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THESIS ABSTRACT

NAME: Raed Mousa Ali

TITLE OF STUDY:  Numerical Solutions for Fractional Advection-Diffusion
Problems

MAJOR FIELD: Mathematics

DATE OF DEGREE: April, 2019

We establish the existence and the uniqueness of the weak solution of a linear
time-fractional advection diffusion equation, more precisely, for a time-fractional
Fokker-Planck model problem. We study the behavior of the time derivatives
of the continuous solution which is important for the numerical error analysis.
We propose and analyze a numerical solution based on a time stepping Crank-
Nicolson combined with finite elements in space. We also investigate a time-
stepping L1 approximation scheme. The well-posedness and error analyses of
both computational schemes are studied. Some numerical results are delivered at
the end to confirm the theoretical convergence results. We use MATLAB in order

to implement our schemes to check the results numerically.
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CHAPTER 1

INTRODUCTION

In this chapter we give some background of the model problem under consideration
follows by the literature review on the numerical contribution. An outline of the

thesis is explained in the last section.

1.1 Background of the model problem

Over the past few decades there has been an enormous growth in the number of
papers devoted to experimental and theoretical aspects of anomalous diffusion.
The landmark review by Metzler and Klafter in 2000 [39] has been particularly
influential, promoting the description of anomalous diffusion within the framework
of continuous time random walks and fractional calculus. There are now numerous
applications utilizing this approach in physics, chemistry, biology and finance

[4, 18, 48, 49]. A central theoretical result in [18] was the derivation of a time-



fractional Fokker-Planck equation:

Opu — V- (kVO}u — Fo} ™ u)=g forz € Qand0<t<T, (1.1.1)

to describe the evolution of the probability density function u(x,t) for subdiffusion
in an external space-time dependent force field F(x,t). The Riemann-Liouville

fractional derivative of order 1 — «v is defined by
0} v(z,t) = 0I(x, 1),
where the Riemann-Liouville integral of order « is defined by

T(t) = /0 wo(t —s)v(s)ds, a >0,

tozfl

with w,(t) == oy and L(t) := [, 2" 'e " dx is the standard gamma function.

Since w, € L1(0,7),

I : Ly((0,7T), Lo(Q)) — Ly((0,T), La()) for 1 < p < o0, (1.1.2)

is a bounded linear operator.

The authors in [18] derived the time-fractional Fokker-Planck equation in (1.1.1)
from power law waiting time continuous time random walks biased by Boltzmann
weights. The governing equation was derived from a generalized master equation

and was shown to be equivalent to a subordinated stochastic Langevin equation.



In this thesis, the existence and uniqueness of the model problem (1.1.1) is
investigated. Furthermore the behavior of the time derivatives of the weak solution
is studied, proving estimates that play an important role in the error analysis of
the numerical schemes. For the numerical solution of the model problem (1.1.1),
the generalized Crank-Nicolson scheme for the time discretization is investigated.
Formally, such a scheme is second-order accurate. However, it seems that, in
the presence of a weakly singular kernel and the fractional derivative operator
0}~*, we could prove only an O(k'*®) convergence for 0 < a < 1 over non-
uniform time meshes, where k£ denotes the maximum time step size. A fully
discrete scheme based on combining finite elements in space and Crank-Nicolson
in time is developed. The existence and uniqueness of the numerical solution
of the fully discrete scheme is proved. Another numerical scheme that based on
L1 approximation in time and finite elements in space is investigated. The error
results of the second fully discrete scheme shows some advantages over the first

one. Convergence rate of order O(k?) is shown.

1.2 Literature review

e When F = 0, numerical methods for (1.1.1) were proposed and analyzed by
several authors. For time-stepping methods, Langlands [28] proposed backward
Euler scheme for discretization the fractional derivative. Mclean and Mustapha
[35] applied finite-difference time discretization combined with finite elements

in space. For the discontinuous Galerkin in time and finite elements in space,



we refer to Mclean and Mustapha [36]. Mustapha [41] investigated an implicit
finite-difference Crank-Nicolson scheme combined with finite elements in space.
For piecewise constant discontinuous Galerkin method to discretize the time, see
McLean and Mustapha [38]. Later on Mustapha et al. [42] proposed and analyzed
a time-stepping Petrov—Galerkin method combined with the continuous conform-
ing finite elements method in space. Sweilan et al. [50] proposed a Crank-Nicolson
finite difference method to solve the linear time-fractional diffusion equation, for-
mulated with Caputo’s fractional derivative. Zeng et al. [55] developed a new
Crank—Nicolson finite elements method in which a novel time discretization called
the modified L1 method was used to discretize the Riemann—Liouville fractional
derivative.

For space discretization, Zhang et al. [56] considered a standard central dif-
ference approximation for the spatial discretization, for the time stepping, two
new alternating direction implicit schemes based on the L1 approximation and
backward Euler method were proposed to solve a two-dimensional anomalous sub-
diffusion equation with time fractional derivative. For semidiscrete spatial finite
volume method to approximate solutions of anomalous subdiffusion equations in
a two-dimensional convex domain, we refer to Karaa et al. [22]. Jin et al. [20]
applied Galerkin finite elements method and lumped mass Galerkin, using piece-
wise linear functions to solve initial boundary value problem for a homogeneous
time-fractional diffusion equation in a bounded convex polygonal domain. Karaa

et al. [23] applied a piecewise-linear finite elements method to approximate the



solution of time-fractional diffusion equations on bounded convex domains.
Indeed, L1 approximation scheme is one of the most popular techniques to
approximate the time fractional derivative and it was proposed by many authors
to solve various types of fractional diffusion problems [54, 31, 57, 10, 46, 53, 33, 44].
Various numerical methods have been presented for solving (1.1.1), usually for
I assumed to be a function of x only. The starting point by rewriting it in the
form

T(U') = Katlge + iy, (Fu), = 0, (1.2.1)

where the first term is a Caputo fractional derivative. Deng [12] transformed the
equation into a system of fractional ODEs by dicretizing the spatial derivatives
and using the properties of Riemann-Liouville and Caputo fractional derivatives
and then applying a predictor—corrector approach combined with the method
of lines. The authors in [7] adopted a similar approach for (1.1.1) and solved
the resulting system of fractional ODEs using a second-order scheme. Chen et
al. [8] studied the stability and convergence properties of three implicit finite
difference techniques, in each of which u,, was approximated by the standard
second-order difference approximation at the advanced time level. Regarding the
investigating of a collocation method based on shifted Legendre polynomials in
time and sinc functions in space, we refer to Saadmandin et al. [47]. Jiang [19]
established monotonicity properties of the numerical solutions obtained by using
these schemes and showed that the time-stepping preserves nonnegativity of the

solution. Fairweather et al. [14] investigated the stability and convergence of an



orthogonal spline collocation method in space with the backward Euler method
in time, based on the L1 approximation of the Caputo derivative. Vong and
Wang [52] analyzed a high order compact scheme for (1.2.1).

For general fractional convection-diffusion equation,

T — (aug), + bug + cu = f, (1.2.2)

with coefficients a, b, ¢ that may depend on x and ¢, Cui [11] investigated a high-
order approximation for the time-fractional derivative combined with a compact
exponential finite difference scheme for approximating the convection and diffu-
sion terms.

Recently, Gracia et al. [15] applied a standard finite difference method on a
uniform mesh to solve (1.2.2). They proved that the rate of convergence of the
maximum nodal error on any subdomain that is bounded away from t = 0 is
higher than the rate obtained when the maximum nodal error is measured over
the entire space-time domain.

e Case of space-time dependent forcing F' in one space dimension. Le et al. [29]
proposed and analyzed piecewise-linear Galerkin finite elements method in space
and implicit Euler method for time to solve (1.1.1).

e For the case of the space-time dependent forcing F' in multi-dimension space.
Le et al. [30] presented a new stability and convergence analysis for the spa-
tial discretization of (1.1.1) in a convex polyhedral domain, using continuous,

piecewise-linear, finite elements. Their analysis used a novel sequence of energy



arguments in combination with a generalized Gronwall inequality.

1.3 Thesis outline

In chapter 2 we show the existence and uniqueness of the weak solution for the
model prolem (1.1.1). The regularity properties for the higher order time deriva-
tive of the weak solution is proved in chapter 3. In chapter 4, we propose and an-
alyze a numerical solution for the model problem (1.1.1). We use Crank-Nicolson
scheme in time and finite elements in space. The stability of the numerical scheme
is shown and also the error bound is derived. Then, we develop a fully discrete
scheme using finite elements in space and Crank-Nicolson in time. Existence and
uniqueness of the solution of the fully discrete scheme is studied. In chapter 5, we
develop another numerical scheme that based on L1 approximation in time and
finite elements in space. We perform the error analysis for the new fully discrete
scheme.

Some numerical results will be delivered in chapter 6 to illustrate the theoretical
finding. We demonstrate the convergences of the numerical schemes under con-
sideration for different values of the fractional exponent o as well as for different

values of the grading mesh parameter ~.



CHAPTER 2

PRELIMINARIES AND

NOTATIONS



In the section 1 we state some definitions of spaces. Section 2 contained some
classical inequalities that will be used in our analysis. The last section is devoted

for fractional inequalities which will be used to prove our results.

2.1 Spaces

Definition 2.1 (L, Space) We denote by Lo(2) the space of all Lebesgue real-
valued measurable functions v defined on a bounded, convex domain 2 C R" for

which ||v|| < oo, where

ol = lolls, = ( | @ dw) "

The space Ly(€2) can be equipped with the inner product

(v, w) = /ﬂm) w(z) da.

Definition 2.2 (Weak Solution) We define the weak solution of a partial dif-
ferential equation to be the solution u that satisfies the weak formulation of the

partial differential equation for any test function v € Hj(S).

Definition 2.3 (Weak Derivative) Assume that v € Ly ;,.(€2) and let « € N”
be a multi-index. Then v € Lj,.(2) is the a—th weak partial derivative of w,
written D% = v if

/ uD*¢ dx = (—1)l / vpdx, for every test function ¢ € C;°(Q2)
Q Q



where || =300 .

Definition 2.4 We define H"(Q2),7 > 0, to be the space of all functions whose

weak derivatives of order < r belong to Ls(2), i.e.,

H"(Q) ={v € Ly(Q) : D™ € Ly(Q) for |m| <r}.

The space H"(2) can be equipped with the norm
1/2

loll = ol = | > I1D™0]?

[m|<r

Definition 2.5 (Sobolev Space) We define W}(Q) to be the usual Sobolev
space of functions that belong to L,(2), and also the weak partial derivatives of

order k or less belong to L,(€2).

Definition 2.6 (H} Space) We define the space H, by

HY(Q) ={ve H' : trace(v) = 0}

where trace(v(x)) = v(z) for x € 00

Definition 2.7 The associated function space H"(Q) = {v € Ly(Q) : |jv], <
oo } is a subspace of the usual Sobolev space H"(Q2) for 0 < r < 2; in particular,
HO(Q) = Ly(Q) and H(Q) = HL(Q). Also, H*(Q) = H*(Q) N HL(Q) provided Q

1S convex.

10



Definition 2.8 ( Semi Group Property) If « >0 and g > 0, then

TPy = 1°7P, (2.1.1)

is satisfied at almost every point in [0, 7] for v € L,(0,7),1 < p < 0.

Definition 2.9 (Equicontinuity) Let X,Y be two metric spaces, and F is a
family of functions from X to Y. Then F is equicontinuous at xq € X, if for
every € > 0 there exist a § > 0 such that if d(z,z¢) < 0 implies d(f(x), f(zo)) < €

for all x,zy € X and for all f € F.

2.2 Classical inequalities

In this section, we display some inequalities that we will use in the next chapters.

e (Cauchy-Schwarz Inequality) If v,w € Ly(0,7), then vw € L(0,T)
and

[ (v, w)] < [Jol[[jwl]]-

e (Geometric Arithmetic Mean Inequality) If a,b € R, then for any

e >0,

11



Definition 2.10 (Poincare’s Inequality) If Q is a bounded domain in R

then there exist a constant C' = C'(2) such that
o]l < C||Vol|, forallv € Hy(R) (2.2.1)

Theorem 2.1 Let f : [a,b] — R be a continuous function. Then f is differen-

tiable almost everywhere with integrable derivative such that

() :/ f'(x)dx + f(a)  for t € (a,b)

holds if and only if f is absolutely continuous.

Remark 2.2.1 ( Green’s Formula) Let u € C? and v € C*, then

/Vqud:U:/@vds—/Auvdw,
Q r on Q
0

where 6—Z = n.Vu is the exterior normal derivative of v on I'.

2.3 Fractional inequalities

For convenience we introduce the following notations, for u > 0, for ¢ €

Ly((0,7), Ly(2)) and 0 <t < T, by

Q"(6,1) / (6.7°¢)ds and  QU(4,t) = / |27 6|1 ds.
0 0

12



These operators coincide when p = 0 because Z°¢ = ¢, so we write Q° = Q¢ = 9F.

The operator Qf is non-negative, that is,

Q1(e,T) 20, (2.3.1)

assuming that ¢ is real-valued [43, Lemma 3.2]. The next four lemmas establish

key inequalities satisfied by Q4 and Q5.

Lemma 2.1 ([30], Lemma 3.2) If 0 < a < 1 and ¢ > 0, and for ¢,¢ €

Ly((0,7), La()) for 0 <t <T then

_Qr(9t)

<¢> I%p)d ' Tl —ap t€ Qf (¢, 1), (2.3.2)
05(6.1) < o Qi(,1), (233)
(4, 1) < 2t* Q%(¢, 1), (2.3.4)

/0 (6.0 ds' 2:<Qlo(¢ )> QW 1). (2.3.5)

From [24] we have the following identity, for m > 1,

m—1
OTFB(t) = THO" o (t) + 0)w,—;(t) forg € W™((0,t); La(R2)), (2.3.6)

J=0

and for 0 < ¢t < T. Noting that if ¢ € W} ((0, T), X) for a normed space X, then

¢ :[0,T] — X is absolutely continuous.

13



Lemma 2.2 If0 < «a <1, then for ¢ € Wll((O,t),Lz(Q)),

Q3(6,t) < 2 / walt — 5) 0, 5) ds

Proof. Let ¢» = Z%p (¢ is absolutely continuous). Since ¥ (0) = 0, the Caputo

fractional derivative of 9 is

R =T'7(W) = (T'7) = (Owi—a = (Z'9)' = ¢.

Recalling the identity in [2, Corollaryl],

2(1(t), Cop ()>:C3?(||w|l2)(t)+2r(1@_a)/O (t—ls)l_o‘< 0 Ei(—q)qc)lz) o

we conclude that

20, 2°0) = 2(°07,v) = “op (Ilvl*) = T (IZ*1I*), (2.3.7)

and thus 7' (|Z°9]?) = Z*(|Z°¢|?)" = Z'**T' = (|Z°¢]?)" < 22" ((¢,2°¢)) =
277" ((gb Iagb)), which is equivalent to the desired inequality.
Now let ¢ € Ly((0,T), L>(€2)), and choose a sequence ¢,, € Wi ((0,T), L2(2))

such that

T
/ llon(t) —¢(t)\|2dt—>0 as n — oo.
0

Using (1.1.2) with ¢ = « and p = 2, it follows that using the estimates (2.3.3),

14



(2.3.4)

QW%w—Qﬁ@wsA«m—¢J%%—¢»smﬁéH%—¢W@—w

and

Qﬂ%m—%ww:AuP%Ww—Auﬂwws
< tzan—za 2ds = tIO‘ 1
_An bn — T ds Au (60 — )12 ds

t
<ce [ on—ol?ds 0
0
Therefore
QT (pn,t) = QT (¢,t)  and Q3 (dy, 1) = Q5(9,1),

uniformly for ¢ € [0, T7. I

A useful upper bound of a function ¢ € W ((0,1); L2(€2)) will be proved next.

Lemma 2.3 Let 0 < o < 1 and ¢ € W{((0,t); Lo(Q)). If ¢ is absolutely contin-

uous, then

le@)* < 2wr—a(t) Q7 (¢, ).

Proof. Applying the operator Z' to both sides of (2.3.7) with ¢’ in place of ¢,

and using Z%¢'(0) = 0, we observe that,

T (129 ) (1) < 207 (6 ). (23.8)

15



Put ¢ (t) = Z%¢'. Since ¢ = I'¢' = T,

2

lp()|I* < (/Ot wi_a(t — 8)||1(s)] ds)
= /Otwla(t—@ ds /Otwla(t—sﬂ!w(s)H?ds

= wra() 7 (IZ°0'12) 1),

and hence, the desired result follows immediately after using (2.3.8). I

Lemma 2.4 ([30], Lemma 3.1) If0 < pu<v <1, then
Qs (¢, t) < 20 Q5 (6, 1).

Lemma 2.5 ([13], Theorem 3.1) Let > 0 and T > 0. Assume that a and b
are non-negative and non-decreasing functions on the interval [0,T].

If q:[0,T] — R is an integrable function satisfying
t
0<q(t) <a(t)+ b(t)/ ws(t —s)q(s)ds for 0 <t <T,
0

then

q(t) < a(t)Es(b(t)t’) for0<t<T.

Lemma 2.6 ([26], Lemma 6.4) Assume that 0 < a < 1, K > 0, ¢n,an >

16



0,any < ans1 for N > 1, and § = Kk*/a. If,

N
on <an + KZw](\?,L n, Where wﬁll = / (ty —t)* 'at
In

n=1

then

¢N S C((S, KuavT)an fOT tN € (OaT]

17

forty € (0,77,



CHAPTER 3

EXISTENCE AND

UNIQUENESS ANALYSIS

18



In the first section of this chapter we recall the time-fractional model problem,
define the weak formulation follows by giving some definitions and notations that
will be used later. In section two we consider the projected equation to our model
problem (3.1.1) to prove some results that are needed in section three to show
existence and uniqueness for the weak solution. In the last section we prove the

well-posedness of the weak formulation of our model problem.

3.1 Introduction

Recall that our fractional PDE is of the form:

Ou—V - (kVO, “u—FO “u)=g forz€Qand0<t<T. (3.1.1)

for z € Q and 0 < t < T. The spatial domain Q C R? (d > 1) is bounded and
convex. The driving force F', as well as the the source term g, are assumed to be
known functions of x and ¢, while the generalized diffusivity k = k(z) > ¢y > 0

may depend only on x. We consider homogeneous Dirichlet boundary condition,

u(z,t) =0 forx e dQand 0<t<T, (3.1.2)

and the initial condition

u(z,0) = up(x) for z € . (3.1.3)
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For an integer m > 1, the following regularity assumptions on the coefficients will

be used:

K€ Lo(Q), Fel™(0,T);WL(Q)9). (3.1.4)

When k =1, FF =0, and g = 0, problem (3.1.1) reduces to the fractional subdif-
fusion equation:

O — V20 *u = 0.

In this case, the solution of the problem (3.1.1)—(3.1.3) has the form

where the Mittag-Leffler function

E.(z) = Zz”/f‘(l + na),

and \,, > 0 and ¢,, are the eigenvalues and the eigenfunctions associated with
the operator A subject to the homogeneous Drichlet boundary conditions. This
allows us to extend the classical method of separation of variables for the heat
equation to construct an explicit solution for any initial data uy € Lo(£2). In our
case such an explicit construction is no longer possible for the solution of (3.1.1).
Therefore we proceed formally by integrating (3.1.1) in time, multiplying both

sides by a test function v, and applying the first Green identity over {2 to arrive
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at the weak formulation

(u(t),v) + /0 (kYO u(s) — F(s)0, *u(s), Vv) ds

= (ug,v) + /Ot<g(s),v> ds for all v € Hy(Q), (3.1.5)

Due to complexity, the well-posedness as well as the regularity analysis of the
continuous solution was not investigated despite its importance, apart from the
case [37] when F' = 0.

In order to write the weak formulation (3.1.5) as a Volterra integral equation,

we introduce the bounded linear operator:
Ki(t): Hy () — HH(Q)
defined by
(K, (t)v,w) = (kVv, Vw) — (F(t)v, Vw) for v, w € H} (),

The variational problem (3.1.5), with the initial condition (3.1.3), can then be

written as

u(t) +/0 [K1(s)0,“u(s)] ds = f(2) (3.1.6)

with

f(t) =uog+ /Otg(s) ds.
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Integrating in time by parts, we find that

/Kl (8)0u(s) ds = K, (t)IT*u /K’ )Z%u(s) ds
:/Ot(wa(t—s)Kl() /Swa(z—s)K{(z)dz)u(s)ds,

with K7 (t) : H}(Q) — H1(Q) given by

(Ki(t)v,w) = =(F'(t)v, Vw),

noting that Z*u(0) = 0 by Theorem 3.5.

Therefore, u satisfies
¢
+/ K(t,s)u(s)ds = f(t) for0<t<T, (3.1.7)
0
where the kernel K(¢,s) : H3(Q) — H~(Q) given by
¢
K(t,s) = wa(t — s)K;(t) — / Wa(z —8)K((2)dz for0<s<t<T. (3.1.8)

We apply the Galerkin method in Section 3.2 to project the problem (3.1.7)
to a finite dimensional subspace X C H{(f2), obtaining an approximate solu-
tion ux : [0,7] — X. By using delicate energy arguments and a fractional
Gronwall inequality, we establish a priori estimates for ux that are uniform with
respect to the dimension of X, allowing us in Section 3.3 ((3.4) and (3.6)) to

prove the existence and uniqueness of a weak solution u to the model problem
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(3.1.1)—(3.1.3) assuming that (3.1.4) holds true for m = 1.
In the remaining part of this section, we introduce some notations and state

some technical results that will be used later. Let
(M79)(t) =t/ o(1),
and note the commutator properties (for any integer j > 1 and any real u > 0)
HM-MP =o', OGMI—MID, = jMI™L MIF—TFM = pZP. (3.1.9)

The following identities then follow by induction on m.

Lemma 3.1 For 0 < g < m and p > 0, there exist constant coefficients a;”’q,

bive, ¢t and di"" such that

q q
OIM™ = MM+ " d MmO MO = OIM™ > BT MM

J=1 J=1

TEM™ = MMTF+ Y MM MO = TPMT Y d T M
j=1 =1
Later on, we set aj"? = by = ¢y = dy"" =1 and

a C =C

~m,q __ _Mm,q Im,q __ 3m,q ~TN, L
a; " =agy, byt =075 G m—js

mp J;nu _ dﬁfj.
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Given a real number p > 0, let

(Byo)(t) = ¢(t) T"6(t) / W(s) T'o(s (3.1.10)

Lemma 3.2 If ¢ € WL ((0,7); Loo(RY)) and ¢ € W((0,7); Lo(2)), then

there ezists a constant C' (depending only on 1, p and T') such that for 0 <t < T,

Q" (Bl t) < C (e, 1), (3.1.11)
QU (MBlp,t) + QT'Biig,t) < Ct* QL (¢, 1), (3.1.12)

Q((MBLg). 1) < CQE((MB).1) + CQEMo.1) + CQL(.1).  (3.113)
Proof. The assumption on 1 implies that
t
IBLOIF < CHT O +C [ 1@ o)) s
and (3.1.11) follows after integrating in time. By the Cauchy—Schwarz inequality,

IMBER)OI” + (2 Bio)I* < £*1(Bo)(t H2+t/ I(B)(s)I* ds,

and (3.1.12) follows after integrating in time. The third identity in (3.1.9) implies
that

MBj¢ = (T" Mg + uI'"*'¢) — MI' (Y'T"9)
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and therefore, differentiating with respect to t,

(MBJ6) = 0/ (T M6 + pT"'6) + (T M) + uI*0) — (I' + M)(V'T"0).

Thus, noting that (Z¥Me) = IH(Me)" by (2.3.6), with

IZ o ))1* = 171 (Z"0) ()] < tQ5 (1)

and
17 ('T"6)(1)II* < CtQ5(e,1),
we have
[(MBje) (1)]* <ClIT(Me)(t)|)* + CIT"(Me)' (t)]*
+ (T ) () + CtQ5(o, 1),
so (3.1.13) follows after integrating in time. I

3.2 The projected equation

Suppose that X is a finite-dimensional subspace of H}(f2), equipped with the

induced norm: [Jv||x = [|v[| g1 (). We define a bounded linear operator

Kx(t,s): X - X
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(Kx(t,s)v,w) = (K(t,s)v,w) forv,we X and0<s<t<T,

and let fx(¢) denote the Lo-projection of f(¢) onto X, that is,
(fx(t),w) = (f(t),w) forwe X and0<t<T.

In this way, we arrive at a finite dimensional reduction of the Volterra equa-

tion (3.1.7),
ux(t) + /t Kx(t,s)ux(s)ds = fx(t) for0<t<T. (3.2.1)

In the next theorem, we outline a self-contained proof of existence and uniqueness
under relaxed assumptions on the coefficients in the fractional PDE (3.1.1). Such
as results for scalar-valued kernels are proved by Linz [32, §3.4], Becker [3], and
Brunner [6].

We assume Y = C([0,T]; X), equipped with the norm ||v|ly = maxo<i<r ||v(¢)||x-
For the remaining part of this chapter, C' denotes a generic constant that may
depend on the coefficients in (3.1.1): €2, v, n and the integer m in (3.1.4). However,

any dependence on the subspace X is indicated explicitly by writing C'y.

Theorem 3.1 Assume that the coefficients in (3.1.1) satisfy

k€ Lo(Q), FeWL((0,T); Lo(2)9).
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Assume, in addition, that the source term g : (0,T] — Lo(S2) satisfies
lg®)|| < Mt for0<t<T, (3.2.2)

where M and n are positive constants, and that the initial data vy € Lo(S2). Then,
the weakly-singular Volterra integral equation (3.2.1) has a unique solution uyx €
Y. Moreover,

luxlly < Cxllfxlly < Cx(|luoll + M).

Proof. Our assumptions on uy and g ensure that fx € Y. The kernel (3.1.8)
has the form

K(t,s) = wa(t — s)G(t, s),

where for 0 < s <t <T

Glt.9) = K2(0) =Tt =) [ walw)i(s+ (¢ = 5)y) .

Our assumptions on the coefficients ensure that G is continuous mappings from

the closed triangle

A={(ts):0<s<t<T}

into the space of bounded linear operators Hj(2) — H'(Q). Likewise,

Kx(t,s) = wa(t — s)Gx(t, s),
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where Gx(t,s) : X — X is defined for (¢,s) € A by
(Gx(t,s)v,w) = (G(t,s)v,w) and for v, w € X.

Since X is finite dimensional, Gx is continuous function from A into the space
of bounded linear operators X — X. Hence, there is a positive constant vx such
that

| Kx(t,s)v]x < yxwalt—s)|v|lx for (t,s) € Aandv e X,

and we can define the Volterra operator Cx : Y — Y by
t
Kxv(t) = / Kx(t,s)v(s)ds for0<t<T andveY.
0

We see that [|[Kxvl|ly < yxwita(T)||v]]y. In fact, using the semigroup property
(2.1.1), we obtain the following estimate for the operator norm of the nth power

of IC)(,

t
HK:SL(HY%Y < 7?{ 01;1%)%/0 wna(t - 8) ds = 7?(w1+na<T) for n = 17 27 37 ceee

It follows that the sum

oo

Rx =Y (-1)"K%

n=1
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defines a bounded linear operator with

||RXHY—>Y S Zwlﬁ-na(T)’y?( = Ea(’YXTOé) - L

n=1

This operator is the resolvent for Kx, that is,
ux + Kxux = fx ifand only if uxy = fx — Rxfx,

implying the existence and uniqueness of ux € Y, [32], as well as the a priori
estimate. I
For second-kind Volterra equation, it is known that if fx admits an expansion
in powers of ¢t and ¢, then so does uy; see Lubich [34, Corollary 3], and also
Brunner, Pedas and Vainikko [5, Theorem 2.1] (with v = 1 — «). In order to
prove that a similar result holds for systems of Volterra equations. We define
Cm = C7([0,T]; X) to be the space of continuous functions v : [0,7] — X that

are C™ on the half-open interval (0, 7] and for which the seminorm
[]j0 = sup 7P (t)||x is finite for 1 < j < m.
o<t<T
We define C" into a Banach space by defining the norm

m
ollma = llolly + D vla-
j=1

Theorem 3.2 Assume that (3.1.4) holds for some integer m > 1. If the initial
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data ug € La(Q2) and the source term g : (0,T] — X is C™ with

Hg(i_l)(t)H < Mt for1<i<m,

then ux € C7' and

[uxlmo < Cx [l fxllmeo < Cx([luoll + M).

Proof. Our assumptions on vy and g imply that fx € C7'. The substitution

z=s5+(t—s)y

in (3.1.8) shows that if j + k <m and 0 < s <t < T, then

H@f(@t + 0,) K (t, s)UHH_l(Q) < Cx(t— s)o‘_l_kHvHHé(Q) for v € Hy (),

and, since X is finite dimensional,

1080, + 85 Kx(t, s)v||, < Cx(t — ) F|Jof|x forve X.

It follows that the Volterra operator Kx : C* — C'" is compact [51, Theorem 6.1},

and by 3.1 the homogeneous equation

ux —i—ICXuX =0
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has only the trivial solution ux = 0. Hence, the inhomogeneous equation
ux + Kxux = fx

is well-posed not only in Y but also in C7". |
In the preceding theorem, ug? (t) is bounded in H}(2), however these bounds
depend on X. As a result, the aim is to obtain bound of ||ux(¢)|| and of ||Vux(t)||
independently of X. Our proof relies on a sequence of technical lemmas. For

convenience we rescale the time variable, if necessary, so that
k(x) > 1 forxz e Q. (3.2.3)

In this way, (kVv, Vo) > [|[Vol|? for v € H}(Q), and we see that for (real-valued)

¢ € C([0,T]; Hy(2))
/ KTV, V) ds > / t(zﬂw, Vo) ds = Q4(Vé, 1), (3.2.4)

see [35].

Since (3.1.6) is equivalent to (3.1.7), if v € X then

([ #xteoputors) = [ (Koot wux.o)as

= (R(Z°Vux)(t), Vo) = ((Buux) (1), Vv),
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where

Bio(t) = /Ot (F(s)@i_aqﬁ(s)) ds. (3.2.5)

Assuming ¢ € C’é([O,T];X), and integrating by parts and use the nota-
tion (3.1.10) to write

B, = BS. (3.2.6)

Thus, the solution of (3.2.1) satisfies
(ux (t),v) + (kVI®ux(t), Vv) — {(Biux)(t), Vo) = (fx(t),v) (3.2.7)

for v € X, which yields the following estimates (with C' independent of X).

Lemma 3.3 For 0 < t < T, the solution ux of the Volterra equation (3.2.1)

satisfies the a priori estimates
Qf (ux,t) + Q3 (Vux, t) < Ct*Q°(fx, t)

and

Q°(ux,t) + QY (Vux,t) < CQ%(fx,1).

Proof. From (3.2.7),

(ux(t),v) + (KVIux(t), Vo) < gl|Vol* + 3| Brux (0)|* + 5 10]1* + (fx (©), v).
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Choosing v = Z%ux(t), and using
(K9 T ux (1), Vo) = (:V0, Vo) > Vol

after canceling the term %HVUH2 and integrating in time, we see that

Of (ux,t) + %QS(VUXJ) < %QO(BWXJ) + %Q;(UXJ)

t
+ [xe) ux(s) s, (32:9)
0
Using the representation (3.2.6) and the inequality in (3.1.11),
Q0(§1UX715) <29°%B%ux,t) < CQ5(ux,t) + CQOs(ux,t) < COY(uyx,t),

where, in the final step, we used Lemma 2.4.

Using (2.3.5) with ¢ = fx, ¥ = uy and € = 1/2, we deduce that
Qf (ux, 1) + 395 (Vux, 1) < CQ5(ux, 1) + C1*Q°(fx, 1) + 5QF (ux, 1).
Hence, applying Lemma 2.2 with ¢ = ux, the function
q(t) = Qf (ux, 1) + Q5 (Vux, 1)

satisfies

q(t) < Ct*Q%(fx,t) + C/ wa(t — 8) QT (ux, s)ds.
0
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Since Qf(ux,s) < q(s), Lemma 2.5 implies the first estimate.

To show the second estimate, use
—{(Biux)(t), Vv) = (V- Biux(t),v)
in (3.2.7) to obtain
(ux(t),v) + (KVIux(t), Vo) < lvll* + 31V - (Brux) (O] + 3120
Choosing v = ux(t), integrating in time, and using (3.2.4), we have
1Q%ux,t) + QF (Vux,t) < CQ°V - Biux, t) + CQ°(fx, t).
Since

V- (B%UX)(t) = (V . F(t))ZO‘uX(t) + F(t) . IQVUX(t)

~ (PO Zurs)+ P 2 Vu(s)) ds, (329)
we see that

IV - (Brux) I < ClZux®)]

+CITVux(OF + € [ (IZux(s)|? + |2 Vux(s)[) ds.

t
0
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Implying that

QV - Bux,t) < CQOS(ux,t) + CQS(Vux,t)
and therefore, by Lemma 2.4,

Q°(V - Byux,t) < CQ%(ux,t) + CQ5(Vux,1).

Now letting

a(t) = Q(ux, 1) + Q' (Vux. 1),

it follows using Lemma 2.2 and (2.3.4) that

q(t) < CQ5 (ux,t) + C Q3 (Vux,t) + CQ°(fx, 1)
<CQfxt) +C [ walt = 5)(Qux ) + Q1 (Vux, ) ds
0

< CQ(fx,t) + Ct*I(t).

We may now apply Lemma 2.5 to complete the proof. |
The function Mux(t) = tux(t) satisfies a similar estimate to the first one in

Lemma 3.3, but with an additional factor ¢? on the right-hand side.

Lemma 3.4 The solution ux of (3.2.1) satisfies

Q¥ (Mux, t) + Q5 (MVuy,t) < Ct* Q% (fx,t) for0<t <T.
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Proof. Multiplying both sides of (3.2.7) by ¢, and applying the third identity

in (3.1.9), we find that (since & is independent of t)

(Mux,v) + (K(I*M + oZ°")Vux, Vv) = (MBjuy, Vv)

+ (M(fx),v), (3.2.10)

whereas integrating (3.2.7) in time gives

(RI*"'Vux, V) = (T'Biux, Vo) + (T (fx — ux),v),

so, after eliminating (kZ*"'Vux, Vv),

(Muyx,v) + (kKI*MVux,Vov) =
(M = aZ')Biux, Vo) + (M — oZ')(fx) + o ux, v)

< 3IVoll? + 3l Boux|* + llol* + (M — oZ") fx + aZ ux, v),

where By = (M — oZ') B¢

Choosing v = Z* Muy, we have

(KI* MV uy, Vo) = (kVv, Vo) > ||Vol]?
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so, after canceling the term 3||Vv[|* and integrating in time,

Q?(MUX,t) + %Qg(MVUX,t) S %QO(BQUX,t) + %Qg(MUXﬂf)
t
+/ (M = aT") fx,I*Mux) ds
0

¢
+a/ <IluX,IaMuX>ds.
0
Using (2.3.5), we find that
¢
/0 (M —aZ") fx,IT*Mux ) ds < Ct*Q°((M — aZ") fx,t) + 19 (Mux, 1)

and

t
/ <IluX,IaMuX> ds S CtQQO(IluX,t) + %Q?(MUX,t),
0

SO

Q?(MUX,t) + QS(MVUX,t) S QO(BQUX,t)

+ Ct*Q°((M — aZ') fx,t) + Ct*Q°(T'ux, t).
Since By = (M — aZ')B% the estimate (3.1.12) gives
Q°(Baux,t) < Ct?* QY (ux, t)

where, in the last step, we used Lemma 2.4 with y = a and v = 1. We easily
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verify that

Q" ((M —aZ') fx,t) < Ct*Q"(fx, 1),

and by Lemma 2.4 with p =0 and v = 1,

Q(Tlux,t) = Qy(ux,t) < t*°Q°(ux,1t).

Thus, the function

q(t) = Qf (Mux, t) + Q5 (MVux, 1)

satisfies

q(t) < Ct?Q%(ux,t) + 295 (Mux,t) + Ct*T*Q°(fx,t) + Ct* *Q (ux, t).

By (2.3.3) and Lemma 3.3,

205 (ux, t) + 21 Q % (ux, t) < Ct*™*Q%(ux,t) < C* *Q(fx, 1),

and therefore, using Lemma 2.2 with ¢ = Muy,

q(t) < Ct*TQ°(fx,t) + CI(t).

The result now follows by applying Lemma 2.5.
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Lemma 3.5 The solution ux of (3.2.1) satisfies, for 0 <t < T,
Qf (Mux)',t) + Q5 (MVux)',t) < Ct*Q°(fx,t) + Ct*Q°((Mfx)', ).
Proof. By differentiating (3.2.10) with respect to t, we have

((Mux, o) + (VT Mux), Vo) = (Brux — an*Vux, ) + (M), 0},
(3.2.11)
where Bs¢ = (MB1¢)'.

Hence,

((Mux)',v) + (kV(I*Mux)', Vo) < £||Vol]* + || Bsux|* + &[|v]|”

+ O‘|IQVUX"2 + <(fo)/, U>.

Putting v = Z%(Moux)', we can cancel 5| Vv||? because v = (Z*Mux) by (2.3.6).

Thus, by integrating in time and using (2.3.5) to show
t
/ (Mfx), T (Mux)'yds < Ct*Q°((Mfx)',t) + 197 (Mux)', t),
0
and using (3.2.4), we arrive at the estimate

Q?((MUX)/, t) + Q;((MVUX)/, t) < 2QO<B5UX,t> + QS((MUX)/,t)

+ CO5(Vux,t) + Ct* Q" (M fx)', t).
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Since Byux = (MB%ux)', it follows from (3.1.13) that
Q"(Bsux,t) < CQ5 ((Mux)',t).
By Lemmas 2.4, 3.3 and 3.4,

Q5 (Mux, 1) + Q5 (ux, t) < C1*Qf (Mux, 1) + C17 Q7 (ux, 1)

S C(t2+2a + t2a)QO(fX, t)
and Q%(Vux,t) < Ct*Q°(fx,t). Hence, the function
q(t) = Q‘f‘((/\/lux)’,t) + Q%((MVUX)’,t)
satisfies
q(t) < Ct*Q°(fx,t) + Ct*Q° (M fx)', t) + CQ5 ((Mux)', ).
Finally, by Lemma 2.2,
¢
Qg((/\/lux)’,t) < C/ wa(t — S)Q‘f‘((/\/lux)’, s) ds < CT%(t),
0

and the desired estimate follows by Lemma 2.5.
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Lemma 3.6 The solution ux of (3.2.1) satisfies
Q°((Mux)',t) + QF (MVux)',t) < CQ%fx,t) + CQ°((Mfx).1)

for0 <t <T.

Proof. Using

—<B5UX, VU> = <V . B5UX(t), U>

in (3.2.11), we obtain

((Muy)',v) + (kI*(MVux)', Vo) < |v]]* + 2|V - Bsux||®

+ [[(MFx)'[]* = a({kI*Vux, Vv).

Choosing v = (Muy)’, integrating in time, and using (3.2.4) yields

1Q%(Mux)',t) + QF (MVux)' ) <20°(V - Byux,t) + Q°(Mfx),t)

— a/o ((MVux)'(s), KI*Vux(s)) ds.

Recall from (3.2.9) that V - B¢ = B p¢ + BEV¢, where we have used the
notation

B3Veé = F(t) - I°Ve — /0 t F'(s) - I*V¢(s) ds.
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Thus,

V: Bsux = V- (MByux) = (MV - Biux)' = (MV - Bux)'

= (MBS pux) + (MBgVuy)'
By (2.3.2),
¢
/ ((MVux)'(s), KI®Vux(s))ds < 1QF (MVux)',t) + CQOf (Vux, t),
0

and thus the function q(t) = Q°((Mux)',t) + QF (MVux)',t) satisfies

q(t) < CQ;‘((MuX)’,t) + CQ3(Mux,t)+ CO3(ux,t) + CQ‘;((MVuX)’,t)
+ CQ3(MVux,t)+ CQOY(Vux,t) + CQO((MfX)’, t) + COY(Vux,t)
< 005 ((Mux)',t) + Ct*QF (Mux, t) + Ct*Qf (ux, t) + CQ3 (MVux)',t)

+ O Q0 (fx, t) + C12Q0(fx, 1) + CQY (M fx)' 1) + CQ°(fx, 1),

where, in the second step, Lemmas 2.2, 3.3, and 3.4 are used. A further application

of Lemmas 3.3, and 3.4,

q(t) < CQ°(Mfx),t) + CQ°(fx,t) + CQ5 (Mux)',t) + CO5 (MVux)',t)
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and we can use Lemma 2.2 to bound Q% ((Mux)',t) + Q3 ((MVux)',t) by
t
C/ Wa (t — s)(Q?((/\/luX)’, s) 4+ Qf (MVuy)', s)) ds < CT%(t),
0

where we used Qf (Mux)',s) < Ct*Q"((Mux)', s), which holds by Lemma 2.4.
Finally, we apply Lemma 2.5 to obtain the desired estimate. |

Using the previous lemmas we are able to prove the main result of this section.

Theorem 3.3 Assume that the coefficients satisfy (3.1.4) for m = 1, that ug €
Lo(82) and that the source term g satisfies (3.2.2). Then, the solution ux of the

projected Volterra equation (3.2.1) satisfies (with C independent of X )
Jux ()| + t*|[Vux (®)||* < C(|luoll* + M*t*")  for0 <t <T.
Proof. Applying Lemma 2.3 with ¢ = Muy, we see that Lemma 3.5 gives

llux (@) = [Mux(®)]* < Ct7*Qf (Mux)' 1)

< CtQ°(fx,t) + CtQ° (M fx)',t).

Define gx : [0,T] — X by (gx(t),v) = (g(t),v) for v € X, so that fx = ug+Z'gyx

and (Mfx) = fx + Mfy = fx + Mgx. We find using (3.2.2) that

Q(fx.0) + Q(Mix).1) < C [ (uuouz T2+ HMgI|2> s
0 (3.2.12)

< Ct(JJuo* + M),

43



so the estimate for the first term |lux(¢)||* follows at once. Similarly, applying

Lemma 2.3 with ¢ = (MVuy)’ followed by Lemma 3.6, we have

1| Vux ()] = t* [ MVux ()]* < CtQF (MVux)',t)

< CtQO(fXa t) + OtQO ((MfX)/7 t) )
implying the estimate for the second term || Vux (¢)|*. |

3.3 The weak solution

We will now prove that the model problem (3.1.1)—(3.1.3) is well-posed. In addi-
tion to the achieved estimates in section 3.2, the following local Holder continuity

properties of uy is needed.

Lemma 3.7 If0 < <t; <ty <T, then
lux (t2) — ux (t1)[|* < C6 2t (J|uol|* + M>3") (t2 — tr)
and
IZ9Vux (ts) — I*Vux (t1)|| < C(|Juoll + Mt3) [6°72(ts — t1) + 62 (ts — t1)°].

Proof. The Cauchy—Schwarz inequality implies that

t2
/ u'y(s)ds
t1
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[2)
<(t-t) [ ()P ds

t1

lux (t2) — wx ()] = \



and by the second inequality of Lemma 3.3, together with Lemma 3.6,

to
t1

/tzHU')c(S)HQdSZ/ s 2 [(Mux)'(s) — ux(s)|* ds
< 25—2/02(||(Mux)/|y2 ©luxl?) ds = 2672 [Q0(Mux)'s £2) + Q%(ux, t2)]

< O3 2[Q (Mfx), 1) + Q(fx, )]

The first result now follows from (3.2.12). To prove the second, we write

t—5/2
I°Vux(ts) —IVux(ty) = /0 [wa(ts — 8) — wa(ts — 5)| Vux(s) ds

+ /t 1 [wa(ts — s) — wa(ti — 5)| Vux(s) ds + / 2 Wa(ta — s)Vux(s) ds,

175/2 t1

and deduce from Theorem 3.3 that

||IQVUX(t2) - IQVUX(tl)H < C(”U()H + Mtg) (]1 + .[2 + 13)7

where

t1—46/2
I, = / [wa(tl —8) — wa(ta — s)}s‘"‘/2 ds,
0

t1 t
[2 = / [U)a(tl - S) - wa(t2 — S)} s—a/2 ds, ]3 = / wa(t2 _ 8)8_0‘/2 ds.
t1—5/2 £

Since

L+ L+ I <002 (ta —t1) + 0 (ts — t1)%),
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the proof is completed. |
The existence of the weak solution is proved in the next theorem. Furthermore, in
Theorem 4.4, we show that the solution u is continuous on the closed interval [0, T']

provided ug € H*() for some p > 0.

Theorem 3.4 Assume that the coefficients satisfy (3.1.4) for m = 1, the source
term satisfies (3.2.2), and that the initial data ug € Lo(S2). Then, problem (3.1.1)—

(3.1.3) has a weak solution u : [0, T] — Lo(Q) with the following properties.
1. The restriction u : (0,T] — Lo(§2) is continuous.
2. If0 <t < T, thenu(t) € HY(Q) with ||u(t)||+t*/*|Vu(t)|| < C(||uol|+Mt7).

Proof. Let 1y, 99, 13, ...be a sequence of functions spanning a dense subspace
of H}(Q). For each integer n > 1, let X,, = span{t1, s, ..., %, } and for brevity
denote the solution of (3.2.7) with X = X,, by w, = ux, and likewise write

fn = fx, so that

(un(t),v) + (K(Z*Vuy,)(t), Vv) — ((Biuy)(t), Vo) = (fu(t),v) (3.3.1)

for v € X,, and 0 < t < T. From Theorem 3.3 and Lemma 3.7, the sequence
of functions u,, is bounded and equicontinuous in C ([5, T}, LQ(Q)) whenever 0 <
0 < T. By choosing a sequence of values of § tending to zero we can select a
subsequence, and the resulting sequence is convergent since it is bounded and

equicontinuous [[40], Theorem 1.14], denote this sequence by u,, such that w,(t)
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converges in Ly(Q2) for 0 <t < T. We may therefore define

u(t) = lim u,(t) for0<t<T,

n—oo

and the resulting function satisfies property 1 because, given any fixed § € (0,7),
the limit is uniform for ¢ € [0, T since it is a limit of a sequence of equicontinuous
functions [[40], Theorem 1.11]. Similarly, the functions Z*Vu,, are bounded and
equicontinuous in C([0,T]; L2(2)?) so Z*Vu : (0,T] — Ly(Q)? is continuous. In
fact, it will follow from (3.3.2) below that ||Z*Vu(t)|| — 0 as t — 0, so Z*Vu :
[0, 7] — Ly(2) is continuous.

By Theorem 3.3,

un ()] < C([|uoll + Mt") for 0 <t <T,

so by sending n — oo we conclude that |[u(t)|| < C(|jul| + Mt"). Also, for

0<t<T,

[(un (1), )| < Cllun @)y 0l a-10) < CE([luol| + ME")[[v]| -1

taking the limit as n — oo it follows that

[(u(t), v)] < Ct2(Jluoll + Mt") ||v]l -1 (o)
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for all v € Ly (), so u(t) € Hy () with
w2 < Ct=2(||uo|| + M),

proving property 2. I
As a continuation of Theorem 3.4, in the next theorem we show some other prop-

erties of u.

Theorem 3.5 The function u in Theorem 3.4 satisfies the following additional

properties:
1. I*Vu and Byu : [0, T] — Ly(2) are continuous.
2. T°u(0) = 0, Z°Vu(0) = Byu(0) = 0 and u(0) = u,.
3. u(t) converges weakly to u(0) as t — 0.
4. For 0 <t <T andv € H} (), u satisfies (3.1.5).

Proof. AsZ®Vu(t) is bounded we conclude that Z*Vu(t) is continuous with
t
|ZVu(t)| < C/ (t—s)"" s~ (|Jug|| + Ms") ds < C(||luol| + Mt")t*?; (3.3.2)
0
likewise, for n > 1,
2%, ()| < O (luol|[+Mt")t* and || Z°Vu,(t)|| < C(J|uol|+Mt")t*/2. (3.3.3)

Continuity of Byju follow from (3.1.10) and (3.2.6), completing the proof of prop-
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erty 1, with

|(Bra) ()]l < Cl@*u)(®)] + C /<||<Iau><s>||+||u<s>||)ds -
0 3.34

< CO(|luoll + M)t~

Property 2 follows from Poincare’s inequality (2.2.1), and the estimates (3.3.2) and
(3.3.4).

If0<d<t<T, then

[(Z%un) (1) — (Z7u) (1) || S/O wa(t — 8)|lun(s) — u(s)|| ds
< C’/O (t — S)Q*I(HUOH + Ms”) ds +/5 (t — 5)* | un(s) — u(s)| ds

< O (|Juoll + M) + a~ ' (t — 6)* max [|un(s) — u(s)],

0<s<t

showing that Z%u,(t) — Z%u(t) in Ly(2), uniformly for ¢ € [6,7]. In fact, the
convergence is uniform for ¢ € [0, 7], owing to the estimate (3.3.3). Therefore, we

see using (3.1.10) and (3.2.6) that, for v € H}(Q),
((Byun)(t), Vo) = ((Byu)(t), Vo).
Since (fo, ;) = (f, ;) for j < n, we have
T (fo (), 45) = (f(1),¢5) forall j>Tand 0 <t <T,

Thus, by sending n — oo in (3.3.1), it follows that (3.2.7) holds for v € H}(Q2)
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and 0 < t < T. In light of (3.3.4) and (3.3.2), the variational equation (3.1.5)
is satisfied when ¢ = 0 if and only if (u(0),v) = (ug,v) for all v € H}(2), which
is the case if and only if we define u(0) = ug. Moreover, (u(t),v) — (f(0),v) =
(ug,v) as t — 0, for each v € H}(€), and hence by density for each v € Ly(1),

establishing properties 3 and 4. |

Theorem 3.6 The weak solution of the problem (3.1.1)—(3.1.3) is unique. More
precisely, under the same assumptions as theorem 3.4, there is at most one func-
tion u that satisfies (3.1.5) and is such that u and Z*u belong to L ((0,T); L2(Q2)),

and Z*Vu belongs to Ly ((0,T); Ly (Q)?).

Proof. Since the problem is linear, it suffices to show that if uy = 0 and g(t) =0

then u(t) = 0. Thus, suppose that

(u(t),v) + (K(Z*Vu)(t), Vo) — ((Biu)(t), Vv) =0

for 0 <t < T and v € Hj(2). Proceeding as in the proof of (3.2.8), we have

Q3 (u,t) + 105 (V) < 1Q"(Byu, 1) + 105 (u,1) < CQ3 (u, ),

where in the final step we use (3.1.10), (3.1.11) and Lemma 2.4. Thus, by

Lemma 2.2, the function q(t) = Qf(u,t) + Q3 (Vu,t) satisfies

qlt) < CQ3(u.t) < CT q(t),
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and hence q(t) = 0 for 0 < ¢t < T by Lemma 2.5. In particular, Of(u,T") = 0 and
therefore if we put u(t) = 0 for ¢t > T then u(iy) = 0 for —oo < y < oo by (2.3.1),

implying that u(t) =0 for 0 <t < T.
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CHAPTER 4

REGULARITY ANALYSIS
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In the section 1 we show some technical lemmas. The regularity properties of u
is studied in section 2. Section 3 is devoted to show H?({2)—regularity properties

of u.

4.1 Preliminaries

Lemma 4.1 Let p >0 and 1 < g<m. If, form—q+1<j <m,

Mg e Wi~ 7Y with (FMIG)(0)=0 for 0 <k <j— (m—q)—1,

then
HM™Tr =D AT i Mg+ S drr o Mg,
j=0 j=m—q+1

Proof. By Lemma 3.1,

m—q m
MPTH — Z ijNIqumijj + Z j;nvquerijj'

=0 j=m—q+1

If0<j<m-—gq, then m—q—j>0so dJIH ™I = QTITr+m=9-7 = Trtm=a-J,

Therefore,
Ofy AT MG = T TIMIG for ¢ € Li(0,7).
j=0 j=0
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Ifm—-—qg+1<j<mthenj—(m—gq)>1so

agI;H-m—j _ a;l*(m*j)atm—jl'm—jzu _ ag*(m*Q)Iu

and thus
Z JTvMIﬂ+m_ij¢ — Z j?vﬂatj*(m*q)IHMj¢'
j=m—q+1 Jj=m—q+l1
By Lemma 3.1,
' ' ' ' j—(m—q)—1 '
o ITMG =T TIMG+ Y (FFMIG)(0) wuk,
k=0

and our hypotheses on ¢ ensure that all terms in the sum over k£ vanish.

The next lemma will be used in the proof of Lemma 4.4.

Lemma 4.2 Let 1 € W2 1((0,T); Loo()?) for some m > 1

and let p > 0. Then,

Q"™(B <(JZQ‘” (p,t) for0<t<T and ¢ € C™.

Proof. We integrate by parts m times to obtain

Big =T'(0, "¢) = Z DT 4+ (=)L (pTH ),
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and so

BY™¢ = (M™Blg)™ =) (~1)'B"¢, (4.1.1)
=0
where
oM™ (Y THTp) for 0 <i<m—1,

Bro -
oM™ (Y Irtm=1g)  for i =m.

If 0 <i<m-—1, then
B = op (WO Mnz ) = 3 (T )ut ez
so our assumption on v implies that

I(Bro) ()] < C Y _[|of(M™ T )(1)]]. (4.1.2)

q=0
By Lemma 4.1,
m—q m
a;]MmIH+Z¢ _ Z Jm,u+i1p+i+m—q—ij¢ + Z Jm,u+i:[p+iag—(m—q)Mj¢
J 7 )
Jj=0 j=m—q+1
and by Lemma 3.1,

J
"M = Zci,’“./\/lj_klwk for p >0 and j > 0,
k=0

with
. q . . q . .
OIM =) al MITTOITT =N @l MG for 1< g < .

r=0 r=0
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Thus, for 0 < j <m —gq,

J

+itm—q—j AT 4 — it m—q—j \ gj—kgut+itm—q—j+k
TH q]Mjgb—E:Cii MITETH 9=tk g
=0

and form —qg+1<j5 <m,

j=(m—q)
IM+ia§*(m*Q)Mj¢ — Z ai7j_(m_q)Iu+iMm_qu3;¢
r=0
j—(m—q) m—q
Z aJJ (m—q) ZC —117M+iMm—q—kIu+i+kMra[¢’
k=0
SO
@Mz o)) Z (e im=a Mig) o)
Z I“Haj_(m_Q)/\/quﬁ) (t)HQ
t
m—q J
S C H(M] kl’u—f—z-ﬁ-m q ]+k¢)( )H
7=0 k=0

Integrating in time, since Q°(MIZHp,t) <t Qb (¢, t), we see that

m—q j
Q° (a;]MmI,u-l-iqb’ t) <C Z Z £2(—k) Q,¢2¢+i+m—q—j+k<¢7 t)
=0 k=0

m  j—(m—q)m—q

+C Z Z ZtQm q— k)QM+z+kr(¢, )

j=m—q+1 1r=0 k=0
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and therefore, by Lemma 2.4,

q
QUAFM™ T, t) < CLUTTD N " QBT (6, 1), (4.1.3)

r=0
Hence, recalling (4.1.2),

m

Q" (B"g,t) < C Z QY (IIM™ I g, t) < Ct* i QL (p,t) for0<i<m—1.

- - (4.1.4)
It remains to estimate B¢ = O M™I (Y™ Tr+m—1¢). Taking ¢ = m and p = 1
in Lemma 4.1 gives

Oy M™T = dg' T+ AT M

j=1

and so
Bz¢ _ d’(l),ml-l (w(m)IM+mfl¢> + Z d"‘l,m t;1<w(m)MjI,u+mfl¢).

Thus,

m J—1
QO(BZQ t) < CQO (Il(w(m)l'u+mfl¢>,t) + CZ QO (agMjI/t+m—1¢’ t),
j=1

q

.

Il
o
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and since

@ worzaal < ([ weers) ([ ize-taers)

< Oty (g, t)
we have, by Lemma 2.4,
QU (ZH (T mlg) 1) < CROET™ (6, 1) < C1 QL (9, 1),

Finally, using (4.1.3) with m replaced by j and with ¢ replaced by m — 1,

>_A

m j— q
(Bm(b t) < CthQu ¢’ +C Z Z t2(m71+j q) Z Q# ;T ¢,
7j=1 ¢=0 r=0

m—1

<Oty (o0t

q=0
The result now follows from (4.1.1) and (4.1.4).

Lemma 4.3 Ifm >0, ¢ € WZ((0,T); Loo(2)%) and
MEG e WEO,T) for0<k<m+1,

with

(OIMF$)(0) =0 for1<qg<k—1landl<k<m+1,
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then

O T (vo) (1) < C‘gggéz s+ gD ()| for 0 <t <T.
=0
Proof. By Lemma 3.1,
[arsiarze vl = S5 Mz )| < O3 oM T w0
j=0 4=0
(4.1.5)
and in turn,
HMIT (o) = Y | AT MM ().
k=0
Since W1k — G (9,TV)TwHit1-k = g(§I T FTit1-kyTutl — ggutl
for0<k<j+1,
‘ _ Jj+1 _ A j+1
[ MITTH () (1)]| < C> AT FME()|| = C > loFT T MF (o) ()|
k=0 k=0
j+1
=Y [T O ME (o) (1)
k=0
(4.1.6)

where, in the last step, we used the fact that 9 M*(¢)(0) =0 for 0 < ¢ < k—1.
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We have

E

OEMH (1) = O (M 6) = (k>¢(’“‘q)0§’/\/l’“¢

p; q

"k
_ Z (q) ¢(k—q) afﬁqu—(q—T)aZQg,
q=0

r=0

Il
_R O

and hence

k q
IZHOF ME () ()| < C D (T Moy ¢ (8) |

q=0 r=0
k q t
—OY Y [Cwnlt - st 0 ) ds
q=0 r=0 0
k k
< €3 (g 10N ) D s )0
r= q=r
The result now follows from (4.1.5), (4.1.6), and (2.1.1) |

4.2 Regularity in time

In this section, we estimate the time derivatives of v and Vu. In Corollary 4.2.1

we show that if g(t) = 0 then, with m > 1 such that (3.1.4) holds,

™ @) < Ct|lugl| - and VU™ (B)]] < O lug|| for 0 <t < T,

where u(™ := 9™u. In contrast to classical parabolic PDEs, the fractional prob-
lem (3.1.1) exhibits only limited spatial smoothing for ¢ > 0, because of the slow

decay of the Mittag-Leffler function. In section 3.2, we estimate u(¢) in fractional
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Sobolev norms. For example, Theorem 4.5 shows that if uy € H?(Q) and g(t) = 0,

and if k is Lipschitz and €2 is convex, then
™ ()] 20y < Ct ™ ||uol| g2y for 0 <t < T.

The above estimates is very important to perform the error analysis [38] of nu-
merical methods for fractional problems of the form (3.1.1).

In this section we aim to estimate higher-order time derivatives of u assuming
appropriate bounds on the higher-order time derivatives of g, and the smoothness
of the coefficients in (3.1.1) is required. Noting that, the existence of the higher-
order derivatives of u could be done using the same technique that used to establish
the wellposedness of the weak solution in the previous chapter.

To show our results we will assume in addition to (3.1.4) that [|gU=Y(t)|| < Ct*
for 1 < 7 < m. We introduce the following notations by extending them from

section 2.3, put
B¢ = ol MIT (0,7 "¢) = (MIB¢)Y)  and Q! (¢,1) = QY (M), 1)

for0<pu<1,j€40,1,2,..},0<t<Tandie {1,2}, with Q% = Q7 = Q5.

The next result relies on Lemma 4.2 from section 2.3

Lemma 4.4 For 0 <t <T and form > 1,

) + QT (V) < C1t 30 QM(f ),

Jj=0
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and

Q"™ (u,t) + QP (V1) < €Y QY(f,1).

J=0

Proof. Since (Z*Vu)(0) = 0 by part 4 of Theorem 3.4,

¢ ¢
/ (kVOLu(s), Vv) ds = </{/ (ZVu)'(s) ds, Vv> = (k(Z°Vu)(t), Vv),
0 0
and by Lemma 3.1,
m—1

M"IOVu =TI M™"Vu+ Y d I MOV,

J=0

Thus, multiplying both sides of (3.1.5) by t™ yields

(M™u,v) + (KI*M™Vu, Vo) + Z 17RO MIV ), Vo)
j=1

= (M™Bgu, Vu) + (M™ f,v)
for v € H(2). We have
OMIrM I MIV Y = & I ITOMIVu = VT MOV u = I%0] MIVu,

where the final step follows by Lemma 3.1 because 9 (M7u)(0) = 0 for 0 < i <

j—1 < m—1. Likewise, 0/"Z*M™Vu = Z°07" M"™Vu because &/ (M™Vu)(0) = 0
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for 0 < 7 < m — 1, and therefore

(07" M™u,v) + (KZ°0] M™Vu, Vv) = (Bx"u, Vv)

3

— Y dRIOO MIV U, V) + (9 M™ fv). (4.2.1)

<.
I
o

We let E(u) = 2||B;;’mu||2. By the Cauchy—Schwarz inequality,

m—1
(O M™u,v) + (KI*0;" M"Vu, Vo) < E(u) + C > | T°0] M/ Vul*

7=0

+ 3lIVoll* + 3lvl* + (07 M™ £ v).
Choosing v = Z“9;" M™u and integrating over the time interval (0,t), we have

(fz,m(U,t)—i—%Q Vut / (C: dS+CZQ V'U,t
Q5 u,1) + / (O M £, T00 M) ds
0

By the Cauchy-Schwarz inequality, and the inequality (2.3.8) with 0;"(M™u) in

place of ¢/,

t t
/ (O M F, T M) ds < / 10 M | [ T0m M| ds
0
t ’ 1/2 t 1/2
gC(/ (t—s)o‘||(9f“Mmf|’2d8> (/ (t—s>—a|\zaagwmu||2ds)
0 0

< c(e@mrn) " (T e )

< Ot QM (f 1) + 397" (u, 1)
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Thus, the function qn,(t) = Q7" (u,t) + Q3" (Vu, t) satisfies
t m—1 '
am(t) < 2/ E(u)ds+C Z Q57 (Vu, t) + Ct* Q%™ (f,1).
0 =

By Lemma 4.2,

Q(BE™u,t) < CY Q5 (u,t) (4.2.2)

J=0

By combining the above estimates,

m—1

Am(t) < CQF™(u,t) +C > q;(t) + Ct* Q™ (f,1).

i=0

Consequently, we conclude (recursively) that

An(t) <O 057 (u,t) + Ct > QY (f,1),
j=0

J=0

so, by applying Lemma 2.2 with ¢ = (MJu)V),
Am(t) <Ot QY(f,1) +C Y T%(t)

J=0 J=0

Therefore, a repeated application of Lemma 2.5 yields the first desired estimate.
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To show the second estimate, choose v = 9]*M™u in (4.2.1) and obtain

18 M2 + (KO MMV, O M™ V) = —(Eu, 9" M™u)
-1

— ?”’a(/ﬁIa@tijVu, 0" M™Vu)

3

<.
I
o

+ (0" M™ f, 0" M™u),

where Fu =V - Bg’mu. The first and the last terms on the right-hand side are
bounded by

[Eul® + 107 M™ £ + 5107 M™ul?

so, after integrating in time and applying (2.3.2) (for a sufficiently large n),

t
1QU™ (u,t) + Q4™ (Vu, t) < / 1Bu(s)|* ds + Q™™ (f.1)
0
m—1

+ 300 (Vu, t) + C Y Q1 (Vu,t).
=0
Since V - (FO}~u) = (V - F)3}~“u + F - V}~®u, we see that
V- BE"u = oM™ (V - (ﬁ@tl_au)) = B u+ BE"Vu,

and therefore, applying Lemma 4.2 followed by Lemma 2.4,

/OtHEu(s)szs < 4(QO(V : B;’mu,t)>§ czmj( I (u,t) + ngf'(w,t)).

J=0
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Hence, the function q,,(t) = Q%™ (u,t) + Q7" (Vu,t) satisfies

m—1 m
Am(t) < 2Q""(f,1) +C > QM (Vu,t) +C Z( 57 (u,t) + Q37 (Vu, t)),
=0 =0
and so, using (2.3.3) and (2.3.4), it follows that
m—1
G (1) < 2Q""(f,8) + €'Y a5(t) + C( Q5™ (u, 1) + Q5 ™(Vu,1)).
=0

By Lemma 2.2 and (2.3.4),
O, 1) + Q5 (Vi t) < CTu(s) ds,

and thus by Lemma 2.5,

m—1

Am(t) < CQ™™(f,1) +C > q;(t).

J=0

Applying this inequality recursively gives

anlt) < O QY (1,1,

J=0

which completes the proof. |
In the next theorem we estimate the fractional time derivatives of u and Vu. Such
estimates will help us in the study of properties of spatial regularity reflecting the

presence of the time derivative of (3.1.1).
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Theorem 4.1 Form >1and 0 <t < T,

m+1
107 w) ()17 + [0 Va) (D> < Ct72m >~ Q¥ (f,1).
7=0

Proof. Since MO = "M — md;"*, we see using Lemma 3.1 (and setting

bmm=1 = 0) that

m+1
MO = MO M — mM™ O = (B = mb T ol MY
j=1
and hence
m—+1 . ‘
(Mo u) (@) < C ) 10 Miu)(2)]? (4.2.3)
j=1

Using Lemma 2.3 with ¢ = &/~'MJu and the first bound in Lemma 4.4, we get

J
10" MPu)(0)]|> < CH QA Mu,t) < Ct Y QY (f,1)

=0
and so

m+1
1@ ) (@)|F = 22| (M™ o u)(0)]* < CH1 2y QM (f ).

Jj=0

Applying the same argument to Vu in place of u, and using the second bound in
Lemma 4.4, the result follows. |
Next, we estimate fractional time derivatives of u and Vu. These bounds will later

help in our study of spatial regularity, reflecting the presence of the fractional time
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derivative in (3.1.1).

Theorem 4.2 Form >1 and 0 <t <T,

m+1
1@ =u) () > + e (@~ Vu) (1) |* < Cr'720m=) Y = Q0 (£, 1),
=0
Proof. Using the inequality (4.2.3),
[ wy @) = (Mmoo —w)@)|]* < ¢ Y[ @F - Mo w) @),
j=1

(4.2.4)

and using (3.1.9) and (2.3.6),

MO, u = MOTu = M(Z°0u + u(0)wa) = (Z°M + aZ*")0pu + u(0) Mw,

=ZMu' + oZ%(u — u(0)) + cw(0)wira = Z*(Mu' + au).

Thus, by Lemma 3.1,

<.
I
—_

MIO} = MITITH MU + au) = B et T =M (M + au).
0

~
Il

We have

o T M (Mt au) = 9[0T TOM (M + aw)

= T MY MY + au) = IO M (MY + au),
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where we used the identity (2.3.6) and the fact that

M (Mu' + au)(0) =0

for 0 <i < /¢ —1. Hence,

H(aj 1M]81 a )

j—1
- [Sartzamion o] < 0 S 1z

=0

where ¢y = O M*(Mu’ + au). Using Lemma 3.1,

y4 y4
= @ MO M + au) = a M (MO + 0 ! + adju)
=0

=0

and so, by Theorem 4.1,

/41 {41 r+1 ' 442
lpe(®)]I* < CZ (M) @)|P <CY 1Y QY (fty <ty QM (f,1)
r=0 =0 r=0

(4.2.5)

Since ||¢(t)|| < Cwija(t)e(t) where 1y(t) \/ZHQ Q07 (f,t) is nondecreasing,

we see that ||Z%¢(t)|| < Cway1/2(t)be(t). Therefore,

j_

[ M w)t)]]” < O3 I Z0u(t)))?

£=0
Jj—1 Jj+1

<C (t(a+1/2)_1)2¢g(t)2 < Op2e—1 Z Qo,e(ﬁ t).
=0 =0

and the desired bound for ||(9;" %u)(t)||* follows at once from (4.2.4).
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Replacing v with Vu in the preceding argument, we have

m Jj—1
| (MM —Vu)( <CZH AT MIDT V) ( ZZHI‘“ (t)]1?

/=0

where,

¢ = M (MVYU + aVu)

and hence ||¢,(t)|| < Cw—ay/2(t)e(t). It follows that | Z%¢,|| < Cwiitay/2(t)1e(t)

and so ta||(/\/lma;"—avu)(t)]]2 is bounded by

m—1 m+1
Ct® Z HIa¢ HQ < Ot Z(t(1+a)/271)2w£(t)2 < Ct2a71 Z Q()’e(f, t),
=0 (=0
as required. |

To summarize the previous bounds we can easily conclude the following result.

Corollary 4.2.1 Let m > 1 and suppose that g : (0,T] — Lo(Q) is C™ with

gD )| < Mt for 0 < j < m and some n > 0. (4.2.6)

Then

1@ @) (@) + 2] (0 Vu) (O] < O™ (lluol| + M)

and

1@ w) (@) + 1@ V) )| < Ct* " (|fuol| + M2").
Proof. Since ||[fO#)|| = [|gV=P(t)|| < Mt" for 1 < j < m + 1, Lemma 3.1
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implies that

[(MIF)D@) < CME" for 1<j<m+1, with [|[fE)] < [luoll + Mn~'¢".
(4.2.7)

Thus,

QY (f,t) < CM**"™ ! for 1 < j <m+1, with Q°(f, 1) < Ct(|Juol| + Mt")?,

SO
m+1
YT QY (f.) < O (ol 4 Mty
=0
and the result follows from Theorem 4.1 and Theorem 4.2. |

4.3 H’-regularity in space

In this section we will investigate further the relation between the regularity of u
and that of the initial data uy. As a result, Theorem 4.5 generalizes Corollary 4.2.1

which helps in studying the error analysis of a finite elements discretization of
the fractional Fokker-Planck equation [29]. The fractional PDE (3.1.1) can be

rewritten as

u — V- (k0 *Vu)=w forz€Qand0<t<T,
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where

w=g—V-(F9, "u).

Now we are able to apply known results for the fractional diffusion equation to
establish the following bounds in the norm |[v||, = |A*/2v|| of the fractional
Sobolev space H*(€2), where A*/? is defined via the spectral representation of Av =
—V - (kVv) using the Dirichlet eigenfunctions on €2 [37, 51]. Results of this section
require H?-regularity for the Poisson problem. To ensure this property we make

the following assumptions [16, Theorems 2.2.2.3 and 3.2.1.2]
k is Lipschitz on Q (4.3.1)

We also require that g satisfies (4.2.6). Next theorem result does not require any

additional smoothness of wy.

Theorem 4.3 Assume (4.3.1) and (4.2.6). If ug € Lo(2), then
™| u™ (t)]|,, < Cluollt /2 + OME"™#/2 for0 < p<2and0<t<T.

Proof. = We have [37, Theorems 4.1 and 4.2, and the inequality stated after

Theorem 5.4]

m t
™ (@), < CEH 2 fuol + CZ/ (t = )72 |w(s)] ds
j=0"0
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for m > 0 and for 0 < p < 2, with

J
@ (s)[| < 0 g(s)]| +C > (l|8f““"vu<s)|| +10;Vu(s)l|
=0

+ g e sl + 9fu(s)I).
By Corollary 4.2.1,

J
Hw(j)(s)H < Mg 1-i +CZ(Sa/2—Z—1 +8—a/2—£+8a—£—1 _i_s—f)(HuOH —|—MS77)
=0

so s7[|w)(s)|| < Cllugl|s*/?>~* + Ms"* and hence

t
[ (=520 5) ] ds < Cllual e * gz) (O) + CM (- <)1)
0

< C(HUOHt(l—u)a/? + Mt"‘““/Q),

completing the proof. |
The first estimate in our next result shows that u(t) — wo in the Ly(€2)—norm
if we impose some additional spatial regularity on the initial data, namely if
uy € H #(Q) for some p > 0. The second and third estimates extend the results

of Corollary 4.2.1.

Theorem 4.4 Assume (4.3.1) and (4.2.6). If 0 < u < 2 and ug € H*(Q), then

|u(t) — uol| + tO‘/QHV(u(t) —u)|| < C|uo | " 4 Mt",
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and, form > 1,

[u™ @) + 2 Vul™ ()| < Ct ([luo| /2 + Mt")

with

107~ ()| + 219~ Vu) (@) < Cto™ (|fuo | /2 + M2?).

Proof. Introduce the solution operator u(t) = U(ug,g,t). By linearity, u =
uy +ug where uy (t) = U (up, 0,t) and uy(t) = U(0, g,t). In view of Corollary 4.2.1,
it suffices to consider u;. Let w(t) = uy(t) — ug so that w(0) = 0, and suppose to

begin with that uy € H?(Q). Using (3.2.7), we find that

(w(t),v) + (K(Z*Vw)(t), Vv) — ((Biw)(t), Vo) = (p(t), v),

where

p(t) =7I°V. (HVUO) -V- 31U0.

Since (Z%ug)'(t) = uowa(t), and recalling the definitions (3.2.5), we have

so [|pU Y (t)]| < C|lugl|2t*~7. Therefore, by Corollary 4.2.1

[ ™ (@) + 22|V ™ (@) < Ot (w(0) + [fuol2t™) = Clluoll2t*™™,
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which proves the result for integer-order time derivatives in the case y = 2. Sim-

ilarly, for the fractional-order time derivatives,

107 “w(t)|| + 2|07~ Vw(t)|| < Ct* ™ (w(0) + |lugl|st*) = C** ™ |lu]l2,

completing the proof for = 2. Since Corollary 4.2.1 also implies the case p = 0,

the result follows for 0 < 1 < 2 by interpolation. I

Theorem 4.5 Assume (4.3.1) and (4.2.6). If ug € H*(Q), then

[u @) < O (fuoll b2+ A7) for 0 <t < T

Proof. We know from Theorem 4.3 that

[ @)l < Ot ([l + M), (43.2)

Thus, by linearity, we may assume that g(t) = 0 and so M = 0. Integrating (3.1.1)

in time, we see that

u—V - (kVI®)+ V - Byu = uy.

Applying the operator 9,Z'~* to both sides,

—V - (kVu) =p where p=09ZI" *(ug—u—V-Bu).
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Since —V - (kVu™) = p(™ in Q, with u™(t) = 0 on 09 for 0 < t < T, it follows

by H?-regularity for the Poisson problem that

lu™ @]z < Cllp™ @)]I. (4.3.3)

Using the identity (2.3.6),

p=1I'""%0, (uo —u—V - Bu)

— T — T (V - (FOl°u)).

Lemma 4.3 and Theorem 4.4 imply that

m

tm“H@{”Il’“u’(t)H < Congaft 817a+1+jHu(j+1)(S)H

< C'max s *(JJug|25%) = Ctlluoll2.
0<s<t

Since

V- (FO}u) = (V- F)0} “u+ F -0} *Vu,
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we see from Lemma 4.3 and Theorem 4.4 that

g+l Hatml'l—a (V . (Fatl_au)) (t) H

m
< Cmax > st (|9 (01 w) |+ 9202 V) )
a4
m
=Cmax ) s~ (IIaﬁ“‘“ull + ||8§“‘“vu||>
a4

< € max s (s* + 5°7%)(Jluollos”) < CE ol

Thus,

" W @] < O+ 72+ 27) [Juol2,

showing that t™||w™(t)|| < C||ugl|2 and therefore, by (4.3.2) and (4.3.3),

™ @)z <t o2,

and therefore, the proof is completed now.
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CHAPTER 5

CRANK-NICOLSON

NUMERICAL SOLUTION
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In the next section we propose a time discretization scheme that based on
Crank-Nicolson method for the model problem (3.1.1). In section 2 we consider
finite elements to discretize the space. In section 3 we prove the stability of the
time discretization scheme. The error bound for the time discretization scheme
is derived in section 4. In the last section we combine the time-stepping Crank-
Nicolson scheme with the finite elements in space, this will define a fully discrete
scheme, we also prove the existence and uniqueness of the solution for the fully

discrete scheme.

5.1 An implicit Crank-Nicolson time-stepping

scheme

We discretize in time the model problem (5.3.2). To do so, we let 0 = ¢y <
t1 < ty < -+ < ty = T and we use a time graded mesh with the following
nodes t; = (ik)” for 0 < i < N with v > 1 and k = TY7/N, where N is
the number of subintervals. Denote by k, = t, — t,_1 the length of the nth
subinterval I,, = (t,_1,t,), for 1 <n < N. In our notation, we will often suppress
the dependence on z and think of u = u(x,t) as a function of ¢ taking values
in Ly(€2). Integrating the fractional Fokker—Planck equation (1.1.1) over the nth

time interval [,, gives

u(tn)—u(tn_l)—i—/ (93a.z4udt:/ g(x,t)dt. (5.1.1)

In In
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where

Au = —V?u+V - (Fu)

We seek to compute U"(x) =~ u(z,t,) forn =1, 2, ..., N by requiring that
ur -yt +/ O AU dt = k,g" (5.1.2)
In

Wlth Fn(x) — F(l‘7tn_%>7 tn_ — % and U — U"L-i,—é]’flfl

1
5 9

gtk [, g(w,t)dt.

The time stepping starts from the initial condition

U(z) = up(z) for0<x <L, (5.1.3)

and is subject to the boundary conditions U"(z) = 0 for x € 99 where 1 <n < N.

5.2 Stability of the numerical solution

In this section we show the stability of the semidiscrete approximate solution U

of (5.1.2) in the following theorem.

Theorem 5.1 Consider the implicit scheme (5.1.2). Assume that the driving

force F = F(z) satisfies that

_ 2
V-FZM on €
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then

lo < el +2 191

j=1
Proof. Taking the inner product of (5.1.2) with U™,

(um—unt um +/ (O}~ AU (1), U(t)) dt = (g™, U™

In

where

AU = -V?U +V - (FU)
Now, using the given assumption on F

(AU, U) = (-V*U +V - (FU),U) = |VU|*> - (FU,VU) > 0. (5.2.1)

Let U™ = maxg<,<y ||U"||. Summing the above equation from n = 1 to n = n*

gives

n*

t - -
20O +2 / OV AT (1), U() dt = S (g, U™ + U™Y).

n=0

lo™

Using (5.2.1) it follows that

lo™

PO+ 200 Y gt < o

n=0

(oo +2) " lg™ )
n=0

which implies the desired result. I

81



5.3 Error bound from the time dicretization

In this section we estimate the error e” = U™ — u(t,,) when U™ is given by:

Ur—urt4 [ 0 (AU) dt = k,g" (5.3.1)

In

and v is the solution of

u' 4 (8, " Au) =g, (5.3.2)

Integrating (5.3.2) from t = t,,_; to t = t,, shows that the exact solution u satisfies:

ult) — ultn_1) + / (0 Au) dt = kg

In

Comparing this with (5.3.1), we observe that the error e” satisfies:
R / (0}~ Ae)dt =n" (5.3.3)
In

where

"= / ; (077 A(u — u)(t)) dt (5.3.4)

tn—1

since €” = U® — wy, the stability result in Theorem 5.1 implies that

el < 100 = woll +2 3 ] (5.3.5)

j=1

In next theorem we estimate the error from the time discretization. Some impor-

tant results will be used from Mustapha [41].

82



Theorem 5.2 (convergence Theorem) Let u be the solution of the initial-

value problem (5.3.2) and let U™ be the solution of the discrete-time scheme (5.3.1).

Assume that the initial data ug € H*(Q) and Assume that

|’ (@)l + £l (@) < O

Then, for 1 <n < N, we have

103 = u(tn)ll < UK —uol| + Ch* +C x

O<n<a+2, 0<t<T.
)
ke ifl1<y< et
ko max(1,log(t,/t1)) if v = <2
o+t if y > o

\

Proof. By the achieved inequality in (5.3.5), the task reduces to estimate ||77||.

Thanks to Lemmas 4.1, and 4.2 in [41]

where the following estimate was proved.

n t
2y Il <C (/ )| A (£)[] dt + kg A (k) || + k5[ Aw (£) ]
=1 0

tj

+ Y kT / AU (s)[| ds + > kst (k; — kjl)nAu'(tjl)H) (5.3.6)
=2 -1 j=3

tj

From regularity properties of our solution u (see Theorem 4.5) we have the fol-

lowing;:

[ AW @) + t]| Au” (2

| <ot +meh,. (5.3.7)
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Substitute the above estimates in (5.3.6) we get :
t1 t1
/ | A (8)]) dt < / e at < Ot +t]) < Cte < Ok,
0 0
. ]_—]_/'y .
Since k; < vkt for y > 1,

KA ()] < CRSH(E !+ 87771 < CRettg T (e 4 4])

< C«ka-l-lt?é—(a'*‘l)/’Y
= j
Using k§*! > k1 and

A (£5-1)I] < | Au'(£5) — Au’(t;-2) || + [l A (2;)]

tj
- / A" (s)]| ds + | A (1)

j—

we get the following estimate

K5 (kg — k) | (t-0) || < (RF = B0 A (85-0) |

tj
< o / | Ad”(s)] ds
1

j—

o KA ()| = kg A (8-a) )
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This implies

tj
Zka ki—1) || AW (t-1)]| <Zka+1/ | Au" (s)]| ds
t

7j—1

T AW ()| — RS A (22) -
By (5.3.7),

t; tj
[ elds < [Tt as =i g o 22

-1 -
Therefore,

n

t;
3 get /t A" (s)]| ds

7j=2 j—1

Y * " o - a a—(a+1)/y—1 —(a+1)/v—1
<SRG (2 + 0T < O ket gy (g DT g et o
j=2 =
(
t(lli(Ha)/v if o — 2t <0
B!

tn
< Ckaﬂ/ (to- e dr < Ok x max(1,log(t,/t:)) if a= QTH

t1

a=(erl)/y if a — 2L >
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Regarding the term k|| Av/(¢,)||, again by the regularity property in (5.3.7)

R A ()| < BT+ 170

< Ck;a+1tg—(1+oc)/w

ko (nk)or—(1+0) < gov if q — oL <

<(Cx !
kol if @ — O‘TH >0
Inserting the above contribution in (5.3.6) will complete the proof. I

5.4 Well-posedness of the fullydiscrete solution

In this section we show the existence and uniqueness of the solution of the fully

discrete scheme (5.4.1). Our discrete-time solution U™ € Hj () of (5.1.2) satisfies

<U”—U"‘1,v>+/ (0}~*VU, Vv) dt—/ (F"0}~U, V) dt:/ (g,v) dt

for all v € H}(Q).

For the spatial discretization via the standard Galerkin finite elements method,
let 75, be a family of regular triangulations (made of simplexes K) of the domain Q
and let h = maxge7; (diamK'), where hy denotes the diameter of the elements K.
Let S, C Hi(€) denote the usual space of continuous, piecewise-linear functions

on 7 that vanish on 0f).
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We therefore seek a fully-discrete solution U}’ € S}, given by

(U — U )+ / (01T, Vo) dt — / (PO, Vo) dt — / (g,0) dt,

In In In

(5.4.1)

for all v € S},

Theorem 5.3 For k sufficiently small, the solution U}’ of the fully discrete

scheme in (5.4.1) exists and is unique.

Proof. We assume that (5.4.1) has two solutions U}*, and W}'. Then, Q} :=

Uyl — W} satisfies

(@Qr— Qo)+ / (0} *VQp, Vo) dt — / (F"0}=Qp, Vv)dt =0. (5.4.2)

In, In

Therefore, after integrating, we get:

1 1 _
(Qr,v) + §w11<VQ}L, Vou) — §w11<FQ}L, Vu) =0  forn=1,

where we used the fact that Q) = 0.

Choose v = Q}, then apply Cauchy-Shwarz inequality and € inequality,

1 1 1
IQLI” + SR IVQLIP < S-CRUIQLI + Sh e VQL I

1 1
= (1= S CR)Qi + Sk (1 = VLI < 0.

Therefore, for k sufficiently small, ||Q}]|> < 0. This implies that @} =0 .
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In a similar fashion, we show that Q? = 0 using Q} = 0. Recursively, we can show

that Q) =0 forn > 1.
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CHAPTER 6

L1 APPROXIMATION SCHEME
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This chapter is devoted to discuss the time-stepping L1 numerical method com-
bined with the finite elements in space. As mentioned earlier, the time-stepping
L1 scheme has some advantages over the Crank-Nicolson scheme in terms of the
convergence rates. In section 1, we define the computational scheme. Then, the

error estimates are established in section 2.

6.1 L1 finite elements scheme

Recall that our time-fractional Fokker-Planck equation,

Ou(z,t) — V- (0} ko (z)Vu(z, b)) + V - (FO}“u(x,t)) = g(z,1), (6.1.1)

with initial condition w(z,0) = wv(x), and subject to homogeneous boundary
Dirichlet boundary conditions. The diffusivity coefficient 0 < ¢y < ko(z) < ¢; on
Q) for some positive constants ¢; and c,.

For the error analysis part, we assume that

W' (8) |2y e (8) |2y 82| e (8) | 2y < C°~F, for some o > 0. (6.1.2)

To define our schemes we introduce the following notations:

fort,_1 <t<t,,
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and the piecewise-linear interpolation function
O(t) =" (t—t,_ )0V fort, | <t <t, (6.1.3)

Integrating the weak formulation problem in (3.1.1) over the nth time inter-

val I, gives

(u(ta) = ulta1).0) + [ (A" u(®).hde+ [ (9 (PO u(t). o) dt = (5.0}
In In

(6.1.4)

for all v € Hy(Q), with g" = [ I g(t)dt. For the fully discrete computational

solution, we seek u}l € Sy (see section 4.2 for the definition of Sj,) approximates

u(t,) such that, for 1 <n < N,

kn(Ouy,, vp) +/ (O} A(tiy (1), vp)) dt +/ (V- (FOF (1)), vp) dt = (g™, vp)
I, In

(6.1.5)

for all v, € Sy, with u) = Rjv, where Ry, : Hj(2) — S, is the Ritz projection

defined by

A(Rpw, ¢) = A(w, ¢), for all ¢ € S),.
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6.2 Error analysis

For the error analysis, we follow the approach in [Mustapha, [44]]. We start by

the following decomposition
up — u(ty) = (up — Rpu(ty)) + (Rpu(t,) —u(t,)) = 0"+ p", for 1 <n <N.
From the Ritz projector approximation property,
17| < CR?||u(tn) 2@y for 0 <n < N. (6.2.1)

Thus, the main task now is to bound the term #". A preliminary estimate will be

derived in the next lemma. For convenience, we introduce the following notations:

= / O Al — a)(t)dt amd 1§ = pltars) — plts).

In

Furthermore, for ¢ € I,,, let n,(t) = 0} and let no(t) = n5.
Lemma 6.1 For1 <n < N, we have

n

. 1 . )
16°12 < Ct > (- (12 + 1))
j=1

Proof. By comparing (6.1.4) with (6.1.5), we get

k(00" vy) + / A(@l}*aé(t),vh) dt + / (V(FO}=20(t)), vp) dt = (nt 4+ 0%, vn),

I, In
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for all vy, € V},. Choosing v, = 06™ = 0,0(t) for t € I,,, we reach

k0672 + / A(0F- (). 00(0)) dit - / (FOL20(¢), VO0()) dt = (m + g, D6™).

n I’n

Summing over n, we observe that

n

n . . . tn ~ ~
> killog7|? + 0" = (i + m, 06) +/ (FO,~0(t), Vob(t)) dt
0

j=1 j=1
where

tn
o = / A(a;—aé(t)dt,até(t)) dt.
0

We bound the last term in (6.2.3) as follows:

t7L o o tn - o
‘ / / FOI4(t)VO,0(t) dfcdt’ - ] / F / T°8,6(t)V,(t) dtdaz‘
0 Q Q 0
tn . .
< / |Fw / T°8,0(t) V(1) dt‘dm
Q 0
tn 5 5
<C / \ / To8,0(t)Va,0(t) dt)dx
Q 0
tn . . tn . .
<C / (1 / T29,0(1)8,0(t) dt + < / ToV8,6(t)Va,0(t) dt) da
o \ 2€¢ Jo 2 Jo

=C. /tn (Z°0:0(t), 0,0(t)) dt + e/tn (Z9V,0(t), Vo,0(t)) dt
0 0

(6.2.2)

(6.2.3)

=C, /tn (Z%0,0(t), 0,0(2)) dt+e/tn (Z9V,0(t),Vo,0(t)) dt. (6.2.4)
0 0

Choose € = 1 and then inserting (6.2.4) in (6.2.3) yield

n

n . 1 < 4 . tn . .
S 0071 + 50" = St +d00) + € [ (z0te) o) i

Jj=1 Jj=1
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An application of the Cauchy-Schwarz inequality gives

n

> (m +m, 007) Z 1| + 111 [1967]] < Z( HU1H2+ Im11%) + J\\39j!\2>-
: ] 1

j=1
(6.2.6)

Using Cauchy-Schwarz inequality, e—inequality followed by Lemma 2.2,

tn

tn . . . .
/ (Z°0,0(t), 0(t)) dt < / 1Z28,0()|110,6(1)| dt
0 0
tn . tn _
< / |Zo0,6(1) | dt + ¢ / |06 () |2 dt
0 0
n S tn .
<y / ot — 5) / 10:6(q)|> dg ds + ¢ / 10,6(6)]? de
j=171 0 0
n tj . tn 5
<caey / waltn — 5) / 10,6(q) |12 dg ds + ¢ / 10,6(t)|2 dt
= 0 0

n . tn ~
gC’ethzj/ Wa (tn — 5) ds+e/ 0:0(t)||*> dt  (6.2.7)
= I; 0

where 27 = [17[|0,0(t)|1? dt.

Using
n ) tn .
S k10072 = / 106(1)| dt
=1 0

and then inserting (6.2.6) and (6.2.7) in (6.2.3), give

tn .
/ 10:0(t)||* dt + O™ <
0
n tn o
> (P + ) )+Cta2zf [ wattn=syas e [T ppitoa

J=1

z/ 0:(e))1 t<2( (12 + 1) )+Ctazzf/wat ~s)yds

(6.2.8)

94



Therefore,

3 <cz( (1 + 1) +Ctazzf/wa

By the Gronwall inequality in Lemma 2.6, we get:

. N "1 . .
2" < CEa(CE) Y (Il + 1)1 ).

j=1
Combine the above contribution with the following inequality
n .
167(1* <t > kill067)1%,
j=1

will complete the proof. I

In the next theorem, the error bound for the fully discrete scheme is derived.

Theorem 6.1 (Convergence Theorem) Let u be the solution of problem
(6.1.1). Let uy € Sy, be the solution of the fully discrete scheme (6.1.5). Assume

the reqularity properties in (6.1.2) with % < o < 3 hold true. Then

(

ky(ato=1/2) if1<vy<2/(a+0—1/2)
i —u(ta)| < Ch*+C'x § k2 max(1, /log(ta/ta))  if ¥ = 2/(a+ 0 — 1/2)

k2 ify>2/(a+0—1/2)

\

Proof. From [Mustapha, [44]] we have

In? < C(k27("+°‘) gt g gt =2 k4k§t§<a+”‘1—2/”>.
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Therefore,

1 / 1 ato—1— ato—1—
k_”n{HQ S C(yk,?’y(a—i-a) + k,2+’y(a+a)tj+ 1-2/~ +k4k‘jt§( +o—1 2/7))‘
J J

Using
i
kij=tj—tia=kK0G" -0G-1))= VW/ Ot > k(G- 1)
7j—1

implies that

1
= < CLk™7(j — 1)t 7.

<

1. 1 —~ 1,
ST 2 — L2 a2
> (7 WIE) =5 okl > (1P

j=1

1 - o)1) - _
< o lml? + ) ORI — 1)t
=2

+C Z k2+'y(a+a)t;¥+0—1—2/v +C Z k4kjt§(a+o—1—2/7)
j=2

j=2
< Ckr@leto)=1) 4 (C’kﬂ@(”*a)’l)) ZO — 1)
j=2

+ Ckﬂ/(2(a+a)71) Z‘j'y(a+a)f'yf2 + CZ k4/ 2f2(04+07172/fy) dt.

=2 j=2 I
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ln
Zk4/ t2(a+0—1—2/~/) dt = ]{34/ t2(a+cr—1—2/'y) dt

j=2 [j to
(
2T i o(a o) — 2 —4)y < —1

= CK' X S log(t,/ts)  if2(a+0)—2—4/y =1

et o (a o) =2 —4)y > —1
\

¢

BT 1<y < 2/(a+ 0 —1/2)

= Ck* x log(t,/t2) if v =2/(a+0—1/2)

et ey s 9 (a0 — 1/2)
\
)

et if 1 <y <2/(a+0—1/2)

< O X klog(ty/ts) ity =2/(a+0—1/2)

k* if v>2/(a+0—-1/2)

\

For the series in the term

L (2(ato)-1) Z jv(a+0)—v—2

=2

it converges only if 2+~ — v(a + o) > 1 which implies

ifa+o<1l=~v>1/(ae+0—1) which is true for any ~

fato>1=1<y<1l/(a+0—-1)
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Therefore we can combine the above results as follows

n

k'y(2(a+o)—1) Zj'y(a+o)—'y—2 +C Z k’4/ t2(a+cr—1—2/'y) dt
j=2

=2 I

¢

et if 1 <y <2/(a+0—1/2)
= O X klog(ta/ts) ity =2/(a+0—1/2)

K if v>2/(a+0—-1/2)

\

2

For the case (o + o) < 1/2 it is contained by the first case since v > Py

become the right hand side is negative and v > 1. The first series on the left side

is convergent by the integral test. Therefore,

(

ot if 1 <y <2/(a+0—1/2)

> (%Hnillﬁ = O X kY og(ty/ty) ify=2/(a+0—1/2)

k* ify>2/(a+0—1/2)

\

Using (6.2.1), followed by regularity assumption (6.1.2) one can conclude that

Indl < e ( / l(t)l2dt)” < Cnt( / ©tdr) < Cntiee

J
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Hence,

n

1 . -~
Ej(gﬂmw )<CM§:kkzﬂ )

Jj=1

t’IL
go#}jw?*gcm/ ¢ gt

t1

log(t,/t1) ifo=1/2
< Ch* x

201 if 0 >1/2

Combining the above estimates leads to:

DS (5 e+ ) ) <

7j=1
r

preta-lif 1 <y <2/(a+0—1/2)

Ct, (h“k”@"l) 9 K log(t,/ta) ifv=2/(a+0—1/2) )

K if v>2/(a+0—1/2)

\

consequently,

/

g(ato=1/2) if1<vy<2/(a+o0—1/2)

10711 < CR2 R CTTDHCx S k2 max(1, log(ta/8)) i 7 = 2/ (a + 0 — 1/2)

2 ity >2/(a+0—1/2)

\
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Combining the above estimates,

g, — utn)ll = 16" + ™[ < CR* + 107 + [0

< Ch?+C x

for 1 <n < N.

(

\

fo(o+o—1/2) if1<y<2/(a+o0-1/2)
k? max(1, \/log(t,/t2)) ifv=2/(a+0c—1/2)

k? ify>2/(a+0—-1/2)
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CHAPTER 7

IMPLEMENTATION AND

NUMERICAL EXPERIMENTS
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In section 1 we discuss the implementation of the Crank-Nicolson finite ele-
ments scheme in one dimension. The implementation of the L1 approximation
scheme is discussed in section 2. The last section contained numerical experiments
that confirm our theoretical convergence results for both numerical schemes. Some

figures and numerical tables will be included.

7.1 Implementations of the Crank-Nicolson fi-

nite element scheme

Recall that, our fully-discrete solution U] € S}, is given by

<Ug—U;j—1,v>+/ (0}~*V U, Vv) dt—/ (F"0}~*U,, Vv) dt:/ (g,v)dt

In In In

for all v € S, and for 1 < n < N, with U = Ruuo. Explicitly, let ¢, € Sy, denote

the pth nodal basis function, so that ¢,(x,) = d,q. S0,

P-1
Up(x) = Z Uydp(xz) where Uyt = Uy (x,) = U™ () = u(wy, ).

p=1

Define the (P — 1) x (P — 1) tridiagonal matrices M and B™ with entries

Mpq = <¢q7 ¢p> and ng = <¢q1‘7 ¢px> - <Fm¢qa ¢p:c>a
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and define (P — 1)-dimensional column vectors U" and G™ with components

Uy and Gy = [} (g, ) dt. We find that

n—1
n n— 1 nyn 1 nyj 1 nyn—
MU" - MU"™! + Cwnn B™U +§anjB U+ wn, BTUM

j=1
1 n—1 n n—1 ' n—1
+ ) anjBnU‘lil + an]‘BnU‘] — an—LjBnUJ _ an_LjBnU‘]fl Syely
J=1 j=1 j=1 j=1
(7.1.1)
where
(,L)nj = / wa(tn — S) ds = w1+a(tn — tj—l) — w1+a(tn — tj) fOI‘ n Z 2.
I.

J

Therefore, at the nth time step, we must solve the following linear system

1 1 n—l
(M + SwnnB")U" = (M — S B") UM + Z Wnj — wn—1,;)BYU
_]21
1 n—1
~3 Z Wnj — Wn— 1] B’“UJ 1 (7.1.2)
7j=1
with ) _
b1 P12 0 0
21 P22 $23 0
M=o 0
Gp—2p—3 Gp—2p—2 Gp—2p—1
0 0 ¢p—l,p—2 ¢p—1,p—1_
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’(/}11 w12 PPN 0 0

o1 a2 o3 .. 0

B=|¢o . 0

Up—2p-3  Up-2,p—2

L 0 o e 0 wpil’p72 ’lj)pinil
521 6-22 623 e 0

§p—2p-3 Ep-2p-2

0 o 0 gp—l,p—Q gp—l,p—l

where ¢i; = (i, 0j), Vij = (02(¢i), 0(95)), &ij = (F" s, 0205),

tn . .
9i = tn_1<g(t)7¢i>, 0<i,j<p-—1
ur g1
u” . an_ |
Ulg_l _gpfl_
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7.2 Implementation of L1 approximation scheme

For the fully discrete computational solution, we seek uj € Sj, approximates u(t,) such

that, for 1 <n < N,

e (DUl v + / (017 A (t), vn)) dt + / (V- (FOun(t)), o) dt = (7", vp) (7.2.1)

I n 1 n

for all vy € Sy with u% = Rpv. Following the notations of the previous section, the fully

discrete scheme (7.2.1) can be written in the matrix form as:

(M + 2o (n) B U™ = (M — o) B") U™ 4 G

n—1 n—1 . .
; Ui — Uit
=D (wnj —wno1) B = Y (&0 — Dpr ) B (T) (7.2.2)
J=1 j=1 J

where

d)nj = WQ+a(tn — tj_l) — WQ+a(tn — tj) — kjw1+a(tn — tj)

7.3 Numerical convergence

The convergence of both numerical methods (Crank-Nicolson and L1) will be tested on

sample example below. Choose

F(z,t) =x+sint, T =1, L=m, ko= la=1,
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where the source term g is chosen so that the exact solution u(x,t) = [1 +wi4q(t)]sinz.

In this example the solution w satisfies the following regularity properties:

]l ()] + £ " ()] < CE2

This valid for ¢ = 2a. Hence, from the error analysis in chapter 4 we expect the
convergence rate of the Crank-Nicolson finite elements scheme to be of order O(k?*7)
for 1 < < L2 and O(k'+9) for v > L2,

Whereas for the L1 approximation scheme, the required regularity assumption is

I’ (O] + £ u" @) < 77

This is valid for o = a. Hence we expect O(k722=1/2)) rates of convergence for 1 < v <
2/(2a — 0.5) and O(k?) for v > 2/(2a — 0.5). The numerical results in Table 6.1 show

a better convergence rate.
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a=0.3

N vy=1 v=2
Crank — Nicolson L1 Crank — Nicolson L1
M.FE. 0.C. M.E. 0.C. M.E. 0.C. M.FE. o0.C.
20 | 6.87e-02 1.72e-02 1.52¢-02 4.46e-03
40 | 4.96e-02 0.47 | 1.31e-02 0.39 | 7.22e-03 1.07 | 2.17e-03 1.03
80 | 3.53e-02 0.49 | 9.73e-03 0.43 | 3.34e-03 1.11 | 1.03e-03 1.08
160 | 2.48e-02 0.51 | 7.04e-03 0.47 | 1.52¢-03 1.14 | 4.78¢-04 1.11
320 | 1.73e-02 0.52 | 5.02¢-03 0.49 | 6.79¢-04 1.16 | 2.17e-04 1.14
640 | 1.2e-02 0.53 | 3.54e-03 0.51 | 3.01e-04 1.17 | 9.72e-05 1.16
Theory 0.6 0.1 1.2 0.2
a=0.3
N vy=3 v=3.3
Crank — Nicolson L1 Crank — Nicolson L1
M.E. 0.C. M.E. 0.C. M.E. 0.C. ME. 0.C.
20 | 9.279e-03 9.08e-04 1.204e-02 5.5e-04
40 | 4.067e-03 1.19 | 2.85e-04 1.67 | 4.493e-03 1.18 | 1.54e-04 1.83
80 | 1.74e-03 1.21 | 8.63e-05 1.72 | 1.95e-03 1.2 | 4.33e-05 1.83
160 | 7.51e-04 1.22 | 2.56e-05 1.75 8.4e-04 1.21 | 1.2e-05 1.85
320 | 3.19e-04 1.23 | 7.42e-06 1.78 | 3.55e-04 1.23 | 3.18¢-06 1.92
640 | 1.34e-04 1.25 | 2.16e-06 1.78 1.5e-04 1.24 | 8.2e-07 1.96
Theory 1.3 0.3 1.3 2

Table 7.1: Errors and convergence rates for different mesh grading v with a = 0.3.

We observe better order for L1 scheme. The errors and convergence rates for

Crank-Nicolson and L1 improved when the mesh is graded. We observe that

the numerical results of Crank-Nicolson are as expected in Theorems (6.1, 5.2).

However, the numerical results of the L1 scheme shows that the theoretical results

are pessimistic.
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Figure 7.1: Surface error for « = 0.3 and v = 1 in the spatial domain [0, 7] using

L1 scheme
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a= 0.3 v=3.5
0.012 ; . : .

—— C-N
—— L1

0.01

0.008

0.006

Error

0.004

0.002

0 0.2 0.4 0.6 0.8
Time

— #0

Figure 7.2: Error in the spatial domain [0, 7] using both L1 and Crank-Nicolson
schemes.
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Figure 7.3: Error in the spatial domain [0, 7] using both L1 and Crank-Nicolson
schemes.
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a= 0.3
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0.016
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Figure 7.4: Error in the spatial domain [0, 7| for different time meshes using L1
scheme.
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Figure 7.5: Error in the spatial domain [0, 7] for different time meshes using
Crank-Nicolson scheme.
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Figure 7.6: Exact solution in the spatial domain [0, 7].
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Numerical (o = 0.3 v =2)

NumericalCN
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Figure 7.7: Numerical solution in the spatial domain [0, 7] using Crank-Nicolson
scheme.
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Figure 7.8: Numerical solution in the spatial domain [0, 7] using L1 scheme.

112



a=0.5

N vy=1 v=1.5

Crank — Nicolson L1 Crank — Nicolson L1
M.FE. o0.C. M.E. 0.C. M.E. 0.C. M.FE. o0.C.

20 | 1.81e-02 6.32e-03 4.81e-03 1.85e-03
40 | 9.96e-03 0.86 | 3.65e-03 0.79 | 1.834e-03 1.39 | 7.2e-04 1.36
80 | 5.38e-03 0.89 | 2.04e-03 0.84 | 6.86e-04 1.42 | 2.76e-04 1.38
160 | 2.84e-03 0.92 | 1.1e-03 0.89 2.5e-04 1.45 | 1.02e-04 1.44
320 | 1.29¢-03 0.94 | 5.88e-04 0.9 | 9.02e-05 1.47 | 3.71e-05 1.46
640 | 7.66e-04 0.95 | 3.07e-04 0.93 | 3.23e-05 1.48 | 1.33e-05 1.48
Theory 1 0.5 1.5 0.75

a=0.5
N v=2 =3

Crank — Nicolson L1 Crank — Nicolson L1
M.E. 0.C. M.E. 0.C. M.E. 0.C. ME. 0.C.

20 | 4.55e-03 4.74e-04 7.29e-03 2.66e-04
40 | 1.77e-03 1.37 | 1.33e-04 1.83 | 2.97e-03 1.3 | 8.96e-05 1.57
80 | 6.63e-04 1.41 ] 3.7e-05 1.84 | 1.18e-03 1.33 | 2.9e-05 1.63
160 | 2.49e-04 1.41 | 1.02e-05 1.85 | 4.53e-04 1.38 | 8.02e-06 1.86
320 | 9.18e-05 1.43 | 2.71e-06 1.91 | 1.71e-04 1.41 | 2.12e-06 1.92
640 | 3.37e-05 1.45 | 7.05e-07 1.94 | 6.33e-05 1.43 | 5.4e-07 1.97
Theory 1.5 1 1.5 1.5

Table 7.2: Errors and convergence rates for different mesh grading v with a = 0.5.

We observe better order for L1 scheme. The errors and convergence rates for

Crank-Nicolson and L1 improved when the mesh is graded. We observe that the

numerical results Crank-Nicolson scheme are as expected in Theorems (6.1, 5.2).

However, the numerical results of the L1 scheme shows that the theoretical results

are pessimistic.
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Figure 7.9: Error in the spatial domain [0, 7] using both L1 and Crank-Nicolson
schemes.
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Figure 7.10: Error in the spatial domain [0, 7] using both L1 and Crank-Nicolson
schemes.
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Figure 7.11: Numerical in the spatial domain [0, 7] using Crank-Nicolson scheme.
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Figure 7.12: Error in the spatial domain [0, 7] using L1 scheme.
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Figure 7.13: Error for « = 0.5 and 7 = 2 in the spatial domain [0, 7] using L1

scheme.
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Figure 7.14: Exact solution in the spatial domain [0, 7.
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Figure 7.15: Error in the spatial domain [0, 7] for different time meshes using
Crank-Nicolson scheme.
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Figure 7.16: Error in the spatial domain [0, 7] for different time meshes using L1
scheme.
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a=0.7
N vy=1 v=1.5

Crank — Nicolson L1 Crank — Nicolson L1
M.E. 0.C. |M.E. 0.C.| M.E. 0.C. |M.E. 0.C.

20|  3.3e-03 1.38e-03 1.57e-03 1.08e-03
40| 1.35e-03 1.29(5.631e-04 1.3 5e-04 1.65| 2.8e-04 1.95
80| 5.48e-04 1.31| 2.34e-04 1.27]1.69¢-04 1.56| 7.1e-05 1.98
160| 2.16e-04 1.34| 9.39e-05 1.32]5.54e-05 1.61(1.78e-05 1.99
3201(8.436e-05 1.36| 3.71e-05 1.34| 1.8e-05 1.62|4.45e-06 2
640| 3.26e-05 1.37| 1.45e-05 1.36|5.76e-06 1.64|1.11e-06 2
Theory 1.4 0.9 1.7 1.35

a=0.7
N v =2 v=25

Crank — Nicolson L1 Crank — Nicolson L1
M.E. 0.C. |M.E. 0.C.| M.E. 0.C. |M.E. 0.C.

20(2.35e-03 1.05e-03 3.27e-03 1.03e-03
40| 8.1e-04 1.54(2.72e-04 1.95|1.17e-03 1.48]2.64e-04 1.96
80(2.75e-04 1.56| 6.9e-05 1.97|4.13e-04 1.5]6.71e-05 1.97
160| 9.2e-05 1.58(1.73e-05 1.99| 1.4e-04 1.56]1.68e-05 1.99
320(3.01e-05 1.61(4.35e-06 1.99| 4.6e-05 1.6/4.21e-06 1.99
640| 9.7e-06 1.63[1.08e-06 211.48e-05 1.63]1.05e-06 2
Theory 1.7 1.8 1.7 2

Table 7.3: Errors and convergence rates for different mesh grading v with a = 0.7.
We observe better order for L1 scheme. The errors and convergence rates for

Crank-Nicolson and L1 improved when the mesh is graded. We observe that the

numerical results of Crank-Nicolson schemes are as expected in Theorems (6.1,

5.2). However, the numerical results of the L1 scheme shows that the theoretical

results are pessimistic.
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Figure 7.17: Error in the spatial domain [0, 7] using both L1 and Crank-Nicolson
schemes.
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Figure 7.18: Error in the spatial domain [0, 7] using both L1 and Crank-Nicolson
schemes.
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Figure 7.19: Exact solution in the spatial domain [0, 7.
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Figure 7.20: Error in the spatial domain [0, 7] using Crank-Nicolson scheme.
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Figure 7.21: Error in the spatial domain [0, 7] using L1 scheme.
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Figure 7.22: Error in the spatial domain [0, 7] for different time meshes using L1
scheme.
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Figure 7.23: Error in the spatial domain [0, 7] for different time meshes using
Crank-Nicolson scheme.
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7.4 Conclusions and future work

We established the existence and uniqueness of the weak solution for the general form
of the model problem (1.1.1) in the case of space-time dependent driving forcing via
Galerkin method. Furthermore the behavior of the time derivatives of the weak solution
was studied, proving estimates that play an important role in the error analysis of the
numerical schemes. For the numerical solution of the model problem (1.1.1), an implicit
Crank-Nicolson scheme to discretize in time was proposed such a scheme is formally
second-order accurate. However due to the presence of a weakly singular kernel and
the fractional derivative operator 8,51_a, we only proved an O(k'*?®) convergence for
0 < a < 1 in the case of non-uniform time meshes, where k£ denotes the maximum
time step. A fully discrete scheme that combined finite elements in space with Crank-
Nicolson in time was proposed, and the existence and uniqueness of the solution of the
fully discrete scheme was proved. We introduced another numerical scheme based on L1
approximation in time and finite elements in space and we performed the error analysis
for the fully discrete scheme. We got results better than the first method, we got an
order of O(k?) convergence rate in the case of non-uniform time meshes.

In comparison of the previous work regarding the convergence rate we find that our
results is better than the work done by Le et al. [29] in their work they proved an
O(k®) order of convergence. However in our numerical methods we got O(k“*!) using
Crank-Nicolson method and O(k?) using L1 approximation scheme.

For the future work we will investigate the numerical solution of the time-fractional

Fokker-Planck equation in the case of non-smooth initial data.
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