

CLOUD-BASED FPGA CUSTOM COMPUTING MACHINES

AMRAN ABDULRAHMAN AL-AGHBARI

COMPUTER SCIENCE AND ENGINEERING

DECEMBER 2018

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN- 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by Amran Abdulrahman Al-Aghbari under the direction of his thesis

advisor and approved by his thesis committee, has been presented and accepted by the

Dean of Graduate Studies, in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE AND ENGINEERING.

Dr. Adel Fadhl Ahmed

Department Chairman

Dr. Salam A. Zummo

Dean of Graduate Studies

Date

Dr. Mohamed Elrabaa

 (Advisor)

Prof. Aiman El-Maleh

(Member)

Dr. Mohammad Alshayeb

(Member)

Dr. Marwan Abu-Amara

(Member)

Dr. Ashraf S. Hasan Mahmoud

(Member)

iii

© Amran Abdulrahman Al-Aghbari

2018

iv

Dedication

To my wife, children, and our parents, brothers, sisters and their children.

v

ACKNOWLEDGMENTS

Full thanks to my advisor Dr. Mohamed Elrabaa who guided me along my graduate studies

at KFUPM University and taught me VLSI from scratch until fabricating a real chip.

Thanks to Prof. Mayez Al-Mohamed who taught me most of the valuable principles I know

about computing architectures and parallel computing which were helpful in this work.

Thanks to all professors who taught me different courses during my graduate studies which

were valuable guidance to accomplish this work. Thanks to KFUPM University which

provides those expensive devices and licenses that helps a lot to do real and valuable

experiments. Thanks to Saudi Arabia for financial support for their students and foreign

students. Thanks to Taiz University, my home university in my home country for sending

me to KFUPM University to do graduate studies and supporting me financially.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... V

TABLE OF CONTENTS ... VI

LIST OF TABLES ... X

LIST OF FIGURES .. XII

LIST OF ABBREVIATIONS ..XVII

DISSERTATION ABSTRACT ... XIX

صُ ُدرجة ُُبحثُملخَّ الفلسفةُ ُفيُالدكتوراةُ .. XXI

CHAPTER 1 INTRODUCTION ... 1

1.1 Motivation .. 1

1.2 Thesis statement and contributions .. 5

1.3 Overview of the thesis .. 6

CHAPTER 2 CLOUD COMPUTING ... 8

2.1 Data center ... 10

2.2 Virtualization .. 12

2.2.1 Hardware virtualization .. 12

2.2.2 Application virtualization ... 13

2.2.3 Desktop virtualization .. 13

2.2.4 Network virtualization .. 14

2.2.5 Storage virtualization ... 14

2.3 OpenStack: open source cloud computing platform .. 15

CHAPTER 3 DESIGN WITH FPGAS ... 17

3.1 FPGA architecture ... 18

3.2 Design flow ... 20

vii

3.3 Partial Reconfiguration ... 21

3.4 High-level synthesis .. 23

3.5 FPGA strengths and weaknesses ... 25

CHAPTER 4 LITERATURE REVIEW ... 28

4.1 Overlay architecture ... 28

4.2 Virtualization using abstraction layer (AL)... 30

4.2.1 Interfacing the abstraction layer (AL) with vFPGAs .. 32

4.2.2 OpenCL and the CPU-FPGAs interface abstraction .. 33

4.3 FPGA attachment interface ... 35

4.4 FPGA in the cloud and data center .. 37

4.5 ASIC Clouds ... 39

4.6 Summary... 40

CHAPTER 5 OVERVIEW OF THE CLOUD-BASED FPGA CUSTOM COMPUTING

MACHINES PLATFORM ... 43

5.1 FPGA Virtualization ... 44

5.2 FPGA Cloud Architecture ... 47

5.3 FPGA hypervisor ... 48

5.3.1 User-to-CCM API functions... 50

5.3.2 User-to-Hypervisor API functions ... 51

5.3.3 Hypervisor-to-Hypervisor back-end API functions ... 52

5.4 A scenario of Launching, Using and Terminating a CCM .. 53

5.5 CCM Creation .. 55

5.6 Properties of the Platform .. 56

5.6.1 The platform computing model ... 56

5.6.2 Abstraction ... 57

5.6.3 Sharing .. 58

5.6.4 User data security .. 58

5.6.5 CCM clusters on Multi-vFPGA .. 58

CHAPTER 6 FPGA VIRTUALIZATION PLATFORM .. 60

viii

6.1 Data Communications ... 61

6.2 Network Controller ... 64

6.3 Static logic ... 66

6.3.1 Data routing ... 66

6.3.2 Reconfiguration management unit (RM) ... 67

6.3.3 Clock management unit (CM)... 67

6.4 The wrapper's design .. 68

6.4.1 Conceptual design of the wrapper ... 70

6.4.2 Wrapper components .. 71

6.5 Wrapper generation.. 77

6.5.1 Parsing the XML/JSON specification file ... 79

6.5.2 Parsing the Vera specification file .. 84

6.5.3 An example for generating a serializer from a Vera description .. 85

6.5.4 Wrapper generation software .. 88

CHAPTER 7 RESULTS AND COMPARISON ... 89

7.1 Generating a wrapper for the JPEG Encode core ... 90

7.1.1 Preparing the XML Description File .. 90

7.1.2 User’s Vera Data Specifications .. 91

7.1.3 JPEG Encoder implementation on a vFPGA .. 93

7.2 Simulation methodology ... 96

7.3 Virtualization Overhead Evaluation .. 98

7.4 Comparisons with other platforms.. 104

7.5 vFPGAs versus SW-based virtual machines ... 106

7.6 CCM platform Evaluation .. 109

7.6.1 Experiment setup ... 109

7.6.2 Performance Evaluation ... 113

7.6.3 The impact of adding the AES encryption/decryption ... 115

7.6.4 The impact of having multiple vFPGAs within the same FPGA .. 117

7.7 Boot time analysis ... 118

CHAPTER 8 CONCLUSION .. 120

8.1 Platform Limitations ... 121

8.2 Future work .. 122

ix

APPENDICES .. 125

A. Description of the used Benchmarks ... 125

A.1. JPEG Encoder Core ... 125

A.2. AES Core ... 126

A.3. RSA512 Core ... 128

A.4. FDCT Core ... 130

A.5. JPEG Images Edge Detection .. 132

A.6. Decrypt-Compute-Encrypt ... 133

B. Software tool for Ethernet packet generation and platform test bench 134

C. A description of the implemented Verilog code .. 137

REFERENCES.. 139

VITAE ... 148

x

LIST OF TABLES

Table 4-1: List of notable platforms of FPGA-based processing for clouds or

datacenters. ...42

Table 5-1: Main API function in the software library. ...50

Table 6-1: A description of the XML tags and their attributes used to describe the

user hardware I/Os and their groups. ..81

Table 6.2: FDCT benchmark verification code written on OpenVera and its

translation to microcode microinstructions...87

Table 7.1: Formatting and applying the JPEG Encoder’s input data by the wrapper.

Four control bits are added with each input. The last column represents

the complete output of the serializer which is applied to the input FIFO.93

Table 7.2: Virtualization overhead compared to direct implementation on an FPGA

for 4 benchmarks. For the vFPGAs, the wrapper's I/O widths are 64/64

bits for all designs. ..100

Table 7.3: Comparison with notable platforms for attaching FPGAs to DCs.105

Table 7.4: Resource utilization of the virtualization platform on FPGA112

Table 7.5: Computation time comparison for three implementations of the secure

image edge detection application. a) The application on a virtual

machine, b) The application on a server, c) The application is a CCM.115

Table 7.6: Estimation of the CCM area overhead in our platform.117

Table 7.7: Boot time delay components for vFPGA-CCMs with various image

(bitstream) sizes. Internal configuration access port’s speed is ~400MB/s

 ..119

Table 8.1: Snapshot of the serializer’s output for the JPEG encoder. Each row in the

table represents one input group. The CLK column indicates whether to

apply a clocking at that input or not. The SEL column represents the input

group index. The table starts by setting values to the mask register and

the clock counter. Then it sets values to the least frequently used signals.

After that, the data starts. ..126

Table 8.2: Snapshot of the serializer’s output for the AES128. Each row in the table

represents one input group. The CLK column indicates whether to apply

a clocking at that input or not. The SEL column represents the input

group index. The table starts by setting values to the mask register and

the clock counter. Then it sets the key. After that, the data starts.128

Table 8.3: Snapshot of the serializer’s output for the RSA512. Each row in the table

represents one input group. The CLK column indicates whether to apply

a clocking at that input or not. The SEL column represents the input

group index. The table starts by setting values to the mask register. It then

set the value of the modulus m. Then, it sets the bit_size constants. After

xi

that, it sets the clock counter to 32 cycles. Then, it applies those clocks

to the design. After that, it resets the clock counter to zero. Then, the data

starts. ...130

Table 8.4: Snapshot of the serializer’s output for the FDCT. Each row in the table

represents one input group. The CLK column indicates whether to apply

a clocking at that input or not. The SEL column represents the input

group index. The table starts by setting values to the mask register. After

that, it resets the clock counter to zero. Then, it sets the enable and reset

signals high and the dstrb signal low. After that, the first byte of the data

is set. Then, it sets the dstrb signal high. After that, it sets the dstrb signal

low again. Then, the data continues ..132

xii

LIST OF FIGURES

Figure 2.1: Data center architecture has three layers. ...11

Figure 2.2: OpenStack core components [13]. ..15

Figure 3.1: FPGA Architecture is a two-dimensional array of reconfigurable

resources. Components on FPGA are programmable: control logic blocks

(CLBs), SRAMs, DSP blocks, and interconnects [14].18

Figure 3.2: 3-input LUT implementations ..19

Figure 3.3: Compute paradigms comparison [28]. a) CPU represents the Von

Neumann model. b) GPU represents the vector processing model. c)

FPGA represents spatial computing. ..26

Figure 3.4: GPU vs FPGA qualitative comparison [5]. ..27

Figure 4.1: The architecture and design components in Intel OpenCL for FPGAs

[14]. ...35

Figure 5.1: FPGA virtualization is based on several abstraction layers.44

Figure 5.2: Proposed FPGA Cloud Architecture ..47

Figure 5.3: Python implementations for the functions “Send (data stream)” and

“Listen_to_results (data stream)”. Both functions use TCP stream socket

and require the CCM IP address and port number..51

Figure 5.4: Hypervisor to hypervisor’s backend functions uses UDP socket

connection. The UDP payload contains a sequence of CMD and value

pairs. Several commands can be sent on one UDP packet. Hypervisor

sends a UDP packet and hypervisor’s back end reply with a UDP packet.

 ..53

Figure 5.5: Scenario of using a CCM on a cloud computing system. The user issues

four commands to launch, send data, receives results, and terminate

CCM..53

Figure 5.6: Scenario of using a CCM on a cloud computing system. First, the user

requests to launch a CCM. The FPGA hypervisor configures a vFPGA

with the CCM bitstream and returns the CCM IP address back to the user.

The user interacts with the CCM by sending data and receiving results.

Finally, the user releases the CCM. ..55

Figure 5.7: CCM creator receives hardware design (HLS/HDL), XML file describes

hardware I/Os, and Vera file describes how data is applied. Then, it and

creates a CCM, synthesized and generates partial bitstreams. Finally, it

saves the bitstreams in the cloud storage and their info in the Resources

database. ..56

Figure 6.1: Virtualization platform overview. FPGA is partitioned into a static region

and several reconfigurable regions to be used as virtual FPGAs.61

Figure 6.2: Timing diagram of the two-way handshaking process [48].62

xiii

Figure 6.3: BRAM-based asynchronous FIFO for transferring data across unrelated

clock domains using the AXI interface. ..62

Figure 6.4: Inter-layer interfaces. The interface between L1 and L2 consists of two

AXI interfaces and the virtual FPGA indices. The interface between L2

and L3 consists of two AXI interfaces and clocking signals. The interface

between L3 and L4 consists of two AXI interfaces whose data have the

internal wrapper formats. ..63

Figure 6.5: The implementation of the Ethernet controller. ..66

Figure 6.6: The platform's different clock domains and the use of asynchronous

buffers to move data across these domains. ..68

Figure 6.7: A flow chart illustrating the data flow from/to the design through the

wrapper. The left-hand side shows the data input flow starting from

receiving a payload of a user's network packet till its application to the

design. The right-hand side shows formatting and sending the results

starting from capturing the outputs till generating the payload for the

network packet to be sent back to the user. ..71

Figure 6.8: Our implementation of the Packing/unpacking circuitry. If the input data

width is greater than the output data width, the packing circuitry is used.

If it is less, the unpacking circuitry is used. If they are equal, the

packing/unpacking part is removed. ...72

Figure 6.9: Slicer is a combinational circuit that selects n/2 consecutive bits from an

n-bit input. ...73

Figure 6.10: The wrapper's conceptual design. ...74

Figure 6.11: Diagram shows the complexity of building the wrapper state machine. If

the hardware has one output group, then an input can be applied while

capturing the output s. If the hardware has several outputs, then the

controller should flush out outputs before accepting new inputs. For some

inputs, it is required to apply several consecutive clock cycles without

capturing outputs or applying new inputs. ..75

Figure 6.12: Verilog code of a finite state machine of a wrapper.76

Figure 6.13: The controllable clock buffer allows controlling the application clock.

When it is enabled the application run. When it is disabled the application

freezes. The upper timing diagram shows a clock buffer which always

produces a low output when its enable signal is off. The lower timing

diagram shows a clock buffer which always produces a high output when

its enable signal is off. ..77

Figure 6.14: CCM creation flowchart. ..78

Figure 6.15: Algorithm for generating the wrapper from the XML specification file

and the Vera description file. ..79

Figure 6.16: Algorithm for parsing the XML specification file and generating Verilog

code for the modifiable parts of the wrapper. ...80

xiv

Figure 6.17: The JSON schema file for describing hardware I/Os and their groups to

the wrapper generator. ..82

Figure 6.18: The XML schema file for describing hardware I/Os and their groups to

the wrapper generator. ..83

Figure 6.19: The OpenVera code is translated to microinstructions then the Serialized

is generated. ..84

Figure 6.20: The FDCT I/O specification in the XML file. ..85

Figure 6.21: The serializer for the FDCT can be generated automatically from the

Vera specification code Using a microcode-template. Each cycle of the

microcode generates data for one input group and generates the group

index and one bit represents whether to apply a clock or not for this data.

 ..87

Figure 6.22: A snapshot of the wrapper builder software. The list on the left contains

several hardware cores. The wrapper is generated instantly for the

selected hardware core. The bottom large textbox contains the generated

wrapper Verilog code..88

Figure 7.1: Generating the wrapper for the JPEG Encoder from the XML and Vera

specifications. ...90

Figure 7.2: Snapshot of the complete wrapper’s and the Encoder’s input/output and

control signals. ..95

Figure 7.3: Packing the 8-bit wrapper inputs into the Encoder’s 28-bits inputs in

~28/8 cycles per input. e.g. input sequence 7F FF FF D4 00 00 00 is

packed into 7FFFFFD 4000000 sequence. ...96

Figure 7.4: Unpacking the Encoder’s 39-bits outputs to produce 8-bit wrapper’s

output per cycle. ..96

Figure 7.5: Simulation methodology to simulate the whole platform. The simulator

inputs are Ethernet packets. The simulator outputs are Ethernet packets.97

Figure 7.6: The simulation of the FDCT core as it is designed by the core designer.

The total computation time is measured to be 175,811.2 nanoseconds.97

Figure 7.7: The simulation of the FDCT core placed within a vFPGA in the

implemented virtualization platform (using 10GE). The time from

receiving the first Ethernet packet (RXDV changes) until the last

Ethernet packet is transmitted out (TXEN changes) is measured to be

198,860.6 nanoseconds. ..98

Figure 7.8: Wrapper area versus the number of the applicaion I/Os for 1, 2, 3

grouping. ...102

Figure 7.9: The XML specification of the input/output groups of a black box (one

group, two groups, and three groups). The black box has no design inside.

It is used to generate a wrapper for an assumed design with arbitrary

inputs/outputs and an arbitrary number of groups. The black box is used

xv

to evaluate the wrapper area for different number of inputs/outputs and

different number of groups. ..103

Figure 7.10: The three platforms used to evaluate the performance of a streaming

application; (a) Running in a virtual machine, (b) directly on the physical

server, and (c) on a vFPGA. A client SW sends encrypted data and

receives encrypted computation results. ...107

Figure 7.11: Streaming application throughput versus block size comparisons the

proposed vFPGA platform and physical servers and virtual machines.109

Figure 7.12: The experimental setup with several versions of the secure edge detection

(ED) application. ...110

Figure 7.13: Synchronization process among the sender, receiver and the server. The

server manages to start and to end the work in the three steps at the same

time. ..111

Figure 7.14: The FPGA virtualization platform with the Edge detector application

implemented as a CCM...111

Figure 7.15: Image edge detection hardware uses four already-made cores; AES 128

[72], Image Compress [69], Canny Edge Detection [78], and JPEG

encoder [70]. ...112

Figure 7.16: The software version of the application “Secure image edge detection”

written in Python using standard SW libraries ...113

Figure 7.17: The user uses the same socket interface to request the same service hosted

n three different machines; a) the service is hosted in a VM, b) the service

is hosted in a server, c) the service is a CCM on virtual FPGA.114

Figure 7.18: Compute nodes performance comparison for a specific application.

vFPGA outperforms a virtual machine and a bare-metal server.115

Figure 7.19: Using the AES-ECB core [72] to build AES-CTR that can be used as a

decrypter and encrypter. By XORing the input text with the encrypted

counter output we achieve a throughput of one data block per cycle. AES-

CTR throughput is one block per cycle because the XORing takes one

cycle only. ...116

Figure 7.20: Different boot time components of a vFPGA-CCM.118

Figure 8.1: The XML specification of the input/output groups of the jpeg encoder

core [70]. ...126

Figure 8.2: The XML specification of the input/output groups of the jpeg encoder

core [72]. ...127

Figure 8.3: The XML specification of the input/output groups of the rsa512 core

[71]. ...129

Figure 8.4: The XML specification of the input/output groups of the DCT core [69].

 ..131

xvi

Figure 8.5: The XML specification of the input/output groups of the image edge

detection we designed by combining several cores.133

Figure 8.6: The XML specification of the input/output groups of the decrypt-

compute-decrypt hardware designed using the AES-CTR which uses the

AES-ECB core [72]. ...133

Figure 8.7: Generate platform test bench. ...134

Figure 8.8: Make UDP header algorithm. The algorithm is inspired by the IP formal

definition in RFC 791 [83] and the UDP formal definition in RFC 768

[84]. ...135

Figure 8.9: Calculate IP checksum algorithm. The algorithm is inspired by the IP

checksum calculation description. ..136

Figure 8.10: Calculate UDP checksum algorithm. The algorithm is inspired by the

UDP checksum calculation description in the UDP formal definition in

RFC 768 [84]. ...136

Figure 8.11: A snapshot shows the hierarchy and components of an implemented

version of the virtualization platform. The hierarchy starts the root node

“top_xge” which contains clocking resources appears in the first four

nodes and the virtualization module “virt005” which contains the

platform and the network controller. The platform contains data routers

(mux and demux), the reconfiguration module (uses ICAP) and one

vFPGA. The vFPGA contains the image_edge_detect application which

uses four already-made cores; AES_128 [72], jpeg_decode [77],

top_edge [78] and jpeg encoder [70]. ...138

xvii

LIST OF ABBREVIATIONS

AL : Abstraction Layer

ARP : Address Resolution Protocol

ASIC : Application Specific Integrated Circuit

AXI : Advanced eXtensible Interface

BRAM : Block RAM

CCM : Custom Computing Machines

CM : Configuration Manager

CPU : Central Processing Unit

DC : Data Center

DHCP : Dynamic Host Configuration Protocol

DPR : Dynamic Partial Reconfiguration

DSP : Digital Signal Processor

FF : Flip-Flop

FPGA : Field-Programmable Gate Array

GPU : Graphic Processing Unit

GMII : Gigabit media-independent interface

HLS : High Level Synthesis

xviii

HW : Hardware

IOB : Input Output Buffer

IP : Internet Protocol

LUT : Lookup Table

MII : Media-independent interface

PCIe : Peripheral Component Interconnect Express

PR : Partial Reconfiguration

SDN : Software-defined networks

SW : Software

TCP : Transmission Control Protocol

UDP : User Datagram Protocol

vFPGA : Virtual FPGA

VM : Virtual Machine

XGMII : 10 gigabit media-independent interface

xix

DISSERTATION ABSTRACT

Full Name : Amran Abdulrahman Al-Aghbari.

Thesis Title : Cloud-based FPGA custom computing machines.

Major Field : Computer science and engineering.

Date of Degree : December 2018

Field Programmable Gate Arrays (FPGAs) were first introduced as large capacity

platforms of glue logic used for logic emulation and prototyping. Later, research efforts

explored the use of FPGAs as computing devices. FPGAs provide excellent performance

for several application domains, achieve lower power per operation, provide more

deterministic latency, and can be connected to hosts or other FPGAs using different types

of interfaces. On the negative side, FPGAs have a long design time in comparison with

other computing machines such as CPUs and GPUs. Designing a hardware application,

debugging it, and verifying its correctness requires hours and days. The resulting hardware

application is both a vendor and a device-dependent. As such, developing an FPGA-based

HW application is still restricted to hardware designers. For others to develop HW

applications on FPGAs, the FPGA has to be properly virtualized, and its interfaces

abstracted. Virtualization also enables integrating FPGAs within computing infrastructures

such as data centers and clouds. In this dissertation, we introduce an FPGA virtualization

platform that enables any application hardware to be ported on virtual FPGA and accessed

as a standalone custom computing machine (CCM). We propose an FPGA cloud

computing platform that introduces CCM as a service. A prototype of the virtualization

platform has been implemented to evaluate its area, speed, and overhead. Comparison with

xx

other platforms shows that the proposed platform provides a general abstract interface to

any design (not domain specific) and supports dynamic partial reconfiguration (so designs

can be added to an FPGA that have other applications running) at comparable overhead to

other notable platforms. Experimental results, using a streamed application in a cloud-like

environment, showed that the proposed platform is a very viable computing option (in

terms of throughput) for some applications compared to conventional server-based or

virtual-machine based SW implementations.

xxi

ُبحثُصُ ملخَُّ

 ة ُفيُالفلسفةُ الدكتورا ُرجة ُد

 عمران عبد الرحمن عبد الولي الأغبريُ:ُالاسمُالكامل

دمجها في (و FPGAsباستخدام الرقاقات القابلة للبرمجة) آلات حوسبة متخصصةُ:ُعنوانُالرسالة

 الحوسبة السحابية

 علوم و هندسة الحاسب الآليُ:ُالتخصص

 2018ديسمبر ُ:ُتاريخُالدرجةُالعلمية

في و اسفففففتخدمتالرقمية من الدوائر كمية كبيرةعرفت المصففففف وفات القابلة للبرمجة في بداياأها بمنها منصفففففات ات

محاكات الأجهزة الرقمية و عمل نما ج لها. الجهود البحثية الأخيرة بحثت في إسففففففتخدام الصفففففف وفات القابلة للبرمجة

لعديد من ي اف اعالي أداء المص وفات القابلة للبرمجة، لقد أظهرت كمجهزة حوسبة و إمكانية استخدامها لتن يذ برمجيات.

عملية حسففابية، و الزمن الا م للحسففاه فيها أكثر قابلية للتحديد لكل أنها أقل اسففتهاكا للقاقة أظهرت ، كما المجالات

أخرب، الوقت المسفففتهل من غيرها، بالإضفففافة لقابلية هبقها بالأجهزة الأخرب عبر أنواد عديدة من المنافذ. من جهة

في أصفففففمير البرامص للمصففففف وفات القابلة للبرمجة ةويل مقاهنة بمجهزة الحوسفففففبة الأخرب كمعالجات الحواسفففففيب أو

و التمكد من صحة عمله قد يستهل ساعات المص وفات القابلة للبرمجة علىمعالجات الرسوميات. إن أصمير برنامص

على نوعية المصفف وفات القابلة للبرمجة التي أر أصففميمه عليها. و بالتالي ، أصففمير و أيام. و هذا البرنامص لا يعمل إلا

سبة لغيرحتى الآن البرامص على المص وفات القابلة للبرمجة لا يزال حكرا على المختصين فيها فقط المختصين، . بالن

صفف وفات مها. أصففمير ال بةرق الاأصففأبسففيط كما ينبغي من الضففروهي أصففمير مصفف وفات قابلة للبرمجة إفتراضففية

سقابلة للبرمجة ضية ضا إمكانية وف افترا سحابية و لوضعها يعقي أي ضمن أجهزة الحوسبة الأخرب في الحوسبة ال

مص وفات قابلة للبرمجة افتراضية، و التي أحتوي علىمنصة مقترح نقدموف مراكز البيانات. في هذه الأةروحة، س

ضع برمجياأهر في مص وفة افتراضية و التواصل معها كجها حوسبة مستقل. والرقمية أتيح لمصممي البرامص وف س

ر خدمة سحابية يأقدوف يتيح سالذي للمص وفات القابلة للبرمجة على الحوسبة السحابية، و منصةسنقدم أيضا مقترح

xxii

من اأقييمه غرضبجها حوسففبة متخصففم. قمنا بتن يذ نمو ج للمصفف وفات القابلة للبرمجة الافتراضففية خدمة نسففميها

تي أظهرت أن المنصففة الالمقاهنة .مع المقترحات البحثية الشففبيهة تهمقاهنو قمنا ب ،كل ةالحيث المسففاحة و السففرعة و

 اتمن البرمجيعلى مجال محدد هي غير مقتصرة قبول أية برامص و و بالتالي يمكنها أعر اأصال نقترحها أعقي ةرق

و هو جةالمص وفات القابلة للبرم في كما أن المنصة أدعر التركيب الجزئي. مقبولة مقاهنة بالأعمال المشابهة كل تهاو

دون نهاأي ميعني أن المصفف وفة الواحدة يمكن أقسففيمها إلى عدة منصففات افتراضففية يمكن أن يتر أحميل البرامص على

خدمنا برامص أسفففتخدم بيانات مسفففتمرة في بيهة أشفففبه بيهة العملية، اسفففت التجاههالحاجة لتوقيف جميع المنصفففات. في

الحوسففففبة السففففحابية. أظهرت النتائص أن المنصففففة المقترحة هي خياه و قيمة عالية جدا في مجال الحوسففففبة من ناحية

 يف الانتاجية لبعض التقبيقات مقاهنة بالخوادم و الآلات الافتراضفففففية المسفففففتخدمة حاليا كمنصفففففات لتن يذ البرمجيات

 .الحوسبة السحابية و مراكز البيانات

1

CHAPTER 1

Introduction

1.1 Motivation

Field Programmable Gate Arrays (FPGAs) were first introduced as large capacity

platforms of glue logic used for logic emulation and prototyping. Later, research efforts

explored the use of FPGAs as computing devices. FPGAs reports excellent performance

for AI, image processing, data compression, and other applications. By using FPGA

accelerator attached to CPUs, different applications in pattern matching can become 300+

times faster, 200+ times faster for compression, 100+ times faster in machine learning and

more [1]. Intel announced three powerful FPGA-based accelerator libraries [2]; 1) Intel’s

Convolutional Neural Networks (CNN) engine for FPGAs. 2) Real-time data analytics

algorithms. 3) Data compression algorithms with dynamic compression ratios. Different

Azure network relies on FPGA-powered software-defined networking (SDN) [3]. The

bandwidth between two VMs inside Azure, with a 40-gigabit network adapter on each VM,

2

is only around 4Gbps per second; with FPGA-accelerated networking, that goes up to

25Gbps, with five to ten times less latency [3].

Excellent performance for several applications is not the only motivation for using FPGAs

in computation. FPGAs are the least power consumers per operation among existing

processing units such as CPUs and GPUs [4, 5]. Real-time applications prefer FPGA

because their latency is deterministic with accuracy reaches to nanoseconds. FPGA can be

programmed to deal with any type of interfaces and can be offered as a standalone

computing device.

Unfortunately, FPGA programmability is the worst among other computing devices such

as CPUs and GPUs [5]. Compiling an application code written in hardware description

languages (HDL), the standard method to write designs for FPGAs, to FPGA configuration

bitstream takes minutes and maybe hours (a typical FPGA design flow is explained in

chapter 3). Hardware debugging and verification usually require several design changes,

synthesis (compilation), and simulation that cost hours and maybe days. Due to this long

design and compilation time, hardware designers tend to produce their designs as hardware

cores which are simulated, verified, tested and then introduced as black boxes. Those

hardware cores could be used directly for computation or as a building block within other

hardware cores.

Although using FPGAs for computation succeeded for several application domains, their

usage is still limited to hardware designers. Working with FPGAs requires a hardware-

background which prevents many users from using FPGAs for computation purposes. A

lot of work is required before having FPGAs available on the cloud for the mass. First,

3

FPGAs must be virtualized to be a cloud resource. Virtual FPGAs reveals the user from

implementation details. There are a lot of physical details that need to be hidden from the

FPGA user. FPGAs vary in their architecture, capacity, vendors, clocking resources and

frequency. There are common tasks that are needed for all applications such as FPGA

programming, clocking management, securing data and interfacing FPGA with the

ecosystem. FPGA virtualization hides physical details and automates the frequently needed

tasks. Second, the FPGA interface must be abstracted to enable FPGA to interact with the

ecosystem smoothly. Each hardware core has its own interface and interfacing protocol.

Using the hardware core requires following the core specifications provided by its designer.

FPGA interface needs to be abstracted such that it provides FPGA that can easily hold any

hardware core and let it work smoothly. Third, standard software libraries should be

provided as a mechanism to interact with applications in FPGAs. FPGA should be able to

work easily with the data structures used in the ecosystem.

There is an increasing trend for using FPGAs in cloud and data centers since they provide

better utilization with low power compared with the current CPU-based servers which

consume excessive power with low utilization. Microsoft uses FPGAs to accelerate the

Bing search [6]. It uses FPGA-based SDN to accelerate its networking operations [2].

Amazon introduced FPGA infrastructure as a service [7] two years ago. The increasing

trend for using FPGAs reveals the need to virtualize FPGAs and introduce an easier method

to interact with them. FPGA virtualization is the first step to introduce them as cloud

computing resources. Two common approaches have emerged for attaching FPGAs to data

centers (DCs); as accelerators attached to compute nodes via a local bus such as the

Peripheral Component Interconnect Express (PCIe), or as stand-alone independent

4

computing resources connected to the DC's interconnect fabric (i.e. Ethernet LAN). Since

cloud computing resources are network-attached nodes, FPGAs should be network-

attached devices rather than PCIe-attached ones. FPGAs should be disaggregated from

CPUs, dealt with as standalone computing machines and provided as standalone cloud

computing resources.

To summarize, the main motivation behind this work is to facilitate the use of custom

application hardware in typical computing infrastructures such as data centers and clouds.

This requires the following:

1) A method for deploying HW applications on any network-attached FPGA without the

need to re-design or re-synthesize the application for different FPGAs,

2) A method for completely abstracting hardware interfaces to enable accessing them as

standalone computing machines (similar to SW application servers). Abstraction layers

should be clearly identified and auto-generation tools for these layers should be

provided,

3) The overheads (cost/area, performance, and power) resulting from these abstraction

layers must be evaluated to determine the feasibility of the whole approach,

4) Finally, even with virtualization and abstraction, current FPGAs are not general

computing platforms. Hence suitable applications and execution models for the

developed techniques must be identified.

5

1.2 Thesis statement and contributions

The notion of building a custom computing machine (CCM) appeared to indicate creating

special hardware for a specific computing task on FPGA. There are a lot of already-

designed hardware cores that efficiently do computations on FPGA such as crypto cores,

image and video processors, arithmetic cores and machine learning cores. Some of these

cores are open-source cores provided in websites such as “github.com” and

“opencores.org” while other cores require licenses from the provider. Each core could be

introduced as a standalone CCM accessible over the network by users with a non-hardware

background. Whatever the design flow used to build hardware cores, there should be a

flexible platform capable of hosting them, abstract their interfaces and deploy their services

to the mass. This platform should provide flexibility by hiding hardware complexities and

restricting the input method to well-known data formats used in the ecosystem such as text,

images, and video streams. It should provide low power consumption since it uses FPGAs

only without the help of an external CPU-based controller. The hardware core should also

maintain its high performance when it is hosted on the platform. The platform should

virtualize FPGAs, abstract their interface and enable integrating them on data centers and

introducing them as cloud services. The process of accessing and using CCMs should be

automated. The resulting CCM should interact with the user using a software library that

can be integrated with the high-level programming language (HLL) used by the user.

The goal of this dissertation is to develop a new methodology for using FPGA for

computation in cloud and data centers. Here, we outline the contributions of this

dissertation as follows:

6

 We propose the FPGA custom computing machine (CCM) as an abstraction of

application hardware for cloud and data centers. CCM hides hardware complexities

and restricts the application hardware input and output to well-known data formats

used in the ecosystem.

 We introduce a cloud platform for virtual FPGA resources management and

introducing CCM-as-a-service. We introduce the software library for launching,

using, releasing CCMs.

 We propose an FPGA virtualization platform which provides network-attached

virtual FPGAs. We clearly illustrate the physical FPGA interface and the virtual

FPGA interface.

 For the virtual FPGA interface, we introduce our wrapper design. The wrapper is a

circuit that should be added to the user hardware to adapt its interface to match the

vFPGA interface. It abstracts the data movement with the application hardware. It can

be added to any already-made hardware core and make it a CCM without any internal

modifications. The wrapper is auto-generated from the hardware core specifications.

We also illustrate the auto-generation process.

1.3 Overview of the thesis

The thesis is organized in the following manner. Chapter 2 gives background about cloud

computing principles and the main virtualization techniques used in the cloud; virtual

machines and containers. The chapter discusses OpenStack, the open source cloud

computing platform, which is used for integrating FPGAs in the cloud. Chapter 3 gives

background on HW application design using FPGAs. It explores FPGA architectures, its

7

components, and the hardware description languages (HDL) as the main method to write

hardware designs. It also discusses high-level synthesis (HLS) tools and describes the most

notable ones. Chapter 4 reviews the state of the art in FPGA virtualization, interface abstraction,

integration with data centers and cloud management frameworks. A special review of OpenCL is

also provided as it completely abstracts using FPGAs for computation. Chapter 5 presents an

overview of the proposed cloud platform that introduces CCM-as-a-service. The FPGA hypervisor

with the software library is discussed and illustrated with use-case scenarios. CCM creation process

is also discussed and also chaining several CCMs to use them as one CCM. Chapter 6 discusses the

FPGA virtualization platform with physical implementation details. Chapter 7 presents results

and comparison. It starts with a test case that explains creating the wrapper and how it works.

Then, the virtualization platform is evaluated and the overhead is reported in terms of area,

performance, throughput, and power with several hardware cores. The CCM platform is

evaluated with an edge detector hardware application. A comparison with other works is

stated. Finally, chapter 8 presents a conclusion.

8

CHAPTER 2

Cloud Computing

Cloud computing is a model for enabling network access to a shared pool of resources.

These resources can be provisioned and released with minimal service provider interaction.

As stated by NIST [8], cloud computing reveals the following fundamental characteristics:

 On-demand self-service: New resources are provisioned without human interaction.

 Network access: Resources are accessed over the network by standard mechanisms.

 Resource pooling: Resources are abstracted into pools to serve multiple users

dynamically.

 Rapid elasticity: The amount of resources is expanded and shrunk smoothly so that it

appears to the customer unlimited.

 Measured service: Resource usage is metered, controlled and reported.

Cloud computing provides services using one of these models:

 Software as a Service (SaaS): Provides application software, databases, support.

Example: Google Applications.

9

 Platform as a Service (PaaS): Provides Operating system, development, and

execution framework, database, web server. Example: Microsoft Azure.

 Infrastructure as a Service (IaaS): Provides virtual machines, storage, and

connectivity. Example: Amazon Elastic Compute Cloud (Amazon EC2).

Cloud computing provides us with several benefits including the following:

 Cloud computing is a cost-efficient system and it has a pay-per-use billing model.

The maintenance is lower than that in traditional computing since the infrastructure

is not purchased.

 Cloud computing systems offer large storage and handle their maintenance, backup,

and recovery.

 Cloud computing offers a more flexible solution and adapting applications rapidly

with the changes on business conditions.

On the other side, cloud computing faces several challenges that must be taken into

consideration when dealing with them:

 Data security and privacy are big concerns on cloud computing. Service providers

provide data security and privacy the user should rely on them.

 Cloud services management is not trivial. Data replication and recovery, capacity

management, auto-scaling, and transactions monitoring all have to be served

sufficiently to avoid damage and severe impacts.

 Cloud computing systems must obey some government regulations in many cases.

For example, some governments do not allow having storage systems outside the

country that might store people personal information.

10

2.1 Data center

Data center (DC) is a collection of servers interconnected by switches within a

room/building. DC provides large storage, large-scale services that process a large amount

of data and serve a large number of users. Large companies such as Facebook, Microsoft,

and Google have their own DCs. Small companies rent DC resources through cloud

computing services. Within the data center building, we find the following components:

 IT devices: The IT devices can be categorized into servers, communication devices,

and storage.

 A server is a device that provides functionalities, called "services", for other devices

called "clients". In the client-server model, computations are distributed across

servers. Typical servers are database servers, file servers, mail servers, print servers,

web servers, game servers, and application servers. The servers of the data center are

stacked in racks that are placed in rows and called server farms.

 The storage in data centers is usually disaggregated from the servers as a storage or

disk array. A disk array is a disk storage system consists of multiple disk drives and

cache memory and supports virtualization and Redundant Array of Independent Disks

(RAID).

 Mechanical and electrical infrastructures: data centers require a cooling system for

the IT devices. It also requires redundant electricity. The electrical infrastructure

provides power without interruption for the IT devices. A backup generator provides

reliable power in case of power outage. An uninterruptible power supply (UPS)

ensures that the quality remains constant even after a power outage.

11

 The data center components are well organized in racks and cabinet. A rack is a

physical steel that is designed to house servers, networking devices, and other

computing equipment. It is prefabricated with slots for connecting cables. Data center

racks are classified based on their dimensions and capacity, the amount of equipment

they can hold.

The data center architecture has three layers; core, aggregation and access (edge),

Figure 2.1. The core networks contain the border routers that connect the data center to the

internet. The aggregation layer provides functionalities for routing, load balancing,

firewalls, intrusion detection, traffic flow, and more. The access network contains storage,

servers, and the inexpensive switches that access the servers.

Figure 2.1: Data center architecture has three layers.

There are two design models for the data centers; the multi-tier model and the server cluster

model. The multi-tier model divides the data center servers into three tiers of servers: web-

servers tier, application servers tier, and database servers tier. This model is used to provide

web services and HTTP-based applications. The server cluster model combines several

CPUs as a unified high-performance system using a high-speed network. This model is

used for high-performance computing (HPC), parallel computing, and grid computing.

12

2.2 Virtualization

Virtualization is the creation of a virtual version of something. All IT equipment in data

centers and cloud are virtualized, including servers, storage devices, and network

resources. Using virtualization, we get several benefits such as raising the resource

utilization, sharing the resources, reducing the overall cost, encapsulating and isolating the

computing environment of each user in virtual machines, and migrating the virtual

instances among different physical hosts.

2.2.1 Hardware virtualization

Hardware virtualization is the creation of virtual resources that act like real ones. The

purpose is to separate the compute environment from physical resources and to increase

resource utilization. Virtualization is the main building block in cloud computing.

Containers and virtual machines are two deployment methods for virtual platforms in cloud

computing.

Virtual Machine (VM) is a software that emulates and provides the same functionality of

a physical computer. Operating systems can be installed and run on VMs.

The hypervisor, which is also called a Virtual Machine Monitor (VMM), allows several

virtual machines to share the hardware resources. It is responsible for creating, running

virtual machines, and isolating each running instance of a virtual machine from the physical

machine.

Containers are isolated user-spaces hosted on operating system instances and may look

like real machines. Programs running inside a container cannot see computer resources

except those assigned to the container.

13

Cloud instance is a virtual server. Virtual hardware is implemented by software on top of

real hardware. Cloud instances provide several advantages. It is possible to replace the real

hardware and move the virtual servers to work on another resource. Adding removing

resources using the software is easy which maximizes HW resources utilization. It is

possible to expand to multiple machines. It avoids crashes by changing resources. The user

does not have to worry about how many servers are needed to run a task.

2.2.2 Application virtualization

In application virtualization, part of the runtime environment is replaced with an

application virtualization layer which intercepts all disk operations of the virtualized

application and redirects them to a virtualized location, often a single file. Examples

include Citrix XenApp, VMware ThinApp, and Microsoft App-V. With application

virtualization, it becomes easy to run the application on different computers. The

application remains unaware that it accesses a virtual resource instead of a physical one.

Some applications cannot be virtualized such as anti-viruses, applications that require a

device driver, and applications that use a lot of OS functions.

Service virtualization is the emulation of specific components behavior in component-

based applications. Examples include API-driven applications, cloud-based applications,

and service-oriented architectures. It is useful for testing and development of software

components. It focuses on virtualizing web services.

2.2.3 Desktop virtualization

In desktop virtualization, the operating system (OS) is isolated from the client device of

the user. The desktop environment is separated from the physical client device such that

no data is saved in the user's device and all components are saved in the data center. The

14

user basically either logins to a shared desktop on a remote server which is called session

virtualization or connects to a virtual machine hosted in a data center which is called virtual

desktop infrastructure (VDI). Some examples include XenDesktop and View.

2.2.4 Network virtualization

In network virtualization, the networking functionalities are implemented on a software-

based entity called a virtual network. Network virtualization is useful for software testing

since it can simulate the network environment. Some examples include SDN, VMware,

NetScaler, and Cisco.

External network virtualization combines or subdivides local area networks (LANs) into

virtual networks to improve efficiency. Internal network virtualization uses software to

emulate a network. It is useful to isolate applications to separate containers.

The performance of network virtualization suffers when using 10 gigabit/sec networks and

above. With these networks, the packet rate might exceed that processing capability. To

overcome this limitation, some hardware devices are combined with the software-based

network to higher processing performance.

2.2.5 Storage virtualization

In storage virtualization, all storage media are treated as a single pool of storage. It can be

either file virtualization which eliminates the dependency between the file name and the

file contents locations or block virtualization which introduces logical partitions. In data

centers, multiple disk drives are combined and form a disk array and storage virtualization

is used to provide them as a storage system. Some examples include NetApp, IBM,

Compellent, etc.

15

2.3 OpenStack: open source cloud computing platform

In this section, we illustrate the OpenStack cloud computing platform as an example to

understand the components of cloud computing platforms. OpenStack is an open source

software for creating private and public clouds. Unlike most existing cloud computing

platforms, OpenStack supports adding and pooling custom hardware and provides

infrastructure as a service. It is used in several researches on FPGA integration in cloud

computing [9, 10, 11, 12]. In the following, we list some important components of the

OpenStack:

Figure 2.2: OpenStack core components [13].

 Nova: The compute nodes controller which provides virtual machines as IaaS. It is

written in Python and uses many external libraries. Python is an interpreted (i.e. the

source code is not compiled and available for modifications) high-level programming

language for general-purpose programming. This allows researchers to build a

modified version of the Nova that integrates FPGAs as computing resources.

 Neutron: The networking manager which is responsible for providing IP addresses

and ensuring that the network is not a bottleneck or limiting factor. Users can create

their own networks and control traffic. Software-defined networking (SDN) is

16

supported. It provides general services such as load balancing, firewalls, virtual

private networks (VPN) and intrusion detection systems (IDS).

 Swift: The redundant storage manager that stores files.

 Glance: The image service manager. It can add, delete, share, or duplicate images. It

could be used to store backups or to enable VM migration between physical servers

at run-time. It enables dynamic optimization of resources and allows performing

maintenance.

 Keystone: The identity manager that manages the authority and provides a directory

of users with the services they can access.

 Horizon: The dashboard that provides a graphical interface to access, provision, and

automate the deployment of cloud-based resources.

Cloud computing platforms are server-based clouds which depend on CPUs as the main

computation device. Even when a non-CPU computing device is offered, it is offered as an

I/O device attached to a CPU-based virtual machine. Offering FPGAs as standalone

computing devices on cloud computing systems require extending the virtual machine

concept to include non-CPU computing devices. With FPGAs, instead of the virtual

machine image, that represents the virtual server, we have the bitstream that represents the

application hardware. Instead of launching a virtual machine from an image file, we

configure an FPGA by a bitstream file. Since OpenStack is an open source cloud computing

platform, it provides the flexibility to extend the virtual machine concept to include FPGAs.

Its source code can be modified to allow integrating FPGAs as computing resources as

seen in several works [9, 10, 12].

17

CHAPTER 3

Design with FPGAs

Field Programmable Gate Array (FPGA) is a programmable chip that can be configured to

be any integrated circuit. FPGA can be reconfigured again and again to hold a different

design each time. Early use of FPGA was to prototype and test hardware designs before

fabricating them as non-configurable chips (ASIC). Nowadays, FPGA is used in

computation either as accelerators attached to a server to accelerate computational

intensive tasks or as a standalone device to do real-time computation such as network

packet processing.

In this chapter, we introduce FPGA architecture and design flow. We talk about the

standard methods of writing hardware designs; the hardware description languages (HDL)

and high-level synthesis (HLS) tools. Then, we list strength and weakness FPGA and try

to identify the place of FPGA among traditional computing devices; CPUs and GPUs.

18

3.1 FPGA architecture

Field programmable gate array (FPGA) consists of a large number of reconfigurable blocks

with configurable interconnections, Figure 3.1. Almost everything in the FPGA is

reconfigurable including the configurable logic blocks (CLBs), the static memories

(SRAMs), the digital signal processing units (DSPs), and the look-up tables (LUTs). In

addition, the connection between these components is reconfigurable. This makes FPGAs

very flexible hardware that can be reconfigured again and again to work as different

hardware each time. Putting such hardware resources on the cloud to be available for

everyone in an easy way is such a dream that needs serious work.

Figure 3.1: FPGA Architecture is a two-dimensional array of reconfigurable resources. Components on

FPGA are programmable: control logic blocks (CLBs), SRAMs, DSP blocks, and interconnects [14].

19

 Configurable logic block (CLB) is a configurable block that provides simple logic

functions. CLB is the main components that exist in every FPGA. Each CLB contains

several slices. Each slice contains several Flip-Flops (one-bit memory) and Look up

table (LUT).

 Look up table (LUT) could be seen as a memory that stores the truth table of a logic

function, Figure 3.2. The LUT inputs work as an address of that memory. This way it

can represent any logic function. Recent FPGAs contains 4-, 5- or 6-input LUTs.

Figure 3.2: 3-input LUT implementations

 Block RAM (BRAM) is a memory block that can be used to store data words in a

specific address. Read and write to BRAM consumes only one or two cycles. In

general, BRAM has three inputs which are address, write enable and input data and

has one output for reading data. BRAM can be a dual port. In this case, its input pins

and output pins are doubled.

 Digital Signal Processor (DSP) is a configurable block that contains multipliers, pre-

adders, adders, subtractors, accumulators, coefficient register storage, and a

summation unit. The DSP is commonly used to implement floating point operations.

 Clock generator and buffers provide clock distribution system with a configurable

frequency. Some clock buffers are controllable and allow stalling the clock signal to

freeze the design that operates by this clock.

20

FPGA is configured by a stream of bits called the configuration bitstreams. The bitstream

contains all needed information about FPGA components such as their type, locations, and

their initial values. The configuration process is done in seconds while generating this

bitstream could take minutes. The bitstream represents the image of the application

hardware. Modern FPGAs supports dynamic partial reconfiguration (DPR) which is the

ability to reconfigure part of FPGA at run-time without disturbing other parts. The

bitstream size is proportional to the reconfiguration region size not to the application

hardware size.

3.2 Design flow

The traditional method of designing application hardware is to write a code using the

Hardware Description Languages (HDL) such as Verilog and VHDL. Then, the code is

synthesized by specific synthesis tools provided by the FPGA vendor and then, its

bitstream is generated for that FPGA. The compilation process for HDL to bitstream

consists mainly of the following steps:

 Synthesize: The HDL file is compiled to the netlist. The netlist is a list of general

primitive components (LUTs, FFs, BRAMs, etc.) and their interconnections.

 Map: The primitive components in the netlist is mapped to actual components of the

specified FPGA device. This is a time-consuming process.

 Place and route: The components are placed and connected. Heuristic algorithms are

used to find the best places and the best routes to match the area and performance

constraints. It is the most time-consuming process and heuristic algorithms are

extensively used.

 Bitstream generation: The final configuration bitstream is generated.

21

The compiling process takes minutes and hours (e.g. 30 minutes). Large designs in a small

area take longer than small designs in a large area. Modern FPGAs takes longer

compilation time because they have more resources.

3.3 Partial Reconfiguration

Modern FPGAs support partial reconfiguration which allows configuring a portion of the

FPGA. Dynamic partial reconfiguration (DPR) allows configuring part of the FPGA while

other designs on other parts on the FPGA is working. The partial bitstream has a smaller

size and it is only applied to that partial region.

FPGA can be configured externally through a serial interface such as the JTAG interface

or internally through internal configuration module provided by the FPGA manufacturer.

Xilinx introduces the Internal Configuration Access Port (ICAP) that can do partial

configuration. It introduces the Planahead tool that supports the generation of partial

bitstream. Altera introduces the configuration via a protocol (CvP) that allows configuring

FPGA through the PCIe interface. They introduce the Intel® Quartus® Prime Tool that

enables the generation of the partial bitstream for their FPGAs.

Partial reconfiguration faces several limitations and needs a careful understanding of the

device architecture and its configuration memory. The following examples illustrate how

does it affect the reconfiguration region size and shape. In Xilinx Virtex II and Virtex III

devices, the configuration memory is organized as a 2-D bit array in which each column

represents one frame [15]. A frame is an atomic unit of configuration. The frame contains

configuration bits that belong to several physical resources that share the same column.

Those resources are configured using several frames. Using Xilinx Virtex II and Virtex III

22

devices, it is difficult to have two partially reconfigurable regions that share several

columns. We may need to extend each design for the full height of the device.

In Virtex 6 devices, the configuration memory is organized as a 2-D bit array of frames

[16]. Each row of the array represents a clock region. Each column of the array represents

contains a single type of FPGA primitive. The CLB frame contains 40 CLBs. the DSP

frame contains 8 DSPs. The BRAM frame contains 8 18Kbit Block RAMs.

In addition to these limitations, the interfacing between the partially reconfigurable region

and the static region needs special considerations. For example, Xilinx FPGAs requires all

I/O of the partial region to be registered. Those registers should be disabled while doing

the partial reconfiguration. In a recent version, Xilinx Vivado can automatically add

partition pins [17].

For partial reconfigurations, Intel introduces the secure device manager (SDM) [18] for

Stratix 10 and the PR control block IP core [19] for Arria 10 FPGAs. The PR IP core

contains three controllers; Control Block Interface Controller, Freeze/Unfreeze Controller,

and the Data Source Controller. The Freeze/Unfreeze controller provides a signal that is

used to freeze the interface between the partial region and the static logic during the

reconfiguration process. Intel uses the term “PR persona” is used to indicates a partial

bitstream [20]. As explained in Intel documentation [21], partial reconfiguration may

corrupt the contents of some BRAM blocks in the static region if careful floor planning is

not taken.

Finally, not all resources are dynamically reconfigurable. Clock buffers, IOBs, and

transceivers are usually non-dynamically reconfigurable resources. The internal

23

configuration of DSP blocks and the initial values of block rams cannot be dynamically

changed.

3.4 High-level synthesis

Although hardware description languages (HDL) is the natural method writing hardware

codes, HDL describes the compute machine architecture not the computing task algorithm.

High-level synthesis (HLS) tools provide higher abstraction because it uses C-like

constructs. Designing hardware that runs on FPGA is done by writing code in hardware

description languages (HDLs) which are mainly VHDL and Verilog. HDLs provide a very

low abstraction level analogous to assembly in software design. It requires developers with

a strong background on designing digital circuit components such as registers, counters,

control units, ALUs, data path, state machines, etc. It also requires a deep understanding

of digital circuit terminologies such as clock, synchronous and asynchronous signals, inter-

domain communication, hand-shaking protocols, etc. In addition, the designer should

understand the FPGA components to be able to utilize its components and debug his code.

With the increasing trend of using FPGAs to do computations, extensive researches have

been done on compiling algorithms written on high-level programming languages (HLL)

to hardware description languages (HDL). A lot of HLL to HDL compilers are invented

and researched. A lot of problems raised because HLLs are built on top of the Von-

Neumann architecture and sequential execution with memory hierarchy, not the inherently

parallel HW execution model. HLL constructs such as recursion and dynamic memory

allocation cannot be supported on FPGAs unless a soft processor (i.e. a processor built

using FPGA's configurable resources) is used. However, using soft processors results in

very poor performance. Compiler directives are suggested to indicate blocks that can be

24

parallelized just like those that target GPUs or multi-processing systems. Almost all HLL

to HDL academic researches ends up to a commercial HLS tool. HLS tools are the state of

the art of HLL to HDL researches. An HLS tool accepts as input a C-like code that

describes the user application and produces as output a hardware description written in

HDL or register-transfer level (RTL).

HLS provides higher abstraction since the application can be expressed in fewer lines of

code. It also decreases the designer design time. High-level synthesis (HLS) tools allow

designers to efficiently explore the design space trading off performance for area and/or

power. However, it increases the compilation time since the total design time is increased.

It produces less efficient circuits compared to handwritten HDL code. HLS tools are vendor

specific. HLS tools still require hardware design background that is beyond typical

application developers. Some HLS tools such as BlueSpec, SystemVerilog, and SystemC

may facilitate hardware-designers life by hiding some low-level details such as the clock

signals but they still need the user to be aware of the underlying hardware components.

Some other HLS tools are suitable only to design accelerators for specific application

domains. There are few open-source HLS tools such as Leg- and Bambu [22].

 OpenCL [23] is an extension to C/C++ language that allows writing kernels to be

executed in accelerators such as GPUs and FPGAs. The user writes a C program and

defines several kernels. The program is implemented in a CPU while the kernel is run

on the accelerator. Intel introduces the Intel SDK for OpenCL which is a compiler

from OpenCL to Altera FPGAs. Xilinx introduces the SDAccel [24] which is a

compiler from OpenCL to Xilinx FPGAs. SDAccel is used by Amazon EC2 F1

instances [7].

25

 Vivado HLS [25] is a compiler that targets only Xilinx FPGAs. It accepts C/C++ and

SystemC programs and supports C++ classes, templates, functions and operator

overloading. It also supports converting OpenCL kernels to IPs.

 Legup [26] is an open-source academic HLS tool. It accepts a C code, debug it and

run it in software. Then, the HDL code is generated for the function that is declared

as a hardware core. It allows the user to define FIFO-based inputs to a function and

provide a library for reading from and writing to the FIFO. The last version 5.1 is a

commercial version and supports automatic pipelining for specified function or loop.

It also supports parallel threads written by pThreads [27].

3.5 FPGA strengths and weaknesses

Compared to other processing units such as CPUs and GPUs, FPGAs achieve better in

terms of energy consumption per operation. In addition, due to the large amount of

computing logic resources, FPGAs expose better performance than CPUs for applications

that contain parallel tasks. CPUs runs parallel threads by switching between threads, the

parallelism in FPGAs is true parallelism (hardware parallelism). They represent an

excellent option for accelerating and for real-time control systems. However, when it

comes to sequential tasks, FPGA exposes poor performance compared to CPU which run

on gigahertzes while FPGA runs at 10s or 100s megahertz in the best case. Usually, an

application contains both. It contains a parallel part and a sequential part.

Figure 3.3 shows computation models comparison among CPU, GPU, and FPGA. CPU is

based on the von Neumann computing model. GPU is based on vector processing model

since it has several parallel processing cores. FPGA uses a chain of dedicated processing

26

elements instead of performing computation on one ALU. It can explore parallelism in

different ways and only if there are enough resources.

Figure 3.3: Compute paradigms comparison [28]. a) CPU represents the Von Neumann model. b) GPU

represents the vector processing model. c) FPGA represents spatial computing.

To show the strength and the weakness of the FPGA, we compare different computing

devices, CPU, GPU, and FPGA. This helps to decide how and when to use FPGA for

computation and what computation model is best suited to FPGA. Many advantages

motivate using FPGA in computation as an accelerator or as a standalone computing

machine:

 The latency of FPGA is better than GPU. FPGA is more suitable for real-time

computation. It provides deterministic time with accuracy reaches to nanoseconds.

 FPGA can be programmed to deal with any type of interfaces, unlike GPUs which are

restricted to the PCIe interface.

 Low power is another factor that makes FPGA a good computing machine.

27

FPGAs suffer from many limitations that prevent them from being widely used in

computations:

 FPGA are expensive compared to other computing devices. Their design flow tools

licenses are expensive too. The design time of FPGA is the worst.

 Compiling an HDL code to a bitstream could take minutes and hours. Hardware

simulation and debugging is also a very time-consuming process. In contrast, the

compilation time for GPUs and CPU is almost instant. Their debugging time is much

better than that for FPGA.

 Application size in FPGA is much smaller than that in GPU and CPU because FPGA

does not use instruction memory, instead, it built special hardware for the application.

The performance versus area tradeoff makes smaller applications performs better on

FPGA compared with other applications.

 Software programming provides high flexibility while FPGA is the worst. GPU is

slightly better in applications that need floating point operations. FPGA uses DSP

blocks to do floating point operations, but it has a limited number of DSPs.

Figure 3.4: GPU vs FPGA qualitative comparison [5].ُ

28

CHAPTER 4

Literature Review

The techniques and definitions of FPGA virtualization are changing over time. Two

common approaches can be seen in recent works for virtualizing FPGAs; FPGA overlays

[29] and virtualization by adding abstraction layer (AL) that abstracts the FPGA interfaces.

In this chapter, we explore the FPGA virtualization works. Then, we explore the other

works on integrating FPGA in data centers and clouds.

4.1 Overlay architecture

Overlay architectures are to build virtual FPGAs on top of physical FPGAs to reduce

vendor dependencies [29]. The overlay works as an intermediate layer between the user

hardware and the vendor FPGA. First, the several instances of the same overlay are

synthesized and implemented on different FPGAs types. Then, the user hardware is

translated only one time to the overlay and become able to run on all FPGAs. Overlays can

exhibit features independent from the host FPGA such as allowing context switching by

reading configuration bitstreams as well as the contents of the registers. Overlays have

three main advantages over physical FPGAs:

29

 Portability: The user application become completely independent from the physical

FPGAs and their vendors. One bitstream represents the application for devices.

 Maintainability: Upgrading physical FPGAs and replacing old one become smooth.

 Migration ability: Context switching and time-multiplexing several applications

become possible. It is possible to migrate a running application from a physical

location to another. The demonstration in [30] shows live migration between two

nodes of a cluster of heterogeneous FPGAs.

Overlay architectures can be fine-grained [31, 32] or coarse-grained [33, 34, 35]. In fine-

grained overlays, FPGA components such as LUTs, CLBs, interconnects, etc. are modeled

in HDL, synthesized and a bitstream is generated for the new configurable virtual FPGA.

The enable signals in physical registers become a virtual clock. Fine-grained overlay

involves high area overhead and causes performance penalty because it lowers the

operating frequency. Productivity is too low in fine-grained overlay because its input is

HDL code which needs to be synthesized, placed and routed using similar tools of normal

FPGAs. Coarse-grained overlays contain larger and more abstract components such as

FFT, SQRT, adder, multiplier, etc. that target a smaller number of applications. The coarse-

grained overlay is less general purpose than fine-grained ones. The coarser the cells are the

more domain-specific we get. Restricting it to specific application domains is the main

disadvantage. The coarse-grained overlay does not suffer from area and performance

overhead like fine-grained overlays. Productivity is high, the instant compilation is possible

and therefore their applications are easy to debug. Configuration time is also fast because

their configuration bitstreams are small. They are easy to be used by a software

30

programmer. The programmer introduces the HLL code, its control flow graph (CFG) is

extracted, and finally, the interconnection configuration is produced.

Although overlay architectures provide portability which fits well with virtualization

requirements, the cost in area and the performance overhead in fine-grained overlays make

them not practical for using FPGAs in computations. In coarse-grained overlays, it is

difficult to have general FPGA virtualization platform since coarse-grained overlays are

domain-specific. Therefore, works on integrating FPGA in cloud and data center does not

use overlays as virtualization techniques, instead, they use virtualization by adding an

abstraction layer (AL).

4.2 Virtualization using abstraction layer (AL)

In this type of virtualization, an abstraction layer (AL) is created which contains a

collection of common hardware components that are needed by all applications. A software

library is also created to provide standard API functions that interact with the abstraction

layer. The hardware components of the abstraction layer are:

 Communication controller such as PCIe endpoint, Ethernet controller or off-chip

memory controller.

 Routing: It is included when the platform supports several vFPGAs per a physical

FPGA.

 Reconfiguration management: It is included if dynamic reconfiguration of vFPGAs

is supported.

 Clocking management: It is included if different clock domains are needed.

31

 Soft processor: In some works, a soft processor is included as a reconfiguration

manager. Other works used the soft processor to control vFPGA and the application

run.

 Security blocks: Some platforms add security modules at the abstraction layer level.

 Registers: It collects information and status or store configurations that control the

abstraction layer and vFPGAs

Each physical FPGA is divided into two parts; the abstraction layer (1% up to 25% of the

physical FPGA area) and one or more vFPGA regions to hold the applications. The size of

the abstraction layer differs from work to another and depends on what components are

included/excluded in it. Each research refer to the abstraction layer using different

terminology such as static logic [36, 9], RC2F [37], service layer [10], vendor logic [12,

38], network service layer [39], FPGA hypervisor [11, 40] and shell [7, 41]. In some

researches, the vFPGA region is suggested to be a dynamically reconfigurable region [9,

10, 12, 37] while in other works [7, 42] the user design is combined with the abstraction

layer and compiled together to form one full bitstream.

The abstraction layer has a hardware side as explained above and has a software side.

Software libraries are introduced in several platforms for PCI-attached FPGAs [43, 37, 44,

36, 45]. Knodel [37] for example, introduces the RC3E FPGA hypervisor that provides

functions for device control, vFPGA control, data flow control that interacts with the off-

chip memory, load bitstream, get status and set configurations. The provided API functions

by different works can be categorized as follows:

 API functions for device info and existence queries; get_device_info()

32

 API functions for accessing vFPGA, FPGA or an individual channel on FPGA

through send() and receive() API functions.

 API functions for reading or writing to registers in the FPGA.

 API functions for resetting FPGA and the transfers on all channels.

There are important researches that address some virtualization properties. Merging several

vFPGA regions to form one large region is discussed in [46]. This allows having vFPGA

of different sizes. Migrating a design from one vFPGA to another is discussed in [47] in

which the measured migration time is around one second.

4.2.1 Interfacing the abstraction layer (AL) with vFPGAs

Platforms that don’t support dynamic partial reconfigurations (DPR) for vFPGAs don’t

require high abstraction in the vFPGA interface. This is because the application and the

abstraction layer are merged and compiled together as one bitstream. However, if DPR is

supported, the vFPGA interface should be a fixed interface that fits for all applications.

The AXI [48] interface is commonly used for vFPGA interfacing in several works. It is a

handshaking interface that allows both sides of the link to stall (stop) data movement. It

provides efficient data interchange and can offer one data element per cycle. FIFO-based

interfaces are also used in [37, 40, 12, 39, 44]. The empty and full signals of the FIFO allow

both sides to know when the other side is busy. Asynchronous FIFO is used when the

application works on a different clock than the abstraction layer. Amazon EC2 F1 instance

[7, 49] uses three AXI-4 interfaces, three AXI-Lite interfaces, and some generic signals

such as; clock, reset, status, etc. In OpenCL based platforms and other GPU-like platforms,

vFPGA interface act as a DMA controller since the vFPGA interface is restricted to the

off-chip memory [44, 38].

33

Some works [39, 44] indicate that some standard logic might be needed inside the vFPGA

to abstract its interface. The vFPGA interface in DyRACT [44] consists of streaming

channels and FIFOs inside the vFPGA to be added by each application. The application is

clocked using the control logic's frequency. Another version of this work [36] uses

asynchronous FIFO-based SDRAM interfaces. However, they did not introduce a general

abstraction method instead, they left this to the application designer to build a specific

wrapper for the application. Asiatici et al. [50, 51] suggest adding onboard processor or

soft processor to the shell for orchestrating the hardware accelerator execution. A manager

executing parallel constructs on the processor manages the FPGA resources and

communicates with the host over the PCIe.

4.2.2 OpenCL and the CPU-FPGAs interface abstraction

OpenCL defines a mechanism [52] for CPU-FPGA communication and supports API

functions for querying devices info, FPGA partitioning, and command queues (such as a

memory write and read or executing a kernel). Just like OpenCL for GPUs, the application

is written in HLL language where the compute-intensive functions are defined as kernels

to be accelerated on PCI-attached FPGA. The compiler compiles the software part and the

hardware and manages the interfacing between them. This helps the designer to focus only

on his application logic.

Xilinx and Intel developed their own OpenCL compilers for FPGA devices [53, 54]. The

compiler compiles the kernels into hardware on vFPGA and integrates the abstraction layer

with them according to a predefined architecture explained in their documentation [55, 14].

The Xilinx OpenCL compiler is used by several works [7, 11].

34

Amazon announced EC2 F1 [7] which is a cloud compute instance that provides FPGA

infrastructure as a service (IaaS). It uses FPGAs and design tools from Xilinx. Amazon

EC2 F1 provides two methods for building on-cloud hardware. The first approach is to use

the OpenCL development environment to build heterogeneous applications that run on

CPU and accelerated on FPGA. They have used the Xilinx SDAccel tool and the user

should obtain a license from Xilinx and install it to use these tools. The second approach

is to install and use the Vivado IP Integrator (IPI) provided by Xilinx. In this approach, the

user is free to build cores that can be accessed over PCI. To abstract the FPGA interface,

Amazon EC2 F1 introduces the Hardware Development Kit (HDK) library. The HDK

integrates the static logic (shell) with the Custom Logic (CL) provided by the user. The

shell interface at the hardware side is connected to a DRAM controller and/or PCI express

controller. The shell interface at the custom logic (CL) side provides several AXI

interfaces. There are three AXI-4 interfaces, three AXI-Lite interfaces, and some generic

signals such as clock, reset, status, etc. The Shell and CL are synchronous to one clock

with a maximum frequency of 250MHz. There are seven more clock signals. The developer

can select among a set of available frequencies provided in the clock recipe table. There

are four DRAM interfaces. One of the four DRAM interface controllers are implemented

in the Shell, and three are implemented in the Custom Logic (CL) [55].

Amazon EC2 F1 introduces the Amazon FPGA Image (AFI) management tools [56] to

manage FPGA images (bitstreams) on the cloud. It includes functions for listing available

FPGA slots, getting image status, loading image, clearing image, start virtual JTAG to

debug the design, get/set LEDs and switches.

35

Intel acquired Altera (a manufacturer of FPGAs) in 2015. Intel introduces FPGA as PCIe

attached devices just like GPU devices. The OpenCL language is used to write software

that runs on CPU and define some kernels that run on FPGA. Abstracting the FPGA

interface in Intel FPGA is done by using the off-chip DDRAM as a shared memory between

CPU and FPGA. First, the data are sent from the system main memory over the PCI to the

FPGA board off-chip DDRAM. Second, the accelerator is invoked to start. Third, the

accelerator does computations on the data and store results on the DDRAM. Forth, when

the accelerator finishes it interrupts the CPU. Finally, the results are moved back to the

system main memory at the CPU side [54].

Figure 4.1: The architecture and design components in Intel OpenCL for FPGAs [14].

4.3 FPGA attachment interface

FPGA-based compute node properties are severely affected by the style of physically

attaching FPGAs to the system. PCIe and Ethernet interfaces are the most commonly used

approach because of their high bandwidth.

36

With PCIe interface, the FPGA is physically coupled to a CPU-based server. Integrating

FPGAs on cloud computing platforms is done by introducing compute nodes or virtual

machines with PCIe-attached FPGAs [57, 37, 36, 10, 7]. In this case, the VM hypervisor

is slightly modified to launch VM requests in machines that have PCI-attached FPGA [11].

Wang et al. [58] show a different method in which PCI-attached FPGA can be common

among several servers. They used the Xen virtual machine monitor (VMM) to provide

FPGA access to all servers on the network and manage the PCIe traffic between servers

and hardware. In [59, 60] a technique is proposed to make a single PCIe-attached FPGA

appears as several separate coprocessors to multiple VMs running on the same host node.

Taking advantage of the PCIe Single-root I/O virtualization capabilities, each vFPGA

appear as a separate PCI-attached FPGA and each VM got exclusive access to its “own”

vFPGA.

The tight coupling between FPGAs and CPUs in compute nodes leads to several

limitations:

 The number of FPGAs in a DC is limited to the number of CPU nodes and PCIe slots

per node,

 FPGAs cannot be used independently from the CPU node they are attached to; i.e.

CPUs must explicitly send/receive data and instructions to the FPGAs wasting both

CPU's and FPGA's cycles,

 In a cloud setting, customers actually instantiate two compute instances (one on a

CPU and another on an FPGA),

37

 Aggregation of several FPGAs to implement a large application becomes difficult and

inefficient as the data traffic between these FPGAs must go through the nodes (i.e. no

direct communication between FPGAs).

Weerasinghe [12, 38, 39] proposed connecting FPGAs to the data center network as

standalone computing devices. In [61], network-attached FPGAs are configured to one of

three block types; compute core for general-purpose computing, memory block, or

hardware acceleration. These types allow users to choose the most suitable architecture and

memory management for their applications.

In Microsoft catapult [6] both interfaces are used. FPGAs are connected using a secondary

network while they are still PCI-attached devices. A large application is implemented on a

chain of FPGAs such that each FPGA implements one phase of the application. Each FPGA

contains the abstraction layer and one application phase. Then, several copies of the same

application are launched on several to raise the throughput.

4.4 FPGA in the cloud and data center

Cloud computing systems use CPU-based servers to do computations. Integrating FPGA

as a computing resource is not supported directly. Large companies add modifications to

their own cloud systems to support their FPGAs. Microsoft Catapult [41] is hosted on the

Microsoft Azure cloud computing platform. Amazon Cloud hosts the EC2 F1 instance [7].

Several academic works [9, 10, 11, 12] suggest modifications in the OpenStack cloud

computing system to enable integrating FPGAs as computing resources. In OpenStack,

FPGA could be integrated to accelerate the data center functionalities but not provided as

cloud servers. Microsoft uses FPGAs to accelerates Bing search [6]. It also uses SDN on

38

FPGAs to accelerate its networking operations [2]. The user is not aware of the FPGAs

existence.

Byma, et al. [9] introduced a method for virtualizing FPGAs to enable their integration as

standalone compute nodes (i.e. not coupled to a CPU). This is the first work, as far as we

know, that introduces virtualizing FPGAs using abstraction layer method. The abstraction

layer includes ethernet controller, a soft processor, and a memory controller. vFPGAs are

introduced as Infrastructure-as-a-Service (IaaS) and the OpenStack cloud system is adapted

to manage vFPGA resources. Configuration is done using a JTAG interface and a UART

is used to configure network address registers. This meant that the FPGA still requires to

be attached to a server to be configured by bitstreams or to configure its network address

registers. The cost of integrating FPGAs into data center increases due to excess cabling.

Tarafdar et al. [11], suggest a platform for attaching FPGAs to virtual machines (VMs).

The platform assumes that the VM is running on a server that has PCI-attached FPGA. The

Xilinx SDAccel Platform [24] is used to provide the abstraction layer and the software

drivers. It is deployed using the OpenStack cloud system and provided as Infrastructure-

as-a-Service (IaaS). OpenCL allows the user to write his application with kernels, compile

it, configure it and abstract the VM-FPGA interface, enabling the user to focus on the

application logic.

Knodel et al. [37] introduced RC3E as a framework to integrate FPGAs in the cloud. In

their framework, each physical node includes a server with several FPGAs connected to it

through PCIe. They introduced their abstraction layer which is called the RC2F. It consists

of PCIe endpoint, clock management, and control and reconfiguration manager. They

39

introduce API functions like those provided by OpenCL. Their platform allows introducing

accelerator as a service or the vFPGA region as a service.

Kidane et al. [40] adapted the network-on-chip (NoC) architecture to build a virtualization

platform. The idea is to map each processing element (PE) in NoC to a dynamically

reconfigurable region. The switches (routers), links and network interfaces become the

abstraction layer. The platform introduces the reconfigurable region as a service or the

reconfigurable IP as a service.

Chen et al. [10] did major effort to integrate FPGAs as accelerators. Multiple virtual

FPGAs were tightly coupled with one CPU through a PCIe interface. Multiple processes

can be scheduled on the same virtual FPGA (through re-configuration). The user configures

a virtual FPGA with a customized accelerator with a custom communication interface. The

system can context-switch the same accelerator among users. There is no virtualization at

the level of interconnection. Another drawback is that the PCIe interface becomes a

bottleneck and its bandwidth should be balanced as discussed in their paper.

4.5 ASIC Clouds

ASIC Clouds [62] suggest fabricating several instances of the same accelerator with

routing and interconnection on an ASIC chip and having several ASIC chips on boards and

racks. There are on-PCB network and a control plane that interpret incoming packets from

the on-PCB network and schedules computation and data onto replicated compute

accelerators. Unlike FPGA-based accelerators, the designed hardware in ASIC chip can

never be modified but it provides the highest possible performance with low power. They

showed that ASIC cloud optimizes the total cost of ownership (TCO) to 2-3 orders of

magnitude better than CPU and GPU on four case studies; the Bitcoin mining ASIC

40

Clouds, YouTube-style video transcoding ASIC Cloud, a Litecoin ASIC Cloud, and a

Convolutional Neural Network ASIC Cloud.

4.6 Summary

Table 4-1 below shows a summary of notable platforms of FPGA-based processing for

clouds or datacenters. The ASIC cloud is included in the comparison, although it is not

reconfigurable hardware, because it provides ASIC-Based custom computing machines for

the cloud.

The configuration/attachment refers to how the FPGA is attached to the cloud (or

datacenter) and how it is used. FPGA-based accelerators are attached to a host CPU via the

PCIe bus and cannot be used independently from the host (i.e. in a cloud environment, the

user need to instantiate two compute instances). Depending on their shells, FPGAs attached

to the data center’s network can be used on their own (i.e. standalone) or still need to work

in tandem with a host CPU that runs the main application and calls FPGA acceleration

functions over the Ethernet. The latter option also requires two compute instances.

Network-attached standalone FPGAs act as servers (i.e. can be used by multiple

users/applications). Microsoft’s Catapult provides all types of attachments and

configuration at a staggering logic cost [6].

The clustering column shows if several FPGAs can be connected directly to run large

applications without having the data going through CPU nodes. JetStream is the only PCI-

attached FPGA that allows a vFPGA-to-vFPGA connection.

The IF (Interface) abstraction column reflects the level of abstraction for the application

interface. Our proposed platform can receive data in their original format, so it provides

41

full abstraction. Medium abstraction is provided by FIFO interfaces. A platform with a low

abstraction is one that requires users to adapt their design to its fixed interface. Platforms

that require the users to develop custom interfaces have no IF abstraction at all.

The DDRx column specifies if a platform’s shell has an off-chip memory management

interface. We have not opted for this option as it increases the static logic area significantly

and it is not crucial for streamed applications.

IBM’s network-attached FPGAs [39] is the closest work to our work. Its interface

abstraction is medium because it introduces fixed FIFO-based interfaces and the data

formatting, and the computation control is completely left for the application’s designer to

design. The table shows that standalone CCM with abstracted data interface is not

introduced by other FPGA virtualization platforms. It also shows that our proposed

platform provides ultimate flexibility with relatively low overhead.

Our platform introduces network-attached solution and support in which several virtual

FPGAs can be chained to perform computation phases for large applications. The interface

abstraction is complete such that the user sends data with no controls. We do not have and

off-chip memory support because we target streaming applications.

OpenCL-based platforms completely abstract the FPGA interface allowing the user to

focus on his applications. The computing model of OpenCL assumes that FPGA will be

attached to CPU and used only as accelerators that are controlled by a running software

application. The DDRAM is used to store data before computation and store the result after

computation is done. When integrated into the cloud, OpenCL-based platforms are

provided within a virtual machine. Therefore, it is provided as a platform as a service

42

(PaaS). Our platform completely abstracts the FPGA interface allowing the user to focus

on his applications. It provides standalone FPGA that is not attached to CPU. It executes

the application and provides its service without external control. There is no DDRAM to

buffer data or store results. The computing model is streaming compute model. When

integrated into the cloud, our platform introduces the application on FPGA as a service

which is a form of software as a service (SaaS).

Table 4-1: List of notable platforms of FPGA-based processing for clouds or datacenters.

Work
Configuration/

Attachment to a host
Clustering

Interface

Abstraction
DDRx

[37] RC3E PCIe-attached Low

[44] DyRACT PCIe-attached Low

[36] Fahmy PCIe-attached Low

[50, 51] Asiatici PCIe-attached Low

[12] Hyperscale Ethernet-attached Medium

[38]
IBM’s

Disaggregated

Standalone,

Network attached
 Low

[39]
IBM’s

Net-attached

Standalone,

Network attached
 Medium

[11] Tarafdar
PCIe or

Ethernet-attached
 None

[7] Amazon PCIe-attached None

[6] MS Catapult

 PCIe-attached +

Network attachment +

FPGA Network

 None

[63] Byma
Standalone,

Network attached
 None

[10] Chen PCIe-attached Low

[43] RIFFA PCIe-attached Medium

[62] ASIC Clouds

PCIe-attached +

Standalone Network

attachment

 Medium

[64] JetStream PCIe-attached Medium

43

CHAPTER 5

Overview of the Cloud-Based FPGA Custom Computing

Machines Platform

In this chapter, we are explaining our proposed cloud system which offers virtual FPGAs

(vFPGAs) as custom computing machines (CCMs). The focus of this chapter is on general

concepts. Implementation details will be explained in next chapters. The full platform is

not implemented as it is explained. For example, we have implemented a light version of

the network controller. We did not implement the full network controller stack.

The CCM is a network-attached vFPGA configured with hardware that does computations

on streamed data. The CCM can be accessed only through a socket interface. The CCM is

highly abstracted such that it works directly with streamed data without data reformatting

or any additional control information. The data reformatting information and the protocol

of applying data to the hardware are completely included within the CCM. The streamed

results produced by a CCM are also ready to be consumed by another CCM or software

function.

44

Unlike other works [9, 10, 11, 12] that integrate FPGA in the cloud by doing a modification

on existing cloud system components, we are providing standalone FPGA cloud system

that can be integrated to other cloud systems without modifications in their component.

The FPGA hypervisor is a standalone entity that manages FPGA resources. The computing

nodes on our platform are the CCMs which can be connected directly to the cloud network.

The FPGA hypervisor contacts the image management to fetch CCM images from the

storage. Image management fetches and stores bitstreams using the same functions

provided by the cloud system to access the cloud storage.

5.1 FPGA Virtualization

The FPGA virtualization platform consists of several abstraction layers shown in

Figure 5.1. In the following, we list and explain those abstraction layers. The

implementation and the hardware details of the virtualization platform will be explained in

the next chapter.

Figure 5.1: FPGA virtualization is based on several abstraction layers.

 The software library is the highest abstraction layer and provides several functions

for launching, using, releasing CCMs and other management functions.

45

 The network controller handles physical-level connections and networking protocols

and establishes TCP network sessions between the users and their applications in the

virtual FPGAs. It assigns one MAC address and one IP address to the static logic as

well as each vFPGA and makes each of them appear on the network as a standalone

network-attached device.

 The static logic provides several functionalities. It manages secure data traffic with

each CCM. It also reconfigures a vFPGA by a received bitstream.

 The serializer receives the incoming data from the network controller through the

static logic. The packing/unpacking units change the data width and the serializer

reformats the data, adds controls and generates timing information according to the

specifications of the application hardware stored within it.

 The deserializer removes controls from the results and produces results in standards

data format. Then, the packing/unpacking units change the data width to match the

fixed-width interface between the static logic and the vFPGA.

 The application controller receives the data with timing information and applies them

to the application hardware. It controls clocking the application hardware according

to data arrival. It gates the input clock to the application hardware. To gate a clock, a

controllable clock buffer is used which is a primitive resource in most FPGA devices.

The application controller also contains information about which output should be

produced and how many clock cycles should be applied for each datum.

 The application hardware can be any hardware design with an arbitrary interface. The

automatic wrapper generator generates a specific wrapper for each application

allowing to fit in the vFPGA.

46

 Finally, the clocking management could be considered as a cross-layer component or

as part of the static logic layer. It is a physical component that manages several clock

domains for all layers. It could be configurable, so the FPGA hypervisor can change

the clock frequency of each vFPGA according to the configured CCM specifications.

To illustrate the abstraction level the network controller, we compare it with controllers in

other works. Byma et al. [9] did a layer 2 encapsulation (i.e. MAC layer). Their platform

fits more for packet processing systems as shown by the test cases in Byma’s thesis [63]

such as load balancing and extending SDN capabilities using vFPGAs. It can only provide

infrastructure-as-a-Service (IaaS). Catapult [41] and Tarafdar [11] do layer 3 (i.e. network

layer) by doing UDP-like encapsulation. Catapult takes care of having a lossless

transmission using Ethernet flow control (802.1Qbb). In our platform, we raise the

abstraction to layer 4 and 5 (i.e. transport and session layer of the conceptual OSI model)

by using the TCP stream and manage the sessions inside the controllers. The network

controller in our platform produces data stream plus the index of the targeted vFPGA. This

raises the abstraction level and enables introducing computation as a service instead of

IaaS.

The network controller can be implemented as off-chip to save the FPGA resources. It can

also be implemented inside the FPGA. According to a commercial implementation [65] of

10 Gigabit Ethernet network controller on Xilinx Zynq Ultrascale+ MPSoC ZU9 FPGA,

full stack (UDP and 2 TCP engines) consumes around 30k LUTs and around 10k LUTs is

needed for each additional TCP engine. The Virtex 6 FPGA used in our lab contains around

340k LUTs.

47

The TCP transmission protocol is chosen because of its lossless transmission and packet

reordering for long data streams. In addition, we would like to match the ecosystem data

format and interchanging protocols by using off-the-shelf socket connection. However, in

the case of changing the needs of the ecosystem, we may use different networking

controller that match its networking protocols. For example, internet of things (IoT)

networking uses IPv6 for interchanging data with small packet sizes. In this case, we can

replace the network controller only and produce a suitable virtualization platform for IoT.

5.2 FPGA Cloud Architecture

Our platform framework for on-cloud data processing using virtual FPGAs is shown in

Figure 5.2. The framework includes the following components:

Figure 5.2: Proposed FPGA Cloud Architecture

1) The cloud infrastructure consists of FPGA hypervisor, resources database, CCM

creator and other components. The FPGA hypervisor is used to manage vFPGAs

resources, launching and terminating CCMs. It requests CCM bitstream from the

48

cloud storage management. The resources database stores information about CCMs

and vFPGA for the management process. The CCM creator provides CCM creation

service. It receives hardware cores written in HDL with their specification files and

produces CCMs that can be implemented and sold by the cloud operator (CO) or

other third parties as new services. It updates the resources database with the new

CCM information.

2) FPGAs which are network-attached devices connected to the internal cloud network.

Each FPGA contains a static logic and one or more virtual FPGAs (vFPGAs). The

static logic on the FPGA is also known as FPGA hypervisor back-end. Each vFPGA

can be configured with a CCM bitstream and acts as a compute node or part of a

compute node on the cloud.

3) Software library defines the necessary API functions to manage and use virtual

FPGAs. The API functions are represented by the arrows going in and out of the

cloud components in Figure 5.2. The FPGA hypervisor provides API functions to

launch, release CCMs. The FPGA hypervisor back-end defines API functions to be

used by hypervisor front-end like configuring specific vFPGA, reading status

registers, set client IP address, etc. The client can conventionally request to launch

the CCM and initiate the data sending, processing and receiving. The client can use

the Send/Receive, which are socket-based API functions, to access a CCM.

The CCM can be used by a client through the dashboard or by software within the cloud.

5.3 FPGA hypervisor

The FPGA hypervisor manages vFPGA resources and CCM images. It launches,

terminates CCMs and keeps track of available vFPGAs and CCM with the help of the

49

resources DB. The static logic in each FPGA manages vFPGAs in that FPGA so we refer

to it as a hypervisor back-end.

The resources DB is a database that stores vFPGA and CCM management information

such as occupied/free vFPGA resources, user-CCM relationship, vFPGA-CCM

relationship, etc. Virtual FPGA (vFPGA) is the reconfigurable region on the physical

FPGA that can hold a CCM. vFPGA is configured by a CCM bitstream. CCM is the

application hardware configured on a vFPGA. CCM might have several bitstreams to

match each different vFPGA type.

FPGA hypervisor provides API functions for launching, using and releasing vFPGAs.

Table 5-1 lists the main API functions provided by the software library of our platform.

Accessing the CCM is done through only two functions; one for transmitting data and the

other for receiving results.

50

Table 5-1: Main API function in the software library.

Function name
Communication

type
Category Implementation

Send (data stream)

Listen (results stream)

Socket

(TCP Stream)

User-to-CCM

API functions

Put data on

TCP packets

Launch (CCM_ID)

Get CCM List ()

Release (CCM_ID)

Message

Passing

User-to-

Hypervisor

API functions

Use the cloud

message

passing format

that is used to

launch VMs

Configure (CCM bitstream)

Read CCM bitstream ()

Socket

(TCP Stream)
Hypervisor-to-

Hypervisor

back-end API

functions

Put data on

TCP packets

Read status registers ()

Send key (CCM_ID)

Set client info (Sender IP Address

 , Receiver IP Address)

Set Parameters()

Socket (UDP)

The UDP

packet contains

command No.

and command

value.

5.3.1 User-to-CCM API functions

Accessing CCM is done through only two functions one for transmitting and the other for

receiving. An implementation example of two functions using python is shown in

Figure 5.3. The function “Send (data stream)” establishes a TCP stream session and sends

the data stream over the session. The function “Listen (results stream)” establishes a

listening TCP stream session and collects the results. The user should call the listener first

then he sends his data. The CCM hardware receives a reset signal with the creation of each

TCP session.

51

Figure 5.3: Python implementations for the functions “Send (data stream)” and “Listen_to_results (data

stream)”. Both functions use TCP stream socket and require the CCM IP address and port number.

5.3.2 User-to-Hypervisor API functions

The hypervisor functions are message passing functions. The same functions used in other

cloud platforms to request launching and releasing virtual machines are adapted for

requesting launching and releasing virtual FPGAs. The function ”Launch (CCM_ID)”

sends a message to the hypervisor to launch a CCM. Once the hypervisor receives this

message, it looks for the CCM_ID in the database and looks for a suitable free vFPGA.

Then, it fetches the suitable bitstream image from the storage. Then it uses the function

“Configure (CCM bitstream)” to download the CCM image. Finally, the hypervisor sends

a message to the client to inform him about the IP address of the launched CCM. The

function ”Release (CCM_ID)” sends a message to the hypervisor to release the vFPGA

resources of a CCM. When the function ”Get CCM List ()” is called, the hypervisor using

the resources DB builds a CCM list as long with their unique CCM_IDs and description.

If the user needs secure communication, he interchanges an encryption key with the FPGA

hypervisor using Diffie–Hellman key exchange method. Then, the hypervisor uses the

52

command “Send key (CCM_ID)” to send the key to the hypervisor back-end. The

encryption and decryption engines use that key to decrypt incoming data and encrypt

outgoing results. The hypervisor front- and back-ends take care of removing the key with

each change on the IP sender and receiver.

5.3.3 Hypervisor-to-Hypervisor back-end API functions

The hypervisor back-end functions are socket functions between the hypervisor front-end

and back-end. There are two functions that use TCP stream socket-based communication.

The function “Configure (CCM bitstream)” downloads a partial bitstream that represents

a CCM image on the FPGA. It uses TCP stream socket connection and works like the

function “Send (data stream)”. The function “Read CCM bitstream ()” reads back the

CCM bitstream which is useful for supporting CCM migration. It uses TCP stream socket

connection and works like the function “Listen (results stream)”. The remaining functions

use UDP socket connections.

The rest of the functions uses UDP socket-based communication. The hypervisor sends

UDP packet and the hypervisor’s backend replies with a UDP packet. Figure 5.4 shows

the UDP packet format which contains sequences of the CMD/Value pairs in its payload.

The CMD/Value represents a function number and value. The function “Read status

registers ()” reads information about the running CCM status. The function “Send key

(CCM_ID)” changes the encryption/decryption key of the CCM. The function “Set client

info (Sender IP Address, Receiver IP Address)” changes the sender and the receiver IP

addresses of the CCM. The function “Set Parameters ()” is used to configure some

registers with specific values. One example is the frequency register that determines the

CCM operating frequency.

53

Figure 5.4: Hypervisor to hypervisor’s backend functions uses UDP socket connection. The UDP payload

contains a sequence of CMD and value pairs. Several commands can be sent on one UDP packet. Hypervisor sends

a UDP packet and hypervisor’s back end reply with a UDP packet.

5.4 A scenario of Launching, Using and Terminating a CCM

In the following, we explain how commands of the software library of our platform work.

We assume a user wants to launch and use a specific CCM. The user issues the four

commands listed in Figure 5.5.

Figure 5.5: Scenario of using a CCM on a cloud computing system. The user issues four commands to launch,

send data, receives results, and terminate CCM.

In the following, we list all in cloud steps done to serve the user request. The message

sequence diagram is shown in Figure 5.6.

1. IP Address = Launch CCM (CCM_ID)

1.1. It gets the CCM information and available free vFPGAs from the “Resources DB”.

Then, it decides which vFPGA is going to be used and requests the CCM image

from the “CCM image management”. We are assuming that the user already knows

the CCM_ID. The user can get the CCM_ID using the command Get CCM List ().

1.2. The hypervisor gets the IP address and port number of the specific FPGA, and

other network parameters from the Dynamic Host Configuration Protocol (DHCP)

server and then executes the internal function “Send ((IP Address, Port_no),

bitstream)”.

1.3. The hypervisor back-end configures the vFPGA with the CCM image

54

1.4. The hypervisor internally issues the command “Set Client IP Addresses (Sender

IP Address, Receiver IP Address)” to configure the sender and receiver client IP

addresses in the hypervisor back-end.

1.5. The hypervisor back-end opens a listener to receive CCM inputs and starts another

TCP session for sending the results.

1.6. The hypervisor returns the CCM IP address to the user. The hypervisor-back end

is never revealed to the user.

2. results = Listen ((IP Address, Receiving PORT NO))

2.1. The command is executed in the user machine to start the listening session. It is

usually executed as a new thread, so the program can overlap sending data and

receives results.

3. Send ((IP Address, Sending PORT NO), data stream)

3.1. The user sends the data to the CCM. The command is executed in the user machine.

It establishes a TCP stream session, sends the data to the CCM and terminates the

session.

4. Release CCM (CCM_ID)

4.1. The hypervisor executes an internal command “Send ((IP Address, Port_no),

empty bitstream)”

4.2. The hypervisor back-end configures the vFPGA with the blank CCM image

4.3. The hypervisor back-end clears the registers of the sending and the receiving IP

addresses.

4.4. The hypervisor updates the “Resources DB” and marks the vFPGA resource free.

55

Figure 5.6: Scenario of using a CCM on a cloud computing system. First, the user requests to launch a CCM.

The FPGA hypervisor configures a vFPGA with the CCM bitstream and returns the CCM IP address back to the

user. The user interacts with the CCM by sending data and receiving results. Finally, the user releases the CCM.

5.5 CCM Creation

The platform introduces CCM as a service in which CCMs can be implemented and sold

by the cloud operator (CO) or other third parties to the client. The CCM provides

synthesizing tools for the FPGAs used in the cloud system. The CCM creation process is

depicted in Figure 5.7. First, a designer uses a high-level synthesis tool (HLS) and hardware

description language (HDL) to create a hardware and send it to the CCM creator. Then, the

designer sends his hardware (HLS/Verilog code) with an additional XML file that

describes the hardware I/Os. Another Vera file describes how data should be applied to

the hardware to the CCM creator. The creator uses automatic tool that creates a wrapper

for this hardware to match its interface with the vFPGA standard interface. The whole

hardware is synthesized several times to generate several partial bitstreams for the

hardware design each one matches a different vFPGA. After generating partial bitstreams

they are stored on the cloud storage. The resource database is updated with the new CCM

and its generated bitstreams information like the CCM ID, file name, and vFPGA ID.

56

Figure 5.7: CCM creator receives hardware design (HLS/HDL), XML file describes hardware I/Os, and Vera

file describes how data is applied. Then, it and creates a CCM, synthesized and generates partial bitstreams.

Finally, it saves the bitstreams in the cloud storage and their info in the Resources database.

5.6 Properties of the Platform

In this section, we illustrate the computation model of our platform. Then, we list cloud

properties supported by our platform and explain how those properties are achieved.

5.6.1 The platform computing model

The computing model of our platform is a streaming computing model. The CCM is a

network-attached computing machine that has a receiving port and a transmitting port.

Sending data to the CCM and receiving results from the CCM is done through the usual

networking protocol used in the cloud. In the current version we have chosen the TCP

Stream as the main communication protocol with the CCM for two main reasons:

1- The recent software libraries that implement the TCP stream relay on the data plane

development kit (DPDK) which allows fast packet processing. Using the DPDK

allows the software side to send and receive data at high speed and can approach

the theoretical speed of the communication link.

57

2- TCP protocol guarantees packet ordering. This makes the application feels as it

received a continuous long stream. This also removes the need to build a custom

reordering mechanism in the static logic on the FPGA and on the software side.

In ideal cases, the CCM consumption rate matches the data incoming rate. we do not

assume a large buffer that stores unlimited data. When the CCM consumption rate is faster

than the data incoming rate, the CCM is stalled waiting for data arrival. When the CCM

consumption rate is slower than the data incoming rate, the CCM issues a back-pressure

signal which propagates to the Ethernet controller through AXI interfaces. The platform

consists of several layers with AXI interfaces between every two layers as explained in

section 6.1 and illustrated in Figure 6.4. When the network controller receives the back-

pressure signals, its buffer becomes full and it starts dropping packets. The TCP stream

does not acknowledge the non-received packets and therefore retransmission is done.

Adjusting clock frequencies in different clock domains in the platform is important to

control the produce-consume model of the system. The static logic should be clocked at

least at the Ethernet controller clocking speed (i.e. 156.25MHz for 10GE or 125MHz for

1GE). Since packet headers and interpacket gaps are discarded (which represents 60 bytes

at least), the static logic could work fine at a little bit lower frequency (e.g. at 150MHz for

10GE or 120MHz for 1GE).

5.6.2 Abstraction

The virtual FPGAs are standalone resources which are completely disaggregated from

servers. This simplifies their management and renting them as standalone resources. The

CCMs are standalone network-attached computing devices. Their interfaces are clearly

defined and standardized to match the common data interchanging methods in the cloud.

58

The CCM user is not aware whether this machine is a hardware or a software machine

since the data and results are sent over well-known network protocols. The user does not

need to adapt the data for each specific CCM. No need to add timing and control signals

as hardware designers do. The wrapper within the CCM is responsible for adapting the data

to the hardware input.

5.6.3 Sharing

A CCM can be shared among several users by interleaving computation sessions. The

computation session is an atomic operation that cannot be interrupted. When a user uses a

CCM, the hypervisor prevents other users from using it. When the current user’s TCP

session(s) to the CCM terminate, another user can request the same CCM and the

hypervisor restricts its use to the new user for one session and so on. With each session,

the whole CCM is reset. The CCM’s serializer and deserializer take care of flushing all

results out before terminating the session.

5.6.4 User data security

If the user requires a secure channel to the CCM, (s)he exchanges a symmetrical encryption

key with the FPGA hypervisor using Diffie–Hellman key exchange. Then, the hypervisor

uses the function “Send key (CCM_ID)” to send the key to the hypervisor’s back-end. The

encryption and decryption engines use that key to decrypt incoming data and encrypt

outgoing results. The hypervisor front- and back-ends take care of removing the key with

each change in the sender’s and receiver’s IP.

5.6.5 CCM clusters on Multi-vFPGA

A cluster of network-connected CCMs can be created and saved as a new CCM. CCM

network can be built by carefully setting the sending and receiving IP addresses of each

CCM in the cluster. For example, an FPGA chain can be created by setting the receiving

59

IP address of each FPGA in the chain as a sending IP address for its previous vFPGA. The

receiving address of the first vFPGA and the sending addresses of the last vFPGA in the

chain becomes addresses for the resulted CCM. The new CCM information is stored in the

Resources DB with pointers to the information of other CCMs constructing it.

60

CHAPTER 6

FPGA Virtualization Platform

Our proposed virtualization platform is based on partial dynamic reconfiguration. The

physical FPGA is divided into a static region (that is kept as is with no reconfiguration),

one or more dynamically reconfigurable regions, and a communication controller. Each

dynamically reconfigurable region corresponds to one vFPGA where a user's design can

be placed (along with the wrapper). Our specially developed wrapper controls clocking the

user design according to data arrival. An overview of the proposed platform is shown in

Figure 6.1. It has four distinct layers; a network layer, static logic, wrapper(s), and user

design(s). The network controller handles physical connections and establishes TCP

network sessions between the users and their designs in the virtual FPGAs. It manages the

MACs and IP addresses assigned to the vFPGA. This enables users to use their vFPGA-

based applications like any standard server; sending requests (input data) to the assigned

IP (in this implementation we are ignoring ports, though later we may direct traffic to a

61

specific user's sub-circuit based on port number). The static logic routes TCP payloads

between vFPGAs and the network controller. It also contains clock management resources

that generate controllable clock domains for each vFPGA and the re-configuration

management logic that can download a user's design at run time to one of the vFPGAs. The

re-configuration management unit has its own MAC/IP addresses to receive the partial

reconfiguration bit streams and reconfigure the vFPGA regions. Having its own MAC/IP

address allows it to be integrated with the cloud/DC management tools as a

‘Reconfiguration Server’. The wrapper has a fixed interface to the static logic and a custom

(automatically-generated) interface to the user's design allowing it to fit into a vFPGA.

Figure 6.1: Virtualization platform overview. FPGA is partitioned into a static region and several reconfigurable

regions to be used as virtual FPGAs.

6.1 Data Communications

Data movement between the first three layers of the platform follows the standard two-way

handshaking mechanism as defined in AXI4 stream specifications [48]. This enables both

62

reader and writer to control the data transmission rate and to communicate without losing

any cycles. Figure 6.2 shows the timing diagram of the AXI interface. The data transfer

only when both TVALID (from the source) and TREADY (from the destination) are high.

Figure 6.2: Timing diagram of the two-way handshaking process [48].

Cross clock-domains data movement is achieved with asynchronous FIFOs, Figure 6.3.

There are two asynchronous FIFOs in the Ethernet controller and another two per each

wrapper as shown in Figure 6.6. These FIFOs are implemented with embedded FPGA

RAM blocks (BRAMs) with AXI read/write interfaces. The writing ports of the FIFOs are

directly mapped to AXI write channels. Reading, however, is not straightforward since

BRAMs require two clock cycles for the first read (then one cycle per other consecutive

reads). Hence a pre-fetch circuit and a control logic were added to guarantee correct AXI

timing (one read per cycle).

Figure 6.3: BRAM-based asynchronous FIFO for transferring data across unrelated clock domains using

the AXI interface.

The interface between every two layers is clearly identified and presented in Figure 6.4.

the interface between the network controller and the static logic consists of read- and write-

63

AXI channels associated with the virtual FPGA index. The network controller sets the rx

virtual FPGA index according to the MAC address of the received packet. The router in

the static logic sets the tx virtual FPGA index and forwards the vFPGA results to the

network controller. The network controller sets the MAC address of the transmitted packets

according to the tx vFPGA index. The interface between the static logic and each vFPGA

region consists of clocking signals and read and write AXI channels. The clocking signals

include the wrapper’s clock, the static logic’s clock, user-design’s clock, and clock-enable

and wrapper’s reset. All data buses in the AXI read/write channels have the same width

which depends on the Ethernet interface underuse. For example, 1 G Ethernet introduces

8-bit words while 10 G Ethernet introduces 64- or 128- bit words.

Figure 6.4: Inter-layer interfaces. The interface between L1 and L2 consists of two AXI interfaces and the virtual

FPGA indices. The interface between L2 and L3 consists of two AXI interfaces and clocking signals. The interface

between L3 and L4 consists of two AXI interfaces whose data have the internal wrapper formats.

The AXI interface is used everywhere in the platform. The static logic rx router is an AXI

interconnect between one master (data are coming from the Ethernet controller) to several

64

slaves (data are routed to vFPGAs). The static logic tx router is an AXI interconnect

between several masters (vFPGAs) to one slave (Ethernet controller). The wrapper

components such as packing, unpacking, serializer, deserializer, and asynchronous FIFOs

all of them communicate through AXI interfaces.

AXI interface can issue a back-pressure signal and this signal propagates through all AXI

interfaces in the data path. This explains how our system controls the data stream flow. If

the incoming data rate is greater than what the application can consume, the busy

application’ back-pressure signal is propagated to the network controller. The network

controller starts dropping packets and the TCP protocol retransmits them. This way the

back-pressure propagates to the user. It is the user responsibility to send data according to

the consuming rate of the CCM. The CCM designer should provide information about the

CCM throughput.

6.2 Network Controller

The network controller implements the TCP’s data link, network, and session layers of the

OSI network stack. It establishes sessions between vFPGAs and their users and ensures

data ordering and correctness. It receives configuration bitstreams and users’ data, deliver

it to the static logic and transmit the results back to the user. More precisely, it performs

the following tasks:

 Establishes and terminates TCP sessions between vFPGAs and their users. It stores

source addresses and other session data.

 Forwards the payload of the received TCP packets to the static logic associated with

the target vFPGA index.

65

 Constructs TCP packets for the received results from vFPGAs and transmits them to

their users.

 Stores and manages MAC/IP addresses for all associated vFPGAs and negotiates for

dynamic network addressing using the DHCP protocol.

 Announces the existence of associated vFPGAs over the network and replies to

network queries about vFPGAs such as ARP and ping requests.

The network controller can either be integrated with the static logic in the physical FPGA

or it can be an off-the-shelf device external to the FPGA. It is also possible to share a

network controller among several vFPGAs using a single Ethernet cable connected to the

physical FPGA or associate one network controller per vFPGA such that each vFPGA will

have a dedicated Ethernet cable connected to the physical FPGA.

The fixed interface between the static logic and the network controller consists of AXI

read-data channel, write-data channel, and the vFPGA indices. The data width is 8/64 bits

for the 1 GE/10 GE Ethernet interface, respectively. Asynchronous FIFOs are used to move

the data across the three clock domains of the static logic, the Ethernet transmitter, and the

Ethernet receiver.

Figure 6.5 shows our Ethernet controller designed to achieve the maximum throughput.

The receiver works as follows; the Phy_rx receives Ethernet packets and check the packet’s

CRCs. The sniffer reads packet header on-the-fly, check addresses, and trigger the suitable

reaction. If a TCP packet is received, its payload is stored in the rx-Async buffer. The

asynchronous buffer depth can hold two packet-payloads. So, a packet can be read while

the other packet is buffered. The transmitter works as follows; once the tx-Async buffer

66

has a ready payload, it triggers the finite state machine controller to start constructing an

Ethernet packet and choose the suitable Ethernet header. Phy_tx transmits the packet and

adds a preamble, CFD, and CRC to it.

Figure 6.5: The implementation of the Ethernet controller.

6.3 Static logic

The static logic includes data routers, a reconfiguration management unit, a data security

unit (optional), and a clock management unit. These components are described next.

6.3.1 Data routing

Data routing is needed when the network controller is shared among several virtual FPGAs.

Routing data between the network controller and vFPGAs is done through two AXI

interconnects. The first one reads from the rx-Async buffer and route to the corresponding

vFPGA. The second AXI interconnect reads results from one vFPGAs at a time and

forward them to the tx-Async buffer. The result of each vFPGA is collected separately to

guarantee no interference with other vFPGAs outputs.

67

6.3.2 Reconfiguration management unit (RM)

Reconfiguration manager (RM) receives partial bitstreams over the Ethernet to reconfigure

any of the vFPGAs. It has its own MAC/IP addresses and the network controller deals with

it as another vFPGA. It consists mainly of an internal reconfiguration access port (ICAP)

surrounded with a wrapper. It also responsible for freezing the partial region I/O interfaces

during the configuration.

6.3.3 Clock management unit (CM)

The clock management unit produces several clocks for the different domains as shown in

Figure 6.6 The Ethernet controller has two separate clock domains; one for the transmitter

and another for the receiver. The static logic has its own clock domain. Each user design

is clocked by a dedicated controllable clock signal. Though the wrapper that surrounds the

user design uses the same frequency, it has a separate clock domain than the design. Finally,

part of the wrapper shares its clock with the static logic. These separate clock domains

allow optimum operation of different parts of the system independently from other parts,

users to set up the frequency of their circuits in the vFPGA, and most importantly, the static

logic does not need to be re-synthesized with the users’ design every time a new user's

design is loaded into a vFPGA. The last point is essential for virtualizing the FPGA among

multiple users.

68

Figure 6.6: The platform's different clock domains and the use of asynchronous buffers to move data across

these domains.

Standard clock buffers and clock management units (CMUs) available on commercial

FPGAs have many properties that are utilized in the wrapper design. First, they are

controllable (i.e. stoppable). The wrapper uses this property to stall and release the user

design clock according to the availability of input data and other conditions. Second, they

are run-time reconfigurable, allowing the wrapper to set the user design's clock frequency

at run-time. Third, their clock phases can be shifted by 180 to provide negative edge

clocking for the user design.

The static logic should be clocked at least at the Ethernet controller clocking speed (i.e.

156.25MHz for 10GE or 125MHz for 1GE). Since packet headers and inter-packet gaps

are discarded (which represents 60 bytes at least), the static logic could work fine at a little

bit lower frequency (e.g. at 150MHz for 10GE or 120MHz for 1GE).

6.4 The wrapper's design

Ideally, users would want to configure their application circuit on a data center-attached

vFPGA, and then use it by sending input data streams and receive output data streams

through Ethernet packets. The wrapper allows users to fit, communicate, and control their

designs in any partially reconfigurable region (i.e. vFPGA). It is automatically generated

for each design according to a user-provided XML input/ output specification. The designer

69

also prepares a description of the data format and application/capture rules using a subset

of the verification language OpenVera (SystemVerilog) [66]. The wrapper generated from

the user's specifications (XML and Vera) provides the interface between the user's design

from one side and the static logic from the other side. The user-specified control is

incorporated into the wrapper's design itself. This means users can pack and send/receive

their raw data/results to the FPGA as dense packets with no embedded control data to

utilize the maximum communication bandwidth.

A custom wrapper is generated for the user's design based on a user-provided XML

specification which is then synthesized with the design to produce the partial configuration

bitstream of the design. Several bitstreams could be generated for each of the different

vFPGA instances available on all the FPGA types attached to the cloud (hence, a user's

design can be seamlessly migrated between any vFPGA on the cloud).

In the XML description, users can divide their circuits’ inputs and outputs into groups such

that one input/output group is applied/captured at each clock cycle. If there is more than

one output group, the design is stalled until all groups are captured.

In the Vera description, users specify how input/output groups are applied and captured.

So, a user could specify one input group to be applied, then clock the circuit for a certain

amount of cycles, then capture a certain output group when a certain output is changed

(e.g. a Done flag), and so on. This allows for any computation semantics to be

implemented. An input/output group's size could be anything from 1 to n-bits.

70

6.4.1 Conceptual design of the wrapper

Figure 6.10 and Figure 6.7 show the conceptual design of the wrapper and a flow chart

describing its operation, respectively. When a network packet arrives, its payload is

extracted by the fixed logic and sent to the vFPGA as a sequence of c-bit words (c=8 or 64

for 1 Gb Ethernet or 10 Gb Ethernet, respectively). Packing/unpacking circuits convert the

received/ sent c-bit words to w_in-bit words. w_in represents the circuit's input data size

(with no control signals) and is inferred from the user's specifications (hence, w_in ≥ n).

The packing/unpacking circuitry is designed to achieve the maximum throughput. If

c>w_in, one output is produced per cycle, and if c<w_in, one output is produced each

w_in/c cycles. If c=w_in, then the packing/unpacking circuits are removed from the

wrapper. A serializer then groups the input data and the control signals that it generates

into user-specified input groups and applies them to the circuit in the user-specified order.

Input groups with sizes less than n are simply connected to the lowest bits of the serializer.

The wrapper receives consecutive words with 64-bit length, combine them together,

generate w_in-bit data words, and pass them to the serializer. The serializer generates n-bit

word starts with the application bit, followed by input group index, and finally the data.

The serializer output is stored in the input FIFO.

71

Figure 6.7: A flow chart illustrating the data flow from/to the design through the wrapper. The left-hand side

shows the data input flow starting from receiving a payload of a user's network packet till its application to the

design. The right-hand side shows formatting and sending the results starting from capturing the outputs till

generating the payload for the network packet to be sent back to the user.

6.4.2 Wrapper components

 Bit unpacking: it receives w-bit words, combine them together and then produces an

n-bit word, where n > w. If the input is streamed, it will produce a word exactly each

n/w cycles. It contains slicer, state machine, and several registers as depicted in

Figure 6.8.

 Bit packing: it receives the m-bit word, divides it to m/w words and produces w-bit

word each cycle. It contains slicer, state machine, and several registers as depicted in

Figure 6.8.

72

Figure 6.8: Our implementation of the Packing/unpacking circuitry. If the input data width is greater than the

output data width, the packing circuitry is used. If it is less, the unpacking circuitry is used. If they are equal, the

packing/unpacking part is removed.

 Our implementation of the bit-packing and -unpacking circuits are depicted in

Figure 6.8. Each one has a slicer, state machine, word and bit counters, and several

registers as. The bit counter gives the number of shifted bits in the slicer. The word

counter in the unpacking circuit determines the index of selected word from the wide

input. The word counter in the packing circuit determines when a complete output

becomes valid at the circuit output.

 Slicer: The slicer is the main building block in the packing and the unpacking circuits

in our implementation. It is a combinational circuit that receives n-bit input and

produces (n/2)-bit word as output. The output is just a slice of the input chosen

according to the selection input. Its diagram is shown in Figure 6.9 below.

73

Figure 6.9: Slicer is a combinational circuit that selects n/2 consecutive bits from an n-bit input.

 The serializer translates the data into the wrapper internal data input format. The

internal data format consists of three fields; clocking information, input register index,

and input register value. The serializer design with an example is illustrated below.

 The deserializer translates the internal data output format to data. The internal data

output format consists of two fields; output group index and value. If there is only

one output, then there is no index. The deserializer decides what results should be

transferred to the user and what is the format of these results. The deserializer circuit

design is much simpler than the serializer. In several cases, its job is to forward the

circuit outputs without control signals and the selection bits to the output FIFO.

 Input registers: The hardware inputs are divided into groups and need to be stored

into input registers. This wrapper FSM guarantees that the hardware will never be

clocked with wrong inputs.

 Cycle counter stores the number of clock cycles that should be applied with each

application command. The counter is updated at run-time.

 Mask register is bits vector in which each bit corresponds to an output group. It

indicates whether the output group should be sent to the output FIFO or should be

bypassed.

74

 Output arbiter decides which output group will be captured each cycle. The arbiter is

reset when a new user input arrives, then it advances once a new output is captured.

Figure 6.10: The wrapper's conceptual design.

 Wrapper FSM controls the clock buffer chip enable signal (CE) to control clocking

the user design according to data arrival. It also controls the incoming/outcoming data

to the user design by controlling ready-in signal and valid-out signal. An FSM

75

controls clocking the user's design according to data arrivals and user specifications,

reading data from the input FIFO, applying it to the inputs, reading the output results,

and capturing outputs and storing them in the output FIFO. When a new input arrives,

if its clock-control bit is on, the FSM clocks the user design for the number of cycles

indicated in the cycles register. The Verilog code of a wrapper FSM is shown in

Figure 6.12. Figure 6.11 shows a diagram that illustrates the wrapper FSM

complexity. The wrapper reaches the "counting" state if the user has specified several

clock cycles per input application. At this state, the wrapper stalls inputs and stop

capturing outputs until the clock count reach zero. The wrapper goes to the "One

output" state if there is only one or no output to capture. This state allows receiving

inputs while capturing the output. In the "Multi-output" state, the wrapper keeps

capturing output without accepting new inputs until it receives the "last output" signal

from the output arbiter (reading new inputs can overlap with the capturing the last

output).

Figure 6.11: Diagram shows the complexity of building the wrapper state machine. If the hardware has one output

group, then an input can be applied while capturing the output s. If the hardware has several outputs, then the

controller should flush out outputs before accepting new inputs. For some inputs, it is required to apply several

consecutive clock cycles without capturing outputs or applying new inputs.

76

Figure 6.12: Verilog code of a finite state machine of a wrapper.

The user_enable signal is used to gate the application hardware clock. FPGAs are provided

with controllable clock buffers [67, 68]. Figure 6.13 shows a timing diagram that explains

//apply_bit: the apply bit in the input FIFO read channel

//TVALID_in: The valid signal of the input FIFO read channel

//TREADY_out: The ready signal of the output FIFO write channel

//ZC: cycle register is zero

//Zero: cycle counter is zero

//ZO: No output is required to be transmitted to the user

//OO: Only one output is required to be transmitted to the user

//Last: Current output is the last output to be transmitted to the user

module wrapper_Moore_FSM (input clk, reset, apply_bit, TVALID_in,

 TREADY_out, zc, zero, zo, last, oo,

 Output TREADY_in, USER_EN, TVALID_out,

 cntr_dec, cntr_load);

 reg [6:0] state = 7'b0;

 assign USER_EN = cntr_dec | (state[1] & TVALID_in & TREADY_in &

 apply_bit & (oo | zo | (last & TREADY_out)));

 assign TREADY_in = state[0] & ~(~zo & (~TREADY_out | ~last));

 assign TVALID_out= ~zo & USER_EN;

 assign cntr_dec = state[3] & last & TREADY_out;

 assign cntr_load = ~state[3];

 always @(posedge clk)

 if (reset)

 state <= 'h00;

 else case (state)

 'h00: state <= 'h03;

 'h03: if (TVALID_in & apply_bit) begin

 if (~zc) state <= 'h0a;

 else if (oo) state <= 'h07;

 else state <= 'h17;

 end

 'h0a: if (zero) begin

 if (oo) state <= 'h07;

 else state <= 'h17;

 end

 'h07: begin

 if (TVALID_in & apply_bit) begin

 if (~zc) state <= 'h0a;

 end else state <= 'h00;

 end

 'h17: if (TVALID_in & apply_bit & TREADY_out) begin

 if (~zc) state <= 'h0a;

 else state <= 'h17;

 end else if (last) state <= 'h00;

 default: state <= 'h00;

 endcase

endmodule

77

the effect of the user_enable signal on the output clock. Clock resources are part of the

static logic. They are nor reconfigurable parts. For this reason, the wrapper interface

includes the user_enable output and the user_clock input.

Figure 6.13: The controllable clock buffer allows controlling the application clock. When it is enabled the

application run. When it is disabled the application freezes. The upper timing diagram shows a clock buffer which

always produces a low output when its enable signal is off. The lower timing diagram shows a clock buffer which

always produces a high output when its enable signal is off.

By controlling this clock buffer, we can freeze the user application when the input buffer

is empty and when the output buffer is full. This isolates the user application completely

and gives it the feeling of having a continuous input/output stream. If the design has input

groups, the controllable buffer stalls the application until setting up all input groups on

each cycle. The clock cycle counter allows having several clocks for the same inputs. It

also allows flushing out the results when all computations are done. The serializer decides

when to change the clock cycle counter.

6.5 Wrapper generation

A wrapper generation tool is a template-based tool that has templates for all wrapper

components. Some of the wrapper components are parametrizable (no need to modify its

Verilog code) such as packing/unpacking circuitries, asynchronous buffers and the finite

state machine (wrapper FSM). Other components are modifiable and need to be rewritten

according to the XML/JSON specification file of the application hardware such as the input

registers, input demultiplexer, output multiplexer, and output arbiter.

78

The wrapper generation process is illustrated in the flowchart in Figure 6.14. It starts by

parsing the XML file to determine all parameter values and to generate the Verilog code

of the modifiable components. Then, the serializer is generated according to the Vera

description file. The output of the generator is a Verilog file for the wrapper which includes

its modifiable components, instantiations of the parameterized components, instantiations

of the serializer and the deserializer and instantiation of the user application. The wrapper

file with the related Verilog files are sent to the synthesizer to generate partial bitstreams

and the CCM is created.

Figure 6.14: CCM creation flowchart.

Figure 6.15 shows the template-based wrapper generation algorithm. It receives the I/O

data bus widths of the static logic / vFPGA interface, the specification files(XML and Vera)

and design name. Lines 2 calls the parse XML algorithm which prepares the Verilog code

of the modifiable components for the given design name from the given XML file. Line 3

calls the serializer/deserializer generation algorithm which returns the Verilog code of the

two modules. Lines 4-13 decides whether to instantiate or not packing or unpacking circuit

at the input and the output interfaces. Line 14 adds the serializer and the deserializer

79

modules Verilog code. Line 15 copies the Verilog file header. Lines 16-21 adds

instantiations of the parameterizable components. Line 22 adds the unmodifiable

components Verilog code. Line 23 adds the end module code.

Figure 6.15: Algorithm for generating the wrapper from the XML specification file and the Vera description file.

6.5.1 Parsing the XML/JSON specification file

The designer should prepare a description of his hardware inputs and outputs. In the

description, input and output groups should be defined. The description should be written

in XML or JSON format. These formats are chosen because they are a text-based format

and they allow expressing a hierarchy in the description. The designer should prepare an

XML/JSON specification file according to the schemas shown in Figure 6.17 and

Figure 6.18. Table 6-1 contains the description of the XML tags and their attributes.

Figure 6.16 shows an algorithm for parsing the XML specification file to generate the

wrapper modifiable components.

80

Figure 6.16: Algorithm for parsing the XML specification file and generating Verilog code for the modifiable

parts of the wrapper.

81

Table 6-1: A description of the XML tags and their attributes used to describe the user hardware I/Os and their

groups.

XML tag Attributes Description

<User_Design_List> Contains a list of several user designs

<User Design>
Contains a list of the user design parameters, input groups,

and output groups

 wrapper_name
The name of the Verilog module of the wrapper to be

generated

 design_name
The name of the Verilog module of the user design to be

instantiated in the wrapper Verilog code.

<Parameter>
List parameters defined by the Verilog module which is

used to describe I/O bus width

 name The name of the parameter name

 value The value of the parameter

<Input_Group> Define an input group which contains a list of input buses

<Output_Group>
Define an output group which contains a list of output

buses

<Bus>
Define a wire, bus or part of a bus. To define a part of a

bus, the start and the end indices should be used.

 name Wire/bus name

 width Total wire/bus width

 start The starting index within the bus

 end The ending index within the bus

 mask

Indicates that this bus represents a valid-out wire and it

should be used to mask this group. It is used with output

groups only. If the mask="true", the bus width should be 1

82

Figure 6.17: The JSON schema file for describing hardware I/Os and their groups to the wrapper generator.

83

Figure 6.18: The XML schema file for describing hardware I/Os and their groups to the wrapper generator.

84

6.5.2 Parsing the Vera specification file

The wrapper also contains an instantiation for the serializer which should be generated by

another tool as explained below. In this subsection, we just explain how the serializer and

the deserializer can be automatically generated. Currently, we did not build the serializer

generation tool and we did not write the algorithm of creating the serializer. Instead, we

used Microsoft Excel to generate the serializer output in our experiments so, the serializer

functionality is done on the user side.

The serializer generator tool translates the Vera description file to micro-instructions and

stores them in the control store of the microcode, Figure 6.19. A serializer generation tool

is also a template-based tool. It has a microcode template which consists of; control store,

address register, output multiplexer, and loop counters. The number of loop counters varies

according to the existence of nested loops in the Vera description file. We need a loop

counter for each level in a nested loop. A counter can be reused in separate loops.

Figure 6.19: The OpenVera code is translated to microinstructions then the Serialized is generated.

The Vera language is chosen because it is a standard verification language. In future work,

we are going to define a special simple language to write serializer inspired by Vera.

Currently, we assume that the hardware core designer writes a test bench for his core. In

the test bench, the read_data() function pulls input from an input data stream and the

write_result() function pushes output on an output data stream.

85

6.5.3 An example for generating a serializer from a Vera description

In the following, we explain an illustrative example for generating the serializer of the DCT

hardware core [69]. The DCT XML description is depicted in Figure 6.20, the Vera test

bench and its translation into micro-instructions are shown in Table 6.2 and the resulted

serializer is shown in Figure 6.21.

Discrete Cosine Transform (DCT) and its inverse (IDCT) are used in compressing

multimedia streams in video and audio applications. DCT decomposes the signal into

weighted sums of cosine harmonics. The DCT core inputs are: 8-bit data, data in strobe,

reset and enable. The core outputs are 12-bit data and data out strobe. The core designer

provided a Verilog testbench to explain how it works. To start computing the user reset the

core through the rst input. Then, the enable input is set high. The dstrb input is set high

then low, then the data is sent one byte with each clock cycle. The core receives 64 data

bytes. When douten output becomes high, 64 words are captured from the dout output.

Figure 6.20: The FDCT I/O specification in the XML file.

Usually, the test bench should start by specifying mask and clock counter values. In line 1,

the mask variable is set to 0xFF which is translated to Set mask FF micro-instruction. In

86

line 2, the clock counter variable is set to 0x00 which is translated to Set clock counter 00

micro-instruction. Lines 4-7 assigns different values for several inputs at the same clock

cycle. The tool generates one microinstruction in line 5 (i.e. Set data with three input

values) since all of them belongs to the same input group as described in the XML

specification, Figure 6.20. The micro-instruction outputs the three inputs in the internal

wrapper format (i.e. CLK, SEL, DATA). Lines 8-10 also generate one similar micro-

instruction. The for loop come next in lines11, 12 and 15. They are translated to

LoadCounter1 31 and LoopNZ1 micro-instructions. Only counting loops with deterministic

counters are allowed. Line 13 reads an element from the input data stream which is

translated to the input group index and data in the wrapper internal format (i.e. CLK, SEL,

data). Lines 3 and 16 shows that the whole could is repeated for every 32 bytes. Lines 7,

10 and 14 indicates that the CLK value should be 1 for the corresponding micro-

instructions.

As shown in Figure 6.21, all outputs have the wrapper internal format (CLK, SEL, DATA).

Some input groups are internal (i.e. dstrb, reset and enable). Their values are determined

in the test bench, not by the input bitstream. Those inputs should be placed directly at the

output multiplexer since they have several constant values. The input stream (i.e. data) is

placed as a separate input to the output multiplexer because of line 13 which assign it to

data_in which represents the hardware core input.

87

Table 6.2: FDCT benchmark verification code written on OpenVera and its translation to microcode

microinstructions.

 OpenVera Code Microcode Instructions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Mask = 8'hFF;
CLK_Counter = 8'h00;
forever begin

 dstrb = 1'b1;
 reset = 1'b0;
 enable = 1'b1;
 #10;
 dstrb = 1'b0;
 reset = 1'b1;
 #10;
 for (i = 0; i<31; i++)
 begin
 data_in = read_data();
 #10;
 end

end

00 Set mask FF

01 Set clock counter 00

02 Set data (sel=00 {dstrb,reset,enable}) = {0,1,1}

03 Set data (sel=00 {dstrb,reset,enable}) = {1,0,1}

04 Load counter1 31

05 Set data (sel=01 {data) = data_in

05 LoopNZ1 05

06 Jump 02

Figure 6.21: The serializer for the FDCT can be generated automatically from the Vera specification code Using

a microcode-template. Each cycle of the microcode generates data for one input group and generates the group

index and one bit represents whether to apply a clock or not for this data.

88

6.5.4 Wrapper generation software

We used MS Visual basic 6 to build the wrapper generation tool (a snapshot is shown in

Figure 6.22). The tool already has a wrapper template in Verilog. It reads the hardware

core specifications from the XML file (reading JSON files might be added in the next

version) and generates the Verilog file of the wrapper. The generated code includes the

wrapper code, an instantiation of the hardware core and instantiations of other wrapper

components. The current version of the wrapper does not generate the serializer and the

deserializer. The tool can modify the input/output groups and bus widths and updates the

XML file.

Figure 6.22: A snapshot of the wrapper builder software. The list on the left contains several hardware cores. The

wrapper is generated instantly for the selected hardware core. The bottom large textbox contains the generated

wrapper Verilog code.

89

CHAPTER 7

Results and Comparison

In this section, we first introduce a hardware core example and explain how to generate a

wrapper for it and then implement it on virtual FPGA. Second, we implement the

virtualization platform with four hardware core examples and evaluates the virtualization

overhead in terms of area, performance, throughput, and power. A comparison between

our virtualization platform and other platforms in the literature is also provided. Finally,

we introduce a CCM example for the edge-detection application and show how CCM can

be accessed using the same software library used to access similar software function.

90

7.1 Generating a wrapper for the JPEG Encode core

In the following, we show a complete CCM generation scenario for a given hardware core,

the JPEG Encoder [70]. For this experiment, we use 1GE Ethernet communication with

Xilinx Virtex 6 XC6vlx550t FPGA. We used the Xilinx Chipscope tool to take a running

snapshot that shows how the wrapper components work and how the hardware core clock

is controlled.

Figure 7.1: Generating the wrapper for the JPEG Encoder from the XML and Vera specifications.

7.1.1 Preparing the XML Description File

Figure 7.1 (a) shows the XML description of the JPEG Encoder's interface used to generate

the wrapper. The specially developed tool assumes that the wrapper data bus width (same

as the Ethernet controller’s used in this experiment) is 8 bits. The XML description defines

two input groups with a maximum input width is 25 bits. Adding two selection bits and

one bit for clock control results in 28 bits, the input FIFO’s width. For outputs, there is

only one group in the XML description. Therefore, the mask register is only one bit wide,

91

and the tool removes the output arbiter and multiplexer since they are not needed. Setting

the property mask = "true" means that the output will be captured only when "data_ready"

is high. Since the total input width is 28 bits, a packing circuit is instantiated at the

wrapper’s input because 8 < 28 while an unpacking circuit is instantiated at the wrapper’s

output because 39 > 8.

7.1.2 User’s Vera Data Specifications

Figure 7.1 (b) shows the Vera description of the JPEG Encoder’s data. It describes how the

data should be applied to the circuit. In this case, it specifies that the circuit receives one

block of the image at a time, does computation, produces compressed data for the block,

and repeat this process with other blocks until it finishes the image. Each block of data of

the image is applied to the inputs using 64 consecutive clock cycles (In the core

documentation 64 cycles are reported but in the simulation test bench provided by the core

designer only 13 cycles are used). The "enable" signal should stay high during the input of

each block and should be brought low for one cycle between every two consecutive blocks.

It also specifies that there is a minimum of 33 cycles of computation between every two

consecutive blocks where no new data can be applied to the inputs. The wrapper generator

uses these details to generate the serializer. The generated serializer (Figure 7.1 (c))

receives 24-bit RGB color for one pixel at a time. The serializer has 28-bits output which

consists of clock (1 bit), selection (2-bits), enable(1-bit), and data. The selection has two

bits because the XML description defines only two input groups. The wrapper generator

produces a Verilog file with the user design instantiated as a component. After generating

a wrapper, a partial bitstream is generated for it and stored to be launched upon a user

request.

92

Table 7.1 below illustrates how the generated wrapper formats and apply the received

payload data to the JPEG Encoder’s inputs. Each row in the table shows the 28-bit output

of the serializer (which go to the input FIFO). The column with the header "CLK" shows

the 1st data bit which determines whether to clock the jpeg encoder for the current data or

not. The next column, "SEL", represents the next two bits that determine the index of the

input register that will receive the current data. There are four options; "11" represents

mask register, "10" represents the clock counter, "01" represents the second group (reset,

end_of_file_signal), and "00" represents the first group. The next two columns are the input

register’s value (EN and data) if SEL="00". The rightmost column in the table is the

concatenation of all these bits which represents the serializer output. The operation would

start by setting the mask register (specified with SEL=11) to all 1s to read all output groups

(1st row in Table 7.1). Then the clock cycle counter (specified with SEL=10) value is set to

zero (2nd row of Table 7.1). After that, the reset is set to one, the design is clocked once

(setting CLK=1), and then the user design is reset back (4th row of Table 7.1). Starting from

the fifth data word, image blocks of 64 pixels each are applied by the serializer to the inputs

as 24-bit RGB value concatenated with the “EN=1” per input cycle. At the end of the block,

the clock counter is set to 13 cycles. Then the process is repeated for the next block by

setting EN=0 and clock counter to zero.

93

Table 7.1: Formatting and applying the JPEG Encoder’s input data by the wrapper. Four control bits are added

with each input. The last column represents the complete output of the serializer which is applied to the input

FIFO.

 CLK SEL Value Description
Serializer’s

Output

 0 11 all 1’s mask 7ffffff

 0 10 0
clock

counter
4000000

 1 1 1 reset on A000001

 0 1 0 reset off 2000000

Image block #1 (64 pixels)

 CLK SEL EN Data Description Data

1 1 0 1 36536E RGB pixel 936536E

2 1 0 1 37546F RGB pixel 937546F

3 1 0 1 47647F RGB pixel 947647F

…

62 1 0 1 182D48 RGB pixel 9182D48

63 1 0 1 142742 RGB pixel 9142742

 0 10 0 21
clock

counter
4000021

64 1 0 1 0A1E37 RGB pixel 90A1E37

 0 10 0 0
clock

counter
4000000

 1 0 0 0A1E37 EN off 80A1E37

Image block #2 (64 pixels)

1 374862 RGB pixel 9374862

2 313F55 RGB pixel 9313F55

3 263042 RGB pixel 9263042

7.1.3 JPEG Encoder implementation on a vFPGA

The JPEG Encoder was synthesized with the generated wrapper and a partial configuration

bitstream was generated targeting one of the created vFPGAs. Xilinx’s Planahead tool was

used to make three reconfigurable regions (vFPGAs) on the FPGA beside the static logic

region. The whole platform (vFPGAs, static logic, and the JPEG Encoder) was then

implemented on a Xilinx Virtex 6 XC6vlx550t FPGA and the static logic’s configuration

controller configured the vFPGA with the Encoder using the internal configuration port

(ICAP). To verify the correctness of this implementation (i.e. platform delivers the data

94

correctly to the Encoder in the vFPGA), the internal signals on the FPGA were captured

using Chipscope Pro Analyzer tool from Xilinx. The Chipscope clock frequency was

200MHz while the JPEG Encoder and the Ethernet network controller (with 8-bit data

width) were clocked at 100MHz and 125MHz, respectively. The wrapper’s input and

output channels are 8-bit wide to match the Ethernet’s. Hence, the packing circuit receives

8-bit data words and packs them into 28-bit data words for the serializer.

Figure 7.2 shows snapshots of Chipscope’s output. Figure 7.2 shows the wrapper buses in

the following order; wrapper-in, Async-FIFO-in, Async-FIFO-out, the JPEG Encoder’s

inputs and outputs, output FIFO-in channel, output FIFO-out channel, and wrapper-out

channel. It shows how the wrapper FSM controls clocking the user design according to

inputs arrival and the clocking information produced by the serializer. In addition to the

packing latency, the serializer adds some delay at the beginning of each image block which

requires stalling the user design according to data arrivals as shown in Figure 7.2.

Therefore, the user design should receive one clock pulse each 28/8 wrapper’s cycles.

95

Figure 7.2: Snapshot of the complete wrapper’s and the Encoder’s input/output and control signals.

The snapshot in Figure 7.2 is taken at the end of the first 64-bit block of image data and

shows the 13 clock cycles of computation followed by the enable signal (EN) going low

for one cycle before the next image block is supplied to the Encoder. The snapshot also

shows how data arrival is overlapped with the packing process (as indicated by the several

consecutive clock cycles after the 13 computing cycles) due to the use of the FIFO at the

wrapper input. The snapshots in Figure 7.3 and Figure 7.4 show the signals captured at the

inputs and outputs of the vFPGA, respectively to show the data packing/unpacking process.

As shown in Figure 7.3, the packing circuitry continuously packs 8-bit words into 28-bit

words. Similarly, Figure 7.4 shows how the unpacking circuitry unpacks 39-bit Encoder

output data into 8-bit words.

96

Figure 7.3: Packing the 8-bit wrapper inputs into the Encoder’s 28-bits inputs in ~28/8 cycles per input. e.g.

input sequence 7F FF FF D4 00 00 00 is packed into 7FFFFFD 4000000 sequence.

Figure 7.4: Unpacking the Encoder’s 39-bits outputs to produce 8-bit wrapper’s output per cycle.

7.2 Simulation methodology

Since the FPGA in our platform is an Ethernet-attached device, the whole platform

simulator should receive Ethernet packet and outputs Ethernet packets. The input method

of the Xilinx ISim simulator is a Verilog test bench. The process is depicted in Figure 7.5.

Therefore, we need a software tool to generate Ethernet packets for the user data and a

software tool to generate a Verilog test bench for these packets. In this section, we list and

explain the implemented algorithms for the Ethernet packet and test bench generation. We

have implemented a software tool that reads the input data (images, or encryption data),

packetizes them, breaks the packets into input vectors and generates the required test bench.

97

Figure 7.5: Simulation methodology to simulate the whole platform. The simulator inputs are Ethernet packets.

The simulator outputs are Ethernet packets.

For each benchmark, we run two simulations. The first one is the original simulation

prepared by the core builder. The second simulation is a simulation for our platform that

contains the same core. We report the latency and throughput of each simulation for each

benchmark.

In Figure 7.6 we show the simulation of the FDCT core as it is written by the core designer.

The latency and full computation time are reported. Then, we put the core within a virtual

FPGA implemented using our virtualization platform and simulate the whole platform. We

use the same data used by the original simulation. We use our Ethernet packet generator to

generate Ethernet packet sequences. Then, we use our test bench generation software to

generate the whole platform test bench. The simulation of the FDCT within a vFPGA in

our platform is depicted in Figure 7.7.

Figure 7.6: The simulation of the FDCT core as it is designed by the core designer. The total computation time

is measured to be 175,811.2 nanoseconds.

98

Figure 7.7: The simulation of the FDCT core placed within a vFPGA in the implemented virtualization platform

(using 10GE). The time from receiving the first Ethernet packet (RXDV changes) until the last Ethernet packet is

transmitted out (TXEN changes) is measured to be 198,860.6 nanoseconds.

7.3 Virtualization Overhead Evaluation

To verify the effectiveness of the proposed FPGA virtualization scheme and evaluate its

area, power, and speed overhead, a complete platform was implemented and used to host

four different designs placed in its vFPGAs. Four different open IP cores were used as

benchmarks; an RSA512 encryption engine [71], a JPEG Encoder (JPEGEnc) [70], a fast

discrete cosine transformation (FDCT) engine [69], and an AES encryption (AES128) [72]

engine. A Virtex6 Xilinx FPGA with a 1/10 Gigabit Ethernet port (XC6VLX550t) was

used to host the virtualization platform with four the vFPGAs. The 4 IPs were synthesized

with the generated wrapper and a partial configuration bitstream was generated for each IP

targeting one of the created vFPGAs. Xilinx's Planahead tool was used to make four

reconfigurable regions (vFPGAs) on the FPGA beside the static logic and network

controller regions. The 4 IP circuits were then configured on the FPGA via the static logic's

configuration controller using the internal configuration access port (ICAP). Using Xilinx's

ChipScope, a technology that allows real-time monitoring of internal FPGA signals, the

proper operation of the wrappers was verified.

99

To evaluate the overhead of our virtualization scheme, it was compared to a direct

implementation of the four IPs on the same FPGA (bare-metal with no virtualization)

without any design modifications to the IPs. Also, to eliminate the effect of frequency on

performance, all IPs for both implementations were operated at 156.25 MHz, the 10 GE

Ethernet controller frequency. Though the direct implementation with inputs/outputs

applied/captured directly to/from the IPs through the FPGA I/O pins may not be practical

or even realizable, it constitutes the theoretical best-case in terms of area, power, and speed.

That is why it was used as a baseline for evaluating the area/power/speed overhead of the

proposed virtualization infrastructure.

Table 7.2 summarizes the virtualization overhead of our scheme compared to the direct

implementation in terms of area, latency, power, and throughput. For these results, to

obtain the overhead for each IP separately, four copies of each IP were placed on the

virtualization platform since the static logic is shared between the four vFPGAs. The results

in Table 7.2 are based on post place and route simulations. This is due to two reasons; (1)

there is no way to inject/ readout inputs/outputs to the direct FPGA implementations, and

(2) We do not have a 10 GE switch that can be used to send packets to the vFPGA platform.

The total computation times are measured from sending the first Ethernet packet of the

user's input data until receiving the last Ethernet packet of the results. In the case of the

AES128, the computation time overhead is dominated by the communication overhead.

The total computation time overhead for the other 3 IPs is acceptable because computations

are more prominent than communication for these benchmarks.

100

Table 7.2: Virtualization overhead compared to direct implementation on an FPGA for 4 benchmarks. For the

vFPGAs, the wrapper's I/O widths are 64/64 bits for all designs.

 RSA512 DCT JpegEncoder AES128

Inputs/Outputs

Widths (bits)
64/16 14/13 28/39 128/128

 Data (Bytes)

FPGA 3,840 25,728 27,648 327,584

vFPGA 4,505 36,487 33,796 337,920

Overhead 17.32% 41.82% 22.24% 3.16%

 Time (ns) using 10GE @156.25MHz

FPGA 18,750,265 175,811 73,164 131,176

vFPGA t2 18,764,874 198,860 80,377 356,403

Overhead 0.08% 13.11% 9.86% 171.70%

 Latency (ns)

FPGA 1,249,974 439 790 131

vFPGA 1,250,151 577 941 416

Overhead 0.01% 31.44% 19.11% 217.56%

 Throughput (MBytes/s) using 10GE @156.25MHz

FPGA 0.20 139.56 360.38 2,381.60

vFPGA 0.20 123.38 328.04 876.56

Overhead 0.08% 11.59% 8.97% 63.19%

 Dynamic power (mW)

FPGA 138.91 248.64 433.25 717.71

vFPGA 362.7725 346.9925 822.1725 1239.78

Overhead 161.16% 39.56% 89.77% 72.74%

 Area (Slices)

FPGA 2,676 726 9,693 919

vFPGA 3,083 1,263 14,470 1,820

Overhead 15.21% 73.97% 49.28% 98.01%

 Latency was measured as the time from receiving the first input until producing the

first output. For the vFPGA, the latency increase is attributed to the initialization of

the mask register and the clocking counter which consumes 150∼200 ns. AES128

latency increased more than others because its input size is 128 bits which is double

the Ethernet data bus width of the system which in turns made the wrapper halves the

IPs clock frequency to match the communication channel throughput. For such IPs

101

(with extra-wide input/output widths), a larger bus width would reduce the latency

overhead (e.g. a 256-bit, 40 GE data-bus).

 Average Throughput in bits/seconds was measured as the ratio of the total data over

the total time for both virtual and physical FPGAs in the table. Throughput overhead

of the vFPGA platform was around 10% except for the AES128 circuit. The overhead

depends on how much input/output data packing/unpacking is required and how much

control bits are consumed with the data per cycle. More packing/unpacking means

more time spent is preparing the data for the actual computation, increasing the

overhead. Similarly, more control bits per input cycle results in less data throughput.

For the RSA 512 benchmark, the IP's input width matches the wrapper's very well,

hence unpacking takes very little overhead. For the DCT and JPEG Encoder,

unpacking becomes more significant (the DCT is slightly better matched with the

wrapper's data width). As mentioned before, due to the huge mismatch between the

AES128 input width and the wrapper's, the effective frequency of this IP's clock was

half that of the wrapper (and the physical FPGA version), yielding the largest

throughput overhead. Again, a wider data bus would have reduced this overhead

significantly.

 Area overhead is measured in FPGA slices and is due to the wrapper and static logic.

For four vFPGA partitions, the static logic's total area is constant at 2377 slices (i.e.

9,508 LUTs, or ∼ 3% of the FPGA LUTs), or ∼600 slices per vFPGA. The wrapper's

area dominates the area overhead and varies for each benchmark depending on its

input and output size because of the packing/unpacking circuitry. The reported area

of the DCT and RSA is the total area of the platform divided by four since there are

102

four vFPGA each of which contains one core. For the AES128 two core are

implemented in two vFPGA. The reported area is the total platform area divided by

two. For the JPEG Encoder, the full area of the platform is reported since only one

vFPGA is implemented.

 Figure 7.9 shows the XML specification of a black box (an empty design) which is

used to generate different wrappers with different number of inputs and outputs and

different groups. The generated wrappers are synthesized with the “keep hierarchy”

option since the design is empty and the resulted area is reported. Figure 7.8 illustrates

how the wrapper area (LUTS and FFs) changes as a function of the inputs/outputs

data widths. For this figure, the design is treated as a black box with the equal number

of inputs and outputs, and for each I/ O width, three wrappers were generated;

assuming the inputs/outputs are grouped into one, two, or three groups. The wrapper's

area increases exponentially with the I/O width while dividing I/Os into groups

reduces the area significantly.

Figure 7.8: Wrapper area versus the number of the applicaion I/Os for 1, 2, 3 grouping.

103

Figure 7.9: The XML specification of the input/output groups of a black box (one group, two groups, and three

groups). The black box has no design inside. It is used to generate a wrapper for an assumed design with arbitrary

inputs/outputs and an arbitrary number of groups. The black box is used to evaluate the wrapper area for

different number of inputs/outputs and different number of groups.

 Power overhead is incurred due to the additional circuitry of the wrapper and static

logic. The effect of the wrapper and static logic on power is more prominent for IPs

that have less time overhead (e.g. the RSA512) since the total energy per computation

(independent of the frequency) is spent over less time which increases the average

104

power. The results reported in Table 1 is based on active power (i.e. during operation

of vFPGA-based designs). Also, the overhead depends on the size of vFPGA circuits

relative to the wrapper and static logic. In this case, the IPs are relatively small,

increasing the relative overhead. For power measurements, Xilinx's XPower Analyzer

was used. It reads the placed and routed design, the physical constraints file, and net

and I/O activities (from post place and route timing simulation results), and accurately

estimate the power. Using post place and route timing simulations for calculating net

activities includes glitches and hence results in highest accuracy.

7.4 Comparisons with other platforms

Table 7.3 shows a comparison of our FPGA virtualization platform with other notable

platforms for attaching FPGAs to DCs. Many of the approaches reviewed in CHAPTER 4

could not be included in the table because they did not report area overhead or used HW

macros (i.e. non-reconfigurable resources). The table summarizes the type of the platform

and its interface (to the user's design), area overhead in terms of FPGA resources (for the

overlay, it is reported as a ratio to the bare-metal design), the platform components (i.e.

static logic), and whether partial reconfiguration is supported or not. A platform with a

fixed interface means that designers must adapt their design to this fixed interface.

Platforms that do not support partial re-configuration means that the whole FPGA circuitry

(interface + communication + design) must be re-synthesized every time a new design is

to be deployed. The VirtualRC [73] was included because it provides an abstracted

application-specific interface that can be used to attach an FPGA-design to a DC. Most

references do not provide performance overhead over direct FPGA implementation, so it

was not included in the comparison. Platforms that provide local DDR memory access (

105

[6, 41, 9, 12, 38, 36]) suffer significantly higher overhead. Though this allows more design

choices and applications, it adds huge overhead and thus is best implemented as hard

macros. As this table shows, our proposed platform provides a complete interface

abstraction and partial reconfiguration support at a comparable or less area overhead than

other techniques.

Table 7.3: Comparison with notable platforms for attaching FPGAs to DCs.

Platform Type Area overhead
Static logic

Components
PR+

MS Catapult

[6, 41]

PCI attached,

Torous network

among FPGAs,

PCIe DMA

Specific Interface

≈ 39,560 ALMs‡

two DRAM

controllers, four Slite

II (to connect over

Ethernet), router, PCIe

core, reconfiguration

management

Disaggregated

FPGAs [12,

38]

Network attached,

Specific Interface

(similar to OS

sockets)

≈ 58,128 LUTs

+116,256 FFs

DRAM controller,

memory virtualization

module for each

vFPGA network

controller,

management

RIFFA2.1

[43]

PCIe DMA

Interface

15,862 LUTs +

14,875 FFs

(Xilinx) 15,182

ALUTs + 13,418

FFs (Altera)

(without PCI

logic)

PCIe core, tx-rx

engines for 4 vFPGAs

DyRACT

[44]

PCIe DMA

Interface

16,157 LUTs +

19,453 FFs

PCIe core, tx-rx

engines,

reconfiguration man.,

clock man., DMAs

Extended [36]
PCIe DMA

Interface

30324 LUTs +

60648 Regs

added DRAM

communication &

interface

106

RACOS [45]
PCIe DMA

Interface

7474 LUTs +

7466 Regs

PCIe core + DMA bus

mastering component

+ Register file +

Reconfiguration

management + Event

dispatcher + two 64-

bit wide FIFOs per

vFPGA

Byma [9]

Network Attached,

DPR*, Specific

Interface for Packet

Processing

Applications

28,711 LUTs +

29,327 FFs

Soft processor

(Reconfiguration

management), DRAM

controller, MAC

Regs., Mem mapping

Regs.

VirtualRC

[73]

Domain Specific

with Specific

Interface

2,300 LUTs +

4,550 FFs
N/A

This Work DPR, General

9508

LUTs+4344 FFs

(4 vFPGAs)

Network controller

(complete TCP stack),

clock management,

reconfiguration

management

+ PR=Partial Reconfiguration Support

‡ ALM= Adaptive Logic Module (Altera), equivalent to Xilinx’s Slice (6-input LUT + 4FFs).

* DPR= Dynamic Partial RE-Configuration (for vFPGAs).

7.5 vFPGAs versus SW-based virtual machines

Cloud-based applications usually run on virtual machines or within containers which

introduce remarkable overhead compared to running the same application on the physical

machine. To show the viability of FPGA-based computing in clouds with our proposed

vFPGA platform, the performance of an actual streamed application (not simulated) is

evaluated when it is run on a virtual machine, a physical machine, and on a vFPGA, all in

an environment similar to a cloud's. The purpose of this experiment is to show that FPGA-

based streamed applications do not lose their speed advantage over SW implementation

even when the FPGA is virtualized using our proposed methodology. For this experiment,

we designed a custom streamed application that we believe is a good representation of

applications that are suited for both, cloud environment and FPGA implementation. The

107

application involves three main sequential tasks performed on streamed blocks of data;

decrypt-compute-encrypt, i.e. it receives encrypted data, decrypts it, performs some

relatively simple computation on the plain text, then encrypts the results and send them

back to the user. Symmetric key encryption (AES) was used for the encryption and

decryption tasks. For the three application platforms, a client application (running on a

typical workstation) streams the data over a 1 GE LAN to the three different platforms and

receives the streamed results back as illustrated in Figure 7.10.

Figure 7.10: The three platforms used to evaluate the performance of a streaming application; (a) Running in a

virtual machine, (b) directly on the physical server, and (c) on a vFPGA. A client SW sends encrypted data and

receives encrypted computation results.

In the client-to-physical server scenario, the application was run (as a server) on a Xeon

machine with 8 cores running at 3.00 GHz, 16 GB of RAM, and 64bit-Linux Ubuntu

16.04LTS. In the client-to-virtual machine scenario, VirtualBox was used to build a virtual

machine with 4 GB RAM and 64bit-Linux Ubuntu 16.04LTS on another Xeon machine

with the same specifications as the first one. The application was written with Python using

the Python stream socket programming [74] and the Python Cryptography Toolkit

108

(PyCrypto) [75]. The measured stream socket throughput between two machines using our

code was 115 Mb/s which represents 90% of the 1GE link theoretical bandwidth.

The hardware version of the application was built using Hsing's AES core [72]. Since

Hsing's core only provides AES-ECB mode encryption, it was modified to implement

AES-CTR (for encryption and decryption) which provides stronger security. Two separate

instances of the AES-CTR core are used to decrypt and encrypt the streamed data. All the

three platforms utilized TCP streams to/from the client over the 1 GE LAN switch with a

measured sustainable throughput of ∼115 Mb/s.

The application's performance was evaluated using the measured throughput as a function

of the streamed block size for the three implementations as shown in Figure 7.11. The total

data size was 32 Mbytes and the block size was varied from 16-bytes to 1 KB. Figure 7.11

shows that the throughput of all platforms is affected by the data block size but starts to

saturate beyond a block size of 128 Bytes. In the client-to-physical server scenario, the

maximum attained throughput was 29.5 MB/s while the virtual machine's version maxed

out at 7.4 Mb/s. However, the vFPGA version reached 105 Mb/s, approaching the

communication link's measured maximum throughput (shown on the graph). In fact, the

vFPGA version throughput was limited by the communication link's throughput not the

computation speed as the maximum frequency of the circuit (post place and route) was ∼

378MHz. Had a 10 GE was used, the AES128 throughput would have been 876.6 Mb/s as

was shown in Table 7.2.

109

Figure 7.11: Streaming application throughput versus block size comparisons the proposed vFPGA platform and

physical servers and virtual machines.

7.6 CCM platform Evaluation

In this section, we use the “image edge detection” application as a test case and show how

the CCM of this application can be accessed as a service using the same functions used to

access the software version. The test case is an “image edge detector” that receives a JPEG

image and produces another JPEG image of the detected edges. To this end, we built a

CCM for the application as well as the FPGA virtualization platform. Then, we wrote the

application in software using standard python libraries and used the TCP stream socket to

build the software application interface. The software version of the application running

on a server and another copy is running on a virtual machine. We also designed another

software to act as a user that requests the application service. The user uses TCP stream

socket interface to request the service from CCM or the application. We also analyze the

virtual FPGA booting time.

7.6.1 Experiment setup

The experiment setup, as shown in Figure 7.12, consists of an FPGA, a workstation

represents a server, another workstation holds a virtual machine, one all-in-one machine

represents the user and Ethernet switch that links those devices. The FPGA is a Xilinx

110

Virtex 6 XC6vlx550t FPGA. The server machine is a Dell WorkStation with Intel 8-core

Xeon processor running at 3.00GHz, 16GB of RAM, and 64bit-Linux Ubuntu 16.04LTS.

The VM machine is a VirtualBox virtual machine with 4 GB RAM, bridged Ethernet and

64bit-Linux Ubuntu 16.04LTS on Dell WorkStation with same specifications. The user

machine is a Lenovo all-in-one machine with Intel Core-i7 processor running at 3.00GHz,

16GB of RAM, and 64bit-windows 8.

Figure 7.12: The experimental setup with several versions of the secure edge detection (ED) application.

Sender and receiver are two separate threads running in parallel on the user’s workstations.

It is not possible to use one thread that sends data while it is listening to a TCP port for the

received results. This better to be done using two separate threads. It is difficult to have a

timer that starts by the sender and stops by the receiver. Instead, we do a synchronization

process (illustrated in Figure 7.13) before starting and let server, sender, and receiver start

at the same time. We put the timer in the server since it is in the in the middle. The server

sends a small message (acknowledge) to sender and receiver to indicates starting the

process and the timer.

111

Figure 7.13: Synchronization process among the sender, receiver and the server. The server manages to start and

to end the work in the three steps at the same time.

7.6.1.1 The CCM service

The virtualization platform shown in Fig.8 is implemented on the Virtex 6 FPGA. The

Static logic components are all written using Verilog except the encryptor/decryptor. The

tinyAES [72] is used to build counter mode AES encryption/decryption blocks (AES-CTR)

explained later. The test case hardware is designed by collecting several cores; Jpeg

decompressor [76, 77], Canny edge detector [78] and jpeg encoder [70] to form the edge

detector hardware as shown in Figure 7.14. Then, the wrapper is formed to form the CCM

and integrated with the static logic.

Figure 7.14: The FPGA virtualization platform with the Edge detector application implemented as a CCM.

112

Figure 7.15: Image edge detection hardware uses four already-made cores; AES 128 [72], Image Compress [69],

Canny Edge Detection [78], and JPEG encoder [70].

The hardware version of the image edge detection is shown in Figure 7.15. The hardware

phases are overlapped to get high performance. The total execution time is dominated by

the jpeg decompression time. Jpeg encoder has a fixed time per pixel. The decompressor

time varies according to the input image.

The resource utilization report is shown in Table 7.4. The static logic uses contains the

10GE network controller and the clock management. The user hardware contains the

secured image edge detector with its wrapper.

Table 7.4: Resource utilization of the virtualization platform on FPGA

 LUTs FFs RAMs DSPs

Total 58123 52649 422 560

Static logic 12462 10990 161 0

User Hardware 45661 41659 261 560

 - decode 11457 8428 9 21

 - detect 3262 3833 18 0

 - encode 26761 29966 30 560

7.6.1.2 The software service

The software of the secured image edge detection is written on Python and launched on the

server and on the virtual machine. To ensure the best software throughput, we use standard

libraries to build the application which proves high throughput; the standard Python

Cryptography Toolkit (PyCrypto) [75] that provides encryption and decryption services

and the open source computer vision (OpenCV) for python [79] that provides cany edge

detection. A snapshot of the application service python code is shown in Figure 7.16. The

service first decrypts the received Jpeg image, stores it in an array to pass it to the image

113

decoder. Then, Canny edge detect function from OpenCV library detects the edges and the

resulted image is encoded again to produce a Jpeg image. Finally, the resulted Jpeg image

is encrypted to be sent to the user.

Figure 7.16: The software version of the application “Secure image edge detection” written in Python using

standard SW libraries

7.6.2 Performance Evaluation

Virtual machines suffer from large overhead which makes them unsuitable for remote or

on-cloud computations. A comparison is done between the virtual machine and CCM to

reflect the strength of the CCM cloud for streamed-data applications. Figure 7.17 shows

three scenarios of computation; a) uses a virtual machine, b) uses a server, c) uses CCM.

The network on all cases is 10GE LAN network. The client sends encrypted images and

receives encrypted edge-detected images over TCP stream sessions. The TCP stream

socket on python proves high throughput approaches the theoretical line throughput.

114

Figure 7.17: The user uses the same socket interface to request the same service hosted n three different machines;

a) the service is hosted in a VM, b) the service is hosted in a server, c) the service is a CCM on virtual FPGA.

We have prepared 10 jpeg images with the same dimensions but have different sizes. The

variation in size reflects the compression ratio which varies according to the image

contents. Each image is encrypted using AES128-CTR and sent to the edge-detection

service over the socket interface. The edge-detection service decrypts the image, decodes

it, does edge detection, encodes the detected-edge image, encrypts the resulted image and

returns it to the sender. Each image is sent 100 times and the average time is reported in

milliseconds. The three scenarios shown in Figure 7.17 are implemented and a comparison

among them is shown in Table 7.5. The performance of the service on a VM is severely

affected by the VM virtualization overhead. By comparing the bare-metal server with the

virtual machine, we can see that the virtualization overhead decreases the performance by

50%. The table also shows that CCM can achieve 3~4x better performance than virtual

machines for this application.

115

Table 7.5: Computation time comparison for three implementations of the secure image edge detection

application. a) The application on a virtual machine, b) The application on a server, c) The application is a CCM.

Filename
Size

(Bytes)

Frames per seconds

HW VM Server

0009_640x480.jpg 58,962 232.41 57.54 103.37

0002_640x480.jpg 72,618 209.03 48.58 94.02

0004_640x480.jpg 84,644 197.17 45.13 83.33

0005_640x480.jpg 116,391 140.45 38.88 67.88

0000_640x480.jpg 128,573 117.65 28.50 65.54

0008_640x480.jpg 163,301 99.49 29.89 53.44

0006_640x480.jpg 195,211 86.32 28.35 50.08

0007_640x480.jpg 201,071 81.45 27.59 50.17

0001_640x480.jpg 266,529 71.13 22.11 42.52

0012_1920x1080.jpg 864,475 20.00 4.84 10.09

Figure 7.18: Compute nodes performance comparison for a specific application. vFPGA outperforms a virtual

machine and a bare-metal server.

7.6.3 The impact of adding the AES encryption/decryption

Using the AES-ECB encryption core [72], we have built the AES-CTR which can be used

as an encryptor and decryptor at the same time. In the hardware implementation, we have

to have two separate instances of the AES-CTR for encryption and decryption. Figure 7.19

shows how we have built the AES-CTR from AES-ECB core. The circuit is simple and

provides better throughput and stronger encryption [80].

116

Figure 7.19: Using the AES-ECB core [72] to build AES-CTR that can be used as a decrypter and encrypter. By

XORing the input text with the encrypted counter output we achieve a throughput of one data block per cycle.

AES-CTR throughput is one block per cycle because the XORing takes one cycle only.

 Latency: To start the AES-CTR the counter should be initialized and enabled. Since

the original AES-ECB latency is 20 cycles, the AES-ECB starts encrypting for 20

cycles. When the initialization is done, the core is enabled when there is incoming

data

 Throughput: The core produces one output per cycle which means, the throughput is

not affected by the inclusion of AES. This is because the critical path of the AES-

CTR consists only of the XORing logic.

 Area: AES-CTR requires BRAMs, LUTs, and FFs which increases the static logic

area. Table 7.6 illustrates the required static logic area for the AES

encrypter/decrypter. It also includes an estimation (from a real commercial

implementation [65]) for the full network controller stack assuming four TCP engines

are implemented within the FPGA. The total area is ~60k LUTs.

117

Table 7.6: Estimation of the CCM area overhead in our platform.

 LUTs FFs RAMs

Full stack (UDP and 2 TCP engines) [65] 20,000 20,000

Additional 2 TCP engines [65] 30,000 30,000

AES encrypter 3,536 3,968 86

AES decrypter 3,536 3,968 86

Other static logic components 5,390 3,054 3

Total 62,462 60,990 175

7.6.4 The impact of having multiple vFPGAs within the same FPGA

The static logic routes the received data to the corresponding vFPGA. It transmits all the

results of all vFPGA. In the first case, when receiving a packet, the packet is forwarded to

the corresponding vFPGA directly. This process is not affected and does not affect other

vFPGAs. There is a double buffer in the network controller that allows receiving a packet

while forwarding a new one. If the vFPGA is not ready to receive new data, the received

packet will be thrown and a retransmit is required. This way we keep the routing overhead

of the received packet at a minimum level.

For the transmission part, the router receives results from all vFPGA in a round-robin

manner. A transmission happens when the router receives a packet payload (1400 bytes)

or when the timer time-out, then it moves to the next vFPGA. The timers job is to prevent

any deadlock caused by waiting for results from a specific vFPGA. If we have n vFPGA

sharing the same transmitter and producing results at the same time, their throughput will

be affected by 1/n at most. A good solution for this issue is to have n Ethernet plugs with

and n network controllers. Each controller serves one FPGA only. In this case, the routing

logic in the static logic is completely removed.

118

7.7 Boot time analysis

The vFPGA-CCM boot time is measured from the time the user sends a “Launch a CCM”

request to the time the user receives a response with the launched CCM IP Address as

illustrated in Figure 7.20. The components of this delay are:

Figure 7.20: Different boot time components of a vFPGA-CCM.

1) Message passing delays (e.g. the launch request, the response with the IP address,

etc.). This delay can be approximated to the ping time between the user and the

FPGA hypervisor in the cloud. The average estimated ping time in amazon web

services around the world is ~250ms as measured using the cloud info web site

[81].

2) Fetch the CCM image from the cloud storage and sending it to the FPGA

hypervisor’s back-end. This delay depends on the internal network throughput

within the cloud network. In our experiment setup, we have a LAN with 1G switch

and the measured throughput reached 112 megabytes per second.

3) The FPGA configuration time by the hypervisor’s back-end. Large FPGAs have an

average bitstream file size of ~10 megabytes, resulting in ~25 milliseconds average

119

configuration time through the internal configuration access port (ICAP) which has

a configuration bandwidth equals to 3.2 Gbps [82].

Table 7.7 shows the different delay components and the total vFPGA-CCM boot times for

several sizes of CCM image (i.e. bitstream files) sizes. Comparing to VM booting time, the

only difference is the configuration time.

Table 7.7: Boot time delay components for vFPGA-CCMs with various image (bitstream) sizes. Internal

configuration access port’s speed is ~400MB/s

Bitstream

size (MB)

T1

(ms)

T2

(ms)

T3

(ms)

T4

(ms)

T5: Configuration

time (ms)

T6

(ms)

T7

(ms)

Total Boot

time (ms)

1

250 5

9 9 3

5 250

530

5 44 44 13 611

10 89 89 25 713

15 133 133 38 814

20 178 178 50 916

120

CHAPTER 8

Conclusion

In this dissertation, we introduced the FPGA-based custom computing machine (CCM). It is highly

abstracted application hardware which can be used through software functions by users with a non-

hardware background. We also introduced a cloud platform that manages FPGA resources and

provides CCM-as-a-service. The introduced cloud platform can be integrated with existing data-

centers and cloud platforms, provide its services, and uses their cloud resources without deep

modifications on those cloud platforms. Existing works on using FPGA for doing computations

focuses mainly on using PCIe-attached FPGAs as accelerators. We introduced a network-attached

FPGAs and virtualizing them as network-attached standalone compute machines.

We introduced our new FPGA virtualization platform which consists of several abstraction layers

that abstract the CCM to the level that it accepts data through socket communication in their original

structure without control information. A physical FPGA is partitioned into static logic and

partially reconfigurable regions representing vFPGAs. An abstract interface between static

logic and the vFPGAs has been developed in a form of an automatically generated wrapper.

This allows users to place any circuit IP in the vFPGA, send, and receive data from their

IP through standard Ethernet communication. The virtualization platform is evaluated and

121

the overhead is reported in terms of area, performance, throughput, and power with several

hardware cores.

We explained the application wrapper; a circuit that is auto-generated for any hardware core and

enables it to fit in virtual FPGAs. We explained the wrapper components and the required

specification files to generate it. We introduced a test case, explained the steps of generating its

wrapper, implemented it on virtual FPGA and evaluated it. The wrapper represents an area and

performance overhead. We provided an analysis that shows that the wrapper area is related to the

input/output of the design not by the design size. This means that the wrapper area can be controlled

by careful design of the serializer and define inputs and outputs of the hardware core.

Comparison with other platforms for attaching FPGAs to DCs showed that the area

overhead of our proposed platform is within the same range of others but with the added

advantages of having an abstract interface, support for partial reconfiguration, and not

being domain specific. Comparison with SW based cloud implementations showed that our

platform is a very viable computing option in the cloud.

8.1 Platform Limitations

This virtualization platform presented in this work has several limitations:

 The platform targets introducing standalone FPGA custom computing machines. It

does not targets introducing FPGA as accelerators. In acceleration, there is a

software/hardware partitioning process and FPGA should be attached and managed

by a closed server. Using our platform in acceleration is not preferable since PCIe-

attached FPGAs have faster and dedicated communications with the server. Our

platform is good for streaming applications not for acceleration.

122

 This platform does not use off-chip DDRAMs. The memory in our platform is limited.

It follows the streaming computing model where inputs are presented as a sequence

of items. Unlike the acceleration model where all inputs can be stored in an off-chip

memory before doing the computations.

 The platform is not suitable for packet processing systems. The CCM is not aimed to

be used to accelerate software-defined networking (SDN) functionalities or for load

balancing depending on Ethernet packet information. This is because the CCM

receives the payload of the packets, not the packets themselves.

 The platform depends on and consumes a lot of clock resources. Each user design

work on a different clock than the wrapper. The static logic has its own clock. The

network controller has two clocks for receiving and transmitting. For example, a

platform with four virtual FPGA requires 11 clock domains. This adds complexities

to the place and routing phase and may result in un-routable designs. In modern

FPGAs, there are enough resources to do this. We also suggest building new FPGA

architectures that support virtualization.

8.2 Future work

The presented platform is still in its initial version. There are some advanced steps can be

done to improve it:

 The platform is based on a layered approach. We have distinguished four abstraction

layers and clearly identified the interfaces among these layers. The next step is to

move some layers as external chip and utilize more FPGA resources for applications.

For example, the network controller can be made completely off-chip. In current

FPGAs, the physical layer of the network controller is presented as a small chip with

123

the (10-gigabit media-independent interface (XGMII). We suggest introducing the

complete network controller with a full TCP stack as a standalone chip (ASIC or small

FPGA).

 New FPGA architecture can be inspired. Some parts of the static logic could be made

as hardware macros. The virtual FPGA is a dynamically configurable region which

provides specific FPGA elements as computing resources. Other resources such as

clock buffers and oscillators are not available as parts of the vFPGA regions. Several

static components could be made as hardware macro in the FPGA and build new

FPGA with more computational resources. Using FPGA for computation may lead to

new FPGA architecture that focuses on providing extendable reconfigurable regions.

 We may build a hardware emulator using the virtualization platform. By removing

the serializer from the wrapper and introducing it as a tool at the user side. The

serializer software tool can read data files, translates them according to the Vera

description file and produces data using the internal wrapper format. The Vera

description, in this case, represents the test benches of the user hardware to be run in

the remote emulator.

 The wrapper generator software tool should be developed to introduce more

customized wrappers. We may need to improve the Verilog templates to provides

several designing choices for the wrapper FSM, the packing/unpacking circuits and

the serializer. The tool may instantly generate area and performance overhead

estimations to help the designer to provide a CCM with specific specifications.

 We need to evaluate using vFPGA chain using a large application that can be divided

into several phases. We can compare this with Microsoft catapult that is used to

124

accelerate the Bing search engine. Building a large application using several CCMs

clostured as a vFPGA chain provides faster design time than combining all cores on

one CCM.

125

Appendices

A. Description of the used Benchmarks

Several already-made open-source cores are used to test and evaluate our platform. In this

section, we provide descriptions of these core with their input and outputs as written by

their designers. We show the XML specification we wrote for each core to define its input

and output groups.

The cores are chosen randomly. They are not meant to be powerful cores with powerful

performance. We were just looking for

any open source core with clear functionality and have complete design files with a good

test bench. The purpose is to generate a wrapper for different already designed cores.

We have also slightly modified the interfaces of some cores, as explained below, to make

dealing with them easier. This, of course, enhanced the throughput overhead of our

platform since it can minimize the switching among input or output groups at run-time.

A.1. JPEG Encoder Core

The jpeg encoder core [70] receives bitmap image, compresses it, and outputs JPEG image.

The input bitmap image consists of sequences of 24-bit words which represents the RGB

color of a pixel. The output of the core is sequences of 32-bit words represents the JPEG

data. The other inputs and outputs of the core are control signals. The actual inputs and

outputs of the core are depicted in Figure 8.1. The figure also shows an XML description

for a defined input and output groups for that core. There are two input groups. The first

input group is the 24-bit RGB data with the enable signal that works as a strobe signal. The

second input group contains the control signals that are not frequently used. The reset signal

126

is used when a new image starts and the end_of_file_signal is used to indicates the last

image block. There is only one output group contains the 32-bit JPEG data and the other

output control signals. The data_ready works as a strobe to indicate the valid 32-word

output. The eof_data_partial_ready indicates that only part of the 32-bit word should be

taken. The end_of_file_bitstream_count determine how many bits should be taken from

the last 32-bit word.

Figure 8.1: The XML specification of the input/output groups of the jpeg encoder core [70].

Table 8.1: Snapshot of the serializer’s output for the JPEG encoder. Each row in the table represents one input

group. The CLK column indicates whether to apply a clocking at that input or not. The SEL column represents

the input group index. The table starts by setting values to the mask register and the clock counter. Then it sets

values to the least frequently used signals. After that, the data starts.

CLK SEL 25-bit data 28-bit serializer’s output Description

0 11 1 111111h 7ffffff mask

0 10 0 000000h 4000000 clock counter

1 01 1 111111h A000001 reset on

0 01 0 000000h 2000000 reset off

1 00 1 36536Eh 936536E RGB pixel

1 00 1 37546Fh 937546F RGB pixel

1 00 1 47647Fh 947647F RGB pixel

A.2. AES Core

The Advanced Encryption Standard (AES) core [72] has two inputs; 128-bit for the

encryption key and 128-bit for the data block. It has one 128-bit output. The core starts the

127

encryption once the key or the data is changed. The encryption process takes 20 cycles.

The core is pipelined and produces continuous output while assuming changes on the input

on each cycle. To control this process, we decide to add valid signals at the input and the

output of the core. The new top-level module of the AES128 Verilog code is as follow:

module aes_128_prepared (input clk, valid_in, [127:0] state, key,

output valid_out, [127:0] out);

 aes_128 aes_128_inst (.clk(clk),.state(state),.key(key),.out(out));

 assign valid_out = cntr[0];

 reg [20:0] cntr = 21'd0;//shift_reg

 always @(posedge clk)

 cntr <= {valid_in, cntr[20:1]};

endmodule

The actual inputs and outputs of the core are depicted in Figure 8.2. The figure also shows

an XML description for a defined input and output groups for that core. There are two input

groups. One for the 128-bit data with the valid signal and the other for the 128-bit key

which changes less frequently. There is one output group contains the 128-bit output with

the valid signal.

Figure 8.2: The XML specification of the input/output groups of the jpeg encoder core [72].

128

Table 8.2: Snapshot of the serializer’s output for the AES128. Each row in the table represents one input group.

The CLK column indicates whether to apply a clocking at that input or not. The SEL column represents the input

group index. The table starts by setting values to the mask register and the clock counter. Then it sets the key.

After that, the data starts.

CLK SEL 129-bit data Description

0 11 1 ffffffffffffffffffffffffffffffff mask

0 10 0 00000000000000000000000000000000 clock counter

1 01 0 76af95972db498a82052e1b70d644e63 key

1 00 1 19711975d62eb677a38fc1111a729c3a plaintext

1 00 1 a367fd2cd197119b67738fc19f9b05d3 plaintext

1 00 1 dec67fd2cdb574cacd68e49f9b05d336 plaintext

1 00 1 36bdec6e44a50e16f59a44a574cacd68 plaintext

A.3. RSA512 Core

Given 512-bit plaintext X, 512-bit key Y and 512-bit modulus M, the RSA512 core [71]

calculates the cipher text 𝑠 = 𝑥𝑦𝑚𝑜𝑑 𝑚. The core receives the inputs serially. It has four

16-bit inputs: x, y, m and r_c. the r_c is the squared Montgomery constant modulo m. The

Montgomery constant is 𝑟 = 216∗(32+1) and 𝑟_𝑐 = 𝑟2 𝑚𝑜𝑑 𝑚. The core receives the four

512-bit input serially with a 16-bit word a t a time. It outputs the 512-bit output serially

with a 16-bit word at a time.

The RSA512 core has additional input signal start_in. It should be set active when loading

the first 16 bits of m. After 6 cycles valid_in is used to feed the 512-bit of the rest of the

data serially. The signal usage is somehow complicated as seen in the Verilog test bench.

Although it is possible to build a wrapper for this core, we decided to remove this signal to

make the core interface better. We build an FSM to generate the start_in signal on the

starting of the computation. The new top-level module of the RSA512 Verilog code is as

follow:

129

module rsa_top2(input clk, reset, valid_in,input [15:00] x, y, m, r_c,

bit_size,output [15:00] s,output valid_out);

 reg [2:0] state = 3'h0;

 reg start_in = 1'b0;

 reg rst = 1'b0;

 reg [3:0] cnt = 4'h0;

 always @(posedge clk, posedge reset)

 if (reset)

 state = 3'h0;

 else case (state)

 3'h0: begin start_in <= 1'b0; rst <= 1'b1; cnt <= 4'h2; state =

3'h1; end

 3'h1: begin cnt <= cnt - 1'b1; if (cnt == 1'b0) state = 3'h2; end

 3'h2: begin rst <= 1'b0; cnt <= 4'ha; state = 3'h3; end

 3'h3: begin cnt <= cnt - 1'b1; if (cnt == 1'b0) state = 3'h4; end

 3'h4: begin start_in <= 1'b1; state = 3'h5; end

 3'h5: begin start_in <= 1'b0; state = 3'h6; cnt <= 4'h8; end

 3'h6: begin cnt <= cnt - 1'b1; if (cnt == 1'b0) state = 3'h7; end

 3'h7: state = 3'h7;

 default: state = 3'h0;

 endcase

 rsa_top (.clk(clk), .reset(rst), .valid_in(valid_in),

.start_in(start_in), .x(x), .y(y), .m(m), .r_c(r_c), .s(s),

.valid_out(valid_out), .bit_size(bit_size));

endmodule

The actual inputs and outputs of the core are depicted in Figure 8.3. The figure also shows

an XML description for a defined input and output groups for that core. There two input

groups. The first group contains the reset signal and the bit_size constant. The second group

contains the plaintext x, the key y, the modulus m, the squared Montgomery constant r_c

and the valid signal. There is one output group contains the cypher text and the valid signal.

Figure 8.3: The XML specification of the input/output groups of the rsa512 core [71].

130

Table 8.3: Snapshot of the serializer’s output for the RSA512. Each row in the table represents one input group.

The CLK column indicates whether to apply a clocking at that input or not. The SEL column represents the input

group index. The table starts by setting values to the mask register. It then set the value of the modulus m. Then,

it sets the bit_size constants. After that, it sets the clock counter to 32 cycles. Then, it applies those clocks to the

design. After that, it resets the clock counter to zero. Then, the data starts.

CLK SEL
65-bit data

Description
 r_c m y x

0 11 0 ffff ffff ffff ffff mask

0 01 0 f579 b491 42b1 f3ad set m

1 00 0 0000 0000 0001 0200 set bit_size

0 10 0 0000 0000 0000 0020 clock counter

1 00 0 0000 0000 0000 0200 apply clocking

0 10 0 0000 0000 0000 0000 clock counter

1 01 1 f579 b491 42b1 f3ad data

1 01 1 6ee9 1417 1ad3 8e40 data

1 01 1 972d b498 a827 6af9 data

A.4. FDCT Core

The DCT core [69] transforms the image data to a different domain using the cosine

function. It decomposes the signal into underlying spatial frequencies. The DCT transform

is invertible. It is used in image compression since neighboring pixels within an image tend

to be highly correlated. The JPEG Encoder core explained above contains a DCT core.

The core has 8-bit input and produces 12-bit output. It has a enable signal ena that should

be high when computation starts. The core has a data strobe input dstrb that indicates the

starting of the input data. It has a data strobe output den that indicates the starting of the

output. Since these strobes are pulses we decide to convert them to valid signals that strobes

all the inputs and outputs. The new top-level module of the RSA512 Verilog code is as

follow:

131

module fdct_prepared #(parameter di_width = 8, do_width = 12)

 (input clk, input ena, input rst, input dstrb, input [di_width-1:0]

din, output [do_width-1:0] dout, output douten);

 wire douten1;

 fdct #(.di_width(di_width), .do_width(do_width))

 fdct_inst (clk, ena, rst, dstrb, din, dout, douten1);

 reg [7:0] cntr = 7'b0;

 assign douten = (cntr != 7'b0);

 always @(posedge clk, negedge rst)

 if (!rst)

 cntr <= 7'b0;

 else if (douten1)

 cntr <= 7'd64;

 else if (douten)

 cntr <= cntr - 1'b1;

endmodule

The actual inputs and outputs of the core are depicted in Figure 8.4. The figure also shows

an XML description for a defined input and output groups for that core. The core has two

input groups. The first group has the least frequently used signals. The second group has

the 8-bit data input. The core has one output group contains the 8-bit output and the valid

signal.

Figure 8.4: The XML specification of the input/output groups of the DCT core [69].

132

Table 8.4: Snapshot of the serializer’s output for the FDCT. Each row in the table represents one input group.

The CLK column indicates whether to apply a clocking at that input or not. The SEL column represents the input

group index. The table starts by setting values to the mask register. After that, it resets the clock counter to zero.

Then, it sets the enable and reset signals high and the dstrb signal low. After that, the first byte of the data is set.

Then, it sets the dstrb signal high. After that, it sets the dstrb signal low again. Then, the data continues

CLK SEL 8-bit data Description

0 11 255 mask

0 10 0 clock counter

1 00 0 dstrb=0,ena=1,rst=1

0 01 11 data

1 00 0 dstrb=1,ena=1,rst=1

1 00 0 dstrb=0,ena=1,rst=1

1 01 16 data

1 01 21 data

1 01 25 data

A.5. JPEG Images Edge Detection

This hardware was made by combining several cores [72, 70, 78, 77, 76]. It receives

encrypted JPEG image, decrypts it using the AES-CTR, decompresses it to a BMP image

using the decompress core [77], detects its edges using the Canny edge detection core [78],

encodes the resulted image to a JPEG image using the JPEG encoder [70] and decrypts it

using the AES-CTR. The core has 64-bit input data_in, reset signal reset and start signals

start. The start signal is used to start the AES-CTR counter since it needs 20-cycle

initialization then if become able to produce one output per clock. It has 64-bit output

data_out with a valid signal valid_out.

The inputs and outputs of the design are depicted in Figure 8.5. The figure also shows an

XML description for a defined input and output groups for that core. The core has two

input groups. The first group has the least frequently used signals start and Reset. The

second group has the 64-bit data input. The core has one output group contains the 64-bit

output and the valid signal.

133

Figure 8.5: The XML specification of the input/output groups of the image edge detection we designed by

combining several cores.

A.6. Decrypt-Compute-Encrypt

To have secure computation, we assume that a decrypter and an encrypter should be

integrated within the application hardware itself. We use two instances of the AES-CTR

core for decryption and encryption. The hardware input is the first AES-CTR input. The

hardware output is the second AES-CTR output.

The inputs and outputs of the design are depicted in Figure 8.6. The figure also shows an

XML description for a defined input and output groups for that core. The core has three

input groups for the 128-bit plaintext state, the 128-bit key key, and the reset signal reset.

The core has one output group contains the 128-bit output out.

Figure 8.6: The XML specification of the input/output groups of the decrypt-compute-decrypt hardware

designed using the AES-CTR which uses the AES-ECB core [72].

134

B. Software tool for Ethernet packet generation and platform test bench

For simulation purposes, we have designed a software tool that for a given user data it

generates the corresponding Ethernet packets. The tool also generates the Verilog test

bench for the whole platform that feeds the generated Ethernet packets to the core to

simulate its exact running. In this section, we list and explain the algorithms used in this

software tool.

Figure 8.7: Generate platform test bench.

The algorithms used for the packet and test bench generation are listed in Figure 8.7,

Figure 8.8, Figure 8.9 and Figure 8.10. It is a template-based Verilog code generator. It

starts by adding the Verilog code header in line 3 and an instantiation of the platform top

module in line 4. In Line5, it adds the clocking registers that generate the FPGA clock

135

(usually 100MHz) and the Ethernet receiver clock. In line 6, it adds the output register

which writes the design outputs to a file. In line 7, the initial block in the testbench starts.

In line 8, the packet payload size is determined as 1408 bytes.

The loop in line 10 generates a UDP packet for every 1408 bytes of the data file. The loop

starts by reading the data portion from the file, generating a UDP header for it, adding an

additional header that includes statistics counters and finally calculating the cyclic

redundancy check (CRC) of the Ethernet packet. After generating each packet, it is

converted to Verilog test bench lines added to the initial block which we have already

started in line 7. The loop in line 18 adds a Verilog line for each data word of the Ethernet

packet. In line 22, a Verilog wait statement is added that force the simulator not to start

receiving a new packet if its receiving buffer is full (i.e. the user hardware is busy doing

computation on previous data). The rest of the lines adds the footers of the initial block

which we have already started in line 7 and the test bench module which we have already

started in line 3.

Figure 8.8: Make UDP header algorithm. The algorithm is inspired by the IP formal definition in RFC 791 [83]

and the UDP formal definition in RFC 768 [84].

https://en.wikipedia.org/wiki/Request_for_Comments_(identifier)
https://tools.ietf.org/html/rfc768
https://en.wikipedia.org/wiki/Request_for_Comments_(identifier)
https://tools.ietf.org/html/rfc768

136

Figure 8.9: Calculate IP checksum algorithm. The algorithm is inspired by the IP checksum calculation

description.

Figure 8.10: Calculate UDP checksum algorithm. The algorithm is inspired by the UDP checksum calculation

description in the UDP formal definition in RFC 768 [84].

https://en.wikipedia.org/wiki/Request_for_Comments_(identifier)
https://tools.ietf.org/html/rfc768

137

C. A description of the implemented Verilog code

Figure 8.11 shows a snapshot of the Xilinx ISE design tab. It shows the hierarchy and the

components of the virtualization platform. The hierarchy starts by clocking resources in

the first four nodes of the top module. The virtualization module consists of two parts; the

platform and the network controller. The platform contains data routers (mux and demux),

the reconfiguration module (uses ICAP) and one vFPGA. Any number of vFPGA can be

used by setting the No_of_USERS parameter in the top module. The whole platform is

parametrizable.

The network controller contains an address table, session store, receiver, and transmitter.

The address table contains the MAC and IP addresses of the vFPGAs and the static logic.

It generates the vFPGA index for the received packet. The session store stores the client

address extracted from the received packet. The receiver contains a packet sniffer and

double buffer. The packet sniffer sets flags according to the received packet such as; is it a

UDP, TCP or ARP packet. The double buffer stores the payload of the received packet if

its address gets a match with the address table. The double buffer produces the received

payload while it receives another payload. It must wait until receiving the full packet with

correct cyclic redundancy check (CRC). The network transmitter contains the packetizing

module which contains a finite state machine that produces the Ethernet header, followed

by IP header if needed, followed by the selected header. Currently, three types of network

packets can be produced; ARP replay, ICMP replay, and UDP packet.

138

Figure 8.11: A snapshot shows the hierarchy and components of an implemented version of the virtualization

platform. The hierarchy starts the root node “top_xge” which contains clocking resources appears in the first four

nodes and the virtualization module “virt005” which contains the platform and the network controller. The

platform contains data routers (mux and demux), the reconfiguration module (uses ICAP) and one vFPGA. The

vFPGA contains the image_edge_detect application which uses four already-made cores; AES_128 [72],

jpeg_decode [77], top_edge [78] and jpeg encoder [70].

139

References

[1] "OpenPOWER Cloud," IBM, [Online]. Available:

research.ibm.com/labs/china/supervessel.html. [Accessed 2018].

[2] P. Gupta, "Bringing FPGA Acceleration to the Cloud," Intel, 20 March 2017.

[Online]. Available: https://itpeernetwork.intel.com/fpga-acceleration-to-the-cloud/.

[Accessed 2018].

[3] M. Russinovich, "FPGAs and the New Era of Cloud-based ‘Hardware

Microservices’," Microsoft, 8 june 2017. [Online]. Available:

https://thenewstack.io/developers-fpgas-cloud/. [Accessed 2018].

[4] C. Brugger, L. Dal'Aqua, J. A. Varela and C. De Schryver, "A quantitative cross-

architecture study of morphological image processing on CPUs, GPUs, and FPGAs,"

in Computer Applications & Industrial Electronics (ISCAIE), 2015 IEEE Symposium

on , Langkawi, Kedah, Malaysia, 2015.

[5] BERTEN, "Gpu vs fpga performance comparison," [Online]. Available:

http://www.bertendsp.com/pdf/whitepaper/

BWP001_GPU_vs_FPGA_Performance_Comparison_v1.0.pdf. [Accessed 2018].

[6] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,

H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,

A. Hormati, J. Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,

P. Y. Xiao and D. Burger, "A Reconfigurable Fabric for Accelerating Large-Scale

Datacenter Services," IEEE Micro, vol. 35, pp. 10-22, 2015.

[7] Amazon, "Amazon EC2 F1 Instances," [Online]. Available:

aws.amazon.com/ec2/instance-types/f1/. [Accessed 2018].

[8] P. Mell and T. Grance, "The NIST Definition of Cloud Computing," National

Institute of Standards and Technology, Gaithersburg, 2011.

[9] S. Byma, J. G. Steffan, H. Bannazadeh, A. Leon-Garcia and P. Chow, "FPGAs in the

cloud: Booting virtualized hardware accelerators with OpenStack," in Proceedings -

2014 IEEE 22nd International Symposium on Field-Programmable Custom

Computing Machines, FCCM 2014, 2014.

140

[10] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang and K. Wang, "Enabling

FPGAs in the cloud," in Proceedings of the 11th ACM Conference on Computing

Frontiers - CF '14, 2014.

[11] N. Tarafdar, N. Eskandari, T. Lin and P. Chow, "Designing for FPGAs in the Cloud,"

IEEE Design {\&} Test, pp. 1-1, 2017.

[12] J. Weerasinghe, F. Abel, C. Hagleitner and A. Herkersdorf, "Enabling FPGAs in

hyperscale data centers," in Proceedings - 2015 IEEE 12th International Conference

on Ubiquitous Intelligence and Computing, 2015 IEEE 12th International

Conference on Advanced and Trusted Computing, 2015 IEEE 15th International

Conference on Scalable Computing and Communications, 20, 2016.

[13] "OpenStack service overview," OpenStack, 19 January 2019. [Online]. Available:

https://docs.openstack.org/security-guide/_images/marketecture-diagram.png.

[Accessed 2019].

[14] "Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide," Intel, 2018.

[Online]. Available: https://www.intel.com/content/www/us/en/programmable/

documentation/mwh1391807516407.html.

[15] Xilinx, "Virtex Series Configuration Architecture Series Configuration

Architecture," 20 October 2004. [Online]. Available:

https://www.xilinx.com/support/documentation/application_notes/xapp151.pdf.

[Accessed 2019].

[16] Xilinx, "Virtex-6 FPGA Configuration User Guide," 18 November 2015. [Online].

Available: https://www.xilinx.com/support/documentation/user_guides/ug360.pdf.

[Accessed 2019].

[17] Xilinx, "Vivado Design Suite User Guide Partial Reconfiguration," 27 April 2018.

[Online]. Available:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug909-

vivado-partial-reconfiguration.pdf. [Accessed 2019].

[18] T. Lu, R. Kenny and S. Atsatt, "Secure Device Manager for Intel Stratix 10 Devices

Provides FPGA and SoC Security," [Online]. Available:

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/

wp/wp-01252-secure-device-manager-for-fpga-soc-security.pdf. [Accessed 2019].

141

[19] Altera, "Partial Reconfiguration IP Core," 4 5 2015. [Online]. Available:

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug

/ug_partrecon.pdf. [Accessed 2019].

[20] Intel, "Creating a Partial Reconfiguration Design," 4 January 2019. [Online].

[Accessed 2019].

[21] Intel, "Design Planning for Partial Reconfiguration," 4 November 2013. [Online].

Available:

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb

/qts/qts_qii51026.pdf. [Accessed 2019].

[22] C. Pilato and F. Ferrandi, "Bambu: A modular framework for the high level synthesis

of memory-intensive applications," 2013 23rd International Conference on Field

programmable Logic and Applications, pp. 1-4, 2013.

[23] "The open standard for parallel programming of heterogeneous systems," Khronos,

[Online]. Available: https://www.khronos.org/opencl/. [Accessed 2018].

[24] "SDAccel Development Environment," Xilinx, [Online]. Available:

https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html.

[Accessed 2018].

[25] "Vivado High-Level Synthesis," Xilinx, [Online]. Available:

https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html.

[Accessed 2018].

[26] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown

and T. Czajkowski, "LegUp: high-level synthesis for FPGA-based

processor/accelerator systems," FPGA '11 Proceedings of the 19th ACM/SIGDA

international symposium on Field programmable gate arrays, pp. 33-36, 27 2 2011.

[27] J. Choi, S. Brown and J. Anderson, "From Software Threads to Parallel Hardware in

High-Level Synthesis for FPGAs," in International Conference on Field-

Programmable Technology (FPT), Kyoto, Japan , 2013.

[28] D. Koch, F. Hannig and D. Ziener, "FPGA Versus Software Programming: Why,

When, and How?," in FPGAs for Software Programmers, Switzerland, Springer,

2016, pp. 1-21.

142

[29] H. K.-H. So and C. Liu, "FPGA Overlays," in FPGAs for Software Programmers,

New York, Springer, 2016, pp. 285-306.

[30] T. Bollengier, M. Najem, J.-C. L. Lann and L. Lagadec, "Demo: Overlay

architectures for heterogeneous FPGA cluster management," 2016 Conference on

Design and Architectures for Signal and Image Processing (DASIP), pp. 239-240,

2016.

[31] A. Brant and G. G. F. Lemieux, "ZUMA: An open FPGA overlay architecture," 2012

IEEE 20th International Symposium on Field-Programmable Custom Computing

Machines, pp. 93-96, 4 2012.

[32] D. Koch, C. Beckhoff and G. G. F. Lemieux, "An efficient FPGA overlay for portable

custom instruction set extensions," 2013 23rd International Conference on Field

programmable Logic and Applications, pp. 1-8, 9 2013.

[33] D. Capalija and T. Abdelrahman, "A coarse-grain fpga overlay for executing data

flow graphs," in The Second Workshop on the Intersections of Computer Architecture

and Reconfigurable Logic (CARL 2012), 2012.

[34] X. Li, A. K. Jain, D. L. Maskell and S. A. Fahmy, "An Area-Efficient FPGA Overlay

using DSP Block based Time-multiplexed Functional Units," in 2nd International

Workshop on Overlay Architectures for FPGAs (OLAF2016), Monterey, CA, USA,

2016.

[35] G. Stitt and J. Coole, "Intermediate fabrics: Virtual architectures for near-instant

FPGA compilation," IEEE Embedded Systems Letters, vol. 3, no. 3, pp. 81-84, 12 9

2011.

[36] S. A. Fahmy, K. Vipin and S. Shreejith, "Virtualized FPGA accelerators for efficient

cloud computing," in Proceedings - IEEE 7th International Conference on Cloud

Computing Technology and Science, CloudCom 2015, 2016.

[37] O. Knodel and R. G. Spallek, "Computing framework for dynamic integration of

reconfigurable resources in a cloud," 2015 Euromicro Conference on Digital System

Design (DSD), pp. 337-344, 1 8 2015.

[38] J. Weerasinghe, F. Abel, C. Hagleitner and A. Herkersdorf, "Disaggregated fpgas:

Network performance comparison against bare-metal servers, virtual machines and

linux containers," Cloud Computing Technology and Science (CloudCom), 2016

IEEE International Conference on, pp. 9-17, 12 12 2016.

143

[39] J. Weerasinghe, R. Polig, F. Abel and C. Hagleitner, "Network-Attached FPGAs for

Data Center Applications," IEEE International Conference on Field-Programmable

Technology (FPT '16), 2 2016.

[40] H. L. Kidane, E.-B. Bourennane and G. Ochoa-Ruiz, "NoC Based Virtualized

Accelerators for Cloud Computing," in 2016 IEEE 10th International Symposium on

Embedded Multicore/Many-core Systems-on-Chip (MCSOC), Lyon, France, 2016.

[41] A. Putnam and Others, "A Reconfigurable Fabric for Accelerating Large-Scale

Datacenter Services," in ISCA'14, 2014.

[42] Q. Zhao, M. Amagasaki, M. Iida, M. Kuga and T. Sueyoshi, "Enabling FPGA-as-a-

Service in the Cloud with hCODE Platform," IEICE Transactions on Information

and Systems, vol. 101, no. 2, pp. 335--343, 2018.

[43] M. Jacobsen, D. Richmond, M. Hogains and R. Kastner, "RIFFA 2.1: A Reusable

Integration Framework for FPGA Accelerators," ACM Transactions on

Reconfigurable Technology and Systems (TRETS), vol. 8, no. 4, pp. 22:1--22:23,

2015.

[44] K. Vipin and S. A. Fahmy, "DyRACT: A partial reconfiguration enabled accelerator

and test platform," 2014 24th International Conference on Field Programmable

Logic and Applications (FPL), pp. 1-7, 9 2014.

[45] C. Vatsolakis and D. Pnevmatikatos, "RACOS: Transparent access and virtualization

of reconfigurable hardware accelerators," International Conference on Embedded

Computer Systems: Architectures, Modeling, and Simulation (SAMOS), pp. 11-19,

July 2017.

[46] O. Knodel, P. R. Genssler and R. G. Spallek, "Virtualizing Reconfigurable Hardware

to Provide Scalability in Cloud Architectures," CENICS 2017 : The Tenth

International Conference on Advances in Circuits, Electronics and Micro-

electronics, vol. 2, pp. 33-38, 2017.

[47] O. Knodel, P. R. Genssler and R. G. Spallek, "Migration of long-running Tasks

between Reconfigurable Resources using Virtualization," ACM SIGARCH Computer

Architecture News, vol. 44, no. 4, pp. 56-61, 2017.

[48] ARM, "AMBA AXI4-Stream Protocol Specification," [Online]. Available:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/ index.html.

[Accessed 2018].

144

[49] E. Izenberg, N. Bshara, C. Pettey and C. K. OHRT, "Fpga-enabled compute

instances". Washington Patent WO2017117122A1, 6 7 2017.

[50] M. Asiatici, N. George, K. Vipin, S. A. Fahmy and P. Ienne, "Designing a virtual

runtime for FPGA accelerators in the cloud," 2016 26th International Conference on

Field Programmable Logic and Applications (FPL), pp. 1-2, 8 2016.

[51] M. Asiatici, N. George, K. Vipin, S. A. Fahmy and P. Ienne, "Virtualized Execution

Runtime for FPGA Accelerators in the Cloud," IEEE Access, vol. 5, pp. 1900-1910,

2017.

[52] "The OpenCL Specification Version 2.2-8," Khronos OpenCL Working Group, 8

October 2018. [Online]. Available:

https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_API.pdf.

[Accessed 2018].

[53] Xilinx, "SDAccel Development Environment," Xilinx, [Online]. Available:

www.xilinx.com/products/design-tools/software-zone/sdaccel.html. [Accessed

2018].

[54] "Intel SDK for OpenCL Applications," Intel, 2018. [Online]. Available:

https://software.intel.com/en-us/intel-opencl.

[55] "AWS Shell Interface Specification," Amazon, [Online]. Available:

https://github.com/aws/aws-fpga/blob/master/hdk/docs/

AWS_Shell_Interface_Specification.md. [Accessed 2018].

[56] "Amazon FPGA Image (AFI) Management Tools," Amazon, [Online]. Available:

https://github.com/aws/aws-fpga/blob/master/sdk/userspace/

fpga_mgmt_tools/README.md. [Accessed 2018].

[57] IBM, "SuperVessel, an OpenPOWER cloud platform," IBM Research – China,

[Online]. Available: http://research.ibm.com/labs/china/supervessel.html. [Accessed

2018].

[58] W. Wang, M. Bolic and J. Parri, "pvFPGA: Accessing an FPGA-based hardware

accelerator in a paravirtualized environment," 2013 International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 1-9, 2013.

[59] O. Sander, S. Baehr, E. Luebbers, T. Sandmann, V. V. Duy and J. Becker, "A flexible

interface architecture for reconfigurable coprocessors in embedded multicore

145

systems using PCIe Single-root I/O virtualization," in International Conference on

Field-Programmable Technology (FPT), Shanghai, China, 2014.

[60] D. V. Vu, O. Sander, T. Sandmann, S. Baehr, J. Heidelberger and J. Becker,

"Enabling partial reconfiguration for coprocessors in mixed criticality multicore

systems using PCI express single-root I/O virtualization," in International

Conference on ReConFigurable Computing and FPGAs (ReConFig14), Cancun,

Mexico, 2014.

[61] D. Theodoropoulos, N. Alachiotis and D. Pnevmatikatos, "Multi-FPGA Evaluation

Platform for Disaggregated Computing," IEEE 25th Annual International

Symposium on Field-Programmable Custom Computing Machines (FCCM), pp.

193-193, April 2017.

[62] I. Magaki, M. Khazraee, L. Vega and M. B. Taylor, "ASIC clouds: specializing the

datacenter," ISCA '16 Proceedings of the 43rd International Symposium on Computer

Architecture , pp. 178-190, 2016.

[63] S. A. Byma, "Virtualizing FPGAs for Cloud Computing Applications," University of

Toronto, 2014.

[64] M. Vesper, D. Koch, K. Vipin and S. A. Fahmy, "JetStream: An open-source high-

performance PCI Express 3 streaming library for FPGA-to-Host and FPGA-to-FPGA

communication," 2016 26th International Conference on Field Programmable Logic

and Applications (FPL), pp. 1-9, 2016.

[65] "TCP/UDP/IP Network Protocol Accelerator," MLE, [Online]. Available:

https://www.missinglinkelectronics.com/index.php/menu-products/ menu-network-

protocol-accelerator. [Accessed 2018].

[66] F. Haque, J. Michelson and J. Michelson, The Art of Verification with VERA,

Verification Central; 1 edition (September 1, 2001), 2001.

[67] "Clock Control Block (ALTCLKCTRL) IP Core User Guide," Intel Altera, 4 4 2018.

[Online]. Available:

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/

ug/ug_altclock.pdf. [Accessed 2018].

[68] "UltraScale Architecture Clocking Resources User Guide," Xilinx, 19 December

2018. [Online]. Available:

146

https://www.xilinx.com/support/documentation/user_guides/ug572-ultrascale-

clocking.pdf. [Accessed 2018].

[69] R. Herveille and A. Henson, "Video compression systems," 23 June 2009. [Online].

Available: https://opencores.org/projects/video_systems. [Accessed 2018].

[70] D. Lundgren, "JPEG Encoder Verilog," 17 March 2010. [Online]. Available:

https://opencores.org/projects/jpegencode. [Accessed 2018].

[71] J. Castillo Villar, "An open-source implementaion of the 512 bit RSA algorithm," 12

January 2011. [Online]. Available: https://opencores.org/projects/rsa_512.

[Accessed 2018].

[72] H. Hsing, "tiny_aes," 14 December 2015. [Online]. Available:

https://opencores.org/project/tiny_aes. [Accessed 2018].

[73] R. Kirchgessner, G. Stitt, A. George and H. Lam, "VirtualRC: a virtual FPGA

platform for applications and tools portability," Proceedings of the ACM/SIGDA

international symposium on Field Programmable Gate Arrays, pp. 205-208, 22-24

February 2012.

[74] G. McMillan, "Socket Programming," Python Software Foundation, 8 November

2018. [Online]. Available: https://docs.python.org/2/howto/sockets.html. [Accessed

2018].

[75] D. Litzenberger, "PyCrypto - The Python Cryptography Toolkit," [Online].

Available: https://www.dlitz.net/software/pycrypto/. [Accessed 2018].

[76] H. Ishihara, "JPEG Decoder," 13 March 2018. [Online]. Available:

https://opencores.org/projects/djpeg ,

http://www.pudn.com/Download/item/id/521458.html. [Accessed 2018].

[77] H. Ishihara, "JPEG Decoder," 24 April 2015. [Online]. Available:

https://github.com/aquaxis/IPCORE/tree/master/aq_axi_djpeg. [Accessed 2018].

[78] "Canny Edge Detector," 9 January 2014. [Online]. Available:

https://opencores.org/projects/canny_edge_detector. [Accessed 2018].

[79] "OpenCV (Open Source Computer Vision Library)," OpenCV team, [Online].

Available: https://opencv.org/. [Accessed 2018].

147

[80] D. Jayasinghe, R. Ragel, J. A. Ambrose, A. Ignjatovic and S. Parameswaran,

"Advanced modes in AES: Are they safe from power analysis based side channel

attacks?," IEEE 32nd International Conference on Computer Design (ICCD), pp.

173-180, 19-22 October 2014.

[81] M. Leonhard, "Estimate the latency from your browser to each AWS region,"

Amazon, 2010. [Online]. Available: https://www.cloudping.info/. [Accessed 2018].

[82] "Partial Reconfiguration User Guide," Xilinx, 3 May 2010. [Online]. Available:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/ ug702.pdf.

[Accessed 2018].

[83] V. Cerf and B. Kahn, "INTERNET PROTOCOL," September 1981. [Online].

Available: https://tools.ietf.org/html/rfc791. [Accessed 2018].

[84] D. P. Reed, "RFC 768 : User Datagram Protocol," 28 August 1980. [Online].

Available: https://tools.ietf.org/html/rfc768. [Accessed 2018].

[85] Altera, "Partial Reconfiguration IP Core," 8 May 2017. [Online]. Available:

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug

/ug-partrecon.pdf. [Accessed 2019].

148

Vitae

Name : Amran Abdulrahman Al-aghbari

Nationality : Yemen

Date of Birth : 29-12-1978

Email : emran.hsb@hotmail.com, emran.hsb@gmail.com

Academic Background : Amran received his BS.C in Computer Science, form Sana’a

University, Sana’a, Yemen, in June 2004. He worked as a

lecturer in computer science department, Taiz University, Taiz,

Yemen from 2005 to 2009. He received his M.Sc. degree in

Computer Engineering, from KFUPM, Saudi Arabia, in

December 2012. He defended his PhD in Computer Science and

Engineering from KFUPM, Saudi Arabia, in December 2018.

Amran interest includes programming and designing systems

and tools, hardware/software co-design, hardware design

languages, HLL-to-HDL compilers, HDL editing tools,

virtualized reconfigurable computing.

Publications from the dissertation:

[1] A. Al-Aghbari and M. E. S. Elrabaa, "A platform for FPGA virtualization in clouds

and data centers," Microprocessors and Microsystems, vol. 62, pp. 61-71, 2018.

[2] A. Al-Aghbari and M. E. S. Elrabaa, " Cloud-Based Secure FPGA Custom Computing

Machines for Streaming Applications,” UNDER PREPARATION

mailto:emran.hsb@hotmail.com
mailto:emran.hsb@gmail.com

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	DISSERTATION ABSTRACT
	ملخَّصُ بحث درجةُ الدكتوراةِ في الفلسفةِ
	CHAPTER 1 Introduction
	1.1 Motivation
	1.2 Thesis statement and contributions
	1.3 Overview of the thesis

	CHAPTER 2 Cloud Computing
	2.1 Data center
	2.2 Virtualization
	2.2.1 Hardware virtualization
	2.2.2 Application virtualization
	2.2.3 Desktop virtualization
	2.2.4 Network virtualization
	2.2.5 Storage virtualization

	2.3 OpenStack: open source cloud computing platform

	CHAPTER 3 Design with FPGAs
	3.1 FPGA architecture
	3.2 Design flow
	3.3 Partial Reconfiguration
	3.4 High-level synthesis
	3.5 FPGA strengths and weaknesses

	CHAPTER 4 Literature Review
	4.1 Overlay architecture
	4.2 Virtualization using abstraction layer (AL)
	4.2.1 Interfacing the abstraction layer (AL) with vFPGAs
	4.2.2 OpenCL and the CPU-FPGAs interface abstraction

	4.3 FPGA attachment interface
	4.4 FPGA in the cloud and data center
	4.5 ASIC Clouds
	4.6 Summary

	CHAPTER 5 Overview of the Cloud-Based FPGA Custom Computing Machines Platform
	5.1 FPGA Virtualization
	5.2 FPGA Cloud Architecture
	5.3 FPGA hypervisor
	5.3.1 User-to-CCM API functions
	5.3.2 User-to-Hypervisor API functions
	5.3.3 Hypervisor-to-Hypervisor back-end API functions

	5.4 A scenario of Launching, Using and Terminating a CCM
	5.5 CCM Creation
	5.6 Properties of the Platform
	5.6.1 The platform computing model
	5.6.2 Abstraction
	5.6.3 Sharing
	5.6.4 User data security
	5.6.5 CCM clusters on Multi-vFPGA

	CHAPTER 6 FPGA Virtualization Platform
	6.1 Data Communications
	6.2 Network Controller
	6.3 Static logic
	6.3.1 Data routing
	6.3.2 Reconfiguration management unit (RM)
	6.3.3 Clock management unit (CM)

	6.4 The wrapper's design
	6.4.1 Conceptual design of the wrapper
	6.4.2 Wrapper components

	6.5 Wrapper generation
	6.5.1 Parsing the XML/JSON specification file
	6.5.2 Parsing the Vera specification file
	6.5.3 An example for generating a serializer from a Vera description
	6.5.4 Wrapper generation software

	CHAPTER 7 Results and Comparison
	7.1 Generating a wrapper for the JPEG Encode core
	7.1.1 Preparing the XML Description File
	7.1.2 User’s Vera Data Specifications
	7.1.3 JPEG Encoder implementation on a vFPGA

	7.2 Simulation methodology
	7.3 Virtualization Overhead Evaluation
	7.4 Comparisons with other platforms
	7.5 vFPGAs versus SW-based virtual machines
	7.6 CCM platform Evaluation
	7.6.1 Experiment setup
	7.6.1.1 The CCM service
	7.6.1.2 The software service

	7.6.2 Performance Evaluation
	7.6.3 The impact of adding the AES encryption/decryption
	7.6.4 The impact of having multiple vFPGAs within the same FPGA

	7.7 Boot time analysis

	CHAPTER 8 Conclusion
	8.1 Platform Limitations
	8.2 Future work

	Appendices
	A. Description of the used Benchmarks
	A.1. JPEG Encoder Core
	A.2. AES Core
	A.3. RSA512 Core
	A.4. FDCT Core
	A.5. JPEG Images Edge Detection
	A.6. Decrypt-Compute-Encrypt

	B. Software tool for Ethernet packet generation and platform test bench
	C. A description of the implemented Verilog code

	References
	Vitae

