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ABSTRACT 

 

Full Name : Ahmed Ali Ahmed Baabood Bawazir 

Thesis Title : Efficient Wireless Sensor Networks Deployment in 3D Environments 

Major Field : Computer Networks 

Date of Degree : December, 2018 

 

Wireless Sensor Networks (WSNs) are expected to serve different types of environmental 

monitoring applications. Sensors in such applications have limited energy supply and 

processing power. They are also deployed in unattended areas. Randomly, deploying 

sensor nodes in the filed may generate an initial communication gap resulting in low 

energy and communication efficiencies. These gaps may still exist even when these 

sensor nodes are deployed in a structured manner. Similarly, deploying large number of 

nodes or using relay and cluster head nodes to improve communication efficiency could 

result in increasing the overall cost of the network with no guarantees on energy 

efficiency. Therefore, in order to achieve better communication and extend the lifetime of 

the network, nodes have to be deployed in a careful manner. Extending network lifetime 

while maximizing energy efficiency and minimizing network cost is a challenging task 

due to the conflicting nature of these objectives. It is even more challenging when nodes 

are deployed in 3-D dimensional space. In, this thesis, we propose a 3-D WSNs 

deployment based on heuristic optimization approach in order to achieve an approximate 

solution for a set of desired objectives; extending network lifetime, maximizing 

connectivity and reducing cost. Based on a two-layer hierarchical structure, which 

consists of sensor nodes, clusters heads and the base station, a genetic algorithm is used 

to optimize the positions (placement) of cluster heads in order to achieve the 
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aforementioned objectives.  We have proposed a multi-objective function to evaluate the 

generated solutions. In addition, a simulation evaluation of different deployment 

scenarios were carried out using MATLAB to assess the proposed scheme using Genetic 

Algorithm (GA) and Binary Particle Swarm Optimization (BPSO) then compare it with 

the non-optimal placement. 

Keywords Genetic Algorithm, Binary Particle Swarm Optimization, Multi-objective 

optimization, CHs placement, Connectivity, Lifetime, Cost  
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 ملخص الرسالة

 
 

 أحمد علي أحمد باعبود باوزير :الاسم الكامل
 

 التوزيع الامثل لشبكات الاستشعار اللاسلكية في بيئة ثلاثية الابعاد  :عنوان الرسالة
 

 شبكات حاسوب التخصص:
 

 8102ديسمبر  :تاريخ الدرجة العلمية
 

يستقجلاً فٙ انعذٚذ يٍ انتطجٛقبد انًختهفخ ٔفٙ ثَُُٗ  (WSNs) يٍ انًتٕقع أٌ ٚتى استخذاو شجكبد الاستشعبس انلاسهكٛخ

ثٛئٛخ يتعذدح. ٔيًب ٚعٛت تهك انًستشعشاد فٙ أ٘ تطجٛق ٔاقعٙ، أَٓب تًتهك غبقخ ٔقذسح يحذٔدتٍٛ خصٕصبً ٔأَٓاب قاذ 

فٙ يُبغق غٛش يإْٔنخ ٔصعجخ انٕصٕل، نزا فئٌ انتٕصٚع انعشٕائٙ نتهك انًستشعشاد قذ ٚسجت فجإح اتصابل  تسُتخذو

فٙ يُظٕيخ انشجكخ انلاسهكٛخ انًتٕاجذح فٛٓب، يًب ٚؤثش سهجبً عهٗ كفبءح الاتصبل ٔكفبءح انطبقخ انًستٓهكخ. حتٗ ٔإٌ تاى 

انفجٕح فاٙ الاتصابل قاذ تظام يٕجإدح. ٔثبنًجام، فائٌ تٕصٚاع تٕصٚع انًستشعشاد فٙ انشجكخ ثشكم ُْذسٙ يُتظى، فئٌ 

ياٍ أجام تحساٍٛ  (Cluster Head) انًستشعشاد ثأعاذاد كجٛاشح فاٙ انشاجكخ ٔاساتخذاو َقابغ تجًٛاع سئٛساٛخ نلاتصابل

 اركفبءح الاتصبل، قذ ٚضٚذ يٍ انتكهفخ الإجًبنٛخ يع عذو ظًبٌ كفبءح عبنٛخ فٙ انطبقخ. ٔثبنتبنٙ يٍ أجم تحقٛق اتصبل 

  .جٕدح أفعم ٔصٚبدح انعًش الافتشاظٙ نهشجكخ، فئَّ ٚجت تٕصٚع انًستشعشاد ثطشٚقخ يجهٗ

ٚعتجش تًذٚذ عًش انشجكخ ٔصٚبدح كفبءح انطبقخ ٔتقهٛم انتكهفخ الإجًبنٛخ أْذاف يشجٕح نكُٓب صعجخ انتحقٛاق عُاذ انتٕصٚاع 

اف إرا كبٌ تٕصٚع انًستشعشاد فٙ فعابء ثلاثاٙ ثسجت انطجٛعخ انًتعبسظخ نكم يُٓب. ٔتضداد صعٕثخ تحقٛق ْزِ الأْذ

  .الأثعبد

تقذو ْازِ انشسابنخ دساساخ نتٕصٚاع يستشاعشاد انشاجكبد انلاساهكٛخ فاٙ فعابء ثلاثاٙ الأثعابد ٔفقابً نخٕاسصيٛابد اناتحكى 

قصٗ انزكٛخ نهٕصٕل إنٗ انتٕصٚع الأيجم ٔاظعخ فٙ انحسجبٌ الأْذاف انًُشٕدح ألا ْٔٙ تًذٚذ عًش انشجكخ، ٔتحقٛق أ

  خ.قذس يٍ الاتصبل ٔخفط انتكهف

ٔظاع تشكٛات ْشياٙ يحساٍ ٚتكإٌ GA) ) سصيٛخ تحكى ركٛخ تعشف ثخٕاسصيٛخ انتحساٍٛ انجُٛاٙستخذاو خٕاإنقذ تى 

يٍ غجقتٍٛ; ًْٔب غجقخ انًستشعشاد انلاسهكٛخ ٔغجقخ َقبغ انتتجع ٔانتجًٛع انشئٛساٛخ، حٛات تقإو انخٕاسصيٛاخ ثبختٛابس 
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ٍ تهك انُقبغ فٙ انشاجكخ انلاساهكٛخ. ٔتقتاشذ ْازِ انشسابنخ أٚعابً يعبدناخ تحساٍٛ يتعاذد الأْاذاف انًٕاظع انًجهٗ نكم ي

 .خبصخ ثبنخٕاسصيٛخ انًستخذيخ

ٔكزا يقبسَخ انتٕصٚع الأيجام  MATLABثبلإظبفخ إنٗ رنك، تعشض انشسبنخ َتبئج يحبكبح انتٕصٚع ثبستخذاو ثشَبيج  

ٚع انغٛش انعشٕائٙ انغٛش يحسٍّ، إظبفخ إنٗ انًقبسَاخ ثبساتخذاو خٕاسصيٛاخ ثبستخذاو خٕاسصيٛخ انتحسٍٛ انجُٛٙ ثبنتٕص

 (PSO). حشكخ الأسشاة تحسٍٛأخشٖ ْٔٙ خٕاسصيٛخ 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

1 CHAPTER 1 

INTRODUCTION 

Basically, Wireless Sensor Networks (WSNs) consists of sensor nodes (SNs), which 

are deployed in a specific area called sensing area to measure or detect required physical 

phenomena and send all the collected data to a central source called base station (BS). 

Sensor nodes are small, cheap, low-power, and multifunctional sensing devices, in 

wireless sensor networks. Sensor nodes are used for sensing, computation, 

communication and operate in integrating manner to achieve their deployment objective. 

The base station is considered as an access point that allows the user to access the 

network data. It is usually located at a fixed position and has its own power supply. 

 

 

 

 

 

 

 Figure 1: Wireless sensor Network Architecture 
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 Figure 1 shows the architecture of the wireless sensor networks where the main 

components are the sensor nodes that may use to measure and monitor some physical 

phenomena in targeted area as shown in the figure. Sensor nodes usually deployed in the 

sensing area in order to achieve the sensing task accurately and efficiently. SNs collecting 

the data about the sensing area and send it to the sink node or base station periodically; 

either directly or via other nodes that follow routing path. On the other hand, the base 

station is responsible for processing and extracting the data that received from other 

nodes in the topology to make it readable and meaningful to the end user. In sensor nodes 

there are some limitations that restrict the functionality of sensor nodes such as: 

 Limited transmission range: the communication unit of the sensor nodes 

has limited transmission range. 

 Limited power supply: sensors are powered by tiny battery. In wireless 

sensor networks, charging or exchanging those batteries is not an easy task 

and considered as a costly process. Therefore, once the energy of the 

sensor nodes are completed, the sensor nodes will be out of service and 

will lost their functionality [1] [2].  

To design wireless sensor network with such challenges, the main concerns is the 

energy management [3]. Deploying the sensor nodes with initial energy can allow the 

sensor nodes to work for a short and limited period especially if it is deployed in large 

area and the data transmitted over a long distance. Thus, an energy-aware design is 

directly related to the lifetime of the network.   
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Hierarchical Two-Tiered Wireless Sensor Networks 

In this work, the network basically consists of several types of network devices; mainly 

sensor nodes, relay nodes and the base station. In this work, a two-layer hierarchical 

structure are considered. Figure 2  illustrates the network structure type.  

 

 

 

 

 

 

 

 

  

The functionality of the devices which will be placed in the layers are: 

 Sensor nodes: the nodes which are placed in the lower layer and 

responsible for sensing the targeted area and sending the collected data to 

cluster heads (CHs) in the upper layer. 

Figure 2: Hierarchical Two-Tiered Wireless Sensor Networks 
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 Cluster Heads (CHs): These nodes will be placed in the upper layer and 

they are responsible for collecting the data from the sensor nodes in the 

lower layer based on their locations and send it to the base station.   

The lower layer compromises of sensor nodes. The transmission ranges of sensor nodes 

are fixed and limited, so they cannot handle the data exchange with CHs that are beyond 

their fixed range. The upper layer composes of cluster heads, and base station. The 

transmission range of the devices in this layer is enough. They have periodically 

communication with the base station to deliver the collected data from the lower layer 

[4]. 

1.1 Problem Statement 

Basically, the main problem is defined to find an optimal or near optimal placement of 

sensors for an indoor and outdoor application in WSN that satisfies the desired 

application requirements such as maximizing the network lifetime, minimizing the cost, 

and achieving connectivity by using different types of devices (sensors) such as normal 

sensors and Cluster Heads (CHs). A cluster head is a more eligible node with 

significantly more energy reserve and large communication range than sensors which 

facilitates and accelerates the connectivity restoration among the disjoint segment. 

The main objective is to determine the optimal locations and optimal number of cluster 

heads to maximize the network lifetime and achieve satisfied connectivity under specific 

application constraints such as batteries capacity, cost, maximum number of CHs, and 

limited communication range of SNs. In conventional WSN designs, the most salient 
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performance metric is chosen as the optimization objective, while the remaining 

performance metrics are normally treated as constraints of the optimization problem [5]. 

There are some constrains of the network lifetime such as: 

 Energy constraint: The total energy consumed by the nodes should be less 

than the initial energy of each node. 

 Connectivity constraint: The sensor nodes in the network should relate to 

at least one relay node, the distance between the sensor nodes and the 

nearest relay node should be within the communication range of the nodes. 

The number of cluster heads that are deployed in this work should not be exceeding the 

maximum cost provided by the decision maker.  

1.2 Motivations 

In two-layer wireless sensor networks, the first layer is assumed to has sensor nodes 

which have been uniformly deployed in the targeted area with a uniform random method 

to cover the application area. Cluster heads in the second layer are used as cluster heads 

to work as a connection link between the sensor nodes in the first layer and the base 

station in the second layer. The main issue is to find the optimal placement of the cluster 

heads in the second layer. 

Meanwhile, in WSNs the deployed nodes have a limited communication range and 

limited energy, and they are required to monitor wide areas such as industrial fields, 

forests, mines and other applications. Therefore, deploying cluster heads (CHs) make the 

SNs spend their power in collecting data only. In wireless sensor networks applications, it 
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is mandatory to minimize the amount of the energy consumed in collecting data and send 

it to the base station (BS). Hence, maximize the network lifetime. The redundancy and 

heterogeneity of the nodes (SNs, CHs, BS) in outdoor applications should be considered 

as a part of definition of the network lifetime. 

This optimization problem turns out to be more challenging when applied in 3D 

environment. In outdoor or indoor applications, sensor nodes will be deployed not only in 

different horizontal planes, but also in different vertical altitudes such as on trees, soil 

surface, underground or industrial constructions. For instance, monitoring a phenomenon 

in trees environment (forest) or industrial constructions for a scientific researches 

purpose, needs sensors placement at various altitudes that may reach to some tens of 

meters. 

The placement strategy is the main part in this work which is responsible for finding 

the optimal position of the cluster heads. The more optimal placement for cluster heads, 

the more constrains achieved. Every sensor node in the first layer should be covered by at 

least one cluster head. In other words, there will be at least one cluster head in the 

transmission range of each sensor node in the lower layer. The consumption energy of the 

nodes should be minimized as much as possible to extend the lifetime of the whole 

wireless sensor network. The mentioned constrains should be achieved with minimum 

number of cluster heads needed. 

A successful and widely used placement strategy in 3D space is the grid-based 

deployment [6]. As an alternative way for finding optimal node locations in the large 3D 

space. This deployment strategy looks for the optimal locations within specific number of 
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grid vertices. Consequently, the deployed CHs will be located at these vertices to focus 

on the fundamental properties of the WSNs such as connectivity, energy consumptions, 

and cost. hence, there are many advantages of grid-based deployment. In grid-based 

deployment we can exclude the impossible positions to deploy nodes on. The grid-based 

deployment also shows the routing paths from any node at any vertex to any other vertex 

(node) in the same graph. hence, guarantee the connectivity between nodes.   

1.3 Thesis Objectives 

Our research objectives are focusing mainly on the optimization of the wireless sensor 

networks deployment for outdoor applications, through deploying two types of sensors on 

grid structure. Number of SNs and cluster heads (CHs) are deployed to ensure the 

connectivity between all the SNs with the BS in the network. In other scenarios, the 

second stage of the CHs that responsible of relaying the data between the cluster heads 

and the base station are deployed through different paths in the grid, to optimize the 

objectives of the WSN deployment primarily by maximizing the connectivity, increased 

the lifetime, and minimizing the deployment cost as well. We propose a novel 

deployment approach to deploy the sensor nodes on any grid model. The main objectives 

of this work are stated as follows: 

1. Review the state-of-the-art in wireless sensor networks placement and nodes 

deployment schemes in these networks. 

2. Propose sensor deployment solution that will meet application requirements such 

as guarantee the required connectivity, maximize the lifetime, and minimize the cost 

with constrains on the implementation cost, and battery capacity.  
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3. Implement and evaluate the proposed solution using a properly selected 

simulation tool. 

4. Compare the performance of the proposed solution with some other previous 

approaches. 

1.4 Thesis Structure 

The thesis is comprised of five chapters. A brief summary of each chapter is illustrated 

here. 

 Chapter 1 presents a background overview of the basic idea of this work and 

states the general background of WSNs in last years. Additionally, the basic 

objectives and the scope of the study have briefly discussed along with the thesis 

outline. 

 Chapter 2 presents the literature review from previous research about placement 

problem in WSNs, and the main challenges of the WSNs that we tried to 

overcome in this work. 

 Chapter 3 addresses the problem formulation; covers the developed 

mathematical model for all components includes energy, network, communication 

models, and other components specifications. This chapter also introduces the 

optimization process in detail and present the heuristic technique that used in this 

work. It gives a comprehensive explanation of optimizing the CHs placement by 

minimizing the number of CHs while achieving full connectivity and maximizing 

the network lifetime. The simulation scenarios that followed in this work are also 

explained.  
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 Chapter 4 discusses and compares the results of the simulation work, illustrates 

the significant outcomes of this thesis and concludes by offering several 

recommendations for further work. 

 Chapter 5 illustrates the significant outcomes of this thesis and conclude by 

offering several recommendations for further work. 
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2 CHAPTER 2 

LITERATURE REVIEW 

Deployment planning is the utmost importance in the context of WSNs as it decides the 

available resources and their configuration for system setup. This in turn plays a major 

role in the performance of wireless sensor networks. A lot of research has been conducted 

to improve and develop the performance of WSNs through improving the data routing 

and enhance the Medium Access Control (MAC) protocols [7]. However, despite 

proposed good routing protocols of the WSNs, the performance of the WSNs still cannot 

achieve the targeted performance level unless it has been properly installed in advance. In 

simple words, if the number of deployed devices is insufficient or there is a design 

shortage caused by ineffective deployment plan, the connectivity between the network 

nodes and the nodes lifetime will be decreased.  

Accordingly, recent approaches are focusing on optimizing the network deployment 

strategies in order to enhance the network performance. Different WSNs properties 

considered as deployment objectives and constrains have led to rich research field. 

Depending on the classification presented in [5], we categorized the approaches which 

have been done in the literature into two groups; non-deterministic deployment (random) 

and deterministic deployment (Grid-based). In the first group, the nodes are deployed 

randomly in the targeted area and then managed in an Ad Hoc manner.  On the other 

hand, in deterministic deployment, the nodes are deployed in specific places in the grid 
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called grid vertices. A number of the approaches that have been conducted in this filed 

are presented below. 

Extending to the above mentioned challenges and properties of the WSNs, we will 

discuss the most significant properties in the wireless sensor deployment strategies, such 

as network lifetime, connectivity, coverage. In general, the proposed solutions which are 

presented to optimize the placement issue are connected with each other. For example, if 

we decrease the distance between the connected nodes this will lead to maximize the 

connectivity between nodes and decreases the energy consumed during the transmission 

and receiving process at the same time. On the other, some solutions can improve and 

tackle one of the WSNs issues while neglect the other properties. 

2.1 Connectivity 

Connectivity is one of the main challenges in the WSNs that have addressed in the 

literature. Connectivity is defined as the ability of the network nodes to stay connected to 

the BS earthier through one hop or multi-hop communication. Authors in [8] presented an 

approach that enhanced the algorithm for deployment range-free localization in three-

dimensional WSN called Genetic Algorithm Distance Vector Hop (GADV-Hop). The 

main objectives are to reduce the distance between the targeted nodes and the anchor 

nodes by minimize the number of hops. Based on that find, the optimal hop size of the 

anchor nodes reduces the localization error. The nodes are deployed randomly and the 

nodes that localized at the required coordinates promoted to be anchor nodes and that 

leads to increase the localization accuracy and coverage accuracy. In [9], authors 

enhanced their work based on Coverage-Preserving Clustering Protocol (CPCP) with 

homogenous nodes. The proposed Non-dominated Sorting Genetic Algorithm- Coverage-
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aware Clustering Protocol (NSGA-CCP) and Multi-Objective Evolutionary Algorithm 

Decomposition-Coverage-aware Clustering Protocol (MOEAD-CCP) were implemented 

by dividing the field into M number of virtual cubes and check each cube by calculating 

the number of sensors. The sensors monitor and cover the cube to check the percentage of 

the active nodes that are connected and covered the targeted area. Another contribution in 

[10] has been proposed by using weighted relay node in a single-tire WSNs architecture. 

Heterogeneous sensor nodes was used with different communication ranges, relay nodes 

have larger sensing range than sensor nodes. The terrain has a dedicated place for the 

base station (BS) and set of points for the sensor nodes and set of points for relay nodes. 

The connectivity based in this approach is the Euclidean distance between the nodes, the 

distance between the nodes should be within the communication range to assure that the 

connectivity between them is achieved. The authors present the results by built a full 

connected WSN with minimum cost by calculating the weights of the relay nodes as the 

network cost. 

The work in [11] deployed two phases of RNs to overcome some of the WSNs issues 

and maximize the network connectivity as one of their main objectives. The RNs 

deployed in dedicated positions in grid vertices based on their communication ranges. 

The connectivity between the nodes can be calculated by using some mathematical 

formulas which gave probability of successful communication. The probability of the 

communication should exceed the threshold, and that threshold specifies the maximum 

distance between any two nodes communicate directly. Authors in [12] proposed a new 

formulation of k-connected relay node localization issue, their approach have been built 

base on two different algorithms; GA and greedy approach.  The main objective in this 
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work is to cover all the target area with sensor nodes while all the sensor nodes must be 

connected to the backbone network. Based on the results they conclude that GA achieves 

k-connectivity better than greedy deployment strategy. In addition, if the candidate 

locations are prepositioned, an optimal number of relay nodes can harvest energy that 

helps them to live and be able to achieve connectivity and survivability in the network 

[13].  Even though there is an interesting in using the algorithm that is capable to detect 

and recover the connectivity and partitioning of the network by utilizing mobility relay 

nodes, however, this type of approaches includes mobile robots and further electronic 

circuitry, which could make the cost ineffectual to execute especially in rough 

environment [14].  

However, placing nodes without considering grid connectivity properties could affect 

the solution through chose the properly nodes that should to be moved to the right 

direction of that movement [15].In [16], the work focused in RNs placement in multi-hop 

scenario. In their approach, they optimized the network connectivity and throughput with 

a two-step procedure which are initial distribution and solution selection along with third 

step by using PSO algorithm. The main difference compared to our work is that our work 

focuses in optimizing the network lifetime with constrains of network connectivity and 

cost. 

2.2 Lifetime 

Lifetime is one of the most significant issues in the WSNs. Because the deployed nodes 

are energy constrained, and the networks in some applications required to have a long 

lifetime that may reached to a number of years[17][18].  
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Knowing the lifetime of deployed nodes is very important for the purpose of recharging 

or placement especially in rough outdoor. Accordingly, the accuracy of the lifetime 

prediction in the early stage of the deployment design is highly recommended [11]. The 

lifetime definition in the literature is classified into two types: node lifetime prediction 

and network lifetime prediction. Node lifetime can be measured in different methods. The 

lifetime can be measured based on the number of rounds which determines when the data 

should be collected. It can be also measured based on the total time that node was active 

before it is dead. In other way, it can be calculated based on the total traffic size of the 

node before its energy is consumed.  

Basically, energy in WSNs is consumed in three main domains: Sensing, 

communication, and data processing. Due to the fact that the main consumer of the nodes 

is the communication, many works in the literature focused on proposing energy model 

that measures the energy of transmitting and receiving data in the network. There are 

different definitions of the network lifetime in the literature. In [19] the definition of the 

network lifetime stated as “it is the time until the first node death occurs”. Such a

definition may not be efficient if we are monitoring some phenomena, for instance, if the 

network is monitoring a temperature or weather humidity for a specific environment, 

hence we cannot depend on the previous definition as long as we can still get information 

from other alive nodes in the same filed. Other works define the network lifetime as “itis

thetimeuntilthelastnodedeathoccurs”,whichmaynotbesuitable as well. Therefore, 

both of the above definitions are impractical for outdoor monitoring applications. 

Another method to define the network lifetime is presented as the time until percentage of 

the deployed nodes still alive [19]. 
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In [20], Roselin and et al presented an algorithm called Energy-Efficient Connected 

Coverage (EECC), which targeted to maximizing the WSNs lifetime by preserving 

Quality of Service (QoS) factors like coverage, connectivity, and residual energy while 

constructing non-disjoint connected cover. The algorithm also saves the network energy 

by minimizing the network data traffic through preventing the redundant coverage at 

CPs.  

In [21-23], the objectives mainly focused on optimizing specific objectives by placing 

the sensor nodes optimally along with constrains to maximize the network lifetime. 

Heuristic-based RN deployment is proposed in order to improving the network lifetime 

by using minimum number of RNs along with achieving required connectivity. In [24], 

the authors introduce a method for RNs placement in 3D industrial environment with 

obstacles to maximize the network coverage and lifetime. Two particle swarm optimizers 

are utilized; which are cooperative coevolutionary particle swarm optimization 2 

(CCPSO2) and the comprehensive learning particle swarm optimizer (CLPSO) to achieve 

network connectivity and prolong network lifetime. In addition, distributed parallelism 

based on message passing interface (MPI) where used to minimize the computation time 

through dividing the 3D space. 

 In [15], Turjman and et al proposed a 3D grid-based deployment model of 

heterogeneous WSNs consists of SNs, RNs, and mobile RNs. They aim to optimize the 

network lifetime, fault tolerance, and cost with an approach called Mixed Integer Linear 

Program (MILP). The work expects maximum network lifetime with no node or link 

failures in a rough outdoor environment applications. A 3D Genetic Algorithm Distance 

Vector Hop (GAIDV) was proposed in [8] to optimize the network coverage and lifetime 
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with best positioning of the targeted nodes. The work approach focuses on minimizing 

the number and the size of hops between the sensor nodes and BS. In [25], two technique 

based on particle swarm optimization (PSO), dimensionality and hybrid dimensionality 

PSO were utilized to minimize the computational power and reduce the error rate in 

location estimation by calculating the received signal strength (RSS). This leads to solve 

the disjunctive between received signal strength and distance estimates. In [26] the 

authors aimed to optimize the energy consumption with constraints of achieving full 

network connectivity, and clustering coverage in smart buildings. They proposed a new 

system called Building Management System (BMS) that is responsible for managing the 

building components. The system minimizes the amount of the consumed energy by the 

users in that building taking in consideration achieving good level of comfortable in 

automation and also achieving high efficiency way using human behavioral models. 

 In [9], the authors proposed a protocol that focus on optimizing the coverage and 

clustering of sensors while minimize the energy consumption in a 3D environment. A 

Coverage-Preserving Clustering Protocol (CPCP), homogenous nodes were used to 

achieve the targeted objectives. The proposed NSGA-CCP and MOEAD-CCP were 

implemented by dividing the field into M number of virtual cubes and check each cube 

by calculating the number of sensors that monitor and cover the cube. Then find the total 

number of active sensors and calculate the energy consumed per node and the number of 

packet delivery rate. The work concludes that NSGA-CCP outperforms the other 

approaches that have been proposed before.  
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2.3 Deployment Strategies 

 

In wireless sensor networks deployment, nodes can be deployed randomly in the 

targeted area to reduce the deployment cost. The nodes can be deployed based on 

weighted deployment in order to minimize the cost by minimizing the total weight of the 

points where the RNs are deployed [10]. In [27], the authors formulated the placement 

problem in a form that network connectivity and cost where constrained in a desired 

range simultaneously. The same authors Artificial bee colony algorithm (ABC) to 

optimize the efficient deployment of the relay nodes deployment and maximize the 

network lifetime with constrains of connectivity and cost. Forthurmore in [28] they also 

used two evolutionary techniques called Deferential Evolution (DE) and Gravitational 

search algorithm (GSA) to compare them with their old approach. 

 In [29] the authors proposed a clustering algorithm called Distributed Energy Efficient 

Heterogeneous Clustering (DEEHC) that selectes the cluster heads in the network based 

on their remaining energy. They also presented a k-Vertex Disjoint Path Routing 

(kVDPR) algorithm that allows cluster heads to find the disjoint nodes in that clusters and 

relay their collected data to the base station. We can conclude that the main objectives 

from the aforementioned approaches are maximizing the connectivity in the network and 

increase the network performance while take care of maximizing the network lifetime. 

Table 1 shows a simple comparison among number of the presented works that focuses 

on relay nodes placement in 3D model. 
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Table 1: Comparison of Deployment Strategies 

Year Algorithm Type of nodes Topology  Environment Objectives Reference 

2009 MOGA Homogenous flat 3D Maximizing coverage and maximize the 

accuracy of detection level 

[30] 

 

2012 WTDS2-SGA Homogenous Flat 3D terrain Maximize quality of coverage and minimize 

the consumed power. 

[31] 

 

2013 O3DwLC Heterogeneous Hierarchical 3D Maximize connectivity , lifetime and minimize 

cost 

[11] 

 

2013 MOEA/D-DE Homogenous Tree 

structure 

3D Maximize the coverage, lifetime, and 

connectivity with constrains on cost. 

[32] 

 

2014  (EECPS) Homogenous Hierarchical 3D bridge Extend the network lifetime [33] 
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2014 VLGA Heterogeneous Hierarchical 2D Maximize the coverage and lifetime while 

minimize the cost. 

[34] 

2015 3MOEA 

MO-GSA  

NSGA-II  

SPEA2 

Heterogeneous Hierarchical 3D  Maximize the coverage with constraint in cost. [23] 

 

2015 PSO Homogenous flat 3D Maximize the coverage over the terrain. [35] 

 

2016 ABC Heterogeneous Hierarchical 3D Maximize the lifetime with constrains in cost. [28] 

 

2016 Greedy 

Algorithm 

Heterogeneous Hierarchical 2D Maximize the coverage with k-connectivity 

with constrains on cost. 

[12] 

 

2017  MODS Homogeneous flat 2D Deploy sensor nodes optimally with constrains 

on cost, coverage, and connectivity. 

[36] 
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2018 DPCCMOLSEA Heterogeneous Hierarchical 3D Maximize the lifetime and reliability of 

industrial Wireless sensor networks.   

[37] 

 

2018 CCPSO2 

CLPSO 

Heterogeneous Hierarchical 3D Maximize coverage and lifetime with 

reliability. 

[24] 

 

2018 DEA & GSA Heterogeneous Hierarchical 3D Maximize the network lifetime and 

connectivity, with constrains in cost. 

[27] 
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3 CHAPTER 3 

3D Deployment Model 

3.1 Network Model 

 

In this work, the network is basically consists of several types of network devices 

which are sensor nodes, cluster heads and the base station. As mentioned earlier, a two-

layer hierarchical structure is considered to address the heterogeneous nature of wireless 

sensor network as shown in Figure 3 and Figure 4. The functionality of the devices that 

chosen for this purpose is stated as follows: 

1- Sensor nodes: the nodes that are placed in the lower layer of the network and 

responsible for sensing and collecting data from the targeted area and send it to Cluster 

Heads (CHs) in the upper layer. 

2- Cluster Heads: These nodes placed in the upper layer and they are more powerful 

compared with the sensor nodes. Cluster heads (CHs) are responsible for aggregating the 

collected data from the sensor nodes in the lower layer based on their locations, and 

relaying collected data from their member nodes to the base station. 

 

 

 



22 

 

 

 

 

 

 

 

 

 

 

The transmission ranges of sensor nodes that form the lower layer are fixed and limited 

so they cannot handle the data exchange with CHs that are beyond their limits, hence, the 

energy consumed in the transmission process can be reduced. The upper layer composes 

of cluster heads and base station. The transmission range of the devices in this layer is 

better, and they have periodically communication with the base station to deliver the 

collected data from the lower layer [1]. The structure of the upper layer is modeled as a 

graph           where                       which is the set of the candidate 

grid vertices (positions) and E is the set of the graph G edges. 

The energy given to the sensor nodes is assumed to be enough to perform the sensing 

tasks meanwhile fixed and large (relative to the network lifetime) power supply is given 

to the cluster heads in the deployed WSN. 

Figure 3: Network Model Architecture 
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3.1.1 Assumptions 

The network in this work consists of sensor nodes (SNs), cluster heads (CHs), and base 

station (BS), formed as Two-Tire hierarchical architecture with heterogeneous network as 

described in Figure 3 and Figure 4. We assumed that SNs in the network has equal initial 

energy of (0.5 Joule) and cluster heads have (20 Joule) as well. Sensor nodes in the lower 

layer are assumed to be responsible only for data sensing and transmitting with short 

rang. The other nodes in the upper layer such as CHs and BS have stronger transceiver 

circuitry that has the ability to transmit and receive with long rang. There are another 

assumptions in this work stated as follows: 

 All nodes are static. 

Figure 4: Network Model Diagram 
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 A periodic data gathering application where data is collected and is transmitted by 

each sensor to its cluster head (CH) and from the CH to BS. 

 The communication in this network is multi-hop communication. 

 The transmission range of all sensor nodes is same. 

 The transmission range of all CH is same. 

 The MAC layer with no collisions and retransmissions. 

 

3.2 Network Communication Model 

For the communication model, if the communications range of sensor node i is equal or 

higher than the Euclidean distance between sensor node i and point j, the connectivity is 

established. Otherwise, these nodes cannot communicate with each other. Based on one 

of the main objectives of this work are designed to achieve the desired connectivity and 

lifetime with minimum number of CHs. The CH at position j with coordinates (x,y,z) is 

assumed to be one of the cluster heads that collect the data from sensor nodes if it is 

selected as a CH by at least one sensor node in position i with coordinates (x,y,z). The 

following equation is used to calculate the Euclidean distance between the nodes in the 

network. 

     √(     )
 
 (     )

 

 (     )
 
 (1) 

Where x,y, and z are the coordinates of the nodes location. 

 By counting the number of CHs in the topology we can calculate the cost of the 

network which considered as one of the objectives of this work. Based on this, we can 
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also obtain the percentage of the sensor nodes that has CHs which is one of the objectives 

of this work.  

Based on the main objectives of this work, the desired connectivity and lifetime with 

minimum number of CHs will be achieved. The sensor node i can communicate with CH 

j, only if the distance between the sensor node at position i and the CH at position j is less 

or equal to transmission range of the sensor node i, in other words, if the location of the 

CH j within the transmission range of sensor node i the communication will be 

established. Figure 5 shows how sensor nodes covered by CHs. 

 

 

 

 

 

 

 

Furthermore, if the CH at position j is selected as a cluster head by either one or more 

sensor nodes, then it must be added to the number of needed CHs to achieve the work 

objectives. Contrariwise, if the CH at position j is not selected as a cluster head by either 

one sensor node in the network, typically, it will not be counted as a CH in the network. 

Moreover, every sensor node in the network should be under only one cluster head. In 

Figure 5: Sensing Range of CHs 
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another concept, each sensor node in the network can transmit its data to only one CH in 

that network. Overall, we can consider the above definitions as constraints that must be 

taken into consideration in this topology. 

3.3 Network Lifetime Model 

The definition of network lifetime is application dependent. One possible definition is 

the time until the first node dies. Another definitions is the time until the network is 

partitioning into several partitions or the time until a specific percentage (x%) of nodes 

die [19]. The latter is the definition we have adopted in this work. 

 In fact, nodes in WSNs consume energy in three main processes: collecting data about 

the environment which called sensing process, sending and receiving data between the 

nodes which called communication process, analyzing and extracting the data which 

called data processing. In reality most of the power consumed in wireless sensor 

networks is consumed by the communication process. Therefore, the majority of the 

related work in literature has focus on proposing energy consumption models for 

receiving and transmitting wireless signals.  

In this work, we will select the general energy consumption model proposed in [38] 

and [5]. In many outdoor applications such as environmental monitoring, sensing and 

processing the data into packets is lower in cost than transmission and receiving those 

packets [39]. Consequently, the energy which will be used in communication model will 

be taken into consideration. 

In this work, we will use the lifetime definition which is the time from deploying the 

sensors until the percentage of live nodes reached a specific threshold. Using this lifetime 
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definition, we benefit from device localization to keep the network operate as long as the 

percentage of cluster heads that providing the collected data are still alive.  

In order to translate the aforementioned lifetime definition, we assume the network 

lifetime is divided into equal time periods called rounds that a WSN can stay operate. The 

definition of the round (      ) is the total time that each sensor node can transmit at 

least once to the base station without cutoff.   

3.3.1 Transmitting Energy 

The transmission energy is the amount of energy which required by any node wants to 

send data to any other node in the network. The transmission energy is depending on 

some metrics such as the data packet length and the distance between the nodes. If one or 

both of the above metrics is increased this will lead to increase the consumption of the 

transmission energy. 

The energy consumed by the transmitter (       

               (2) 

                                                                  
   

Where          are a designed hardware parameters of a particular transceiver [2], and 

  is the length of the packet,   is the Euclidean distance between the transmitter and 

receiver, (γ) is the path loss exponent (the difference between the transmitted and

received power of the signal) calculated based on experimental data. 
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3.3.2 Receiving Energy 

The receiving energy is the amount of energy consumed by the nodes when receiving 

data packets from other nodes. The energy consumed by the receiver (       is calculated 

by: 

           (3) 

 

Where   is designed hardware parameter of a particular transceiver [2]. 

The remaining energy    is calculated by: 

 

                                            (4) 

Where    is the initial energy of each node,        is the arrival rate of the transmitted 

packets,        is the energy per unit time consumed by each node for a single packet 

transmission,         is the arrival rate of the received packets,          is the energy per 

unit time consumed by each node for a single packet receiving,        is the arrival rate of 

the relayed packets, and      is the energy per unit time consumed by each node for 

relaying a single packet. 

The energy model that is used in this work is considering the impact of the traffic 

processed at the CH due to their neighboring to the sink nodes. The total energy 

       consumed by a node is thus given by: 

 

 

                                      (5) 



29 

 

3.4 Network Cost Model 

 

The cost of the devices used in environmental applications depends on its 

functionalities and hardware components. The more functionality device has, the more 

expensive will be. In this work, cluster heads are considering as an expensive devices due 

to their functionality such as long communication range, significantly more energy 

reserve. In other words, cluster heads are assumed to have more functionality and 

dominate other devices in terms of transmission range. Consequently, the cost is modeled 

in this work as the number of cluster heads deployed in the work area. 

 

3.5 Design of Objective Function 

 

The main purpose of this work is to find an optimal or near optimal placement of CHs 

for an application in the vertices of grid topology as shown in figure 5. The objective is to 

maximize the network lifetime through minimizing the total energy consumption that are 

mainly caused be data exchanges between nodes through communication process. As we 

mentioned earlier, the literature presents that consumed energy affected by the Euclidean 

distance between the communicating nodes. Therefore, three main objectives are taken 

into consideration. 

1. Maximize the network lifetime  

We define the network lifetime as the time from deploying the sensors until 

(20%) of sensor nodes die. Using this lifetime definition, we benefit from device 

localization to keep the network operate as long as the percentage of sensor nodes 
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that providing the collected data are still alive. We aim to make the sensor nodes 

stay alive as much as possible and this can be identified through the round of data 

cycle by counting the number of rounds that sensor sends data in. 

              ∑∑   

 

   

 

   

 (6) 

 Where    is the nodes remaining energy  

2. Maximize the network connectivity 

The network connectivity in our proposed approach is considered making every 

sensor node in the first layer connected with at least one CH in the upper layer. As 

described previously in the communication model, any sensor node covered by 

the communication range of the cluster head considered as member of that cluster, 

the sensor nodes at the same time should have only one cluster head so every 

sensor nodes will calculate the distance between him and the CHs that located 

within his communication range and then will chose only one of them as a cluster 

head based on the minimum distance between them. The connectivity is 

calculated by sum the children of all CHs in the network, in other words, the 

connectivity is the percentage of the sensor nodes in the network that has cluster 

heads. Thus, we can say that we achieved 100% connectivity if the total number 

of children of the CHs in the network is equal to the total number of sensor nodes 

that deployed in the topology. 
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                ∑       

 

   

 (7) 

Where         is the member node of cluster. 

3. Minimize the number of  CHs in the network 

The network cost in this work as mentioned previously is calculated by 

counting the number of CHs that will be deployed in the network.  

          ∑  

 

   

 (8) 

Where    is the total number of CHs in the network. 

All these three objectives should be formulated in one integrated formula. However, 

data and the results for each of them have different values and units; this means we 

should convert these three objective functions into on multi-objective function. To come 

up with one multi-objective function that has all the three objectives, we first normalize 

the values of all three objectives and make it between 0 and 1. Then give weights    to 

each objective based on the decision maker andobjective‟s priority.  

                       (               )                      (9) 

The sum of all weights must be equal 1, so  w_1+w_2+w_3=1. 

 

3.6 The Proposed approach 

Figure 6 depicts the 3D grid model that assumed in this work, where the distance 

between the nodes (grid edges) is assumed to be equal to the sensor nodes transmission 
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range. In this cubic grid model, the Sensor Nodes (SNs) are placed randomly in the 

sensing area to get the collected data more accurately and cover almost all the area. 

Cluster Heads (CHs) are then placed on the most suitable vertices of the grid; which can 

cover the largest number of sensor nodes that distributed in the lower layer around the 

cluster heads. The base station is placed in a fixed position which is in the middle of the 

grid topology in our case. 

 

 

 

 

 

 

 

 

 

3.6.1   Simulation Scenario 

All simulation scenarios have been done using MATLAB, we simulate WSNs having 

hierarchal architecture that deployed in the 3D grid topology. We deployed a number of 

sensor nodes randomly with uniform distribution on the 3D grid and each SN has known 

location coordinates (x,y,z). After that we deploy a random number of CHs on the grid 

Figure 6: 3D Grid Model 
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vertices and each CH should be placed in one vertex and each vertex in the grid has a 

known coordinates. The BS located in a fixed place for all scenarios which is the middle 

of the 3D grid. After deploying all nodes, the approach first calculate the Euclidean 

distance between the sensor nodes and the CH by using formula in (4), and any CH that 

located in the communication range of the SN will be a cluster head for that sensor node. 

In other words, every SN will search if there is any CH located within its transmission 

range. If so, it will chose it as a cluster head and it will be child for that cluster heads. In 

addition to that, the approach also calculates the distance between every CH in the 

topology and the BS. Thus, every sensor node in the network must know its CH, and 

every cluster head in the network must know its children. As a result of that, we can 

calculate the percentage of the sensor nodes that are connected to the cluster heads and 

calculate the connectivity quality in the network. Figure 7 illustrates the procedure of 

scenario.  

In this scenario, each CH in the network can directly communicate with BS and send 

the data received from its children (SNs) to the BS periodically. Based on our model 

constrains, if there is a CH that has no children (SNs) it will not be considered as a CH 

node and will not send data to the BS. The transmission range of the SNs is equal to the 

length of the edge between any two vertices in the grid. Hence, the sensor nodes that 

located in any cube of the grid have four vertices that can send to. The CH should be 

located at any one of these four vertices to cover that SN as well. For more illustration, 

Figure 5 illustrates this process. On the other hand, the transmission range of the CHs is 

about four times larger than that in sensor nodes, so CH can transmit the data directly to 
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the BS in the middle of the grid. The network cost in this scenario is calculated based on 

the number of CHs that have been used in the network to achieve the required objectives.  

 

 

 

 

 

 

 

 

 

 

 

3.7 Optimization Techniques 

To maximizing the network lifetime and connectivity while minimizing the cost of the 

deployment by the number of CHs, two intelligent optimization techniques conducted to 

solve the problem; one of them is the genetic algorithm (GA) technique, and the other 

one is particle swarm optimization (PSO) technique. 

Figure 7: Simulation Scenario Architecture 
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3.7.1   Genetic Algorithm Optimization 

Genetic Algorithm (GA) is a stochastic search technique that mimics the natural 

selection and evolution process proposed by Charles Darwin 1858. GA has been applied 

to majority of the optimization problems. Basically, GA modeled depending on the 

natural selection process in nature [38]. At the beginning, initial populations are 

randomly generated from a solution space. These populations (chromosomes) are 

generated to be developed towards the optimal solution via good generations through 

number of steps such as selection, crossover, and mutation processes. The GA is an 

iterative technique which responsible for generating new solutions (chromosomes) in 

every iteration. Each chromosome from the initial population is evaluated by calculating 

the fitness function. Then the fittest solutions (chromosomes) have big chance to be 

selected to share in generating the new generation at each step of the GA operations to 

improve the solutions quality. Figure 8 shows a simple flowchart of GA process.  

The mechanism of GA is explained as follows:  

First, the GA generates a population on (n) chromosomes along with their fitness value. 

Parents are chosen to mate based on their fitness values, and generating children via 

reproductive plane. Thus, as mentioned earlier the chromosomes who are more fit, have a 

good opportunity to reproduce. Hence, the generated children inherit features from their 

parents. As parents mated and generated children, matrix should be built for the new 

children since the population size is fixed. The worst generated solution will be replaced 

by the new good solutions. Consequently, it is expected that over sequential generation, a 

good solution will be saved while the solutions with least fit is considered as bad 

solutions and will be deleted.  
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Multi-Objective Genetic Algorithm Implementation 

In this section, multi-objective genetic algorithm is used to get the optimal topology of 

the CHs placement in the 3D grid topology. The efficiency of obtained topology can be 

measured by the success of the objectives of this work through maximize the network 

lifetime and connectivity, with least number of CHs and minimize the cost. In the 

following subsections, the GA implementation is discussed in details. 

Start 

Define objective function 

Initialize Population Generation 

Fitness Evaluation of the individuals in the population 

Select parents with highest fitness for crossover via Roulette wheel 

selection method  

Crossover Process with probability pc 

Mutation Process with probability pm 

Iteration > Max Iter 

End 

Iteration = iteration + 1 

Yes 

No 

Figure 8: Genetic Algorithm Flowchart 
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Chromosome Coding 

At the beginning of GA, we have to represent our problem with one of the encoding 

types that used to represent the problem to a mathematical way. Thus, in our case we use 

binary encoding to represent the problem clearly and make it suitable for the genetic 

algorithm. The first step in genetic algorithm is representing the problem with 

chromosomes.   To do so, the chromosomes (solutions) in this work are represented by 

 (1 x m) matrix where m is the number of grid vertices (points) that represents the CHs 

positions that deployed in the second layer. Each element in the chromosome‟smatrix

called (gen) which represents one node position (vertex) in the grid. In binary coding, the 

chromosome represented by a string of bits, 0 or 1. For the sensor placement in grid 

vertices, we have two possibilities represented by the binary coding scheme; being a 

sensor placed at the position means the gen value is (1) or being an empty position 

without sensor means the gen value is (0). In our network model, the grid has 144 

positions that can be placed with CHs, so the length of the matrix that represents the 

chromosome will be 1 x 144. In other words, every chromosome consists of 144 gens as 

shown in Figure 9. 

 

 

 

 

Initial Population 

Based on our deployment strategy described in section 0, we start of genetic algorithm 

steps by first randomly generate the initial population which consists of 25 chromosomes 

Figure 9: Chromosome Encoding 
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(solutions) along with their fitness values that calculated by evaluate them using our 

fitness function which that explained in the next subsection. The chromosomes generated 

randomly by deploying a random number of CHs in the grid. In each chromosome 

(solution), the number of nodes is different and the positions of those nodes are different 

as well. 

Fitness Function 

Our goal is to arrange the WSNs nodes in a 3D grid meanwhile the network lifetime, 

connectivity, and cost are optimized simultaneously. Based on what we have explained in 

section 3.5, our fitness function is a weighting function that consists of three key 

objectives. The main job of the fitness function is to evalue the quality of the solutions 

that will be generated using genetic algorithm. A fitness function must include the most 

significant parameters that affect the quality of the solutions. Another important factor in 

our weighting fitness function is the objective‟s weights that decide the importance of the 

each objective in the work. The final form of the weighting linear fitness function   is 

given by  

                 (               )                      (10) 

The significant of each objective is defined by the weight coefficients            . 

The values of these coefficients are determined based on the importance of the objective. 

The fitness function in this work will be minimized using the genetic algorithm (GA).  

Selection 

In this step, the parents chromosomes will be selected from the initial population to 

participate in generating the new population using one of the common known method 
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called Rolette Wheel selection [38]. In this selection scheme, each solution from the 

solutions that have been generated initially will have a chance to be selected according to 

its fitness value. Based on our fitness function the smaller the fitness value the more 

probability to be selected they have.    

Genetic Algorithm Operators 

The main operators in genetic algorithm (GA) are crossover and mutation. So, they 

consider as the most significant parameter that affects the genetic algorithm (GA) 

performance. The implementation of these operators depends on the problem 

representation and encoding type. Crossover and mutation can be implemented using 

many ways, so in this section we will explain in details the ways that we follow to 

implement each one of them.  

The main function of crossover operator is to reproduce new chromosomes (solutions) 

through combined two old chromosomes. Crossover usually executed with probability 

less than one, in our model we assume that the crossover probability is 0.8. The main 

ways to execute the crossover are single point crossover, double point crossover, uniform 

crossover, and arithmetic crossover. In our work, we used the single and double point 

crossover.  

In single point crossover, one random point between (1 - 144) selected from the 

chromosome string. The offspring will be generated of the two selected parents in the 

previous step. The first part will be from the beginning of the first parent chromosome 

string to that crossover point and the second part will be the rest of the second parent. 

Figure 10 shows the process clearly.   
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In double point crossover, two random points between (1 – 144) picked from the 

chromosome string. Due to that, the parents will be partitioned into three parts as shown 

in Figure 11. The offspring will be the generated of the two selected parents in the 

previous step. The new chromosome will be combined of three different parts, First part 

will be taken from the beginning of the first parent‟s chromosome string to the first

crossover point, the second part will be taken from middle part of the second parent, and 

the third part will be copied from last part of the first parent. For more illustration Figure 

11 explains how that implemented.  

 

 

 

 

 

 

 

 

 

 

Mutation is the second main operator in genetic algorithm (GA). In mutation a number 

of gens in each chromosome are selected randomly and mutate them. In our work we 

assumed that the probability of mutation is (0.3), so three random bits in every 

chromosome are mutated. In more details, the selected gens values are mutated, so if the 

Figure 10: Single Point Crossover 

Figure 11: Double Point Crossover 
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value of the selected gen is 0 the mutation operation will change its value to 1 and vies 

versa. For more understanding Figure 12 illustrates the process. 

 

 

 

 

 

3.7.2   Particle Swarm Optimization (PSO) 

PSO is an intelligent technique used for optimizing formulated problem inspired by the 

natural behavior of the fish and birds swarm. It was first proposed by Kennedy and 

Eberhart 1n 1995 [39] and modified later by Shi and Eberhart [40]. The concept of this 

algorithm is that each particle in the search space has its own co-ordinates and represents 

a probable solution for the problem. These particles update their position and velocity in 

each iteration according to their best-known solution. Finally, all particles contribute in 

obtaining the best global solution. 

Binary Particle Swarm Optimization (BPSO) 

Generally, there are many problems that have intrinsic discrete binary search spaces, 

like feature selection and dimensionality reduction. In addition, problems with continuous 

real search space can be converted into binary problems by converting their variables to 

binaryvariables.Regardlessofbinaryproblems‟types,abinarysearchspacehasitsown

structure with some limitations. 

Figure 12: Mutation Operation 
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Let vectors                       ] and                         represent the 

position and velocity of the PSO algorithm. Vectors 

                                                 and 

                                          represent the best position of the particle 

and the best position of particle neighbors respectively which is the global best solution.  

   
      

                 (         
 )                        

   (11) 

 

   
      

    
    (12) 

 

where   
   and   

  are the particle velocity and position at iteration k respectively. 

   and    are the acceleration factors.   is inertia weight. 

In binary space, due to dealing with only two numbers („0‟ and „1‟), the position

updating process cannot be performed as in the PSO by adding velocities to positions 

using formula in (12). 

Basically, in Binary Particle Swarm Optimization, the position updating means 

switching between ‘0’ and „1‟ values. This switching should be done based on the

velocities of agents. The question here is how the concept of velocity in a real space 

should be employed in order to update the positions in a binary space. According to [41], 

the idea is to change the position of the nodes with the probability of its velocity. In order 

to do this, a sigmod function is used to map velocity values to probability values for 

updating the positions.  

   
  

 

      
    

   (13) 

where   
   is the particle velocity at iteration k. 
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The original BPSO was proposed by Kennedy and Eberhart [41], to allow PSO to 

operate in binary problem spaces. In this version, particles could only fly in a binary 

search space by taking values of '0' or '1' for their position vectors. The roles of velocities 

are to present the probability of a bit taking the value 0 or 1. A sigmoid function as in 

Start 

Define the objective function 

Initialize BPSO parameters   ,   ,        

Generate Initial particles and velocity  

Update position and velocity of the particles 

 Update       and        values 

Calculate the objective function 

Iteration > Max Iter 

 

      is the best solution  

End 

K=K+1 

Iteration K=1 

Update   

Yes 

No 

Evaluate the particles and Update       and        values 

 

Figure 13: Binary Particle Swarm Flowchart 
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(13) was used to convert all real values of velocities to probability values in the interval 

[0,1]. After converting velocities to probability values, position vectors could be updated 

with the probability of their velocities as follow 

 

   
   {

                    
  

                    
  (14) 

 

The objective function of the problem used in this stage is defined previously in 

section 3.5 Figure 13 illustrates the flow chart of BPSO algorithm for solving our 

problem. 
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4 CHAPTER 4 

Results and Discussion 

In this section, we will show the simulation results of our proposed approach to achieve 

the objectives that aim to prolong the network lifetime and maximize the network 

connectivity with minimum number of CHs. Different scenarios have been simulated by 

setting different values of the parameters in our thesis formulation.  

As mentioned in chapter 1, the simulation and the optimization using GA and BPSO of 

the aforementioned objectives is simulated using MATLAB 2018a simulation tool. The 

weights (           in our objective functions in equation (10) are determined based on 

the objectives importance for system‟s design maker. Since the network cost is the 

primary goal in our work we focused in minimizing the number of nodes in the second 

layer, while the secondary objective is saving the network energy to maximize the 

network lifetime, finally the last objective is achieving the best connectivity by covering 

as large number of SNs in the first layer as much by the minimum number of CHs in the 

second layer. We have deployed different number of SNs in random distribution over a 

3D grid 150x150x90   which divided into equal cubes and each cube has four vertices 

or grid points, so the second layer in each simulated deployment can have up to 144 

nodes which are the total grid vertices. Figure 14 shows the grid points that considered as 

candidate pointes to have the optimal number of CHs. Due to equal length of edges 

between the adjacent grid vertices we assumed that the theoretical transmission range of 

the SNs in the first layer is equal to the edge length          .  
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The following Table 2 shows the parameters that we assumed in our simulation. 

Table 2 Network Parameters for Simulation 

Parameter Setting Parameter Setting 

Number of Grid points 144   50x10
-9

 J/bit 

L 512 bits Initial energy for SNs 0.5 J 

   50x10
-9

 J/bit Initial energy for CHs 20 J 

   10x10
-12

 J/bit/m
2 

Crossover Probability 0.8 

  4 Mutation Probability 0.3 

 

The first section of this chapter presents the assumed scenarios in this thesis and 

explains the architecture of each scenario with focusing on the performance of grid-based 

Figure 14: 3D Grid graph which used in the simulation 
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deployment in terms of the network lifetime, percentage of connectivity and network 

cost.    

We have simulated our model with different number of sensor nodes SNs such as 200 

SNs and 300 SNs. In each network, the size of SNs deployed using a random uniform 

distribution in the grid area. Then, we generate 25 different solutions as initial population, 

where each of them has 60 CHs with different locations in the grid points. The main 

responsible factor for enhancing the solution performance in our proposed approach is the 

optimization techniques; Genetic Algorithm (GA) and Binary Particle Swarm 

Optimization (BPSO).  

Finally, GA and BPSO were used separately to solve the optimization problem. After 

applying both methods, the results were collected and the behavior of those methods 

analyzed. 

4.1 Genetic Algorithm (GA) 

As explained in the previous chapter, we proposed that we have deployed random 

number of SNs to cover almost the whole targeted area. Using the genetic algorithm 

optimization technique we deploy number of CHs to cover as much number of SNs as 

possible to assure that all the SNs that connected with CHs can send their data to the BS.  

The main idea in the simulation scenario is sending the data from the SNs to the CHs 

then by the CHs nodes, the data which collected from the SNs will be send directly 

through long distance to the BS. Thus, in the following sections we will show how the 

objectives‟weights can affect the performance of the network. The following Figure 15 

illustrates the idea of the simulation scenario. 
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In the following sections, we are mainly focusing on assessing the performance of the 

network design in terms of lifetime, connectivity and network cost while changing the 

weights of the objectives in our fitness function in equation (10). 

 

 

 

 

 

 

 

 

 

 

 

In all cases we validate our approach using MATLAB simulation results. Initial 

experimental setup in our work consists of two sets of SNs either 200 SNs or 300 SNs 

with random number of CHs and one BS on predetermined location. The main functions 

of our approach is finding the optimal number and locations of the deployed CHs. Due to 

genetic algorithm iterations the locations of the CHs will change to better locations that 

close to their cluster members in each iteration. 

The following two sub-sections exhibit the results for multi-objective optimization 

using Genetic Algorithm. In all simulation scenarios, the following parameters of the GA 

Figure 15: Simulation Scenario 
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were used: Initial population = 25, number of iteration = 200, crossover probability (  ) 

=0.8 and mutation probability (  ) = 0.3. 

 

4.1.1 Genetic Algorithm with 200 SNs  

 In this subsection, we optimize our multi-objective problem using GA for 200 

iterations. The number of SNs that assumed to be deployed randomly in the simulation 

area is 200 SNs. Then 60 CHs will be deployed randomly in the initial solutions. So, 

finding the best locations of these CHs will improve the performance and achieve the 

required objectives for this problem. In this part, we will show the results of giving 

different weights to the objectives in our fitness function in equation (10).  

 

 

 

 

 

 

 

 

 

Figure 16: Convergence of GA of 200 SNs  
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In all the experiments, the maximum number of iteration is set to 200. The weights 

given to the objectives are shown above each sub graph as (number of CHs, remaining 

energy, and percentage of connectivity) respectively.  

In Figure 16, the convergence behavior of the optimization technique during search 

process of the optimized parameters can be observed. Four different weighted objectives 

of 200 SNs using GA have been optimized. The heuristic reduces the cost of the network 

as expected in all simulation scenarios. The  GA  converged  to  optimal  solution  almost 

after 110  iterations  and  remained  steady  thereof. In the following results, we will show 

the enhancement in all objectives by comparing non-optimal solutions with the optimal 

solutions for each of our work objectives.  

 

 

 

 

 

 

 

 

 
Figure 17: Total number of alive sensor nodes for 200 SNs using GA 
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Figure 17 depicts the enhancement of the network lifetime. The results show that the 

lifetime of the optimized solutions increased clearly compared to non-optimal solutions. 

Since the CHs are responsible for collecting data from member nodes that are inside its 

communication range, the algorithm trying to find the optimal locations of CHs by 

minimizing the distance between the CHs and their member nodes to improve the 

network lifetime.  

Using four different weights, Figure 18 and Figure 19 show the optimization of number 

of CHs and their connectivity objectives respectively after 200 iteration using GA. From 

Figure 18 we observed that in the first scenario from the left (0.6,0.2,0.2); the number of 

CHs objective was given 60% of the total weight which lead to minimize their number 

from 60 to 15 CHs. we can conclude that: the cost of the network was reduced by more 

than 70% and the optimal number and location of CHs shows better performance as 

compared to non-optimal.    

 

 

 

 

 

 

 

Figure 18: Optimization of number of CHs of 200 SNs using GA 
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In order to guarantee the connectivity between the CHs and their member nodes as 

much higher as possible while reducing the number of CHs in the network, the 

percentage of connectivity is achieved 97% and above in all scenarios after 200 iteration 

of optimization using GA as shown in Figure 19.  

4.1.2 Genetic Algorithm with 300 SNs  

Here, again we use GA optimization technique. The number of SNs that deployed in the 

simulation area changed to 300 SNs. The number of CHs deployed in the initial solutions 

is 60 CHs. Finding the optimal number and locations of these CHs will lead to achieve 

the required objectives for this problem.  

 

Figure 19: Connectivity optimization of 200 SNs using GA 
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In Figure 20, the convergence graphs of 300 SNs using GA after 200 iterations of 

algorithm search have been shown. After about 110 iterations the GA convergence graph 

almost reaches the optimal solution. The cost of the weighted objectives has been 

minimized using GA as shown in Figure 20. The WSN desired requirements have been 

achieved by finding the optimal solution.  

Figure 21, clarify the network lifetime enhancement. The results showed that the 

lifetime of the SNs in the optimal solutions has been extended compared to non-optimal 

solutions. Placing the CHs in the optimal positions plays the main role in improving the 

network lifetime. 

 

Figure 20: Convergence of GA of 300 SNs 
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Figure 21: Total number of alive sensor nodes for 300 SNs using GA 

Figure 22: Optimization of number of CHs of 300 SNs using GA 
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The optimal number of CHs after 200 iteration using GA that satisfies the objectives of 

our approach, can be seen in Figure 22. The number of CHs in the network was 

minimized by 66% to 75% as observed from Figure 22. 

 

 

 

 

 

 

 

 

 

Connectivity is one of the objectives that we optimized using GA. Despite the 

percentage of connectivity before and after the optimization process is almost full, thanks 

to optimization we noted that the number of CHs used in optimal solutions is 70% lower 

than that used in non-optimal solutions.  

 

 

 

Figure 23: connectivity optimization of 300 SNs using GA 
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4.2 Binary Particle Swarm Optimization (BPSO) 

The following two sub-sections present the results for the multi-objective optimization 

using Binary Particle Swarm Optimization (BPSO). We optimized the same objectives 

that we assumed in the previous section. The main scenario that we proposed in 

section 3.6.1 will be simulated with 200 and 300 number of SNs. In addition, each of 

these has been simulated with four different weights of the objectives. In all figures, the 

weights given to the objectives are shown above each sub graph as (number of CHs, 

remaining energy, and percentage of connectivity) respectively. In all of the simulation 

scenarios, the following parameters of the BPSO were used: initial population = 25, 

number of iteration = 200, number of intervals = 10, inertia weight= 0.99 and velocity 

constants c1=c2=0.5. 

4.2.1 Binary Particle Swarm Optimization with 200 SNs  

Using the objective function presented in equation (10) a multi-objective optimization 

using PSO was simulated with all parameters as mentioned before.  

 

 

 

 

 

 

Figure 24: Convergence of BPSO of 200 SNs 
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Figure 24 shows the convergence behavior of the optimization technique during search 

process of the optimal solutions. From the all sub-graphs in the figure, we observed that 

the cost function minimized during the algorithm iteration. 

  

 

 

 

 

 

 

 

 

Figure 25 shows the number of alive nodes for the optimal and non-optimal network 

layouts having total number of nodes equals 200. All sub-figures, presented the 

improvement in optimal network compared to the non-optimal network. This leads to a 

longer network lifetime. Increasing the network lifetime means increasing the number of 

data samples taken from the region of interest.  

Figure 25: Total number of alive sensor nodes for 200 SNs using BPSO  
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The optimal numbers of CHs that have been selected using the BPSO are shown in 

Figure 26. The proposed objective function selects the number and location of cluster 

heads that can achieve the desired objectives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Optimization of number of CHs of 200 SNs using BPSO 

Figure 27: Connectivity optimization of 200 SNs using BPSO 
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In Figure 27, we show the percentage of connectivity between the CHs and their 

members in the network. The simulation results dictate that the percentage of network 

connectivity that achieved with the optimal number of CHs is good.   

4.2.2 Binary Particle Swarm Optimization with 300 SNs  

Here, we present the results of our proposed approach using the same simulation 

parameters of the above sub-section, except for the number of sensors. 

 

 

 

 

 

 

 

 

 

Figure 28, shows that BPSO converged to the optimal solutions during search process of 

the optimization technique. However, it is obvious that BPSO acts efficiently in terms of 

minimizing cost value of the weighted objectives. 

 

Figure 28: Convergence of BPSO of 300 SNs 
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Figure 29: Total number of alive sensor nodes for 300 SNs using BPSO 

Figure 30: Optimization of number of CHs of 300 SNs using BPSO 
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Figure 29, compares the network lifetime of the network before and after applying the 

optimization technique. As expected, the optimal network lifetime gain is always higher 

than the non-optimal, thanks to the BPSO optimization technique.  

Based on the work objectives, when the number of CHs is decreasing, the efficiency of 

optimization solutions is increasing. Therefore, the bar graph in Figure 30 shows the 

efficiency of BPSO in finding the optimal solutions. The optimal number of CHs that 

have been selected using BPSO optimization technique achieves 96% to 100% of the 

network connectivity between CHs and SNs that is presented by Figure 31.  

 

 

 

 

 

 

 

 

 

 

Figure 31: Connectivity optimization of 300 SNs using BPSO 
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4.3 Comparison between GA and BPSO 

From the results in section 4.1 and section 4.2 we will present the results of comparison 

between GA and BPSO. In this section, multi-objectives optimization results have been 

simulated using GA and BPSO. Three main objectives have been optimized to deploy the 

WSNs efficiently.  

Figure 32 and Figure 33 show a plot describing the comparison between the optimal 

solutions of the lifetime which optimized using two different techniques GA and BPSO 

for two different network sizes. From the Figure 32 we observed that BPSO shows slight 

improvement in the network lifetime compared to GA of 300SNs network size.  

  

 

 

 

 

 

 

 

 

 

Figure 32: Comparison of alive sensor nodes for 300 SNs using BPSO and GA 
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Figure 33 shows the tradeoff of the network lifetime improvement between the BPSO 

and GA. From the figure plots we observed that BPSO and GA shows almost same 

improvement of the network lifetime for 200 SNs.   

  

 

 

 

 

 

 

 

 

The comparison between the results of finding the optimal number of CHs using BPSO 

and GA in the network can be show in Figure 34 and Figure 35. The optimal number of 

CHs in the network after using GA is slight lower than that obtained by BPSO for 

network size 300 SNs. While the optimal number of CHs after using GA and BPSO for 

network size 200SNs show little difference as compared with those in network size 

300SNs. 

 

Figure 33: Comparison of alive sensor nodes for 200 SNs using BPSO and GA 
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Figure 34: Optimization of number of CHs of 300 SNs using BPSO and GA 

Figure 35: Optimization of number of CHs of 200 SNs using BPSO and GA 
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Figure 36 and Figure 37, compare the percentage connectivity of the network after 

applying the optimization techniques BPSO and GA of 300SNs and 200SNs respectively.  

 

 

 

 

 

 

 

 

 

 

The percentage of network connectivity is slight better by using GA than using BPSO 

that can be observed from the two bar graphs in Figure 36 and Figure 37. 

 

 

 

 

Figure 36: Connectivity optimization of 300 SNs using BPSO and GA 
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Overall, the results have emphasized the effectiveness of the proposed approach in 

finding the optimal solutions using GA and BPSO. From the above results, we observed 

that GA is more efficient in finding the optimal solution of the objective that has large 

weight whereas keeping a good level of optimization for the other objectives that has less 

weight. On the other hand, BPSO shows more optimization for the objective that has high 

weight than that value in GA, however for other objectives that have less weights are not 

improved as much as those in GA. 

 

 

 

Figure 37: Connectivity optimization of 200 SNs using BPSO and GA 
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5 CHAPTER 5 

CONCLUSION AND RECOMMENDATION  

In this thesis, the optimization of wireless sensor networks deployment in 3D 

environments using Genetic Algorithm (GA) has been proposed. The proposed solution 

aim to optimally deploy Relay Nodes in sensor networks such specific application 

requirements are met. Specifically, the objective is place Relay Nodes in a 3D structure 

while maximizing network lifetime, minimizing cost and maximizing connectivity.  To 

achieve this purpose, a multi-objective functions has been developed and iteratively 

evaluated in different network and application scenarios using GA.  

The proposed solution was evaluated and compared to Binary Particle Swarm 

Optimization (BPSO) and the results show that the proposed GA solution was able to 

optimize the network deployment in all simulation scenarios.  When compared with 

BPSO, the proposed solution outperform BPSO in some scenarios and achieve 

comparable results in others. The GA solution was able to find the optimal deployment 

for the main objective, which has the largest weight while keeping a good level of 

optimization for the secondary objectives which have lesser weights. On the other hand, 

BPSO achieves better optimization for the main objective compared to GA. However for 

the secondary objectives, GA performs better than BPSO. Therefore, we can conclude 

that our proposed GA solution is well suited for optimizing 3D sensor network 

deployments with multi-objectives compared to BPSO.  
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For future work, the effect of RNs mobility on enhancing the network lifetime will be 

studied. In addition, the objective function will take into consideration other application 

requirements such as netowrk fault tolerance and mazimizing the supression of correlated 

data.  
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