. The performance of Compute-Lift when processing D3 is similar

to that of D2. This is because D3 has more items but shorter rules than D2. We

conducted three sets of experiments to study the performance of Compute-Lift

with D3. The results of the experiments are shown in Figures 6.34, 6.35 and
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Figure 6.13: Scaleup of PPrune on D4 Dataset.

6.36. The performance of Create-Lift is better with D3 than with D1 because the

percentage of the communication cost is lower in comparison to CPU and I/O

costs.

To study the performance of Compute-Lift with a dataset with many number

of distinct items, we conducted three sets of experiments using the dataset D4.

As shown in Figure 6.27 the elapsed time of Compute-Lift is higher with D4 than

with D1. but the speedup, scaleup, and sizeup measures of Compute-Lift are

similar or better when processing D4. This is because more percentage of CPU

time is needed to process D4 than to process D1. The results of the experiments

are shown in Figures 6.37, 6.38 and 6.39
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Figure 6.14: Create-ACM elapsed time

6.2.4 Performance Evaluation of Cluster-Rules Algorithm

Cluster-Rules algorithm takes as input the ACM array which contains the lift

values of the strong association rules. The size of the ACM array produced as the

result of processing D1, D2, D3, and D4 are very small. The elapsed times of the

algorithm is in milliseconds. The Cluster-Rules algorithm is similar to PKmeans

algorithm so it will have similar performance when given datasets above 1 GB

[89]. We tested Cluster-rules and we found its performance to be similar to the

one in [87].
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Figure 6.15: Speedup of Create-ACM on D1 Dataset.

6.2.5 Performance Evaluation Using Webdoc Dataset

In all the above mentioned experiments, each dataset was replicated many times.

The number of rules generated from the replicated dataset is not huge as the

existing huge benchmark datasets. To experiment with huge number of rules we

used the Webdoc dataset. We minimized the minimum support so we can generate

huge number of rules from the dataset. Some attributes of the dataset are shown

in Table 6.2. We added another physical machine (with Intel i7-8750H Processor)

to the three shown in 6.1 and we created up to 16 data nodes and then we tested

the proposed MapReduce algorithms. The performance of each algorithm is shown

in Figure 6.40. As expected, as the number of data nodes increased, the efficiency

decreased. The efficiency of a multiprocessors is defined as shown in (6.4). Also,
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Figure 6.16: Sizeup of Create-ACM on D1 Dataset.

when the number of data nodes used exceeded 8, the speedup decreased. This is

because the percentage of the communication cost was too high compared to the

CPU and I/O costs. The main reason for the high communication cost is the size

of the Webdoc dataset, 1.48 GB, which is very small for a Hadoop machine with

more than 4 data nodes. In general, the speedup of a Hadoop cluster with many

nodes improves with bigger datasets.

Efficiency =
Speedup

P
(6.4)

where P is the number of processors.
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Figure 6.17: Scaleup of Create-ACM on D1 Dataset.

Figure 6.18: Speedup of Create-ACM on D2 Dataset.
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Figure 6.19: Sizeup of Create-ACM on D2 Dataset.

Figure 6.20: Scaleup of Create-ACM on D2 Dataset.
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Figure 6.21: Speedup of Create-ACM on D3 Dataset

Figure 6.22: Sizeup of Create-ACM on D3 Dataset.
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Figure 6.23: Scaleup of Create-ACM on D3 Dataset.

Figure 6.24: Speedup of Create-ACM on D4 Dataset.
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Figure 6.25: Sizeup of Create-ACM on D4 Dataset.

Figure 6.26: Scaleup of Create-ACM on D4 Dataset.
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Figure 6.27: Compute-Lift elapsed time.

Figure 6.28: Speedup of Compute-Lift on D1 Dataset.

83



Figure 6.29: Sizeup of Compute-Lift on D1 Dataset.

Figure 6.30: Scaleup of Compute-Lift on D1 Dataset.

84



Figure 6.31: Speedup of Compute-Lift on D2 Dataset.

Figure 6.32: Sizeup of Compute-Lift on D2 Dataset.
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Figure 6.33: Scaleup of Compute-Lift on D2 Dataset.

Figure 6.34: Speedup of Compute-Lift on D3 Dataset.
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Figure 6.35: Sizeup of Compute-Lift on D3 Dataset.

Figure 6.36: Scaleup of Compute-Lift on D3 Dataset.
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Figure 6.37: Speedup of Compute-Lift on D4 Dataset.

Figure 6.38: Sizeup of Compute-Lift on D4 Dataset.
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Figure 6.39: Scaleup of Compute-Lift on D4 Dataset.

Figure 6.40: Speedup of the proposed algorithms. Dataset used: Webdoc.
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CHAPTER 7

CONCLUSION AND FUTURE

WORK

7.1 Conclusion

Association rule mining is a branch of data mining used to discover frequent

patterns, associations, correlations, and other relationships between data items of

a dataset. An association rule is of the form X → Y , where X and Y are sets of

data items in the same dataset and X ∩Y = ∅. In a rule, the set of data items to

the left of the arrow, such as X in the above rule, is called the antecedent and the

one to the right of the arrow is called the consequent. Association rule mining has

many applications in marketing, medicine, finance, security, weather prediction,

bio-informatics, and many other fields.

Association rule mining algorithms often discover many rules; but many of

these rules are not interesting. A rule to be considered interesting or strong, its
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confidence and support must be above pre-specified thresholds. Often, the num-

ber of discovered strong association rules is still large, which makes them difficult

to inspect, analyze, visualize, or interpret. To solve the problem of large number

of association rules, researchers proposed pruning, grouping and clustering rules.

Now with the advent of big data technology, the number of discovered associa-

tion rules will increase drastically. Existing solution of handling large number of

discovered association rules is expensive to be applied to the huge number gener-

ated from big data. To the best of our knowledge, there is no solution proposed

to prune, group or cluster rules generated from big data. This motivated us to

propose, in this thesis, the first solution to the huge number of association rules

generated from big data.

The proposed solution clusters the rules into user defined number of groups.

It consists of four MapReduce Algorithms. The first algorithm is called PPrune

which clusters association rules based on their structure. The idea of this algo-

rithm is based on structural rule cover which is explained in [14]. A rule cover

states that if X, Y , and Z are three itemsets of a given transactional database D,

then Φ(X,Y,Z) ⊆ Φ(X,Y), where Φ(x) is the set of transactions in D that match

the itemset x. In other words, the transactions that match the rule X,Z → Y

are contained among the transactions that match X → Y . If rules such as

X,Z → Y are removed from a rule cover, then the remaining set which contains

X → Y is a rule cover. A structural rule cover consists of the most general rules

of the original set of rules. PPrune is an optional algorithm which runs before
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the main clustering algorithm. It is needed if the given number of rules is too

big to handle. The second MapReduce algorithm creates a matrix called ACM

(Antecedent-Consequent Matrix) which is indexed by the distinct antecedents and

consequents of the strong association rules. ACM is used to store lift values of

the strong association rules. Let the set A = {A1, A2, . . . A|A|} be the set of all

antecedents and C = {C1, C2, . . . C|C|} be the set of all consequents in the strong

association rules, where |A| and |C| are the number of distinct antecedents and

consequents respectively. Element mi,j of ACM contains the lift value of the rule

Ai → Cj. The third MapReduce algorithm computes the lift value of each strong

association rule and stores it in its corresponding ACM element. The last MapRe-

duce algorithm clusters the association rules with different antecedents based on

their lift values. Lift measures the correlation of a rule with its antecedent and its

consequent. The proposed clustering approach is based on the assumption that

rules with antecedents that are highly correlated with the same set of consequents

are similar and thus they should be in the same cluster [87]. Unlike the exist-

ing clustering approaches, this approach clusters antecedents containing itemsets

which are rarely purchased together. This is because of the high correlation they

have with the same consequents.

The proposed algorithms were experimented in Hadoop cluster. In the experi-

ments both real and systhetic benchmark datasets were used. The performance of

the proposed algorithms was evaluated using four measures, namely elapsed time,

scaleup, sizeup, and speedup. All the algorithms showed high performance. For
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example, the lowest scalability obtained by the experiments was 77%.

7.2 Future Work

As future work, we plan to accomplish the following four ideas. First, we plan

to test the proposed algorithms using more nodes and bigger dataset; Second, we

plan to use a visualization software to see the distribution of clusters; Third, we

plan to use a functions other than lift. Finally, we plan to extend our algorithms

to handle rules with any number of items in their consequents.
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