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ABSTRACT

Full Name . Ali Noor Mohammed Bu Jubarah

Thesis Title : A MILP-Based Approach for Virtual Microgrid Restoration

Major Field : Electrical Engineering

Date of Degree : April 2019

There is a sharp increase in the demand side as a result of technological and civilizational
advances, thus power system networks have to be continuously upgraded. This increase
has made it difficult to control the system especially when complex system failures occur,
resulting in undesirable impacts on the reliability of the network. Renewable Energy
sources (RE) are one way to minimize the dependency on the conventional sources to
generate electrical energy, which also plays a significant role in increasing the reliability
of the system and reducing the environmental pollution.

Integrating RE with other high technological equipment into the conventional distribution
system (DS) leads to a system concept known as the microgrid system where it is more
reliable than the conventional distribution system stands alone. Also, another concept can
be reached by integrating RE with the DS which is known as the virtual power plant (VPP)
where new tools and devices need to be incorporated in the system in order to analyze and
model the system to work optimally in the energy market (EM). However, the resulted
system from the emerge of RE and DS need to be controlled and maintained where it should
have the ability to isolate and restore the power when faults happened on the system.
Therefore, efficient algorithms must be applied to ensure the optimum restoration of the

system.

X1V



This thesis studies the smart restoration optimization technique for the microgrid network
and the VPP network. The proposed system will participate in the EM during fault
management and will be known as the concept of virtual microgrid. Several factors are to
be considered in the study like the maximum load demand and the available power supply.
In addition, the operation and maintenance cost is an important factor in this study in
addition to a load priority. The restoration problem will be posed as a Mixed Integer Linear
Programming (MILP) problem and then it will be solved using CVX software to ensure
the optimal restoration configuration of the virtual microgrid system. The system will be
implemented as an IEEE 13 bus system and it will be assumed to be a smart virtual
microgrid system that consist of automated devices such as automated switches, computer
based remote control and sensors.

Simulation results of the proposed technique will be shown to demonstrate the
effectiveness of restoring the system after faults occurrence by optimizing the power output
capacity of the generators and controlling the loads. Remarkable results of the proposed

technique are obtained regarding the computational time and accuracy.
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CHAPTER 1

INTRODUCTION

The first chapter of this thesis consists of five sections. Section 1.1 is an overview of the
main idea of the problem. A thesis motivation will be shown in section 1.2 while section
1.3 contains the thesis objectives. At the end, the structure of the thesis is presented in

section 1.4.

1.1  Overview

Power quality, high efficiency and reliability in energy usage are important subjects in
operating and implementing current grids. With the increase of load as well as the need of
a high efficient system, more research and techniques are needed to evaluate the reliability
and the efficiency of the power network. Moreover, the reliability of the grid is negatively
affected by many problems, which can be solved by implementing the smart grid
technologies and techniques. The smart grid is a large-scale distributed system that contains
many new components like storage units, renewable energy sources, two-way
communication infrastructure, and electric vehicles [1]. According to [2], smart grids is
defined as an intelligent grid that uses a communication technology and an information of
the network status by using control systems and smart meters designed to handle the

distributed resources and the un-forecasted load.



There are many advantages of the smart grid in comparison with the conventional grid from
both utilities and consumers perspective. At the consumer's side, the system will consist of
smart meters that can help the consumer to manage and reduce the consumption of energy
during high-energy usage peaks, which leads to reduce the cost of using electricity. On the
other hand, to the utilities perspective, the smart grid network can provide more reliable
energy service, which decreases the amounts of electric outages and power losses, it can
automatically report the location of an outage before the consumers get affected, making
the restoration service faster and the status notification to individuals much easier. In
addition, smart grid system can provide more efficient system by reducing the cost to
produce, deliver, and consume electricity. Furthermore, the integration of renewable
energy sources with the conventional system result in a reduction of the environmental
emissions and discharges [3]. The smart grids come in different shapes and types like the

microgrids, nanogrids, and the virtual power plant (VPP).

In a standard microgrid network, there are number of conventional and renewable
distributed sources, several controllable and uncontrollable loads, and some sort of storage
sources. These components are together called distributed energy resources (DER). The
microgrid network has different types of users, where each type has different priority, such
as commercial, industrial, residential and electric vehicles. Figure 1 shows a typical design
of the microgrid system and the interconnection with different type of users and generations
[4], and shows the two-communication paths between the microgrid and utility grid and

the power sources.



Utility grid

Microgrid
il 2 - [ 0-0
Commercial Residential Generator Renewables Storage Electric
and industrial vehicles

Figure 1.1 Sample system design of microgrid network [3]

One feature of the microgrids network is that it can be operated in an islanded mode where
it works separated from the main grid as a single utility to deliver energy to the users during
outages. This feature is known as the smart self-healing where it consists of protection
devices that can detect the fault location and isolate it from the rest of the network [5].
During faults isolation, switching operation will occur and some of the healthy sections
will experience service interruption [6]. Thus, the network must have the capability of
applying the smart restoration service in order to restore these healthy areas as fast as
possible. However, because of the integration of RE with the distribution system (DS) into
the microgrids network, and due to the existence of the advanced devices in the smart grids
network such as the smart meter, where it reports the location and size of an outage, the

restoration service becomes more flexible and faster to be implemented.



1.2  Thesis Motivations

An important concept of the microgrids is smart restoration, which is defined as the ability
of the microgrid to separate the faulted section of the network and restore the optimal
configuration of the network using advanced control and monitoring devices and utilizing
all the available power from the distributed sources. The restoration problem is usually
considered to be multi-objectives and multi-constraints optimization problem. To analyze
the network and apply the smart restoration service on the smart grids, many promising
approaches of analyzing the system are applicable and mathematical programming (MP)
is one of them. MP is a mathematical model of the problem where it is commonly
implemented as a mixed integer programming (MIP) problem and evaluated by
mathematical softwares. MIP can be categorized into a mixed integer linear programming

(MILP), and mixed integer nonlinear programming (MINLP) approaches.

In this thesis, a MILP approach will be proposed to formulate the fault management and
system restoration (FMSR). To solve the FMSR problem, different factors need to be
considered to find the optimum solution for the problem like the available power supply,
the priority of loads, and required maximum load demand. For this thesis, multi-objective
functions of the optimization problem must be solved like maximizing the energy restored
in the system, maximizing number of customers to be restored, and minimizing the system
losses. Also, minimizing the operational and outages costs are important objective

functions to be considered when formulating the FMSR as a MILP problem.



The system will be implemented as an IEEE 13 bus system and it will be assumed to be a
smart virtual microgrid system that consist of automated devices such as automated

switches, computer based remote control and sensors.

There are significant research challenges when it comes to solving the fault management

and system restoration problem, which include:

* Using IT infrastructure to inform the facilities of a potential abnormality in the system in

order to react before outages occur.

* Using smart meters and smart automation control devices to present real time data about

the grid status and to instantaneously alert utilities in the case of failures.

* Locating faults by using monitoring and controlling devices to isolate faulted sections of

the network and reconfigure the system.

1.3  Thesis Objectives

The main objective of this thesis is to study and analyze the restoration process of the smart
grids with considering the participation of the system in the energy market (EM). The

objectives of this thesis can be summarized into three main objectives.

1- To propose a model of the virtual microgrid by integrating the concepts of
microgrid and VPP.
2- To model the FMSR as a MILP problem.

3- To test and verify the proposed FMSR model by using CVX software.



1.4 Thesis Contributions

The main contributions of this thesis are as follows:

e Proposing a new model called virtual microgrids that:
o Integrate RE with the conventional sources.
o Participates in EM while considering the restoration service.
e Proposing a MILP based approach of the virtual microgrid restoration that:
o Considers the distribution network constraints.
o Considers the priority weights of loads.

o Depends on the time of fault occurrence.

1.5 Thesis Structure

The rest of this thesis is organized in four chapters as follows:

e Chapter 2 provide a comprehensive literature survey divided into three parts. The first
part is about the microgrid and its application. The second part is about the VPP and
the differences in applications between microgrid and VPP. The last part is about the
optimization techniques that used to implement the restoration problem of the smart
grids.

e Chapter 3 contains modeling of the proposed system and the different types of DGs.
Also, it provides the general formulation of the MILP technique as well as formulating

the FMSR and the constraints used in the problem as a MILP approach.



e Chapter 4 discussed the results of the proposed model. Three case studies verifying
and implementing the proposed MILP approach.

e Finally, Chapter 5 present a conclusion and a future work related to the thesis work.



CHAPTER 2

LITERATURE REVIEW

2.1 Electric Microgrids

As mentioned in chapter 1, the reliability of the grid can be negatively affected by different
factors and the smart grids is one way to solve this issue [7]. A microgrid is one type of the
smart grids where it consists of number of conventional generators, and DG sources,
several controllable loads, and some sort of storage [8]. A microgrid system can provide a
coordinated integration of the RE with the DS network and it provides more reliability to
the network. According to [9], the microgrid can operate in two modes: in grid-connected
mode and in islanded mode. In grid-connected mode, the microgrid transfer power to other
microgrids system or the main grid, while in case of a mismatch in supplying the loads it

will import the power from the main grid.

There are two ways for controlling and managing the microgrid [10], centralized approach
and decentralized approach. In the centralized approach, one single controller is controlling
all the DGs, storage sources and the controllable loads [11, 12]. This approach has the
advantages of optimizing the operation of the network due to the complete observability of
the microgrid network. However, with the increase number of DGs, it will be more
complex to operate the microgrid network optimally [13]. On the other hand, the
decentralized approach allows the DGs owners to participate in a market environmental

within the microgrid [14, 15]. However, since each part of the system will be treated



independently, this may lead to reduce the reliability of the microgrid network and make it

hard to implement the system in an islanded mode.

2.2  Virtual Power Plant

According to [16], VPP does not have a fixed definition. In [17, 18], VPP is defined as a
combination of micro units that are connected to low voltage DS. In addition, VPP can be
defined as an aggregation of different forms of distributed resources that are scattered in a
medium voltage network [19]. While in [20, 21], VPP is defined as a multi-technology and
multisite diversified entity. However, the most common definition of the VPP is an
aggregation of different types of DGs, controllable loads, and sorts of storage sources that
form one single entity that will represent all the components of the system in the EM and
act as a normal power plant [22, 23]. VPP can participate in EM and trade energy with an

entity called Independent System Operator (ISO) [24].

According to [25], VPP has two types in the literature: technical VPP (TVPP) and
commercial VPP (CVPP). Based on [26], TVPP concept focus more on the technical side
of the network where it combines different parts of the network to accomplish system
reliability and stability and provide technical services to the ISO. On the other hand, CVPP
represent the parts of the network as single source of energy and participate in EM to trade

energy with ISO to maximize its profits [27, 28].



Although microgrid and VPP networks are very similar in concept when it comes to
increasing the reliability and the stability of the system; however, there are some
differences between microgrid and VPP [29]. Microgrid can operate in islanded mode
when there is a fault in the line connected to the main grid, while the VPP cannot operate
in an islanded mode. Also, [30] says that the VPP can aggregate DGs sources and the
controllable loads to work as one entity participating in EM while the microgrid does not

have the feature to join the EM and trade energy.

2.3  Virtual Microgrids

The main gap of the literature is the concept of the virtual microgrid and its applications.
Only one reference [31] discussed the theoretical concept of the virtual microgrid and gives
a general comparison between the microgrid, VPP, and the virtual microgrids. The
reference shows that the virtual microgrid can be defined as the integration of all different
types of distributed sources, and storage sources that are coordinated by a control center.
In addition, the author says that the virtual microgrid has same characteristic of the
microgrid with respect to the main grid, so it can be operated in two modes, the grid
connected mode, and the islanded mode. Also, the virtual microgrid is similar to the VPP
in participating in EM where it can trade energy with the main grid in both day-ahead
market and real-time market. However, the reference only described the virtual microgrid

concept theoretically and did not show any technical results.
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2.4 Mixed Integer Linear Programming

Many researchers studied the possibility to apply the smart grids on the existing systems
and networks and to investigate its effects on the reliability and the efficiency of the system.
In addition, several studies discussed the restoration problem of the smart grids and the
techniques used to optimize the operation during interruptions [32-36]. The techniques that
are used to optimize the restoration problem can be divided into three types, heuristic
approach [37, 38], soft computing approach (SC) [39-42], and mathematical programming

approach (MP) [43-48].

For the heuristic approach, it is also known as an expert system where the search strategy
utilizes the operator’s experience and knowledge to get the best and optimum
reconfiguration of the microgrid network. For instant, the work at [37] present a heuristic
approach to find the reconfiguration system where it uses an equation that is described as
a ratio of power losses and the load demand as an objective function of the problem, it
starts as all switches are in an open state and the switch will be closed in case it causes the
smallest increment in the objective function. The idea of this research is to reduce the value
of the objective function by finding new locations for the switches and it takes less counting
effort than sequential switching. Two heuristic procedures are used in [38] in order to
define the collection of switches to be opened resulting in minimizing the overall power
losses in the distribution systems. However, both researches did not consider the customer
priority ranking and the heuristic approach takes more time to restore and reconfigure the

system.
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SC approach is expanding as a solution for the restoration problem of the microgrid. It is
known as a computational intelligence (CI) where it means that a computer would have the
ability to understand a particular function from experimental observation. Moreover, it uses
inaccurate initial solutions to find the answer of complex tasks like the solution of
nondeterministic polynomial problems, for which there is no algorithm that can solve the
polynomial problems using an exact solution. There are different SC techniques that were
applied to find an answer for the restoration problem, like fuzzy logic [39], particle swarm
optimization [40], and clonal selection algorithm [41]. The presented work at [42] proposed
a differential evolution algorithm technique where it shares part of the desired power
needed to each microgrid network in a scattered technique but it did not consider isolating
faults and clearing them in an economic way. Despite the attraction of the SC techniques
in many field of studied, applying it to power networks results in three main disadvantages:
it required many external variables to be defined for the optimization, does not guarantee
the global optimal solution, and sometimes it required an extensive computational time for

simple problems.

Because of the large number of control parameters and the difficulty of the microgrid
systems, the best way to overcome this issue is to apply a mathematical approach to
guarantee the optimal restoration and reconfiguration of the network [43]. MP is a
mathematical model of the problem where it is usually formulated as a MILP problem that
can be solved mathematically. MIP can be categorized into linear (MILP) and nonlinear
(MINLP) approaches. Several researches considered the MILP approach as a technique to
solve the restoration problem. The author of [45] proposed an algorithm considering the

MILP technique to minimize the cost of the restoration operation of the microgrid network
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in an islanded mode and to sustain the network stability. The developed model checks
power balance and measures the frequency, the system will perform load shedding due to
a shortage power resulting from dropping the frequency and becomes less than the limit of
the system's frequency to balance the power in the system. In [46], a MILP technique based
on the auto reconfiguration of a microgrid system has been developed to optimize the
operation cost of the system in a grid connected mode. Furthermore, a centralized energy
management system (EMS) has been proposed in conformity alongside the developed
MILP approach so that when a fault occurs and a circuit breaker (CB) change the status to
open, the system will be reconfigured without considering the opened CB. So, the idea is
that all the components of the system communicate with each other and perform the
algorithm, after any change in the system’s components, the system data is updated by the

EMS and create a new schedule for more economical operation.

Another research solved the restoration problem of the microgrid network by applying two
stages of MP: MILP and MINLP [47]. The research firstly fined the optimal configuration
of the system by solving it as a MILP problem, then it solved a MINLP problem to modify
the steady state operating point of the topology found in the first stage like adjusting the
continuous electrical parameters and find the optimal load shedding. Load management
was considered in this work where the load can be altered during optimization process.
However, a static voltage was used for all the nodes of the system while considering the
power flow. In addition, applying MILP then MINLP results in not finding the global
optimally restoration of the system and that because not all variables of the problem are

considered at the same time.
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CHAPTER 3

SYSTEM MODELING AND PROBLEM FORMULTION

This chapter consist of different sections describing the system model, MILP methodology
and the mathematical formulation of the problem of FMSR. Section 3.1 explain the used
system and the modification that was applied on it such as the location of different load
types and generations sources. A general formulation of the proposed MILP technique is
presented in section 3.2 while the mathematical formulation of the FMSR problem with

the constraints as a MILP problem are in section 3.3.

3.1 Description of FMSR Problem

The main objective of this research is to analyze and formulate the fault management and
system restoration (FMSR) problem of the virtual microgrids network as a MILP problem.
There are many parameters that need to be considered in solving the FMSR as a MILP
problem. Therefore, it is important to understand the concept of the proposed FMSR
problem and what are the objective function that will be used to solve the FMSR problem

as MILP along with the constraints and the control variables.

14



3.1.1 Objective Functions

The fault management and restoration problem are considered to be multi-objective
optimization problem where various control parameters are included. These objective
functions will be weighted and emerged into one objective function to make it easy and

fast to solve the FMSR problem. The objective functions in this thesis are:

a- Maximizing the number of customers to be restored based on their priority model.
b- Maximizing the system profits.

c- Minimizing the operational cost of the DGs.

3.1.2 Control Variables

There are many control variables that can be controlled, three main control variables are to

be considered in the thesis:

a- The status of the switch in the smart grid system.
b- The available power from DGs sources.

c- The amount of Load Curtailment and Shedding Loads.

3.1.3 Problem Constraints

There are many constraints that cannot be exceeded in order to have the optimum

reconfiguration of the smart grid system. These constraints can be divided into two types

[43]:
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a- Technical Constraints

The restoration problem should be formulated considering technical constraints to
maintain the smart grid network within the accepted limits, and the technical constraints

that are included in this thesis are:

1- Bus voltages magnitude and angles.
2- Power flow rating of the line.

3- Maximum power limits of DGs and RES.

b- Management Constraints

This type of constraints is related to the agreement between the utilities and the
customers to control and manage loads during peak times, which is known as the
demand side management (DSM). In addition, EM constraints must be applied in the
optimization problem since the system will trade energy with the ISO and customers.
Figure 3.1 shows a summarized flowchart of the optimization process for the
restoration optimization and the important parameters that need to be considered in

solving the optimization problem.
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Optimal

Configuration ?

Figure 3.1 Restoration optimization flowchart

Figure 3.2 shows the details flowchart of the restoration optimization. There is a need for
participating in the real time EM due to sudden faults occurrence and renewable power
intermittence. After finding the optimal day ahead bids, the virtual microgrid operator will
operate the system in the real time by starting to check for faults occurrence and the actual
output power of renewable sources. Then, the virtual microgrid operator will run a real
time internal market so that customers submit real time bids for adjustments. Based on real
time settlements, the virtual microgrid operator decides whether it buys energy from the

ISO to supply loads or sell energy to ISO to maximize its profits.
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Figure 3.2 Detailed flowchart of the restoration process
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Figure 3.3 shows timeline considered participating in EM, where the virtual microgrid
operator starts with hourly bids calculated day ahead. Then, it will participate in the real
time market to find the optimal bids/offers for the network where it takes 5-8 minutes to

implement the restoration service.

Optimal Virtual Customers Virtual microgrid

. submits Restoration
day__ahead operator check su_bmlt real bids/offers to the service
bids for faults time bids IS0

microgrid

Y |
Day-ahead Real time optimization (5-8 min)
optimization

Figure 3.3 Timeline considered participating in EM

3.2 Methodology of the MILP Technique

The MILP technique that is used in this thesis is adopted from the reference [50] where it

uses the nonlinear form of the following power equations:
PE = VESN 28 VE (G cosoif + BSFsingF) (3.1)
QF =ve sV 8 vF (6 sinefFf — BFcosofF) (3.2)

To linearize these equations, two assumptions are used:

1- The angle difference between connected buses are small and the trigonometric
functions are linearized around 0, -27/3, and 27@/3.

2- In normal operation conditions, the voltage magnitudes are all close to 1.
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From the above assumptions, equations (3.1) and (3.2) can be linearized into:

Where
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(3.3)

are an NXN matrix that relates P at phase a to V at phase § and Q at phase

a to V at phase f for all N number of buses in the system.

3.2.1 The General Form of MILP

The MIP approach has two types as explained in the literature, and the type that is used in

this thesis is the MILP where it is easier and faster for solving problems like FMSR. It can

be used as either a maximizing or a minimizing problem and have the general form of:

Z = max(min)CX

Subjected to

2AX<B
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Where

X = (Xq,X3,X3, -, Xp) are control variables or decision variables.
C = (cq,C,C3, ..., Cp) are objective coefficients.
B = (b4, by, b3, ..., by) are right-hand side values of the constraints.
di1 0 A1
A= | : are constants values of the constraints.
dmi " Amn

3.2.2 Disjunction or Decision Constraints

It can be notice from (3.5) that the constraint also must be in a linear form to solve the
objective function. However, there are different types and forms of constraints where they
need to be modified into a linear form. One of the types is the disjunction or decision
constraint. When the constrain is in the form of AX < B, the control variable r =1 is applied.
However, when the control variable r = 0, the constraint is relaxed and need to be modified.
To model such constraint, a constant M must be added so that it can be controlled by the

control variable c.

The form of the constraint become:

YAX—-B<M(1-1) (3.6)

Where

r is the control variable

M is a constant assured to be always greater than ), AX — B.
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3.3 Mathematical Formulation of the Optimization Problem

As mention in section 3.2.1, the FMSR problem is a multi-objective problem. In this
thesis, three objectives functions are considered where they combined in one objective

function to be optimized, and they are listed as follows:

3.3.1 Maximizing Number of Customers

The first objective function is maximizing the restored number of customers based on

priority weights, where it depends on time of occurrence of the fault and its location and it

is given by:
Obj; = Max X% (o™ - py) (3.7)
Where
Wf tr fority The weight of priority for each load i at time of fault t.
Pt A binary decision related to the customer restored at time of fault t.

3.3.2 System Profits/Operation Cost

The second objective can be either maximizing the system profits and it is given by:

Obj, = Max (ART - PRT) (3.8)
given that
PtRT — ptLoad _ PtCOrIV _ PtRen _ PtDA (39)
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Where
25T
PET
pload

Conv
Py

Ren
Py

DA
I

Price of selling/buying from/to the ISO at time of fault t.

The real-time loads at time of fault t.

Total loads after reducing the accepted customer's bids at time of fault t.

Total output power of conventional generators at time of fault t.

Total output power of the renewable sources at time of fault t.

The capacity of the Day-Ahead bids from/to the ISO at time of fault t.

It is obvious from (3.9) that if the value of the PRT > 0, then the system is going to buy

energy from the ISO which means minimizing the objective function as a cost, but if the

value of the PRT < 0, then the system is going to sell energy to the ISO, hence the objective

function become maximizing the profit.

333

Curtailment Cost

The third objective of this thesis is to minimize the cost of curtailment. Since each customer

is participating in a DSM programs, the system is paying the customers for the amount of

curtailed energy as a compensation, and it is given by:

Obj; = Min( APR - PLC) (3.10)
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Where
APR Price paying to the customers for participating in DSM.

pLc Amount of curtailed energy from the customer side.

3.3.4 Overall Objective Function

The multi-objectives function of this thesis is to solve the restoration problem based on the
three objective functions above. They need to be combined in one objective function so
that the system works optimally during faults while it participates in the EM. Each
objective function must be converted to a per unit scale. The general objective function of

the FMSR problem can be expressed as:

Max (wO°bit - Obj;) + (WOPz - Obj,) + (wObs - Objs,) (3.11)
Where
wObi1 Weight of the first objective function related to number of customers
restored.
WAL Weight of the second objective function related to the system profits/costs.
wObJs The weight of the third objective function related to the LC cost.

These weights depend on the users or utilities decision where it vary the importance
between maximizing the number of customers restored, participating in the EM or

minimizing the curtailment cost.
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3.4 Problem Constraints Formulation

As mentioned previously, the restoration problem must be solved within limits of
constraints with different types. In the following sections, each constrain is formulated in
a linearized form so that the proposed MILP technique work without exceeding these

constraints.

3.4.1 Renewable Resources

0 < PV® < pyMax (3.12)
0 < W& < wMax (3.13)
Where
PVE: The output power of the solar source of phase « at time of fault t.
pyMax. The maximum power of the solar source.
WE: The output power of the wind farm of phase « at time of fault t.
wMax. The maximum power of the wind farm.

3.4.2 Conventional Generators

PConv,Min < Pifitonv < PConv,Max (3.14)
QConv,Min < Q&)HV < QCOHV,MaX (3.15)
—Ramp < PP < Ramp (3.16)
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Where

PE™: The active power output of the conventional generator I at time t.
pconvMin, The minimum active output power of the conventional generator.
pconvMax.  The maximum active output power of the conventional generator.

com. The reactive power output of the conventional generator I at time t.
QComvMin.  The minimum reactive output power of the conventional generator.
QComvMax.  The maximum reactive output power of the conventional generator.
Ramp: The generator ramping rate.

3.4.3 Demand Response

Pi2e® = By (i) = Pif (3.17)
PEC = XY, - PEE (3.18)
PLE < prOMax (3.19)

Where

Li¢: The total demand of load i at time of fault t.

PLL,:C : The curtailed amount of load 1 at time of fault t.
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Y Binary decision variable specifies the acceptance of bids from customer

1 at time t.

] The maximum allowed amount of accepted amount of load reduction.

3.4.4 System Constraints

- Un-Switchable Branches:

PtConv + W, + PV, + PtRT — pload 4 ploss (3.20)
g a2
o U7 (ya _ ya M, rpx _ p@
B~ e (Y Gy OO0 o2
Q% ~ (6% — 0%) + A (V& — V&) (3.22)
VU ) T T (e ) '
ViMin < Vioc < ViMax (3.23)
pMin < g < gMax (3.24)
[P < By (3:25)
o5/ = > 329
SLY| < SLMex (3.27)
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Where

a.
P&:

it

Via .

0f:

The transferred active power on a line from bus 1 to bus j in a phase a.

The transferred reactive power on a line from bus i to bus j in a phase a.

Resistance line between bus 1 and bus j in phase a.

Reactance line between bus 1 and bus j in phase a.

The voltage magnitude at but i and phase «.

The voltage angle at but i and phase «.

SL¥: The transferred power between the VPP and ISO at time t and phase a.

- Switchable Branches:

o Closed branch (u;; = 1)
—ME(1 —w;) S PR —ky - (V&= V®) — ko (68 — 67) < M (1 —w;))
—ME(1— ;) < QF — ke - (67 — 6) — ko (V* — V) < ME(1 —wy)
o Opened branch (u;; = 0)

v a v
—M;. -uij < Vij < Mij -uij

a 7]
-uij < Hij < Mij -uij

28

(3.28)

(3.29)

(3.30)

(3.31)



a.a

ky = Y (332)
()G |
a2
IO ) S— (3.33)
2 (Ti‘}‘-2+xf‘j2)'xf‘j .

Where

M i’}-: A disjunctive constant that must be always larger
than [P — ky - (V¥ — V%) — k,(6F — 67)I.

M S A disjunctive constant that must be always larger
than [Q% — ky - (6 — 6%) — ko (V* — V)1

Ml-‘j-: A disjunctive constant that must be always larger than |V5].

M iej: A disjunctive constant that must be always larger than |6j].

3.4.5 Energy Market Constraints

Ct(,’onv — Z?’:G1(ai +b;- Pi?tonv (3.34)
PRT = SL¢ + SL? + SLS (3.35)
0 < cfomv < (ConvMax (3.36)
Where
a;, b;: The cost coefficients of the conventional generator i.
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3.4.6 Radiality Constraints

Loop

Lol wiy < NP -1 (3.37)
where

Ujj: The branch switch state.

NlLOOP: Number of branches in loop 1.

3.5 Proposed System Model

3.5.1 IEEE 13-Bus Test System

The system that was implemented and tested to apply the proposed optimization problem
is the IEEE 13 bus test system as presented in Figure 3.4 [49], where Figure 3.5 shows the
single line diagram of each phase of the system. For more simplicity, the number of nodes
are adopted as shown in the Appendix A.2, and all the voltage regulators and transformers

are ignored; so, node 634 and node 692 are ignored.
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Figure 3.5 Single line diagram per phase

3.5.2 DG Sources and Load Types

Reference [49] shows the details of the line data and loading conditions of the IEEE 13 bus

test system. However, the system is modified by adding two types of loads: commercial
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and residential loads. In addition, renewable energy sources were added at specific buses
in the system. Table 3.1 shows the modified busses with the used type of generator and

their output power capacity and Table 3.2 shows the modified busses with the type of load.

Table 3.1 Modified buses with type of generator

Bus Generator Type Phase A Phase B Phase C
(KW) (KW) (KW)
611 Conventional - - 1000
671 Conventional 1000 - -
675 Solar 1000 1000 1000
680 Conventional - 1000 -
684 Wind 600 600 600
Total (KW) 2600 2600 2600

Table 3.2 Modified buses with type of load

Bus Commercial Load Residential Load
611 - Yes

633 - Yes

671 Yes -

675 Yes -

680 - Yes
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CHAPTER 4

RESULTS AND DISCUSSIONS

The verification of the proposed MILP approach for solving the FMSR problem is going
to be presented in this chapter. Different case studies examined the proposed optimization
where it is applied using CVX software. CVX is a Matlab based modeling system where it
is used to optimize different types of mathematical formulations. It turns Matlab into a
modeling language where it solves the objective functions and applies the constraints by
using the standard Matlab expression. However, to optimize the problem as a linear
problem, a tool called Gurobi must be installed in the CVX software. In the following
sections, three case studies are presented of the FMSR problem showing different fault
location and different level of restoration. Each case represents a feature of the proposed
virtual microgrid model. All the faults of the cases are assumed to be occurred at 11 am.
Although it must take part of seconds to restore the system, however, optimizing the

restoration problem is shown as a 1 hour period in the results to make it clear to read.

4.1 Case 0: Normal Operation

To make sure that the proposed FMSR technique is working fine, we need to see how the
system behave during normal operation condition where no faults are occurred. As
mentioned in chapter 3, the system is the IEEE 13 bus test system with three conventional

generators, a solar source and a wind farm. Two types of loads are in the system,
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commercial and residential. In addition, bus 2 assumed to be connected to the ISO where

the energy is traded between the system and the ISO.

After running the system without any faults, the following results has been recorded and
analyzed for 24 hours. The load demand of the system is shown in Figure 4.1 where we
can see that between 7:00 am and 19:00 pm is the highest rate of loads. In addition, since
the system is participating in the EM, a Day-Ahead Bids are sold from the system to the
ISO in order to maximize the profit of the system and it is shown in Figure 4.2. We can
notice that that the system is selling energy to ISO between 7:00 am and 19:00 pm at the

same period of the higher rate of loads.

Load Demand
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Figure 4.1 Load demand of the system for 24 hours
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Figure 4.2 Day ahead bids between the system and ISO

Figure 4.3 shows a comparison between the generated energy from the conventional and
renewable sources and the load demand of the system, and it is clear that the total generated
energy is equal to the total load demand of the system. The prices of trading energy in the
EM are shown in Figure 4.4, where it consists with the price of trading energy from ISO,
price of generating energy from the conventional generators, price of compensation to

customers participating in the DSM, and the price of energy from the VPP.
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Figure 4.3 Comparison between generated energy and the load demand.
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Figure 4.4 Prices of the EM
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4.2 Case 1: Fault at Line L4

To test the proposed approach during fault, case 1 is presented where a fault is occurred on
line L4.5 as shown in Figure 4.5. Because of the design of the system, only the customers
in bus 5 are affected where they are sheded and cannot be restored, the load demand after
losing the customers in bus 5 and after participating the others in the DSM program is
shown in Figure 4.6. It can be noticed between 11:00 am and 12:00 pm, where the fault
occurred, that the load demand decreased from around 4300 KW (normal operation) into
3500 KW (case 1). The results show that the accepted amount of curtailed power is 297

KW which means that almost 500 KW was not restored because the lost customers at bus

5.
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37

Figure 4.5 Case 1 with fault at line La.s



5000
4500
4000

g 3500

Power

3000

2500

2000

9
1500

After running the load flow of the system with the optimization approach, the optimal
configuration shows that the system is selling energy to the ISO with an amount of 2421
KW as in Figure 4.7. This amount is generated from the DG sources which is comprise of
an amount of around 400 KW of the day-ahead bids for the customers lost at bus 5 which
the system generates it in order to compensate the cost of the day ahead bids. In addition,

the extra-generated power (about 2020 KW) from the DG sources is for maximizing the

system profits.
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Figure 4.6 Load demand with fault at line L4.s
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Figure 4.7 Real time bidding sold to ISO

Figure 4.8 shows the details of the optimal configuration for a 24 hour, it can be noticed at
hour 11:00 am that the summation of the total generated energy and the bidding sold to the
ISO is almost equal to the total load demand. The difference between the value Load and
Load without fault is the amount of the curtailed energy and the lost loads at bus 5. The
resulted voltage magnitude values of the restored system compared to the normal operation
results is shown in Figure 4.9. It is cleared that the system is working within the accepted

limits of the voltage magnitude.
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Figure 4.8 Optimal results of the system of case 1
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Figure 4.9 Voltage magnitude of case 1
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The results of solving the objective function of this thesis is summarized in Table 4.1. Only
2 customers out of a total 13 customers are lost and the system succeed in restoring as much
as it possible to the system and maximize the its profits. Table 4.2 shows a comparison of
case 1 with when the system is participating in EM and without participating in EM where

it validates the results obtained from the proposed optimization in both conditions.

Table 4.1 Results of the optimized objective function in case 1

Number of Customers Restored 11 Customers
Curtailed Cost ($) -14.6187
Profit ($) +190.6359
Total Profit ($) +176.0172

Table 4.2 Optimization with EM vs. optimization without EM in case 1

Optimization with EM Optimization Without EM
Total Loads (KW) 4181 4181
Loads After Fault (KW) 3437 3733
Bids (KW) 2421 Selling 0
Generated (KW) 5892 3863
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4.3 Case 2: Fault at Line L1.10

For the second case, the line Li.1o is faulted where a conventional generator and customers
at bus 1 are lost which make it harder to be optimized than case 1 as shown in Figure 4.10.
The amount of the lost loads at bus 1 is about 450 KW and the accepted curtailed power is
296 KW. The resulted load demand after the fault occurred and after subtracting the amount

of the curtailed power is shown in Figure 4.11.

7 650

646 645 632 633
[ 4 L L L J
611 684 671 692 675
\o ! E —® [
N
®
652 680

Figure 4.10 Case 2 with fault at line Li-10
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Figure 4.11 Load demand with fault at line Li-10

By logical analysis, there is a need for a replacement of the energy lost from losing the
conventional generator in order to restore as much customers to the system. The results of
the optimal configuration of the system validate the logical analysis where energy from the
ISO is purchased and 12 customers out of 13 are restored. Figure 4.12 shows the bids that

purchased from ISO with an amount of 2707 KW.
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Figure 4.12 Real time bidding purchased from ISO

The details of the optimal results of the system for case 2 are shown in Figure 4.13. To
verify the results, we can see that summation of the generated energy and the bids
purchased from the ISO is equal to the total load at the time of fault. The resulted voltage
magnitude values of the restored system compared to the normal operation results is shown
in Figure 4.14. Table 4.3 shows the comparison when the system is participating in EM
and when it is not, it can be seen that the system generates more energy when it is not

participating in the EM.
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Figure 4.14 Voltage magnitude of case 2
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Table 4.3 Optimization with EM vs. optimization without EM in case 2

Optimization with EM Without EM
Total Loads (KW) 4181 4181
Loads After Fault (KW) 3774 3733
Bids (KW) 2707 Buying 0
Generated (KW) 1067 3863

In Table 4.4, the results of optimizing the objective function of this thesis is presented and
showing how much does it cost for the purchased energy. The energy is generated from
both the conventional and the renewable sources, Figure 4.15 and Figure 4.16 show how
the renewable resources is behaving and it can be noticed that at the time of the fault, almost

the maximum capacity is generated when the system is not participating in EM.

Table 4.4 Results of the optimized objective function in case 2

Number of Customers Restored 12
Curtailed Cost ($) -14.1622
Cost/PF (8) -213.2048
Total Cost/PF () -227.367
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Figure 4.16 Output energy of the solar source

47



4.4 Case 3: Fault at Line L,

This case is much more complicated than the previous cases. A fault is applied on line Lo.
7as shown in Figure 4.17. The fault separate the upper part of the system than the lower. It
shows the main idea of the proposed virtual microgrid where it will work optimally during
islanded mode along with participating in the EM. Only loads are located in the upper part
of the system, and no generations are there to supply the loads. On the other hand, in the

lower part of the system is the conventional generators and the renewable sources.

646 645 632 633
= ® L [ ]

611 684 671 692 675
@ L —@ @
®

652 680

Figure 4.17 Case 3 with fault at line L27

48



Since the system is participating in the EM and has the ability of working in islanding
mode, each subsection of the system will run and supplied the loads from different sources
of energy. Because of the participating in EM, the upper part of the system will provide the
loads by buying energy from ISO as shown in Figure 4.18 with an amount of 775.4 KW,

not participating in EM will leads to lose all the customers in the upper part of the system.
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3
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Figure 4.18 Above loads vs. real time bids

Due to the ability of the proposed virtual microgrid to work on an island mode, Figure 4.19
shows that all the customers in lower part of the system are supplied and not sheded from
the available conventional and renewable sources with an amount of 3067 KW. The
optimal restoration of the system shows that the summation of the bids purchased from
ISO and the generated energy from the generators is equal to the total load of the system

as in Figure 4.20.
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Figure 4.20 Optimal results of the system of case 3
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The voltage of the system compared to the normal operation results is shown in Figure
4.21. Table 4.5 shows the results of the purchased energy compared to the loads in the
above part of the system. In addition, it shows how much energy generated from the
conventional generators and the renewable sources compared to the loads in the lower part
of the system. It is clear that the proposed MILP technique of the virtual microgrid gives
remarkable results assuming there is no losses in the system. The cost of the purchased

energy from the ISO as well as the cost of the curtailed energy is shown in Table 4.6.
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Figure 4.21 Voltage magnitude of case 3
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Table 4.5 Optimization with EM vs. optimization without EM in case 3

Optimization with EM | Optimization without EM
Total Loads (KW) 4181 4181
Loads After Fault (KW) 3842 3842
Lower Subsystem (KW) 3076 3076
Upper Subsystem (KW) 775.4 775.4
Bids (KW) 775.4 Buying 0
Generated (KW) 3076 3076

Table 4.6 Results of the optimized objective function in case 3

Number of Customers Restored 13
Curtailed Cost () -19.0362
Cost/PF ($) -61.0542
Total Cost/PF ($) -80.0904
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4.5 Case 4: Switching with Fault at L,

Switching is considered when curtailment is not sufficient to restore and find the optimal
configuration of the system. Few modifications on case 4 were applied where the loads are
higher and the main grid limits is lower. These modifications made the curtailment
insufficient when there is a fault in L,.; since it impossible to restore all the loads by
purchasing energy from ISO. As a result, switching is applied by the system in order to
shed enough loads and restore the rest. Figure 4.22 shows the fault location and which
branch is opened. The system shed the customers at bus 3 because they have the lowest
priority weights among the upper loads. The amount of the lost loads at bus 3 is about 480
KW and the amount of purchased energy from ISO is around 580 KW as shown in Figure

4.23.

Figure 4.22 Case 4 with fault at line L27
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Figure 4.23 Above loads vs. real time bids

Because of the ability of system to operate in islanded mode, the lower loads are restored
from the available conventional and renewable sources with an amount of 3303 KW as
shown in Figure 4.24 and no switching was needed. Figure 4.25 shows that the summation
of the bids purchased from ISO and the generated energy from the generators is equal to
the total load of the system after fault. However, the system lost about 500 KW from the

total load while in case 3 around 340 KW was curtailed.
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Figure 4.25 Optimal results of the system of case 4
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Table 4.7 shows a comparison between the optimal results when applying curtailment and
applying switching only. The results shows that both techniques find the optimal
restoration service of the network. However, applying the curtailment technique is more
efficient as it restored most of the system loads while the switching lost almost half of the
upper loads. In addition, the generated energy from conventional and renewable sources

are higher in switching than in curtailment.

Table 4.7 Optimization with switching vs. optimization with curtailment

Optimization with Optimization with

switching curtailment
Total Loads (KW) 4362 4181
Loads After Fault (KW) 3876 3842
Lower Subsystem (KW) 3303 3076
Upper Subsystem (KW) 572.7 775.4

Bids (KW) 572.7 Buying 775.4 Buying
Generated (KW) 3303 3076
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The cost of the purchased energy from the ISO as well as the cost of the curtailed energy
as shown in Table 4.8. From the results, the switching technique restore 10 customers out
of 13 while the curtailment technique restored 13 customers out of 13. In addition, the cost
of buying energy from ISO using switching technique is about 45 dollars, which is less
than 61 dollars in curtailment. That means applying curtailment is better in maximizing the
number of restored customers while switching is better in minimizing the cost of

participating in EM.

Table 4.8 Results of the optimized objective function in case 4

Number of Customers Restored 10
Curtailed Cost (%) 0
Cost/PF ($) -45.0805
Total Cost/PF ($) -45.0805
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Summary

In this thesis, a restoration strategy of the smart grids was studied, analyzed and
implemented in order to solve a problem phasing the current grids. Microgrid and VPP
models were presented to increase the reliability and stability of the system. In addition,
the concept of Virtual Microgrid was proposed by emerging the concepts of Microgrid and
VPP. It provides the optimal configuration of the smart grid while participating in the EM
to increase the profits or decrease the operation costs along with considering fault
management. The FMSR problem was implemented as a multi-objective function and
formulated and as a MILP technique because it is easier and faster for solving problems
like FMSR than other optimization methods. The objectives of this thesis were to increase
number of customers restored, increase the proposed system’s profits, and decrease the
curtailment cost. In addition, IEEE 13 bus test system was applied to present the proposed

virtual microgrid system.

Three case studies were tested and simulated to verify the results of the proposed system
where they were compared with the normal operation results of the system for verification.
The first case study presented a fault in line Ls.s where the customers in bus 5 cannot be

restored. Since the proposed system was participating in EM, the results showed that the
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system was selling energy to the ISO because there was a day ahead bids calculated in the

normal operation of the system for the customers were lost.

The second case study implemented as a fault in Li.jo where complete conventional
generator and the customers located in bus 1 were totally lost and cannot be restored. After
implementing the proposed restoration technique to the system, the results showed that the
system find another replacement of the energy lost from the conventional generator, it

purchased the energy from the ISO and restored the rest of the customers in the network.

Finally, the third case study represented the core of the concept of the virtual microgrid
where a fault was implemented in L,.; and two parts of the system were separated. The
upper part contained only customers without any generators and the lower part contains
conventional generators, renewable sources and controllable loads where it is not
connected to the main grid. The results showed that the upper part was restored by
purchasing energy from ISO, which state the concept of the VPP. While the lower part of
the system was restored by generating energy from the available generators in the system
while it works in an islanded mode which present the microgrid concept. All the three cases
were simulated and implemented considering DS constraints and shows remarkable results

compared to the normal operation results.
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5.2

Conclusion

The following points can be concluded by observing the results of the case studies:

The proposed virtual microgrid model successfully integrate the concepts of
electrical microgrid and VPP, where it trades energy with the ISO at the same time
of considering the FMSR problem.

The results showed of the case studies showed that the proposed MILP approach of
the virtual microgrid restoration was successful to restore most of the customers
compared by the normal operation of the system.

It was found that case land case 2 showed how the proposed system behave in the
EM by analyzing the fault and all the available DGs sources considering the
distribution network constraints and decide whether it will buy or sell energy with
ISO.

In the case study where the fault separates the system into two parts, all the
customers in the upper part will be lost in the electrical microgrid. However, the
virtual microgrid as able to restore all the customers in the upper part by purchasing
energy from the ISO, as well as operating in an islanded mode for the lower part
and use the conventional and renewable sources to restore the lower loads. In
addition, applying the curtailment technique gives better results when it comes to
maximize the number of customers restored compared with only applying

switching.
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5.3 Future Work

The work of this thesis can be extended as follows for future work:

- Optimize the priority model weights in order to provide a best and more accurate
results regarding the restoration services.

- Implement the proposed FMSR problem of the virtual microgrid in different and
larger system with a greater number of parameters.

- Implementing other optimization techniques on the virtual microgrid to make a
general comparison between the results of these other methods with the results of

the proposed approach of this thesis.
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APPENDICES

Al Constraints Limits

A.l.1 Renewable Energy Limits

0 < PV® < 1000 KW (A.1)
0 < W& < 600 KW (A.2)
A.1.2 Conventional Generators Limits
0 < PG°" < 1000 KW (A.3)
0 < QY™ < 1000 Kvar (A.4)
—200 KW < P§°"VPEY < 200 KW (A.5)

A.13 Demand Response Limits

When the system is operating in normal condition, the limit for the accepted curtailed

amount is assumed to be:
P/f < 25% X Ly (A.6)

When the system is operating in fault condition, the limit for the accepted curtailed

amount is assumed to be:

Pif < 40% X Ly, (A.7)
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A.1.4

A2

Adopted Bus Numbering

System Line Limits

0.95pu < V¥ < 1.05 pu

—n< O <m

|P¢| < 700 KW

|Q%| < 700 Kvar

|SLE| < 1000 KW

Table A.1 The adopted bus numbering in the model

Bus Number as in Figure 3.1 | Adopted Bus Number
611 1
632 2
633 3
645 4
646 5
652 6
671 7
675 8
680 9
684 10
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A.3 Solar and Wind Generators Profiles

Table A.2 Wind Generators Forecast

Hour Wind Generator Forecast (KW)
1 591
2 6.21
3 6.87
4 7.12
5 6.36
6 5.70
7 5.65
8 591
9 6.36
10 6.16
11 6.06
12 591
13 5.80
14 5.85
15 5.70
16 5.50
17 5.75
18 5.85
19 6.36
20 6.71
21 6.21
22 5.50
23 5.65
24 5.96
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Table A.3 Wind Generator Forecast

Hour Wind Generator Forecast (KW)
1 0.00
2 0.00
3 0.00
4 0.03
5 0.89
6 2.19
7 3.39
8 4.42
9 5.21
10 5.69
11 5.83
12 5.64
13 5.11
14 4.30
15 3.24
16 2.02
17 0.72
18 0.005
19 0.00
20 0.00
21 0.00
22 0.00
23 0.00
24 0.00
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A.4 Load Priority Weights

Table A.4 Priority weights of customers

Bus Number of Customers Priority Weight
1 1 0.0955
2 0 0
3 3 0.1753 | 0.6821 | 0.7012
4 1 0.8872
5 1 0.8298
6 1 0.9972
7 3 0.1485 | 0.1144 | 0.4377
8 3 0.4143 | 0.1565 | 0.7474
9 0
10 0
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