'
A

e

ST

)\

J

\\

e e S e e e e e e e e e e o e e e e

\

~
-

J1

.+
A

|
L] . . . 1) [} [} L]
B’F;gf;#;'yr;-‘;’r;&r;*}rﬁ r‘;";yc‘

|
)

+
a

e e e e e e e e e e e e

'#;a%:%za%:a%z%we

a

CLOUD-BASED FPGA CUSTOM COMPUTING MACHINES
BY

AMRAN ABDULRAHMAN AL-AGHBARI

A Dissertation Presented to the
DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In
COMPUTER SCIENCE AND ENGINEERING

DECEMBER 2018

(.

l

\

d S e S S S S S S S S S e SN SRR

3E

b,

T

\ lji*;

=

!

KAESER

¥

x

]
I

F

T
t

7

v
L]

X

*

i

L3

¥

G

1]

O/EY

i

>

Y
[
I

&

)

o]

I\t

‘

-
L]

cog vy

¥

*

N
+

&3

v
L]

e

+

v
L]

PITIT

A

~v/
i



KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN- 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by Amran Abdulrahman Al-Aghbari under the direction of his thesis

advisor and approved by his thesis committee, has been presented and accepted by the

Dean of Graduate Studies, in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE AND ENGINEERING.

| et

Dr. Adel Fadhl Ahmed
Department Chairman

Dr. Salam A. Zummo
Dean of Graduate Studies\7

\A \'}\Lo\

Date

fPZ/J#Z;LZ\ [3/2 /2 (9

Dr. Mohamed Elrabaa
(Advisor)

AT 40009

Prof. Aiman El-Maleh
(Member)

vﬂ{é(sz é 21 )] eoE

Dr. Mohammad Alshayeb
(Member)

6’6/ WM@BL?(;) )/

v 1/
Dr. Marwan Abu-Amara
(Member)

.

Dr. Ashraf S. Hasan Mahmoud
(Member)



© Amran Abdulrahman Al-Aghbari

2018



Dedication

To my wife, children, and our parents, brothers, sisters and their children.



ACKNOWLEDGMENTS

Full thanks to my advisor Dr. Mohamed Elrabaa who guided me along my graduate studies
at KFUPM University and taught me VLSI from scratch until fabricating a real chip.
Thanks to Prof. Mayez Al-Mohamed who taught me most of the valuable principles I know
about computing architectures and parallel computing which were helpful in this work.
Thanks to all professors who taught me different courses during my graduate studies which
were valuable guidance to accomplish this work. Thanks to KFUPM University which
provides those expensive devices and licenses that helps a lot to do real and valuable
experiments. Thanks to Saudi Arabia for financial support for their students and foreign
students. Thanks to Taiz University, my home university in my home country for sending

me to KFUPM University to do graduate studies and supporting me financially.



TABLE OF CONTENTS

ACKNOWLEDGMENTS ...coiiietiimtiissssssssssssmsssssssssssssssssssssnsssssssesssssasnsssssns snsnssessnssssnssssanssnsnssasans \"%
TABLE OF CONTENTS.....cccttttiiisiiismsmnssssssssssssssssssssssssssssssssssssssssssssnssnsss snsssssssnssnsnsssnsnssnsnnnas VI
LIST OF TABLES.......otciotiiiiiiissiiimsissssssssmsssssssssssssasssssssss sessssessss asnsssasns sasnnsssans sasnnssasnssssnnnssansss X
LIST OF FIGURES .......cccoiiiitiiiemiiimsissssssssmssssssssssmssssms ssssss sasnsssssns sasnsssnsms sasnnsssnns s snnssnsnssnsnnnenan XII
LIST OF ABBREVIATIONS. ...t iciiimiiismsiississsssssss s ssssssssssssssssssssssssssssessnssssnssnsssssssnnnas XVII
DISSERTATION ABSTRARCT ...ocoocersrttssmssssssssssssssssssssssssssssssssssssssssssssssssnssasssssssnssassnssssnssnse XIX
B )3 iy GaRla ZRAE (B 81 81 oo e ereeserenseseneeserereen e XXI
CHAPTER 1 INTRODUCTION....cittectrssnsrsssnsrsssssssssssssssssssnssssnssssssssssnsssssnssssnssssasssssnssassnssssnssnse 1
101 S (Y Lo Y 1 e Y o Y 1
1.2 Thesis statement and CONTIIBULIONS.......cuueeeeiiiiiiiiiiieiiieeriieeeeeiieeerteeeeesessseerreessnssssssessesssnnssssssssenes 5
1.3 OVErvieW Of the thesis .......cciiiiieeieeiiieiiiiriieereeeerereeeeeesieeeeeeeeeanssseeeeseessnnsssssessssssnnsssssssssssnnnnsssssesnnns 6
CHAPTER 2 CLOUD COMPUTING.....cooctrussnmsmmssssnsssssssssssssssssssssssnsssssssnsssssssnsssssssnnssssssnnssssssn 8
28 RN 0 -1 - =] 1} =] N 10
2.2 VirtUQIZAtION .....ceeieeeeeeeiieieieieeeeenneeeeeeeeeennsseeeeteeeesnnssseessesessnnssssssessssssnssssssssssssnnnssssssssssssnnnnsssssssenns 12

2.2.1 Hardware Virtualization ... 12

2.2.2  Application VIrtUalization .........cooeeeiieeniieiiecie ettt et 13

2.2.3 Desktop VIrtUAliZation .......ccuiiiiiiee e e e e e et e e e e e e ar e e e e e e ean 13

2.2.4 NEtWOTrK VIrTUGHZAtION .ccccieeeeiie e 14

2 T Vo 1 =Y -{= BV, [ {UF=] 172 1 o o P UUUR 14
2.3 OpenStack: open source cloud computing platform............eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeemeeeeeeeeeemeeeesessesnn.. 15
CHAPTER 3 DESIGN WITH FPGAS ...cccctiiiimtmmnisssssmssssssssssssssssssssnsssssssnsssssssnnssssssnssssssanssnns 17
3.1  FPGA arChiteCtUre .....ueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeesssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnnsnsnnnns 18
0 N 0 T 1= R { [ 1 Y TRNN 20



3.3 Partial RecoNfigUration .........eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesssesssesssssssssssssssssssssssssssssssssssssssssssnssnnnnnns 21

3.4 High-level SYNthesis .........ccccvviemiiiiiiiiiiiiiiiiiinninirees s asss e s s ass s e e s s 23
3.5 FPGA strengths and WEaAKNESSES ........eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeemeemeeeessssssssssssssssssssssssssssssssssssssssssssssssnnns 25
CHAPTER 4 LITERATURE REVIEW .......oioiimnnmsnmmmmssmssssssssssssssssssssssssssssssssssssasssssssssnss 28
L 95 R 0 1771 ¢ = V-1 of o T =Y o ] AR 28
4.2 Virtualization using abstraction layer (AL).......c.ccecccervcereriiiiicisssnneeeeisscssssnseesessssssssnnnssssssssssssnnnnens 30

4.2.1 Interfacing the abstraction layer (AL) With VFPGAS..........ccocviieeeiieee e ectiee et sree e sree e 32

4.2.2  OpenCL and the CPU-FPGAs interface abstraction ...........ccoceeevieriiiinieniiieeneceee e 33
4.3 FPGA attachment interface.......coccevveueiiiiieiiiiiieiiiiieineee s 35
4.4 FPGA in the cloud and data center........cceiiiiiieiiiiiiiiiiineiiii s 37
R N T ol o I T U £ 39
.6 SUMMAIY.ccuuuiiiiiiiremmnnisssssimeenssssssssssmesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnss 40

CHAPTER 5 OVERVIEW OF THE CLOUD-BASED FPGA CUSTOM COMPUTING

MACHINES PLATFORM .......iiircrmrsrscsssssseessssssssmssssssmsssssssssmssssssmssssesssssssssssmsssssnssnsssasnnses 43
5.1 FPGA Virtualization .......ccoiiiiiiieeiiiiiiiiiiiiniiiiininnneessnssssssssssessssssssssssessssssssssssssssssssssssssssssssssssas 44
5.2  FPGA Cloud ArchiteCtUure........ceeeeeeeeeeeeeeeeemeeemeeeneeeeeneeeeeeeeeeeeeeeeeeeeeeesssssssssssssssssssssssssssssssssssssssssssssss 47
LR T 1 o 7 W 4 TV T=T Yo T 48
5.3.1  USer-t0-CCM API fUNCHIONS...cutiiiiiiiiieiiteiieeste ettt ste e sre e siae e sateesaae e sateesaaeesaaeensaeenaseenaeeas 50
5.3.2 User-to-Hypervisor AP] fUNCHIONS.......ccuiiiieiir ettt e s e e ae e e e e e sanes 51
533 Hypervisor-to-Hypervisor back-end APl fUNCLIONS ........cccvviiiiiiiicciiee e 52
5.4 A scenario of Launching, Using and Terminating @ CCM .........cceeeeeeeeeeeeennnennneeneemmnnssssssssessssssssssssnes 53
5.5 CCM CreatioN ...cceeeeeeeeeeeeeeeeeeeeeeeeeeeneeeemmeeeeseessssesesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 55
5.6 Properties of the PIatform ...........eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseessssssssssssssssssssssssssssssssssssssssssssssnns 56
5.6.1 The platform computing MoOdel .........coo o e e 56
I ST A Y o1 d - [t 4 (o o F S O PP TP PPOPPTOPPOP 57
LT T o =Y [ oY -SSR 58
oI R UL T o - 1 IR <ol U [ Y SRS 58
5.6.5  CCM clusters on MUII-VFPGA ...cooueiiiiiiieeeee ettt ettt et st e s s e e s ata e e s 58
CHAPTER 6 FPGA VIRTUALIZATION PLATFORM.......ccccinnmmnnimensssssensssssssssssssssanns 60

vii



6.1 Data ComMMUNICAtIONS...cccuuiiieiieiiennierteneietteneerteneeetennsesrenssesssnssesssnssesssnssssssnssessanssssssnsssssanssssannnns 61

6.2  NetWOrk CONrOIIEN ....cceeeeeeeeeeeeeeeeeneeeeeneeeeeeeeeeeeeessseesessssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssnss 64
(23 I - 4 (ol [o ¥ oJ SN 66
6.3.1 DAt FOUTING .eeeiiiiitieietee et e e e s e e e e s r e e s sb e e e s s sre e e senraeessaraeeeas 66
6.3.2  Reconfiguration management UNit (RIM) .......ccocveieeieenteeere ettt et ereeereenns 67
6.3.3  Clock Management UNIt (CIM)....ccueiiiieeieeiieeete et et ste e te e st e saae e saae e saae e s aaeesaa e e saaeensseessaeenseas 67
6.4 The Wrapper's deSi8N .......ccccvrvereiiiiiiiiiiinnneeiiiiiiisissseeniiiiissseesssissssssssseesssesssssssseessssssssssssssassssess 68
6.4.1  Conceptual design Of the WIaPPE .....cociiiiiiiiie e s 70
6.4.2 Wrapper COMPONENTS ..ttt e et e e s e st e e e s s s e nnr e et e s e sesnnrrneeeeesennnnes 71
(ST V7 = T oo L= == = ) oo N 77
6.5.1  Parsing the XML/JSON specification fil@........ccceeiiuiieiieiiieeciee et 79
6.5.2  Parsing the Vera specification file .........c.ooiiiiiiiiiii e 84
6.5.3  An example for generating a serializer from a Vera description.........cccccveeiecieeeicieeeccieee e 85
6.5.4  Wrapper 8eNeration SOftWarE.......coiuiiiiiiiiieniee ettt s be e e saee e 88
CHAPTER 7 RESULTS AND COMPARISON.......ccoerrrrerrersmssssssessssssssssssssssmssssssmsssssssssnsns 89
7.1 Generating a wrapper for the JPEG ENCOAE COTe ........uuuueerrmmmnmmmnenmnnnmmnmmssssssssssssssssssssssssssssssssssssssss 90
7.1.1  Preparing the XML Description FilE......cc.ueeiiiiieieiiie ettt e ate e et e e e e 90
7.1.2  User’s Vera Data Specifications......c.ueeeiiiiiiiiiiieeeiee et 91
7.1.3  JPEG Encoder implementation 0n @ VFPGA............oooiiiiie ettt e et 93
7.2  Simulation MethodOolOgY......ccccceeiiiiiiiiiiieiiiiiiiiinere s ssss e ans e e e s 96
7.3 Virtualization Overhead Evaluation ..............eeeeeeeeeeeemememmemmenneenennennneeeneeneesmeeessseeesssesssssssssssssssssssees 98
7.4 Comparisons with other platforms...........eeeeeeeeeeeeeeeeeeeeeeeemmemeeeeeeemeeeeeeeesessssssssssssssssssssss.s. 104
7.5 VFPGASs versus SW-based virtual machings ........cccoceeeiiiiiiiiiieneiiiiiiinineeeeseseecsssssaeseens 106
7.6 CCM platform EValUQtion .........eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesssesssssssssssssssssssssssssssnnsnnnnnnnns 109
7.6.1 EXPEIIMENT SETUD ..veiiiiiiiieitee ettt e s e s e e snre e e s sn e e e s enneeesnnees 109
7.6.2 Performance EVAlUtioN .......cceviiiiieiiii ettt sba e e e saaeesbae e sabeenaee s 113
7.6.3  The impact of adding the AES encryption/decryption ..........c.ccveeeecieeiieieeneeneeere e ereeereens 115
7.6.4  The impact of having multiple vVFPGAs within the same FPGA ...........ccccceeeeiieciiieeeee e, 117
7.7 BoOOt tiMe ANalySiS...ceueeeeeeeeeeeeeeeeeeeeenmeeeemeesessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnsssnnnnnns 118
CHAPTER 8 CONCLUSION.......ccceeetrrtrssrsserssmrssmsssssssssesssessmsssasssasssnsssnsessssssssssmsssasssnssssnesses 120
8.1  Platform LiIMitatioNns .......ccciiiiiiiiieeiiiiiiiiiiieniiiiinisnseesinisssssssessssssssssssessssssssssssnssssssssssssssnsnnns 121
8.2 FULUIE WOTK c.uuueiiiiiiiiicisnsisisssssissssssss s sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 122



APPENDICES ...t sssssssssssssssssssssssssassssssssassssssssasassens 125

A.  Description of the used Benchmarks..........cccceviiiiiiiiiiiiiiiiiinninninninnnn. 125
A.l. JPEG ENCOUEYE COME woiiuviiiiieiiieisiteesite e sttt e site e sttt e site e it e e siteesbee e sateesbteesbbeesbaeesaeesbeeessbeensteesaseenseeas 125
A2 AAES COT@ ettt ettt ettt ettt e e e e e st e et e e e e e e s e et e e et e e e s e habtte e e e e e e e nbateeeeeeeaanbraeeeaeaeeas 126
A.3. RSASL12 COME ciiuiieiiitiiieeittesite ettt et e sttt e stt e e bt e bt e s be e s sbteesbe e e s aae e beeesbbeenbaeesbbeenbeeensbeenbaeennsesnbeeen 128
A4, [ ] O I 0o = PRSPPI 130
A.5. JPEG IMages EAZe DETECTION . .cccueeee ettt ere e st e e e ee e e s nta e e e s aaeeeeanraeeeannns 132
A.6. Decrypt-CompuUtE-ENCIYPE e 133

B. Software tool for Ethernet packet generation and platform test bench...........cccceevvveriirriniinnnnnns 134

C. Adescription of the implemented Verilog code............uuuuueeeeeeeeeneeeeennnnnnnnnnmnnnsnnmnnsssssssssssssssssssses 137

REFERENCES...... s crsesssssmssss s csssssssssmsssssssssssssssssssssssmssss snssmsssnssmssssssmssassnssmsnsnsas 139

T S 148



Table 4-1:

Table 5-1:
Table 6-1:

Table 6.2:

Table 7.1:

Table 7.2:

Table 7.3:
Table 7.4:
Table 7.5:

Table 7.6:
Table 7.7:

Table 8.1:

Table 8.2:

Table 8.3:

LIST OF TABLES

List of notable platforms of FPGA-based processing for clouds or
AALACEINTRTS. .ottt bbbt 42

Main API function in the software library.........ccccccooevinieiinicin e 50

A description of the XML tags and their attributes used to describe the
user hardware 1/0s and their groups. .........ccoceverereeiieienerese e, 81

FDCT benchmark verification code written on OpenVera and its
translation to microcode MiCroINStIUCLIONS..........covveieiieiieie e 87

Formatting and applying the JPEG Encoder’s input data by the wrapper.
Four control bits are added with each input. The last column represents
the complete output of the serializer which is applied to the input FIFO.....93

Virtualization overhead compared to direct implementation on an FPGA
for 4 benchmarks. For the VFPGAS, the wrapper's I/O widths are 64/64

DItS FOr @ll AESIGNS. ..o e 100
Comparison with notable platforms for attaching FPGAs to DCs. ............ 105
Resource utilization of the virtualization platform on FPGA..................... 112

Computation time comparison for three implementations of the secure
image edge detection application. a) The application on a virtual
machine, b) The application on a server, c) The application isa CCM......115

Estimation of the CCM area overhead in our platform. ...........c.ccccevenenn, 117

Boot time delay components for vFPGA-CCMs with various image
(bitstream) sizes. Internal configuration access port’s speed is ~400MB/s

Snapshot of the serializer’s output for the JPEG encoder. Each row in the
table represents one input group. The CLK column indicates whether to
apply a clocking at that input or not. The SEL column represents the input
group index. The table starts by setting values to the mask register and
the clock counter. Then it sets values to the least frequently used signals.
After that, the data Starts. ........ccceveeieie e 126

Snapshot of the serializer’s output for the AES128. Each row in the table
represents one input group. The CLK column indicates whether to apply
a clocking at that input or not. The SEL column represents the input
group index. The table starts by setting values to the mask register and
the clock counter. Then it sets the key. After that, the data starts. ............. 128

Snapshot of the serializer’s output for the RSA512. Each row in the table
represents one input group. The CLK column indicates whether to apply
a clocking at that input or not. The SEL column represents the input
group index. The table starts by setting values to the mask register. It then
set the value of the modulus m. Then, it sets the bit_size constants. After



that, it sets the clock counter to 32 cycles. Then, it applies those clocks
to the design. After that, it resets the clock counter to zero. Then, the data
SEATTS. et 130

Table 8.4:  Snapshot of the serializer’s output for the FDCT. Each row in the table
represents one input group. The CLK column indicates whether to apply
a clocking at that input or not. The SEL column represents the input
group index. The table starts by setting values to the mask register. After
that, it resets the clock counter to zero. Then, it sets the enable and reset
signals high and the dstrb signal low. After that, the first byte of the data
is set. Then, it sets the dstrb signal high. After that, it sets the dstrb signal
low again. Then, the data CONTINUES.........ccceviiieiieiesiereee e 132

Xi



Figure 2.1:
Figure 2.2:
Figure 3.1:

Figure 3.2:
Figure 3.3:

Figure 3.4:
Figure 4.1:

Figure 5.1:
Figure 5.2:
Figure 5.3:

Figure 5.4:

Figure 5.5:

Figure 5.6:

Figure 5.7:

Figure 6.1:

Figure 6.2:

LIST OF FIGURES

Data center architecture has three [ayers. ..o 11
OpensStack core components [13]. ..cceeceiierieiiieiieseee e 15

FPGA Architecture is a two-dimensional array of reconfigurable
resources. Components on FPGA are programmable: control logic blocks
(CLBs), SRAMs, DSP blocks, and interconnects [14]. .......ccccoovvvvrvnneiennn. 18

3-input LUT IMpPIementations .........ccccceiieieiie e 19

Compute paradigms comparison [28]. a) CPU represents the Von
Neumann model. b) GPU represents the vector processing model. c)

FPGA represents spatial COMPULING. ........cooviiiiiiiiiiie e 26
GPU vs FPGA qualitative comparison [5]. ....ccccvvevveiieieeneiiecee e, 27
The architecture and design components in Intel OpenCL for FPGAS

[T e e 35
FPGA virtualization is based on several abstraction layers..............ccccee... 44
Proposed FPGA Cloud ArchiteCture .........cccocevieeieiie i 47

Python implementations for the functions “Send (data stream)” and
“Listen_to_results (data stream)”. Both functions use TCP stream socket
and require the CCM IP address and port NUMDEr..........ccccccevereniniinieiienne, 51

Hypervisor to hypervisor’s backend functions uses UDP socket
connection. The UDP payload contains a sequence of CMD and value
pairs. Several commands can be sent on one UDP packet. Hypervisor
sends a UDP packet and hypervisor’s back end reply with a UDP packet.

Scenario of using a CCM on a cloud computing system. The user issues
four commands to launch, send data, receives results, and terminate

Scenario of using a CCM on a cloud computing system. First, the user
requests to launch a CCM. The FPGA hypervisor configures a vVFPGA
with the CCM bitstream and returns the CCM IP address back to the user.
The user interacts with the CCM by sending data and receiving results.
Finally, the user releases the CCM. .........cocevvevi i 55

CCM creator receives hardware design (HLS/HDL), XML file describes
hardware 1/0Os, and Vera file describes how data is applied. Then, it and
creates a CCM, synthesized and generates partial bitstreams. Finally, it
saves the bitstreams in the cloud storage and their info in the Resources

AtADASE. ... .o e 56
Virtualization platform overview. FPGA is partitioned into a static region

and several reconfigurable regions to be used as virtual FPGAs. ................ 61
Timing diagram of the two-way handshaking process [48]. ........cccccevveiinens 62

xii



Figure 6.3:

Figure 6.4:

Figure 6.5:
Figure 6.6:

Figure 6.7:

Figure 6.8:

Figure 6.9:

Figure 6.10:
Figure 6.11:

Figure 6.12:
Figure 6.13:

Figure 6.14:
Figure 6.15:

Figure 6.16:

BRAM-based asynchronous FIFO for transferring data across unrelated
clock domains using the AXI interface.........ccccoveveeieiieene s, 62

Inter-layer interfaces. The interface between L1 and L2 consists of two
AXI interfaces and the virtual FPGA indices. The interface between L2
and L3 consists of two AXI interfaces and clocking signals. The interface
between L3 and L4 consists of two AXI interfaces whose data have the
internal Wrapper FOIMALS. .........ccvoiveiiiieee e 63

The implementation of the Ethernet controller...........c.ccccooveviiiiiiecin e, 66

The platform's different clock domains and the use of asynchronous
buffers to move data across these domainS..........cccvvevvveeiiiee e, 68

A flow chart illustrating the data flow from/to the design through the
wrapper. The left-hand side shows the data input flow starting from
receiving a payload of a user's network packet till its application to the
design. The right-hand side shows formatting and sending the results
starting from capturing the outputs till generating the payload for the
network packet to be sent back to the USer. .......ccccceeveivevi i 71

Our implementation of the Packing/unpacking circuitry. If the input data
width is greater than the output data width, the packing circuitry is used.
If it is less, the unpacking circuitry is used. If they are equal, the

packing/unpacking part iS reMOVEd. ..........ccevveveereiiie e 72
Slicer is a combinational circuit that selects n/2 consecutive bits from an

N-DIEINPUL. e 73
The wrapper's conceptual deSign. ........ccooviiiiiinieicee e 74

Diagram shows the complexity of building the wrapper state machine. If
the hardware has one output group, then an input can be applied while
capturing the output s. If the hardware has several outputs, then the
controller should flush out outputs before accepting new inputs. For some
inputs, it is required to apply several consecutive clock cycles without
capturing outputs or applying NEW INPULS. ........ccceeveeieieereee e, 75

Verilog code of a finite state machine of a wrapper. .........c.ccocvvviiinieienn, 76

The controllable clock buffer allows controlling the application clock.
When it is enabled the application run. When it is disabled the application
freezes. The upper timing diagram shows a clock buffer which always
produces a low output when its enable signal is off. The lower timing
diagram shows a clock buffer which always produces a high output when

its enable signal iS OFf. ..o 77
CCM creation fIOWCHAIT. ........cooviiieii e 78
Algorithm for generating the wrapper from the XML specification file

and the Vera description file. ..., 79

Algorithm for parsing the XML specification file and generating Verilog
code for the modifiable parts of the wWrapper.........cccocvevieiiieiie e, 80

Xiii



Figure 6.17:
Figure 6.18:
Figure 6.19:

Figure 6.20:
Figure 6.21:

Figure 6.22:

Figure 7.1:
Figure 7.2:

Figure 7.3:

Figure 7.4:
Figure 7.5:
Figure 7.6:

Figure 7.7:

Figure 7.8:

Figure 7.9:

The JSON schema file for describing hardware 1/0s and their groups to

the WIapPEr gENEIALOL. ......ccveiiiiiieeie et e s 82
The XML schema file for describing hardware 1/Os and their groups to
the WIapPEr gENEIALOL. ......ccveieiieie e enre s 83
The OpenVera code is translated to microinstructions then the Serialized
IS JENEIALEU. .. .eeieeie et 84
The FDCT 1/O specification in the XML file. ..o, 85

The serializer for the FDCT can be generated automatically from the
Vera specification code Using a microcode-template. Each cycle of the
microcode generates data for one input group and generates the group
index and one bit represents whether to apply a clock or not for this data.

A snapshot of the wrapper builder software. The list on the left contains
several hardware cores. The wrapper is generated instantly for the
selected hardware core. The bottom large textbox contains the generated
WIaPPEr VErilog COUE........ooiiiiiiieic e 88

Generating the wrapper for the JPEG Encoder from the XML and Vera
SPECITICALIONS. ..ot 90

Snapshot of the complete wrapper’s and the Encoder’s input/output and
CONEION SIGNAIS. ... e 95

Packing the 8-bit wrapper inputs into the Encoder’s 28-bits inputs in
~28/8 cycles per input. e.g. input sequence 7F FF FF D4 00 00 00 is
packed into 7FFFFFD 4000000 SEQUENCE. .......covrieeieieierienie e s, 96

Unpacking the Encoder’s 39-bits outputs to produce 8-bit wrapper’s
OULPUL PEI CYCIE. ...ttt 96

Simulation methodology to simulate the whole platform. The simulator
inputs are Ethernet packets. The simulator outputs are Ethernet packets.....97

The simulation of the FDCT core as it is designed by the core designer.
The total computation time is measured to be 175,811.2 nanoseconds........ 97

The simulation of the FDCT core placed within a VFPGA in the
implemented virtualization platform (using 10GE). The time from
receiving the first Ethernet packet (RXDV changes) until the last
Ethernet packet is transmitted out (TXEN changes) is measured to be

198,860.6 NANOSECONTS. .....vveiviieiieiiieeiee st e e 98
Wrapper area versus the number of the applicaion 1/Os for 1, 2, 3
0] o1N] o Lo APPSR RUPRPPSR 102

The XML specification of the input/output groups of a black box (one
group, two groups, and three groups). The black box has no design inside.
It is used to generate a wrapper for an assumed design with arbitrary
inputs/outputs and an arbitrary number of groups. The black box is used

Xiv



Figure 7.10:

Figure 7.11:
Figure 7.12:

Figure 7.13:

Figure 7.14:

Figure 7.15:

Figure 7.16:

Figure 7.17:

Figure 7.18:

Figure 7.19:

Figure 7.20:
Figure 8.1:

Figure 8.2:

Figure 8.3:

to evaluate the wrapper area for different number of inputs/outputs and
different nUMBEr Of QroUPS. .....ccvviieiiecccc e 103

The three platforms used to evaluate the performance of a streaming
application; (a) Running in a virtual machine, (b) directly on the physical
server, and (c) on a VFPGA. A client SW sends encrypted data and
receives encrypted computation results. .........ccooevveiiiieiiecce s, 107

Streaming application throughput versus block size comparisons the
proposed VFPGA platform and physical servers and virtual machines. .....109

The experimental setup with several versions of the secure edge detection
(=0 I 0] o] 1= o] o S PSSRSS 110

Synchronization process among the sender, receiver and the server. The
server manages to start and to end the work in the three steps at the same

1] 1 1SR 111
The FPGA virtualization platform with the Edge detector application
Implemented @S 8 CCM......cooiiiiiiieiee s 111

Image edge detection hardware uses four already-made cores; AES 128
[72], Image Compress [69], Canny Edge Detection [78], and JPEG

T ot0 o < gl 0] OSSPSR 112
The software version of the application “Secure image edge detection”
written in Python using standard SW libraries ..........ccccocvevevveivcviciiennn, 113

The user uses the same socket interface to request the same service hosted
n three different machines; a) the service is hosted in a VM, b) the service
is hosted in a server, c) the service is a CCM on virtual FPGA. ................ 114

Compute nodes performance comparison for a specific application.
VFPGA outperforms a virtual machine and a bare-metal server. ............... 115

Using the AES-ECB core [72] to build AES-CTR that can be used as a
decrypter and encrypter. By XORing the input text with the encrypted
counter output we achieve a throughput of one data block per cycle. AES-
CTR throughput is one block per cycle because the XORing takes one

CYCIE ONIY. . 116
Different boot time components of a VFPGA-CCM..........ccocooiiiiviiininnn, 118
The XML specification of the input/output groups of the jpeg encoder
COPE [70]. oottt 126
The XML specification of the input/output groups of the jpeg encoder
COPR [72]. ettt bbb bbbt 127
The XML specification of the input/output groups of the rsa512 core
14 SRR PSRSRSN 129
The XML specification of the input/output groups of the DCT core [69].
.................................................................................................................... 131

XV



Figure 8.5:

Figure 8.6:

Figure 8.7:
Figure 8.8:

Figure 8.9:

Figure 8.10:

Figure 8.11:

The XML specification of the input/output groups of the image edge
detection we designed by combining several COres. ..........cccccvevvevivervenenne. 133

The XML specification of the input/output groups of the decrypt-
compute-decrypt hardware designed using the AES-CTR which uses the
AES-ECB COIE [72]. ..ottt 133

Generate platform test bench. ... 134

Make UDP header algorithm. The algorithm is inspired by the IP formal
definition in RFC 791 [83] and the UDP formal definition in RFC 768

[BAL. oo 135
Calculate IP checksum algorithm. The algorithm is inspired by the IP
checksum calculation desCription. ............cocooiiirininieieie e, 136

Calculate UDP checksum algorithm. The algorithm is inspired by the
UDP checksum calculation description in the UDP formal definition in
RFC 768 [BA]. ..vevevieteiieieiie ettt et 136

A snapshot shows the hierarchy and components of an implemented
version of the virtualization platform. The hierarchy starts the root node
“top_xge” which contains clocking resources appears in the first four
nodes and the virtualization module “virt005” which contains the
platform and the network controller. The platform contains data routers
(mux and demux), the reconfiguration module (uses ICAP) and one
VFPGA. The vVFPGA contains the image_edge_detect application which
uses four already-made cores; AES 128 [72], jpeg_decode [77],
top_edge [78] and jpeg encoder [70]. ......ccoovreririeeieiene e 138

XVi



AL

ARP

ASIC

AXI

BRAM

CCM

CM

CPU

DC

DHCP

DPR

DSP

FF

FPGA

GPU

GMII

HLS

LIST OF ABBREVIATIONS

Abstraction Layer

Address Resolution Protocol

Application Specific Integrated Circuit

Advanced eXtensible Interface

Block RAM

Custom Computing Machines

Configuration Manager

Central Processing Unit

Data Center

Dynamic Host Configuration Protocol

Dynamic Partial Reconfiguration

Digital Signal Processor

Flip-Flop

Field-Programmable Gate Array

Graphic Processing Unit

Gigabit media-independent interface

High Level Synthesis

XVii



HW

10B

LUT

MII

PCle

PR

SDN

SW

TCP

UDP

VFPGA

VM

XGMII

Hardware

Input Output Buffer

Internet Protocol

Lookup Table

Media-independent interface

Peripheral Component Interconnect Express

Partial Reconfiguration

Software-defined networks

Software

Transmission Control Protocol

User Datagram Protocol

Virtual FPGA

Virtual Machine

10 gigabit media-independent interface

Xviii



DISSERTATION ABSTRACT

Full Name : Amran Abdulrahman Al-Aghbari.
Thesis Title : Cloud-based FPGA custom computing machines.
Major Field : Computer science and engineering.

Date of Degree : December 2018

Field Programmable Gate Arrays (FPGAs) were first introduced as large capacity
platforms of glue logic used for logic emulation and prototyping. Later, research efforts
explored the use of FPGAs as computing devices. FPGAs provide excellent performance
for several application domains, achieve lower power per operation, provide more
deterministic latency, and can be connected to hosts or other FPGAs using different types
of interfaces. On the negative side, FPGAs have a long design time in comparison with
other computing machines such as CPUs and GPUs. Designing a hardware application,
debugging it, and verifying its correctness requires hours and days. The resulting hardware
application is both a vendor and a device-dependent. As such, developing an FPGA-based
HW application is still restricted to hardware designers. For others to develop HW
applications on FPGAs, the FPGA has to be properly virtualized, and its interfaces
abstracted. Virtualization also enables integrating FPGAs within computing infrastructures
such as data centers and clouds. In this dissertation, we introduce an FPGA virtualization
platform that enables any application hardware to be ported on virtual FPGA and accessed
as a standalone custom computing machine (CCM). We propose an FPGA cloud
computing platform that introduces CCM as a service. A prototype of the virtualization

platform has been implemented to evaluate its area, speed, and overhead. Comparison with

XiX



other platforms shows that the proposed platform provides a general abstract interface to
any design (not domain specific) and supports dynamic partial reconfiguration (so designs
can be added to an FPGA that have other applications running) at comparable overhead to
other notable platforms. Experimental results, using a streamed application in a cloud-like
environment, showed that the proposed platform is a very viable computing option (in
terms of throughput) for some applications compared to conventional server-based or

virtual-machine based SW implementations.

XX



o ’ » ‘.x
TRl B 31 giSal) sy

o Jollae Gaa i ae Ol e Jal<l) ay)

b Laad 5 (FPGAS) 4o all ALlEN Bl )1 alasiinly Lavadie 4w s <Y Al o) i

il s sal)
‘"AS{\ Cuadall daia ?}h : uaaidl|

2018 ey 1 Agalad) Ay Al Al

b Caandiul g Al I il sall (e 8 yaS dpaS il laia Lol Lnlylay 8 daall LN i i adl) b e
Loyl AL b gl alaat ) 8 i B a ) Afiadl 3 sealdl Lzl dee 5 4 5 ] CilSlas
Ce uandl L Udle 211 i yull ALY b gheaall @ jedal 8] im0 Lgaladin) AlSa) 5 Ao a3 galS
il A ST L Clall o DU (a3l 5 s Aglee JS3AEUAN ISl J8 Ll < jedal LeS Lol
Al ual) 28 o5 AT Aga o i) e sute g5l e (5 AV 5 eVl Ledn ) LLE ALYl s e e
S sl sall el (5 AV A gl 5 el Dl U g A all AL 6 il pral jll e i b
el @llging 8 alee daia (o 2SI 5 A Hll AL 8 ghaall o el g avanal o) Claa g il Cilalas
pramnai ¢ il 5 ele dasanai o5 il Al ALEN i gtindll A 53 e V) Jeny Y geaind) 138 5 0L
(omaiiall yd Al GV s L Led uaiaiall e ) jSa )3 Y Asell AL il iad) e gl Ll
Gl sdan aranal Ly Joai¥) (3 ke dapadi oy LS dal i) dae jull AL Cld sias aanali (5 ) 5 pall (e
3 Apaned) Ao sall 8 (5 AV Lo 5all 8 jeal Gann Lgman o) 48] Ll any g dpum ) 8l Al LG
5 Al i) dae Hall ALE b hean o (5 giat daaie & jie ad g gyl Y] el 8 bl 3S) 5
e A sn JleaS Lgae Jual 5l 5 dpal i) 48 shian b agiline g a5 Aaad ) el ) cennaal i o g
Ao Fadd i ety Cogas () 5 el A sal) e G jll ALEN b hinall dinie & e Liagl adiiu

XXi



O Ll (sl o Acal yiY) Al ALLE Ul siimall 3 gai 2 Ll aadiie 4w s Jle dedd Lpas
S aiall ) @ jelal A el depndll Al il i) e 4 ey Liad 5 A 5de pull g dalad) Gan
Slamaall o 2330 Jlae o 8 jamiie e A 5 el Al I LeiSa UL 5 aef Jlail b ot Lea i3
A s Ama ll AL b hoadll 8 el S i) ae i diaid) of LS Al Jlee YU A jlie 4 gia LS
052 e sl (e el sl Jsan sty () (S Aal il ilaio Bae ) Lgarasii Sy 3aa) ) b siadll of iy
gy 4 Ay 85 yaiane by 4230 el Lol dlead) Golail) 6 cilaiall aan Cad il Aalall
Lali e A gall Jlae i laa Alle Aad 53 LA o s il A aial) (of il < jedal Apla ol 4y ol
(o Slama ) 3l L aie Llla daddt wwall &y al V) VY 5 a0 a0 4l lipdail) (s Lalis)

Ll 3S) e 5 dland) A )

XXii



CHAPTER 1

Introduction

1.1 Motivation

Field Programmable Gate Arrays (FPGASs) were first introduced as large capacity
platforms of glue logic used for logic emulation and prototyping. Later, research efforts
explored the use of FPGAs as computing devices. FPGAs reports excellent performance
for Al, image processing, data compression, and other applications. By using FPGA
accelerator attached to CPUs, different applications in pattern matching can become 300+
times faster, 200+ times faster for compression, 100+ times faster in machine learning and
more [1]. Intel announced three powerful FPGA-based accelerator libraries [2]; 1) Intel’s
Convolutional Neural Networks (CNN) engine for FPGAs. 2) Real-time data analytics
algorithms. 3) Data compression algorithms with dynamic compression ratios. Different
Azure network relies on FPGA-powered software-defined networking (SDN) [3]. The

bandwidth between two VVMs inside Azure, with a 40-gigabit network adapter on each VM,



is only around 4Gbps per second; with FPGA-accelerated networking, that goes up to

25Ghps, with five to ten times less latency [3].

Excellent performance for several applications is not the only motivation for using FPGAs
in computation. FPGAs are the least power consumers per operation among existing
processing units such as CPUs and GPUs [4, 5]. Real-time applications prefer FPGA
because their latency is deterministic with accuracy reaches to nanoseconds. FPGA can be
programmed to deal with any type of interfaces and can be offered as a standalone

computing device.

Unfortunately, FPGA programmability is the worst among other computing devices such
as CPUs and GPUs [5]. Compiling an application code written in hardware description
languages (HDL), the standard method to write designs for FPGAs, to FPGA configuration
bitstream takes minutes and maybe hours (a typical FPGA design flow is explained in
chapter 3). Hardware debugging and verification usually require several design changes,
synthesis (compilation), and simulation that cost hours and maybe days. Due to this long
design and compilation time, hardware designers tend to produce their designs as hardware
cores which are simulated, verified, tested and then introduced as black boxes. Those
hardware cores could be used directly for computation or as a building block within other

hardware cores.

Although using FPGAs for computation succeeded for several application domains, their
usage is still limited to hardware designers. Working with FPGAs requires a hardware-
background which prevents many users from using FPGAs for computation purposes. A

lot of work is required before having FPGASs available on the cloud for the mass. First,



FPGASs must be virtualized to be a cloud resource. Virtual FPGAs reveals the user from
implementation details. There are a lot of physical details that need to be hidden from the
FPGA user. FPGAs vary in their architecture, capacity, vendors, clocking resources and
frequency. There are common tasks that are needed for all applications such as FPGA
programming, clocking management, securing data and interfacing FPGA with the
ecosystem. FPGA virtualization hides physical details and automates the frequently needed
tasks. Second, the FPGA interface must be abstracted to enable FPGA to interact with the
ecosystem smoothly. Each hardware core has its own interface and interfacing protocol.
Using the hardware core requires following the core specifications provided by its designer.
FPGA interface needs to be abstracted such that it provides FPGA that can easily hold any
hardware core and let it work smoothly. Third, standard software libraries should be
provided as a mechanism to interact with applications in FPGAs. FPGA should be able to

work easily with the data structures used in the ecosystem.

There is an increasing trend for using FPGAs in cloud and data centers since they provide
better utilization with low power compared with the current CPU-based servers which
consume excessive power with low utilization. Microsoft uses FPGAs to accelerate the
Bing search [6]. It uses FPGA-based SDN to accelerate its networking operations [2].
Amazon introduced FPGA infrastructure as a service [7] two years ago. The increasing
trend for using FPGAs reveals the need to virtualize FPGAs and introduce an easier method
to interact with them. FPGA virtualization is the first step to introduce them as cloud
computing resources. Two common approaches have emerged for attaching FPGAs to data
centers (DCs); as accelerators attached to compute nodes via a local bus such as the

Peripheral Component Interconnect Express (PCle), or as stand-alone independent



computing resources connected to the DC's interconnect fabric (i.e. Ethernet LAN). Since
cloud computing resources are network-attached nodes, FPGAs should be network-
attached devices rather than PCle-attached ones. FPGAs should be disaggregated from
CPUs, dealt with as standalone computing machines and provided as standalone cloud

computing resources.

To summarize, the main motivation behind this work is to facilitate the use of custom
application hardware in typical computing infrastructures such as data centers and clouds.

This requires the following:

1) A method for deploying HW applications on any network-attached FPGA without the

need to re-design or re-synthesize the application for different FPGAs,

2) A method for completely abstracting hardware interfaces to enable accessing them as
standalone computing machines (similar to SW application servers). Abstraction layers
should be clearly identified and auto-generation tools for these layers should be

provided,

3) The overheads (cost/area, performance, and power) resulting from these abstraction

layers must be evaluated to determine the feasibility of the whole approach,

4) Finally, even with virtualization and abstraction, current FPGAs are not general
computing platforms. Hence suitable applications and execution models for the

developed techniques must be identified.



1.2 Thesis statement and contributions

The notion of building a custom computing machine (CCM) appeared to indicate creating
special hardware for a specific computing task on FPGA. There are a lot of already-
designed hardware cores that efficiently do computations on FPGA such as crypto cores,
image and video processors, arithmetic cores and machine learning cores. Some of these
cores are open-source cores provided in websites such as “github.com” and
“opencores.org” while other cores require licenses from the provider. Each core could be
introduced as a standalone CCM accessible over the network by users with a non-hardware
background. Whatever the design flow used to build hardware cores, there should be a
flexible platform capable of hosting them, abstract their interfaces and deploy their services
to the mass. This platform should provide flexibility by hiding hardware complexities and
restricting the input method to well-known data formats used in the ecosystem such as text,
images, and video streams. It should provide low power consumption since it uses FPGAs
only without the help of an external CPU-based controller. The hardware core should also
maintain its high performance when it is hosted on the platform. The platform should
virtualize FPGAs, abstract their interface and enable integrating them on data centers and
introducing them as cloud services. The process of accessing and using CCMs should be
automated. The resulting CCM should interact with the user using a software library that

can be integrated with the high-level programming language (HLL) used by the user.

The goal of this dissertation is to develop a new methodology for using FPGA for
computation in cloud and data centers. Here, we outline the contributions of this

dissertation as follows:



e We propose the FPGA custom computing machine (CCM) as an abstraction of
application hardware for cloud and data centers. CCM hides hardware complexities
and restricts the application hardware input and output to well-known data formats
used in the ecosystem.

e We introduce a cloud platform for virtual FPGA resources management and
introducing CCM-as-a-service. We introduce the software library for launching,

using, releasing CCMs.

e We propose an FPGA virtualization platform which provides network-attached
virtual FPGAs. We clearly illustrate the physical FPGA interface and the virtual

FPGA interface.

e For the virtual FPGA interface, we introduce our wrapper design. The wrapper is a
circuit that should be added to the user hardware to adapt its interface to match the
VFPGA interface. It abstracts the data movement with the application hardware. It can
be added to any already-made hardware core and make it a CCM without any internal
modifications. The wrapper is auto-generated from the hardware core specifications.

We also illustrate the auto-generation process.

1.3 Overview of the thesis

The thesis is organized in the following manner. Chapter 2 gives background about cloud
computing principles and the main virtualization techniques used in the cloud; virtual
machines and containers. The chapter discusses OpenStack, the open source cloud
computing platform, which is used for integrating FPGAs in the cloud. Chapter 3 gives

background on HW application design using FPGAs. It explores FPGA architectures, its



components, and the hardware description languages (HDL) as the main method to write
hardware designs. It also discusses high-level synthesis (HLS) tools and describes the most
notable ones. Chapter 4 reviews the state of the art in FPGA virtualization, interface abstraction,
integration with data centers and cloud management frameworks. A special review of OpenCL is
also provided as it completely abstracts using FPGAs for computation. Chapter 5 presents an
overview of the proposed cloud platform that introduces CCM-as-a-service. The FPGA hypervisor
with the software library is discussed and illustrated with use-case scenarios. CCM creation process
is also discussed and also chaining several CCMs to use them as one CCM. Chapter 6 discusses the
FPGA virtualization platform with physical implementation details. Chapter 7 presents results
and comparison. It starts with a test case that explains creating the wrapper and how it works.
Then, the virtualization platform is evaluated and the overhead is reported in terms of area,
performance, throughput, and power with several hardware cores. The CCM platform is
evaluated with an edge detector hardware application. A comparison with other works is

stated. Finally, chapter 8 presents a conclusion.



CHAPTER 2

Cloud Computing

Cloud computing is a model for enabling network access to a shared pool of resources.
These resources can be provisioned and released with minimal service provider interaction.

As stated by NIST [8], cloud computing reveals the following fundamental characteristics:

On-demand self-service: New resources are provisioned without human interaction.

e Network access: Resources are accessed over the network by standard mechanisms.

e Resource pooling: Resources are abstracted into pools to serve multiple users
dynamically.

e Rapid elasticity: The amount of resources is expanded and shrunk smoothly so that it
appears to the customer unlimited.

e Measured service: Resource usage is metered, controlled and reported.

Cloud computing provides services using one of these models:

e Software as a Service (SaaS): Provides application software, databases, support.

Example: Google Applications.



Platform as a Service (PaaS): Provides Operating system, development, and
execution framework, database, web server. Example: Microsoft Azure.
Infrastructure as a Service (laaS): Provides virtual machines, storage, and

connectivity. Example: Amazon Elastic Compute Cloud (Amazon EC2).

Cloud computing provides us with several benefits including the following:

Cloud computing is a cost-efficient system and it has a pay-per-use billing model.
The maintenance is lower than that in traditional computing since the infrastructure
is not purchased.

Cloud computing systems offer large storage and handle their maintenance, backup,
and recovery.

Cloud computing offers a more flexible solution and adapting applications rapidly

with the changes on business conditions.

On the other side, cloud computing faces several challenges that must be taken into

consideration when dealing with them:

Data security and privacy are big concerns on cloud computing. Service providers
provide data security and privacy the user should rely on them.

Cloud services management is not trivial. Data replication and recovery, capacity
management, auto-scaling, and transactions monitoring all have to be served
sufficiently to avoid damage and severe impacts.

Cloud computing systems must obey some government regulations in many cases.
For example, some governments do not allow having storage systems outside the

country that might store people personal information.



2.1 Data center

Data center (DC) is a collection of servers interconnected by switches within a

room/building. DC provides large storage, large-scale services that process a large amount

of data and serve a large number of users. Large companies such as Facebook, Microsoft,

and Google have their own DCs. Small companies rent DC resources through cloud

computing services. Within the data center building, we find the following components:

IT devices: The IT devices can be categorized into servers, communication devices,
and storage.

A server is a device that provides functionalities, called "services", for other devices
called "clients". In the client-server model, computations are distributed across
servers. Typical servers are database servers, file servers, mail servers, print servers,
web servers, game servers, and application servers. The servers of the data center are
stacked in racks that are placed in rows and called server farms.

The storage in data centers is usually disaggregated from the servers as a storage or
disk array. A disk array is a disk storage system consists of multiple disk drives and
cache memory and supports virtualization and Redundant Array of Independent Disks
(RAID).

Mechanical and electrical infrastructures: data centers require a cooling system for
the IT devices. It also requires redundant electricity. The electrical infrastructure
provides power without interruption for the IT devices. A backup generator provides
reliable power in case of power outage. An uninterruptible power supply (UPS)

ensures that the quality remains constant even after a power outage.

10



The data center components are well organized in racks and cabinet. A rack is a
physical steel that is designed to house servers, networking devices, and other
computing equipment. It is prefabricated with slots for connecting cables. Data center
racks are classified based on their dimensions and capacity, the amount of equipment

they can hold.

The data center architecture has three layers; core, aggregation and access (edge),
Figure 2.1. The core networks contain the border routers that connect the data center to the
internet. The aggregation layer provides functionalities for routing, load balancing,
firewalls, intrusion detection, traffic flow, and more. The access network contains storage,

servers, and the inexpensive switches that access the servers.

Internet
P Data Center

S

Core ¥ Layer-3 router
Aggregation Layer-2/3 switch
Access J J Layer-2 switch

Figure 2.1: Data center architecture has three layers.

There are two design models for the data centers; the multi-tier model and the server cluster
model. The multi-tier model divides the data center servers into three tiers of servers: web-
servers tier, application servers tier, and database servers tier. This model is used to provide
web services and HTTP-based applications. The server cluster model combines several
CPUs as a unified high-performance system using a high-speed network. This model is

used for high-performance computing (HPC), parallel computing, and grid computing.

11



2.2 Virtualization

Virtualization is the creation of a virtual version of something. All IT equipment in data
centers and cloud are virtualized, including servers, storage devices, and network
resources. Using virtualization, we get several benefits such as raising the resource
utilization, sharing the resources, reducing the overall cost, encapsulating and isolating the
computing environment of each user in virtual machines, and migrating the virtual
instances among different physical hosts.

2.2.1 Hardware virtualization

Hardware virtualization is the creation of virtual resources that act like real ones. The
purpose is to separate the compute environment from physical resources and to increase
resource utilization. Virtualization is the main building block in cloud computing.
Containers and virtual machines are two deployment methods for virtual platforms in cloud

computing.

Virtual Machine (VM) is a software that emulates and provides the same functionality of

a physical computer. Operating systems can be installed and run on VMs.

The hypervisor, which is also called a Virtual Machine Monitor (VMM), allows several
virtual machines to share the hardware resources. It is responsible for creating, running
virtual machines, and isolating each running instance of a virtual machine from the physical

machine.

Containers are isolated user-spaces hosted on operating system instances and may look
like real machines. Programs running inside a container cannot see computer resources

except those assigned to the container.

12



Cloud instance is a virtual server. Virtual hardware is implemented by software on top of
real hardware. Cloud instances provide several advantages. It is possible to replace the real
hardware and move the virtual servers to work on another resource. Adding removing
resources using the software is easy which maximizes HW resources utilization. It is
possible to expand to multiple machines. It avoids crashes by changing resources. The user
does not have to worry about how many servers are needed to run a task.

2.2.2 Application virtualization

In application virtualization, part of the runtime environment is replaced with an
application virtualization layer which intercepts all disk operations of the virtualized
application and redirects them to a virtualized location, often a single file. Examples
include Citrix XenApp, VMware ThinApp, and Microsoft App-V. With application
virtualization, it becomes easy to run the application on different computers. The
application remains unaware that it accesses a virtual resource instead of a physical one.
Some applications cannot be virtualized such as anti-viruses, applications that require a

device driver, and applications that use a lot of OS functions.

Service virtualization is the emulation of specific components behavior in component-
based applications. Examples include API-driven applications, cloud-based applications,
and service-oriented architectures. It is useful for testing and development of software
components. It focuses on virtualizing web services.

2.2.3 Desktop virtualization

In desktop virtualization, the operating system (OS) is isolated from the client device of
the user. The desktop environment is separated from the physical client device such that

no data is saved in the user's device and all components are saved in the data center. The

13



user basically either logins to a shared desktop on a remote server which is called session
virtualization or connects to a virtual machine hosted in a data center which is called virtual
desktop infrastructure (VDI). Some examples include XenDesktop and View.

2.2.4 Network virtualization

In network virtualization, the networking functionalities are implemented on a software-
based entity called a virtual network. Network virtualization is useful for software testing
since it can simulate the network environment. Some examples include SDN, VMware,

NetScaler, and Cisco.

External network virtualization combines or subdivides local area networks (LANS) into
virtual networks to improve efficiency. Internal network virtualization uses software to

emulate a network. It is useful to isolate applications to separate containers.

The performance of network virtualization suffers when using 10 gigabit/sec networks and
above. With these networks, the packet rate might exceed that processing capability. To
overcome this limitation, some hardware devices are combined with the software-based
network to higher processing performance.

2.2.5 Storage virtualization

In storage virtualization, all storage media are treated as a single pool of storage. It can be
either file virtualization which eliminates the dependency between the file name and the
file contents locations or block virtualization which introduces logical partitions. In data
centers, multiple disk drives are combined and form a disk array and storage virtualization
is used to provide them as a storage system. Some examples include NetApp, IBM,

Compellent, etc.

14



2.3 OpenStack: open source cloud computing platform

In this section, we illustrate the OpenStack cloud computing platform as an example to
understand the components of cloud computing platforms. OpenStack is an open source
software for creating private and public clouds. Unlike most existing cloud computing
platforms, OpenStack supports adding and pooling custom hardware and provides
infrastructure as a service. It is used in several researches on FPGA integration in cloud

computing [9, 10, 11, 12]. In the following, we list some important components of the

OpenStack:
00| DpASHBOARD . | IDENTITY
FITE —  SERVICE
B (Horizon) B
COMPUTE  BLOCK STORAGE = NETWORKING =~ IMAGE SERVICE ~OBJECT STORAGE
0007 B == B © p_ 4 :
u B | o} B = - B
(Nova) - (Cinder) = (Neutron) = (Glance) —_ (Swift) —  (Keystone)

Figure 2.2: OpenStack core components [13].

e Nova: The compute nodes controller which provides virtual machines as laaS. It is
written in Python and uses many external libraries. Python is an interpreted (i.e. the
source code is not compiled and available for modifications) high-level programming
language for general-purpose programming. This allows researchers to build a
modified version of the Nova that integrates FPGAS as computing resources.

e Neutron: The networking manager which is responsible for providing IP addresses
and ensuring that the network is not a bottleneck or limiting factor. Users can create

their own networks and control traffic. Software-defined networking (SDN) is

15



supported. It provides general services such as load balancing, firewalls, virtual
private networks (VPN) and intrusion detection systems (IDS).

e Swift: The redundant storage manager that stores files.

e Glance: The image service manager. It can add, delete, share, or duplicate images. It
could be used to store backups or to enable VM migration between physical servers
at run-time. It enables dynamic optimization of resources and allows performing
maintenance.

e Keystone: The identity manager that manages the authority and provides a directory
of users with the services they can access.

e Horizon: The dashboard that provides a graphical interface to access, provision, and

automate the deployment of cloud-based resources.

Cloud computing platforms are server-based clouds which depend on CPUs as the main
computation device. Even when a non-CPU computing device is offered, it is offered as an
I/O device attached to a CPU-based virtual machine. Offering FPGAs as standalone
computing devices on cloud computing systems require extending the virtual machine
concept to include non-CPU computing devices. With FPGAs, instead of the virtual
machine image, that represents the virtual server, we have the bitstream that represents the
application hardware. Instead of launching a virtual machine from an image file, we
configure an FPGA by a bitstream file. Since OpenStack is an open source cloud computing
platform, it provides the flexibility to extend the virtual machine concept to include FPGAs.
Its source code can be modified to allow integrating FPGAS as computing resources as

seen in several works [9, 10, 12].

16



CHAPTER 3

Design with FPGAs

Field Programmable Gate Array (FPGA) is a programmable chip that can be configured to
be any integrated circuit. FPGA can be reconfigured again and again to hold a different
design each time. Early use of FPGA was to prototype and test hardware designs before
fabricating them as non-configurable chips (ASIC). Nowadays, FPGA is used in
computation either as accelerators attached to a server to accelerate computational
intensive tasks or as a standalone device to do real-time computation such as network

packet processing.

In this chapter, we introduce FPGA architecture and design flow. We talk about the
standard methods of writing hardware designs; the hardware description languages (HDL)
and high-level synthesis (HLS) tools. Then, we list strength and weakness FPGA and try

to identify the place of FPGA among traditional computing devices; CPUs and GPUSs.

17



3.1 FPGA architecture

Field programmable gate array (FPGA) consists of a large number of reconfigurable blocks
with configurable interconnections, Figure 3.1. Almost everything in the FPGA is
reconfigurable including the configurable logic blocks (CLBs), the static memories
(SRAMs), the digital signal processing units (DSPs), and the look-up tables (LUTS). In
addition, the connection between these components is reconfigurable. This makes FPGAS
very flexible hardware that can be reconfigured again and again to work as different
hardware each time. Putting such hardware resources on the cloud to be available for

everyone in an easy way is such a dream that needs serious work.

DSP Block

Metigher
Yy

Memory Block

¢ ADDRA ADDR B |o
DATAN A DATAIN B |4
DATAOUT_A  DATAOUT_B
 JWEA wEB|

B O
e {}:;:{}:::{} £3:::

A

u
|
L
ST
i
i
i
i
m
momon r|

[ 1]

[ 1]

= "f} f} 4:}
Programmable = _"'_ _"'_ 4 g Logic
Routing Switch ||- wowow o “,‘“,- Modules

Figure 3.1: FPGA Architecture is a two-dimensional array of reconfigurable resources. Components on
FPGA are programmable: control logic blocks (CLBs), SRAMs, DSP blocks, and interconnects [14].

18



e Configurable logic block (CLB) is a configurable block that provides simple logic
functions. CLB is the main components that exist in every FPGA. Each CLB contains
several slices. Each slice contains several Flip-Flops (one-bit memory) and Look up
table (LUT).

e Look up table (LUT) could be seen as a memory that stores the truth table of a logic
function, Figure 3.2. The LUT inputs work as an address of that memory. This way it
can represent any logic function. Recent FPGAs contains 4-, 5- or 6-input LUTSs.

Logical view Block diagram

MSB LSB

a s
b 3-input LUT
—c

Truth s(0.1,

table

Figure 3.2: 3-input LUT implementations

e Block RAM (BRAM) is a memory block that can be used to store data words in a
specific address. Read and write to BRAM consumes only one or two cycles. In
general, BRAM has three inputs which are address, write enable and input data and
has one output for reading data. BRAM can be a dual port. In this case, its input pins
and output pins are doubled.

e Digital Signal Processor (DSP) is a configurable block that contains multipliers, pre-
adders, adders, subtractors, accumulators, coefficient register storage, and a
summation unit. The DSP is commonly used to implement floating point operations.

e Clock generator and buffers provide clock distribution system with a configurable
frequency. Some clock buffers are controllable and allow stalling the clock signal to

freeze the design that operates by this clock.

19



FPGA is configured by a stream of bits called the configuration bitstreams. The bitstream
contains all needed information about FPGA components such as their type, locations, and
their initial values. The configuration process is done in seconds while generating this
bitstream could take minutes. The bitstream represents the image of the application
hardware. Modern FPGAs supports dynamic partial reconfiguration (DPR) which is the
ability to reconfigure part of FPGA at run-time without disturbing other parts. The
bitstream size is proportional to the reconfiguration region size not to the application

hardware size.

3.2 Design flow

The traditional method of designing application hardware is to write a code using the
Hardware Description Languages (HDL) such as Verilog and VHDL. Then, the code is
synthesized by specific synthesis tools provided by the FPGA vendor and then, its
bitstream is generated for that FPGA. The compilation process for HDL to bitstream

consists mainly of the following steps:

Synthesize: The HDL file is compiled to the netlist. The netlist is a list of general
primitive components (LUTs, FFs, BRAMsS, etc.) and their interconnections.

e Map: The primitive components in the netlist is mapped to actual components of the

specified FPGA device. This is a time-consuming process.

e Place and route: The components are placed and connected. Heuristic algorithms are
used to find the best places and the best routes to match the area and performance
constraints. It is the most time-consuming process and heuristic algorithms are
extensively used.

e Bitstream generation: The final configuration bitstream is generated.

20



The compiling process takes minutes and hours (e.g. 30 minutes). Large designs in a small
area take longer than small designs in a large area. Modern FPGAs takes longer

compilation time because they have more resources.

3.3 Partial Reconfiguration

Modern FPGASs support partial reconfiguration which allows configuring a portion of the
FPGA. Dynamic partial reconfiguration (DPR) allows configuring part of the FPGA while
other designs on other parts on the FPGA is working. The partial bitstream has a smaller

size and it is only applied to that partial region.

FPGA can be configured externally through a serial interface such as the JTAG interface
or internally through internal configuration module provided by the FPGA manufacturer.
Xilinx introduces the Internal Configuration Access Port (ICAP) that can do partial
configuration. It introduces the Planahead tool that supports the generation of partial
bitstream. Altera introduces the configuration via a protocol (CvP) that allows configuring
FPGA through the PCle interface. They introduce the Intel® Quartus® Prime Tool that

enables the generation of the partial bitstream for their FPGAs.

Partial reconfiguration faces several limitations and needs a careful understanding of the
device architecture and its configuration memory. The following examples illustrate how
does it affect the reconfiguration region size and shape. In Xilinx Virtex 1l and Virtex IlI
devices, the configuration memory is organized as a 2-D bit array in which each column
represents one frame [15]. A frame is an atomic unit of configuration. The frame contains
configuration bits that belong to several physical resources that share the same column.

Those resources are configured using several frames. Using Xilinx Virtex Il and Virtex 11

21



devices, it is difficult to have two partially reconfigurable regions that share several

columns. We may need to extend each design for the full height of the device.

In Virtex 6 devices, the configuration memory is organized as a 2-D bit array of frames
[16]. Each row of the array represents a clock region. Each column of the array represents
contains a single type of FPGA primitive. The CLB frame contains 40 CLBs. the DSP

frame contains 8 DSPs. The BRAM frame contains 8 18Kbit Block RAMs.

In addition to these limitations, the interfacing between the partially reconfigurable region
and the static region needs special considerations. For example, Xilinx FPGAs requires all
I/0O of the partial region to be registered. Those registers should be disabled while doing
the partial reconfiguration. In a recent version, Xilinx Vivado can automatically add

partition pins [17].

For partial reconfigurations, Intel introduces the secure device manager (SDM) [18] for
Stratix 10 and the PR control block IP core [19] for Arria 10 FPGAs. The PR IP core
contains three controllers; Control Block Interface Controller, Freeze/Unfreeze Controller,
and the Data Source Controller. The Freeze/Unfreeze controller provides a signal that is
used to freeze the interface between the partial region and the static logic during the
reconfiguration process. Intel uses the term “PR persona” is used to indicates a partial
bitstream [20]. As explained in Intel documentation [21], partial reconfiguration may
corrupt the contents of some BRAM blocks in the static region if careful floor planning is

not taken.

Finally, not all resources are dynamically reconfigurable. Clock buffers, 10Bs, and

transceivers are usually non-dynamically reconfigurable resources. The internal

22



configuration of DSP blocks and the initial values of block rams cannot be dynamically

changed.

3.4 High-level synthesis

Although hardware description languages (HDL) is the natural method writing hardware
codes, HDL describes the compute machine architecture not the computing task algorithm.
High-level synthesis (HLS) tools provide higher abstraction because it uses C-like
constructs. Designing hardware that runs on FPGA is done by writing code in hardware
description languages (HDLs) which are mainly VHDL and Verilog. HDLs provide a very
low abstraction level analogous to assembly in software design. It requires developers with
a strong background on designing digital circuit components such as registers, counters,
control units, ALUs, data path, state machines, etc. It also requires a deep understanding
of digital circuit terminologies such as clock, synchronous and asynchronous signals, inter-
domain communication, hand-shaking protocols, etc. In addition, the designer should

understand the FPGA components to be able to utilize its components and debug his code.

With the increasing trend of using FPGAs to do computations, extensive researches have
been done on compiling algorithms written on high-level programming languages (HLL)
to hardware description languages (HDL). A lot of HLL to HDL compilers are invented
and researched. A lot of problems raised because HLLs are built on top of the Von-
Neumann architecture and sequential execution with memory hierarchy, not the inherently
parallel HW execution model. HLL constructs such as recursion and dynamic memory
allocation cannot be supported on FPGAs unless a soft processor (i.e. a processor built
using FPGA's configurable resources) is used. However, using soft processors results in

very poor performance. Compiler directives are suggested to indicate blocks that can be

23



parallelized just like those that target GPUs or multi-processing systems. Almost all HLL
to HDL academic researches ends up to a commercial HLS tool. HLS tools are the state of
the art of HLL to HDL researches. An HLS tool accepts as input a C-like code that
describes the user application and produces as output a hardware description written in

HDL or register-transfer level (RTL).

HLS provides higher abstraction since the application can be expressed in fewer lines of
code. It also decreases the designer design time. High-level synthesis (HLS) tools allow
designers to efficiently explore the design space trading off performance for area and/or
power. However, it increases the compilation time since the total design time is increased.
It produces less efficient circuits compared to handwritten HDL code. HLS tools are vendor
specific. HLS tools still require hardware design background that is beyond typical
application developers. Some HLS tools such as BlueSpec, SystemVerilog, and SystemC
may facilitate hardware-designers life by hiding some low-level details such as the clock
signals but they still need the user to be aware of the underlying hardware components.
Some other HLS tools are suitable only to design accelerators for specific application

domains. There are few open-source HLS tools such as Leg- and Bambu [22].

e OpenCL [23] is an extension to C/C++ language that allows writing kernels to be
executed in accelerators such as GPUs and FPGAs. The user writes a C program and
defines several kernels. The program is implemented in a CPU while the kernel is run
on the accelerator. Intel introduces the Intel SDK for OpenCL which is a compiler
from OpenCL to Altera FPGAs. Xilinx introduces the SDAccel [24] which is a
compiler from OpenCL to Xilinx FPGAs. SDAccel is used by Amazon EC2 F1
instances [7].

24



e Vivado HLS [25] is a compiler that targets only Xilinx FPGAs. It accepts C/C++ and
SystemC programs and supports C++ classes, templates, functions and operator
overloading. It also supports converting OpenCL kernels to IPs.

e Legup [26] is an open-source academic HLS tool. It accepts a C code, debug it and
run it in software. Then, the HDL code is generated for the function that is declared
as a hardware core. It allows the user to define FIFO-based inputs to a function and
provide a library for reading from and writing to the FIFO. The last version 5.1 is a
commercial version and supports automatic pipelining for specified function or loop.

It also supports parallel threads written by pThreads [27].

3.5 FPGA strengths and weaknesses

Compared to other processing units such as CPUs and GPUs, FPGAs achieve better in
terms of energy consumption per operation. In addition, due to the large amount of
computing logic resources, FPGAs expose better performance than CPUs for applications
that contain parallel tasks. CPUs runs parallel threads by switching between threads, the
parallelism in FPGAs is true parallelism (hardware parallelism). They represent an
excellent option for accelerating and for real-time control systems. However, when it
comes to sequential tasks, FPGA exposes poor performance compared to CPU which run
on gigahertzes while FPGA runs at 10s or 100s megahertz in the best case. Usually, an

application contains both. It contains a parallel part and a sequential part.

Figure 3.3 shows computation models comparison among CPU, GPU, and FPGA. CPU is
based on the von Neumann computing model. GPU is based on vector processing model

since it has several parallel processing cores. FPGA uses a chain of dedicated processing

25



elements instead of performing computation on one ALU. It can explore parallelism in

different ways and only if there are enough resources.

a b
instruction
stTam operand stream
ST ST | |a,|a,|a;|a, b,|b,|b.|b,
ACC ACC |- x5 | % | X [% Va| Ve | Vi | Yo
ROR ROR ||k, [k, [k, [k |~ (L] [0 ]|
ADD ADD | |a,|a, |8, |a, by | b, (b, by
MUL MUL tlll 1111
LD LD |—*__ Vector ALU
ST ST |
ACC ACC
result stream
CPU GPU vector processing
c
5
i
DMA E DMA
3
it
MUL | ADD | |ROR | | Acc | | sT |

FPGA datapath

Figure 3.3: Compute paradigms comparison [28]. a) CPU represents the Von Neumann model. b) GPU
represents the vector processing model. c) FPGA represents spatial computing.

To show the strength and the weakness of the FPGA, we compare different computing
devices, CPU, GPU, and FPGA. This helps to decide how and when to use FPGA for
computation and what computation model is best suited to FPGA. Many advantages
motivate using FPGA in computation as an accelerator or as a standalone computing

machine:

e The latency of FPGA is better than GPU. FPGA is more suitable for real-time
computation. It provides deterministic time with accuracy reaches to nanoseconds.

e FPGA can be programmed to deal with any type of interfaces, unlike GPUs which are

restricted to the PCle interface.

e Low power is another factor that makes FPGA a good computing machine.

26



FPGAs suffer from many limitations that prevent them from being widely used in

computations:

FPGA are expensive compared to other computing devices. Their design flow tools
licenses are expensive too. The design time of FPGA is the worst.

Compiling an HDL code to a bitstream could take minutes and hours. Hardware
simulation and debugging is also a very time-consuming process. In contrast, the
compilation time for GPUs and CPU is almost instant. Their debugging time is much
better than that for FPGA.

Application size in FPGA is much smaller than that in GPU and CPU because FPGA
does not use instruction memory, instead, it built special hardware for the application.
The performance versus area tradeoff makes smaller applications performs better on
FPGA compared with other applications.

Software programming provides high flexibility while FPGA is the worst. GPU is
slightly better in applications that need floating point operations. FPGA uses DSP

blocks to do floating point operations, but it has a limited number of DSPs.

Floating-Point
Processing

Processing / € Timing Latency

Development Interfaces

Processing / Watt

FPGA~ .-~

GPU -~~~ Flexibility Backward

Compatibility

Figure 3.4: GPU vs FPGA qualitative comparison [5].

27



CHAPTER 4

Literature Review

The techniques and definitions of FPGA virtualization are changing over time. Two
common approaches can be seen in recent works for virtualizing FPGAs; FPGA overlays
[29] and virtualization by adding abstraction layer (AL) that abstracts the FPGA interfaces.
In this chapter, we explore the FPGA virtualization works. Then, we explore the other

works on integrating FPGA in data centers and clouds.

4.1 Overlay architecture

Overlay architectures are to build virtual FPGAs on top of physical FPGAs to reduce
vendor dependencies [29]. The overlay works as an intermediate layer between the user
hardware and the vendor FPGA. First, the several instances of the same overlay are
synthesized and implemented on different FPGAs types. Then, the user hardware is
translated only one time to the overlay and become able to run on all FPGAs. Overlays can
exhibit features independent from the host FPGA such as allowing context switching by
reading configuration bitstreams as well as the contents of the registers. Overlays have

three main advantages over physical FPGAs:

28



e Portability: The user application become completely independent from the physical
FPGAs and their vendors. One bitstream represents the application for devices.

e Maintainability: Upgrading physical FPGAs and replacing old one become smooth.

e Migration ability: Context switching and time-multiplexing several applications
become possible. It is possible to migrate a running application from a physical
location to another. The demonstration in [30] shows live migration between two

nodes of a cluster of heterogeneous FPGAsS.

Overlay architectures can be fine-grained [31, 32] or coarse-grained [33, 34, 35]. In fine-
grained overlays, FPGA components such as LUTs, CLBs, interconnects, etc. are modeled
in HDL, synthesized and a bitstream is generated for the new configurable virtual FPGA.
The enable signals in physical registers become a virtual clock. Fine-grained overlay
involves high area overhead and causes performance penalty because it lowers the
operating frequency. Productivity is too low in fine-grained overlay because its input is
HDL code which needs to be synthesized, placed and routed using similar tools of normal
FPGAs. Coarse-grained overlays contain larger and more abstract components such as
FFT, SQRT, adder, multiplier, etc. that target a smaller number of applications. The coarse-
grained overlay is less general purpose than fine-grained ones. The coarser the cells are the
more domain-specific we get. Restricting it to specific application domains is the main
disadvantage. The coarse-grained overlay does not suffer from area and performance
overhead like fine-grained overlays. Productivity is high, the instant compilation is possible
and therefore their applications are easy to debug. Configuration time is also fast because

their configuration bitstreams are small. They are easy to be used by a software

29



programmer. The programmer introduces the HLL code, its control flow graph (CFG) is

extracted, and finally, the interconnection configuration is produced.

Although overlay architectures provide portability which fits well with virtualization
requirements, the cost in area and the performance overhead in fine-grained overlays make
them not practical for using FPGASs in computations. In coarse-grained overlays, it is
difficult to have general FPGA virtualization platform since coarse-grained overlays are
domain-specific. Therefore, works on integrating FPGA in cloud and data center does not
use overlays as virtualization techniques, instead, they use virtualization by adding an

abstraction layer (AL).

4.2 Virtualization using abstraction layer (AL)

In this type of virtualization, an abstraction layer (AL) is created which contains a
collection of common hardware components that are needed by all applications. A software
library is also created to provide standard API functions that interact with the abstraction

layer. The hardware components of the abstraction layer are:

e Communication controller such as PCle endpoint, Ethernet controller or off-chip

memory controller.

e Routing: It is included when the platform supports several VFPGAs per a physical
FPGA.

e Reconfiguration management: It is included if dynamic reconfiguration of vVFPGAs
is supported.

e Clocking management: It is included if different clock domains are needed.

30



e Soft processor: In some works, a soft processor is included as a reconfiguration
manager. Other works used the soft processor to control vVFPGA and the application
run.

e Security blocks: Some platforms add security modules at the abstraction layer level.

e Registers: It collects information and status or store configurations that control the

abstraction layer and vVFPGAs

Each physical FPGA is divided into two parts; the abstraction layer (1% up to 25% of the
physical FPGA area) and one or more VFPGA regions to hold the applications. The size of
the abstraction layer differs from work to another and depends on what components are
included/excluded in it. Each research refer to the abstraction layer using different
terminology such as static logic [36, 9], RC2F [37], service layer [10], vendor logic [12,
38], network service layer [39], FPGA hypervisor [11, 40] and shell [7, 41]. In some
researches, the VFPGA region is suggested to be a dynamically reconfigurable region [9,
10, 12, 37] while in other works [7, 42] the user design is combined with the abstraction

layer and compiled together to form one full bitstream.

The abstraction layer has a hardware side as explained above and has a software side.
Software libraries are introduced in several platforms for PCl-attached FPGAs [43, 37, 44,
36, 45]. Knodel [37] for example, introduces the RC3E FPGA hypervisor that provides
functions for device control, vFPGA control, data flow control that interacts with the off-
chip memory, load bitstream, get status and set configurations. The provided API functions

by different works can be categorized as follows:

e API functions for device info and existence queries; get_device_info()

31



e API functions for accessing VFPGA, FPGA or an individual channel on FPGA
through send() and receive() API functions.
e API functions for reading or writing to registers in the FPGA.

e API functions for resetting FPGA and the transfers on all channels.

There are important researches that address some virtualization properties. Merging several
VFPGA regions to form one large region is discussed in [46]. This allows having VFPGA
of different sizes. Migrating a design from one VFPGA to another is discussed in [47] in
which the measured migration time is around one second.

4.2.1 Interfacing the abstraction layer (AL) with vVFPGAs

Platforms that don’t support dynamic partial reconfigurations (DPR) for vFPGAs don’t
require high abstraction in the VFPGA interface. This is because the application and the
abstraction layer are merged and compiled together as one bitstream. However, if DPR is

supported, the VFPGA interface should be a fixed interface that fits for all applications.

The AXI [48] interface is commonly used for VFPGA interfacing in several works. It is a
handshaking interface that allows both sides of the link to stall (stop) data movement. It
provides efficient data interchange and can offer one data element per cycle. FIFO-based
interfaces are also used in [37, 40, 12, 39, 44]. The empty and full signals of the FIFO allow
both sides to know when the other side is busy. Asynchronous FIFO is used when the
application works on a different clock than the abstraction layer. Amazon EC2 F1 instance
[7, 49] uses three AXI-4 interfaces, three AXI-Lite interfaces, and some generic signals
such as; clock, reset, status, etc. In OpenCL based platforms and other GPU-like platforms,
VFPGA interface act as a DMA controller since the vVFPGA interface is restricted to the
off-chip memory [44, 38].

32



Some works [39, 44] indicate that some standard logic might be needed inside the vFPGA
to abstract its interface. The VFPGA interface in DyRACT [44] consists of streaming
channels and FIFOs inside the vVFPGA to be added by each application. The application is
clocked using the control logic's frequency. Another version of this work [36] uses
asynchronous FIFO-based SDRAM interfaces. However, they did not introduce a general
abstraction method instead, they left this to the application designer to build a specific
wrapper for the application. Asiatici et al. [50, 51] suggest adding onboard processor or
soft processor to the shell for orchestrating the hardware accelerator execution. A manager
executing parallel constructs on the processor manages the FPGA resources and
communicates with the host over the PCle.

4.2.2 OpenCL and the CPU-FPGAs interface abstraction

OpenCL defines a mechanism [52] for CPU-FPGA communication and supports API
functions for querying devices info, FPGA partitioning, and command queues (such as a
memory write and read or executing a kernel). Just like OpenCL for GPUs, the application
is written in HLL language where the compute-intensive functions are defined as kernels
to be accelerated on PCl-attached FPGA. The compiler compiles the software part and the
hardware and manages the interfacing between them. This helps the designer to focus only

on his application logic.

Xilinx and Intel developed their own OpenCL compilers for FPGA devices [53, 54]. The
compiler compiles the kernels into hardware on vVFPGA and integrates the abstraction layer
with them according to a predefined architecture explained in their documentation [55, 14].

The Xilinx OpenCL compiler is used by several works [7, 11].

33



Amazon announced EC2 F1 [7] which is a cloud compute instance that provides FPGA
infrastructure as a service (laaS). It uses FPGAs and design tools from Xilinx. Amazon
EC2 F1 provides two methods for building on-cloud hardware. The first approach is to use
the OpenCL development environment to build heterogeneous applications that run on
CPU and accelerated on FPGA. They have used the Xilinx SDAccel tool and the user
should obtain a license from Xilinx and install it to use these tools. The second approach
is to install and use the Vivado IP Integrator (IPI) provided by Xilinx. In this approach, the
user is free to build cores that can be accessed over PCI. To abstract the FPGA interface,
Amazon EC2 F1 introduces the Hardware Development Kit (HDK) library. The HDK
integrates the static logic (shell) with the Custom Logic (CL) provided by the user. The
shell interface at the hardware side is connected to a DRAM controller and/or PCI express
controller. The shell interface at the custom logic (CL) side provides several AXI
interfaces. There are three AXI-4 interfaces, three AXI-Lite interfaces, and some generic
signals such as clock, reset, status, etc. The Shell and CL are synchronous to one clock
with a maximum frequency of 250MHz. There are seven more clock signals. The developer
can select among a set of available frequencies provided in the clock recipe table. There
are four DRAM interfaces. One of the four DRAM interface controllers are implemented

in the Shell, and three are implemented in the Custom Logic (CL) [55].

Amazon EC2 F1 introduces the Amazon FPGA Image (AFI) management tools [56] to
manage FPGA images (bitstreams) on the cloud. It includes functions for listing available
FPGA slots, getting image status, loading image, clearing image, start virtual JTAG to

debug the design, get/set LEDs and switches.

34



Intel acquired Altera (a manufacturer of FPGAS) in 2015. Intel introduces FPGA as PCle
attached devices just like GPU devices. The OpenCL language is used to write software
that runs on CPU and define some kernels that run on FPGA. Abstracting the FPGA
interface in Intel FPGA is done by using the off-chip DDRAM as a shared memory between
CPU and FPGA. First, the data are sent from the system main memory over the PCI to the
FPGA board off-chip DDRAM. Second, the accelerator is invoked to start. Third, the
accelerator does computations on the data and store results on the DDRAM. Forth, when
the accelerator finishes it interrupts the CPU. Finally, the results are moved back to the

system main memory at the CPU side [54].

FPGA
N
Pr. s External Memory External Memory \ -
ST Controller and PHY Controller and PHY « » 3
_J

A 4
L 4 L4
Global Memory Interconnect

.
i On-Chip
On-Chip Memory
Memory ._‘

\ Local Memory Interconnect Local Memory Interconnect /

Figure 4.1: The architecture and design components in Intel OpenCL for FPGAs [14].

4.3 FPGA attachment interface
FPGA-based compute node properties are severely affected by the style of physically

f

attaching FPGAs to the system. PCle and Ethernet interfaces are the most commonly used

approach because of their high bandwidth.

35



With PCle interface, the FPGA is physically coupled to a CPU-based server. Integrating
FPGAs on cloud computing platforms is done by introducing compute nodes or virtual
machines with PCle-attached FPGAs [57, 37, 36, 10, 7]. In this case, the VM hypervisor
is slightly modified to launch VM requests in machines that have PCl-attached FPGA [11].
Wang et al. [58] show a different method in which PCl-attached FPGA can be common
among several servers. They used the Xen virtual machine monitor (VMM) to provide
FPGA access to all servers on the network and manage the PCle traffic between servers
and hardware. In [59, 60] a technique is proposed to make a single PCle-attached FPGA
appears as several separate coprocessors to multiple VMs running on the same host node.
Taking advantage of the PCle Single-root 1/O virtualization capabilities, each VFPGA
appear as a separate PCl-attached FPGA and each VM got exclusive access to its “own”

VFPGA.

The tight coupling between FPGAs and CPUs in compute nodes leads to several

limitations:

e The number of FPGAs in a DC is limited to the number of CPU nodes and PCle slots
per node,

e FPGAs cannot be used independently from the CPU node they are attached to; i.e.
CPUs must explicitly send/receive data and instructions to the FPGAs wasting both
CPU's and FPGA's cycles,

¢ In a cloud setting, customers actually instantiate two compute instances (one on a

CPU and another on an FPGA),

36



e Aggregation of several FPGAs to implement a large application becomes difficult and
inefficient as the data traffic between these FPGAs must go through the nodes (i.e. no

direct communication between FPGAS).

Weerasinghe [12, 38, 39] proposed connecting FPGAs to the data center network as
standalone computing devices. In [61], network-attached FPGAs are configured to one of
three block types; compute core for general-purpose computing, memory block, or
hardware acceleration. These types allow users to choose the most suitable architecture and

memory management for their applications.

In Microsoft catapult [6] both interfaces are used. FPGAs are connected using a secondary
network while they are still PCl-attached devices. A large application is implemented on a
chain of FPGAs such that each FPGA implements one phase of the application. Each FPGA
contains the abstraction layer and one application phase. Then, several copies of the same

application are launched on several to raise the throughput.

4.4 FPGA in the cloud and data center

Cloud computing systems use CPU-based servers to do computations. Integrating FPGA
as a computing resource is not supported directly. Large companies add modifications to
their own cloud systems to support their FPGAs. Microsoft Catapult [41] is hosted on the
Microsoft Azure cloud computing platform. Amazon Cloud hosts the EC2 F1 instance [7].
Several academic works [9, 10, 11, 12] suggest modifications in the OpenStack cloud
computing system to enable integrating FPGAs as computing resources. In OpenStack,
FPGA could be integrated to accelerate the data center functionalities but not provided as

cloud servers. Microsoft uses FPGAs to accelerates Bing search [6]. It also uses SDN on

37



FPGAs to accelerate its networking operations [2]. The user is not aware of the FPGAs

existence.

Byma, et al. [9] introduced a method for virtualizing FPGAs to enable their integration as
standalone compute nodes (i.e. not coupled to a CPU). This is the first work, as far as we
know, that introduces virtualizing FPGAs using abstraction layer method. The abstraction
layer includes ethernet controller, a soft processor, and a memory controller. VFPGAs are
introduced as Infrastructure-as-a-Service (laaS) and the OpenStack cloud system is adapted
to manage VFPGA resources. Configuration is done using a JTAG interface and a UART
is used to configure network address registers. This meant that the FPGA still requires to
be attached to a server to be configured by bitstreams or to configure its network address

registers. The cost of integrating FPGAs into data center increases due to excess cabling.

Tarafdar et al. [11], suggest a platform for attaching FPGAs to virtual machines (VMs).
The platform assumes that the VM is running on a server that has PCl-attached FPGA. The
Xilinx SDAccel Platform [24] is used to provide the abstraction layer and the software
drivers. It is deployed using the OpenStack cloud system and provided as Infrastructure-
as-a-Service (laaS). OpenCL allows the user to write his application with kernels, compile
it, configure it and abstract the VM-FPGA interface, enabling the user to focus on the

application logic.

Knodel et al. [37] introduced RC3E as a framework to integrate FPGAs in the cloud. In
their framework, each physical node includes a server with several FPGAs connected to it
through PCle. They introduced their abstraction layer which is called the RC2F. It consists

of PCle endpoint, clock management, and control and reconfiguration manager. They

38



introduce API functions like those provided by OpenCL. Their platform allows introducing

accelerator as a service or the vFPGA region as a service.

Kidane et al. [40] adapted the network-on-chip (NoC) architecture to build a virtualization
platform. The idea is to map each processing element (PE) in NoC to a dynamically
reconfigurable region. The switches (routers), links and network interfaces become the
abstraction layer. The platform introduces the reconfigurable region as a service or the

reconfigurable IP as a service.

Chen et al. [10] did major effort to integrate FPGAs as accelerators. Multiple virtual
FPGAs were tightly coupled with one CPU through a PCle interface. Multiple processes
can be scheduled on the same virtual FPGA (through re-configuration). The user configures
a virtual FPGA with a customized accelerator with a custom communication interface. The
system can context-switch the same accelerator among users. There is no virtualization at
the level of interconnection. Another drawback is that the PCle interface becomes a

bottleneck and its bandwidth should be balanced as discussed in their paper.

45 ASIC Clouds

ASIC Clouds [62] suggest fabricating several instances of the same accelerator with
routing and interconnection on an ASIC chip and having several ASIC chips on boards and
racks. There are on-PCB network and a control plane that interpret incoming packets from
the on-PCB network and schedules computation and data onto replicated compute
accelerators. Unlike FPGA-based accelerators, the designed hardware in ASIC chip can
never be modified but it provides the highest possible performance with low power. They
showed that ASIC cloud optimizes the total cost of ownership (TCO) to 2-3 orders of

magnitude better than CPU and GPU on four case studies; the Bitcoin mining ASIC
39



Clouds, YouTube-style video transcoding ASIC Cloud, a Litecoin ASIC Cloud, and a

Convolutional Neural Network ASIC Cloud.

4.6 Summary

Table 4-1 below shows a summary of notable platforms of FPGA-based processing for
clouds or datacenters. The ASIC cloud is included in the comparison, although it is not
reconfigurable hardware, because it provides ASIC-Based custom computing machines for

the cloud.

The configuration/attachment refers to how the FPGA is attached to the cloud (or
datacenter) and how it is used. FPGA-based accelerators are attached to a host CPU via the
PCle bus and cannot be used independently from the host (i.e. in a cloud environment, the
user need to instantiate two compute instances). Depending on their shells, FPGAs attached
to the data center’s network can be used on their own (i.e. standalone) or still need to work
in tandem with a host CPU that runs the main application and calls FPGA acceleration
functions over the Ethernet. The latter option also requires two compute instances.
Network-attached standalone FPGAs act as servers (i.e. can be used by multiple
users/applications). Microsoft’s Catapult provides all types of attachments and

configuration at a staggering logic cost [6].

The clustering column shows if several FPGAs can be connected directly to run large
applications without having the data going through CPU nodes. JetStream is the only PCI-

attached FPGA that allows a vVFPGA-to-vFPGA connection.

The IF (Interface) abstraction column reflects the level of abstraction for the application

interface. Our proposed platform can receive data in their original format, so it provides

40



full abstraction. Medium abstraction is provided by FIFO interfaces. A platform with a low
abstraction is one that requires users to adapt their design to its fixed interface. Platforms

that require the users to develop custom interfaces have no IF abstraction at all.

The DDRx column specifies if a platform’s shell has an off-chip memory management
interface. We have not opted for this option as it increases the static logic area significantly

and it is not crucial for streamed applications.

IBM’s network-attached FPGAs [39] is the closest work to our work. Its interface
abstraction is medium because it introduces fixed FIFO-based interfaces and the data
formatting, and the computation control is completely left for the application’s designer to
design. The table shows that standalone CCM with abstracted data interface is not
introduced by other FPGA virtualization platforms. It also shows that our proposed

platform provides ultimate flexibility with relatively low overhead.

Our platform introduces network-attached solution and support in which several virtual
FPGAs can be chained to perform computation phases for large applications. The interface
abstraction is complete such that the user sends data with no controls. We do not have and

off-chip memory support because we target streaming applications.

OpenCL-based platforms completely abstract the FPGA interface allowing the user to
focus on his applications. The computing model of OpenCL assumes that FPGA will be
attached to CPU and used only as accelerators that are controlled by a running software
application. The DDRAM is used to store data before computation and store the result after
computation is done. When integrated into the cloud, OpenCL-based platforms are

provided within a virtual machine. Therefore, it is provided as a platform as a service

41



(PaaS). Our platform completely abstracts the FPGA interface allowing the user to focus
on his applications. It provides standalone FPGA that is not attached to CPU. It executes
the application and provides its service without external control. There is no DDRAM to
buffer data or store results. The computing model is streaming compute model. When
integrated into the cloud, our platform introduces the application on FPGA as a service

which is a form of software as a service (SaaS).

Table 4-1: List of notable platforms of FPGA-based processing for clouds or datacenters.

Configuration/ Interface

Rk Attachment to a host Clhmiizitagg Abstraction DDRx

[37] RC3E PCle-attached Low

[44] DyRACT PCle-attached Low v

[36] Fahmy PCle-attached Low v

[50, 51] Asiatici PCle-attached Low v
[12] Hyperscale Ethernet-attached v Medium v
IBM’s Standalone,
[38] Disaggregated | Network attached Low Y
IBM’s Standalone, )
[39] Net-attached Network attached Y Medium
PCle or

[H] [ Ethernet-attached Y None v

[7] Amazon PCle-attached None v
PCle-attached +

[6] MS Catapult | Network attachment + v None v
FPGA Network

[63] B Standalone, None v

Network attached

[10] Chen PCle-attached Low v

[43] RIFFA PCle-attached Medium
PCle-attached +

[62] ASIC Clouds | Standalone Network Medium v

attachment
[64] JetStream PCle-attached v Medium

42



CHAPTER 5

Overview of the Cloud-Based FPGA Custom Computing

Machines Platform

In this chapter, we are explaining our proposed cloud system which offers virtual FPGAs
(VFPGAS) as custom computing machines (CCMs). The focus of this chapter is on general
concepts. Implementation details will be explained in next chapters. The full platform is
not implemented as it is explained. For example, we have implemented a light version of

the network controller. We did not implement the full network controller stack.

The CCM is a network-attached VFPGA configured with hardware that does computations
on streamed data. The CCM can be accessed only through a socket interface. The CCM is
highly abstracted such that it works directly with streamed data without data reformatting
or any additional control information. The data reformatting information and the protocol
of applying data to the hardware are completely included within the CCM. The streamed
results produced by a CCM are also ready to be consumed by another CCM or software

function.

43



Unlike other works [9, 10, 11, 12] that integrate FPGA in the cloud by doing a modification
on existing cloud system components, we are providing standalone FPGA cloud system
that can be integrated to other cloud systems without modifications in their component.
The FPGA hypervisor is a standalone entity that manages FPGA resources. The computing
nodes on our platform are the CCMs which can be connected directly to the cloud network.
The FPGA hypervisor contacts the image management to fetch CCM images from the
storage. Image management fetches and stores bitstreams using the same functions

provided by the cloud system to access the cloud storage.

5.1 FPGA Virtualization

The FPGA virtualization platform consists of several abstraction layers shown in
Figure 5.1. In the following, we list and explain those abstraction layers. The
implementation and the hardware details of the virtualization platform will be explained in

the next chapter.

Software Library (Socket connection API)

Network Controller (De)Packetizing IP & MAC tables Sessions
The static logic Security  Routing Reconfiguration
<« N
4 (De)Serializer (Un)Packing Controls and clocking
[F 8
3
& Data-application controller Clock controller Input registers Output dispatcher
>
Application Hardware

o /
Figure 5.1: FPGA virtualization is based on several abstraction layers.

e The software library is the highest abstraction layer and provides several functions

for launching, using, releasing CCMs and other management functions.

44



The network controller handles physical-level connections and networking protocols
and establishes TCP network sessions between the users and their applications in the
virtual FPGAs. It assigns one MAC address and one IP address to the static logic as
well as each VFPGA and makes each of them appear on the network as a standalone
network-attached device.

The static logic provides several functionalities. It manages secure data traffic with
each CCM. It also reconfigures a VFPGA by a received bitstream.

The serializer receives the incoming data from the network controller through the
static logic. The packing/unpacking units change the data width and the serializer
reformats the data, adds controls and generates timing information according to the
specifications of the application hardware stored within it.

The deserializer removes controls from the results and produces results in standards
data format. Then, the packing/unpacking units change the data width to match the
fixed-width interface between the static logic and the VFPGA.

The application controller receives the data with timing information and applies them
to the application hardware. It controls clocking the application hardware according
to data arrival. It gates the input clock to the application hardware. To gate a clock, a
controllable clock buffer is used which is a primitive resource in most FPGA devices.
The application controller also contains information about which output should be
produced and how many clock cycles should be applied for each datum.

The application hardware can be any hardware design with an arbitrary interface. The
automatic wrapper generator generates a specific wrapper for each application

allowing to fit in the VFPGA.

45



e Finally, the clocking management could be considered as a cross-layer component or
as part of the static logic layer. It is a physical component that manages several clock
domains for all layers. It could be configurable, so the FPGA hypervisor can change

the clock frequency of each vVFPGA according to the configured CCM specifications.

To illustrate the abstraction level the network controller, we compare it with controllers in
other works. Byma et al. [9] did a layer 2 encapsulation (i.e. MAC layer). Their platform
fits more for packet processing systems as shown by the test cases in Byma’s thesis [63]
such as load balancing and extending SDN capabilities using VFPGAs. It can only provide
infrastructure-as-a-Service (laaS). Catapult [41] and Tarafdar [11] do layer 3 (i.e. network
layer) by doing UDP-like encapsulation. Catapult takes care of having a lossless
transmission using Ethernet flow control (802.1Qbb). In our platform, we raise the
abstraction to layer 4 and 5 (i.e. transport and session layer of the conceptual OSI model)
by using the TCP stream and manage the sessions inside the controllers. The network
controller in our platform produces data stream plus the index of the targeted VFPGA. This
raises the abstraction level and enables introducing computation as a service instead of

laaS.

The network controller can be implemented as off-chip to save the FPGA resources. It can
also be implemented inside the FPGA. According to a commercial implementation [65] of
10 Gigabit Ethernet network controller on Xilinx Zyng Ultrascale+ MPSoC ZU9 FPGA,
full stack (UDP and 2 TCP engines) consumes around 30k LUTs and around 10k LUTs is
needed for each additional TCP engine. The Virtex 6 FPGA used in our lab contains around

340K LUTSs.

46



The TCP transmission protocol is chosen because of its lossless transmission and packet
reordering for long data streams. In addition, we would like to match the ecosystem data
format and interchanging protocols by using off-the-shelf socket connection. However, in
the case of changing the needs of the ecosystem, we may use different networking
controller that match its networking protocols. For example, internet of things (loT)
networking uses IPv6 for interchanging data with small packet sizes. In this case, we can

replace the network controller only and produce a suitable virtualization platform for loT.

5.2 FPGA Cloud Architecture

Our platform framework for on-cloud data processing using virtual FPGAS is shown in

Figure 5.2. The framework includes the following components:

! Client User User
::::::::::::::::::::::::_'_'::_'_'_'_'_'_'_'_'_'::_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_':::::::::::::::::::::_::::_—:_—::_"!‘_’::::::E
i Cloud Launch (ccm_i0) [
E FPGA Release (CCM_ID) E
' . — 5 !
: Hypervisor | Get cov tist () User |
! + = !
| s _8||3% - |
| S| [88 = | & !
i 539 o gl |7 i
| = 5] 20 IN] 1
: s % ¢ g Q ol [2 !
l sS85 ||53 3| |3 ;
: O ;w ~ = o g |
i € LI Ry 3| 5 !
! @© ) Qg RS “n |
: o sRx|[§8 SR '
E g 288|353 qHEE !
I e < O > %) 3 I
1 Q o = !
R ne R e Er P LR R T e e L EEt EEEET s---54+------------- e o BERREEEt o REE
. N b
' ! Virtual CCM Image Hypervisor J com b
i ! Resources Management back-end P
v H PaN I
¥ ~ i L
2 static | [VFPGA ] P
! i Hardware Storage Logic VvFPGA < i i
¥ FPGA Do

Figure 5.2: Proposed FPGA Cloud Architecture

1) The cloud infrastructure consists of FPGA hypervisor, resources database, CCM
creator and other components. The FPGA hypervisor is used to manage VFPGAS

resources, launching and terminating CCMs. It requests CCM bitstream from the

47



cloud storage management. The resources database stores information about CCMs
and VFPGA for the management process. The CCM creator provides CCM creation
service. It receives hardware cores written in HDL with their specification files and
produces CCMs that can be implemented and sold by the cloud operator (CO) or
other third parties as new services. It updates the resources database with the new
CCM information.

2) FPGAs which are network-attached devices connected to the internal cloud network.
Each FPGA contains a static logic and one or more virtual FPGAs (VFPGAS). The
static logic on the FPGA is also known as FPGA hypervisor back-end. Each vVFPGA
can be configured with a CCM bitstream and acts as a compute node or part of a
compute node on the cloud.

3) Software library defines the necessary API functions to manage and use virtual
FPGAs. The API functions are represented by the arrows going in and out of the
cloud components in Figure 5.2. The FPGA hypervisor provides API functions to
launch, release CCMs. The FPGA hypervisor back-end defines API functions to be
used by hypervisor front-end like configuring specific VFPGA, reading status
registers, set client IP address, etc. The client can conventionally request to launch
the CCM and initiate the data sending, processing and receiving. The client can use

the Send/Receive, which are socket-based API functions, to access a CCM.

The CCM can be used by a client through the dashboard or by software within the cloud.

5.3 FPGA hypervisor

The FPGA hypervisor manages VFPGA resources and CCM images. It launches,

terminates CCMs and keeps track of available vFPGAs and CCM with the help of the

48



resources DB. The static logic in each FPGA manages VFPGAs in that FPGA so we refer

to it as a hypervisor back-end.

The resources DB is a database that stores VFPGA and CCM management information
such as occupied/free VFPGA resources, user-CCM relationship, VFPGA-CCM
relationship, etc. Virtual FPGA (VFPGA) is the reconfigurable region on the physical
FPGA that can hold a CCM. vFPGA is configured by a CCM bitstream. CCM is the
application hardware configured on a VFPGA. CCM might have several bitstreams to

match each different vFPGA type.

FPGA hypervisor provides API functions for launching, using and releasing VFPGAs.
Table 5-1 lists the main API functions provided by the software library of our platform.
Accessing the CCM is done through only two functions; one for transmitting data and the

other for receiving results.

49



Table 5-1: Main API function in the software library.

, Receiver IP Address)
Set Parameters()

Function name Comn;;g;catmn Category Implementation
Send (data stream) Socket User-to-CCM Put data on
Listen (results stream) (TCP Stream) | API functions | TCP packets
Use the cloud
Launch (CCM_1D) User-to- message
. Message . .
Get CCM List () Passin Hypervisor passing format
Release (CCM_ID) & API functions | that is used to
launch VMs
Configure (CCM bitstream) Socket Put data on
Read CCM bitstream () (TCP Stream) . TCP packets
- Hypervisor-to-
Read status registers () Hypervisor The UDP‘
Send key (CCM_1ID) back-end API | packet contains
Set client info (Sender IP Address | Socket (UDP) functions command No.

and command
value.

5.3.1 User-to-CCM API functions
Accessing CCM is done through only two functions one for transmitting and the other for

receiving. An implementation example of two functions using python is shown in

Figure 5.3. The function “Send (data stream)” establishes a TCP stream session and sends

the data stream over the session. The function “Listen (results stream)” establishes a

listening TCP stream session and collects the results. The user should call the listener first

then he sends his data. The CCM hardware receives a reset signal with the creation of each

TCP session.

50




import socket
BEUFFER_GSIZE = 10Z4

Eldef Send data({SERVER _TIF, SENDING FPORT, data):

conn_ server = socket. socket{socket.AF INET, socket.30CE STREAM)
conn_server.connect{ (3ERVER_TIF, SENDING EPORT))
conn_server.send{data)

conn_ server. shutdown({=socket. SHUT RDWR)

-  conn_server.close()

Eldef IListen to results(IERVER IF, RECEIVING EORT):

conn_server = socket. socket{socket.AF INET, socket.30CE STREAM)
conn_server.connect{ (3ERVER_TFP, RECEIVING PORT))

data=""

[ while len{data)<100

= data = data + conn_server.recv(BUFFER_SIZE)
conn_server.shutdown{=socket. 3HUT RDWR)

conn_server.close()

return data

Figure 5.3: Python implementations for the functions “Send (data stream)” and “Listen_to_results (data
stream)”. Both functions use TCP stream socket and require the CCM IP address and port number.

5.3.2 User-to-Hypervisor API functions
The hypervisor functions are message passing functions. The same functions used in other

cloud platforms to request launching and releasing virtual machines are adapted for
requesting launching and releasing virtual FPGAs. The function “Launch (CCM ID)”
sends a message to the hypervisor to launch a CCM. Once the hypervisor receives this
message, it looks for the CCM_ID in the database and looks for a suitable free VFPGA.
Then, it fetches the suitable bitstream image from the storage. Then it uses the function
“Configure (CCM bitstream)” to download the CCM image. Finally, the hypervisor sends
a message to the client to inform him about the IP address of the launched CCM. The
function “Release (CCM _ID)” sends a message to the hypervisor to release the vVFPGA
resources of a CCM. When the function ”Get CCM List () is called, the hypervisor using

the resources DB builds a CCM list as long with their unique CCM_IDs and description.

If the user needs secure communication, he interchanges an encryption key with the FPGA

hypervisor using Diffie-Hellman key exchange method. Then, the hypervisor uses the

51



command “Send key (CCM_ID)” to send the key to the hypervisor back-end. The
encryption and decryption engines use that key to decrypt incoming data and encrypt
outgoing results. The hypervisor front- and back-ends take care of removing the key with
each change on the IP sender and receiver.

5.3.3 Hypervisor-to-Hypervisor back-end API functions

The hypervisor back-end functions are socket functions between the hypervisor front-end
and back-end. There are two functions that use TCP stream socket-based communication.
The function “Configure (CCM bitstream)” downloads a partial bitstream that represents
a CCM image on the FPGA. It uses TCP stream socket connection and works like the
function “Send (data stream)”. The function “Read CCM bitstream ()" reads back the
CCM bitstream which is useful for supporting CCM migration. It uses TCP stream socket
connection and works like the function “Listen (results stream)”. The remaining functions

use UDP socket connections.

The rest of the functions uses UDP socket-based communication. The hypervisor sends
UDP packet and the hypervisor’s backend replies with a UDP packet. Figure 5.4 shows
the UDP packet format which contains sequences of the CMD/Value pairs in its payload.
The CMD/Value represents a function number and value. The function “Read status
registers ()" reads information about the running CCM status. The function “Send key
(CCM ID)” changes the encryption/decryption key of the CCM. The function “Set client
info (Sender IP Address, Receiver IP Address)” changes the sender and the receiver IP
addresses of the CCM. The function “Set Parameters ()" is used to configure some
registers with specific values. One example is the frequency register that determines the

CCM operating frequency.

52



0 14 34 42
MAC Header IP Header UDP Header | CMD | Value | CMD | Value | |

Figure 5.4: Hypervisor to hypervisor’s backend functions uses UDP socket connection. The UDP payload
contains a sequence of CMD and value pairs. Several commands can be sent on one UDP packet. Hypervisor sends
a UDP packet and hypervisor’s back end reply with a UDP packet.

5.4 A scenario of Launching, Using and Terminating a CCM

In the following, we explain how commands of the software library of our platform work.
We assume a user wants to launch and use a specific CCM. The user issues the four

commands listed in Figure 5.5.

User commands:
IP Address = Launch CCM (CCM ID);
results = Listen ((IP Address , Receiving PORT NO)) ;
Send ((IP Address, Sending PORT NO), data stream)
Release CCM (CCM _ID);

Figure 5.5: Scenario of using a CCM on a cloud computing system. The user issues four commands to launch,
send data, receives results, and terminate CCM.

In the following, we list all in cloud steps done to serve the user request. The message

sequence diagram is shown in Figure 5.6.

1. IP Address = Launch CCM (CCM_ID)

1.1. It gets the CCM information and available free vVFPGAs from the “Resources DB”.
Then, it decides which VFPGA is going to be used and requests the CCM image
from the “CCM image management”. We are assuming that the user already knows
the CCM_ID. The user can get the CCM_ID using the command Get CCM List ().

1.2. The hypervisor gets the IP address and port number of the specific FPGA, and
other network parameters from the Dynamic Host Configuration Protocol (DHCP)
server and then executes the internal function “Send ((IP Address, Port_no),
bitstream)”.

1.3. The hypervisor back-end configures the vFPGA with the CCM image

53



1.4. The hypervisor internally issues the command “Set Client IP Addresses (Sender
IP Address, Receiver IP Address)” to configure the sender and receiver client IP
addresses in the hypervisor back-end.

1.5. The hypervisor back-end opens a listener to receive CCM inputs and starts another
TCP session for sending the results.

1.6. The hypervisor returns the CCM IP address to the user. The hypervisor-back end
IS never revealed to the user.

results = Listen ((IP Address, Receiving PORT NO))

2.1. The command is executed in the user machine to start the listening session. It is
usually executed as a new thread, so the program can overlap sending data and
receives results.

Send ((IP Address, Sending PORT NO), data stream)

3.1. The user sends the data to the CCM. The command is executed in the user machine.
It establishes a TCP stream session, sends the data to the CCM and terminates the
session.

Release CCM (CCM_ID)

4.1. The hypervisor executes an internal command “Send ((IP Address, Port no),
empty bitstream)”

4.2. The hypervisor back-end configures the vFPGA with the blank CCM image

4.3. The hypervisor back-end clears the registers of the sending and the receiving IP
addresses.

4.4. The hypervisor updates the “Resources DB” and marks the vFPGA resource free.

54



CCM User FPGA Hypervisor Static Logic

Launch cc
-LCM(cCm_Ip) Conﬁgure(bitstream)

P Address Setdliarrin———»
send data 4’%’/ Set client |p address
en
‘”(T/CP(Stream) Mark CCM as busy

Listen to Resyts
(TCP Stream)

Mark CCM as free

elease_ccm

Figure 5.6: Scenario of using a CCM on a cloud computing system. First, the user requests to launch a CCM.
The FPGA hypervisor configures a vVFPGA with the CCM bitstream and returns the CCM IP address back to the
user. The user interacts with the CCM by sending data and receiving results. Finally, the user releases the CCM.

5.5 CCM Creation

The platform introduces CCM as a service in which CCMs can be implemented and sold
by the cloud operator (CO) or other third parties to the client. The CCM provides
synthesizing tools for the FPGAs used in the cloud system. The CCM creation process is
depicted in Figure 5.7. First, a designer uses a high-level synthesis tool (HLS) and hardware
description language (HDL) to create a hardware and send it to the CCM creator. Then, the
designer sends his hardware (HLS/Verilog code) with an additional XML file that
describes the hardware 1/0s. Another Vera file describes how data should be applied to
the hardware to the CCM creator. The creator uses automatic tool that creates a wrapper
for this hardware to match its interface with the vVFPGA standard interface. The whole
hardware is synthesized several times to generate several partial bitstreams for the
hardware design each one matches a different VFPGA. After generating partial bitstreams
they are stored on the cloud storage. The resource database is updated with the new CCM

and its generated bitstreams information like the CCM ID, file name, and vFPGA ID.

55



I/0 description Data application Hardware design
(XML) rules (vera) (HDL)

Text VText
N Wrapper
"l Generator HDL
HDL code code
Y
Wrapper Code

Hardware

v

Synthesizer

CCM Partial
v bitstreams

CCM info

Resources

DB Storage

Figure 5.7: CCM creator receives hardware design (HLS/HDL), XML file describes hardware 1/Os, and Vera
file describes how data is applied. Then, it and creates a CCM, synthesized and generates partial bitstreams.
Finally, it saves the bitstreams in the cloud storage and their info in the Resources database.

5.6 Properties of the Platform

In this section, we illustrate the computation model of our platform. Then, we list cloud
properties supported by our platform and explain how those properties are achieved.
5.6.1 The platform computing model

The computing model of our platform is a streaming computing model. The CCM is a
network-attached computing machine that has a receiving port and a transmitting port.
Sending data to the CCM and receiving results from the CCM is done through the usual
networking protocol used in the cloud. In the current version we have chosen the TCP

Stream as the main communication protocol with the CCM for two main reasons:

1- The recent software libraries that implement the TCP stream relay on the data plane
development kit (DPDK) which allows fast packet processing. Using the DPDK
allows the software side to send and receive data at high speed and can approach

the theoretical speed of the communication link.

56



2- TCP protocol guarantees packet ordering. This makes the application feels as it
received a continuous long stream. This also removes the need to build a custom

reordering mechanism in the static logic on the FPGA and on the software side.

In ideal cases, the CCM consumption rate matches the data incoming rate. we do not
assume a large buffer that stores unlimited data. When the CCM consumption rate is faster
than the data incoming rate, the CCM is stalled waiting for data arrival. When the CCM
consumption rate is slower than the data incoming rate, the CCM issues a back-pressure
signal which propagates to the Ethernet controller through AXI interfaces. The platform
consists of several layers with AXI interfaces between every two layers as explained in
section 6.1 and illustrated in Figure 6.4. When the network controller receives the back-
pressure signals, its buffer becomes full and it starts dropping packets. The TCP stream

does not acknowledge the non-received packets and therefore retransmission is done.

Adjusting clock frequencies in different clock domains in the platform is important to
control the produce-consume model of the system. The static logic should be clocked at
least at the Ethernet controller clocking speed (i.e. 156.25MHz for 10GE or 125MHz for
1GE). Since packet headers and interpacket gaps are discarded (which represents 60 bytes
at least), the static logic could work fine at a little bit lower frequency (e.g. at 150MHz for
10GE or 120MHz for 1GE).

5.6.2 Abstraction

The virtual FPGAs are standalone resources which are completely disaggregated from
servers. This simplifies their management and renting them as standalone resources. The
CCMs are standalone network-attached computing devices. Their interfaces are clearly

defined and standardized to match the common data interchanging methods in the cloud.

57



The CCM user is not aware whether this machine is a hardware or a software machine
since the data and results are sent over well-known network protocols. The user does not
need to adapt the data for each specific CCM. No need to add timing and control signals
as hardware designers do. The wrapper within the CCM is responsible for adapting the data
to the hardware input.

5.6.3 Sharing

A CCM can be shared among several users by interleaving computation sessions. The
computation session is an atomic operation that cannot be interrupted. When a user uses a
CCM, the hypervisor prevents other users from using it. When the current user’s TCP
session(s) to the CCM terminate, another user can request the same CCM and the
hypervisor restricts its use to the new user for one session and so on. With each session,
the whole CCM is reset. The CCM’s serializer and deserializer take care of flushing all
results out before terminating the session.

5.6.4 User data security

If the user requires a secure channel to the CCM, (s)he exchanges a symmetrical encryption
key with the FPGA hypervisor using Diffie-Hellman key exchange. Then, the hypervisor
uses the function “Send key (CCM_ID)” to send the key to the hypervisor’s back-end. The
encryption and decryption engines use that key to decrypt incoming data and encrypt
outgoing results. The hypervisor front- and back-ends take care of removing the key with
each change in the sender’s and receiver’s IP.

5.6.5 CCM clusters on Multi-vFPGA

A cluster of network-connected CCMs can be created and saved as a new CCM. CCM
network can be built by carefully setting the sending and receiving IP addresses of each

CCM in the cluster. For example, an FPGA chain can be created by setting the receiving

58



IP address of each FPGA in the chain as a sending IP address for its previous VFPGA. The
receiving address of the first VFPGA and the sending addresses of the last VFPGA in the
chain becomes addresses for the resulted CCM. The new CCM information is stored in the

Resources DB with pointers to the information of other CCMs constructing it.

59



CHAPTER 6

FPGA Virtualization Platform

Our proposed virtualization platform is based on partial dynamic reconfiguration. The
physical FPGA is divided into a static region (that is kept as is with no reconfiguration),
one or more dynamically reconfigurable regions, and a communication controller. Each
dynamically reconfigurable region corresponds to one VFPGA where a user's design can
be placed (along with the wrapper). Our specially developed wrapper controls clocking the
user design according to data arrival. An overview of the proposed platform is shown in
Figure 6.1. It has four distinct layers; a network layer, static logic, wrapper(s), and user
design(s). The network controller handles physical connections and establishes TCP
network sessions between the users and their designs in the virtual FPGAs. It manages the
MACs and IP addresses assigned to the VFPGA. This enables users to use their vVFPGA-
based applications like any standard server; sending requests (input data) to the assigned

IP (in this implementation we are ignoring ports, though later we may direct traffic to a

60



specific user's sub-circuit based on port number). The static logic routes TCP payloads
between VFPGASs and the network controller. It also contains clock management resources
that generate controllable clock domains for each VFPGA and the re-configuration
management logic that can download a user's design at run time to one of the VFPGAs. The
re-configuration management unit has its own MAC/IP addresses to receive the partial
reconfiguration bit streams and reconfigure the vVFPGA regions. Having its own MAC/IP
address allows it to be integrated with the cloud/DC management tools as a
‘Reconfiguration Server’. The wrapper has a fixed interface to the static logic and a custom

(automatically-generated) interface to the user's design allowing it to fit into a vFPGA.

Ethernet
Network = = - Network Controller - ==
Controller I FPGA
/ Static Logic I Write channels Read channels
|
/ Wrapper | Routing Clock
I Arbiter Management
/ User Design I
I

Static Region - wrapper ||| wrapper

Reconfigurable ,J
Regions

Figure 6.1: Virtualization platform overview. FPGA is partitioned into a static region and several reconfigurable
regions to be used as virtual FPGAs.

6.1 Data Communications

Data movement between the first three layers of the platform follows the standard two-way

handshaking mechanism as defined in AXI14 stream specifications [48]. This enables both

61



reader and writer to control the data transmission rate and to communicate without losing
any cycles. Figure 6.2 shows the timing diagram of the AXI interface. The data transfer

only when both TVALID (from the source) and TREADY (from the destination) are high.

S e

INFORMATION b X
TVALID ff i\
TREADY (f ‘\
T
Figure 6.2: Timing diagram of the two-way handshaking process [48].

Cross clock-domains data movement is achieved with asynchronous FIFOs, Figure 6.3.
There are two asynchronous FIFOs in the Ethernet controller and another two per each
wrapper as shown in Figure 6.6. These FIFOs are implemented with embedded FPGA
RAM blocks (BRAMs) with AXI read/write interfaces. The writing ports of the FIFOs are
directly mapped to AXI write channels. Reading, however, is not straightforward since
BRAMs require two clock cycles for the first read (then one cycle per other consecutive
reads). Hence a pre-fetch circuit and a control logic were added to guarantee correct AXI

timing (one read per cycle).

Async. FIFO
CLK_w >>CLK_w CLK_rd< CLK_r
WDATA ———> WDATA RDATA
WVALID < WEN REN k d
outb1

I Y
Reading |«|— RREADY
) FSM1 > RVALID

Figure 6.3: BRAM-based asynchronous FIFO for transferring data across unrelated clock domains using
the AXI interface.

The interface between every two layers is clearly identified and presented in Figure 6.4.

the interface between the network controller and the static logic consists of read- and write-

62



AXI channels associated with the virtual FPGA index. The network controller sets the rx
virtual FPGA index according to the MAC address of the received packet. The router in
the static logic sets the tx virtual FPGA index and forwards the VFPGA results to the
network controller. The network controller sets the MAC address of the transmitted packets
according to the tx VFPGA index. The interface between the static logic and each vFPGA
region consists of clocking signals and read and write AXI channels. The clocking signals
include the wrapper’s clock, the static logic’s clock, user-design’s clock, and clock-enable
and wrapper’s reset. All data buses in the AXI read/write channels have the same width
which depends on the Ethernet interface underuse. For example, 1 G Ethernet introduces

8-bit words while 10 G Ethernet introduces 64- or 128- bit words.

Network Controller

4 N

21, 1= 3

EE %E:ﬁ% %E:ﬂ%

<< 5= 5 < =5 <

O o = |[>al =2 = [Za] =

ol > <

> =] V‘C =

The static logic (Security)
15} =i 4 N
2|, |Z] 1< -
:la%| L '?;Emg '?;Emg
Sl |12 Sl== S S|z = 3
HEEIRE A= = S|4 <
A E o 9 ~
wlvelg] Bl = 1=
) | 5 =
ololo|=|o
v v
(De)Serializer
R= =

Tlelelalsl  BREE

< = = [T A=) ER) B

S =L w| = Sl S

[~ =3 O] 7] [a ez [ Jon (2

Data-application controller

Figure 6.4: Inter-layer interfaces. The interface between L1 and L2 consists of two AXI interfaces and the virtual
FPGA indices. The interface between L2 and L3 consists of two AXI interfaces and clocking signals. The interface
between L3 and L4 consists of two AXI interfaces whose data have the internal wrapper formats.

The AXI interface is used everywhere in the platform. The static logic rx router is an AXI

interconnect between one master (data are coming from the Ethernet controller) to several

63



slaves (data are routed to VFPGAS). The static logic tx router is an AXI interconnect
between several masters (VFPGAs) to one slave (Ethernet controller). The wrapper
components such as packing, unpacking, serializer, deserializer, and asynchronous FIFOs

all of them communicate through AXI interfaces.

AXI interface can issue a back-pressure signal and this signal propagates through all AXI
interfaces in the data path. This explains how our system controls the data stream flow. If
the incoming data rate is greater than what the application can consume, the busy
application’ back-pressure signal is propagated to the network controller. The network
controller starts dropping packets and the TCP protocol retransmits them. This way the
back-pressure propagates to the user. It is the user responsibility to send data according to
the consuming rate of the CCM. The CCM designer should provide information about the

CCM throughput.

6.2 Network Controller

The network controller implements the TCP’s data link, network, and session layers of the
OSI network stack. It establishes sessions between VFPGAS and their users and ensures
data ordering and correctness. It receives configuration bitstreams and users’ data, deliver
it to the static logic and transmit the results back to the user. More precisely, it performs

the following tasks:

e Establishes and terminates TCP sessions between vFPGASs and their users. It stores

source addresses and other session data.

e Forwards the payload of the received TCP packets to the static logic associated with

the target vVFPGA index.

64



e Constructs TCP packets for the received results from vFPGAs and transmits them to
their users.

e Stores and manages MAC/IP addresses for all associated vVFPGASs and negotiates for
dynamic network addressing using the DHCP protocol.

e Announces the existence of associated VFPGAs over the network and replies to

network queries about VFPGAs such as ARP and ping requests.

The network controller can either be integrated with the static logic in the physical FPGA
or it can be an off-the-shelf device external to the FPGA. It is also possible to share a
network controller among several vFPGAs using a single Ethernet cable connected to the
physical FPGA or associate one network controller per vFPGA such that each vVFPGA will

have a dedicated Ethernet cable connected to the physical FPGA.

The fixed interface between the static logic and the network controller consists of AXI
read-data channel, write-data channel, and the vVFPGA indices. The data width is 8/64 bits
for the 1 GE/10 GE Ethernet interface, respectively. Asynchronous FIFOs are used to move
the data across the three clock domains of the static logic, the Ethernet transmitter, and the

Ethernet receiver.

Figure 6.5 shows our Ethernet controller designed to achieve the maximum throughput.
The receiver works as follows; the Phy rx receives Ethernet packets and check the packet’s
CRCs. The sniffer reads packet header on-the-fly, check addresses, and trigger the suitable
reaction. If a TCP packet is received, its payload is stored in the rx-Async buffer. The
asynchronous buffer depth can hold two packet-payloads. So, a packet can be read while

the other packet is buffered. The transmitter works as follows; once the tx-Async buffer

65



has a ready payload, it triggers the finite state machine controller to start constructing an
Ethernet packet and choose the suitable Ethernet header. Phy_tx transmits the packet and

adds a preamble, CFD, and CRC to it.

rx clock | Static clock

GMIIRX >| Phy rx | Payload ASYNC. | 2EnD data >
; i ¢ buffer

: Header sniffer Session 1 RY wFPGA i
' > S > RX vFPGA_index
E [Chk addr. [Memory | €«—— X _vFPGA_index
i [_mmem Addr. table SRC. t'ii)t’.?l",—fn’dres‘sev i
i FSM :
}/<—| Eth. header ;
ARPreply |, crock | Statie clock
i - IP header !
: I Asyhc.
m Phy_tx | Packet | 2 |« _ICWP reply | o A
' * |«—{ UDP Header |
: TCP Header |
_________________________________________ Payload ]
Figure 6.5: The implementation of the Ethernet controller.

6.3 Static logic

The static logic includes data routers, a reconfiguration management unit, a data security
unit (optional), and a clock management unit. These components are described next.

6.3.1 Data routing

Data routing is needed when the network controller is shared among several virtual FPGAs.
Routing data between the network controller and vFPGAs is done through two AXI
interconnects. The first one reads from the rx-Async buffer and route to the corresponding
VFPGA. The second AXI interconnect reads results from one vVFPGAs at a time and
forward them to the tx-Async buffer. The result of each VFPGA is collected separately to

guarantee no interference with other vFPGAS outputs.



6.3.2 Reconfiguration management unit (RM)
Reconfiguration manager (RM) receives partial bitstreams over the Ethernet to reconfigure

any of the vFPGAs. It has its own MAC/IP addresses and the network controller deals with
it as another VFPGA. It consists mainly of an internal reconfiguration access port (ICAP)
surrounded with a wrapper. It also responsible for freezing the partial region 1/O interfaces
during the configuration.

6.3.3 Clock management unit (CM)

The clock management unit produces several clocks for the different domains as shown in
Figure 6.6 The Ethernet controller has two separate clock domains; one for the transmitter
and another for the receiver. The static logic has its own clock domain. Each user design
is clocked by a dedicated controllable clock signal. Though the wrapper that surrounds the
user design uses the same frequency, it has a separate clock domain than the design. Finally,
part of the wrapper shares its clock with the static logic. These separate clock domains
allow optimum operation of different parts of the system independently from other parts,
users to set up the frequency of their circuits in the vVFPGA, and most importantly, the static
logic does not need to be re-synthesized with the users’ design every time a new user's
design is loaded into a VFPGA. The last point is essential for virtualizing the FPGA among

multiple users.

67



Static clock

i
: 1!
i '
———————————————————— 9= Bus width : C Async. : C Wrapper : : User
RX clock T 1 <'L"|j'> transform B'c.lflfer Logic Design
I

i

1

i

: RX ) A%{nc ) : i‘:::v\-;;::efz::::::-_:::::::::-_-_:

! -m Controller _\f buffer _ ' il PP 1

' :
i
)

Static Bus width : C Af,yhc. : C Wrapper : : User
<'L"|D transform Bul%er Logic Design

r Logic

1 + 1

1 X As}mc. |y p—————
Write data 1

: Controller il Buffer fie : s ———

i i i

1

L

I
1 1 [ :
1

.................... A Bus width ﬁ Async. ﬁ Wrapper ﬁ User :
: transform B{Jﬁ‘er Logic Design :
1 i
___________________________________ - |

L
Figure 6.6: The platform's different clock domains and the use of asynchronous buffers to move data across
these domains.

Standard clock buffers and clock management units (CMUSs) available on commercial
FPGAs have many properties that are utilized in the wrapper design. First, they are
controllable (i.e. stoppable). The wrapper uses this property to stall and release the user
design clock according to the availability of input data and other conditions. Second, they
are run-time reconfigurable, allowing the wrapper to set the user design's clock frequency
at run-time. Third, their clock phases can be shifted by 180 to provide negative edge

clocking for the user design.

The static logic should be clocked at least at the Ethernet controller clocking speed (i.e.
156.25MHz for 10GE or 125MHz for 1GE). Since packet headers and inter-packet gaps
are discarded (which represents 60 bytes at least), the static logic could work fine at a little

bit lower frequency (e.g. at 150MHz for 10GE or 120MHz for 1GE).

6.4 The wrapper's design

Ideally, users would want to configure their application circuit on a data center-attached
VFPGA, and then use it by sending input data streams and receive output data streams
through Ethernet packets. The wrapper allows users to fit, communicate, and control their
designs in any partially reconfigurable region (i.e. vVFPGA). It is automatically generated

for each design according to a user-provided XML input/ output specification. The designer

68



also prepares a description of the data format and application/capture rules using a subset
of the verification language OpenVera (SystemVerilog) [66]. The wrapper generated from
the user's specifications (XML and Vera) provides the interface between the user's design
from one side and the static logic from the other side. The user-specified control is
incorporated into the wrapper's design itself. This means users can pack and send/receive
their raw data/results to the FPGA as dense packets with no embedded control data to

utilize the maximum communication bandwidth.

A custom wrapper is generated for the user's design based on a user-provided XML
specification which is then synthesized with the design to produce the partial configuration
bitstream of the design. Several bitstreams could be generated for each of the different
VFPGA instances available on all the FPGA types attached to the cloud (hence, a user's

design can be seamlessly migrated between any VFPGA on the cloud).

In the XML description, users can divide their circuits’ inputs and outputs into groups such
that one input/output group is applied/captured at each clock cycle. If there is more than

one output group, the design is stalled until all groups are captured.

In the Vera description, users specify how input/output groups are applied and captured.
So, a user could specify one input group to be applied, then clock the circuit for a certain
amount of cycles, then capture a certain output group when a certain output is changed
(e.g. a Done flag), and so on. This allows for any computation semantics to be

implemented. An input/output group's size could be anything from 1 to n-bits.

69



6.4.1 Conceptual design of the wrapper
Figure 6.10 and Figure 6.7 show the conceptual design of the wrapper and a flow chart

describing its operation, respectively. When a network packet arrives, its payload is
extracted by the fixed logic and sent to the vVFPGA as a sequence of c-bit words (c=8 or 64
for 1 Gb Ethernet or 10 Gb Ethernet, respectively). Packing/unpacking circuits convert the
received/ sent c-bit words to w_in-bit words. w_in represents the circuit's input data size
(with no control signals) and is inferred from the user's specifications (hence, w_in > n).
The packing/unpacking circuitry is designed to achieve the maximum throughput. If
c>w_in, one output is produced per cycle, and if c<w_in, one output is produced each
w_in/c cycles. If c=w_in, then the packing/unpacking circuits are removed from the
wrapper. A serializer then groups the input data and the control signals that it generates
into user-specified input groups and applies them to the circuit in the user-specified order.

Input groups with sizes less than n are simply connected to the lowest bits of the serializer.

The wrapper receives consecutive words with 64-bit length, combine them together,
generate w_in-bit data words, and pass them to the serializer. The serializer generates n-bit
word starts with the application bit, followed by input group index, and finally the data.

The serializer output is stored in the input FIFO.

70



8/64-bit words

Convert bus width
(Bit packing/unpacking)

w_in-bit words

Generate design inputs
(Serializer)

'

n-bit words
+ selection bits
+ application

L

Apply inputs
(Wrapper FSM)

8/64-bit words

Convert bus width
(Bit packing/unpacking)

w_out-bit words

f

Format results
(Deserjalizer)

m-bit words
+ selection bits

1

Capture outputs
(Wrapper FSM)

Figure 6.7: A flow chart illustrating the data flow from/to the design through the wrapper. The left-hand side
shows the data input flow starting from receiving a payload of a user's network packet till its application to the
design. The right-hand side shows formatting and sending the results starting from capturing the outputs till
generating the payload for the network packet to be sent back to the user.

6.4.2 Wrapper components
e Bit unpacking: it receives w-bit words, combine them together and then produces an

n-bit word, where n > w. If the input is streamed, it will produce a word exactly each
n/w cycles. It contains slicer, state machine, and several registers as depicted in
Figure 6.8.

e Bit packing: it receives the m-bit word, divides it to m/w words and produces w-bit
word each cycle. It contains slicer, state machine, and several registers as depicted in

Figure 6.8.

71



ready in ready out
valid_in Packing (w>n) valid out
data_in . | Unpacking (w<n) data_out
w n
ready_in valid_in data_in ready_in valid_in data_in
A | w w<n A nl w>n
Packing ¥ Unpacking
s > prev.
v L mp reg
FSM Word Counter —L
: Words | \slicer | FSM <
Bits p—
e : v
"> _Shift register Bit Counter
- — = -
l n
v ¥
ready_out valid_out data_out ready_out valid_out data_out

Figure 6.8: Our implementation of the Packing/unpacking circuitry. If the input data width is greater than the
output data width, the packing circuitry is used. If it is less, the unpacking circuitry is used. If they are equal, the
packing/unpacking part is removed.

Our implementation of the bit-packing and -unpacking circuits are depicted in
Figure 6.8. Each one has a slicer, state machine, word and bit counters, and several
registers as. The bit counter gives the number of shifted bits in the slicer. The word
counter in the unpacking circuit determines the index of selected word from the wide
input. The word counter in the packing circuit determines when a complete output
becomes valid at the circuit output.

Slicer: The slicer is the main building block in the packing and the unpacking circuits
in our implementation. It is a combinational circuit that receives n-bit input and
produces (n/2)-bit word as output. The output is just a slice of the input chosen

according to the selection input. Its diagram is shown in Figure 6.9 below.

72



j\ n logn
Y

19215

i n/2

d_out

Figure 6.9: Slicer is a combinational circuit that selects n/2 consecutive bits from an n-bit input.

The serializer translates the data into the wrapper internal data input format. The
internal data format consists of three fields; clocking information, input register index,
and input register value. The serializer design with an example is illustrated below.
The deserializer translates the internal data output format to data. The internal data
output format consists of two fields; output group index and value. If there is only
one output, then there is no index. The deserializer decides what results should be
transferred to the user and what is the format of these results. The deserializer circuit
design is much simpler than the serializer. In several cases, its job is to forward the
circuit outputs without control signals and the selection bits to the output FIFO.
Input registers: The hardware inputs are divided into groups and need to be stored
into input registers. This wrapper FSM guarantees that the hardware will never be
clocked with wrong inputs.

Cycle counter stores the number of clock cycles that should be applied with each
application command. The counter is updated at run-time.

Mask register is bits vector in which each bit corresponds to an output group. It
indicates whether the output group should be sent to the output FIFO or should be

bypassed.

73



Output arbiter decides which output group will be captured each cycle. The arbiter is

reset when a new user input arrives, then it advances once a new output is captured.

C(8 or 64)

2

lm

vFPGA
Bit packing/unpacking
Data stream‘r w_in
Serializer
.y nt+sel i+1
Bufferin
l, ntsel i+]
Lok sEL data |<-
. \I, z
2 —> Input demux \\‘\
n n \!,n ‘Ln \!,n_
FSM  <--1 Cycle |  Mask | || || |4
In In §n
___________________________ )L User Design
------------------------ im ‘Lm ,Lm <A
arbiter —\i\\\Output Mux//

SEL

data

.v m+sel_o

Buffer out

‘ m+sel o

Deserializer

Data stream‘ w_out

‘ Bit packing/unpacking ‘

Internal data
format

Input
_.---- registers
g (groups)

_ Output
groups

1

Internal results
format

Figure 6.10: The wrapper's conceptual design.

8/64

Wrapper FSM controls the clock buffer chip enable signal (CE) to control clocking

the user design according to data arrival. It also controls the incoming/outcoming data

to the user design by controlling ready-in signal and valid-out signal. An FSM

74



controls clocking the user's design according to data arrivals and user specifications,
reading data from the input FIFO, applying it to the inputs, reading the output results,
and capturing outputs and storing them in the output FIFO. When a new input arrives,
if its clock-control bit is on, the FSM clocks the user design for the number of cycles
indicated in the cycles register. The Verilog code of a wrapper FSM is shown in
Figure 6.12. Figure 6.11 shows a diagram that illustrates the wrapper FSM
complexity. The wrapper reaches the "counting" state if the user has specified several
clock cycles per input application. At this state, the wrapper stalls inputs and stop
capturing outputs until the clock count reach zero. The wrapper goes to the "One
output” state if there is only one or no output to capture. This state allows receiving
inputs while capturing the output. In the "Multi-output™ state, the wrapper keeps
capturing output without accepting new inputs until it receives the "last output” signal

from the output arbiter (reading new inputs can overlap with the capturing the last

output).
Single cycle
apply—> R I f\ —> ready_in
valid_in—> S N
- Y \Q\\ . —> user_enable
ready_out—> /oA Ry = —
multi cycle—> \;.‘\ O\\'L 7 e \= |—>valid_out
count>(0—> OQQ ,s/ ES A
/& o s\ |= |—> count dec
no outputs —» | “~apply | ~valid|in = count>0 | & -
| T 2\ =
3

last_caputre —>

Otherwise

| :‘?""‘
2/ o \
S %fSJr?g[L' .§
a o \ = | | =
2% 2\ §ad 3
= o =\ Ry cycie &
e =\ 3 /s
E-N =\ [ &
A= o /&
L2 = EAN /
= = 2
=* 53
=
ANED

~ready_out

Figure 6.11: Diagram shows the complexity of building the wrapper state machine. If the hardware has one output
group, then an input can be applied while capturing the output s. If the hardware has several outputs, then the
controller should flush out outputs before accepting new inputs. For some inputs, it is required to apply several
consecutive clock cycles without capturing outputs or applying new inputs.

75



//apply bit: the apply bit in the input FIFO read channel

//TVALID in: The valid signal of the input FIFO read channel

//TREADY out: The ready signal of the output FIFO write channel

//ZC: cycle register is zero

//Zero: cycle counter is zero

//Z0: No output is required to be transmitted to the user

//00: Only one output is required to be transmitted to the user

//Last: Current output is the last output to be transmitted to the user

module wrapper Moore FSM (input clk, reset, apply bit, TVALID in,
TREADY out, zc, zero, zo, last, oo,
Output TREADY in, USER _EN, TVALID out,
cntr_dec, cntr_ load);
reg [6:0] state = 7'b0O;
assign USER_EN = cntr_dec | (state[l] & TVALID in & TREADY in &
apply bit & (oo | zo | (last & TREADY out))):
assign TREADY in = state[0] & ~(~zo & (~TREADY out | ~last)):;
assign TVALID out= ~zo & USER EN;
assign cntr_dec = state[3] & last & TREADY out;
assign cntr_load = ~state[3];

always Q@ (posedge clk)
if (reset)
state <= 'h00;
else case (state)
'h00: state <= 'h03;
'h03: if (TVALID in & apply bit) begin
if (~zc) state <= 'hOa;
else if (oo) state <= 'h07;
else state <= 'hl7;
end
'hOa: if (zero) begin
if (oo) state <= 'h07;
else state <= 'hl7;
end
'h07: begin
if (TVALID_in & apply bit) begin
if (~zc) state <= 'hOa;
end else state <= 'h00;
end
'hl7: if (TVALID in & apply bit & TREADY out) begin
if (~zc) state <= 'hOa;
else state <= 'hl7;
end else if (last) state <= 'h00;
default: state <= 'h00;
endcase
endmodule

Figure 6.12: Verilog code of a finite state machine of a wrapper.

The user_enable signal is used to gate the application hardware clock. FPGASs are provided

with controllable clock buffers [67, 68]. Figure 6.13 shows a timing diagram that explains

76



the effect of the user_enable signal on the output clock. Clock resources are part of the
static logic. They are nor reconfigurable parts. For this reason, the wrapper interface

includes the user_enable output and the user_clock input.

CE -“;3 cli_in Lﬂ_ﬂ_ﬂ_ﬂmmm
B - |
. Ik out -l||—a acout | 2 \UNNNNNNNNN. | AN
e >= BUFGCE

W: ccn Lﬂﬂﬂﬂﬂﬂﬂmmrmmmmﬂﬂﬂm
]
-ll;a clk_out | 1 L|'|_|'|_|'|_|'|_|‘|_|‘|_|‘|_|‘|_|‘|_—L|-L|-L|-U U'|_|'|_|'|_

BUFGCE_1

Figure 6.13: The controllable clock buffer allows controlling the application clock. When it is enabled the
application run. When it is disabled the application freezes. The upper timing diagram shows a clock buffer which
always produces a low output when its enable signal is off. The lower timing diagram shows a clock buffer which
always produces a high output when its enable signal is off.

By controlling this clock buffer, we can freeze the user application when the input buffer
is empty and when the output buffer is full. This isolates the user application completely
and gives it the feeling of having a continuous input/output stream. If the design has input
groups, the controllable buffer stalls the application until setting up all input groups on
each cycle. The clock cycle counter allows having several clocks for the same inputs. It
also allows flushing out the results when all computations are done. The serializer decides

when to change the clock cycle counter.

6.5 Wrapper generation

A wrapper generation tool is a template-based tool that has templates for all wrapper
components. Some of the wrapper components are parametrizable (no need to modify its
Verilog code) such as packing/unpacking circuitries, asynchronous buffers and the finite
state machine (wrapper FSM). Other components are modifiable and need to be rewritten
according to the XML/JSON specification file of the application hardware such as the input

registers, input demultiplexer, output multiplexer, and output arbiter.

77



The wrapper generation process is illustrated in the flowchart in Figure 6.14. It starts by
parsing the XML file to determine all parameter values and to generate the Verilog code
of the modifiable components. Then, the serializer is generated according to the Vera
description file. The output of the generator is a Verilog file for the wrapper which includes
its modifiable components, instantiations of the parameterized components, instantiations
of the serializer and the deserializer and instantiation of the user application. The wrapper
file with the related Verilog files are sent to the synthesizer to generate partial bitstreams

and the CCM is created.

@ >
+ User hardware (HDL)

* 1/0 groups description (XML)
» Data application rules (Vera)
v
| Parse XML File |

¥
/ Generate HDL code for: Input registers, Input /
Demux, Output fo, Output arbiter

I Parse Vera Files |

Generate:
Serializer and Deserializer

Generate wrapper: Instantiate the user
hardware with all wrapper components

| Synthesizer |

/ Partial bitstreams /

Figure 6.14: CCM creation flowchart.

Figure 6.15 shows the template-based wrapper generation algorithm. It receives the 1/0
data bus widths of the static logic / vFPGA interface, the specification files(XML and Vera)
and design name. Lines 2 calls the parse XML algorithm which prepares the Verilog code
of the modifiable components for the given design name from the given XML file. Line 3
calls the serializer/deserializer generation algorithm which returns the Verilog code of the
two modules. Lines 4-13 decides whether to instantiate or not packing or unpacking circuit

at the input and the output interfaces. Line 14 adds the serializer and the deserializer

78



modules Verilog code. Line 15 copies the Verilog file header. Lines 16-21 adds

instantiations of the parameterizable components. Line 22 adds the unmodifiable

components Verilog code. Line 23 adds the end module code.

Algorithm 1 Generate wrapper

10:

12:

14:

16:

18:

20:

22:

24:

procedure GENERATEW RAPPER(static. DATAWIDTH_IN, static . DATAWIDTH_OUT,
XML file, design_name, Verafile)

VCodel = Parse X M L(X ML file, design_name)

VCode2 = GenerateTheSerializers(Verafile)

if static. DATAWIDTH _IN < w_in + InputSelectionBits + 1 then
VerilogCode = VerilogCode + Instantiate_packing_inputs()

else if static. DATAWIDTH _IN > w_in + InputSelectionBits + 1 then
VerilogCode = VerilogCode + Instantiate_unpacking_inputs()

end if

if static. DATAWIDTH _OUT > w_out + QutputSelectionBits then
VerilogCode = VerilogCode + Instantiate_packing outputs()

else if static. DATAWIDTH OUT < w_out + QutputSelectionBits then
VerilogCode = VerilogCode + Instantiate_unpacking_outputs()

end if

VerilogCode = V Code2

VerilogCode = VerilogCode + W apper_header()

VerilogCode = VerilogCode + Instantiate_deserializer()

VerilogCode = VerilogCode + Instantiate_ASY NC_FIFO_in()

VerilogCode = VerilogCode + Instantiate_ ASY NC_FIFO_out()

VerilogCode = VerilogCode + Instantiate_wrapper_F SM ()

VerilogCode = VerilogCode + Create_clock_cycles_counter()

VerilogCode = VerilogCode + Create_mask_register()

VerilogCode = VerilogCode + V Codel

VerilogCode = Wapper_footer()

Return(VerilogCode)

end procedure

Figure 6.15: Algorithm for generating the wrapper from the XML specification file and the Vera description file.

6.5.1 Parsing the XML/JSON specification file
The designer should prepare a description of his hardware inputs and outputs. In the

description, input and output groups should be defined. The description should be written

in XML or JSON format. These formats are chosen because they are a text-based format

and they allow expressing a hierarchy in the description. The designer should prepare an

XML/JSON specification file according to the schemas shown in Figure 6.17 and

Figure 6.18. Table 6-1 contains the description of the XML tags and their attributes.

Figure 6.16 shows an algorithm for parsing the XML specification file to generate the

wrapper modifiable components.

79



Algorithm 2 Parse the XML description

1: procedure PARSEXML(X M L file, design_name)

2 VerilogCode =77, instantiation = """, w_in = 0, w_out =0
3% design_name = getDesign(X ML file, name = design_name)
4 for each parameter p in design_name do

5 VerilogCode = VerilogCode + parameter_de fination(p)
6: end for

7: InputSelectionBits = loga(countI nputGroups(design_name))
8: for each input group g in design_name do groupWidth =0

9 for each bus in g do

10: if isNumerie(bus.width) then

11: wireWidth = bus.width

12: else

13: wireWidth = get Parameter(bus.width).value

14: end if

15: if (bus.start # —1 A bus.end # —1) then

16: wireWidth = ||bus.end — bus.start||

17: end if

18: groupWidth = groupWidth + wireWidth

19: VerilogCode = VerilogCode + bus.reg_decalrations()
20: instantiation = instantiation + bus.instantiation()
21: VerilogCode = VerilogCode + BusDeclaration(i)

22: end for

23: w_in = Max(w_in, groupWidth)

24: VerilogCode = VerilogCode + NewInpReg(groupWidth, load = (sel_in == g.index))
25 end for

26: L = countQutputGroups(design_name)
27 if L > 1 then

28: VerilogCode = VerilogCode + instantiate_output_arbiter()

20: end if

30: QutputSelection Bits = logy (L)

31: for each output group g in design_name do groupWidth = 0 mask_pin =""
32: for each bus in g do

33: if isNumeric(bus.width) then

34 wireWidth = bus.width

35: else

36: wireWidth = get Parameter(bus.width).value

37: end if

38: if (bus.start £ —1 A bus.end # —1) then

39: wireWidth = ||bus.end — bus.start||

40: end if

41: groupWidth = groupWidth + wireWidth

42: if (bus.mask == true) then

43: AddToM ask(mask_pin, bus.name

44: end if

45: VerilogCode = VerilogCode + bus.wire_decalrations()

46: instantiation = instantiation + bus.instantiation()

47 VerilogCode = VerilogCode + BusDeclaration(i)

48: end for 1

49: w_out = Max(w_out, groupWidth)

50: VerilogCode = VerilogCode + AddMaskWire(g.index, mask_pin)

51: VerilogCode = VerilogCode + AddT oOutput Multiplexer(g.index, bus.name)
52: end for

53: VerilogCode = VerilogCode + instantiate_user_design(design_name, instantiation)

54: ReturnVerilogCode, InputSelectionBits, OutputSelection Bits, w_in, w_out
55: end procedure

Figure 6.16: Algorithm for parsing the XML specification file and generating Verilog code for the modifiable
parts of the wrapper.

80



Table 6-1: A description of the XML tags and their attributes used to describe the user hardware 1/Os and their
groups.

XML tag Attributes Description

<User Design_List> Contains a list of several user designs

Contains a list of the user design parameters, input groups,

< ign>
User Design and output groups

The name of the Verilog module of the wrapper to be

wrapper_name
PPeT_ generated

The name of the Verilog module of the user design to be

design name | . : . .
en_ instantiated in the wrapper Verilog code.

List parameters defined by the Verilog module which is

< > . .
garE et used to describe I/O bus width
name The name of the parameter name
value The value of the parameter
<Input_Group> Define an input group which contains a list of input buses
<Tutiput Crows l]))ljbsfirsle an output group which contains a list of output

Define a wire, bus or part of a bus. To define a part of a

<l bus, the start and the end indices should be used.
name Wire/bus name
width Total wire/bus width
start The starting index within the bus
end The ending index within the bus

Indicates that this bus represents a valid-out wire and it
mask should be used to mask this group. It is used with output
groups only. If the mask="true", the bus width should be 1

81




{ "$schema": "http://json-schema.org/draft-04/schema#",

2 "type": "object",

3 "properties": {

4 "wrapper name": {"type": "string"},

"design name": {"type": "string"},

) "Parameter": {"type": "array",

7 "items": [{

8 "type": "object",

9 "properties": {"name": {"type": "string"},
10 "value": {"type": "number"}},
11 "required": ["name","value"]
12 }H
13 e
14 "Input_ Group": ({
15 "type": "array",
16 "items": [{
17 "type": "object",
18 "properties": {
19 "Bus": {
20 "type": "array",
21 "items": [{
22 "type": "object",
23 "properties": {"name": {"type": "string"},
24 "width": {"type": "string"},
25 "start": {"type": "number"},
26 "end": {"type": "number"}},
27 "required": ["name","width"]
28 H
29 }
30 b
31 "required": ["Bus"]
32 H
33 },
34
35 "Output_Group": {
36 "type": "array",
37 "items": [{
38 "type": "object",
39 "properties": {
40 "Bus": {
41 "type": "array",
a2 "items": [{
43 "type": "object",
a4 "properties": {"name": {"type": "string"},
45 "width": {"type": "string"},
46 "start": {"type": "number"},
a7 "end": {"type": "number"},
43 "mask": {"type": "boolean"}},
49 "required": ["name","width"]
50 H
51 }
52 |3
53 "required”: ["Bus"]
54 11
55 }
56 .
57 "required": ["wrapper name","design name"”, "Input_ Group", "Output_ Group"]
58 }

Figure 6.17: The JSON schema file for describing hardware 1/0s and their groups to the wrapper generator.

82



= o

W o =] oy

10
11
12
13
14
15
16
17
18
19
20

L e R A S S I I S I\ B ot i v ]
[ IRV I s o TS B L B o S

[VSEER VR 'S RN U R ¥ |
(Sl P

w W
0 =1 o

5

C

=)
o WO

L B e T = T R R S ' =)
O W 0 =] oy o WO

o
[V R

oo
0 =] @y U1

C

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="User Design">
<xs:complexType>
<%3:sequence>

<xs:element name="Parameter" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute type="xs:string" name="name" use="optional"/>

<xs:attribute type="xs:integer" name="value" use="optional"/>

</xs:extension>
</%xs:simpleContent>
</xs:complexType>
</zs:element>

<xs:element name="Input Group" maxOccurs="unbounded" minOccurs="0">

<zs:complexType>
<Xs:sequencel>

<xs:element name="Bus" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute type="xs
<xs:attribute type="xs
<xs:attribute type="xs
<xs:attribute type="xs
</xs:extension>
</%xs:simpleContent>
</%s:complexType>
</xs:element>
</®3:3equence>
</%s:complexType>
</xzs:element>

:string" name="name" use="optional"/>
istring" name="width" use="optional"/>
:integer" name="start" use="optional"/>
:integer" name="end" use="optional"/>

<xs:element name="Output_ Group" maxzOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:sequence>

<xs:element name="Bus" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<¥s:simpleContent>

<xs:extension base="xs:string">

<xs:attribute type="xs

<xs:attribute type="xs:

<xs:attribute type="xs

<xs:attribute type="xs:
<xs:attribute type="xs:

</xs:extension>
</xs:simpleContent>
</xzs:complexType>
</xs:element>
</®s:sequence>
</zs:complexType>
</%s:element>
</%s:sequence>

:string" name="name" use="optional"/>
string" name="width" use="optiocnal"/>
:boolean" name="mask" use="optional"/>
integer" name="start" use="optional"/>
integer" name="end" use="opticnal"/>

<xs:attribute type="xs:string" name="wrapper name"/>

<xs:attribute type="xs:string" name="design_ name"/>

</xs:complexType>
</xs:element>
</%xs:schema>

Figure 6.18: The XML schema file for describing hardware 1/0Os and their groups to the wrapper generator.

83



6.5.2 Parsing the Vera specification file
The wrapper also contains an instantiation for the serializer which should be generated by

another tool as explained below. In this subsection, we just explain how the serializer and
the deserializer can be automatically generated. Currently, we did not build the serializer
generation tool and we did not write the algorithm of creating the serializer. Instead, we
used Microsoft Excel to generate the serializer output in our experiments so, the serializer

functionality is done on the user side.

The serializer generator tool translates the VVera description file to micro-instructions and
stores them in the control store of the microcode, Figure 6.19. A serializer generation tool
is also a template-based tool. It has a microcode template which consists of; control store,
address register, output multiplexer, and loop counters. The number of loop counters varies
according to the existence of nested loops in the Vera description file. We need a loop

counter for each level in a nested loop. A counter can be reused in separate loops.

Build
Testbench Translate plnstructions hardware o
(writtenin OpenVera, (Microcode) Serializer
or any HDL)

Intermediate representation

Figure 6.19: The OpenVera code is translated to microinstructions then the Serialized is generated.

The Vera language is chosen because it is a standard verification language. In future work,
we are going to define a special simple language to write serializer inspired by Vera.
Currently, we assume that the hardware core designer writes a test bench for his core. In
the test bench, the read_data() function pulls input from an input data stream and the

write_result() function pushes output on an output data stream.

84



6.5.3 An example for generating a serializer from a Vera description
In the following, we explain an illustrative example for generating the serializer of the DCT

hardware core [69]. The DCT XML description is depicted in Figure 6.20, the Vera test
bench and its translation into micro-instructions are shown in Table 6.2 and the resulted

serializer is shown in Figure 6.21.

Discrete Cosine Transform (DCT) and its inverse (IDCT) are used in compressing
multimedia streams in video and audio applications. DCT decomposes the signal into
weighted sums of cosine harmonics. The DCT core inputs are: 8-bit data, data in strobe,
reset and enable. The core outputs are 12-bit data and data out strobe. The core designer
provided a Verilog testbench to explain how it works. To start computing the user reset the
core through the rst input. Then, the enable input is set high. The dstrb input is set high
then low, then the data is sent one byte with each clock cycle. The core receives 64 data

bytes. When douten output becomes high, 64 words are captured from the dout output.

é <User Design wrapper name="fdot" design name="fdot prepared">
<Parameter name="di width" wvalue="8"/>
<Parameter name="do width" wvalues="12"/>

=R ¥ 1 Y S V' I %)

- <Input Group>

<Bus name="rst" width="1" />

<Bus name="ena" width="1" />

<Bus name="dstrb" width="1" />

g = </Input Group>

10 = <Input_Group>

11 <Bus name="din" width="di width" />

12 - </Input_Group>

3 = <Output Group>

14 <Bus name="dout" width="do width" />

5 <Bus name="douten" width="1" mask="true"/>
16 - </Cutput_Group>
1 - </User Design>

Figure 6.20: The FDCT 1/O specification in the XML file.

Usually, the test bench should start by specifying mask and clock counter values. In line 1,

the mask variable is set to OxFF which is translated to Set mask FF micro-instruction. In

85



line 2, the clock counter variable is set to 0x00 which is translated to Set clock counter 00
micro-instruction. Lines 4-7 assigns different values for several inputs at the same clock
cycle. The tool generates one microinstruction in line 5 (i.e. Set data with three input
values) since all of them belongs to the same input group as described in the XML
specification, Figure 6.20. The micro-instruction outputs the three inputs in the internal
wrapper format (i.e. CLK, SEL, DATA). Lines 8-10 also generate one similar micro-
instruction. The for loop come next in linesll, 12 and 15. They are translated to
LoadCounterl 31 and LoopNZ1 micro-instructions. Only counting loops with deterministic
counters are allowed. Line 13 reads an element from the input data stream which is
translated to the input group index and data in the wrapper internal format (i.e. CLK, SEL,
data). Lines 3 and 16 shows that the whole could is repeated for every 32 bytes. Lines 7,
10 and 14 indicates that the CLK value should be 1 for the corresponding micro-

instructions.

As shown in Figure 6.21, all outputs have the wrapper internal format (CLK, SEL, DATA).
Some input groups are internal (i.e. dstrb, reset and enable). Their values are determined
in the test bench, not by the input bitstream. Those inputs should be placed directly at the
output multiplexer since they have several constant values. The input stream (i.e. data) is
placed as a separate input to the output multiplexer because of line 13 which assign it to

data_in which represents the hardware core input.

86



Table 6.2: FDCT benchmark verification code written on OpenVera and its translation to microcode
microinstructions.

OpenVera Code Microcode plnstructions
1 Mask = 8'hFF; 00 Set mask FF
2 CLK_Counter = 8'h00; 01 Set clock counter 00
3 forever begin
4 dstrb = 1'b1;
5 reset = 1'b0; 02 Set data (sel=00 {dstrb,reset,enable}) = {0,1,1}
6 enable =1'b1;
7 #10;
8 dstrb = 1'b0;
9 reset = 1'b1; 03 Set data (sel=00 {dstrb,reset,enable}) = {1,0,1}
10 #10;
11 for (i=0; i<31; i++) 04 Load counterl 31
12 begin
13 data_in = read_data(); | 05 Set data (sel=01 {data) = data_in
14 #10;
15 end 05 LoopNZ1 05
16 | end 06 Jump 02
FDCT Serializer
data_in
Control Store
00001 1000
valid_in —>{EN 000101001 1,01, data —>
S addr > 000111010 1,00,00000011 —>
101001011 1,00,00000110 —>| 4> data out
T 011001100 0,10,clk_cntr —> -
inc 000100000 0,11, Mask —>
load| dec jaddr|next| sel T
zero&dec l« ‘L ‘ | > vali
> valid_out
Loop cntr

Figure 6.21: The serializer for the FDCT can be generated automatically from the Vera specification code Using
a microcode-template. Each cycle of the microcode generates data for one input group and generates the group
index and one bit represents whether to apply a clock or not for this data.

87



6.5.4 Wrapper generation software
We used MS Visual basic 6 to build the wrapper generation tool (a snapshot is shown in

Figure 6.22). The tool already has a wrapper template in Verilog. It reads the hardware
core specifications from the XML file (reading JSON files might be added in the next
version) and generates the Verilog file of the wrapper. The generated code includes the
wrapper code, an instantiation of the hardware core and instantiations of other wrapper
components. The current version of the wrapper does not generate the serializer and the

deserializer. The tool can modify the input/output groups and bus widths and updates the

XML file.

uzer design

Deszigh Input Group: Output Group: load ML ——l
image_edge_detectEd
plackboud ! tatic_DATA_WIDTH_IN

Addergd atc_ - _INE
blackbos_3G_15 Gt B N
blackbos_2G_8

Inputs Outputs
blackbos_2G_4

; 26 input ping =16
decr_comp_sncr! 28 wFPGA_stat output ping =12
decr_comp_encrl 32 ena, 1 douten, 1 ic DATA_IN_wIDTH =11
decr_comp,_enci256 dstib, 1 DATA_OUT_WIDTH
aes_ 128 ELDEK =12
static_DATA_WIDTH_OUT:
fd_onegloup I8 _I
123_onegroup

1za v data |
|Text4 | |rst | |'| | |dnut |C|CI_WI| update |
Selsct Capy

‘define ane(BITS) {{[BITS-1}{1'b0}}, 1'b1}

‘define zero(BITS) {[BITS){1'b0}}

madule fdct_wrapper #/parameter

ADDR_WIDTH=5,

static_DATA_WIDTH_IN =8,
static_DATA_WIDTH_OUT=8,

WORD_IN_SIZE=3,

SEL_IN_SIZE=2,//in #bits, log[#in groups+2)
DATA_IN_WIDTH =WORD_IN_SIZE+SEL_IN_SIZE+1,
WORD_OUT_WIDTH =12,

SEL_OUT_SIZE=0,//in #bits, log#out groups)
DATA_OUT_WIDTH = WORD_OUT_WIDTH +5EL_OUT_SIZE)(
input wrapper_clk

Jinput static_clk

Jinput RESET

J/read data channel

Jinput wrapper_out_ready

,output wrapper_out_valid//=1'b0

Figure 6.22: A snapshot of the wrapper builder software. The list on the left contains several hardware cores. The
wrapper is generated instantly for the selected hardware core. The bottom large textbox contains the generated
wrapper Verilog code.

88



CHAPTER 7

Results and Comparison

In this section, we first introduce a hardware core example and explain how to generate a
wrapper for it and then implement it on virtual FPGA. Second, we implement the
virtualization platform with four hardware core examples and evaluates the virtualization
overhead in terms of area, performance, throughput, and power. A comparison between
our virtualization platform and other platforms in the literature is also provided. Finally,
we introduce a CCM example for the edge-detection application and show how CCM can

be accessed using the same software library used to access similar software function.

89



7.1 Generating a wrapper for the JPEG Encode core

In the following, we show a complete CCM generation scenario for a given hardware core,
the JPEG Encoder [70]. For this experiment, we use 1GE Ethernet communication with
Xilinx Virtex 6 XC6vIx550t FPGA. We used the Xilinx Chipscope tool to take a running
snapshot that shows how the wrapper components work and how the hardware core clock

is controlled.

a) XML describtion b) OpenVera describtion
Mask = 28’hFFFFF;
CLK_Counter = 28’h0;
rst=1'b1;

<User_Design wrapper_name="jpeg_encoderl" design_name="jpeg_top" w_in="24" w_out="32">
<|T1PUt_EGrouplip _ Jpeg_ en_| lpeg_top _ ! enable = 1")0;
<Bus name="data_in" width="24"/> end_of_file_signal =1'b0;
<Bus name="enable" width="1"/> #10; rst = 1’b0;
</Input_Group> For (j=0; j<100; j++) begin
<|nput_Group>" . . enable =1'b1;
<Bus name="rst" width="1"/> for{i=0; i<63; i++) begin

<Bus name="end_of_file_signal" width="1"/>

</Input_Group> data = read_data();

<Output_Group> #10;
<Bus name="JPEG_bitstream" width="32"/> end
<Bus name="eof_data_partial_ready" width="1"/> #130;
<Bus name="end_of_file_bitstream_count" width="5"/> enable = 1’b0;

<Bus name="data_ready" width="1" mask="true"/>

</Output_Group> #10;
</User_Design> end
¢) The benchmark with the auto-generated wrapper
24 . jpeg_top
-)[ ? datal;l'“ T JPEG bitstream [=z 19
enable eof data partial ready

st end of file bitstream count ==
Lyl end of file signal datail.:eady

@
=3
o
]
o
=
=]
oa

we)
c
=
o
T =
(]
c
-+
A

(v
(0]
wn
1]
3,
(=R
=
(]
L4

Serializer
Input mux

—>|: <o
N - S
O BUFGCE

7.1.1 Preparing the XML Description File
Figure 7.1 (a) shows the XML description of the JPEG Encoder's interface used to generate

the wrapper. The specially developed tool assumes that the wrapper data bus width (same
as the Ethernet controller’s used in this experiment) is 8 bits. The XML description defines
two input groups with a maximum input width is 25 bits. Adding two selection bits and
one bit for clock control results in 28 bits, the input FIFO’s width. For outputs, there is
only one group in the XML description. Therefore, the mask register is only one bit wide,

90



and the tool removes the output arbiter and multiplexer since they are not needed. Setting
the property mask = "true" means that the output will be captured only when "data_ready"
is high. Since the total input width is 28 bits, a packing circuit is instantiated at the
wrapper’s input because 8 < 28 while an unpacking circuit is instantiated at the wrapper’s
output because 39 > 8.

7.1.2 User’s Vera Data Specifications

Figure 7.1 (b) shows the Vera description of the JPEG Encoder’s data. It describes how the
data should be applied to the circuit. In this case, it specifies that the circuit receives one
block of the image at a time, does computation, produces compressed data for the block,
and repeat this process with other blocks until it finishes the image. Each block of data of
the image is applied to the inputs using 64 consecutive clock cycles (In the core
documentation 64 cycles are reported but in the simulation test bench provided by the core
designer only 13 cycles are used). The "enable" signal should stay high during the input of
each block and should be brought low for one cycle between every two consecutive blocks.
It also specifies that there is a minimum of 33 cycles of computation between every two
consecutive blocks where no new data can be applied to the inputs. The wrapper generator
uses these details to generate the serializer. The generated serializer (Figure 7.1 (c))
receives 24-bit RGB color for one pixel at a time. The serializer has 28-bits output which
consists of clock (1 bit), selection (2-bits), enable(1-bit), and data. The selection has two
bits because the XML description defines only two input groups. The wrapper generator
produces a Verilog file with the user design instantiated as a component. After generating
a wrapper, a partial bitstream is generated for it and stored to be launched upon a user

request.

91



Table 7.1 below illustrates how the generated wrapper formats and apply the received
payload data to the JPEG Encoder’s inputs. Each row in the table shows the 28-bit output
of the serializer (which go to the input FIFO). The column with the header "CLK" shows
the 1st data bit which determines whether to clock the jpeg encoder for the current data or
not. The next column, "SEL", represents the next two bits that determine the index of the
input register that will receive the current data. There are four options; "11" represents
mask register, "10" represents the clock counter, "01" represents the second group (reset,
end_of_file_signal), and "00" represents the first group. The next two columns are the input
register’s value (EN and data) if SEL="00". The rightmost column in the table is the
concatenation of all these bits which represents the serializer output. The operation would
start by setting the mask register (specified with SEL=11) to all 1s to read all output groups
(1«row in Table 7.1). Then the clock cycle counter (specified with SEL=10) value is set to
zero (2« row of Table 7.1). After that, the reset is set to one, the design is clocked once
(setting CLK=1), and then the user design is reset back (4«row of Table 7.1). Starting from
the fifth data word, image blocks of 64 pixels each are applied by the serializer to the inputs
as 24-bit RGB value concatenated with the “EN=1" per input cycle. At the end of the block,
the clock counter is set to 13 cycles. Then the process is repeated for the next block by

setting EN=0 and clock counter to zero.

92



Table 7.1: Formatting and applying the JPEG Encoder’s input data by the wrapper. Four control bits are added
with each input. The last column represents the complete output of the serializer which is applied to the input
FIFO.

CLK | SEL Value Description Serializer’s

Output
0 11 all 1’s mask Phisiiia
0 10 0 clock 4000000
counter
1 1 1 reset on A000001
0 1 0 reset off 2000000

Image block #1 (64 pixels)

CLK | SEL | EN Data | Description Data

1 1 0 1 36536E | RGB pixel 936536E
2 1 0 1 37546F | RGB pixel 937546F
3 1 0 1 47647F | RGB pixel 947647F
62 1 0 1 182D48 | RGB pixel | 9182D48
63 1 0 1 142742 | RGB pixel 9142742
0 10 | 0 21 clock 4000021

counter
64 1 0 1 0A1E37 | RGB pixel | 90A1E37
0 | 10 | 0 0 clock 4000000

counter
1 0 0 | OAI1E37 EN off 80A1E37

Image block #2 (64 pixels)

1 374862 | RGB pixel 9374862
2 313F55 | RGB pixel 9313F55
3 263042 | RGB pixel 9263042

7.1.3 JPEG Encoder implementation on a VFPGA
The JPEG Encoder was synthesized with the generated wrapper and a partial configuration

bitstream was generated targeting one of the created vFPGAs. Xilinx’s Planahead tool was
used to make three reconfigurable regions (VFPGAS) on the FPGA beside the static logic
region. The whole platform (VFPGAs, static logic, and the JPEG Encoder) was then
implemented on a Xilinx Virtex 6 XC6vIx550t FPGA and the static logic’s configuration
controller configured the vVFPGA with the Encoder using the internal configuration port

(ICAP). To verify the correctness of this implementation (i.e. platform delivers the data

93



correctly to the Encoder in the vVFPGA), the internal signals on the FPGA were captured
using Chipscope Pro Analyzer tool from Xilinx. The Chipscope clock frequency was
200MHz while the JPEG Encoder and the Ethernet network controller (with 8-bit data
width) were clocked at 100MHz and 125MHz, respectively. The wrapper’s input and
output channels are 8-bit wide to match the Ethernet’s. Hence, the packing circuit receives

8-bit data words and packs them into 28-bit data words for the serializer.

Figure 7.2 shows snapshots of Chipscope’s output. Figure 7.2 shows the wrapper buses in
the following order; wrapper-in, Async-FIFO-in, Async-FIFO-out, the JPEG Encoder’s
inputs and outputs, output FIFO-in channel, output FIFO-out channel, and wrapper-out
channel. It shows how the wrapper FSM controls clocking the user design according to
inputs arrival and the clocking information produced by the serializer. In addition to the
packing latency, the serializer adds some delay at the beginning of each image block which
requires stalling the user design according to data arrivals as shown in Figure 7.2.

Therefore, the user design should receive one clock pulse each 28/8 wrapper’s cycles.

94



Waveform - DEV:0 MyDevice0 (XCEVLX550T) UNIT:0 MylLAD (ILA) o

P ” o |4 409 412 419 424 429 434 430 444 440 454 450 464 469 474 479 4B4 400 404 409 504 500 514 519 524 529 53
R T S T T e T e T e P R X
/VIRTUALFBGA_02/WRAPPER_IN_VALID 1 U UL T UL U U U Ui v i e U ule
/VIRTUALFEGA_02/WRAPEER_IN_READY JVrapperin 1
/VIRTUALFEGA_02/BUF_IN_WREADY 1 1 ‘
/VIRTUALFEGA_02/BUF_IN_WVALID 0 1
o~ /VIRTUALFFGA 02/BUF_In wpaTa  Packing out sasare] 9141621 NOOO000C000C0C00000000000000000C00000000X0000000C00000000000000000
/VIRTUALFEGA_02/BUF_IN_RREADY 1 | LI LJ L] L] (]
J/VIRTUALFRGA_D2/BUE_IN_RVALID Async-FIFO 1 11 [ 1 1 [ LT ‘ \ 1 1 U
& /VIRTUALFPGA_02/BUF_IN RDATA 9311755 9263042 XX 0K X X 2000080 BN K N X X M X0
© /VIRTUALFPGA_02/WRAPPER_IN DATA 80 o
/VIRTUALFEGA_02/WRAPFER_MOORE_FSM/USER_EN 1 1 T 1 1 1 U
| =TT MR = T ey ol LI Iyl l 1 i 1 i iy
I /VIRTUALFPGA_02/JPEG_TOP_INST/RST N . 1 1 1-._“-":“-1 L
| /VIRTUALEEGA 02/JPEG_TOP_INST/EHABLE Elacdesizm: O y =y “'H
) & /VIRTUALFPGA_02/JFEG TOP_INST/DATA TH Image data i 374251 313855 28405C 182048 142742 DAIE3T E [TEI § ST | ST E

I /VIRTUALFPGA_02/JPEG_TOF_INST/DATA_READY

DI o B ' ] ‘
ﬁmmmem iapixel I
0000000R0000000 I~ 00000000

00

. enable =0

© /VIRTUALFPGA 02/JFEG TOF_INST/JFEG BITSTREAM

©- /VIRTUALFPGA_02/JPEG_TOP_INST/END OF FILE BITST...

| /VIRTUALFEGA 02/JFEG TOE_INST/EOF_DATA BARTIAL ...

/VIRTUALFPGA_02/JFEG_TOF_INST/END_OF FILE SIGNAL
———— ——— -
/VIRTUALFEGA_02/BUF_OUT_RREADY

/VIRTUALFEGA_02/BUF_OUT_RVALID 4 syme-FIFO
& /VIRTUALFPGA_02/BUF_OUT_RDATA
/VIRTUALFEGA_02/WRAPPER_OUT_READY

00000 0000000000

/VIRTUALFRGA_02/WRAPPER_OUT VALID Wrapper out

o= /VIRTUALFPGA_02/WRAPPER_OUT_DATA

[l Il I DOmnanmne

Wavetorm captured Mar 22, 2017 12:35:30 AM X: azs[d]r] o: ses[a]r] am-ors

Figure 7.2: Snapshot of the complete wrapper’s and the Encoder’s input/output and control signals.

The snapshot in Figure 7.2 is taken at the end of the first 64-bit block of image data and
shows the 13 clock cycles of computation followed by the enable signal (EN) going low
for one cycle before the next image block is supplied to the Encoder. The shapshot also
shows how data arrival is overlapped with the packing process (as indicated by the several
consecutive clock cycles after the 13 computing cycles) due to the use of the FIFO at the
wrapper input. The snapshots in Figure 7.3 and Figure 7.4 show the signals captured at the
inputs and outputs of the VFPGA, respectively to show the data packing/unpacking process.
As shown in Figure 7.3, the packing circuitry continuously packs 8-bit words into 28-bit
words. Similarly, Figure 7.4 shows how the unpacking circuitry unpacks 39-bit Encoder

output data into 8-bit words.

95



{28 Waveform - DEVED MyDeviced (XCGVLKS50T) UNIT MyILAD L) o @
I < N N I [ [ | A | T L v | I R T A
Bus/Signal X0
| | | | | | ] | | | | ] | | | | | | | | | | |
[VIRIUALTEGh O/RMEER DURERYE | 1| 1 yropidin put signal |
[VTRTTALERGA (2/imEReR LD | of o [ s
TLs
 NIRTIALERGA D2AmaPPeR i Dtk | 55| o[ 7% ) FF T T 0 o 65 ) o J e o J s 6 o f 76 ]
3
/VIRTUALFEGA_02/BUF_IN_WREADY | o Scycles 2cycles 4cycles 3cycles 4cycles 3cycles E
pm g | o uoput data Il
o~ /VIRTUALFPGA 02/B0R I JOATA  |0cco{0oco 03653666 B
/TR WEE WREDE | Y Packed data being written to the FIFO L]
/VIRTUALERA_02/B0F 1N RVALID o 0
- TRTIALEPGA 02/0F TN ROATA  |000|0000| 0000000 TFFFFED 40000004 __ 0000000 AQ00001 O [
- L
il [ | YT T Y T . )
7
Waveform capiured lar 23 201745951 Packed data be'mg read from the FIFO i -Jé 0: -1024(4[) A{%-0): 968

Figure 7.3: Packing the 8-bit wrapper inputs into the Encoder’s 28-bits inputs in ~28/8 cycles per input. e.g.
input sequence 7F FF FF D4 00 00 00 is packed into 7FFFFFD 4000000 sequence.

{8} Waveform - DEV:0 MyDeviced (XCGVLX550T) UNIT:0 MyILAO (LA) o
= = 4?1 5 mqY oo ‘T l?ﬁ 5?1 ﬂlx 51l| s:s 52|| 575
/VIRTUALFZGA_02/BUF_OUT_RREADY —'_| [} ] 1 1 T 1 ,7;
‘ /VIRTUALERGA_02/BUF_OUT RVALID | 0] (| ] H
o~ /VIRTUALEPGA 02/BU OOT FOATA [000]7E3)_7AC003A92¢ ) 7ADD335FCF TABOSBTFC1 TAFFOOFFOD TAF0600555 7A55555657 TMFAIFESC ) 0000000000
/VIRTUALEPGA 02/WRAPPER OUT READY | 1| 1

/VIRTUALESGA_02/WRAPPER OUT VALID| 0| 0|

XXX
Waveform captured Mar 23, 2017 45951 PM X

st o] o ussgl(]s] ao):

-919

Figure 7.4: Unpacking the Encoder’s 39-bits outputs to produce 8-bit wrapper’s output per cycle.

7.2 Simulation methodology

Since the FPGA in our platform is an Ethernet-attached device, the whole platform
simulator should receive Ethernet packet and outputs Ethernet packets. The input method
of the Xilinx 1Sim simulator is a Verilog test bench. The process is depicted in Figure 7.5.
Therefore, we need a software tool to generate Ethernet packets for the user data and a
software tool to generate a Verilog test bench for these packets. In this section, we list and
explain the implemented algorithms for the Ethernet packet and test bench generation. We
have implemented a software tool that reads the input data (images, or encryption data),

packetizes them, breaks the packets into input vectors and generates the required test bench.

96



input data Packet Ethernet packet: test bench Verilog Simulator Ethernet packets
(images, or encryption data) | generator (sw) |  64-bit words | generator (sw) | test bench 64-bit words

Figure 7.5: Simulation methodology to simulate the whole platform. The simulator inputs are Ethernet packets.
The simulator outputs are Ethernet packets.

For each benchmark, we run two simulations. The first one is the original simulation
prepared by the core builder. The second simulation is a simulation for our platform that
contains the same core. We report the latency and throughput of each simulation for each

benchmark.

In Figure 7.6 we show the simulation of the FDCT core as it is written by the core designer.
The latency and full computation time are reported. Then, we put the core within a virtual
FPGA implemented using our virtualization platform and simulate the whole platform. We
use the same data used by the original simulation. We use our Ethernet packet generator to
generate Ethernet packet sequences. Then, we use our test bench generation software to
generate the whole platform test bench. The simulation of the FDCT within a vFPGA in

our platform is depicted in Figure 7.7.

¥ W fdct
1 den o

» B doutl11:0] 2fe

g dk 1

T st 1

1 dstro 0

» W dinl7:0l 1e
» B input_list[63:0,7:0]

» B V30 00000008
» B z51:0 00000152
» B err_entl3n0] 0000003e

Te ak_perioa 6.400000

L ©.400000

Figure 7.6: The simulation 0 a i e e core designer. The total computai time
is measured to be 175,811.2 nanoseconds.

97



o0 us || [20us
il
#(_0000000000p00000

» B RXDVIZ:0l =
» W RXDI3:0] o
1 packet_done_pulse o : : : H :

e I -1 | i [ 6D 60 &b 64 S 4 [ &0 D &0 &b 40 & L) &b & [ &8 i 68 i i
» B T30l ac| {000700070p070007 (00... 00... 500 400, 00... {00...$400... 5(00... (000 1400 $500... 5(00... 500... 400... 400... 55(00... 400, 5000 100, #40p... {00... {5(00... §{00... 00 00700,
1§ wrapper_out_ready 0
1§ wrapper_out valid 0
rapper_out_data[63:0] | ocj: oooooooo 00000.

» B dout[11:0]
1 douten
1 doutent

» W im0l

o
1
1
]
» B dinlro] EE COT
3
o
1
o

, 0 |t 140 | 200 us

[N .\l I i \\‘ i . - I I T e B
Figure 7.7: The simulation of the FDCT core placed within a vVFPGA in the implemented virtualization platform
(using 10GE). The time from receiving the first Ethernet packet (RXDV changes) until the last Ethernet packet is
transmitted out (TXEN changes) is measured to be 198,860.6 nanoseconds.

7.3 Virtualization Overhead Evaluation

To verify the effectiveness of the proposed FPGA virtualization scheme and evaluate its
area, power, and speed overhead, a complete platform was implemented and used to host
four different designs placed in its VFPGAs. Four different open IP cores were used as
benchmarks; an RSA512 encryption engine [71], a JPEG Encoder (JPEGENC) [70], a fast
discrete cosine transformation (FDCT) engine [69], and an AES encryption (AES128) [72]
engine. A Virtex6 Xilinx FPGA with a 1/10 Gigabit Ethernet port (XC6VLX550t) was
used to host the virtualization platform with four the vFPGAs. The 4 IPs were synthesized
with the generated wrapper and a partial configuration bitstream was generated for each IP
targeting one of the created VFPGAs. Xilinx's Planahead tool was used to make four
reconfigurable regions (VFPGAs) on the FPGA beside the static logic and network
controller regions. The 4 IP circuits were then configured on the FPGA via the static logic's
configuration controller using the internal configuration access port (ICAP). Using Xilinx's
ChipScope, a technology that allows real-time monitoring of internal FPGA signals, the

proper operation of the wrappers was verified.

98



To evaluate the overhead of our virtualization scheme, it was compared to a direct
implementation of the four IPs on the same FPGA (bare-metal with no virtualization)
without any design modifications to the IPs. Also, to eliminate the effect of frequency on
performance, all IPs for both implementations were operated at 156.25 MHz, the 10 GE
Ethernet controller frequency. Though the direct implementation with inputs/outputs
applied/captured directly to/from the IPs through the FPGA 1/0 pins may not be practical
or even realizable, it constitutes the theoretical best-case in terms of area, power, and speed.
That is why it was used as a baseline for evaluating the area/power/speed overhead of the

proposed virtualization infrastructure.

Table 7.2 summarizes the virtualization overhead of our scheme compared to the direct
implementation in terms of area, latency, power, and throughput. For these results, to
obtain the overhead for each IP separately, four copies of each IP were placed on the
virtualization platform since the static logic is shared between the four vFPGAs. The results
in Table 7.2 are based on post place and route simulations. This is due to two reasons; (1)
there is no way to inject/ readout inputs/outputs to the direct FPGA implementations, and
(2) We do not have a 10 GE switch that can be used to send packets to the vVFPGA platform.
The total computation times are measured from sending the first Ethernet packet of the
user's input data until receiving the last Ethernet packet of the results. In the case of the
AES128, the computation time overhead is dominated by the communication overhead.
The total computation time overhead for the other 3 IPs is acceptable because computations

are more prominent than communication for these benchmarks.

99



Table 7.2: Virtualization overhead compared to direct implementation on an FPGA for 4 benchmarks. For the
VFPGAEs, the wrapper's 1/O widths are 64/64 bits for all designs.

RSA512 DCT JpegEncoder AESI128
Inputs/Outputs
Widths (bits) 64/16 14/13 28/39 128/128
Data (Bytes)
FPGA 3,840 25,728 27,648 327,584
vFPGA 4,505 36,487 33,796 337,920
Overhead 17.32% 41.82% 22.24% 3.16%
Time (ns) using 10GE @156.25MHz
FPGA 18,750,265 | 175,811 73,164 131,176
vFPGA t2 18,764,874 | 198,860 80,377 356,403
Overhead 0.08% 13.11% 9.86% 171.70%
Latency (ns)
FPGA 1,249,974 439 790 131
vFPGA 1,250,151 577 941 416
Overhead 0.01% 31.44% 19.11% 217.56%
Throughput (MBytes/s) using 10GE @156.25MHz
FPGA 0.20 139.56 360.38 2,381.60
vFPGA 0.20 123.38 328.04 876.56
Overhead 0.08% 11.59% 8.97% 63.19%
Dynamic power (mW)
FPGA 138.91 248.64 433.25 717.71
vFPGA 362.7725 | 346.9925 822.1725 1239.78
Overhead 161.16% 39.56% 89.77% 72.74%
Area (Slices)
FPGA 2,676 726 9,693 919
vFPGA 3,083 1,263 14,470 1,820
Overhead 15.21% 73.97% 49.28% 98.01%

e Latency was measured as the time from receiving the first input until producing the
first output. For the VFPGA, the latency increase is attributed to the initialization of
the mask register and the clocking counter which consumes 150~200 ns. AES128
latency increased more than others because its input size is 128 bits which is double
the Ethernet data bus width of the system which in turns made the wrapper halves the

IPs clock frequency to match the communication channel throughput. For such IPs

100



(with extra-wide input/output widths), a larger bus width would reduce the latency
overhead (e.g. a 256-bit, 40 GE data-bus).

Average Throughput in bits/seconds was measured as the ratio of the total data over
the total time for both virtual and physical FPGAs in the table. Throughput overhead
of the vVFPGA platform was around 10% except for the AES128 circuit. The overhead
depends on how much input/output data packing/unpacking is required and how much
control bits are consumed with the data per cycle. More packing/unpacking means
more time spent is preparing the data for the actual computation, increasing the
overhead. Similarly, more control bits per input cycle results in less data throughput.
For the RSA 512 benchmark, the IP's input width matches the wrapper's very well,
hence unpacking takes very little overhead. For the DCT and JPEG Encoder,
unpacking becomes more significant (the DCT is slightly better matched with the
wrapper's data width). As mentioned before, due to the huge mismatch between the
AES128 input width and the wrapper's, the effective frequency of this IP's clock was
half that of the wrapper (and the physical FPGA version), yielding the largest
throughput overhead. Again, a wider data bus would have reduced this overhead
significantly.

Area overhead is measured in FPGA slices and is due to the wrapper and static logic.
For four vVFPGA partitions, the static logic's total area is constant at 2377 slices (i.e.
9,508 LUTSs, or ~ 3% of the FPGA LUTSs), or ~600 slices per vVFPGA. The wrapper's
area dominates the area overhead and varies for each benchmark depending on its
input and output size because of the packing/unpacking circuitry. The reported area

of the DCT and RSA is the total area of the platform divided by four since there are

101



four VFPGA each of which contains one core. For the AES128 two core are
implemented in two VFPGA.. The reported area is the total platform area divided by
two. For the JPEG Encoder, the full area of the platform is reported since only one
VFPGA is implemented.

Figure 7.9 shows the XML specification of a black box (an empty design) which is
used to generate different wrappers with different number of inputs and outputs and
different groups. The generated wrappers are synthesized with the “keep hierarchy”
option since the design is empty and the resulted area is reported. Figure 7.8 illustrates
how the wrapper area (LUTS and FFs) changes as a function of the inputs/outputs
data widths. For this figure, the design is treated as a black box with the equal number
of inputs and outputs, and for each I/ O width, three wrappers were generated;
assuming the inputs/outputs are grouped into one, two, or three groups. The wrapper's
area increases exponentially with the 1/O width while dividing 1/Os into groups

reduces the area significantly.

16.0
14.0 B One group
© 12.0 B Two groups
_<Z 10.0 Three groups
& 80
E 6.0
2 a0 I
2.0
oo Hm I_ I- I
513 1,025
Inputleutputs (eres)

Figure 7.8: Wrapper area versus the number of the applicaion 1/Os for 1, 2, 3 grouping.

102



<User Design wrapper name="blackbox64" design name="blackbox">
<Parameter name="WIDTH_IN" value="61"/>
<Parameter name="WIDTH OUT" value="64"/> —>clk blackbox
<Input7Grou§? o VVH?TT{Jli"daIa iy data out
<Bus name="data_in" width="WIDTH_IN" /> —
</Input_Group>

WIDTH_OUT
—>

<Output_Group>
<Bus name="data_out" width="WIDTH_OUT" />
</Output_Group>
</User_Design>
<User_Design wrapper name="blackbox 2G 8" design_name="blackbox">

<Parameter name="WIDTH IN" value="8"/> blackbox 2G
<Parameter name="WIDTH OUT" value="8"/> WIDTH IN >clk — WIDTH_OUT
<Input_Group> —=3/data in dataiout —>
<Bus name="data_in" width="8" start="0" end="3"/> —
</Input_Group>
<Input_Group>
<Bus name=”data_in" width="8" start="4" end="7"/>
</Input Group>
<Output_Group>
<Bus name="data_out" width="8" start="0" end="3"/>
</Output_Group>
<Output_Group>
<Bus name=”data_out" width="8" start="4" end="7"/>
</Output_Group>
</User_Design>
<User_Design wrapper_ name="blackbox 3G_15" design_name="blackbox">
<Parameter name="WIDTH IN" value="15"/> blackbox 3G
<Parameter name="WIDTH OUT" value="15"/> WIDTH IN >clk - WTDTH_OUT
<Input_Group> —23/data in data out ——>

<Bus name="data_in" width="15" start="0" end="4"/>
</Input_Group>
<Input_ Group>
<Bus name="data_ in" width="15" start="5" end="9"/>
</Input Group>
<Input_Group>
<Bus name="data_in" width="15" start="10" end="14"/>
</Input_Group>
<Output_Group>
<Bus name="data out" width="15" start="0" end="4"/>
</output_Group>
<Output_Group>
<Bus name="data_out" width="15" start="5" end="9"/>
</Output_Group>
<Output_Group>
<Bus name="data_out" width="15" start="10" end="14"/>
</Output_Group>
</User Design>
Figure 7.9: The XML specification of the input/output groups of a black box (one group, two groups, and three
groups). The black box has no design inside. It is used to generate a wrapper for an assumed design with arbitrary
inputs/outputs and an arbitrary number of groups. The black box is used to evaluate the wrapper area for
different number of inputs/outputs and different number of groups.

e Power overhead is incurred due to the additional circuitry of the wrapper and static
logic. The effect of the wrapper and static logic on power is more prominent for IPs
that have less time overhead (e.g. the RSA512) since the total energy per computation

(independent of the frequency) is spent over less time which increases the average

103



power. The results reported in Table 1 is based on active power (i.e. during operation
of VFPGA-based designs). Also, the overhead depends on the size of vFPGA circuits
relative to the wrapper and static logic. In this case, the IPs are relatively small,
increasing the relative overhead. For power measurements, Xilinx's XPower Analyzer
was used. It reads the placed and routed design, the physical constraints file, and net
and 1/0O activities (from post place and route timing simulation results), and accurately
estimate the power. Using post place and route timing simulations for calculating net

activities includes glitches and hence results in highest accuracy.

7.4 Comparisons with other platforms

Table 7.3 shows a comparison of our FPGA virtualization platform with other notable
platforms for attaching FPGAs to DCs. Many of the approaches reviewed in CHAPTER 4
could not be included in the table because they did not report area overhead or used HW
macros (i.e. non-reconfigurable resources). The table summarizes the type of the platform
and its interface (to the user's design), area overhead in terms of FPGA resources (for the
overlay, it is reported as a ratio to the bare-metal design), the platform components (i.e.
static logic), and whether partial reconfiguration is supported or not. A platform with a
fixed interface means that designers must adapt their design to this fixed interface.
Platforms that do not support partial re-configuration means that the whole FPGA circuitry
(interface + communication + design) must be re-synthesized every time a new design is
to be deployed. The VirtualRC [73] was included because it provides an abstracted
application-specific interface that can be used to attach an FPGA-design to a DC. Most
references do not provide performance overhead over direct FPGA implementation, so it

was not included in the comparison. Platforms that provide local DDR memory access (

104



[6,41,9, 12, 38, 36]) suffer significantly higher overhead. Though this allows more design
choices and applications, it adds huge overhead and thus is best implemented as hard
macros. As this table shows, our proposed platform provides a complete interface
abstraction and partial reconfiguration support at a comparable or less area overhead than

other techniques.

Table 7.3: Comparison with notable platforms for attaching FPGAs to DCs.

Platform Type Area overhead Static logic PR-
Components
PCI attached, twlo DRAM T
Torous network controllers, four Slite
MS Catapult N I (to connect over
among FPGAs, ~ 39,560 ALMs; x
[6,41] PCle DMA Ethernet), router, PCle
Specific Interface core, reconfiguration
management
DRAM controller,
Disacoreeated Network attached, memory virtualization
FP (%is %12 Specific Interface ~ 58,128 LUTs module for each v
38] ’ (similar to OS +116,256 FFs vFPGA network
sockets) controller,
management
15,862 LUTs +
14,875 FFs
RIFFA2.1 PCle DMA fﬁlﬁé‘llﬁ ! flzg PCle core, tx-rx .
[43] Interface FFs (Al ter’a) engines for 4 vFPGAs
(without PCI
logic)
PClIe core, tx-rx
DyRACT PCle DMA 16,157 LUTs + engines, v
[44] Interface 19,453 FFs reconfiguration man.,
clock man., DMAs
PCle DMA 30324 LUTs + added DRAM
Extended [36] communication & v
Interface 60648 Regs .
interface

105




PCle core + DMA bus
mastering component
+ Register file +
PCle DMA 7474 LUTs + Reconfiguration
RACOS [45] Interface 7466 Regs management + Event
dispatcher + two 64-
bit wide FIFOs per
vFPGA
Network Attached, Soft p rocessor
DPR-, Specific (Reconfiguration
Byma [9] Interfacé for Packet 28,711 LUTs + | management), DRAM
. 29,327 FFs controller, MAC
AP ro;essmg Regs., Mem mapping
pplications Regs.
VirtualRC Dor.nfl‘n Sp?;ilﬁc 2,300 LUTs + )
[73] with Specific 4,550 FFs N/A
Interface
Network controller
9508 (complete TCP stack),
This Work DPR, General LUTs+4344 FFs clock management,
(4 vVFPGAs) reconfiguration
management

+ PR=Partial Reconfiguration Support

1 ALM= Adaptive Logic Module (Altera), equivalent to Xilinx’s Slice (6-input LUT + 4FFs).

- DPR= Dynamic Partial RE-Configuration (for vFPGAS).

7.5 VvFPGAs versus SW-based virtual machines

Cloud-based applications usually run on virtual machines or within containers which
introduce remarkable overhead compared to running the same application on the physical
machine. To show the viability of FPGA-based computing in clouds with our proposed
VFPGA platform, the performance of an actual streamed application (not simulated) is
evaluated when it is run on a virtual machine, a physical machine, and on a VFPGA, all in
an environment similar to a cloud's. The purpose of this experiment is to show that FPGA-
based streamed applications do not lose their speed advantage over SW implementation
even when the FPGA is virtualized using our proposed methodology. For this experiment,
we designed a custom streamed application that we believe is a good representation of

applications that are suited for both, cloud environment and FPGA implementation. The

106




application involves three main sequential tasks performed on streamed blocks of data;
decrypt-compute-encrypt, i.e. it receives encrypted data, decrypts it, performs some
relatively simple computation on the plain text, then encrypts the results and send them
back to the user. Symmetric key encryption (AES) was used for the encryption and
decryption tasks. For the three application platforms, a client application (running on a
typical workstation) streams the data over a 1 GE LAN to the three different platforms and

receives the streamed results back as illustrated in Figure 7.10.

Host OS Bridge '
VM 1 client Client-to-
/| 172.16.72.133:5005
I 10.0.2.15 v .
<<€ < Sender virtual
172.16.72.133:5006 scenario
switch
0S
p—
v iy 172.16.72.133:5005
. . < Client-to-PC
treaming [N . ;
- | {Application x : scenario
application 3 > >
i 172.16.72.133:5006 _
switch
Virtual FPGA
client
172.16.170.162:5005 .
1 < < sender Client-to-
> > __recelver ;
172.16.170.162:5006 scenario
switch

Figure 7.10: The three platforms used to evaluate the performance of a streaming application; (a) Running in a
virtual machine, (b) directly on the physical server, and (c) on a vVFPGA. A client SW sends encrypted data and
receives encrypted computation results.

In the client-to-physical server scenario, the application was run (as a server) on a Xeon
machine with 8 cores running at 3.00 GHz, 16 GB of RAM, and 64bit-Linux Ubuntu
16.04LTS. In the client-to-virtual machine scenario, VirtualBox was used to build a virtual
machine with 4 GB RAM and 64bit-Linux Ubuntu 16.04LTS on another Xeon machine
with the same specifications as the first one. The application was written with Python using

the Python stream socket programming [74] and the Python Cryptography Toolkit

107



(PyCrypto) [75]. The measured stream socket throughput between two machines using our

code was 115 Mb/s which represents 90% of the 1GE link theoretical bandwidth.

The hardware version of the application was built using Hsing's AES core [72]. Since
Hsing's core only provides AES-ECB mode encryption, it was modified to implement
AES-CTR (for encryption and decryption) which provides stronger security. Two separate
instances of the AES-CTR core are used to decrypt and encrypt the streamed data. All the
three platforms utilized TCP streams to/from the client over the 1 GE LAN switch with a

measured sustainable throughput of ~115 Mb/s.

The application’s performance was evaluated using the measured throughput as a function
of the streamed block size for the three implementations as shown in Figure 7.11. The total
data size was 32 Mbytes and the block size was varied from 16-bytes to 1 KB. Figure 7.11
shows that the throughput of all platforms is affected by the data block size but starts to
saturate beyond a block size of 128 Bytes. In the client-to-physical server scenario, the
maximum attained throughput was 29.5 MB/s while the virtual machine's version maxed
out at 7.4 Mb/s. However, the VFPGA version reached 105 Mb/s, approaching the
communication link's measured maximum throughput (shown on the graph). In fact, the
VFPGA version throughput was limited by the communication link's throughput not the
computation speed as the maximum frequency of the circuit (post place and route) was ~
378MHz. Had a 10 GE was used, the AES128 throughput would have been 876.6 Mb/s as

was shown in Table 7.2.

108



‘ —d— Client-to-Physical Server Client-to-VYM —#=— Client-to-vFPGA ‘

Measured 1 GE maximum throughput

e

Throughput (MBytes/s)
=

16 32 64 128 256 512 1024
Block Size (Bytes)

Figure 7.11: Streaming application throughput versus block size comparisons the proposed vVFPGA platform and
physical servers and virtual machines.

7.6 CCM platform Evaluation

In this section, we use the “image edge detection” application as a test case and show how
the CCM of this application can be accessed as a service using the same functions used to
access the software version. The test case is an “image edge detector” that receives a JPEG
image and produces another JPEG image of the detected edges. To this end, we built a
CCM for the application as well as the FPGA virtualization platform. Then, we wrote the
application in software using standard python libraries and used the TCP stream socket to
build the software application interface. The software version of the application running
on a server and another copy is running on a virtual machine. We also designed another
software to act as a user that requests the application service. The user uses TCP stream
socket interface to request the service from CCM or the application. We also analyze the
virtual FPGA booting time.

7.6.1 Experiment setup

The experiment setup, as shown in Figure 7.12, consists of an FPGA, a workstation
represents a server, another workstation holds a virtual machine, one all-in-one machine

represents the user and Ethernet switch that links those devices. The FPGA is a Xilinx

109



Virtex 6 XC6vIx550t FPGA. The server machine is a Dell WorkStation with Intel 8-core
Xeon processor running at 3.00GHz, 16GB of RAM, and 64bit-Linux Ubuntu 16.04LTS.
The VM machine is a VirtualBox virtual machine with 4 GB RAM, bridged Ethernet and
64bit-Linux Ubuntu 16.04LTS on Dell WorkStation with same specifications. The user
machine is a Lenovo all-in-one machine with Intel Core-i7 processor running at 3.00GHz,

16GB of RAM, and 64bit-windows 8.

User Server VM HW
Work Station Server FPGA
VM Static Logic
SW calling for ED AP_P ED A g
an ED service as a service PP ED App
10 GE Ethernet Switch

Figure 7.12: The experimental setup with several versions of the secure edge detection (ED) application.

Sender and receiver are two separate threads running in parallel on the user’s workstations.
It is not possible to use one thread that sends data while it is listening to a TCP port for the
received results. This better to be done using two separate threads. It is difficult to have a
timer that starts by the sender and stops by the receiver. Instead, we do a synchronization
process (illustrated in Figure 7.13) before starting and let server, sender, and receiver start
at the same time. We put the timer in the server since it is in the in the middle. The server
sends a small message (acknowledge) to sender and receiver to indicates starting the

process and the timer.

110



Client Sender

Initialize Connection

Ser

ver

Launch

Start

\>

Timer starts -

Timer starts

P

Rea dy?

start

| set

Ack

— Aok

Client Receiver

Timer starts

Client Sender

Timer stops

Terminate connection

I'v ﬁnished

Timer stops -

We'y finished

Server

I'y fjmshed

py finishe

Client Receiver

Timer stops

Figure 7.13: Synchronization process among the sender, receiver and the server. The server manages to start and
to end the work in the three steps at the same time.

7.6.1.1 The CCM service
The virtualization platform shown in Fig.8 is implemented on the Virtex 6 FPGA. The

Static logic components are all written using Verilog except the encryptor/decryptor. The

tinyAES [72] is used to build counter mode AES encryption/decryption blocks (AES-CTR)

explained later. The test case hardware is designed by collecting several cores; Jpeg

decompressor [76, 77], Canny edge detector [78] and jpeg encoder [70] to form the edge

detector hardware as shown in Figure 7.14. Then, the wrapper is formed to form the CCM

and integrated with the static logic.

ol PPGA
£ | ! staticRegion
b | Registers |
(G @
o |
s Reconfiguration
<‘,:i>| Network controller | N s
! management
: A%S IES Clocking
i Management
| Decryptor Encryptor
rm— S i T
‘ Serializer ‘ | Deserializer ‘
Wrapper
@ VvFPGA
| Edge Detector |
CCM

Figure 7.14: The FPGA virtualization platform with the Edge detector application implemented as a CCM.

111



JPEG file—

Application: Edge Detector

FIFO

——>.
256x24bit 54 = C

—>JPEG file

Figure 7.15: Image edge detection hardware uses four already-made cores; AES 128 [72], Image Compress [69],
Canny Edge Detection [78], and JPEG encoder [70].

The hardware version of the image edge detection is shown in Figure 7.15. The hardware
phases are overlapped to get high performance. The total execution time is dominated by
the jpeg decompression time. Jpeg encoder has a fixed time per pixel. The decompressor

time varies according to the input image.

The resource utilization report is shown in Table 7.4. The static logic uses contains the
10GE network controller and the clock management. The user hardware contains the

secured image edge detector with its wrapper.

Table 7.4: Resource utilization of the virtualization platform on FPGA

LUTs FFs RAMs | DSPs
Total 58123 | 52649 422 560
Static logic 12462 | 10990 161 0
User Hardware 45661 | 41659 261 560
- decode 11457 8428 9 21
- detect 3262 3833 18 0
- encode 26761 | 29966 30 560

7.6.1.2 The software service
The software of the secured image edge detection is written on Python and launched on the

server and on the virtual machine. To ensure the best software throughput, we use standard
libraries to build the application which proves high throughput; the standard Python
Cryptography Toolkit (PyCrypto) [75] that provides encryption and decryption services
and the open source computer vision (OpenCV) for python [79] that provides cany edge
detection. A snapshot of the application service python code is shown in Figure 7.16. The

service first decrypts the received Jpeg image, stores it in an array to pass it to the image

112



decoder. Then, Canny edge detect function from OpenCV library detects the edges and the
resulted image is encoded again to produce a Jpeg image. Finally, the resulted Jpeg image

is encrypted to be sent to the user.

#Server side (software compute node)

from Crypto.Cipher import AES

import numpy

import cv2

mode = Crypto.Cipher.AES.MODE_CTR

ctr_encr=Crypto.Util.Counter.new(128,initial value=long(variables.IV.encode("hex") ,616)
ctr_decr=Crypto.Util.Counter.new(128,initial value=long(variables.IV.encode ("hex"),16))
AES_ encr=Crypto.Cipher.AES.new(variables.key, mode, counter=ctr_ encr)
AES_decr=Crypto.Cipher.AES.new(variables.key, mode, counter=ctr_decr)

def compute(data_in):

img = AES decr.decrypt(data_in)

nparr = numpy. fromstring(img, numpy.uint8)
img_np = cv2.imdecode (nparr, cv2.IMREAD COLOR)
edges = cv2.Canny (img _np,100,200)

img np2 = cv2.imencode (".jpg", edges)

return AES decr.encrypt(img np2[1l].tostring())

Figure 7.16: The software version of the application “Secure image edge detection” written in Python using
standard SW libraries

7.6.2 Performance Evaluation
Virtual machines suffer from large overhead which makes them unsuitable for remote or

on-cloud computations. A comparison is done between the virtual machine and CCM to
reflect the strength of the CCM cloud for streamed-data applications. Figure 7.17 shows
three scenarios of computation; a) uses a virtual machine, b) uses a server, ¢) uses CCM.
The network on all cases is 10GE LAN network. The client sends encrypted images and
receives encrypted edge-detected images over TCP stream sessions. The TCP stream

socket on python proves high throughput approaches the theoretical line throughput.

113



Host OS
Virtual Machine
N TCP Session .
Application < > < > client |a) Client-to-virtual machine
Server
L. TCP Session . e
Application [« > < > client |b) Client-to-server
CCM <«—1CP Session < > client |¢) Client-to-CCM

Figure 7.17: The user uses the same socket interface to request the same service hosted n three different machines;
a) the service is hosted in a VM, b) the service is hosted in a server, c) the service is a CCM on virtual FPGA.

We have prepared 10 jpeg images with the same dimensions but have different sizes. The
variation in size reflects the compression ratio which varies according to the image
contents. Each image is encrypted using AES128-CTR and sent to the edge-detection
service over the socket interface. The edge-detection service decrypts the image, decodes
it, does edge detection, encodes the detected-edge image, encrypts the resulted image and
returns it to the sender. Each image is sent 100 times and the average time is reported in
milliseconds. The three scenarios shown in Figure 7.17 are implemented and a comparison
among them is shown in Table 7.5. The performance of the service on a VM is severely
affected by the VM virtualization overhead. By comparing the bare-metal server with the
virtual machine, we can see that the virtualization overhead decreases the performance by
50%. The table also shows that CCM can achieve 3~4x better performance than virtual

machines for this application.

114



Table 7.5: Computation time comparison for three implementations of the secure image edge detection
application. a) The application on a virtual machine, b) The application on a server, ¢) The application isa CCM.

Size Frames per seconds
(Bytes) HW VM | Server
0009 _640x480.jpg 58,962 | 232.41 | 57.54 | 103.37
0002_640x480.jpg 72,618 |209.03 | 48.58 | 94.02
0004 640x480.jpg 84,644 | 197.17 | 45.13 | 83.33
0005_640x480.jpg 116,391 | 140.45 | 38.88 | 67.88
0000 640x480.jpg 128,573 | 117.65 | 28.50 | 65.54
0008 _640x480.jpg 163,301 | 99.49 | 29.89 | 53.44
0006 _640x480.jpg 195,211 | 86.32 | 28.35 | 50.08
0007 _640x480.jpg | 201,071 | 81.45 | 27.59 | 50.17
0001 640x480.jpg | 266,529 | 71.13 | 22.11 | 42.52
0012 1920x1080.jpg | 864,475 | 20.00 | 4.84 10.09

Filename

Image edge detection (HW vs SW)

c
[o]
S 150.00
-3‘ -—vFPGA
GEJ 100.00 VM
©
« 50.00 Server
0.00
0 50,000 100,000 150,000 200,000 250,000 300,000

Jpeg File size for 640x480 pixels (Bytes)

Figure 7.18: Compute nodes performance comparison for a specific application. vVFPGA outperforms a virtual
machine and a bare-metal server.

7.6.3 The impact of adding the AES encryption/decryption
Using the AES-ECB encryption core [72], we have built the AES-CTR which can be used

as an encryptor and decryptor at the same time. In the hardware implementation, we have
to have two separate instances of the AES-CTR for encryption and decryption. Figure 7.19
shows how we have built the AES-CTR from AES-ECB core. The circuit is simple and

provides better throughput and stronger encryption [80].

115



key state

. AES-ECB
128 | 32-bit Counter 128 128 clk encrypter
0 5> state out >=3
{96132 —> key

1128 ok AES-CTR
A
xor/\ l———>28 state ENCrypter  out —>
< 128 or
N > key
AES-CTR decrypter

128
vy

output

Figure 7.19: Using the AES-ECB core [72] to build AES-CTR that can be used as a decrypter and encrypter. By
XORing the input text with the encrypted counter output we achieve a throughput of one data block per cycle.
AES-CTR throughput is one block per cycle because the XORing takes one cycle only.

Latency: To start the AES-CTR the counter should be initialized and enabled. Since
the original AES-ECB latency is 20 cycles, the AES-ECB starts encrypting for 20
cycles. When the initialization is done, the core is enabled when there is incoming
data

Throughput: The core produces one output per cycle which means, the throughput is
not affected by the inclusion of AES. This is because the critical path of the AES-
CTR consists only of the XORing logic.

Area: AES-CTR requires BRAMSs, LUTSs, and FFs which increases the static logic
area. Table 7.6 illustrates the required static logic area for the AES
encrypter/decrypter. It also includes an estimation (from a real commercial
implementation [65]) for the full network controller stack assuming four TCP engines

are implemented within the FPGA. The total area is ~60k LUTSs.

116



Table 7.6: Estimation of the CCM area overhead in our platform.

LUTs FFs | RAMs
Full stack (UDP and 2 TCP engines) [65] | 20,000 | 20,000
Additional 2 TCP engines [65] 30,000 | 30,000
AES encrypter 3,536 | 3,968 86
AES decrypter 3,536 | 3,968 86
Other static logic components 5,390 3,054 3
Total 62,462 | 60,990 | 175

7.6.4 The impact of having multiple vVFPGAs within the same FPGA
The static logic routes the received data to the corresponding VFPGA. It transmits all the

results of all vVFPGA. In the first case, when receiving a packet, the packet is forwarded to
the corresponding VFPGA directly. This process is not affected and does not affect other
VFPGAs. There is a double buffer in the network controller that allows receiving a packet
while forwarding a new one. If the vFPGA is not ready to receive new data, the received
packet will be thrown and a retransmit is required. This way we keep the routing overhead

of the received packet at a minimum level.

For the transmission part, the router receives results from all vFPGA in a round-robin
manner. A transmission happens when the router receives a packet payload (1400 bytes)
or when the timer time-out, then it moves to the next vFPGA. The timers job is to prevent
any deadlock caused by waiting for results from a specific vVFPGA. If we have n vFPGA
sharing the same transmitter and producing results at the same time, their throughput will
be affected by 1/n at most. A good solution for this issue is to have n Ethernet plugs with
and n network controllers. Each controller serves one FPGA only. In this case, the routing

logic in the static logic is completely removed.

117



7.7 Boot time analysis
The vVFPGA-CCM boot time is measured from the time the user sends a “Launch a CCM”

request to the time the user receives a response with the launched CCM IP Address as

illustrated in Figure 7.20. The components of this delay are:

User FPGA Cloud Storage  Hypervisor’s backend
Hypervisor

7.
“lay,
nch

TZ.' fetCh CCM image

T3: COM 1mMage

T4:

Boot time

(@]

enfiguration bitstream

T6: Ack T5: FPGA Configuration

17; Response with

< CCM‘S 14 add|cau

Figure 7.20: Different boot time components of a VFPGA-CCM.

1) Message passing delays (e.g. the launch request, the response with the IP address,
etc.). This delay can be approximated to the ping time between the user and the
FPGA hypervisor in the cloud. The average estimated ping time in amazon web
services around the world is ~250ms as measured using the cloud info web site

[81].

2) Fetch the CCM image from the cloud storage and sending it to the FPGA
hypervisor’s back-end. This delay depends on the internal network throughput
within the cloud network. In our experiment setup, we have a LAN with 1G switch

and the measured throughput reached 112 megabytes per second.

3) The FPGA configuration time by the hypervisor’s back-end. Large FPGASs have an

average bitstream file size of ~10 megabytes, resulting in ~25 milliseconds average

118



configuration time through the internal configuration access port (ICAP) which has

a configuration bandwidth equals to 3.2 Gbps [82].

Table 7.7 shows the different delay components and the total VFPGA-CCM boot times for
several sizes of CCM image (i.e. bitstream files) sizes. Comparing to VM booting time, the

only difference is the configuration time.

Table 7.7: Boot time delay components for vVFPGA-CCMs with various image (bitstream) sizes. Internal
configuration access port’s speed is ~400MB/s

Bitstream | T1 | T2 | T3 | T4 | T5: Configuration | T6 | T7 | Total Boot
size (MB) | (ms) | (ms) | (ms) | (ms) time (ms) (ms) | (ms) | time (ms)
1 9 9 3 530
5 44 | 44 13 611
10 250 | 5 89 | &9 25 5 250 713
15 133 | 133 38 814
20 178 | 178 50 916

119



CHAPTER 8

Conclusion

In this dissertation, we introduced the FPGA-based custom computing machine (CCM). It is highly
abstracted application hardware which can be used through software functions by users with a non-
hardware background. We also introduced a cloud platform that manages FPGA resources and
provides CCM-as-a-service. The introduced cloud platform can be integrated with existing data-
centers and cloud platforms, provide its services, and uses their cloud resources without deep
modifications on those cloud platforms. Existing works on using FPGA for doing computations
focuses mainly on using PCle-attached FPGAs as accelerators. We introduced a network-attached

FPGAs and virtualizing them as network-attached standalone compute machines.

We introduced our new FPGA virtualization platform which consists of several abstraction layers
that abstract the CCM to the level that it accepts data through socket communication in their original

structure without control information. A physical FPGA is partitioned into static logic and
partially reconfigurable regions representing VFPGAS. An abstract interface between static
logic and the vVFPGAS has been developed in a form of an automatically generated wrapper.
This allows users to place any circuit IP in the vVFPGA, send, and receive data from their

IP through standard Ethernet communication. The virtualization platform is evaluated and

120



the overhead is reported in terms of area, performance, throughput, and power with several

hardware cores.

We explained the application wrapper; a circuit that is auto-generated for any hardware core and
enables it to fit in virtual FPGAs. We explained the wrapper components and the required
specification files to generate it. We introduced a test case, explained the steps of generating its
wrapper, implemented it on virtual FPGA and evaluated it. The wrapper represents an area and
performance overhead. We provided an analysis that shows that the wrapper area is related to the
input/output of the design not by the design size. This means that the wrapper area can be controlled

by careful design of the serializer and define inputs and outputs of the hardware core.

Comparison with other platforms for attaching FPGAs to DCs showed that the area
overhead of our proposed platform is within the same range of others but with the added
advantages of having an abstract interface, support for partial reconfiguration, and not
being domain specific. Comparison with SW based cloud implementations showed that our

platform is a very viable computing option in the cloud.

8.1 Platform Limitations

This virtualization platform presented in this work has several limitations:

e The platform targets introducing standalone FPGA custom computing machines. It
does not targets introducing FPGA as accelerators. In acceleration, there is a
software/hardware partitioning process and FPGA should be attached and managed
by a closed server. Using our platform in acceleration is not preferable since PCle-
attached FPGAs have faster and dedicated communications with the server. Our

platform is good for streaming applications not for acceleration.

121



This platform does not use off-chip DDRAMSs. The memory in our platform is limited.
It follows the streaming computing model where inputs are presented as a sequence
of items. Unlike the acceleration model where all inputs can be stored in an off-chip
memory before doing the computations.

The platform is not suitable for packet processing systems. The CCM is not aimed to
be used to accelerate software-defined networking (SDN) functionalities or for load
balancing depending on Ethernet packet information. This is because the CCM
receives the payload of the packets, not the packets themselves.

The platform depends on and consumes a lot of clock resources. Each user design
work on a different clock than the wrapper. The static logic has its own clock. The
network controller has two clocks for receiving and transmitting. For example, a
platform with four virtual FPGA requires 11 clock domains. This adds complexities
to the place and routing phase and may result in un-routable designs. In modern
FPGAs, there are enough resources to do this. We also suggest building new FPGA

architectures that support virtualization.

8.2 Future work

The presented platform is still in its initial version. There are some advanced steps can be

done to improve it:

The platform is based on a layered approach. We have distinguished four abstraction
layers and clearly identified the interfaces among these layers. The next step is to
move some layers as external chip and utilize more FPGA resources for applications.
For example, the network controller can be made completely off-chip. In current
FPGAs, the physical layer of the network controller is presented as a small chip with

122



the (10-gigabit media-independent interface (XGMII). We suggest introducing the
complete network controller with a full TCP stack as a standalone chip (ASIC or small
FPGA).

New FPGA architecture can be inspired. Some parts of the static logic could be made
as hardware macros. The virtual FPGA is a dynamically configurable region which
provides specific FPGA elements as computing resources. Other resources such as
clock buffers and oscillators are not available as parts of the VFPGA regions. Several
static components could be made as hardware macro in the FPGA and build new
FPGA with more computational resources. Using FPGA for computation may lead to
new FPGA architecture that focuses on providing extendable reconfigurable regions.
We may build a hardware emulator using the virtualization platform. By removing
the serializer from the wrapper and introducing it as a tool at the user side. The
serializer software tool can read data files, translates them according to the Vera
description file and produces data using the internal wrapper format. The Vera
description, in this case, represents the test benches of the user hardware to be run in
the remote emulator.

The wrapper generator software tool should be developed to introduce more
customized wrappers. We may need to improve the Verilog templates to provides
several designing choices for the wrapper FSM, the packing/unpacking circuits and
the serializer. The tool may instantly generate area and performance overhead
estimations to help the designer to provide a CCM with specific specifications.

We need to evaluate using VFPGA chain using a large application that can be divided

into several phases. We can compare this with Microsoft catapult that is used to

123



accelerate the Bing search engine. Building a large application using several CCMs
clostured as a VFPGA chain provides faster design time than combining all cores on

one CCM.

124



Appendices

A. Description of the used Benchmarks

Several already-made open-source cores are used to test and evaluate our platform. In this
section, we provide descriptions of these core with their input and outputs as written by
their designers. We show the XML specification we wrote for each core to define its input

and output groups.

The cores are chosen randomly. They are not meant to be powerful cores with powerful

performance. We were just looking for

any open source core with clear functionality and have complete design files with a good

test bench. The purpose is to generate a wrapper for different already designed cores.

We have also slightly modified the interfaces of some cores, as explained below, to make
dealing with them easier. This, of course, enhanced the throughput overhead of our

platform since it can minimize the switching among input or output groups at run-time.

A.1. JPEG Encoder Core

The jpeg encoder core [70] receives bitmap image, compresses it, and outputs JPEG image.
The input bitmap image consists of sequences of 24-bit words which represents the RGB
color of a pixel. The output of the core is sequences of 32-bit words represents the JPEG
data. The other inputs and outputs of the core are control signals. The actual inputs and
outputs of the core are depicted in Figure 8.1. The figure also shows an XML description
for a defined input and output groups for that core. There are two input groups. The first
input group is the 24-bit RGB data with the enable signal that works as a strobe signal. The

second input group contains the control signals that are not frequently used. The reset signal

125



is used when a new image starts and the end_of_file_signal is used to indicates the last
image block. There is only one output group contains the 32-bit JPEG data and the other
output control signals. The data_ready works as a strobe to indicate the valid 32-word
output. The eof data_partial_ready indicates that only part of the 32-bit word should be
taken. The end_of _file_bitstream_count determine how many bits should be taken from

the last 32-bit word.

<User_Design wrapper_ name="jpeg_encoderl 2Gin" design_name="]jpeg_top">
<Input_Group>

<Bus name="data_in" width="24"/>

<Bus name="enable" width="1"/>
</Input_Group> 24 |clk . jpeg_top 32
<Input_Group> data_in JPEG_bitstream —=>

<Bus name="rst" width="1"/> —>{ enable eof datajar?ial ready >

<Bus name="end of file signal" width="1"/> end of fﬁe bitstreamicount Sﬁ
</Input_Group> —> 15t - - dataiready
<Output_Group> — > end of file signal -

<Bus name="JPEG_bitstream" width="32"/>

<Bus name="eof_ data partial_ ready" width="1"/>

<Bus n "end of file bitstream count" width="5"/>

<Bus nare:"data_ready" width="1" mask="true"/>

</Output_Group>
Figure 8.1: The XML specification of the input/output groups of the jpeg encoder core [70].

Table 8.1: Snapshot of the serializer’s output for the JPEG encoder. Each row in the table represents one input
group. The CLK column indicates whether to apply a clocking at that input or not. The SEL column represents
the input group index. The table starts by setting values to the mask register and the clock counter. Then it sets
values to the least frequently used signals. After that, the data starts.

CLK | SEL 25-bit data 28-bit serializer’s output Description
0 11 1| 111111h TEEEEFE mask
0 10 0 | 000000h 4000000 clock counter
1 01 1 111111h A000001 reset on
0 01 0 | 000000h 2000000 reset off
1 00 1 | 36536Eh 936536E RGB pixel
1 00 1 | 37546Fh 937546F RGB pixel
1 00 1 | 47647Fh 947647F RGB pixel

A.2. AES Core

The Advanced Encryption Standard (AES) core [72] has two inputs; 128-bit for the

encryption key and 128-bit for the data block. It has one 128-bit output. The core starts the
126



encryption once the key or the data is changed. The encryption process takes 20 cycles.
The core is pipelined and produces continuous output while assuming changes on the input
on each cycle. To control this process, we decide to add valid signals at the input and the

output of the core. The new top-level module of the AES128 Verilog code is as follow:

module aes_128 prepared (input clk, valid in, [127:0] state, key,
output valid out, [127:0] out);

aes_128 aes_128 inst (.clk(clk),.state(state),.key(key), .out(out));

assign valid out = cntr[0];

reg [20:0] cntr = 21'd0;//shift_reg

always @ (posedge clk)

cntr <= {valid in, cntr[20:1]};

endmodule

The actual inputs and outputs of the core are depicted in Figure 8.2. The figure also shows
an XML description for a defined input and output groups for that core. There are two input
groups. One for the 128-bit data with the valid signal and the other for the 128-bit key
which changes less frequently. There is one output group contains the 128-bit output with

the valid signal.

<User_Design wrapper name="aes_128" design_name="aes_ 128 prepared">

<Input_Group>

<Bus name="state" width="128" /> Dc”{ aes_128

<Bus name="valid in" width="1" /> 128) .

B =25 state  valid_out —>

</Input_Group> v ¢ 128
<Input_Group> fi;’ valid_in out ==

<Bus name="key" width="128" /> —> key

</Input_Group>
<Output_Group>
<Bus name="valid out" width="1" mask ="true" />
<Bus name="out" width="128" />
</Output_Group>
</User_Design>
Figure 8.2: The XML specification of the input/output groups of the jpeg encoder core [72].

127




Table 8.2: Snapshot of the serializer’s output for the AES128. Each row in the table represents one input group.
The CLK column indicates whether to apply a clocking at that input or not. The SEL column represents the input
group index. The table starts by setting values to the mask register and the clock counter. Then it sets the key.
After that, the data starts.

CLK | SEL 129-bit data Description
0 11 |1 | fEfffffffffffffffffffefffffefees mask
0 10 |0 ]00000000000000000000000000000000 | clock counter
1 01 | 0| 76af95972db498282052e1b70d644e63 key
1 00 |1|19711975d62eb677a38fcl111a729c3a plaintext
1 00 | 1|a367£d2cd197119b67738£c19£9b05d3 plaintext
1 00 |1 |dec67fd2cdb574cacd68e49£9b05d336 plaintext
1 00 |1 | 36bdec6edda50el6t59a44a574cacd6s plaintext

A.3. RSA512 Core
Given 512-bit plaintext X, 512-bit key Y and 512-bit modulus M, the RSA512 core [71]

calculates the cipher text s = xYmod m. The core receives the inputs serially. It has four
16-bit inputs: X, y, mand r_c. the r_c is the squared Montgomery constant modulo m. The
Montgomery constant is r = 216*32*1 and r_c = r? mod m. The core receives the four
512-bit input serially with a 16-bit word a t a time. It outputs the 512-bit output serially

with a 16-bit word at a time.

The RSA512 core has additional input signal start_in. It should be set active when loading
the first 16 bits of m. After 6 cycles valid_in is used to feed the 512-bit of the rest of the
data serially. The signal usage is somehow complicated as seen in the Verilog test bench.
Although it is possible to build a wrapper for this core, we decided to remove this signal to
make the core interface better. We build an FSM to generate the start_in signal on the
starting of the computation. The new top-level module of the RSA512 Verilog code is as

follow:

128



module rsa_top2(input clk, reset, valid in,input [15:00] x, y, m, r ¢,
bit size,output [15:00] s,output valid out);
reg [2:0] state = 3'h0;
reg start in = 1'b0;
reg rst = 1'b0;
reg [3:0] cnt = 4'h0;
always @ (posedge clk, posedge reset)
if (reset)
state = 3'hO;
else case (state)
3'h0: begin start_in <= 1'b0; rst <= 1'bl; cnt <= 4'h2; state =
3'hl; end
3'hl: begin cnt <= cnt - 1'bl; if (cnt == 1'b0) state = 3'h2; end
3'h2: begin rst <= 1'b0; cnt <= 4'ha; state = 3'h3; end
3'h3: begin cnt <= cnt - 1'bl; if (cnt == 1'b0) state = 3'h4; end
3'h4: begin start_in <= 1'bl; state = 3'h5; end
3'h5: begin start_in <= 1'b0; state = 3'h6; cnt <= 4'h8; end
3'h6: begin cnt <= cnt - 1'bl; if (cnt == 1'b0) state = 3'h7; end
3'h7: state = 3'h7;
default: state = 3'hO0;
endcase
rsa_top (.clk(clk), .reset(rst), .valid_in(valid in),
.start_in(start_in), .x(x), .y(y), .m(m), .r c(r_c), .s(s),
.valid out(valid out), .bit size(bit_size));
endmodule

The actual inputs and outputs of the core are depicted in Figure 8.3. The figure also shows
an XML description for a defined input and output groups for that core. There two input
groups. The first group contains the reset signal and the bit_size constant. The second group
contains the plaintext x, the key y, the modulus m, the squared Montgomery constant r_c

and the valid signal. There is one output group contains the cypher text and the valid signal.

<User_Design wrapper_ name="rsa_prepared" design_name="rsa_top2">
<Input_ Group>
<Bus name="bit size" width="16" />
<Bus name="reset" width="1" /> —>clk rsa512
</Input_Group> ) .
<Input_Group> > bﬁgﬁlze 16
<Bus name="x" width="16" /> — > reset . § |=>
<Bus name="y" width="16" /> —> valid in valld_out —>
<Bus name="m" width="16" /> le) e N
<Bus name="xr c¢" width="16" /> 16
~ i - s —>y
<Bus name="valid in" width="1" /> 16
</Input_Group> ]??*’nl
<Output_Group> ——>TI_C
<Bus name="s" width="16" />
<Bus name="valid out" width="1" mask="true"/>

</Output_Group>
</User_Design>
Figure 8.3: The XML specification of the input/output groups of the rsa512 core [71].

129




Table 8.3: Snapshot of the serializer’s output for the RSA512. Each row in the table represents one input group.
The CLK column indicates whether to apply a clocking at that input or not. The SEL column represents the input
group index. The table starts by setting values to the mask register. It then set the value of the modulus m. Then,
it sets the bit_size constants. After that, it sets the clock counter to 32 cycles. Then, it applies those clocks to the
design. After that, it resets the clock counter to zero. Then, the data starts.

CLK | SEL 65-bit data Description
rc m y X

0 11 | 0| ffff | ffff | ££FFf | ££FF mask
0 01 | 0| £579 | b491 | 42b1 | £3ad set m
1 00 | 0| 0000 | 0000 | 0001 | 0200 set bit_size
0 10 | 0| 0000 | 0000 | 0000|0020 | clock counter
1 00 | 0| 0000 | 0000 | 0000|0200/ applyclocking
0 10 | 0| 0000 | 0000 | 0000 | 0000 | clock counter
1 01 | 1| £579 | b491 | 42b1 | £3ad data
1 01 | 1| 6ee9 | 1417 | 1ad3 | 8e40 data
1 01 | 1| 972d | b498 | a827 | 6af9 data

A.4. FDCT Core

The DCT core [69] transforms the image data to a different domain using the cosine
function. It decomposes the signal into underlying spatial frequencies. The DCT transform
is invertible. It is used in image compression since neighboring pixels within an image tend

to be highly correlated. The JPEG Encoder core explained above contains a DCT core.

The core has 8-bit input and produces 12-bit output. It has a enable signal ena that should
be high when computation starts. The core has a data strobe input dstrb that indicates the
starting of the input data. It has a data strobe output den that indicates the starting of the
output. Since these strobes are pulses we decide to convert them to valid signals that strobes
all the inputs and outputs. The new top-level module of the RSA512 Verilog code is as

follow:

130



module fdct prepared #(parameter di_width = 8, do_width = 12)
(input clk, input ena, input rst, input dstrb, input [di_width-1:0]
din, output [do_width-1:0] dout, output douten);
wire doutenl;
fdct #(.di_width(di_width), .do_width(do_width))
fdct_inst (clk, ena, rst, dstrb, din, dout, doutenl);
reg [7:0] cntr = 7'b0O;
assign douten (cntr '= 7'b0);
always @ (posedge clk, negedge rst)
if ('rst)
cntr <= 7'b0;
else if (doutenl)
cntr <= 7'd64;
else if (douten)
cntr <= cntr - 1'bl;
endmodule

The actual inputs and outputs of the core are depicted in Figure 8.4. The figure also shows
an XML description for a defined input and output groups for that core. The core has two
input groups. The first group has the least frequently used signals. The second group has
the 8-bit data input. The core has one output group contains the 8-bit output and the valid

signal.

2 & <User_Design wrapper_name="fdct" design_name="fdct prepared">
e e=ngn/>
<Parameter name="do width" value="12"/> fdct

—clk
nm st do width
—>
—>

<Parameter name="di width" value

<Input_Group>
<Bus name="rst" widtl

<Bus name="ena" wid

ena dout >

—>
</Input_Group> . dstrb dOLﬂen
= <Input_Group> — —Lyy dln

11 <Bus name="din" width="di width" />

<Bus name="dstrb" wi

12 ~ </Input_Group>

13 o <OQutput_Group>

14 <Bus name="dout" wii:h=”do_width” />

115 <Bus name="douten" width="1" mask="true"/>
16 </Output_Group>

1 </User_Design>
Figure 8.4: The XML specification of the input/output groups of the DCT core [69].

131




Table 8.4: Snapshot of the serializer’s output for the FDCT. Each row in the table represents one input group.
The CLK column indicates whether to apply a clocking at that input or not. The SEL column represents the input
group index. The table starts by setting values to the mask register. After that, it resets the clock counter to zero.
Then, it sets the enable and reset signals high and the dstrb signal low. After that, the first byte of the data is set.
Then, it sets the dstrb signal high. After that, it sets the dstrb signal low again. Then, the data continues

CLK | SEL | 8-bit data Description
0 11 255 mask
0 10 0 clock counter
1 00 0 dstrb=0,ena=1,rst=1
0 01 11 data
1 00 0 dstrb=1,ena=1,rst=1
1 00 0 dstrb=0,ena=1,rst=1
1 01 16 data
1 01 21 data
1 01 25 data

A.5. JPEG Images Edge Detection

This hardware was made by combining several cores [72, 70, 78, 77, 76]. It receives
encrypted JPEG image, decrypts it using the AES-CTR, decompresses it to a BMP image
using the decompress core [77], detects its edges using the Canny edge detection core [78],
encodes the resulted image to a JPEG image using the JPEG encoder [70] and decrypts it
using the AES-CTR. The core has 64-bit input data_in, reset signal reset and start signals
start. The start signal is used to start the AES-CTR counter since it needs 20-cycle
initialization then if become able to produce one output per clock. It has 64-bit output

data_out with a valid signal valid_out.

The inputs and outputs of the design are depicted in Figure 8.5. The figure also shows an
XML description for a defined input and output groups for that core. The core has two
input groups. The first group has the least frequently used signals start and Reset. The
second group has the 64-bit data input. The core has one output group contains the 64-bit

output and the valid signal.

132



<User_Design wrapper_name="image edge_detect64" design_name="image edge detect">
<Input_Group>

<Bus name="start" width="in" /> image_edge_detect64 64
<Bus name="Reset" width="1" /> selk data out —<
</Input Group> oy
<Input_Group> —> Reset valid out —>
<Bus name="data_in" width="64" /> start
</Input_Group> 64 .
—> data ina

<Output Group>
<Bus name="valid out" width="1" mask ="true" />
<Bus name="data_out" width="64" />
</Output_Group>
</User_Design>
Figure 8.5: The XML specification of the input/output groups of the image edge detection we designed by
combining several cores.

A.6. Decrypt-Compute-Encrypt

To have secure computation, we assume that a decrypter and an encrypter should be
integrated within the application hardware itself. We use two instances of the AES-CTR
core for decryption and encryption. The hardware input is the first AES-CTR input. The

hardware output is the second AES-CTR output.

The inputs and outputs of the design are depicted in Figure 8.6. The figure also shows an
XML description for a defined input and output groups for that core. The core has three
input groups for the 128-bit plaintext state, the 128-bit key key, and the reset signal reset.

The core has one output group contains the 128-bit output out.

<User_Design wrapper name="decr comp encrl28" design_name="decr_ comp encrl2g">
<Input_Group>

<Bus name="state" width="128" /> decr_comp_encrl28 128
</Input_Group> t L2
<Input_Group> —>clk out —>

<Bus name="key" width="128" /> —> reset
</Input Group> 12

i~ o L state
<Input_Group> 128

<Bus name="reset" width="1" /> - key

</Input_Group>
<Output_Group>
<Bus name="out" width="128" />
</Output_Group>
</User_Design>
Figure 8.6: The XML specification of the input/output groups of the decrypt-compute-decrypt hardware
designed using the AES-CTR which uses the AES-ECB core [72].

133



B. Software tool for Ethernet packet generation and platform test bench

For simulation purposes, we have designed a software tool that for a given user data it
generates the corresponding Ethernet packets. The tool also generates the Verilog test
bench for the whole platform that feeds the generated Ethernet packets to the core to
simulate its exact running. In this section, we list and explain the algorithms used in this

software tool.

Algorithm 3 Generate platform test bench

1: procedure GENERATEPLATFORMTESTBENCH (data_file, benchmark_name, data_bus_width,
vFPGA_index)

2: benchmark_file = data_file

3: VerilogCode = VerilogCode + test_bench_header(data_bus_width)

4: VerilogCode = VerilogCode + Instantiate_the_Plat form_top-module(data_bus_width)
5: VerilogCode = VerilogCode + fpgaclk_and_RXCLK _registers(data_bus_width)

6: VerilogCode = VerilogCode + write_output_to_file_register()

T VerilogCode = VerilogCode + initial Block _header()

8: data_per_packet = 1408

9: no-of _packets = FileLength(benchmark_file)/data_per_packet
10: for i = 1 To no-of packets do

11: user_data = GetFromFile(benchmark_file, data_per_packet)

12: packet_data = makeUdpHeader(vF PG A_index, data_per_packet, 6)
13: packet_data = packet_data + myHeader (i)

14: packet_data = packet_data + user_data

15: packet_data = packet_data + CalcCRC (packet_data)

16: L = length(packet_data)

17: VerilogCode = VerilogCode + Start PacketCode()

18: for j =1To L do

19: VerilogCode = VerilogCode + PacketW ordCode(3)

20: end for

21: VerilogCode = VerilogCode + EndPacketCode()

22: VerilogCode = VerilogCode + Add_interpacket_wait_statement|()
23: end for

24: VerilogCode = initial Block_footer()
25: VerilogCode = test_bench_footer()
26: Return(VerilogCode)

27: end procedure

Figure 8.7: Generate platform test bench.

The algorithms used for the packet and test bench generation are listed in Figure 8.7,
Figure 8.8, Figure 8.9 and Figure 8.10. It is a template-based Verilog code generator. It
starts by adding the Verilog code header in line 3 and an instantiation of the platform top

module in line 4. In Line5, it adds the clocking registers that generate the FPGA clock

134



(usually 100MHz) and the Ethernet receiver clock. In line 6, it adds the output register
which writes the design outputs to a file. In line 7, the initial block in the testbench starts.

In line 8, the packet payload size is determined as 1408 bytes.

The loop in line 10 generates a UDP packet for every 1408 bytes of the data file. The loop
starts by reading the data portion from the file, generating a UDP header for it, adding an
additional header that includes statistics counters and finally calculating the cyclic
redundancy check (CRC) of the Ethernet packet. After generating each packet, it is
converted to Verilog test bench lines added to the initial block which we have already
started in line 7. The loop in line 18 adds a Verilog line for each data word of the Ethernet
packet. In line 22, a Verilog wait statement is added that force the simulator not to start
receiving a new packet if its receiving buffer is full (i.e. the user hardware is busy doing
computation on previous data). The rest of the lines adds the footers of the initial block
which we have already started in line 7 and the test bench module which we have already

started in line 3.

Algorithm 4 Make UDP Header
1: procedure MAKEUDPHEADER(vF PG A _index, data_per_packet, myH eaderSize))
2 udp_length = data_per_packet + myHeaderSize + 8
3: total len = 20 + udpength
4 id = 21468/ / generatearbitraryid
5: EthHeader: packet = DEST_MAC(vFPGA index) + SRCE_MAC(vFPGA index) +

70800”

6: IPHeader: packet = packet + 745007 4 totallen 4+ 753DC00008011" +
checksum(id, total len, DEST 1P(vF PGA index), SRCE _IP(vFPGA index)) +
SRCE_IP(vFPGA inder)+ DEST IP(vFPGA indexr)

i UDPHeader: packet = packet  +  SRCE_PORT(vFPGA_index) +
DEST_PORT(vF PG A index) + udp_length - checksum_udp(udp_length,

SRCE IP(vFPGA index), DEST IP(vFPGA index), SRCE _PORT(vFPGA index),
DEST _PORT(vF PGA _ index))

8: Return(packet)

9: end procedure

Figure 8.8: Make UDP header algorithm. The algorithm is inspired by the IP formal definition in REC 791 [83]
and the UDP formal definition in REC 768 [84].

135


https://en.wikipedia.org/wiki/Request_for_Comments_(identifier)
https://tools.ietf.org/html/rfc768
https://en.wikipedia.org/wiki/Request_for_Comments_(identifier)
https://tools.ietf.org/html/rfc768

Algorithm 6 Calculate udp checksum
1: procedure  CHECKSUMUDP(udp_length, DEST IP, SRCE IP, SRCFE_PORT,
DEST _PORT))
2: m = 17 + rightPart(DEST_IP) + leftPart(DEST_IP) + rightPart(SRCE_IP) +
leftPart(SRCE_IP)+ SRCE _PORT + DEST_PORT + udp_length

3: while size(m) > 4bytes do

4: m = right Part(m) + le ft Part(m)
5: end while

6: Return(m)

(5

end procedure

Figure 8.9: Calculate IP checksum algorithm. The algorithm is inspired by the IP checksum calculation
description.

Algorithm 6 Calculate udp checksum
1: procedure  CHECKSUMUDP(udp_length, DEST IP, SRCE IP, SRCFE_PORT,
DEST _PORT))
2: m = 17 + rightPart(DEST_IP) + leftPart(DEST_IP) + rightPart(SRCE_IP) +
leftPart(SRCE_IP)+ SRCE _PORT + DEST_PORT + udp_length

3: while size(m) > 4bytes do

4: m = right Part(m) + le ft Part(m)
5: end while

6: Return(m)

(5

end procedure

Figure 8.10: Calculate UDP checksum algorithm. The algorithm is inspired by the UDP checksum calculation
description in the UDP formal definition in REC 768 [84].

136


https://en.wikipedia.org/wiki/Request_for_Comments_(identifier)
https://tools.ietf.org/html/rfc768

C. A description of the implemented Verilog code
Figure 8.11 shows a snapshot of the Xilinx ISE design tab. It shows the hierarchy and the

components of the virtualization platform. The hierarchy starts by clocking resources in
the first four nodes of the top module. The virtualization module consists of two parts; the
platform and the network controller. The platform contains data routers (mux and demux),
the reconfiguration module (uses ICAP) and one VFPGA. Any number of VFPGA can be
used by setting the No_of USERS parameter in the top module. The whole platform is

parametrizable.

The network controller contains an address table, session store, receiver, and transmitter.
The address table contains the MAC and IP addresses of the vVFPGASs and the static logic.
It generates the VFPGA index for the received packet. The session store stores the client
address extracted from the received packet. The receiver contains a packet sniffer and
double buffer. The packet sniffer sets flags according to the received packet such as; is it a
UDP, TCP or ARP packet. The double buffer stores the payload of the received packet if
its address gets a match with the address table. The double buffer produces the received
payload while it receives another payload. It must wait until receiving the full packet with
correct cyclic redundancy check (CRC). The network transmitter contains the packetizing
module which contains a finite state machine that produces the Ethernet header, followed
by IP header if needed, followed by the selected header. Currently, three types of network

packets can be produced; ARP replay, ICMP replay, and UDP packet.

137



Design [
View: (@) ]:!':é:Elmplementation @] @ Simulation
] | Hierarchy ~

| = ;;ﬁ; top_xge {top_xge.s)
— static_MMCM - MMCM1clock156m25 (MMCMIclock156m25.:)

pi | wrapper0_MMCM - MMCh2clocks1586m25 (MMCM2elocks156m25.)

- | wrapper1_MMCM - MMCh2clocks158m25 (MMCIM2clocks156m 25
EJ | inst_ether_t_dem - MMCM1clock156m25 (MMCMIclock156m25 )

a =[] wirtual005_inst - wirtual 005 (irtual 0059

; = platform_inst - platform (platform_image_edge_detects

[ decoder_inst - decoder (decadersd

- re_dernus_inst - pdernux (b dermuxdag

bus_demux_re_ready - bus_mux_decoded (bus_mux_decoded.w)
bus_dernux_revalid - bus_derux_decoded (bus_dermux_decodedas)
= Be_rriu_inst - Bepau (e
+ arbiter_t_muxbe - arbiter_decoded (arbiter_decoded )
bus_rmux e DATA - bus_raux_decoded (bus_rmux_decoded.s)
bs_mmu b valid - bus_mux_decoded (hus_rmux_decoded.w)
bus_mux_b_ready - bus_demux_decoded (bus_dernux_decoded.a)
pvirtexf_32_wrapper_inst - icap_virtexf_32_wrapper (CAP_virtexf_32_wrapperdda)
Strearnbuf_out - Strearnbuf (Streambuf )
Strearnbuf_in - Strearmbuf (Strearmbufad)
wrapper_in_dec_bus_width - dec_bus_width (dec_bus_widtha)
wrapper_out_ine_bus_width - inc_bus_width (nc_bus_widtha)
least_significant_1_1 - least_significant_1 (least_significant_1.)
werapper_Moore_FSM - wrapper_Moore_FSM Gnrapper_Moore_FSMw)
image_edge_detectdd wrapper_1 - image_edge_detect®d wrapper (image_edge_detect_wrapperéd.)
Strearnbuf_out - Strearnbuf (Strearmbufad
Strearnbuf_in - Strearmbuf (Strearmbufad
serializer_inst - serializer (serializerss)
least_significant_1_1 - least_significant_1 (least_significant_1.)
v | wrapper_Moore_F3M - wrapper_Moore_F3M (wrapper_Moore_FShad)
Y| image_edge_detect_inst - image_edge_detect (image_edqge_detect
= decryptar - aes128_ctr (aes128 ctra)
il aes_encrypt - aes_128 (aes_128.0
| decoder_fifo - Streambuf (Streambufad
| decader - jpeq_decade (jpeg_decodend
| detector - top_edge - structure (top whd)

+ fifa - fifo (fifo.)
- %] jpeqg_top - jpeg_top (peg_top.)
= encryptar - aes128_ctr (aes128 ctra)
+ aes_encrypt - aes_128 (aes_128.)
| netwark_contraller_inst - netwark_cantroller (network_caontrallers)

EEEE

- - -]
EEEEEES

[]
-]

===

T

= te_controller_inst - b_cantroller (be_controller_xgedd.)
= t_packetize_inst - ti_packetize {t:_packetizen)

| tarp_inst - to_arp (b arpBdad
| tip_inst - t_ip (b ipBdad

getaddr_rmydddr - getaddr (getaddra)
addrtable_inst - addrtable (addrtables)
| MAC_bus_mux_decaded - bus_mux_decoded thus_mux_decoded.)
1 IP_bus_raux_decoded - bus_rmux_decoded (bus_rmux_decoded )
| PORT_bus_mux_decoded - bus_raux_decoded (hus_rue_decadeds)
session_store_inst - session_stare (session_stare)

brarm_wer - brarn_aer (brarm_wr.a)
sel_out_encoder - encoder (encoders)
i

CrossDomain_pulse_network_reply_done - CrossDomain_pulse (CrossDomaina)
| CrossDamain_twaoFF_under_process_by_netwark - CrassDomain_twaFF (CrossDomain_twoFF o) w

Figure 8.11: A snapshot shows the hierarchy and components of an implemented version of the virtualization
platform. The hierarchy starts the root node “top_xge” which contains clocking resources appears in the first four
nodes and the virtualization module “virt005” which contains the platform and the network controller. The
platform contains data routers (mux and demux), the reconfiguration module (uses ICAP) and one vVFPGA. The
VFPGA contains the image_edge_detect application which uses four already-made cores; AES_128 [72],
jpeg_decode [77], top_edge [78] and jpeg encoder [70].

138



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

References

"OpenPOWER Cloud," IBM, [Online]. Available:
research.ibm.com/labs/china/supervessel.ntml. [Accessed 2018].

P. Gupta, "Bringing FPGA Acceleration to the Cloud,” Intel, 20 March 2017.
[Online]. Available: https://itpeernetwork.intel.com/fpga-acceleration-to-the-cloud/.
[Accessed 2018].

M. Russinovich, "FPGAs and the New Era of Cloud-based ‘Hardware

Microservices’, Microsoft, 8  june 2017. [Online]. Available:
https://thenewstack.io/developers-fpgas-cloud/. [Accessed 2018].

C. Brugger, L. Dal'Aqua, J. A. Varela and C. De Schryver, "A quantitative cross-
architecture study of morphological image processing on CPUs, GPUs, and FPGAs,"
in Computer Applications & Industrial Electronics (ISCAIE), 2015 IEEE Symposium
on, Langkawi, Kedah, Malaysia, 2015.

BERTEN, "Gpu vs fpga performance comparison,” [Online]. Available:
http://www.bertendsp.com/pdf/whitepaper/
BWP001 _GPU_vs FPGA Performance_Comparison_v1.0.pdf. [Accessed 2018].

A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,
A. Hormati, J. Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,
P. Y. Xiao and D. Burger, "A Reconfigurable Fabric for Accelerating Large-Scale
Datacenter Services," IEEE Micro, vol. 35, pp. 10-22, 2015.

Amazon, "Amazon EC2 F1 Instances," [Online]. Available:
aws.amazon.com/ec2/instance-types/f1/. [Accessed 2018].

P. Mell and T. Grance, "The NIST Definition of Cloud Computing,” National
Institute of Standards and Technology, Gaithersburg, 2011.

S. Byma, J. G. Steffan, H. Bannazadeh, A. Leon-Garcia and P. Chow, "FPGAs in the
cloud: Booting virtualized hardware accelerators with OpenStack," in Proceedings -
2014 IEEE 22nd International Symposium on Field-Programmable Custom
Computing Machines, FCCM 2014, 2014.

139



[10] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang and K. Wang, "Enabling
FPGAs in the cloud,” in Proceedings of the 11th ACM Conference on Computing
Frontiers - CF '14, 2014.

[11] N. Tarafdar, N. Eskandari, T. Lin and P. Chow, "Designing for FPGAs in the Cloud,"
IEEE Design {\&} Test, pp. 1-1, 2017.

[12] J. Weerasinghe, F. Abel, C. Hagleitner and A. Herkersdorf, "Enabling FPGASs in
hyperscale data centers," in Proceedings - 2015 IEEE 12th International Conference
on Ubiquitous Intelligence and Computing, 2015 IEEE 12th International
Conference on Advanced and Trusted Computing, 2015 IEEE 15th International
Conference on Scalable Computing and Communications, 20, 2016.

[13] "OpenStack service overview," OpenStack, 19 January 2019. [Online]. Available:
https://docs.openstack.org/security-guide/_images/marketecture-diagram.png.
[Accessed 2019].

[14] "Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide,” Intel, 2018.
[Online].  Available:  https://www.intel.com/content/www/us/en/programmable/
documentation/mwh1391807516407.html.

[15] Xilinx, "Virtex Series Configuration Architecture Series Configuration
Architecture,” 20 October 2004. [Online]. Available:
https://www.xilinx.com/support/documentation/application_notes/xapp151.pdf.
[Accessed 2019].

[16] Xilinx, "Virtex-6 FPGA Configuration User Guide,” 18 November 2015. [Online].
Available: https://www.xilinx.com/support/documentation/user_guides/ug360.pdf.
[Accessed 2019].

[17] Xilinx, "Vivado Design Suite User Guide Partial Reconfiguration," 27 April 2018.
[Online]. Available:
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug909-
vivado-partial-reconfiguration.pdf. [Accessed 2019].

[18] T. Lu, R. Kenny and S. Atsatt, "Secure Device Manager for Intel Stratix 10 Devices
Provides FPGA and SoC Security," [Online]. Available:
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/
wp/wp-01252-secure-device-manager-for-fpga-soc-security.pdf. [Accessed 2019].

140



[19] Altera, "Partial Reconfiguration IP Core,” 4 5 2015. [Online]. Available:
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug
/ug_partrecon.pdf. [Accessed 2019].

[20] Intel, "Creating a Partial Reconfiguration Design,” 4 January 2019. [Online].
[Accessed 2019].

[21] Intel, "Design Planning for Partial Reconfiguration,” 4 November 2013. [Online].
Available:
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb
/qts/qts_qii151026.pdf. [Accessed 2019].

[22] C. Pilato and F. Ferrandi, "Bambu: A modular framework for the high level synthesis
of memory-intensive applications,” 2013 23rd International Conference on Field
programmable Logic and Applications, pp. 1-4, 2013.

[23] "The open standard for parallel programming of heterogeneous systems,” Khronos,
[Online]. Available: https://www.khronos.org/opencl/. [Accessed 2018].

[24] "SDAccel  Development  Environment,”  Xilinx, [Online].  Available:
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html.
[Accessed 2018].

[25] "Vivado High-Level Synthesis," Xilinx, [Online]. Available:
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html.
[Accessed 2018].

[26] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown
and T. Czajkowski, "LegUp: high-level synthesis for FPGA-based
processor/accelerator systems,” FPGA '11 Proceedings of the 19th ACM/SIGDA
international symposium on Field programmable gate arrays, pp. 33-36, 27 2 2011.

[27] J. Choi, S. Brown and J. Anderson, "From Software Threads to Parallel Hardware in
High-Level Synthesis for FPGAs," in International Conference on Field-
Programmable Technology (FPT), Kyoto, Japan , 2013.

[28] D. Koch, F. Hannig and D. Ziener, "FPGA Versus Software Programming: Why,
When, and How?," in FPGAs for Software Programmers, Switzerland, Springer,
2016, pp. 1-21.

141



[29] H. K.-H. So and C. Liu, "FPGA Overlays," in FPGAs for Software Programmers,
New York, Springer, 2016, pp. 285-306.

[30] T. Bollengier, M. Najem, J.-C. L. Lann and L. Lagadec, "Demo: Overlay
architectures for heterogeneous FPGA cluster management,” 2016 Conference on
Design and Architectures for Signal and Image Processing (DASIP), pp. 239-240,
2016.

[31] A. Brantand G. G. F. Lemieux, "ZUMA: An open FPGA overlay architecture,” 2012
IEEE 20th International Symposium on Field-Programmable Custom Computing
Machines, pp. 93-96, 4 2012.

[32] D. Koch, C. Beckhoff and G. G. F. Lemieux, "An efficient FPGA overlay for portable
custom instruction set extensions,” 2013 23rd International Conference on Field
programmable Logic and Applications, pp. 1-8, 9 2013.

[33] D. Capalija and T. Abdelrahman, "A coarse-grain fpga overlay for executing data
flow graphs," in The Second Workshop on the Intersections of Computer Architecture
and Reconfigurable Logic (CARL 2012), 2012.

[34] X. Li, A. K. Jain, D. L. Maskell and S. A. Fahmy, "An Area-Efficient FPGA Overlay
using DSP Block based Time-multiplexed Functional Units,” in 2nd International
Workshop on Overlay Architectures for FPGAs (OLAF2016), Monterey, CA, USA,
2016.

[35] G. Stitt and J. Coole, "Intermediate fabrics: Virtual architectures for near-instant
FPGA compilation,” IEEE Embedded Systems Letters, vol. 3, no. 3, pp. 81-84, 12 9
2011.

[36] S. A. Fahmy, K. Vipin and S. Shreejith, "Virtualized FPGA accelerators for efficient
cloud computing,” in Proceedings - IEEE 7th International Conference on Cloud
Computing Technology and Science, CloudCom 2015, 2016.

[37] O. Knodel and R. G. Spallek, "Computing framework for dynamic integration of
reconfigurable resources in a cloud,” 2015 Euromicro Conference on Digital System
Design (DSD), pp. 337-344, 1 8 2015.

[38] J. Weerasinghe, F. Abel, C. Hagleitner and A. Herkersdorf, "Disaggregated fpgas:
Network performance comparison against bare-metal servers, virtual machines and
linux containers,” Cloud Computing Technology and Science (CloudCom), 2016
IEEE International Conference on, pp. 9-17, 12 12 2016.

142



[39] J. Weerasinghe, R. Polig, F. Abel and C. Hagleitner, "Network-Attached FPGAs for
Data Center Applications,” IEEE International Conference on Field-Programmable
Technology (FPT '16), 2 2016.

[40] H. L. Kidane, E.-B. Bourennane and G. Ochoa-Ruiz, "NoC Based Virtualized
Accelerators for Cloud Computing,” in 2016 IEEE 10th International Symposium on
Embedded Multicore/Many-core Systems-on-Chip (MCSOC), Lyon, France, 2016.

[41] A. Putnam and Others, "A Reconfigurable Fabric for Accelerating Large-Scale
Datacenter Services," in ISCA'14, 2014.

[42] Q. Zhao, M. Amagasaki, M. lida, M. Kuga and T. Sueyoshi, "Enabling FPGA-as-a-
Service in the Cloud with hCODE Platform," IEICE Transactions on Information
and Systems, vol. 101, no. 2, pp. 335--343, 2018.

[43] M. Jacobsen, D. Richmond, M. Hogains and R. Kastner, "RIFFA 2.1: A Reusable
Integration Framework for FPGA Accelerators,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 8, no. 4, pp. 22:1--22:23,
2015.

[44] K. Vipin and S. A. Fahmy, "DyRACT: A partial reconfiguration enabled accelerator
and test platform,” 2014 24th International Conference on Field Programmable
Logic and Applications (FPL), pp. 1-7, 9 2014.

[45] C. Vatsolakis and D. Pnevmatikatos, "RACOS: Transparent access and virtualization
of reconfigurable hardware accelerators,” International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS), pp. 11-19,
July 2017.

[46] O. Knodel, P. R. Genssler and R. G. Spallek, "Virtualizing Reconfigurable Hardware
to Provide Scalability in Cloud Architectures,” CENICS 2017 : The Tenth
International Conference on Advances in Circuits, Electronics and Micro-
electronics, vol. 2, pp. 33-38, 2017.

[47] O. Knodel, P. R. Genssler and R. G. Spallek, "Migration of long-running Tasks
between Reconfigurable Resources using Virtualization," ACM SIGARCH Computer
Architecture News, vol. 44, no. 4, pp. 56-61, 2017.

[48] ARM, "AMBA AXI4-Stream Protocol Specification,” [Online]. Available:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/ index.html.
[Accessed 2018].

143



[49] E. lzenberg, N. Bshara, C. Pettey and C. K. OHRT, "Fpga-enabled compute
instances". Washington Patent W0O2017117122A1, 6 7 2017.

[50] M. Asiatici, N. George, K. Vipin, S. A. Fahmy and P. lenne, "Designing a virtual
runtime for FPGA accelerators in the cloud,” 2016 26th International Conference on
Field Programmable Logic and Applications (FPL), pp. 1-2, 8 2016.

[51] M. Asiatici, N. George, K. Vipin, S. A. Fahmy and P. lenne, "Virtualized Execution
Runtime for FPGA Accelerators in the Cloud," IEEE Access, vol. 5, pp. 1900-1910,
2017.

[52] "The OpenCL Specification Version 2.2-8," Khronos OpenCL Working Group, 8
October 2018. [Online]. Available:
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_API.pdf.
[Accessed 2018].

[53] Xilinx, "SDAccel Development Environment,” Xilinx, [Online]. Available:
www.xilinx.com/products/design-tools/software-zone/sdaccel.html. [Accessed
2018].

[54] "Intel SDK for OpenCL Applications,” Intel, 2018. [Online]. Available:
https://software.intel.com/en-us/intel-opencl.

[55] "AWS  Shell Interface  Specification,” Amazon, [Online]. Available:
https://github.com/aws/aws-fpga/blob/master/hdk/docs/
AWS_Shell_Interface_Specification.md. [Accessed 2018].

[56] "Amazon FPGA Image (AFI) Management Tools,"” Amazon, [Online]. Available:
https://github.com/aws/aws-fpga/blob/master/sdk/userspace/
fpga_mgmt_tools/README.md. [Accessed 2018].

[57] IBM, "SuperVessel, an OpenPOWER cloud platform,” IBM Research — China,
[Online]. Available: http://research.ibm.com/labs/china/supervessel.html. [Accessed
2018].

[58] W. Wang, M. Bolic and J. Parri, "pvFPGA: Accessing an FPGA-based hardware
accelerator in a paravirtualized environment,” 2013 International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 1-9, 2013.

[59] O. Sander, S. Baehr, E. Luebbers, T. Sandmann, V. V. Duy and J. Becker, "A flexible
interface architecture for reconfigurable coprocessors in embedded multicore

144



systems using PCle Single-root 1/O virtualization," in International Conference on
Field-Programmable Technology (FPT), Shanghai, China, 2014.

[60] D. V. Vu, O. Sander, T. Sandmann, S. Baehr, J. Heidelberger and J. Becker,
"Enabling partial reconfiguration for coprocessors in mixed criticality multicore
systems using PCIl express single-root 1/O virtualization,” in International
Conference on ReConFigurable Computing and FPGAs (ReConFigl4), Cancun,
Mexico, 2014.

[61] D. Theodoropoulos, N. Alachiotis and D. Pnevmatikatos, "Multi-FPGA Evaluation
Platform for Disaggregated Computing,” IEEE 25th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), pp.
193-193, April 2017.

[62] I. Magaki, M. Khazraee, L. Vega and M. B. Taylor, "ASIC clouds: specializing the
datacenter,” ISCA '16 Proceedings of the 43rd International Symposium on Computer
Architecture , pp. 178-190, 2016.

[63] S. A. Byma, "Virtualizing FPGAs for Cloud Computing Applications,” University of
Toronto, 2014.

[64] M. Vesper, D. Koch, K. Vipin and S. A. Fahmy, "JetStream: An open-source high-
performance PCI Express 3 streaming library for FPGA-to-Host and FPGA-to-FPGA
communication," 2016 26th International Conference on Field Programmable Logic
and Applications (FPL), pp. 1-9, 2016.

[65] "TCP/UDP/IP Network Protocol Accelerator,” MLE, [Online]. Available:
https://www.missinglinkelectronics.com/index.php/menu-products/ menu-network-
protocol-accelerator. [Accessed 2018].

[66] F. Haque, J. Michelson and J. Michelson, The Art of Verification with VERA,
Verification Central; 1 edition (September 1, 2001), 2001.

[67] "Clock Control Block (ALTCLKCTRL) IP Core User Guide," Intel Altera, 4 4 2018.
[Online]. Available:
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/
ug/ug_altclock.pdf. [Accessed 2018].

[68] "UltraScale Architecture Clocking Resources User Guide," Xilinx, 19 December
2018. [Online]. Available:

145



https://www.xilinx.com/support/documentation/user_guides/ug572-ultrascale-
clocking.pdf. [Accessed 2018].

[69] R. Herveille and A. Henson, "Video compression systems,” 23 June 2009. [Online].
Available: https://opencores.org/projects/video_systems. [Accessed 2018].

[70] D. Lundgren, "JPEG Encoder Verilog,” 17 March 2010. [Online]. Available:
https://opencores.org/projects/jpegencode. [Accessed 2018].

[71] J. Castillo Villar, "An open-source implementaion of the 512 bit RSA algorithm," 12
January 2011. [Online]. Available: https://opencores.org/projects/rsa_512.
[Accessed 2018].

[72]H. Hsing, "tiny aes,” 14 December 2015. [Online]. Available:
https://opencores.org/project/tiny _aes. [Accessed 2018].

[73] R. Kirchgessner, G. Stitt, A. George and H. Lam, "VirtualRC: a virtual FPGA
platform for applications and tools portability,” Proceedings of the ACM/SIGDA
international symposium on Field Programmable Gate Arrays, pp. 205-208, 22-24
February 2012.

[74] G. McMiillan, "Socket Programming,” Python Software Foundation, 8 November
2018. [Online]. Available: https://docs.python.org/2/howto/sockets.html. [Accessed
2018].

[75] D. Litzenberger, "PyCrypto - The Python Cryptography Toolkit,” [Online].
Available: https://www.dlitz.net/software/pycrypto/. [Accessed 2018].

[76] H. Ishihara, "JPEG Decoder,” 13 March 2018. [Online]. Available:
https://opencores.org/projects/djpeg :
http://www.pudn.com/Download/item/id/521458.html. [Accessed 2018].

[771H. Ishihara, "JPEG Decoder,” 24 April 2015. [Online]. Available:
https://github.com/aquaxis/IPCORE/tree/master/aq_axi_djpeg. [Accessed 2018].

[78] "Canny  Edge  Detector,” 9 January 2014. [Online]. Available:
https://opencores.org/projects/canny_edge_detector. [Accessed 2018].

[79] "OpenCV (Open Source Computer Vision Library),” OpenCV team, [Online].
Available: https://opencv.org/. [Accessed 2018].

146



[80] D. Jayasinghe, R. Ragel, J. A. Ambrose, A. Ignjatovic and S. Parameswaran,
"Advanced modes in AES: Are they safe from power analysis based side channel
attacks?," IEEE 32nd International Conference on Computer Design (ICCD), pp.
173-180, 19-22 October 2014.

[81] M. Leonhard, "Estimate the latency from your browser to each AWS region,
Amazon, 2010. [Online]. Available: https://www.cloudping.info/. [Accessed 2018].

[82] "Partial Reconfiguration User Guide," Xilinx, 3 May 2010. [Online]. Available:
https://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/ ug702.pdf.
[Accessed 2018].

[83] V. Cerf and B. Kahn, "INTERNET PROTOCOL," September 1981. [Online].
Available: https://tools.ietf.org/html/rfc791. [Accessed 2018].

[84] D. P. Reed, "RFC 768 : User Datagram Protocol,” 28 August 1980. [Online].
Available: https://tools.ietf.org/html/rfc768. [Accessed 2018].

[85] Altera, "Partial Reconfiguration IP Core,” 8 May 2017. [Online]. Available:
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug
/ug-partrecon.pdf. [Accessed 2019].

147



Name

Nationality

Date of Birth

Email

Academic Background :

. Amran Abdulrahman Al-aghbari

: Yemen

: 29-12-1978

Vitae

:emran.hsb@hotmail.com, emran.hsb@gmail.com

Amran received his BS.C in Computer Science, form Sana’a
University, Sana’a, Yemen, in June 2004. He worked as a
lecturer in computer science department, Taiz University, Taiz,
Yemen from 2005 to 2009. He received his M.Sc. degree in
Computer Engineering, from KFUPM, Saudi Arabia, in
December 2012. He defended his PhD in Computer Science and
Engineering from KFUPM, Saudi Arabia, in December 2018.
Amran interest includes programming and designing systems
and tools, hardware/software co-design, hardware design
languages, HLL-to-HDL compilers, HDL editing tools,

virtualized reconfigurable computing.

Publications from the dissertation:

[1] A. Al-Aghbari and M. E. S. Elrabaa, "A platform for FPGA virtualization in clouds
and data centers,"” Microprocessors and Microsystems, vol. 62, pp. 61-71, 2018.

[2] A.Al-Aghbariand M. E. S. Elrabaa, " Cloud-Based Secure FPGA Custom Computing
Machines for Streaming Applications,” UNDER PREPARATION

148


mailto:emran.hsb@hotmail.com
mailto:emran.hsb@gmail.com

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	DISSERTATION ABSTRACT
	ملخَّصُ بحث درجةُ  الدكتوراةِ في الفلسفةِ
	CHAPTER 1   Introduction
	1.1 Motivation
	1.2 Thesis statement and contributions
	1.3 Overview of the thesis

	CHAPTER 2   Cloud Computing
	2.1 Data center
	2.2 Virtualization
	2.2.1 Hardware virtualization
	2.2.2 Application virtualization
	2.2.3 Desktop virtualization
	2.2.4 Network virtualization
	2.2.5 Storage virtualization

	2.3 OpenStack: open source cloud computing platform

	CHAPTER 3   Design with FPGAs
	3.1 FPGA architecture
	3.2 Design flow
	3.3 Partial Reconfiguration
	3.4 High-level synthesis
	3.5 FPGA strengths and weaknesses

	CHAPTER 4   Literature Review
	4.1 Overlay architecture
	4.2 Virtualization using abstraction layer (AL)
	4.2.1 Interfacing the abstraction layer (AL) with vFPGAs
	4.2.2 OpenCL and the CPU-FPGAs interface abstraction

	4.3 FPGA attachment interface
	4.4 FPGA in the cloud and data center
	4.5 ASIC Clouds
	4.6 Summary

	CHAPTER 5    Overview of the Cloud-Based FPGA Custom Computing Machines Platform
	5.1 FPGA Virtualization
	5.2 FPGA Cloud Architecture
	5.3 FPGA hypervisor
	5.3.1 User-to-CCM API functions
	5.3.2 User-to-Hypervisor API functions
	5.3.3 Hypervisor-to-Hypervisor back-end API functions

	5.4 A scenario of Launching, Using and Terminating a CCM
	5.5 CCM Creation
	5.6 Properties of the Platform
	5.6.1 The platform computing model
	5.6.2 Abstraction
	5.6.3 Sharing
	5.6.4 User data security
	5.6.5 CCM clusters on Multi-vFPGA


	CHAPTER 6   FPGA Virtualization Platform
	6.1 Data Communications
	6.2 Network Controller
	6.3 Static logic
	6.3.1 Data routing
	6.3.2 Reconfiguration management unit (RM)
	6.3.3 Clock management unit (CM)

	6.4 The wrapper's design
	6.4.1 Conceptual design of the wrapper
	6.4.2 Wrapper components

	6.5 Wrapper generation
	6.5.1 Parsing the XML/JSON specification file
	6.5.2 Parsing the Vera specification file
	6.5.3 An example for generating a serializer from a Vera description
	6.5.4 Wrapper generation software


	CHAPTER 7   Results and Comparison
	7.1 Generating a wrapper for the JPEG Encode core
	7.1.1 Preparing the XML Description File
	7.1.2 User’s Vera Data Specifications
	7.1.3 JPEG Encoder implementation on a vFPGA

	7.2 Simulation methodology
	7.3 Virtualization Overhead Evaluation
	7.4 Comparisons with other platforms
	7.5 vFPGAs versus SW-based virtual machines
	7.6 CCM platform Evaluation
	7.6.1 Experiment setup
	7.6.1.1 The CCM service
	7.6.1.2 The software service

	7.6.2 Performance Evaluation
	7.6.3 The impact of adding the AES encryption/decryption
	7.6.4 The impact of having multiple vFPGAs within the same FPGA

	7.7 Boot time analysis

	CHAPTER 8  Conclusion
	8.1 Platform Limitations
	8.2 Future work

	Appendices
	A. Description of the used Benchmarks
	A.1. JPEG Encoder Core
	A.2. AES Core
	A.3. RSA512 Core
	A.4. FDCT Core
	A.5. JPEG Images Edge Detection
	A.6. Decrypt-Compute-Encrypt

	B. Software tool for Ethernet packet generation and platform test bench
	C. A description of the implemented Verilog code

	References
	Vitae

