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The mounting number of world population and the corresponding swelling demand

and reliance on electrical energy have surfaced the necessity of upgrading the current

power system into a more flexible, resilient and smarter network. Microgrids avail

a promising new concept that aims to encourage and facilitate the integration of

renewable energy resources, energy storage systems and demand-side management.

However, several hitches are objecting the way toward reposing microgrids. The lack

of test system designs with real data that are capable of integrating and managing

energy resources restrained researchers from appropriately bench-mark their findings.

The amount of research on microgrid load side is very minimal compared to studies

on control, generation or self-healing of microgrids. Furthermore, usually loads in
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microgrid studies are not diverse and possess an equivalent importance level, or in the

best case a predefined fixed load priority list.

In this thesis, an energy management system microgrid test-bed will be designed.

Renewable Energy Resources (RES), Energy Storage System (ESS) and four load cat-

egories including residential, commercial, industrial and a hospital will be integrated

into the system. Real and local data is considered for the design to enhance the

practicality of the study. The energy management system utilizes intelligence con-

trol techniques mainly Artificial Neural Networks (ANN) and Fuzzy Inference System

(FIS) to flexibly prioritize the demands and efficiently balance the microgrid local

generation, storage, loads and transaction with the main grid. An incentive-based

feasibility study of a hybrid DC/AC microgrid is evaluated and further compared

with the proposed test system.
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الرسالة ملخص

حٔمد ا احٔمد صالح بن احٔمد سم: ا

للتحكم القابلة حٔمال وا التخزين وتقنيات المتجددة بالطاقة المزودة الذكية الشبكات لطاقة التكاملية دارة ٕ ا الدراسة: عنوان

الكهربائية الهندسة التخصص:

١٤٤٠ شعبان، العلمية: الدرجة تاريخ

الحياة. مناحِ جميع في تستخدم اصٔبحت التي الكهربائية الطاقة على الطلب في مُطرّداً ارتفاعاً وبالتالي السكان اعٔداد في سريعاً تطوراً العالم يشهد

صيانتها. تكاليف وارتفاع موثوقيتها تدهور ادٔى الٕى مما الحالية الكهربائية الشبكات على الضغط زيادة الٕى ادّٔى الكهربائية للطاقة المفرط ستعمال ا هذا

المتجددة الطاقة مصادر لتكامل قابليتها ورفع الشبكة على الضغط لتخفيف ناجع ج كع (Smart Microgrids) الذكية الكهربائية الشبكات تاتٔي

نشُرت الشبكات، هذه باهٔمية يمان ٕ ا من قاً وانط Electric).لذلك، Vehicles) الكهربائية كالسيارات عتيادية ا غير حٔمال وا التخزين ومصادر

انٔ الٕى اضٕافة خٔرى. ا الدراسات مع فيها وتقُارن عليها الدراسات تطُبّق فعالة منصة لوجود تفتقر معظمها ولكن المجال هذا في بٔحاث ا من العديد

الدراسة. اعتمادية من تعزز كي حقيقية حٔمال فعلية معلومات توفرّ تتطلب الطاقة لهذه المثلى دارة ٕ ا

الكهروضوئية الطاقة على تحتوي الشبكة هذه الذكية. الشبكات في الطاقة دارة ٕ ومتكاملة فاعلة شبكة وانٕشاء تصميم على الدراسة هذه تعتزم

كذلك كفاءتها. وزيادة انقطاعها وعدم الشبكة استمرارية لضمان حٔمال ا ازٕاحة على قدرتها الٕى ضافة ٕ با الكهرباء تخزين وسائل واحٔدث الرياح وطاقة

هذه تستخدم كالمستشفيات. نقطاع ل قابلة الغير حٔمال وا والتجارية الصناعية السكنية، حٔمال كا حٔمال ا من مختلفة فئات تشمل الدراسة

Fuzzy Inference) الضبابي المنطق ونظام (Artificial Neural Network) الصناعية عٔصاب ا شبكة كتقنية الذكي التحكم ادٔوات الدراسة

نظام بمناقشة الدراسة هذه ستختم مٔ. ا الشبكة وبين بينها الطاقة وتبادل ومولداتها الشبكة هذه باحٔمال الذكي التحكم تحقيق الٕى هادفةً (System

.(Alternating Current) المتردد التيار ذات الشبكات بدل الهجينة الشبكات جدوى من للتحقق حوافز
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التي التكاليف تخفيض على الشبكة قدرة وكذلك وطلبه الكهرباء عرض بين الموازنة على المقترحة الذكية الشبكة قدرة كفاءة اثٔبتت الدراسة نتائج

النتائج اثٔبتت حٔمالها. الكافي الكهرباء توفير على الصغيرة الشبكة قدرة لعدم سٔاسية ا الشبكة من الذروة اؤقات في الطاقة شراء بسبب معظمها يكون

ومحطات كالمستشفيات القصوى هٔمية ا ذات حٔمال ا تَمس بحيث حٔمال ا ازٕاحة اؤلويات ترتيب على حٔمال با التحكم تقنية قدرة كذلك

الحيوية. المعلومات ومراكز طفاء ٕ ا
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CHAPTER 1

INTRODUCTION

In this chapter, a thorough introductory material covering the thesis aspects will be

presented to prepare the reader with an adequate background about the importance

of the subject and the proposed contribution in the thesis. Section.1.1 gives a general

introduction about the topic. Section.1.2 states the motivations behind tackling the

specified problem and correspondingly section.1.3 lists the desired objectives. Lastly,

Sections.1.4 and 1.6 contain the background and the suggested thesis structure, re-

spectively.

1.1 Introduction

The rapid expansion of power systems and the diversity of power generation methods

have surfaced the necessity of improving the current conventional electrical network

to a smarter, more reliable and more controllable one. The typical grid has witnessed

minor changes in the previous decades. However, the spiking increase and variations

of generation methods and the introduction of new demand forms such as Renewable
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Energy Sources (RES) and Electric Vehicles (EVs) have elevated the need of revolu-

tionizing the existing grid into a more flexible and intelligent one; microgrids. This

transition is not as easy as it sounds, since power flow schemes, reliability evaluation,

and energy management systems are now much more complicated to be conducted.

To build a reliable and efficient microgrid that include DER, Energy Storage System

(ESS) and DSM, a precise, fast and intelligent energy management system is required.

Many Microgrids (MGs) definitions have been reciprocated in the literature [6],

however a widely used one was introduced by the International Council on Large

Electric Systems CIGRE C6.22 working group states that microgrids are ” electric-

ity distribution systems containing loads and distributed energy resources, (such as

distributed generators, storage devices, or controllable loads) that can be operated in

a controlled, coordinated way either while connected to the main power network or

while islanded” [7]. The definitions of microgrids could vary between one entity to

another but what still holds is that MG is a flexible, highly reliable, greener and con-

trollable source of electricity. Many drivers motivated the adoption of the microgrid

concept; these include:

1. Facilitating higher renewable energy penetration.

2. Ability of robust control of loads, generation and pricing.

3. Enhanced system reliability and power quality.

4. Reduced line losses by decentralization.
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5. Ability to operate without connection to the main grid (Islanded mode).

6. Incorporation of diverse load categories.

7. Ability of outage management, fault isolation, and smart self-healing.

8. Demand side management and energy sustainability.

9. Decreased energy prices and encouragement of competitive multi-player market.

10. Reduction of pollutant deposition such as NO2, CO, SO2 and CO2. [8].

11. Achieving utility unbundling and system restructuring.

However, several obstacles are facing the proper realization of microgrids goals.

For example, the lack of microgrid test beds with real and local load and RES data,

where researchers can benchmark their findings. Also, when tackled in the literature,

microgrid demands are most of the time limited to one or two load categories, which

in turn reduces the practicality of the findings and the eventual implementation of

the conducted research to the real case situation. Furthermore, the efficient and safe

operation and control of microgrids demands and DER in both on and off grid mode

is an area that should be subjected to further investigation and improvement.

Microgrids are established with different capabilities and objectives; hence several

MG types exist. Remote microgrids are networks that do not have a point of common

coupling with the grid; thus they are continuously operated in the islanded mode.

They provide higher information security since there is less or no interactions with

other systems, but the reliability of the system is less than a grid-tied microgrid due

to the inability of energy transaction [9],[10],[11]. Furthermore, a costumer microgrid

3



[12] is a network that exists after a single Point of Common Coupling (PCC) with

a self-controlled nature. Such types of microgrids are not highly regulated by utility

standards as they have clear geographical boundaries. They are sometimes referred to

as true microgrids. Utility microgrids, however, come as part of the main grid and are

highly operated and governed by utility standards. These microgrids do not necessarily

have a single point of common coupling with the grid, and they are usually capable of

running on grid-tied and islanded operation [13],[14]. Lastly, virtual microgrids,[15],

are those with DER scattered in a grid but coordinated together to supply the grid

as a virtual one entity.

The research on microgrids and their feasibility need more collaborations between

industry and academia to address the various issues. Among them is the lack of viable

microgrid test systems that be used by researchers to benchmark their ideas. Further-

more, the microgrid concept has to be generalized to include more load categories

that are Residential, commercial, governmental and industrial. Since microgrids are

intelligent networks, smart Energy Management System (EMS) should be achieved to

ensure a smooth operation of the MG and optimized transaction with the utility. The

microgrid also has to be able to achieve a successful self-restoration by taking into ac-

count the load priorities and criticalities at different times and seasons. Lastly, more

economical studies on the best MG configuration should be conducted, i.e. Direct

Current (DC) MG, Alternating Current (AC) MG and hybrid AC-DC MG.
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1.2 Thesis Motivation

“Microgrids are making headlines as well as headaches,” Jared Smith, a consultant at

PA consulting group [16]. It is a fact that microgrids bring enormous advantages to the

existing power systems and costumers as was discussed in 1.1, however, there are many

hurdles that should be solved to ensure the proper deployment of MGs. The major

components of MGs are distributed generation (DG), loads, storage devices, smart

controllers and switches and point of common coupling (PCC). The design, control,

and arrangements of these components can pose considerable challenges. How are the

loads modeled and what kind of load profiles does the system have and accordingly how

much renewable generation capacity has to be installed. Also, due to the intermittent

behavior of renewables, a backup system is required. The back-up system may be

batteries, super-capacitors, diesel generators or any other ESS. Microgrids usually have

limited and intermittent energy sources; thus one of the key aspects of any microgrid

is the load management and control, which enables system operators to play with the

other side of the equation instead of adding costly extra generation capacity or larger

cable and transformer ratings. An integrated EMS in microgrids will ensure that all

local generation sources and loads are in good harmony with the main grid and that

demand and supply are balanced at all times. Although MGs enhance the reliability

of power systems in general, they some time contribute to deteriorating it. The huge

addition of non-dispatchable energy sources such as PV and wind may introduce more

frequent failures due to the unbalance between power output and loads. Moreover, the

variation of the operation principle of the various energy sources can be troublesome
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in case of switching or reconfiguration. All of these issues should be solved and further

tested by using microgrid test beds that are capable of simulating the real situation

and outputting the vital indices that guarantee the safe operation of the MG. As a

result of the previous issues, the microgrid configuration should be studied, proposed

and eventually implemented. With the growing number of DC-based loads such DC

Air conditioners (ACs), EVs and household electronic devices as well as the existing of

DC-based DERs, the DC and hybrid DC-AC microgrid connections should be studied

with more depth. Feasibility studies should be done on these configurations to verify

their economic benefits to the customer and the system operator.

1.3 Objectives

Driven by the gaps in the subject discussed in 1.1 and 1.2, this thesis aims to tackle

and achieve the following primary objectives:

1. Provide a detailed literature survey about the discussed topics. For example,

microgrids, renewable energy, energy storage systems, load models, load priority

list and DSM.

2. Modeling of microgrid demands using local and real load data from Saudi Arabia.

Four load types are modeled including, residential, commercial, industrial and

hospital loads.

3. Modeling two microgrid renewable generation sources, which are PV and wind

energy. Again, the raw data used to model generation is local and real data
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from Saudi Arabia.

4. Installing a battery energy storage system to store excess energy and supply it

back whenever an energy deficit in the microgrid occur.

5. Investigating the feasibility of a hybrid DC/AC microgrid configuration using

the previously modeled demands, renewable generation and storage.

6. Proposing a microgrid testbed that will integrate the four load types, the hybrid

renewable sources and the energy storage to achieve energy management and

successful energy transaction with the main grid.

7. Test the microgrid testbed under different scenarios. Such as, battery sizing

change, cloudy weather and faulty buses.

8. Proposing an intelligent flexible load priority list that ranks the microgrid loads

based on the given time, available energy and reliability indices.

9. Incorporating the priority list with the microgrid testbed to achieve demand-side

management that is aware of the importance of each load type.

10. Implementing and evaluating different DSM schemes on the microgrid testbed,

which has the ability of load prioritization.

The structure of the thesis in solving the preceding objectives will be presented in

1.6.
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1.4 Literature Review

This section will lay out a general background and literature review about the subject

that will be discussed. Detailed and in-depth Literature surveys will take place locally

in each section.

The rapid proliferation of population and accordingly the spiking increase of energy

demand, as a result, have made the transformation to a smarter grid more important

and serious than ever (Figure 1.1). Without the transformation, CO2 emissions will

continue rising to alarming levels as well the installed conventional capacity will no

longer be able to meet the demand causing serious reliability issues and eventually

widespread blackouts. The Kingdom of Saudi Arabia (KSA) is witnessing a swift

growth in population and energy demand. The population of Saudi Arabia hit 33

million people in 2010 with a population growth of 20% between 2004 and 2010 [17].

MG technology in its large-scale version as we are proposing can be the headway

to Saudi Arabian authorities to secure the system against this sudden swell. MG

technology eases the incorporation of DER and DSM into the grid. In comparison

to the centralized power system, the power generation in MGs is more reliable and

resilient and has a higher redundancy; also the test and use of small-scale technologies

in MGs are much more flexible. However, this will add up to the complexity of

modeling MGs.

Generally, MGs are characterized as complex and dynamical networks that have

bidirectional power flows [18]. However, these networks need more complex reliability

analysis techniques and are difficult to optimize [19], [20]. The main aspects of interest
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Figure 1.1: Ever increasing world electrical energy consumption [3]

in MG are integration of renewable energy resources, control of bidirectional energy

flows, efficient fault restoration, and self-healing and DSM [21]. Smart restoration can

be defined as bringing the power system from the faulty condition to a stable and

normal one using intelligent monitoring and controlling systems, which continuously

monitor, validate and test the operational mode of the grid and behave rapidly to

secure the system before the loads are affected [22]. Power restoration in the MG is

much more complicated than in the interconnected networks due to the existence of

highly variable and uncontrollable distribution generation, distributed storage devices

and variable loads [23]. While renewable generation can provide more power supply

and relieve several environmental concerns, the use of conventional generation in MGs

provides higher controllability, particularly in terms of maintaining the higher power

quality and reliability levels. Energy storage can provide more flexibility and balance

renewable generation, or provide a back-up supply, but it requires significant invest-

ments (as opposed to EV batteries, which can be used with minimal investments, only

in bidirectional chargers).
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DER can revolutionize the face of conventional energy generation. The Distributed

Generation (DG) and energy storage devices are distributed close to the consumer

premises, ensuring higher redundancy, less transmission losses, and carbon emissions.

Distributed generation can take many forms. It can be renewable energy sources

(RES) such as PV and wind or a conventional generation such as Diesel or coal. The

generation of RES usually has very high variability. For example, the power generated

from a Photovoltaics (PV) system can be very volatile, and it usually depends on the

temperature, solar radiation, the efficiency of the panel and number of sun hours.

Given the high input variabilities in PV over the course of the day, many papers in

the literature tackled the design model of the different Maximum Power Point Tracking

(MPPT) of the PV to find the optimal point to operate [24], [25], [26], [27], [28], [29],

[30], [31], [32], [33], [34], [35], [36]. These PV control methods include: Incremental

Conductance (IC) [26], Perturb and Observe (P&O) [33], Artificial Neural Network

(ANN) [29], Genetic-based algorithm [34], sequential extremum seeking control (ESC)

[35] and Fuzzy Inference Logic (FIL) [27]. The most widely used and simple methods

are IC and P&O. Moreover, a MPPT that is based on intelligence control methods

such as the fuzzy logic system (FLS) was offered and studied in the literature. Also,

FLS and ANN can be complemented to give a versatile control method recognized as

Adaptive Network-Based Fuzzy Inference System (ANFIS) [30], [31], [32]. In [36], a

MPPT approach was realized using a meta-heuristic approach called Particle Swarm

Optimization (PSO).

Generally, when the output of the PV system is not stable, the operation char-

acteristics and performance of the network will be affected with further impact on
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the connected local loads. Hence, to reduce the effect of the fluctuations, the excess

generated power should be efficiently stored to be used in peak hours which in turn

enhances the system overall performance and reliability. The ESS can prevent brown-

outs and power outages, that may occur during attacks or severe climatic events [37].

In this context, several ESS can be incorporated with the PV panels. A thorough re-

view of the energy storing in microgrids is illustrated in [38]. Systems with high power

density and energy such as super-capacitors and batteries are extensively studied in

the literature [38], [39], [40], [41].

Increased penetration levels of renewable-based generation resources, such as wind

turbines and solar energy, pose several new challenges for network operation. While

renewable resources can provide more sustainable energy supply and relieve several

environmental concerns, they may also have a strong negative impact on the qual-

ity and reliability due to variations and uncertainties in their power outputs. As

mentioned, energy storage can provide flexibility and balancing, as well as improved

management of distribution networks, but this solution typically results in additional

investment costs and reduced efficiency due to charging/discharging losses. Paper

[42], attempts to reduce or ideally mitigate the effect of charging and discharging in-

efficiency by proposing an algorithm that ensures that the active power is balanced

and hence minimizing power loss. Another primary challenge in integrating the en-

ergy storage devices is inaccurate modeling of the charging and discharging rates,

based on different operational modes. In traditionally centralized grids, the actual

locations of conventional energy generation, renewable generation, and energy con-

sumption centers (e.g., big cities) are usually distant from each other. Therefore, the
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need to coordinate conventional energy generation and consumption in the presence

of continuous variations of renewable generation open a range of problems, ranging

from optimal operation in steady state conditions, to system stability problems in case

of faults and disturbances. In this context, several solutions have been introduced in

the literature, including renewable energy forecasting [43], [44], [45], [46]. Given the

non-dispatchable and stochastic nature of the RES, the installation of energy storage

system is commonly considered, which stores the excess energy when the renewable

generation is higher and then delivers energy when there is a deficit. Accordingly, it

is expected that ESS would be a vital part in the promising smartgrid concept [47].

Certainly, in this case, a control strategy between the different ESS is needed to en-

sure smooth operation in the MG. One alternative solution is when renewable energy

is generated and consumed in the local distributed network, as in the case of MGs,

when the uncertainty of renewable resources is balanced locally, minimizing its nega-

tive impact on the reliability, stability, and quality of the whole transmission system .

But, to achieve the best deployment of MGs, intelligent scheduling of renewable gen-

eration, storage and demand must be planned [48], [49], [50], [51]. Hence, intelligent

generation-storage-load scheduling, which coordinates the microgrid and utility gener-

ation to coop with the capricious energy demand profile of MG loads is critical for the

implementation of MGs. The proper scheduling of generation-side should meet two

goals: 1) maintain the stability of the grid by ensuring that the combined generation

from all units is equal to the aggregated electricity demand plus network losses, and

2) minimize the overall price of supplying the aggregated load, when MG control co-

ordinates local generation and energy imported from the external grid. For achieving
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these two goals, it has become imperative to develop innovative energy management

and control optimization algorithms, to reduce the cost of energy when microgrids are

adopted, particularly with more substantial penetration of renewable resources [52],

[53]. As it is challenging to integrate variable energy resources in such problems in a

uncomplicated manner, various examinations and optimization strategies are reported

in, e.g., [54], [55], [56], [57], [58] and references therein.

Load Modeling (LM) is an essential step that has to be accurately designed before

going to the DERs step. It is represented by a mathematical model that relates the

voltage magnitude and frequency at the load bus-bar to the active and reactive power

of the load or simply the current flowing into that load. The single load components

at each load point are aggregated to shape the load profile. These components can

range from lighting and electronic devices to motors and heaters. The load profile of a

load can vary dramatically depending on chronological, environmental, religious and

social factors.

To give more precise modeling, the loads are classified as static and dynamic loads.

Static load models are those that relate the complex power at a bus to the voltage

on that bus. From its name, the loads are represented in a time-invariant manner. A

thorough look at static loads modeling and the approximation of dynamic modeling

can be found in [59], [60]. Some famous models of the static representation include the

ZIP model, which is a polynomial equation that relates the impedance (Z), current (I)

and active power (P) in a bus. Exponential and frequency dependent models have also

been investigated in the literature. Conversely, the dynamic load modeling captures

the instantaneous real and reactive power as a function of real and past time instants of
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the frequency and voltage at a bus [61]. The recognized dynamic load models include

the induction motor (IM) model and the exponential recovery load model (ERL). A

combination of a dynamic and static model is called a composite model.

Extended research in the field pointed out the importance of load modeling in

a power system and its impact on the accuracy of the simulation of the dynamic

performance of a system [62], [63], [64]. There are approximately three known load

modeling approaches 1) component-based 2) measurement-based 3) a combination of

the preceding two approaches (hybrid model). A review of load modeling is given

in [65]. Component-based load modeling is a bottom-up method that aggregates the

load information based on the composition of each load type and the characteristic of

each load component. The component-based method was extensively studied in the

literature [66], [67], [68], [69]. For example, in [66], the authors used component-based

load modelling to reduce the error between reactive design and the actual real value.

Their model engages quantitative analysis and test of a cluster of loads on a real

configuration of a substation.

In [67], the measurement-based method is more widely used in MG given that the

data can be taken from the distributed phasor measurement units (PMU). It relies

on data acquisition devices that are mounted at different locations in the system.

The advantage of this method is the real-time accurately acquired data that does not

require any estimation or variation of variables and thus performs well in dynamic

simulations. In [70], [71], [72], [73], [74], [75], measurement-based method was used at

different voltage levels. In [70], the static and dynamic load model in grid-connected

and islanded low-voltage (LV) microgrid was investigated. The model was developed
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and then tested in a laboratory scale microgrid.

In [71], online measurement data from the Taiwan power system was gathered to

derive, test and compare between different dynamic load models. The conducted nu-

merical studies in the paper concluded that linear dynamic load models outperformed

the nonlinear dynamic models when it comes to reactive power behavior modeling

during disturbances. [72] utilizes the measurement-based method to build up a com-

plete load model at the distribution level. The authors compared their model with a

composite load model at transmission level and another model at the generation level.

They showed that their model performs better in transient conditions. References

[73] & [74], applied measurement-based dynamic load modelling using curve-fitting

technique and vector-fitting technique ,respectively. [75] discusses residential micro-

grid scheduling by utilizing smart meters to come up with a temperature dependent

thermal load model. Sensitivity analysis is implemented to reflect the impact of the

uncertainties contained in the model.

A hybrid model was applied in [76], [77]. In [76], multiple data from single users

is aggregated to generate the residential microgrid load profile. There are eight major

electricity consumption (MEC) events, which are basically daytime, evening and long-

running time events. When these events are aggregated, a residential house load profile

is obtained. The model parameters for each event are acquired using Ant Colony

Optimization (ACO) algorithm. The load modeling method was then validated using

a real microgrid in Ohio, USA. While in [77], a dynamic equivalent active distribution

network cell (ADNC) model was presented and examined. The model allows for more

penetration of unconventional energy sources such as PV and wind in the distribution
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network. The performance of the model was tested using the modified Institute of

Electric and Electronics Engineers (IEEE) nine bus system during different levels of

disturbances.

All in all, load modeling regained interests after the introduction of microgrid

concepts which needs a new reformulation of previous load models in order to accom-

modate the different DER and the newly coming unconventional loads. Ultimately,

the goal of load modeling in any system is to come up with a resilient and robust

mathematical model that can ideally resemble the behavior of loads.

In accordance with the preceding literature about DER and LM, Demand Side

Management (DSM) comes in between the two to match between load and generation.

The article, [78], provdes a very good overview about DSM and the challenges faced

when incorporated with smart grids. There are different DSM schemes. Each one has

certain advantages and drawbacks and mostly all of them require a well-established

Advanced Metering Infrastructure (AMI). They vary in terms of reliability and the

level of freedom given to the consumer. The lower the freedom is the higher the relia-

bility. In this context, the most famous ones will be explained and further discussed

(Figure 1.2).

• Direct Load Control DSM

The easiest, classic way to apply DSM is the Direct Load Control (DLC) method,

in which costumers agree and enroll to be part of the demand management

events. In fact, this method is the most reliable, since loads of these customers

will be under the full control of the utility or the organizing entity. That is, the
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utility can shed completely or curtail the load or shift it to another time depend-

ing on the situation. The enrolled costumers will be given certain incentives to

encourage them to participate in such programs. In microgrid concept where

higher controllability and strong information technology is achieved, demand

response can be so specific. For example, sending a signal that will increase the

temperature of the air conditioners in a certain area or shut down the clothes

washer in a specified time period.

• Energy Efficiency DSM

This method is concerned with reducing the total system production costs and

demand by increasing efficiency. Users who participate are entitled to using

more efficient devices and appliances. The five-star energy efficiency model is

an example of the scheme. This model has higher reliability than the coming

two models, but it offers lesser freedom for the consumer.

• Price Responsive DSM

In this model, costumers can be part of the DSM program by responding to

a certain signal or incentive that was sent at that particular hour. Costumers

who meet the requirements and are willing to participate can benefit from the

incentive given by the utility. Thus, this process is intended for short term

response and it is obviously less reliable than the previous schemes since the

users are not compelled to participate. Also, An example of this method is the

time of use pricing and critical peak time pricing.

• Educational DSM
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In contrast to DLC based DSM, the educational DSM approach is a voluntary

one. It aims to raise education and awareness about the importance of energy

conservation. Educational DSM is claimed to effective for long term goals, other

than rapid interventions. However, it is the least reliable one because users are

not obliged to shed or curtail their loads. The users in the scheme are given full

freedom on the usage of electricity.

Figure 1.2: Demand Side Management Schemes

The objectives of the work in this context is to first build the test system with local

and real energy sources and load data. The test system will be used to achieve and

propose different DSM schemes and run the system after each scheme. An intelligent

load priority list will be incorporated with the DSM. A feasibility study will be done

on a hybrid DC/AC microgrid configuration to see if it can be a competitive option

to the AC-based system.

18



1.5 Contributions

1. Model and design a microgrid test-bed with local and real loads and renewable

energy sources data that will be utilized to realize the rest of the thesis goals.

The test-bed and its raw data will also be available for researchers to benchmark

their findings and improve the microgrid research quality in general.

2. Propose a flexible, intelligent load priority list for demand restoration, which will

rank the testbed’s different demand types into different prioritiy levels based on

the outage time, reliability indices and energy availability.

3. Propose different demand side management incorporated with the intelligent

load priority list to optimize the microgrid transactions with the main grid

increase its overall load factor.

4. Propose an incentive-based feasibility study of the microgrid test-bed when a

hybrid AC/DC configuration is placed instead of the AC-based microgrid.

1.6 Thesis Structure

As stated in Section.1.5, the thesis aims to achieve four goals. A microgrid test-

bed, which will be used for implementing other objectives and will be available for

researchers to benchmark their ideas and findings. The second and third objectives

are to propose an ANN based priority list that will be used as an input for the next

step, which is proposing different DSM schemes. Furthemore, an Incentive-based

economical feasibility study will be presented to compare between the AC microgrid
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and the hybrid DC-AC microgrid.

Figure 1.3, shows the structure of this thesis. Firstly, the vital data required for

modeling the loads and DGs is acquired from Research Institutes and Companies.

The modeling of loads and the corresponding load profiles for different load categories

is explained in chapter.2, while the modeling of the RES is shown in chapter.3. In

section.3.4, a battery-based ESS will be sized in accordance with the available loads

and generation. Chapter.4 sheds the light on the proposed AC microgrid test-bed

that will be used as a study field for the remaining thesis contributions. The load

priority list will be discussed in chapter.5. Based on the modeled loads, renewable

energy sources, test system design and the load priority list, different load management

schemes will be implemented and further evaluated. In chapter.7, the feasibility of a

hybrid DC/AC microgrid will be studied. The sizing of DERs in the hybrid microgrid

will differ from the sizing in the AC microgrid as our objectives are different in each

of them.
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Figure 1.3: Structure and flow of the thesis
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CHAPTER 2

MODELING OF MICROGRID

DEMANDS AND

CONTROLLABLE LOADS

In each network, there are different structure and composition of loads. Each load has

to be accurately modeled by finding its monthly, daily, seasonal and annual profile. It is

much more cost-effective for utilities to control the demand side rather than installing

new generation units to be safe against load variations. However, the capricious

variability of load profiles and the scarcity of research in the area have forced the

utilities to relinquish demand-side management. In this work, we aim to generalize the

microgrid concept to serve several loads at the same time. Residential, commercial,

industrial and hospital load types will be modeled as shown in Figure 2.1. These

load types offer a very wide range of load importance levels and different load profile

characteristics as will be shown in the following sections. The modeling of the RES
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and Battery Energy Storage System (BESS) will take place in the following chapter.
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Figure 2.1: Microgrid configuration with the four load types in the rectangular.

To implement a proper sizing of Distributed Energy Resources (DERs) and cal-

culate the efficiency of the microgrid, an accurate load modeling of the MG has to

formulated. To provide more practicality to the study, the load data was taken from

the eastern region of Saudi Arabia, which is the largest area in KSA (Figure 2.2.

Latitude and longitude of the location are 26.2361° N, 50.0393° E. The load data is

acquired from SCADA systems for four distribution substations with four different

load categories. A precise daily, weekly, seasonal and annual load profiles will be

derived using MATLAB [79]. Each load profile is important to understand the load

behaviour under different effects. For example, daily load profiles help us in under-

standing the daytime and evening variations of load consumption. Whereas, from

the weekly load profile, the effect of weekdays and weekends can be observed. The

monthly and annual load profiles can help us in exploring the implications of seasons
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and vacations on the load profile. The load data specification is displayed in Table

2.1. It is observed that the Residential sector in KSA constitutes more than half of

the total energy consumption. The Saudi electricity tariff has been just revised and

the new figures are listed in Table 2.2.

Figure 2.2: The shaded region is the Eastern province in Saudi Arabia.

Table 2.1: Load data specification.
Classification Ratings Energy sale
Residential 69kV/13.8kV 52.3%
Commercial 69kV/13.8kV 14.5%
Industrial 69kV/13.8kV 19.3%
Governmental 69kV/13.8kV 13.9%

Table 2.2: Saudi electricity tariff [1]
Residential Commercial

100 Halala=
1 SAR

1 SAR = 0.267$

Tariff
[Halala]

Consumption
[KWh]

Tariff
[Halala]

Consumption
[KWh]

18 1-6000 20 1-6000
30 >6000 30 >6000
Governmental Industrial

Tariff
[Halala]

Consumption
[KWh]

Tariff
[Halala]

Consumption
[KWh]

32 No Limit 18 No Limit

In this chapter, the modeling of the four load categories will be presented showing

the annual, monthly, seasonal and daily load profiles. The composition of the resi-
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dential load will be identified using a hybrid top-bottom and bottom-up approach.

A literature review about the impact of load modeling on the system reliability and

the application of DSM is placed in this chapter too. Some characteristics about the

types of loads that will be studied are shown in Table 2.3.

Table 2.3: General characteristics of the studied load types.
Load Type Controllability Composition Capacity Variability
Residential High ACs, refrigerators, lighting, washers, etc.. Small High
Commercial High ACs, lighting, elevators, coolers Medium High
Industrial Low furnaces, conveyor belts, ACs, lighting, etc.. High Low
Hospital Very low ACs, medical devices and appliances, lighting Varying Low

2.1 Literature Review

Several papers in the literature used the load profiles to come up with efficient Demand

Response (DR) programs. [80], studies the profile of three commercial users under

the time of use pricing conditions and showed the profile before and after demand

response. Moreover, [81] investigated the efficiency of AC and DC microgrids by using

Queue theory to build up the load profile. The authors observed that load variations

have a strong and direct effect on the overall microgrid efficiency. Authors in [53]

derived accurate load profile for a building containing a restaurant and 12 apartments

to optimize the cost of a microgrid. They found that it is better to mix residential

and commercial load to increase the load factor and thus improve the price. A full

literature review about load modeling can be found in section.1.4.
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2.2 Microgrid Demand Modeling

2.2.1 Residential Load Modeling

The modeling of residential end users load is a very complex and time-consuming task

since it is subjected to human behavior and living styles. Generally, the availability

of the user and the probability of load activity exercised by the user are the two

main factors that determine the shape of a residential load profile. This is called

bottom-up approach load modeling which was discussed in the acquired residential

data, the load profile will be built and then the power consumption of one unit will

be calculated based on the average household consumption in Saudi Arabia. Then

the load composition and percentage in the considered networks will be determined

to achieve the objective of controllable loads.

The annual average and peak load profile are displayed in Figure 2.3. All figures

were scaled as per the following equation:

Scaled KW =
maximum average load

load at every hour
(2.1)

It is observed that consumption is highest during summer months. Later in this

context, we will investigate the load composition that shaped this behavior. Moreover,

the daily, weekly, monthly and seasonal residential load profile is shown in Figures.2.3,

2.4, 2.5 and 2.6. From Figure 2.4, we observe the difference in load between the AM

and PM time. The residential loads in the AM time are not as high as PM time due to

sleeping time. So most of the manually operated loads (i.e., oven, vacuum cleaner, and
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TV) in this period are idle while the automatically and semi-automatically operated

loads (i.e., refrigerator and air conditioner) are less affected by the factor of time.

Figure 2.6 shows the monthly average and peak load of residential costumers. It is

noted that the average load is approximately 86% of the peak load in most months.

The effect of weather is clear in the summer period from late May to early September

where AC loads spike the electricity usage to more than 130% between February and

June. To address the acute effect of temperature, Figure 2.5 depicts the hourly load

in four different days that resemble four different seasons: June the 28th, December

the 30th, September the 25th and April the 1st corresponding to summer, winter, fall,

and spring respectively. The effect of extreme weather conditions, where summer days

can reach a temperature of 55◦ and -10◦ in winters, in Saudi Arabia is observable in

Figure 2.5. Air conditioning, the absence of thermal insulation and heating loads

in summer and winter respectively caused the increased power consumption in these

seasons relative to spring and fall.
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Figure 2.3: Residential annual load profile.
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Figure 2.4: Residential hourly load profile.
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Figure 2.5: Residential seasonal load profile.

Typical Structure and Composition of Residential Loads

To apply demand side management, a precise specification of the load composition is

important in order to know the contribution percentage of every device to the overall

load profile. Data taken by the Saudi Arabian General Authority for Statistics (GAS)

in 2016, shows the usage hours of different home appliances and devices per day

[17] (Table 2.4). After applying the bottom-up approach by finding the rating and

time of use for every home activity, we will now back-project these findings into the

consumption that we got from the top-bottom approach that is from the substation
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Figure 2.6: Residential monthly load profile.

to the load point. Using Table 2.4, equation 2.2 was applied to acquire the average

summer and winter consumption.

Ed(s) = TOUd(s) ∗ qd(s) ∗ (W d
R ∗ xd

R(s) +W d
I ∗ xd

I(s)), s = 0, 1 (2.2)

where 0 and 1 resembles winter and summer respectively. d is the device considered

and TOU is the time of use in hours. xR and xI are the percentage of run-time

and idle-time of the machine respectively. Similarly WR and WI are the wattage

consumption in run-mode and idle-mode respectively. Lastly, q is the number of units

of that appliance in a household.

After applying the preceding equation, we acquire the consumption of each load

activity in summer and winter seasons (Table 2.5). The months from October to

February will be considered as winter and the rest are considered as summer. In other

words, the data were proved using both the top-bottom and bottom-up approaches.

Interestingly the pie-charts in Figure 2.7 and Figure 2.8 show the percentage share
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Table 2.4: Household activities and calculation parameters
Activity TOU

(winter)
TOU

(summer)
number of

units (winter)
number of

units (summer) Rating (W) Idle rating
(W) Operation Run-time

(%)
Idle-time

(%)
Heating
(oil-filled) 8 1.5 2 1 1500 0 Semi

Auto 0.5 0

Air
conditioning 3 10 2 5 1800 100 Semi

Auto 0.6 0.4

Water
heating 14 4.7 3 1 1500 30 Auto 0.3 0.7

Water
coolers 10 17 1 1 250 10 Auto 0.5 0.5

Water Bump
(Dynamo) 1.5 2.1 1 1 250 0 Auto 1 0

Washing &
Drying 1.3 1.9 2 2 2000 0 Semi

Auto 1 0

Ironing 1 1.8 1 1 1000 0 Manual 1 0
Vacuum
cleaning 1 1.3 1 1 1000 0 Manual 1 0

Cooking 1.6 1.4 1 1 2150 0 Semi
Auto 1 0

Electric
kettle 1.3 2 1 1 1800 0 Manual 1 0

Lighting 7.3 7.5 50 50 10 0 Manual 1 0
Food

preservation 24 24 2 2 100 0 Auto 1 0

TV 5.3 5.9 1 2 120 13 Manual 1 0
PC 2.1 2.6 2 2 150 7.5 Manual 1 0

Gaming
devices 2.6 3 4 4 30 7.5 Manual 1 0

of each home activity during summer and winter months. From Figure 2.8, it is

observed that Air-conditioning (AC) loads sums up to 62% of the total load in summer

months. This finding is proven as SEC announced a similar percentage on their reports

[1]. AC loads shrink to only 11% in winter as the temperature goes down, thus the

heating loads rise, and we found that water and ambient heating constitutes to 50%

of the monthly winter demand. As an indicator of the accuracy of the composition

percentages, we observe that lighting in winter represented 6% of the profile, while it

was 4% in summer. The reason is that at winter the evening time is longer and even

the day time is cloudy sometimes; therefore, lighting usage in the winter is higher

than summer. Other activities such as washing/drying, ironing, and cleaning are

pretty much similar. It is worth mentioning, that social behavior and psychological

studies can also utilize these findings to investigate for example why in general people
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are cooking in winters more than summer. These findings are the cornerstones of

another contribution of this thesis, which is applying DSM.

Table 2.5: Summer and winter energy consumption per activity

Activity Winter Energy
Consumption (Wh/day)

Summer Energy
Consumption (Wh/day)

Heating (oil-filled) 12000 1125
Air conditioning 6720 56000
Water heating 19782 2213.7
Water coolers 1300 2210

Water Bumb (Dynamo) 375 525
Washing & Drying 5200 7600

Ironing 1000 1800
Vacuum cleaning 1000 1300

Cooking 3440 3010
Electric kettle 2340 3600

Lighting 3650 3750
Food preservation 4800 4800

TV 636 1416
PC 630 780

Gaming devices 312 360
Total

(KWh/month) 1895.55 2714.69

2.2.2 Commercial Load Modeling

Commercial loads such as shopping malls, restaurants, and multi-storey buildings are

larger in scale than domestic loads. Due to the opening and closing times and the

decreased intervention of human factors, commercial loads have a flatter profile which

makes the tracing of the load behavior easier and more predictable. The commercial

load profile simulated from real load data is shown in the following figures ( Figures.2.9

- 2.11). From Figure 2.9, we notice that the commercial load profile is very similar
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Figure 2.7: Percentage of household appliances in winter.

to the residential one in the sense that the hourly variations are high. The daily load

profile, Figure 2.10, shows an interesting feature of commercial loads. The load from

11 PM to 6 AM is much less than the consumption during the rest of the day. This is

obviously due to operating hours of shops, restaurants, and supermarkets. The curve

suddenly increases after 6 AM and the steeply decreases after 10 PM. Again, the

effect of seasons is clearly shown in Figure 2.12 and Figure 2.11, where the difference

between summer and winter demand is huge which plays a major rule in effecting the

utilities in terms of generation installation. This is one of the driving reasons for the

consideration of demand-side management by power system operators which attempts

to shift or shut some of the loads during the day to peak shave the demand curve and

thus mitigating the need of building new generation units. The percentage increase in

summer demand over winter is shown in equation 2.3 and it is presented that summer

demands are 172% higher than winter demands.
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Figure 2.8: Percentage of household appliances in summer.

Summer demand percentage increase =
Summer avg demand− Winter avg demand

Winter avg demand
%

≈ 60− 22

22
≈ 172% (2.3)
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Figure 2.9: Commercial annual peak and average load profile.
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Figure 2.10: Commercial hourly load profile.
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Figure 2.11: Commercial seasonal load profile.

2.2.3 Industrial Load Modeling

Most of today’s research about microgrid considers only the residential costumers

which are not the real case and thus limiting the practicality of a microgrid study.

However, for our proposed MG in Figure 1.1 we will assume that we have four load

sectors. In this part, the industrial loads will be analyzed. The data is taken from

the first industrial city in Dhahran, Saudi Arabia. Active and reactive power annual,

monthly, seasonal and daily consumption is shown in the following figures (Figure 2.13

- 2.17). Figure 2.13, shows the annual active power consumption profile, respectively.
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Figure 2.12: Commercial monthly load profile.

It is evident from the figure how industrial loads don’t change much during the year.

This is simply because the operation of industries is planned and scheduled during

the day and on the long run during the year. Also, the factor of human interference is

minimal and the operation is usually automated. Figure 2.15, shows how the seasonal

factor diminished in the case of industrial loads. The summer consumption is higher

by only 18% than the winter load. Reactive loads are considered in industrial loads

because they have an effect on the overall load profile. The consumption of VARs is

usually in the range of 25-45% of the consumption of the real load. Figure 2.14 shows

the hourly active and reactive load profiles of industrial loads. Observe that the curve

in the period from 1 AM to 6 AM is generally lower than the rest of the day where

most industries are run. The monthly load profile in Figure 2.16 shows again how the

effect of seasonal variation is minimal in industrial demands. Figure 2.17 shows the

Power Factor (PF) of the industrial customers. From the PF figure, we observe that

the power factor is in the range of 0.85 and it is usually higher than that in other

load types such as residential and commercial, but for industrial loads and due to
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the many induction machines, furnaces and other heat producing machines the power

factor was affected.
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Figure 2.13: Industrial annual active power load profile.
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Figure 2.14: Industrial daily active and reactive power load profile.

2.2.4 Hospital Load Modeling

Our proposed microgrid testbed aims to increase the practicality of the microgrid

concept by introducing different load types with different criticality levels. A local

hospital data in the eastern province will be used in this study. The following figures
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Figure 2.15: Industrial seasonal active power load profile.
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Figure 2.16: Industrial monthly active and reactive consumption load profile.

show the load profile of this governmental hospital (Figure 2.18 - 2.20). Figure 2.18,

shows that there is a small difference between average and peak loads in hospitals and

this is simply because hospitals are usually fully operated that they are less subjected

to individual activities. It is also observed from Figure 2.18 that the load profile in

hospitals is much flatter than commercial and residential loads. Figure 2.19, shows

how small are the variations of the hospital load during the day. This is attributed

to the fact that hospitals operate on a 24 hour shift, where the load at late night is

not of a much different than the load in the daytime. The effect of seasons is shown
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Figure 2.17: Power factor of Industrial load.

in Figure 2.21 and 2.20 where again summers, late May to early September, have the

highest power consumption and this is due to cooling loads, particularly ACs.
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Figure 2.18: Hospital annual peak and average load profile.

2.2.5 Load Factor of All Load Types

The load factor or sometimes referred to as the utilization factor is a very important

indicator. Power companies are always eager to improve their load factor. A higher

load factor is in fact beneficial for both customers and utilities. The utility will not

stress their network and their load profiles will be less varying, which increases the
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Figure 2.19: Hospital daily load profile.
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Figure 2.20: Hospital seasonal load profile.

overall efficiency and power factor. While for the consumers, a higher load factor

means less average unit cost of energy for the same maximum consumption. The load

factor in general is:

Load Factor(%) = (
Average load

Peak load
)× 100 (2.4)
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Figure 2.21: Hospital monthly load profile.

Therefore, the monthly load factor can be obtained using the following equation:

Monthly Load Factor(%) =

∑t=720
t=1 Pt

MAX(
∑t=720

t=1 Pt)× 720
× 100 (2.5)

where Pt is the power (KW) at hour t. The monthly demand factor of the four load

types is shown in Figure 2.22. From the load factor figure, we can conclude that the

hospital load is highly utilized and the variations are small during the day and during

the month. The residential load has a good factor during the month but a low load

factor during the day.
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Figure 2.22: Monthly demand factor.
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CHAPTER 3

MODELING OF DISTRIBUTED

ENERGY RESOURCES

Although finite energy resources such as fossil fuels are cheap, highly dispatchable

and capable of load following, current power systems all over the world witnessed

a significant growth of renewable energy resources. The importance of solar photo-

voltaic, wind energy and battery energy storage systems in modern power systems

cannot be overemphasized with the ever rising concerns about carbon dioxide levels

and the resulted global warming, which propelled the research about RES. Renewable

generation constituted up to 70% of the newly installed capacities in the world in 2017

[82]. The fact that they have zero or minimal emissions in addition to having zero

fuel cost made them famous. Yet there are several obstacles facing the proliferation

of renewable energy technologies. Renewables such as PV and wind are intermittent

by nature meaning that their output is variable and uncontrollable. Furthermore,

RES are non-disptahcable unless costly storage is accompanying them. Given the
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decentralized nature of DER which are mostly RES, the issue of system integration

and energy management has to be solved. One of the critical drivers for employing

microgrids is their capabilities to address most of these issues, as was discussed in

section.1.1.

In addition to DG, Energy Storage Systems (ESS) are essential components of any

microgrid. Most DERs in microgrids are renewable based resources; thus the factor

of intermittency and non-dispatchability is always of concern. ESS such as batteries,

supercapacitors, flywheels and EVs help in smoothing the varying power output of the

renewables. Also, ESS help in balancing the generation and demand, given their fast

response rate and immediate dispatachability.

The proposed microgrid testbed will have two of the most commonly used RES,

that is PV and wind energy, and it will include a BESS, which will smooth the

variations of renewables output as well as supplying enough energy when there is

a shortage in the generation (Figure 3.1). The irradiance, temperature, wind speed

and direction data that will be used to extract the PV and wind is thankfully provided

by the Research Institute (RI) at King Fahd University of Petroleum and Minerals

(KFUPM). In this chapter, a literature review about the sizing and integratability of

the energy sources to the microgrid will be presented. Then the modeling of PV, wind

and the battery will take place in three different sections.

.
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Figure 3.1: Microgrid configuration with DERs in the rectangular.

3.1 Literature Review

Powering small and rural communities has been easier since the RES took place. Mi-

crogrids efficiently deploy and integrates small-scale DGs, which are most of time

renewable-based sources. In [83], the authors modeled four energy sources: PV, EV

employing V2G and G2V, CHP and energy storage system. Loads of their microgrid

was also controllable. The authors studied the potential of microgrid having the DGs,

ESS and the controllable loads. They concluded that by running the microgrid differ-

ent times in grid-connected and islanded-mode, the perfect sizing of all resources could

be determined. The authors in [84] introduce an algorithm to optimize the sizing of

PV, wind, and battery when the microgrid is islanded and does not have a connection

to the primary power system. The objective function of the optimization problem is

to minimize the cost of the system subjected to the constraint that generation must

always meet demand. The proposed sizing algorithm was tested and evaluated in the
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Zhoushan island in China. In [85], another optimization method for PV, wind, and

battery is proposed. The objective function is similar to the one proposed in [84];

however, the number of wind turbine generators, photovoltaic modules and batteries

were all incorporated in the optimization function. Also, a factor was added to the

optimization problem which is the loss of power probability (LPSP), defined as the

time event when total demand in the system is higher than the total supply. The

proposed method was tested as a case study and then compared with some iterative

algorithms. Reference [86] proposed an intelligent MPPT controller that uses neural

network and differential evolution to to track and yield the maximum power from the

PV array. An extended literature review about the two renewable sources (PV, wind)

and batteries can be found in Section.1.4.

3.2 PV Energy Modeling

With the Saudi economic reforms to move from oil-dependent country to a more

diversified economy, many sectors in the government are pushing toward achieving

the vision, one of which is the energy sector. The bill of energy is increased to reduce

the losses of oil consumption. Thus, renewable energy can present a solution to help in

reducing energy consumption furthermore. Photovoltaics (PV) cell energy is becoming

a primary source of energy in many countries, and Saudi Arabia lies in the so-called

sun-belt where the number of sunshine hours during the year is very high. The monthly

average sunshine hours in Saudi Arabia is tabulated in Table 3.1. Being one of the

top manufacturers of the solar cell, China comes the first in top PV power generating
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country. The advantages of PV include but not limited to:

• No fuel cost. As PV converts the sunlight energy into electricity.

• Minor maintenance cost, as PV, is a stationary electricity generator and thus

less maintenance is required.

• An environmentally friendly source. PV produces zero carbon emission, and it

has a noiseless operation.

• Scalability. PV output can be simply increased by connecting more modules in

parallel or in series.

• Accessibility. Unlike hydro or geothermal sources, sunlight energy can be cap-

tured almost everywhere.

There are however some disadvantages for PV such as cell efficiency, power, and cost

of manufacturing. In this section, the PV energy output will be modeled to use it

later in the microgrid testbed.

The rated output power of PV panel (PPV,rated) is calculated by [87][88][89] as the

following:

PPV,rated = ηr ∗ IRR ∗ A ∗ LM ∗ LR ∗ LS ∗ LD ∗ LA ∗ LC ∗ LT (3.1)

where, LM , LR, LS, LD, LA, LC and LT are the mismatch, DC rating, soiling, shading,

aging, diodes and sun-tracking derating factors, respectively. A is the area occupied by

the generator (m2). IRR is the solar radiation incident on PV which can be calculated
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Table 3.1: Saudi Arabia daily sunshine hours.
Month Hours
JAN 7.4
FEB 8.5
MAR 8.5
APR 7.8
MAY 9.2
JUN 10.7
JUL 10.6
AUG 10.5
SEP 10.1
OCT 10.0
NOV 8.3
DEC 7.8

by

IRR =
GHIsin(ν + ρ))

sin(ν))
(3.2)

where GHI is the global horizontal solar irradiance [W/m2] and ρ is the tilted angle.

ν is:

ν = 90o − σ + δ (3.3)

where σ is the latitude and δ is given by:

δ = 23.45osin(
360

365
(284 + day)) (3.4)

The actual solar output power(PPV ) at time(t) of PV panel is calculated using the

rated solar output power (PPV,rated) by:

PPV (t) =


PPV,rated(t)× S

Sr
, 0 ⩽ S ⩽ Sr

PPV,rated(t) , Sr ⩽ S

(3.5)
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where, Sr is the standard solar irradiance [1000W/m2]

Panasonic HIT 330W 96 cell solar panels will be used in this study. It was chosen

because it has an outstanding performance in a high-temperature environment with

a low-temperature coefficient (PMPP ) of -0.2580%. The characteristics of the solar

panels are listed in Table 3.2. Having the cell temperature coefficient, the output

power of the PV panel will vary according to the efficiency which is directly affected

by the ambient temperature. At time t, the actual solar output power after the

temperature effect (ωs,T ) can be modeled as:

PPV,T (t) = PPV (t)− PMPP × PPV (t)(T (t)− TSTC) (3.6)

where T is the temperature at hour(t) in Celsius(C◦) and TSTC is the temperature at

standard testing conditions, which is usually 25 C◦.

Table 3.2: Panasonic solar panel specifications.
Manufacturer Panasonic
Product name HIT N330

Cells per module 96
Module watts (STC) 330

Max power voltage and current 58V, 5.7A
Voc, Isc 69.7V, 6.07A

Module efficiency 19.7%
Temperature coefficient Pmpp -0.2580%

The local irradiance data used to find the PV output is shown in Figure 3.2. Notice

that the summer months; July, June, and August have the highest irradiance levels.

Also, we observe the effect of summer and winter on the length of day and evening

times. The span of the December or January curve on the time axis, for example, is
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narrower than June or July. Accordingly the temperature data in Dhahran is shown

in Figures.3.3 and 3.4. The effect of seasons is clear in Figure 3.3, the data was hourly

sampled throughout the whole year. In months 6, 7 and 8 the curve reaches the

highest levels around 46 C◦ and the least temperature is around 5 C◦. The histogram

in Figure 3.4, shows the temperature in three months which lies in three different

seasons: January, July, and October.
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Figure 3.2: Average hourly Scaled irradiance per month.
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Figure 3.3: Annual Temperature in Dhahran.

After simulating all necessary data for PV modeling, the PV energy output is found

utilizing the previous equations as shown in Figure 3.5. The maximum PV output
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Figure 3.4: Temperature histogram of three different months.

occurs in July with a total energy of 160 KWh, however it should be observed that

after including the temperature effect the total energy reduced to around 155 KWh

and this is due to the fact that in July the temperature is most of the time higher

than the STC temperature which is 25 C◦, which in turn reduces the efficiency of the

panel. The opposite happens in cold months such as January, where the temperature

was usually below 25 C◦, and thus output energy was higher after we considered the

temperature factor. This output energy will feed the four types of loads later when

the microgrid test-bed is designed. The total monthly energy was found on an hourly

basis as in the following equation:

EPV (t) =
720∑
t=1

PPV (t) (3.7)

where 720 indicates the hours in one month.
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Figure 3.5: Monthly PV energy output with and without the effect of temperature.

3.3 Wind Energy Modeling

Wind energy will be also used another distributed generation source in our microgrid

test-bed. Wind is a green energy resource that utilizes the wind energy to rotate a

generator that is mounted on a turbine. Like PV, wind is a free and unlimited source.

The capital cost of wind is less than PV, but the maintenance cost is higher as wind

relies on moving parts, generators, to produce electricity. Wind power generators are

not totally environmentally friendly as it is witnessed that wind farms impact birds

wildlife. Also, wind turbines can be noisy, and they tend to affect the natural wind

current and wind speed of the location. However, if wind farms are located in remote

locations such as the sea, they can provide a reliable, safe and carbon-free energy.

The power curve of a wind turbine is shown in Figure 3.6, where νc, νr and νf

are the cut-in, rated and cut-off speeds, respectively. The wind turbine will start

generating electricity when the wind speed is higher than its cut-in speed, and it will

give the rated power when the wind speed is higher or equal to the rated speed of the

turbine. When the wind speed is higher than the cut-off limit, the brakes will take
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action, and the blades will stop rotating.

Figure 3.6: Wind turbine power curve [4].

The wind data that will be used for our system is taken from Dhahran area at a

5m high mounted anemometer. The relation between wind speed and the rated wind

output power (Pwind,rated) is raised to the power 3, as shown in the following equation:

Pwind,rated =
1

2
CP ρ A ν3 (3.8)

where CP is the maximum power coefficient, ranging from 0.25 to 0.45, dimension-

less (theoretical maximum = 0.59). ρ is air density 1.225 [Kg/m3], A is rotor swept

area [m2] and ν is the wind speed [m/s].

To estimate the capacity of the wind generator, the annual consumption load and

the average wind speed must be known. To extract the wind speed at different height

from the height of the anemometer original measurement, an extrapolation process

will be done between the old and new heights using a specific wind shear model. The

measured variation in wind speed with height at the site is defined by using the power

law shear exponent known as the Hellman exponential law:
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V 1H1

V 2H1

=

(
H1

H2

)α

(3.9)

Where α is the power law wind shear exponent, H is the height reference to ground,

and V is the mean wind speed. The value of the wind shear exponent depends on the

nature and roughness of the terrain, and the nature of wind in that area. These values

have been determined in the literature. In this context, since Dhahran is located by

mountainous terrain, α is set to 0.25 (Table 3.3).

The output wind power of the wind turbine is given as the following:

Pwind(ν) =


0, 0 ⩽ ν ⩽ νc or νf ≤ ν

Pwind,rated × ν−νc
νr−νc

, νc ⩽ ν ⩽ νr

Pwind,rated, νr ⩽ ν ⩽ νf

(3.10)

Table 3.3: Wind shear exponent based on terrain [2]

Terrain Wind shear exponent
(α)

Open water 0.1
Smooth area 0.15

Low bushes with a few trees 0.20
Heavy trees 0.25

Hilly, mountainous terrain 0.25

The wind speed at different altitudes was computed and simulated in MATLAB

on an hourly basis and the resulting wind roses at different heights are shown in

Figures.3.8-3.10. Zero indicates the direction of the north. The monthly average wind

speed is shown in Figure 3.11. Our considered wind turbine is 50m height and thus

the output wind power will be calculated based on the 50m altitude wind data. The
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characteristics of the consider wind turbine are shown in Table 3.4 and its power curve

is shown in Figure 3.7.

Table 3.4: Wind turbine specifications
Manufacturer Vestas
Product name V47-700
Hub height 50 m
Rated power 700 KW

Generator type Induction
Cut-in speed (νc) 4.0 m/s

Rated wind speed (νr) 16.0 m/s
Cut-off speed (νf ) 25.0 m/s
Survival wind speed 59.5 m/s

Figure 3.7: Vestas wind turbine power curve [5]

The resulting monthly wind energy output is shown in Figure 3.12. It can be

clearly observed that June and July have the highest wind energy output of around

250 KWh, while the lowest average energy output occurs in September with 140 KWh.
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Figure 3.8: Wind speed and direction at 100m altitude.
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Figure 3.9: Wind speed and direction at 50m altitude.

3.4 Battery Energy Storage System Modeling

Enhanced reliability and energy security are two major advantages of microgrid net-

works. The large integration of renewable sources can make the system vulnerable to

energy unbalance issues, resulting in failures. In microgrids, for some time periods,

the supply from DG is higher than the total demand. These are the periods where
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Figure 3.10: Wind speed and direction at 5m altitude.
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Figure 3.11: Average monthly wind speed at different altitudes.

the excess power is sent to the battery for it to be charged. On the contrary, when

the load is higher than generation then the microgrid will have a certain deficit, which

should be satisfied using the battery discharge. The battery also will take quick action

in response to the renewable generation capricious variations throughout the day.If
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Figure 3.12: Monthly wind energy output.

the battery cannot completely satisfy that deficit then the difference will be compen-

sated from the main grid. There are basically two classifications of batter based on

the nature of storage:

1. Direct energy storage technology

Storage systems using this technology stores the electricity directly without

changing it to an alternative form of energy. Examples include super-capacitors

energy storage (SCES) and superconducting magnetic energy storage (SMES).

2. Indirect energy storage technology

This type is more common, and it involves converting the electricity into an-

other form of energy. For example, BESS converting electricity in chemical en-

ergy. Pumped hydroelectric energy storage (PHES) and flywheel energy storage

(FES), which both convert the electrical energy into some form of mechanical

energy.

57



As for the applications of microgrid entailing energy management, a high energy

density system is required. Lithium-ion BESS will be considered for this study due to

their safe operation and relatively long life cycle.

One important battery variable that is necessary for the proper performance and

management of the microgrid is the State of Charge (SoC). The State of Charge (SoC)

of a battery at a certain time t is formulated as:

SoC(t) =
Eb(t)

Cb

∗ 100 (3.11)

where Eb(t) is the stored energy in the battery at time t [KWh], while Cb is the

capacity of the battery. The SoC is constrained by a maximum and minimum value

depending on the battery type and expected life cycle:

SoCmin ≤ SoC ≤ SoCmax (3.12)

With the charging and discharging behavior of the battery the SoC will vary as the

following:

SoC(tT ) = SoC(t0) + (
P charge
b × ηcharge − P discharge

b × ηdischarge

Cb

)×∆T × 100 (3.13)

where P charge
b , P discharge

b , ηcharge and ηdischarge are the charging and discharging power

[KW] and efficiency [%],respectively. ∆T is the time spent in charging or discharging

[hour]. The charging and discharging power of the battery are usually the same but

in opposite flowing direction and they are governed by a certain limit in which the
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battery cannot exceed as the following:

− P discharge
b ≤ P charge,discharge

b ≤ P charge
b (3.14)

So if the battery has a maximum P charge
b = P discharge

b = 150KW then the inequality

will be as follows:

− 150KW ≤ P charge,discharge
b ≤ 150KW (3.15)

Meaning that the battery will either be charging itself with a range of 0 to 150KW

power or discharging itself with the same amount.

.
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CHAPTER 4

MICROGRID TEST SYSTEM

DESIGN

Microgrids, as the Department of Energy (DoE) defines them ” A microgrid is a group

of interconnected loads and distributed energy resources within clearly defined elec-

trical boundaries that acts as a single controllable entity with respect to the grid. A

microgrid can connect and disconnect from the grid to enable it to operate in both

grid-connected or island-mode. ” [90]. The number of microgrids in real applications

is growing especially in areas that are isolated from the main grid, for example, Santa

Rita jail, Fort Carson, Isle of Eigg and Fort Collins. Fewer grid-tied microgrids have

been established due to the added complexity of the design caused by the direct inter-

action with the utility. Microgrids add tremendous values to its costumers including

the utility. The microgrid has to be economically smart, meaning that it will feed its

load from local generation as possible and it will take from the storage if generation

is not available. The microgrid will implement an energy transaction with the grid
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when there is no enough power from the DGs and ESS to feed the loads. With the

same concept, the microgrid will sell electricity to the grid if there is excess power.

Our microgrid test system should be able to achieve these transactions. In addition

to that, our microgrid will be incorporated later with a flexible, intelligent load prior-

ity list, which will order the loads based on their importance based on a given time,

available energy and reliability indices. Furthermore, the proposed microgrid will be

subjected later to a priority list incorporated Demand Side Management (DSM) pro-

grams to test the effectivity of each scheme and verify the microgrid operation under

each case. The microgrid is designed for study purposes, and its data will be available

on a web-page.

In the previous chapters, we modeled the four load types that will be now part

of our microgrid design. Furthermore, two renewable generation sources have been

considered and modeled; PV and Wind. A Battery Energy Storage System (BESS)

was designed and optimized to ensure a right balance between the microgrid local

generation and demand. All of the previously modeled data were taken from Dhahran

city, east of Saudi Arabia. Our MG test-bed will be studied over a 24 hours period,

that day is 28th of June, 2015 (Figure 4.1).

In the next sections, a literature review about MG test-beds will be introduced.

Then, the light will be shed on our proposed MG test-bed to explain its connections,

control and operation principle.
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Figure 4.1: Configuration of the proposed microgrid test-bed.

4.1 Literature Review

The research about microgrid increased rapidly in the previous decade. Though,

few microgrid test-beds exist in the literature. The significance of a MG test-bed is

that it will enable researchers to benchmark their ideas on the same platform. Thus,

comparisons and knowledge trading can be easily conducted. CERTS 13.2KV/480V

MG test-bed is one of the earliest systems established, and many studies have been

done on it [91]. An excellent overview of all existing microgrid test-beds is shown in

[92]. Different MG connection types have been studied:

• AC microgrid, which is the one proposed in this context.

• DC microgrid [93],[13].

• Hybrid AC/DC microgrid, which is investigated in Chapter.7.

• High frequency AC (HFAC) microgrid, which was studied by CERTS [94].
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4.2 Description of The Test System

The test system that we are proposing integrates four load categories and two re-

newable energy resources; PV and wind. A BESS is also integrated to the system to

balance the supply and demand in case of a deficit. The test-bed is a single-phase 60

HZ AC power network with a secondary voltage of 400V. Some specifications about

our proposed microgrid are shown in Table 4.1.

Table 4.1: Classifications of the proposed microgrid test-bed
Classification Utility microgrid

Operational mode Grid-tie mode
Integration level High
Connection type AC, 60HZ

Distributed generation Wind, PV
Energy Storage Battery

Load types Residential, commercial
industrial, hospital

Features
High power quality, DSM

load priority, stability and robustness,
successful transaction with the grid

4.2.1 Test-bed’s Renewable Energy Resources and Storage

As discussed, the microgrid has two local distributed generation sources and a battery

storage system. The solar power generation maximum power output happens in sum-

mer with a 710KW while the average generation throughout the year is 295.5 KW.

The wind turbine maximum output is 700KW with an annual average of 251KW.

Thus the maximum total power generated from the renewable sources is 1.41MW.

Both wind and PV power output profile was shown in Chapter.3, but most of our

case studies on the system will be done over a 24 hour period, explicitly 28th of June,
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thus the PV and wind generation profile of that day are shown in Figures.4.2,4.3. A

battery-based storage system is also installed to take action and feed the loads when

there is a shortage in the generation. When there is excess in generation the battery

will be charged. The maximum battery output power is approximately 20KW. The

battery has 25800Ah capacity with a SoC operation region between 90% to 20%.
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Figure 4.2: PV hourly generation on 28th of June.
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Figure 4.3: Wind hourly generation on 28th of June.

4.2.2 Test-bed’s Demand

The test-bed feeds power to four single costumers with four different load types; resi-

dential, commercial, industrial and a hospital. The peak of the residential load occur
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in the summer for a few hours with a power consumption of 5.6 KW. The commercial

and hospital load peaks are 7.2 KW and 21 KW, respectively. The industrial has the

highest peak of around 1 MW. The maximum MG load is 1.034 MW. Industrial loads

usually are much higher than other loads and since their load profile is almost flat

as was shown in Chapter.2, they will flatten the load profile of the aggregated loads

due to its size compared to other load types. The four load types and the aggregated

load of the day 28th of June are presented in Figure 4.4. The aggregated loads and

generations profiles on that day are displayed in Figure 4.5. In fact, the renewable

generation sometimes is zero or very close to zero as witnessed in hours 1, 21, 22 and

23. The annual day by day renewable generation and demand curves for the microgrid

test-bed are shown in Figure 4.6.
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Figure 4.4: Hourly load profiles on 28th of June.
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Figure 4.5: Aggregated hourly load and generation of the MG test-bed on 28th of
June.
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Figure 4.6: Aggregated annual day by day load and generation of the MG test-bed.

4.2.3 Configuration of The Test-bed

The microgrid is a single phase 400 VRMS, 60 HZ power network. Two renewable

energy resources; PV (bus1) and wind (bus2) are considered as distributed generation.

Their data such as temperature, irradiance and wind speed are updated on an hourly

basis. A battery storage system is also connected to smooth the variations of the RES.

Four types of loads; residential, commercial, industrial and hospital are connected and

subjected to ANN based load priority list. Loads are categorized into critical (C) and

non-critical (NC) loads. The hospital is considered as critical, and the rest of the

load categories vary on criticality level depending on the given time and the available
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energy. A single-pole mounted transformer links the microgrid and the main grid.

The step-down transformer has 1.6 MVA rating and a primary voltage of 6.6 KV with

a secondary voltage of 400 V. To simulate the main grid, a swing type three-phase 33

KV voltage source is connected. The voltage is then stepped down using a three-phase

Y-Y transformer from 33 KV to 6.6 KV. A 1 KM long transmission line transmits the

power to the microgrid three winding transformer. A table listing the maximum and

average generation and load capacities throughout the year are presented in Table 4.2.

A one-line diagram of the test-bed is depicted in Figure 4.7.

Table 4.2: Maximum and average generation and load capacities of the MG test-bed
Maximum renewable

generation capacity (KW)
Maximum load
capacity (KW)

Generator Pmax
RES,i P avg

RES,i Load type Pmax
load,i P avg

load,i Load type Pmax
load,i P avg

load,i

PV 710 295.46 Residential 5.611 2.431 Industrial 994.30 553.297
Wind 700 251.26 Commercial 7.163 3.748 Hospital 20.77 14.212∑2
i=1 PRES,i 1381.89 415.11

∑4
i=1 Pload,i 1022.7 573.69 - - -

4.3 Operation of The Test System

Unlike many commodities, electrical energy is a unique case in the sense that once

power is generated, it must be consumed somewhere else. Any unbalance in this

equation can lead to brown-outs or eventually blackouts. Microgrids relief the main

grid’s congestion and help increase the reliability and energy security of its network

and neighboring networks; the utility. The idea of a microgrid is that it is able, most

of the time, to locally feed its load. However, when the generation in the microgrid

is less than the demand, the utility will play a role in supplying the deficit to the

microgrid and balancing the microgrid again. On the contrary, when the microgrid’s
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Figure 4.7: One line diagram of the MG test-bed.

local generation is higher than its demand the extra power will be transmitted to the

main grid. The energy balance equation of our microgrid that will govern its operation

is shown below:

PPV (t) + Pwind(t) + Pbattery(t) + Putility(t) ≥ Pload(t) (4.1)

Where, PPV is the photovoltaics power output, PWind is the wind turbine power out-

put, PBattery is the battery energy output and PUtility is the main grid output. The

load power PLoad(t) at certain time t is defined as:

PLoad(t) = PRES(t) + PCOMM(t) + PIND(t) + PHOS(t) (4.2)
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Where PRES(t), PCOMM(t), PIND(t) and PHOS(t) are the residential, commercial, in-

dustrial and hospital loads at time t, respectively.

The operation principle of the microgrid at hour t is as follows:

1. The microgrid’s centralized controller will gather the raw generation and load

data from MATLAB m.file.

2. The PV, wind and load will be calculated and acquired based on that hour t.

3. The modeled generation and load is subjected to Equation.4.1.

4. If PPV (t) + Pwind(t) ≥ Pload(t) then:

4.1. Charge the battery if its SoC is less than 90%.

4.2. Send the extra power to the utility, otherwise.

5. If PPV (t) + Pwind(t) ≤ Pload(t) then:

5.1. Discharge the battery if its SoC is greater than 90%.

5.2. Take the deficit power from the utility, otherwise.

6. Update t and repeat the steps again.

A detailed flowchart of the microgrid test-bed operating principle is illustrated in

Figure 4.8.

4.4 Microgrid Testbed Case Studies

Eight case studies will be implemented to test the operation of the microgrid. All

of the case studies will be run for the date 28th of June 2015. The battery sizing is
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Figure 4.8: Flowchart of MG test-bed operating principle.

3000 AH with charging and discharging power of 35 KW. The battery was assumed

to be 80% charged at the beginning of the simulation. The considered case studies

are explained in Tables.4.3-4.4.
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Table 4.3: Microgrid test system case studies.
Case PV Wind Battery Load Comments
1 N.O N.O N.O N.O

*All cases are run based
on the 28th of June data.
*N.O: Normal Operation
* t1 − t2 indicates
that the fault happened
for an hour from t1 − t2

2 Shading
(t=12) N.O N.O N.O

3 N.O N.O Sizing
change N.O

4 Shading
(t=12) N.O N.O

Fault at
industrial bus

(t=3)

5 N.O N.O
Fault at

battery bus
(t=10-16)

N.O

Table 4.4: Microgrid test system case studies with different dates
Case PV Wind Battery Load Date
6 N.O N.O N.O N.O 28th-29th of June
7 N.O N.O N.O N.O 25th of December

8 N.O N.O Sizing
change N.O 25th to 31st of December

4.4.1 Case 1: Normal MG operation

The first case study as shown in the table is the when all connected elements are in

normal operation. PPV , PWind, Putility and Pload are shown in Figures.4.9. The battery

power [W] and its SoC [%] are shown in Figure 4.10. Notice that at hour 9,the PV

and wind generation was higher than Pload and excess power was sent to the battery

and to the utility (−Putility,−Pbattery). In the period from hours 1 to 6, the load was

higher than the generation and thus both battery and the grid took action to meet

the deficit. In the Pbattery curve, observe that before at hour 12, the excess load was

only enough to charge the battery andhence no power was sent to the main grid.
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Figure 4.9: Running of case 1.

Figure 4.10: Running of case 1, battery response.

4.4.2 Case 2: Shading Effect

This case shows the effect of shading, which might happen due to clouds, dust or

simply any human or animal causing that shade. A shading effect at hour 12 that

lasted for approximately 20 minutes and caused a 40% reduction on the PV output
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was introduced. From Figures.4.11-4.12, one can notice the fast response from the

battery to substitute for the sudden reduction in generation caused by the shading

effect. A small disturbance is seen in the utility voltage at the beginning and end of

that incident.

Figure 4.11: Running of case 2.

Figure 4.12: Running of case 2, battery response.
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4.4.3 Case 3: Battery Sizing change

In this case, the sizing of the battery was changed from 3000 AH to 1000 AH without

modifying the battery charging and discharging maximum power. Figures.4.13-4.14

displays the system’s response. It is worth mentioning that between hours 1 to 6, the

battery storage was fully consumed due to the high demand and the low AH capac-

ity. At hour 6 the battery’s SoC reached the pre-specified minimum; 20%, thus the

battery was automatically disabled, and its output power was zero. When renewable

generation became higher than the load at hour 7, the battery was charged.

Figure 4.13: Running of case 3.
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Figure 4.14: Running of case 3, battery response.

4.4.4 Case 4: Fault At Industrial Bus and Shading

In this case, two disturbances were introduced: a) A shading effect similar to the

one in Case.2, b) a fault at the industrial load bus at hour 3 causing it to be totally

disconnected from the microgrid. The industrial load is the biggest in our microgrid,

the effect of that disturbance is clearly observed on the big reduction of the power

coming from the grid and from the battery. Actually at that instant, the renewable

generation, basically wind, was higher than the load (Figures.4.15-4.17).

4.4.5 Case 5: Fault at Battery Bus

Lastly, in this case, the battery was out for the period from 9 AM to 4 PM. In Figure

4.19, it is visible that because the battery was disconnected there was no charging nor

discharging during that period. While Figure 4.18 shows that the grid bear alone all

responsibility to balance the supply and the demand.
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Figure 4.15: Running of case 4.

Figure 4.16: Running of case 4, battery response.

4.4.6 Case 6: MG Run for Two Simultaneous Days

This case is very similar to case 1 but the only difference is that now we will run the

simulation for two consecutive days that is from 28th to 29th of June. Notice that the

x-axis now spans from 1 to 48. The microgrid behavior and the battery response are
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Figure 4.17: Running of case 4, industrial load.

Figure 4.18: Running of case 5.

depicted in Figures.4.20-4.21.

4.4.7 Case 7: MG Run on Winter Day

All of the previous simulations were done in summer. In this case, a normal winter

day was simulated, which is December the 25th. As can be seen from Figure 4.22, the
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Figure 4.19: Running of case 5, battery response.

Figure 4.20: Running of case 6.

aggregated microgrid load is much less than the summer case, and the peak load no

longer occurs at noon, where it is clear that now the curve is a bit smoother and the

demand peaks in the evening particularly 8:00 PM. Furthermore, we should observe

that PV generation is much less than the summer season which is expected due to the

78



Figure 4.21: Running of case 6, battery response.

fallen irradiance in winter. The battery response is shown in Fig.4.23.

Figure 4.22: Running of case 7.
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Figure 4.23: Running of case 7, battery response.

4.4.8 Case 8: One Week Run

In this case, a one-week simulation run was tested. The battery size has been changed

to 20000 AH. Notice that now the x-axis elongates for the span of 168 hours (Figure

4.24). In this curve, we can observe how cyclic is the demand and PV generation. The

wind is a bit varying and highly unexpected, notice the period from 60 to 90, that is

more than one day, the wind output was very close to zero for most of the time. The

battery response in Figure 4.25 presents many spikes and it is supplying power for

almost 65% of the time, which means that extra generation units have to be installed

in order to recharge the battery properly.
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Figure 4.24: Running of case 8.

Figure 4.25: Running of case 8, battery response.
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CHAPTER 5

INTELLIGENT LOAD

PRIORITY LIST

In previous chapters, the load, renewable generation and energy storage systems were

modeled and sized. Then, a microgrid test system was proposed to incorporate the

different load types and DERs. In the current chapter and the one after it, an im-

provement in our test-bed will be made. All of the studies will be back-projected and

synced applied to our proposed microgrid to enhance its performance. In the present

conventional power systems, most failures are occurring at the distribution level. The

concept of the microgrid is considered to be a solution to this issue. Microgrids should

achieve smart and robust load restoration, in which a decision is made on which load

should be supplied first and what are the loads that follow. Faults can occur due

to several reasons, starting from natural disasters and equipment failures to human

errors and lack of safety measurements. After the occurrence of an outage, the power

has to be rapidly restored. One of the aspects of smart restoration is to dynamically
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rank the loads to be restored based on many factors. For example, between 1 AM to

6 AM residential loads should be restored prior to the commercial loads, since most

shops, restaurants, gyms are closing at that time. Thus, time would be an essential

input to determine the criticality of each load at that time. Other inputs are SAIFI,

SAIDI, and energy not supplied.

In this chapter, a smart dynamic load priority list (LPL) will be modeled using

artificial neural network (ANN), where different categories of loads such as residential,

commercial, industrial and hospital will be prioritized for restoration and Demand

Side Management (DSM) based on the given time, reliability indices and amount of

available energy. The resultant time varying LPL will be used as an input for the

DSM studies in the next chapter. A literature review about LPL and ANN will be

given in the next section. Then, an introductory material to better understand the

deep learning networks is presented. The problem formulation and modeling followed

by the results will take place in different sections too.

5.1 Literature Review

Many papers in the literature tackled service restoration in terms of restoration speed

[95], minimization of out-of-service loads [96], cost reduction [97] and the possibility of

reaching the pre-fault state promptly [98]. However, and to the best of our knowledge,

nobody is considering the dynamic LPL that will rank all types of existing loads

according to their criticality level. Until now, the LPL is judged based on predefined

human decisions. Some system operators try to restore as many loads as possible
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without looking into the importance of each load and the time when the fault occurs.

Costumers who may be ranked top priority include hospitals fire stations, data centers,

and police departments. Loads that would be ranked at the bottom of the LPL are for

example schools and offices during off-school and off-office hours periods. Therefore,

given that the load is dynamic in nature, the LPL should also be fully dynamic.

In [99], Artificial Neural Network (ANN) was used to figure out the optimal recon-

figuration of a Radial Distribution System which will minimize the power losses. The

authors tested the proposed technique on a 16 bus system and showed that the infor-

mation about the configuration that will yield the minimum loss could be acquired

using the algorithm. In [100], economical, reliability and criticality factors were con-

sidered for the service restoration of the distribution network. However, the ranking

was fixed, and the concept of dynamical LPL was not discussed. The authors in [101],

developed a software planner which helps the system planners and operators to se-

lect the next transformer to be repaired when several transformers are due for repair

and are out of service. The transformers are prioritized based on the risk reduction

that may arise from such replacement; The risk reduction is defined as the minimum

number of customers that will be out of supply when such transformer is eventually

replaced. Each transformer is ranked based on its risk reduction index, and the pro-

gram is then run to optimize the restoration of these out of service transformers given

stated objective function. A key point of notice is that this work relied on the system

loading and reliability data for its modeling formulations.

The authors in [102] proposed a multi-objective evolutionary algorithm (MOEA)

to prioritize the switching and restoration of distribution networks [2, 6]. Their work
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further entails remote prioritization switching, sequence restoration of the first three

priority customers and switching sequence for a vast network. The problem is divided

into three stages; In stage 1, they obtained an optimized solution to service restoration

using the MOEA where customers and switches are ranked. In phase 2 one of these

candidate solutions is selected considering several constraints and is provided to the

distribution operator, and in step 3, it finally determines an admissible switching

sequence for implementing the chosen solution. The nobility of this methodology is

its applicability to vast network without the need for network reduction in short time.

In [103], the authors determine the switching sequence of service restoration (SR) in

distribution systems using MEAN-MH+ES incorporated with a heuristic optimization

technique. This enables them to generate a feasible sequence of switching operation

(FSSO) and SR plan (SRP) given the associated constraints. For its analysis, they

considered voltage drop and substations loading as relaxed constraints; however, these

quantities are only considered if they pose no harm to the network equipment and

customers. The algorithm performed well when tested on the real and large-scale DS

of Londrina city. It was noted that the relaxed constraint utilized in this algorithm

enables a large number of customers to be restored at ones consequently reducing the

overall restoration time.

In [104], the author used the Exhaustive Search (ES) approach as a preceding

stage before using the Meta-heuristic multi-objective Evolutionary Algorithm with

Node-depth encoding (MEAN-MH) to find the optimal solution of service restoration

problems. They were able to apply their methods to real large distribution networks.

The paper did not take into account the available energy or the various power con-
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sumed by individual consumers. The paper in [105] utilizes the quantum-inspired

differential evolutionary algorithm to solve power restoration prioritization problem

in the smart grid using the permutation-based combinatorial optimization problem to

find the maximum load that can be restored at a particular time. It also prioritizes

the load and ranks the network generators based on their capacities. This work is

shifted more to the generation and transmission side rather than what goes on at the

transmitting end.

5.2 Artificial Neural Network

The Artificial Neural Networks (ANN) has been adopted in many physical problems

having a relationship between inputs and outputs because the ANN can learn and gen-

eralize from a set of input data called the training set or data. A neural network (NN)

has network architecture consisting of neurons, connecting strength, nodes properties

and updating rules [106]. The NN records fair success if it can accurately learn well

and generalized as much as it can. The learning style of the ANN is classified into

three; supervised, unsupervised and reinforcement learning styles [106]. In supervised

learning, the training sets’ input and output are known, and the network learns from

this information to form a pattern or model. Reinforcement learning is a particular

type of supervised learning where the output of the NN is feedback to the input neu-

rons to influence the learning process. In unsupervised learning, the output of the

training set is unknown, and hence the training process is such that network neurons

must compete, and the best neurons emerge [107]. This process then determines what
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the outputs will be.

Our problem adopts the method of supervised learning since the inputs and output

training data are available. We incorporated the algorithm of feed-forward computa-

tional topology where the output is not fed back to the input. Unlike the recurrent

topology where the output from some nodes of the neurons is fed back as an input to

other neurons.

Figure 5.1, shows the architectural layout of the feed-forward topology with mul-

tiple inputs, multiple outputs and two hidden layers as used in this work. The letters

m and n denote the numbers of output, input neurons corresponding to the training

input sets. While i,j and k denote number layers in the input, hidden and output

respectively. In this work, the values of [i, j, k] are chosen as [1,3,1] for the training

set, the nth training input must correspond to the mth training output. The number

of neurons in the jth layer is not necessarily equal to the number of neurons in the

(j + 1)th layer.

Furthermore, the selection of the number of neurons in the hidden layer is impor-

tant, and has a direct impact on the learning rate. This could be set using a trial

and error method. The other parameter of the ANN that needs to be chosen and

properly adjusted are initial weights, learning rate and activation function which can

either be linear, sigmoid, signum, sigmoid derivative, etc. Most of these functions are

already modeled in MATLAB software tool. The NN toolbox can choose the training

error, number of neurons for input and output data sets. It can also by default divide

the input data into training sets, validation sets and test set. However, these values

can be customized according to the user’s application. In this work, we chose (80%,
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10%, and 10%) for training sets, validation sets and test sets respectively. Another

parameter which can be set or be chosen by default in the NN toolbox is the number

of epochs which is the number of times we want the learning to take place.

Figure 5.1: Multiple input, multiple output two layers feed-forward computational
topology.

5.3 Load Priority List Problem Formulation

After laying out the concept behind ANN, now the neural networks will be used to

formulate an intelligent, flexible LPL for reconfiguration and management of micro-

grid demands. The list is dynamic in nature, in which the priority of loads changes

with time and amount of available energy. However, some loads will always be given

the highest priority, for example, hospitals, data centers, fire and police stations. A

multi-layered artificial neural network will be used to train the algorithm on the pro-

posed priority scheme. After a long training process, the ANN will be able to take

decisions based on the current time, available energy and the status of reliability in-

dices. Figure 5.2 shows the flow of the proposed method. Firstly, after the occurrence

of the fault, the time, available energy and reliability indices are inputted. Then, the
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ANN processes the inputs and outputs of the proposed LPL for that certain hour.

The LPL is dynamic and will change according to the change in the input sets.
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Figure 5.2: Flowchart of the proposed flexible LPL.

The training input consists of four vectors which include: time in hours, System Av-

erage Interruption Duration Index (SAIDI), System Average Interruption Frequency

Index (SAIFI) and Average maximum load available at each hour for five categories

of loads. The same loads of modeled in Chapter.2, and offices and schools loads were

taken as a ratio of the commercial load category. Each load category is made of three

vectors; SAIFI, SAIDI and average capacities of load consumed by each load corre-

sponding to every hour. Therefore, the total number of training inputs (n) becomes

17. There are five outputs, the order of which correspond to the priority listing. These

outputs are the different load categories which include hospital, commercial, indus-

trial, residential, schools and offices. These outputs are encoded with integers 0, 1 2,

3 and 4, as summarized in Table 5.1. It should be noted that this number of coding is

only for load representation and doesn’t indicate the priority. The reliability indices
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Table 5.1: Load categories and corresponding numerical code
Load Category Assigned Number Comments

Schools & offices 4 Essential load
Schools, offices

Hospitals & fire stations 3 Critical load, always prioritized
Industrial 2 Factories, workshops etc..
Residential 1 Homes, apartments, compounds etc..
Commercial 0 Shops, restaurants, gyms etc..

inputted are System Average Interruption Frequency Index (SAIFI), System Average

Interruption Duration Index (SAIDI) and Customer Average Interruption Duration

Index (CAIDI). They are formulated in the following equations:

SAIFI =
Total number of all interruptions

Total number of connected costumers
(5.1)

SAIDI =
Total duration of all interruptions

Total number of connected costumers
(5.2)

CAIDI =
SAIDI

SAIFI
=

Total duration of all interruptions

Total number of all interruptions
(5.3)

The training inputs are formulated as follows:

X = [x1 x2 x3 ... xn] (5.4)

Where n is the total number of inputs, 17 in our case (Table 5.2). The variables xi

that form the input elements for the training input and are such that x1 denotes the

hours, and x17 denotes the total available energy at that hour. These inputs order are

presented in Table 5.2.
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Table 5.2: Training input sets
Training
input

Load category
Industrial Residential Commercial Hospital Schools and Offices

Load x2 x5 x8 x11 x14

SAIDI x3 x6 x9 x12 x15

SAIFI x4 x7 x10 x13 x16

Also, the inputs:

x1 = Time (5.5)

x17 = Total Available Load at Hour x1 (5.6)

The training output is formulated as follows:

Y = [y1 y2 y3 y4 y5] (5.7)

The inputs must be totally made with the hours which is the first input. The

number of entries corresponds to the number of hours. The used training set is for

one month period, corresponding to 720 hours. The detailed annual, seasonal, monthly

and daily energy data for all load categories are presented in chapter.2.

5.4 Simulation Results and Discussion

At this stage, each load category has been assigned a certain number. The order of

the numbers does not represent the criticality level. The assigned numbers and the

corresponding load categories are shown in Table 5.1. The general criticality structure

as assumed is shown in Table 5.3. According to the table, hospitals will always be
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Table 5.3: Load criticality levels
Criticality levels Examples
High Hospitals, fire station
Medium high Schools and offices (working hours)
Medium Industrial, commercial and residential
Low Schools, offices and commercial (off hours)

given the highest priority independent of time. This will be reflected on the results

later, where hospitals will always appear on the top of the LPL. Schools and offices

are given higher priority during working hours than all other loads, but of course less

priority than the hospital. All other loads, i.e., residential, commercial and hospital

have a medium priority that is also affected by the time of the day and the time of

the week. The ANN deals with the hourly load, that is for every hour a LPL will be

generated. Thus, for example, June has 720 hours, and hence the LPL will be created

720 times to provide the system operator with an hour by hour list that will facilitate

taking actions in case of load management or restoration.

The results of the network showing the LPL at different times are shown below.

Figure 5.3, shows the proposed LPL for restoration. Note that t=15 is Saturday,

the first day of the month at 3 PM, which is a working day in Saudi Arabia. It is

observable that hospitals have the highest priority followed by schools & offices then

commercial, industrial and residential respectively. This makes sense, as this hour is

considered a working hour and thus schools & offices were given higher importance

than other loads. Figure 5.4, shows the LPL for hour 60 which is Monday 12 at noon.

Although it is a different hour on a different day, but the characteristics of that day

and hour are similar. By similar, we mean that it is working hours and it is not
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a weekend. On the hour 136 for example, Figure 5.5, residential loads gained the

second highest importance after hospitals, whereas schools and offices had the least

importance level. The reason is that, although hour 136 is at 4 PM which is considered

working hours but it is on Thursday, which is a weekend in Saudi Arabia and thus

the ANN learned that on weekends schools and offices should not be prioritized. An

interesting behavior occurred at hour 156, which is noon of Friday (Figure 5.6). Since

it is Friday prayer time in Saudi Arabia and all shops freeze between 10 AM to 1 PM

at that time the commercial load category was given very low importance alongside

with the schools & offices category. However, at hour 160 which is 4 PM on the same

day, the commercial load sector regained importance and jumped to the third level

instead of fourth. In other words, the commercial load retrieved its original position

before the interruption of the Friday prayer. The residential was of high priority at

that hour because it is a weekend at that time. The structure of our neural network

is shown in Figure 5.8. Four layers were used in the network, and a different number

of hidden neurons is assigned to each layer. The first and last layers are the inputs

and outputs, respectively and the rest of layers are hidden between the first and the

second layer. The gradient and validation checks of the network are shown in Figure

5.9. The regression plot of the training, testing and validation process are shown in

Figure 5.10. The regression shows how close the validation is to the real inputted

data and the presented network shows an excellent regression. The performance of

training, testing and validation process is plotted in Figure 5.11. The Mean Square

Error (MSE) of the validation function achieved is 0.6616.

All in all, an intelligent flexible LPL is proposed for smarter load restoration.
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Figure 5.3: Priority list when t = 15
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Figure 5.4: Priority list when t = 60
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Figure 5.5: Priority list when t = 136

Artificial Neural Network (ANN) is used to extract the model of the system according

to the given inputs and outputs. Multiple inputs were considered such as reliability

indices SAIDI, SAIFI and CAIDI. Time and available energy to feed the system at

that time were inputs too. The output was the LPL, which dictates the prioritization
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Figure 5.6: Priority list when t = 156

Priority at hour t=160

Commercial
Hospital

Industrial

Residential

School & Offices

Load category

0

1

2

3

4

5

Figure 5.7: Priority list when t = 160

of supplying the different load categories according to the given inputs. From the

results, it is shown how the list is flexible in the sense that it assigns high priority to

some loads at certain times and lower priority at another. The list was tested under

different hours and days conditions, and the results of different cases were thoroughly

discussed. The technique is tested and validated showing a very small Mean Square

Error (MSE).
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Figure 5.8: Network Layers

Figure 5.9: Gradient of the neural network

Figure 5.10: Regression of the neural network
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Figure 5.11: Performance of the neural network
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CHAPTER 6

DEMAND SIDE MANAGEMENT

SCHEMES

Usually, the installed capacity is sized based on the peak demand, which occurs only

for a very brief period during the year. Thus, a considerable amount of the generation

capacity is not fully utilized when under commissioning, which causes expenses to the

utility even if these generators are not running. Therefore, the concept of Demand

Side Management (DSM), Demand Response (DR) came to address the issue of this

variability. DSM is the process of encouraging electricity costumers to shift or reduce

their energy usage according to the utilities instructions and preferences. It is bene-

ficial to both costumes and utilities. On the user side, they can eventually overcome

their electricity bill by enrolling to the DSM scheme enforced by the retailer, which

is usually incentivized. On the utility side, peak loads can be shifted, and the valleys

of the load profile can be filled to smooth the demand curve which will turn increase

the efficiency and reliability of the system (Figures.6.1, 6.2 & 6.3). In fact, advanced
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Figure 6.1: Peak shaving Figure 6.2: Valley filling

Figure 6.3: Peak shifting

metering infrastructure (AMI) have had made it possible for utilities to acquire precise

information about energy use on the customer side. Thus, pre-programmed devices

can perform specific steps to shed and mitigate loads when there is a sudden increase

in demand or a contingency in generating units. Ergo, assisting utilities not to bear

the costly investments such as building generation plants, buying from the spot mar-

ket or call options. According to [108], the application of DSM by 459 utilities in the

USA saved them 50.6 billion kilowatt hours (kWh). There are many other advantages

for adopting DSM such as increased reliability, reduced cost, improved market, and

higher efficiency.

In this chapter, different DSM schemes will be formulated. The microgrid test-bed

will run every case to see the effect of the DSM on the overall system performance.

An energy balance based DSM will be firstly implemented, then the LPL acquired

previously will be used as an input for the DR decisions. After that, peak shaving and

valley filling DSM will be applied and tested using the test system designed previously.
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A detailed literature survey about DSM was introduced in Section.1.4. Introductory

material about FL will be provided in the next section followed by case studies of

different DSM schemes.

6.1 Fuzzy Inference Systems (FIS)

Fuzzy logic is a method to match a set of input and output data. The rules for

that matching can be imprecise, maybe not in the form of numbers such as linguistic

variables. Thus, a rigid systematic for the method is not needed as this method

will handle the semi-truth and uncertain matching to attain a low cost and robust

solution.FL was firstly introduced by Lotfi Zadeh in 1965. The operation principle is as

follows: for each fuzzy variable a number of Membership Function (MF) on its x-axis

will be formulated, referred to as universe of discourse, the range of MF is from 0 to 1,

which is the y-axis. Different shapes of the MFs exist: Gaussian, z-shaped, sigmoidal

and trapezoidal and the type should be chosen based on the user’s application. A

mathematical representation of FL can be modeled as follows:

L = {(x, µL(x))| x ϵ X} (6.1)

where L is the fuzzy set, µL(x) is the membership function and X is the universe of

discourse. Based on the MFs a set of if-then rules are applied to link the input and

the output as follows:

If < (antecedent) > Then < (consequent) > (6.2)
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Thus the process of FL involves: 1) fuzzifying the inputs and applying the fuzzy

operators (and, or, or not), 2) Applying the result to the consequent.

By applying the previous concept to our problem, the list of inputs and outputs

has to be determined. In most case studies that will be done in the coming sections,

our inputs will be time, the energy balance equation as shown in Eq.4.1 and the LPL

result that was formulated and acquired in Chapter.5. All of these inputs are sent

to a black box and later mapped with the output, which is in our case; the amount

of load curtailed and from which load type the curtailment should be implemented

(Figure 6.4).

Output:
-amount of load that should be curtailed

- which load category should be curtalied.

Input:
-hour by hour status of the enegy balance in the 

MG test-bed
-hour by hour load priority list

Time

Status of load 
and generation

Load priority 
list

How much 
load should 
you shed

Which load 
should be 

shed

Black Box

Figure 6.4: FL mapping of input and output spaces.
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6.2 Implementation and Evaluation of Demand

Side Management Schemes

Load and renewable generation are changing continuously. Microgrids must be able

to supply the loads at all times and under all conditions. Different actions can be

taken to ensure a safe and adequate flow of energy to the consumer. Sometimes it is

very expensive to install a generation reserve which will run only for a few hours when

the demand peaks. The proposed microgrid test-bed can incorporate any study. An

intelligent, flexible LPL was integrated as an additional feature to enhance the system

and make it smarter. The hourly changing intelligent priority list will let the decision

maker know which loads are interruptible and which are not. In this section, an extra

study will be performed in the system, which is developing and testing different DSM

programs for the sake of increasing energy security and ensuring an improved load

factor. Due to the existence of multi-variables in this problem which are the time of

the day, energy balance and load LPL, a FL controller based model will be formulated

to achieve DSM. FL will be used in three cases out of the upcoming six cases. All of

the case studies are implemented on one-day time span, 24 hours, and that day is 28th

of June. The following table summarizes the examined cases (Table 6.1).
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Table 6.1: DSM case studies

Case DSM Load priority list Fuzzz logic

1 Energy Balance NO YES

2 Energy Balance YES YES

3
Peak shaving of

each load
YES NO

4 Peak shifting YES NO

5
Peak shaving of

aggregated load
YES NO

6 Residential AC NO YES

6.2.1 Energy Balance Based DSM

The microgrid should be able to independently supply its loads, however, sometimes

it is just not feasible to install new generation capacities which will only be utilized

for a few hours in the year. Thus, the microgrid utilizes its coupling with the utility

to buy electricity in case of any discrepancies. It will also supply electricity to the

utility if the local generation is higher than the current demand. As observed from the

behavior of our demand modeled in Chapter.2 is that it usually peaks in the middle of

the day and it is higher between 4-11 than it is from 12 to 7 AM and the main reason

is because of air-conditioning loads. As a result, the price of energy at peak times

is certainly higher than low demand periods. The energy balance based DSM model

that we are proposing aims to reduce the amount of power bought from the utility by
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shedding some of its unimportant loads. The amount of shedding will be more severe

for the high priced tariff periods and will be more relaxed for cheaper ones. The tariff

of buying from the utility is illustrated as follows:

Cutility =


E(t)× Tlow, 0 ≤ t < 10

E(t)× Thigh, 10 ≤ t ≤ 16

E(t)× Tmedium, 16 < t < 24

(6.3)

where t is the time in hours, Cutility is the cost of buying power from the utility. E is

the energy bought and Tlow, Tmedium and Thigh are the low, medium and high electricity

tariff, respectively, based on the time of the day. The difference equation that will

determine the load-supply situation and the percentage difference is:

Pdifference(t) =
Pload(t)− PDER(t)

Pload(t)
× 100 (6.4)

where Pload(t) is the load power at time t defined in Eq.4.2 and PDER(t) is total power

generated in the microgrid at time t, defined as:

PDER(t) = PPV (t) + PWind(t) + Pbattery(t) (6.5)

Hence, if Pdifference(t) is positive, then the demand is higher than the total load at

that time, and it is negative when the load is higher.

Having the idea and the goal laid out, the fuzzy system was designed to decide

the amount of shedding needed to reduce the total expensive power bought from the
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utility. The inputs and outputs of the FL are shown, alongside with the membership

functions (Figure 6.5-6.7). The load and generation of the microgrid before and after

DSM is shown in Figure 6.8. An interesting results are observed in this case, where

approximately at the period from 9:30 to 11 (period 2 (P2) the MG load was higher

than the supply, the system rapidly spotted that increase and reacted with a load

shedding of about 15% to let the local generation cover the total demand preventing

the incident of buying from the grid at this critical time. Load shedding was also done

in periods 1 (P1) and 3 (P3), but the severity of the shedding is relaxed; however, it

is stronger in P3 than in P1 although the imbalance of supply and demand is almost

the same. The percentage of curtailment at each hour is shown in Figure 6.10 and the

load before and after the shedding is shown in Figure 6.9. The 3-D surface of the FL

rules is a good window to understand the general mapping of the inputs and output

(Figure 6.11). It shall be mentioned that in this case, we are shedding the loads as

bulk without going into the details of each load category (Table 6.2). The energy sum

bought from the utility decreased from 6.28 MWh to 3.7 MWh and the power bought

during the most expensive period was minimized. The detailed fuzzy rules are listed

in Appendix.B. The microgrid response is shown in Figures.6.12-6.13.

Figure 6.5: Case 1: FL input and output variables.
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Figure 6.6: Case 1: Membership functions of the FL input.
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Figure 6.7: Case 1: Membership function of the FL output.
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Figure 6.8: Case 1: MG Load and generation before and after DR.
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5 10 15 20
Time

0

5

10

15

20

25

30

35

40

% o
f lo

ad 
cur

tail
ed

Load Curtailment
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Figure 6.12: Case 1: MG test-bed response to the DSM.

Figure 6.13: Case 1: MG test-bed battery response to the DSM.

6.2.2 Energy balance Based DSM Incorporated With LPL

In this case, the same formulation as the previous case will be considered, provided

that an extra input will be added which is the LPL and thus now our output will

be shedding the loads according to their situation in the LPL, hence four outputs

will be considered; one for each load type (Figure 6.14-6.16). The number assigned

to each load category is found in Table 5.1. The model succeeded to eliminate the
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Table 6.2: Inputs and outputs of energy balance based DSM
Inputs to the FL system Output of the FL system

Hour Pdifference(%) Period Curtailment (%)
1 95.03 P1 25
2 85.47 P1 25
3 73.07 P1 22.27
4 64.21 P1 16.48
5 55.87 P1 15
6 7.23 P1 4.91
7 -3.73 P1 0
8 -10.68 P1, P2 0
9 -10.71 P1, P2 0
10 8.36 P1, P2 15
11 11.59 P2 15
12 -5.74 P2 0
13 -4.25 P2 0
14 -16.67 P2 0
15 -7.06 P2 0
16 -2.19 P2, P3 0
17 11.83 P2, P3 12.63
18 62.42 P2, P3 25.93
19 74.08 P3 33.61
20 82.83 P3 35
21 94.52 P3 35
22 94.51 P3 35
23 93.69 P3 35
24 84.89 P3 35

power bought from the utility at P2, while applying the LPL which is shedding only

the interruptible loads (Figure 6.17). Notice that the shedding occurred between 9:30

and 11 AM was done by reducing the residential load by 22% and the industrial and

commercial loads by 10%. The reason is that at that hour the residential was the

least in priority and thus the curtailment of it was the highest. Conversely, from

20 to 23 shedding occurred to the industrial by 60% and to the commercial bu 45%

and the reason why the shedding was severe is because of the high difference between

demand and supply (Figure 6.18-6.20). Some periods has no curtailment at all and
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the reason is that the demand falls within the generation range. Referring to Figure

6.21, we shall observe that the hospital load profile before and after DSM was the

same and the reason that it was always at the top of load LPL. The shedding in

industrial load was higher in P3 than in P2 and in P2 than in P1 and the main reason

is its order in the LPL. The 3-D surfaces of the FL rules are shown in figures.6.22-

6.23. To easily track the energy difference, the curtailment and the priority of each

load category refer to Table 6.3. The energy sum bought from the utility decreased

from 6.28 MWh to 1.9 MWh and the power bought during the most expensive period

was minimized. Priority 1 indicates that the priority order is: hospital, residential,

industrial then commercial, while priority 2 means: hospital, commercial, industrial

then residential. Priority 3 is hospital, residential, commercial then industrial, while

priority 4 is hospital, commercial, residential then industrial. The microgrid response

is shown in Figures.6.24-6.25. The detailed fuzzy rules are listed in Appendix.B.

Figure 6.14: Case 2: FL input and output variables.
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Figure 6.15: Case 2: Membership functions of the FL input.
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Figure 6.16: Case 2: Membership functions of the FL output.
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Figure 6.17: Case 2: MG Load and generation before and after DR.
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Figure 6.18: Case 2: MG Loads before and after DR
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Figure 6.19: Case 2: Priority of each load category.
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Figure 6.20: Case 2: Percentage of curtailment of each load category.

6.2.3 Peak Shaving LPL based DSM on Each Load Category

In this case, the peak of each load type will be clipped (Figure 6.1). The clipping

amount is subjected to the load priority list. That is, if the peak of a certain load
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Figure 6.21: Case 2: Load profile of the four load types before and after DSM.
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Figure 6.22: Case 2: Surface of the FL rules with time as x-axis.

Figure 6.23: Case 2: Surface of the FL rules with priority as x-axis.

113



Figure 6.24: Case 2: MG test-bed response to the DSM.

Figure 6.25: Case 2: MG test-bed battery response to the DSM.

category occurs while the load is at the bottom of the priority list then its peak will

be clipped with a high percentage rate, whereas if the peak of that load type occurred

while it was listed top in priority then no curtailment will be done to that load. Note

that here, we deal with the peak of each load type not the peak of the aggregated

microgrid load. The aggregated load before and after the peak shaving is shown in

Figure 6.26 and the peak shaving of each load type is shown in Figures.6.27-6.30. Note
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Table 6.3: Inputs and outputs of energy balance based DSM with LPL
Inputs to the FL system Outputs of the FL system (Curtailment(%))

Hour Pdifference(%) Period Priority Residential Commercial Industrial Hospital
1 95.02550117 P1 1 0 63.30 48.31 0
2 85.47 P1 1 0 63.17 48.17 0
3 73.07 P1 1 0 56.31 45.11 0
4 64.21 P1 1 0 49.60 37.48 0
5 55.87 P1 1 0 48.29 35 0
6 7.23 P1 1 0 23.17 10 0
7 -3.73 P1 1 0 0 0 0
8 -10.68 P1,P2 2 0 0 0 0
9 -10.71 P1,P2 2 0 0 0 0
10 8.36 P1,P2 2 23.13 10 10 0
11 11.59 P2 2 22.98 10 10 0
12 -5.74 P2 2 0 0 0 0
13 -4.25 P2 2 0 0 0 0
14 -16.67 P2 2 0 0 0 0
15 -7.06 P2 2 0 0 0 0
16 -2.19 P2,P3 2 20.90 8.97 8.97 0
17 11.83 P2,P3 3 9.41 10 22.97 0
18 62.42 P2,P3 3 0 36.45 49.06 0
19 74.08 P3 3 0 46.54 59.04 0
20 82.83 P3 3 0 48.12 63.11 0
21 94.52 P3 3 0 48.30 63.30 0
22 94.51 P3 3 0 48.30 63.30 0
23 93.69 P3 3 0 48.29 63.29 0
24 84.89 P3 1 0 63.16 48.16 0

that the hospital peak was not clipped and this is due to the effect of LPL. The daily

load factor of each load type, which was defined in Eq.2.4, have increased except for

the hospital load (Table 6.4). The microgrid response is shown in Figures.6.31-6.32

and the energy sum bought from the utility decreased from 6.28 MWh to 5.99 MWh

Table 6.4: Daily load factor before and after peak clipping
Load type Before DR After DR Energy curtailed (KWh)
Residential 91.48 94.52 1.372
Commercial 88.17 89.07 0.609
Industrial 87.12 94 291.64
Hospital 84.17 84.17 0
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Figure 6.26: MG Loads before and after peak shaving.
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Figure 6.27: Residential load peak shaving.
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Figure 6.28: Commercial load peak shaving.

6.2.4 Peak Shifting LPL based DSM on Each Load Category

Unlike peak clipping, which reduces the total energy, the peak shifting DSM doesn’t

change the load sum, but instead it fills the signal’s trough from the peak load, thus
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Figure 6.29: Industrial load peak shaving.
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Figure 6.30: Hospital load peak shaving.

it involves clipping the peak and placing it in the troughs of the curve, simultaneously

(Figure 6.3). Just as in the previous case, the peak shifting will also depend on the

priority list. Figure 6.33, shows the microgrid total load and generation before and

after the peak shifting effect, while Figures.6.34-6.37 show the peak shaving of each

load type. The daily load factor of each load type have increased to values that are

higher than in peak clipping because here we are reducing the signal sparks from both

sides up and down (Table 6.5). Observe that the energy curtailed during the day is

zero, however we succeeded in shaving the peaks and increasing the load factors. The

microgrid response is shown in Figures.6.38-6.39.
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Figure 6.31: Case 3: MG test-bed response to the DSM.

Figure 6.32: Case 3: MG test-bed battery response to the DSM.

Table 6.5: Daily load factor before and after peak shifting
Load type Before DR After DR Energy curtailed (KWh)
Residential 91.48 95.83 0
Commercial 88.17 89.49 0
Industrial 87.12 94 0
Hospital 84.17 84.17 0
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Figure 6.33: MG Loads before and after peak shifting.
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Figure 6.34: Residential load peak shifting.
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Figure 6.35: Commercial load peak shifting.

6.2.5 Peak Shaving LPL based DSM of The Total Aggregated

Load

As we are operating our microgrid, we are concerned more about the aggregated

load rather than each load type, thus the peak shaving exercise will be repeated
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Figure 6.36: Industrial load peak shifting.
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Figure 6.37: Hospital load peak shaving.

here but with a small alteration. Now, the peak of the aggregated MG load will be

curtailed instead of shaving each load’s peak, which might not yield the clipping of the

aggregated load’s peak. The idea is as follows; the peak of the aggregated load will be

spotted. Accordingly, the algorithm will read the priority list at that hour, then the

load of the least and before least important types at that hour will be clipped with a

higher clipping percentage for the least important load. The MG load and generation

before and after DSM is shown in Figure 6.40 and the corresponding curtailment

of each load type is shown in figures.6.41-6.44. Again no curtailment occurred to

the hospital load as it is a critical load (Table 6.6). The energy sum bought from the

utility decreased from 6.28 MWh to 5.99 MWh. Notice that this case is very similar to
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Figure 6.38: Case 4: MG test-bed response to the DSM.

Figure 6.39: Case 4: MG test-bed battery response to the DSM.

case 3 because the industrial load contributed most of the profile of our microgrid and

thus the difference between the individual peak clipping scheme and the aggregated

one is very negligible.
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Figure 6.40: MG Loads before and after peak shaving.
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Figure 6.41: Residential load peak shaving.
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Figure 6.42: Commercial load peak shaving.

6.2.6 Residential Load DSM Using Load Composition

This is a special case where DSM will be done only to the residential costumers using

the load composition acquired in Chapter.2. The biggest percentage of consumption

122



5 10 15 20

Time

4.5

5

5.5

6

6.5

7

7.5

W

105 Industrial Load

Before DSM
After DSM

Figure 6.43: Industrial load peak shaving.
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Figure 6.44: Hospital load peak shaving.

Table 6.6: Daily load factor before and after peak shaving the aggregated load
Load type Before DR After DR Energy curtailed (KWh)
Residential 91.48 91.08 0.436
Commercial 88.17 87.58 0.873
Industrial 87.12 94.23 255
Hospital 84.17 84.17 0

in residential loads in Saudi Arabia is attributed to air conditioning loads. Thus, the

direct load control will be done to the AC loads only, which were found to occupy 62%

of the total residential load profile. The study includes three residential homes with

the load composition and percentages found in Chapter.2. As a result, four inputs

were given to the fuzzy controller, three of them are the hourly load profile input of

each home, and the fourth input is the time of the day. Three outputs are considered,
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which are the amount of shedding for each home. To determine if the current input

load is at peak or not, the scaled power of the three houses is calculated as follows:

PS,z(t) =
PH,z(t)

max(PH,z)
(6.6)

where, z is the house number and t is time. PS,z(t) is the scaled power and PH,z(t)

is the house power. Having three outputs from the FL controller. The new curtailed

load of each household PCu,z(t) will be as follows:

PCu,z(t) = ((1− (
FLz(t)

2
))× 0.62× PS,z(t) + 0.38× PS,z(t))×max(PH,z) (6.7)

Where FLz(t) represents each output of the FL controller, and the 62% is the percent-

age of AC load to the total house consumption. The input and output FL mapping is

shown in Figure 6.45 and the corresponding membership functions are shown in Fig-

ure 6.46-6.47. It can be seen from Figure 6.48, how demand response was different in

each period. At P2 the shedding was very severe and it decrease in severity in P3 then

P1. The aggregated load shows a successful curtailment of on AC loads which caused

a substantial decrease and smoothing of the load profile for the sake of avoiding the

swelling peak at P2 (Figure 6.49). The verbal mapping of the AC response resulted

from the FL, and the action that should be taken is summarized in Table 6.7. The

microgrid response is shown in Figures.6.50-6.51 and the energy sum bought from the

utility decreased from 6.28 MWh to 5.99 MWh. The detailed fuzzy rules are listed in

Appendix.B.
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Figure 6.45: Residential AC demand response FL map.
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Figure 6.46: Inputs membership functions.
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Figure 6.47: Outputs membership functions.
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Figure 6.48: Profile of three houses before and after AC DSM.
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Figure 6.49: Aggregated profile of the three houses before and after AC DSM.

Figure 6.50: Case 6: MG test-bed response to the DSM.

126



Figure 6.51: Case 6: MG test-bed battery response to the DSM.

Table 6.7: Mapping of FL output and AC action
FL output Suggested AC action
Low or none AC ON
Medium Increase the temperature
Strong Fan only

Very strong AC OFF
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CHAPTER 7

INCENTIVE-BASED

FEASIBILITY STUDY OF AN

EFFICIENT HYBRID AC/DC

MICROGRID IN SAUDI ARABIA

Most of our household appliances and devices are operating on DC. In fact some of the

appliances such as refrigerators, they tend to have more efficiency than AC based ones.

Even at the industrial level, DC drives and motors have gained immense popularity.

Thus, DC microgrid can be an excellent option to increase the total efficiency of the

system. In this chapter, the economic feasibility of a hybrid DC/AC microgrid will

be scrutinized. The proposed hybrid DC/AC microgrid shown in Figure 7.1 ensures

that the DC-based energy resources such as PV and batteries are directly connected

to the DC bus, while the AC based generation such as wind will be directly connected
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to the AC bus. This guarantees fewer converters in between which should be reflected

in the increased efficiency and cost.

Figure 7.1: Hybrid AC/DC microgrid configuration.

The rest of the chapter is organized as follows: firstly a brief literature review

about AC/DC microgrids will be provided, then the financial cost programs that are

used for the feasibility study will be illustrated. Lastly, the analysis and results will

be shown and a conclusion will be drawn about their viability.

7.1 Literature Review

Various studies in the literature have been done on the hybrid AC/DC microgrid.

In [109], a microgrid test-bed was proposed containing different Distributed Energy

Resources (DER). Control and protection schemes were investigated and the overall
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performance of the microgrid was evaluated, however, the economic feasibility of the

MG was not introduced. In [110], an economic feasibility study was implemented on

an AC based microgrid using a real-valued cultural algorithm (RVCA). The authors

found that under certain circumstances, there will be a reduction of 8.1% of the annual

cost. The study though does not tackle the incorporation of DC microgrid at all. On

the other hand, [111] evaluates the feasibility of a DC microgrid serving DC homes.

The paper proposes alterations in users consumption habits and aims to optimize PV

and batteries to yield an economically feasible microgrid based on different locations.

The study, however, does not tackle hybrid microgrids and is limited to one load type,

i.e., residential. In [112], Zhang et al. tested a DC microgrid for a commercial building

to feed its DC loads such as LED lamps. An economical study has been implemented

where PV is considered as a DG source, shows that the installation cost is around

2.2$/W. They concluded that a hybrid DC/AC microgrid would be a better option,

but without further verifying and implementing this statement.

7.2 Hybrid MG Distributed Energy Resources Siz-

ing

In the hybrid DC/AC microgrid, it will be assumed that the PV and the battery will

directly supply the DC load, while the wind energy output will feed the AC load.
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7.2.1 PV Sizing

One of the main objectives of the presented microgrid is to eliminate the use of in-

verters which are the main cause of decreasing efficiency in microgrids. Thus, the

annual energy consumption of DC load in the presented microgrid must be equal to

its annual energy production of PV panels. A storage unit is required to level the

energy consumption of the DC load with energy production during a year.

To estimate the capacity of the required solar panel suitable for the DC load of

the presented microgrid, the annual energy consumption must be known (Table 7.1).

From the last row in Table 7.1, the annual consumption of energy in each sector can

be extracted. These values are used for calculating the annual energy production of

PV modules to meet the net DC energy demand of the microgrid. From table 3.1, the

average annual sun peak hours can be calculated, which is found to be 8.8 [hr/day]

and then the required capacity to cover the annual power consumption can be found

using equation 7.1.

PPV =
Ey 35%

8.8hr 30day 12Month

(7.1)

Where Ey is the sum of all DC load of different demand sectors. The DC load

is estimated to be 35% of the hospital, residential and commercial and 0% of the

industrial load [109].
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Table 7.1: Consumption of the four load types

Month Residential
(KWh)

Commercial
(KWh)

Hospital
(KWh)

Industrial
(KWh)

JAN 2600 1426.4 8750 11703
FEB 2637.5 1626.5 6058 7842
MAR 3315.625 2009.8 6332 6654
APR 4810 2847.9 7347 5948
MAY 7326.25 3950.2 8387 6203
JUN 9120 4416.3 8776 6531
JUL 7693.75 4417.5 9644 6494
AUG 7191.875 4338.1 9706 6275
SEP 7008.75 3900.7 8805 5709
OCT 5481.875 3426.4 8407 5797
NOV 3548.75 2340.4 7095 5011
DEC 3033.75 2015.3 6695 5303
SUM 63768.13 36715.5 96002 79470

7.2.2 Wind Sizing

Since the usage of the PV modules is to increase the efficiency of the proposed micro-

grid by eliminating the usage of the AC/DC converters, the AC loads in the microgrid

must be supplied by an AC source, wind generator. To estimate the capacity of the

Wind generator, the same wind model as in Chapter 3 will be used. The total wind

generation is shown Table 7.2.

7.2.3 Battery Sizing

To estimate the battery sizing, we estimate the PV capacity required, where we can

calculate the annual energy production from PV and compare it to the annual energy

consumption by the DC load. The DC load is estimated to be 35% of the hospital,

residential and commercial and 0% of the industrial load. Since the demand increases

during the summer and decreases during the winter, then by calculating the total extra
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Table 7.2: Wind monthly energy generation

Month Wind Energy generation
(KWh)

AC Energy consumption
(KWh)

JAN 17695.11 20007.66
FEB 21272.94 14551.3
MAR 17695.11 14231.32
APR 22792.44 15701.18
MAY 23552.19 18984.24
JUN 37622.08 21034
JUL 30577.15 20634.91
AUG 17695.11 20078.38
SEP 12483.61 18523.39
OCT 12899.73 17051.93
NOV 12483.61 13450.70
DEC 17695.11 12936.63
Total 244464.2 207185.6

energy production during the winter and subtracting the extra energy production of

the PV during the year, then the battery size can be estimated Table 7.3. The sizing

were based on adding on adding the negative numbers in the last column, to ensure

that repetitive deficit between the PV generation and the DC load is compensated by

the battery.

7.3 Financial Costs Programs

To design financial incentive programs that meet the investor criteria, a complete

and detailed financial calculations must be given. In this chapter, the discount rate,

inflation rate, interest rate, tax and loan duration will be all considered in the model.

Besides, the the calculation of the energy consumption of each month of the year,

taking into account the number of days in each month and the peak sun hours in that

month, from historical data will be the basis of the financial study. To provide accurate
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Table 7.3: Battery size calculation

Month PV Gen
(KWh)

DC Cons
(KWh)

ESS
(KWh)

JAN 4774 4471.74 302.26
FEB 4928 3612.7 1315.3
MAR 4774 4080.10 693.90
APR 5280 5251.72 28.285
MAY 6138 6882.21 -744.21
JUN 7260 7809.305 -549.31
JUL 7502 7614.34 -112.34
AUG 6820 7432.59 -612.59
SEP 5940 6900.06 -960.06
OCT 6820 6060.35 759.65
NOV 5940 4544.452 1395.55
DEC 4774 4110.42 663.58
Total 70950 68769.97 2180.03
ESS size (KWh)= 2978.50

financial incentive programs for investment, the same real data modeled in Chapter

2 is used. The understanding of load categorization will ensure advising more certain

incentive program for each of them. The incentive programs are designed to motivate

the consumer to invest in renewable energy. The diversity of incentives are designed to

meet the range of consumers. The proposed incentive programs are zero interest rate

funding and business energy investment tax credit. To find out the optimal incentive

program, the total cost of the installed system must be considered. The inflation rate,

discount rate, interest rate, and the price of the electricity generated by the renewable

energy sources compared to the price of the grid are also considered. These incentive

programs must be viable economic options to motivate the investors in the renewable

energy sector.

One of the main objectives of the presented hybrid microgrid is to eliminate the use

of inverters which are leading cause of decreasing efficiency in such networks. Thus,
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the annual energy consumption of DC load in the presented microgrid must be equal

to its annual energy production of PV panels. A storage unit is required to level

the energy consumption of the DC load with energy production during a year. The

financial outcomes of the investment after a certain period of time must meet with

the expectations and have a low cost of energy production compared to the grid cost,

otherwise investors will not be motivated and willing to take the risk of the investment

[89]. Also, The energy companies, the distributors, must facilitate and utilize the use

of smart energy metering to sell and buy the energy from the customers without any

limitations on quantities. The Saudi Electricity Company (SEC) just issued new tariff

for all sectors (residential, commercial, hospital, industrial) (Table 2.2).

To investigate if the proposed design is economically feasible, a detailed and com-

plete financial calculations must be implemented. The proposed financial model in

this paper tests if the presented model is an economical choice and hence should be

adopted. The model is shown in equation 7.2.
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−(Tax%)[
[(1 + rinf )

n − 1](1 + rinf )(O&MCost)

rinf
+ C1

+C2 + C3]−
rint(1 + rint)

n1

(1 + rint)n1 − 1
n1C1

− rint(1 + rint)
n2

(1 + rint)n2 − 1
n2C2 −

rint(1 + rint)
n3

(1 + rint)n3 − 1
n3C3

−((1 + rinf )
inf − 1)(1 + rinf )(C1OM)

rinf
−Bill1

+(annual Energy production of PV )n

+C1

(
rint(1 + rint)

n1

(1 + rint)n1 − 1
n1 − 1

)
+C2

(
rint(1 + rint)

n2

(1 + rint)n2 − 1
n2 − 1

)
+C3

(
rint(1 + rint)

n3

(1 + rint)n3 − 1
n3 − 1

)
= 0

(7.2)

Breaking Equation 7.2 to small parts can help in simplifying the presented model.

All the costs involved in this investment must be known to be implemented in the

model. To start an investment, a loan is needed, thus, the cost due to loan and it’s

interest is:

Loan Cost =
rint(1 + rint)

n1

(1 + rint)n1 − 1
n1C1 +

rint(1 + rint)
n2

(1 + rint)n2 − 1
n2C2

+
rint(1 + rint)

n3

(1 + rint)n3 − 1
n3C3

(7.3)

The second cost is considered in this model is operation and maintenance. The

operation and maintenance cost is calculated by considering the inflation rate.

Total O&M Cost =
((1 + rinf )

inf − 1)(1 + rinf )(C1OM)

rinf
(7.4)

136



In addition, taxes cost must be included for the capital cost and operation and

maintenance cost. Since the new 2030 vision in the Kingdom of Saudi Arabia, taxes

must be included in every transaction.

Tax Cost = (Tax%)[
[(1 + rinf )

n − 1](1 + rinf )(O&MCost)

rinf
+ C1 + C2 + C3

] (7.5)

The last cost that should be considered is the last electric bill the investor should

pay while the PV system is installed.

Energy bill of the first Y ear = Bill1 (7.6)

The proposed incentives that should be given to balance equation 7.2 and make

the hybrid DC/AC microgrid a feasible option are the following term in the preceding

equation 7.2:

Incentives = C1
rint(1 + rint)

n1

(1 + rint)n1 − 1
n1−1+C2

rint(1 + rint)
n2

(1 + rint)n2 − 1
n2−1+C3

rint(1 + rint)
n3

(1 + rint)n3 − 1
n3−1

(7.7)

On the other hand, the saving the investor have is the cost of the annual energy bill,

which the installed PV system covered it after installing it, in addition to the energy

sold by the system to the grid.

Saving = (annual Energy production of PV )n (7.8)
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After calculating the costs and the savings, if the investment is successful then

the saving will amount for more than the cost of the system, otherwise, it is not

worth investing it net zero energy building. since the main objective is to motivate an

investor into investing while the price of energy bought from the utility is lower than

the energy production from the distributed generations, then it is not enough to make

the costs equal to the saving, because the net of the investment is zero after the end

of the investment lifetime. Thus, to encourage the investor, a couple of incentives are

proposed.

Equation.7.9 is used to calculate the cost of energy production of the installed PV

and wind generator

Cost of Energy[$/KWh] =
Total Cost

Total Energy Production
(7.9)

There are many financial terms that must be known before starting designing a

financial model. After calculating the savings in the investment for the period of the

project, its present worth value must be found:

PWF (rd, n) =
1

(1 + rd)n
(7.10)

In addition, the effect of inflation rate on the discount and interest rate has to be

incorporated:

rint0 =
(rint − rinf )

(1 + rinf )
(7.11)
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rd0 =
(rd − rinf )

(1 + rinf )
(7.12)

Equations.7.11, and 7.12 show that we can eliminate the inflation rate effects on

the interest rate and discount rate from the start by adjusting them. In addition, the

inflation rate has an impact on the services provided during the lifetime of the project,

such as operation and maintenance.

For the loan, we have to level the payment during the investment time.

CRF (rd, n) =
rd

1− (1 + rd)−n
(7.13)

Since the energy prices set by Saudi Electricity Company are constant, the energy

price escalation was ignored in this study.

7.4 Analysis and Results

The case study presented in this chapter are for high residential income homes, low

residential income homes, industrial, hospital and commercial. To give accurate re-

sults, a detailed average price of the recent PV system (fixed and variable prices)

is shown in Table 7.4 and the interest rate, inflation rate, discount rate, taxes and

lifetime of the investment are shown in Table 7.10. Batteries was not included in the

study due to the increase in the capital cost, and operation and maintenance cost.

Since the selling price of energy equals to the buying price of electricity, there is no

need to invest in an energy storage system.
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Using Eq.7.1 to calculate the capacity required for installation to meet the net

zero energy building and using Table 2.2 to calculate the monthly energy bill, we

can estimate the annual saving that the renewable energy system PV can obtain, see

Tables 7.5,7.6,7.7,7.8 and 7.9. The first column is the month of the year and the

second and third months are the energy produced and consumed by PV, respectively.

The fourth and last column are the electricity bill before and after installing the PV.

The 5th column is the difference between the PV consumption and the PV production.

Table 7.4: PV technology specifications
Fixed Cost
(SAR/W)

Variable Cost
(SAR/W year)

Area
(m2/100W)

Lifetime
(Year)

PV 4.125 3% -5% of capital cost 0.5 30
Inverter 1.5 Capital cost - 10

Installation 4.125 - - -
Implementation Area 1 m2 for each 200 W
Inverter Efficiency 95%

Table 7.5: High income residential customers

Month
PV
Prod
(KWh)

PV
Cons
(KWh)

Bills
Without

PV

Net
Cons
(KWh)

Bills
With
PV

JAN 4535.3 2600 468 -1935 -348
FEB 4681.6 2637.5 475 -2044 -368
MAR 4535.3 3315.625 597 -1220 -220
APR 5016 4810 866 -206 -37
MAY 5831.1 7326.25 1478 1495 269
JUN 6897 9120 2016 2223 400
JUL 7126.9 7693.75 1588 567 102
AUG 6479 7191.875 1438 713 128
SEP 5643 7008.75 1383 1366 246
OCT 6479 5481.875 987 -997 -179
NOV 5643 3548.75 639 -2094 -377
DEC 4535.3 3033.75 546 -1502 -270
SUM 67402.5 63768.13 12659 -654

Annual Saving 13313
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Table 7.6: Low income residential customers

Month
PV
Prod
(KWh)

PV
Cons
(KWh)

Bills
Without

PV

Net
Cons
(KWh)

Bills
With
PV

JAN 1443.05 800 144 -643 -116
FEB 1489.6 844 151.92 -645 -116
MAR 1443.05 1061 190.98 -382 -69
APR 1596 1539.2 277.056 -57 -10
MAY 1855.35 2344.4 421.992 489 88
JUN 2194.5 2918.4 525.312 724 130
JUL 2267.65 2462 443.16 194 35
AUG 2061.5 2301.4 414.252 240 43
SEP 1795.5 2242.8 403.704 447 81
OCT 2061.5 1754.2 315.756 -307 -55
NOV 1795.5 1135.6 204.408 -660 -118
DEC 1443.05 970.8 174.744 -472 -85
SUM 21446.25 20373.8 3847.28 -193

Annual Saving 4040.32

After calculating the annual energy consumption of industrial, commercial , hos-

pital, and residential, equation 7.1 can be used to determine which incentive can be

used. This is due to the range of prices difference between the residential, commercial,

hospital and industrial and their annual consumption, the incentive program differs

from one to the other. The economical feasibility and risk taking in the investment

may not be worth it to invest in net zero energy building for the industrial sector,

since the energy cost is minimal. For the residential sector, the capital cost and the

small size of PV system may not cover its costs. To have the optimal PV system which

will produce energy at lower cost than the price of energy bought from the grid, size of

energy production and corresponding costs must be considered, the amount of energy

the utility company is wiling to buy and at what price is also crucial. In addition to

the high interest rate and its long duration, which will add more to the investment

cost. Many factors are in play, see equation 7.2, to determine the optimum option for

141



Table 7.7: Commercial customers

Month
PV
Prod
(KWh)

PV
Cons
(KWh)

Bills
Without

PV

Net
Cons
(KWh)

Bills
With
PV

JAN 2577 1426.4 285.28 -1150 -230
FEB 2660 1626.5 325.3 -1034 -207
MAR 2577 2009.8 401.96 -567 -113
APR 2850 2847.9 569.58 -2 -0.42
MAY 3313 3950.2 790.04 637 127
JUN 3919 4416.3 883.26 498 100
JUL 4049 4417.5 883.5 368 74
AUG 3681 4338.1 867.62 657 131
SEP 3206 3900.7 780.14 694 139
OCT 3681 3426.4 685.28 -255 -51
NOV 3206 2340.4 468.08 -866 -173
DEC 2577 2015.3 403.06 -562 -112
SUM 38297 36715.5 7523.1 -316

Annual Saving 7839.4

either the incentive or the energy production cost.

Tables 7.11, 7.12, 7.13, 7.14 and 7.15 shows the results of the study of net-zero

energy building in KSA. As these tables show that investing in net-zero energy building

with financial parameters presented in table 7.10 may not be the best economical

options. Unless these parameters changed or the prices of PV system reduced even

further.

All in all, a detailed case study of residential, commercial, hospital and industrial is

presented to study the economic feasibility of the presented microgrid in the Kingdom

of Saudi Arabia in addition to the governmental incentive programs to promote for

renewable energy and reduce the eco-impact of the traditional power generation plant,

such as oil and gas. The results show that the presented microgrid will not be a viable

economic option unless the government supports it. This does not mean that the

distributed generation sources could not help in reducing the billing cost, but it says
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Table 7.8: Hospital load

Month
PV
Prod
(KWh)

PV
Cons
(KWh)

Bills
Without

PV

Net
Cons
(KWh)

Bills
With
PV

JAN 6596.8 8750 2800 2153 689
FEB 6809.6 6058 1938.56 -752 -241
MAR 6596.8 6332 2026.24 -265 -85
APR 7296 7347 2351.04 51 16
MAY 8481.6 8387 2683.84 -95 -30
JUN 10032 8776 2808.32 -1256 -402
JUL 10366 9644 3086 -722 -231
AUG 9424 9706 3106 282 90
SEP 8208 8805 2817.6 597 191
OCT 9424 8407 2690.24 -1017 -325
NOV 8208 7095 2270.4 -1113 -356
DEC 6596.8 6695 2142.4 98.2 31
SUM 98040 96002 30901 -652

Annual Saving 31552.8

that the microgrid working in island operations may not be an economical option

without the support of the government. For high-income residential, a minimum

incentive must be 0 % interest rate on loan and 40 % capital reduction to meet the

price of the grid. While for the low-income residential a minimum incentive must be

0 % interest rate on loan and 35 % capital reduction to meet the price of the grid.

For the hospital (governmental) section a 4% interest rate on loan will be enough to

match the cost of the grid. While for the low industrial sector a minimum incentive

must be 0 % interest rate on loan and 45 % capital reduction to meet the price of

the grid. These are due to the low cost of electrical energy from the traditional power

generation plants compared to renewable energy. Keep in mind that the renewable

energy price can be reduced dramatically when the size of power production increases.

In conclusion, at this point of time, it would be better to opt for the AC microgrid
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Table 7.9: Industrial customers

Month
PV
Prod
(KWh)

PV
Cons
(KWh)

Bills
Without

PV

Net
Cons
(KWh)

Bills
With
PV

JAN 5566.05 11703 2106.54 6137 1104
FEB 5745.6 7842 1411.56 2096 377
MAR 5566.05 6654 1197.72 1088 196
APR 6156 5948 1070.64 -208 -37
MAY 7156.35 6203 1116.54 -953 -172
JUN 8464.5 6531 1175.58 -1934 -348
JUL 8746.65 6494 1168.92 -2253 -405
AUG 7951.5 6275 1129.5 -1677 -302
SEP 6925.5 5709 1027.62 -1217 -219
OCT 7951.5 5797 1043.46 -2155 -388
NOV 6925.5 5011 901.98 -1915 -345
DEC 5566.05 5303 954.54 -263 -47
SUM 82721.25 79470 14484.6 -585

Annual Saving 15069.8

Table 7.10: Financial parameters
rinf [%] rint [%] rd [%] Tax [%] Life [year]
1% 5% 5% 5% 30

Table 7.11: Case study: High income residential customers
High Income Residential

Without Incentive
Size[kW] Cost of Energy [SAR/W]

21 0.342573694
Profit [SAR] Area m2

-308393.647 105
With Incentive (Tax =40%+0% interest)
Profit [SAR] Cost of Energy [SAR/W]

627.899 0.182472383
With Incentive (Tax =50%+0% interest)
Profit [SAR] Cost of Energy [SAR/W]
22143.027 0.171325587

option since installing a hybrid DC-AC network is not worth it from an economical

point of view. An AC-based MG testbed will be build in the next section.
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Table 7.12: Case Study: Low income residential customers
Low Income Residential

Without Incentive
Size[kW] Cost of Energy [SAR/W]

7 0.342513383
Profit [SAR] Area m2

-99159.079 35
With Incentive (Tax =35%+0% interest)
Profit [SAR] Cost of Energy [SAR/W]

314.538 0.187904197
With Incentive (Tax =50%+0% interest)
Profit [SAR] Cost of Energy [SAR/W]
11063.913 0.171196732

Table 7.13: Case study: Commercial customers
Commercial

Without Incentive
Size[kW] Cost of Energy [SAR/W]
12.5 0.343081706

Profit [SAR] Area m2

-159936.291 62.5
With Incentive (Tax =25%+0% interest)
Profit [SAR] Cost of Energy [SAR/W]
4909.743 0.199600866

With Incentive (Tax =50%+0% interest)
Profit [SAR] Cost of Energy [SAR/W]
36899.222 0.171757446

Table 7.14: Case study: Hospital load
Hospital

Without Incentive
Size[kW] Cost of Energy [SAR/W]

32 0.347039785
Profit [SAR] Area m2

-74129.417 160
With Incentive (Tax =0%+4% interest)
Profit [SAR] Cost of Energy [SAR/W]
2839.234 0.320870654

With Incentive (Tax =0%+0% interest)
Profit [SAR] Cost of Energy [SAR/W]
265620.729 0.23152566
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Table 7.15: Case study: Industrial customers
Industrial

Without Incentive
Size[kW] Cost of Energy [SAR/W]

27 0.342370363
Profit [SAR] Area m2

-397544.380 135
With Incentive (Tax =45%+0% interest)
Profit [SAR] Cost of Energy [SAR/W]
13600.190 0.176695653

With Incentive (Tax =50%+0% interest)
Profit [SAR] Cost of Energy [SAR/W]
27431.344 0.171122255
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CHAPTER 8

CONCLUSION AND FUTURE

WORK

In this chapter, a conclusion about the work done is drawn. The method, simulation,

and findings of the thesis will be summarized, and the contributions of the study will

be discussed. Lastly, the test system designed sets the cornerstone for future studies.

Some of the future work that can be done to the test-bed will be discussed.

8.1 Conclusion

In this study, an integrated energy management systems with hybrid renewable gen-

eration, battery energy storage and controllable loads was designed. The proposed

testbed is capable of the following:

• Incorporating the hourly renewable generation from photovoltaics and wind en-

ergy.

• Acquiring hourly residential, commercial, industrial and governmental load pro-
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file.

• Installing a battery energy storage system that is capable of smoothing the

changing nature of renewable resources and minimizing the total energy bought

from the utility.

• Prioritizing the loads smartly and flexibly using Artificial Neural Networks

(ANN).

• Implementing different Demand Side Management (DSM) schemes to curtail

loads based on supply and demand balance, peak shaving or peak shifting.

The microgrid test bed is AC based, and thus an incentive-based economical fea-

sibility study on a hybrid DC/AC microgrid was proposed to show that according to

the current energy situation in Saudi Arabia, the adoption of such configurations may

not be feasible unless big incentives are enforced.

The simulation results of the test-bed showed that the microgrid would firstly

feed its load from the distributed generation. If the load demand is higher than

generation, the battery will take action to match the deficit. The battery, of course, has

a maximum power limit that it can not exceed. If the battery power and distributed

generation are not able to adequately feed the microgrid demand, then a signal will

be sent to the utility to feed discrepancy. The discrepancy can be high sometimes

especially if it happens during peak hours where the power bought from the grid will

be costly, thus microgrid should attempt to minimize the power received from the

main network at this period. Demand Side Management (DSM) was implemented to

prevent the microgrid from buying expensive energy. Since our microgrid has different
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load types, a flexible demand priority list that updates itself each hour to inform the

DSM on which loads should be curtailed and which loads are uninterruptible. The

DSM will operate accordingly and shed loads that are not-critical and eventually

managing microgrid demand and generation. Different DSM schemes were tested and

evaluated based on the amount of power curtailed and their successfulness to mitigate

power purchasing during peak periods. Another contribution of this thesis is the

incentive-based feasibility study of the hybrid DC/AC microgrid that studied how

economically viable is replacing the AC test-bed system with a hybrid DC/AC one

and what are the needed incentives to make this configuration compete.

8.2 Future Work

The test-bed is a foundation for many studies that can be implemented. Studies

can be done on the control part, cable sizing, generation, and battery optimal sizing

techniques. A list of applicable interesting future work is suggested below:

• Optimizing the sizing of the battery using Evolutionary Algorithms (EA). The

optimization objective function is to reduce the amount of power bought from

the utility.

• Using the load percentages and composition found in Chapter.2, a detailed DSM

model can be formulated and applied to residential costumers.

• Addition of another generation sources in the microgrid test-bed such as diesel

generators, CHP and Fuel Cells (FC).
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• Developing and evaluating different algorithms to implement load and genera-

tion forecasting using the given historical data.

• Mapping the ANN priority list parameters to the fuzzy logic input parameters

by developing a fuzzy basis function network (FBFN), which will provide a

solid framework for combining numerical and linguistic information in a uniform

fashion.
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APPENDIX A

MICROGRID TEST SYSTEM

A.1 SIMULINK Simulation

The simulation of the energy management microgrid with the hybrid renewable energy

resources and controllable loads was done in SIMULINK MATLAB. The designed

microgrid configuration is shown in Figure A.1. The load and renewable generation

data is calculated in an m.file and received by SIMULINK (Figure A.2). It can be

seen from the microgrid that four load types: residential, commercial, industrial and

hospital are acquired and two renewable resources: PV and wind energy. The battery

controller in Figure A.3 will take the secondary voltage and current to acquire the

secondary real and imaginary power. The power will be passed through a switch. If

signal 3, which is the battery trigger ON and OFF signal, is 0 then the battery is

deactivated, and 0 will be assigned to the RMS current, which is the current going

in or out of the battery. If signal 3 (shown in Figure A.4) is not 0 then the extra or

deficit power will be passed through the switch and the RMS current will be positive

or negative depending on the energy balance case of the microgrid. This RMS now

151



is inputted to the battery dynamics blocks (Figure A.5). The RMS current and its

phase angle are converted to real and imaginary form and multiplied by the SoC block

to make sure that no current will be triggered from the battery if the SoC is less than

20%. Furthermore, if the battery SoC is equal to 90%, the battery will not accept any

further current. The last block ”BatteryI” is fed to the microgrid. Lastly, the most

important dynamics of the battery is in its Ampere-hour which is acquired from the

m.file and its SoC which was modeled to be in the range of 90% to 20%. The battery

dynamics block (Figure A.6) simulates the setting of the battery SoC limits and the

AH hourly variations. Lastly, all figures and simulation results can be investigated

from the scopes block (Figure A.7).

A.2 Microgrid Testbed Web-page

A webpage was designed for the microgrid to make it accessible for researcher to do

studies. All of the load, generation and battery data are included in the page. A link

to download the test system in SIMULINK is available too. A special window in the

web-page is dedicated for the recent studies on the grid. The showcasing of the studies

implemented on the test system will enable researchers to be aware of the literature

state and so that replicated studies are minimized. The webpage can be found at:

https://www.ahmedsa.me/kfup2mg
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Figure A.2: Load and renewable generation from m.file

Figure A.3: Battery controller
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Figure A.4: Battery ON or OFF trigger

Figure A.5: Battery dynamics 1
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Figure A.6: Battery dynamics 2

Figure A.7: Scopes to simulate the microgrid system
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APPENDIX B

FUZZY RULES

Fuzzy Inference System (FIS) was used to implement Demand Side Management

(DSM) in three of the six presented cases. In this appendix the set of if-then rules

used to map the input and output will be listed in different sections.

B.1 Case 1

For the energy balance case, 2 inputs and 1 output are considered. 13 rules were

implemented the subscripts listed below stand for: EB is energy balance in the micro-

grid, G & L are the aggregated load and local generation of the microgrid at a certain

hour and P1, P2 and P3 are three periods during the 24 hour span. DLC is the direct

load control decision and curtailment percentage.
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Table B.1: Fuzzy rules of the 1st case

Fuzzy Rules

1. If (EB is G>L) then (DLC is DoNothing) (1)

2. If (EB is L>G) and (Time is P1) then (DLC is Low) (1)

3. If (EB is L>G) and (Time is P2) then (DLC is Medium) (1)

4. If (EB is L>G) and (Time is P3) then (DLC is Low) (1)

5. If (EB is L>>G) and (Time is P1) then (DLC is Low) (1)

6. If (EB is L>>G) and (Time is P2) then (DLC is Medium) (1)

7. If (EB is L>>G) and (Time is P3) then (DLC is Medium) (1)

8. If (EB is L>>G) and (Time is P1) then (DLC is Medium) (1)

9. If (EB is L>>G) and (Time is P2) then (DLC is VeryHigh) (1)

10. If (EB is L>>G) and (Time is P3) then (DLC is High) (1)

11. If (EB is L>>>G) and (Time is P1) then (DLC is High) (1)

12. If (EB is L>>>G) and (Time is P3) then (DLC is VeryHigh) (1)

13. If (EB is L>>>G) and (Time is P2) then (DLC is Extreme) (1)

B.2 Case 2

This case applies same concept as Case.1 but with the incorporation of priority list.

The variable xx is the priority list at each hour. There are 3 inputs and 4 outputs in

this case and the rules to map the inputs and outputs are listed below.
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Table B.2: Fuzzy rules of the 2nd case

Fuzzy Rules

1. If (EB is G>L) then (RESDLC is DoNothing)(COMMDLC is DoNothing)

(INDDLC is DoNothing)(HOSDLC is DoNothing) (1)

2. If (EB is L>G) and (Time is not P2) and (xx is 3120) then (RESDLC is DoNothing)

(COMMDLC is Medium)(INDDLC is Low)(HOSDLC is DoNothing) (1)

3. If (EB is L>G) and (Time is not P2) and (xx is 3021) then (RESDLC is Medium)

(COMMDLC is DoNothing)(INDDLC is Low)(HOSDLC is DoNothing) (1)

4. If (EB is L>G) and (Time is not P2) and (xx is 3102) then (RESDLC is DoNothing)

(COMMDLC is Low)(INDDLC is Medium)(HOSDLC is DoNothing) (1)

5. If (EB is L>>G) and (Time is not P2) and (xx is 3120) then (RESDLC is DoNothing)

(COMMDLC is High)(INDDLC is Medium)(HOSDLC is DoNothing) (1)

6. If (EB is L>>G) and (Time is not P2) and (xx is 3021) then (RESDLC is High)

(COMMDLC is DoNothing)(INDDLC is Medium)(HOSDLC is DoNothing) (1)

7. If (EB is L>>G) and (Time is not P2) and (xx is 3102) then (RESDLC is DoNothing)

(COMMDLC is Medium)(INDDLC is High)(HOSDLC is DoNothing) (1)

8. If (EB is L>>>G) and (Time is not P2) and (xx is 3120) then (RESDLC is DoNothing)

(COMMDLC is VeryHigh)(INDDLC is High)(HOSDLC is DoNothing) (1)

9. If (EB is L>>>G) and (Time is not P2) and (xx is 3021) then (RESDLC is VeryHigh)

(COMMDLC is DoNothing)(INDDLC is High)(HOSDLC is DoNothing) (1)

10. If (EB is L>>>G) and (Time is not P2) and (xx is 3102) then (RESDLC is DoNothing)

(COMMDLC is High)(INDDLC is VeryHigh)(HOSDLC is DoNothing) (1)
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Table B.2 continued from previous page

Fuzzy Rules

11. If (EB is L>>>>G) and (Time is not P2) and (xx is 3120) then (RESDLC is DoNothing)

(COMMDLC is Extreme)(INDDLC is VeryHigh)(HOSDLC is DoNothing) (1)

12. If (EB is L>>>>G) and (Time is not P2) and (xx is 3021) then (RESDLC is Extreme)

(COMMDLC is DoNothing)(INDDLC is VeryHigh)(HOSDLC is DoNothing) (1)

13. If (EB is L>>>>G) and (Time is not P2) and (xx is 3102) then (RESDLC is DoNothing)

(COMMDLC is VeryHigh)(INDDLC is Extreme)(HOSDLC is DoNothing) (1)

14. If (EB is L>G) and (Time is P2) and (xx is 3120) then (RESDLC is Low)

(COMMDLC is Medium)(INDDLC is Low)(HOSDLC is DoNothing) (1)

15. If (EB is L>G) and (Time is P2) and (xx is 3102) then (RESDLC is Low)

(COMMDLC is Low)(INDDLC is Medium)(HOSDLC is DoNothing) (1)

16. If (EB is L>>G) and (Time is P2) and (xx is 3120) then (RESDLC is Low)

(COMMDLC is High)(INDDLC is Medium)(HOSDLC is DoNothing) (1)

17. If (EB is L>>G) and (Time is P2) and (xx is 3021) then (RESDLC is High)

(COMMDLC is Low)(INDDLC is Medium)(HOSDLC is DoNothing) (1)

18. If (EB is L>>G) and (Time is P2) and (xx is 3102) then (RESDLC is Low)

(COMMDLC is Medium)(INDDLC is High)(HOSDLC is DoNothing) (1)

19. If (EB is L>>>G) and (Time is P2) and (xx is 3120) then (RESDLC is Low)

(COMMDLC is VeryHigh)(INDDLC is High)(HOSDLC is DoNothing) (1)

20. If (EB is L>>>G) and (Time is P2) and (xx is 3021) then (RESDLC is VeryHigh)

(COMMDLC is Low)(INDDLC is High)(HOSDLC is DoNothing) (1)
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Table B.2 continued from previous page

Fuzzy Rules

21. If (EB is L>>>G) and (Time is P2) and (xx is 3102) then (RESDLC is Low)

(COMMDLC is High)(INDDLC is VeryHigh)(HOSDLC is DoNothing) (1)

22. If (EB is L>>>>G) and (Time is P2) and (xx is 3120) then (RESDLC is Low)

(COMMDLC is Extreme)(INDDLC is VeryHigh)(HOSDLC is DoNothing) (1)

23. If (EB is L>>>>G) and (Time is P2) and (xx is 3021) then (RESDLC is Extreme)

(COMMDLC is Low)(INDDLC is VeryHigh)(HOSDLC is DoNothing) (1)

24. If (EB is L>>>>G) and (Time is P2) and (xx is 3102) then (RESDLC is Low)

(COMMDLC is VeryHigh)(INDDLC is Extreme)(HOSDLC is DoNothing) (1)

25. If (EB is L>G) and (Time is not P2) and (xx is 3012) then (RESDLC is Low)

(COMMDLC is DoNothing)(INDDLC is Medium)(HOSDLC is DoNothing) (1)

26. If (EB is L>>G) and (Time is not P2) and (xx is 3012) then (RESDLC is Medium)

(COMMDLC is DoNothing)(INDDLC is High)(HOSDLC is DoNothing) (1)

27. If (EB is L>>>G) and (Time is not P2) and (xx is 3012) then (RESDLC is High)

(COMMDLC is DoNothing)(INDDLC is VeryHigh)(HOSDLC is DoNothing) (1)

28. If (EB is L>>>>G) and (Time is not P2) and (xx is 3012) then (RESDLC is VeryHigh)

(COMMDLC is DoNothing)(INDDLC is Extreme)(HOSDLC is DoNothing) (1)

29. If (EB is L>G) and (Time is P2) and (xx is 3012) then (RESDLC is Low)

(COMMDLC is Low)(INDDLC is Medium)(HOSDLC is DoNothing) (1)

30. If (EB is L>>G) and (Time is P2) and (xx is 3012) then (RESDLC is Medium)

(COMMDLC is Low)(INDDLC is High)(HOSDLC is DoNothing) (1)
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Table B.2 continued from previous page

Fuzzy Rules

31. If (EB is L>>>G) and (Time is P2) and (xx is 3012) then (RESDLC is High)

(COMMDLC is Low)(INDDLC is VeryHigh)(HOSDLC is DoNothing) (1)

32. If (EB is L>>>>G) and (Time is P2) and (xx is 3012) then (RESDLC is VeryHigh)

(COMMDLC is Low)(INDDLC is Extreme)(HOSDLC is DoNothing) (1)

33. If (EB is L>G) and (Time is P2) and (xx is 3021) then (RESDLC is Medium)

(COMMDLC is Low)(INDDLC is Low)(HOSDLC is DoNothing) (1)

B.3 Case 6

In this case, a special DSM scheme was tested, which is only applied to Residential

costumers, particularly AC loads. The load profile of three houses is inputted alongside

with time. The output is the action that should be taken on the air condtioning loads

at each house.

Table B.3: Fuzzy rules of the 6th case

Fuzzy Rules

1. If (Home1 is Low) and (Home2 is Low) and (Home3 is Low) and (Time is P1)

then (Home1 is Low)(Home2 is AC_ON)(Home3 is AC_{ON}) (1)

2. If (Home1 is Medium) and (Home2 is Medium) and (Home3 is Medium) and (Time is P1)

then (Home1 is Low)(Home2 is AC_ON)(Home3 is AC_{ON}) (1)
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Table B.3 continued from previous page

Fuzzy Rules

3. If (Home1 is Medium) and (Home2 is Medium) and (Home3 is Medium) and (Time is P2)

then (Home1 is Medium)(Home2 is T_{23})(Home3 is T_{23}) (1)

4. If (Home1 is Medium) and (Home2 is Medium) and (Home3 is Medium) and (Time is P3)

then (Home1 is Medium)(Home2 is T_{23})(Home3 is T_{23}) (1)

5. If (Home1 is Peak) and (Home2 is Peak) and (Home3 is Peak) and (Time is P1)

then (Home1 is Medium)(Home2 is T_{23})(Home3 is T_{23}) (1)

6. If (Home1 is Peak) and (Home2 is Peak) and (Home3 is Peak) and (Time is P2)

then (Home1 is VeryStrong)(Home2 is AC_{OFF})(Home3 is AC_{OFF}) (1)

7. If (Home1 is Peak) and (Home2 is Peak) and (Home3 is Peak) and (Time is P3)

then (Home1 is Strong)(Home2 is T_{26})(Home3 is T_{26}) (1)

8. If (Home1 is Peak) and (Home2 is not Peak) and (Home3 is not Peak) and (Time is P1)

then (Home1 is Strong)(Home2 is AC_ON)(Home3 is AC_{ON}) (1)

9. If (Home1 is Peak) and (Home2 is not Peak) and (Home3 is not Peak) and (Time is P3)

then (Home1 is Strong)(Home2 is AC_ON)(Home3 is AC_{ON}) (1)

10. If (Home1 is Peak) and (Home2 is not Peak) and (Home3 is not Peak) and (Time is P2)

then (Home1 is VeryStrong)(Home2 is T_{23})(Home3 is T_{23}) (1)

11. If (Home1 is not Peak) and (Home2 is Peak) and (Home3 is not Peak) and (Time is P2)

then (Home1 is Medium)(Home2 is AC_{OFF})(Home3 is T_{23}) (1)

12. If (Home1 is not Peak) and (Home2 is Peak) and (Home3 is not Peak) and (Time is P1)

then (Home1 is Low)(Home2 is T_{26})(Home3 is AC_{ON}) (1)
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Table B.3 continued from previous page

Fuzzy Rules

13. If (Home1 is not Peak) and (Home2 is Peak) and (Home3 is not Peak) and (Time is P3)

then (Home1 is Low)(Home2 is T_{26})(Home3 is AC_{ON}) (1)

14. If (Home1 is not Peak) and (Home2 is not Peak) and (Home3 is Peak) and (Time is P1)

then (Home1 is Low)(Home2 is AC_ON)(Home3 is T_{26}) (1)

15. If (Home1 is not Peak) and (Home2 is not Peak) and (Home3 is Peak) and (Time is P2)

then (Home1 is Strong)(Home2 is T_{26})(Home3 is AC_{OFF}) (1)

16. If (Home1 is not Peak) and (Home2 is not Peak) and (Home3 is Peak) and (Time is P3)

then (Home1 is Medium)(Home2 is T_{23})(Home3 is T_{26}) (1)

17. If (Home1 is Peak) and (Home2 is not Peak) and (Home3 is Peak) and (Time is P1)

then (Home1 is Strong)(Home2 is AC_ON)(Home3 is T_{23}) (1)

18. If (Home1 is Peak) and (Home2 is Peak) and (Home3 is not Peak) and (Time is P1)

then (Home1 is Strong)(Home2 is T_{23})(Home3 is AC_{ON}) (1)

19. If (Home1 is Peak) and (Home2 is not Peak) and (Home3 is Peak) and (Time is P3)

then (Home1 is Strong)(Home2 is AC_ON)(Home3 is T_{26}) (1)

20. If (Home1 is Peak) and (Home2 is Peak) and (Home3 is not Peak) and (Time is P3)

then (Home1 is Strong)(Home2 is T_{26})(Home3 is AC_{ON}) (1)

21. If (Home1 is Peak) and (Home2 is not Peak) and (Home3 is Peak) and (Time is P2)

then (Home1 is VeryStrong)(Home2 is T_{23})(Home3 is AC_{OFF}) (1)

22. If (Home1 is Peak) and (Home2 is Peak) and (Home3 is not Peak) and (Time is P2)

then (Home1 is VeryStrong)(Home2 is AC_{OFF})(Home3 is T_{23}) (1)

164



Table B.3 continued from previous page

Fuzzy Rules

23. If (Home1 is Peak) and (Home2 is Peak) and (Home3 is not Peak) and (Time is P2)

then (Home1 is VeryStrong)(Home2 is AC_{OFF})(Home3 is T_{23}) (1)

24. If (Home1 is not Peak) and (Home2 is Peak) and (Home3 is Peak) and (Time is P2)

then (Home1 is Medium)(Home2 is AC_{OFF})(Home3 is AC_{OFF}) (1)

25. If (Home1 is Peak) and (Home2 is Peak) and (Home3 is not Peak) and (Time is P1)

then (Home1 is Medium)(Home2 is T_{26})(Home3 is AC_{ON}) (1)

26. If (Home1 is not Peak) and (Home2 is Peak) and (Home3 is Peak) and (Time is P1)

then (Home1 is Low)(Home2 is T_{26})(Home3 is T_{23}) (1)

27. If (Home1 is Peak) and (Home2 is Peak) and (Home3 is not Peak) and (Time is P3)

then (Home1 is Strong)(Home2 is T_{26})(Home3 is AC_{ON}) (1)

28. If (Home1 is not Peak) and (Home2 is Peak) and (Home3 is Peak) and (Time is P3)

then (Home1 is Low)(Home2 is T_{26})(Home3 is T_{26}) (1)

29. If (Home1 is Peak) and (Home2 is not Peak) and (Home3 is Peak) and (Time is P1)

then (Home1 is Medium)(Home2 is AC_ON)(Home3 is T_{26}) (1)

30. If (Home1 is not Peak) and (Home2 is Peak) and (Home3 is Peak) and (Time is P1)

then (Home1 is Low)(Home2 is T_{23})(Home3 is T_{26}) (1)

31. If (Home1 is Peak) and (Home2 is not Peak) and (Home3 is Peak) and (Time is P2)

then (Home1 is VeryStrong)(Home2 is T_{23})(Home3 is AC_{OFF}) (1)

32. If (Home1 is not Peak) and (Home2 is Peak) and (Home3 is Peak) and (Time is P2)

then (Home1 is Medium)(Home2 is AC_{OFF})(Home3 is AC_{OFF}) (1)
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Table B.3 continued from previous page

Fuzzy Rules

33. If (Home1 is Peak) and (Home2 is not Peak) and (Home3 is Peak) and (Time is P3)

then (Home1 is Strong)(Home2 is AC_ON)(Home3 is T_{26}) (1)

34. If (Home1 is not Peak) and (Home2 is Peak) and (Home3 is Peak) and (Time is P3)

then (Home1 is Low)(Home2 is T_{26})(Home3 is T_{26}) (1)
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