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THESIS ABSTRACT

NAME: KHALED AHMED LUTF AL-THELAYA

TITLE OF STUDY: COMBINING DEEP LEARNING AND TECHNICAL

ANALYSIS FOR MULTIRESOLUTION FORECAST-

ING OF FINANCIAL STOCK MARKETS

MAJOR FIELD: Computer Science

DATE OF DEGREE: December 2018

Forecasting financial time series is considered one of the most challenging problems

due to the noisy and complex structure exhibited by its constructs. Recently, there

has been a rapidly growing interest in deep learning research and its applications to

real-world complex problems. Deep learning neural networks are proven to be supe-

rior in many research fields. The aim of this work is to develop a multiresolution

forecasting approach for financial stock markets using a deep learning methodology.

We analyze the significance of various technical indicators in improving forecasting

of financial markets and explore the impact of combining technical analysis with deep

learning on the forecasting results. Many deep learning architectures designed using

variants of deep recurrent neural networks are developed to forecast short- and long-

xx



term prices. We investigate and compare two mutliresolution analysis methods for

data decomposition. The proposed approach is developed using a combination of em-

pirical wavelet analysis method with deep gated recurrent unit network. The impact of

several technical indicators on the proposed approach is investigated and analyzed. The

proposed methodology is evaluated using S&P and DJIA indices which are two of the

most common benchmark time series widely employed to evaluate financial time-series

forecasting. Furthermore, we evaluate the proposed approach on the TASI Saudi stock

market index (Tadawul). Our proposed models show forecasting accuracies superior to

some recent related work in literature. The achieved accuracies are compared to that

of the random-walk model and analyzed with respect to the efficient market hypothesis.

Our results indicate that efficient market hypothesis could be rejected for short-term

(one day) forecast and approved for long-term (one month) forecast.
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الرسالة ملخص

يا الث لطف احٔمد خالد سم: ا

المستويات متعدد التحليل باستخدام المالية سٔهم ا بسوق للتنبؤ التقني والتحليل العميق التعلم تقنية استخدام الدراسة: عنوان

الحاسوب علوم التخصص:

2018 ديسمبر العلمية: الدرجة تاريخ

زاد وحديثاً مكوناتها، في الكامن والتشويش المعقدة للتركيبة نتيجة صعوبةً ت المجا اكٔثر من المالية سٔواق ل الزمنية سل الس بمستقبل التنبؤ يعد

قدرةً العميق التعلم على المعتمدة صطناعية ا العصبية الشبكات اثٔبتت وقد واقعية، مشاكل على وتطبيقاته العميق بالتعلم المتعلقة بالبحوث هتمام ا

(Multiresolution Analysis) المستويات متعدد التحليل تقنية استخدام الٕى الدراسة هذه وتهدف العلمي. البحث ت مجا معظم في عاليةً

التقنية المؤشرات دمج تاثٔير مدى دراسة الٕى ائضًا تهدف كما المتعددة، العميق التعلم منهجيات من ستفادة با العالمية سٔهم ا اسٔواق باسٔعار للتنبؤ

(Deep العميقة المتكررة العصبية الشبكات انٔواع من العديد تطوير تم وقد النتائج. على العميق التعلم مع المختلفة (Technical Indicators)

متعدد التحليل طرق من طريقتين ومقارنة بتحليل الدراسة وقامت والبعيد، القريب المستقبل في سٔعار با للتنبؤ Recurrent Neural Networks)

(Empirical التجريبية التحليلية المويجات طريقة من مكونة تركيبة باستخدام طريقة وتطوير اقتراح ثم ومن اجٔزاء، عدة الٕى البيانات لتحليل المستويات

المؤشرات دور تحليل ائضًا الدراسة وتضمنت ،(Gated Recurrent Unit) المبوبة المتكررة العصبية الشبكات اسٔلوب مع Wavelet Analysis)

من وهما (DJIA) جونز داو ومؤشر (S&P) بي انٔد اسٕ مؤشر دٔاء ا تقييم في واستخدمت النتائج، تحسين في (Technical Indicators) التقنية

سٔهم ا سوق مؤشر الدراسة استخدمت وكذلك المالية، البيانات سل بس للتنبؤ المختلفة الطرق ادٔاء مستوى تقييم في استخدامًا البيانات سل س اكٔثر

ائضًا وتمت الحديثة، السابقة الدراسات ببعض مقارنةً المقترحة الطريقة ودقة كفاءة التجارب اثٔبتت وقد التجارب. بعض في (TASI) تداول السعودية

.(Efficient Market Hypothesis) السوق كفاءة فرضية ضوء في وتحليلها (Random Walk) العشوائي السير نموذج مع النتائج مقارنة
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CHAPTER 1

INTRODUCTION

People are increasingly engaged into financial stock markets interactions by acquiring

and following information related to stock market trends, currency exchange, global

market indicators. Interest in financial data is receiving a growing attention due

to its significant impact on our daily lives. People might be directly or indirectly

affected by price changes in financial markets and they eventually need to deal with

information brought to their attention related to financial markets interactions. Daily

news reports on television, radio, and newspapers keep people informed about latest

stock market trends, interest rates, and currency exchange rates. Moreover, people

who are involved in international trade are dealing directly with financial time series.

Financial analysts, brokers, businessmen, and corporate investors need to analyze

and observe price trends and behavior in order to understand the likely changes of

the prices in the future. Forecasts of future prices provide early warning to avoid

unnecessary risks.

Researchers have been studying and investigating financial time series for more

than three decades attempting to develop efficient solutions to analyze, forecast and
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predict future trends and returns of financial time series. Technical analysis is one

of the evolved methodologies commonly followed to forecast and analyze financial

time series to identify trading opportunities [1]. It is mainly based on performing

different kinds of analysis using historical prices in order to draw conclusions about

market trends in the future. Technical analysts attempt to predict the market by

tracing patterns observed in the historical market data represented by various charts.

They usually employ different Technical Indicators (TIs), such as moving averages,

trend lines and momentum to forecast trends and future prices. Another methodology

used to predict market behavior is fundamental analysis, which depends on using

information related to the intrinsic values of the market and national economy, such as

inflation, interest rate, trade balance, etc. Fundamental analysts attempt to study the

market or the industry to have a clear picture of the firm they will choose to invest on.

They perform an in-depth analysis of the market performance and growth prospect

to make predictions about the future. It is mainly used for long-term investment

decisions and strategies.

One of the methodologies employed to perform financial time-series forecasting is

statistical analysis. It aims at approximating future values of financial time series

based on a linear combination of historical data. Many solutions have been proposed

based on linear regression methods such as linear Autoregressive (AR) and Autore-

gressive Moving Average (ARMA) [2–4]. Most of the financial time series tend to

exhibit nonlinear patterns. Thus, linear statistical models to some extent are unable

to adequately represent financial time-series patterns to predict its undefined behavior

based on seen historical data [5, 6]. The solution to this problem is to use nonlinear
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machine-learning methodologies, such as Artificial Neural Networks (ANNs), to model

nonlinearity and build more efficient models which have the ability to produce bet-

ter estimations. Solutions developed by ANNs show significant improvement in time-

series prediction and forecasting [7]. However, a recent machine-learning methodology

has been proposed based on deep learning architectures to perform deep analysis and

modeling to data science. It has been developed based on performing deep data anal-

ysis and training to achieve prediction and forecasting. For instance, Deep Learning

Neural Networks (DNNs) show superior performance and efficiency in many scientific

fields including forecasting of financial time series [8–10]

Due to the unprecedented advances in deep learning, many scientific fields exploit

its high performance to build solutions to different kinds of problems. Financial time

series is considered to be a good candidate and suitable environment for deep learning

techniques. Some research works attempted to study different aspects of integrating

deep learning into financial time series [9–11]. Some of them approached the prob-

lem by examining and comparing different kinds of deep learning techniques [8, 9].

Others combine deep learning with data preprocessing methods to reduce and denoise

the input data [12]. Data preprocessing is considered a highly important stage in

data analysis and modeling. Our study investigates the application of Multiresolution

Analysis (MRA), which is one of the most effective tools for data preprocessing, anal-

ysis, denoising and decomposition. It has been widely used in a variety of time-series

modeling approaches [2, 13], yet few studies used it with deep learning networks to

perform financial time-series forecasting [10, 14].

Integrating deep learning networks and multiresolution analysis into financial time
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series is a new research area full of opportunities to build more efficient models. Many

methods of wavelet analysis are proposed in the literature. In our study, we adopted

Empirical Wavelet Transform (EWT) to perform data decomposition and analysis.

To the best of our knowledge, no previous work has been allocated to study the

impact of using multiresolution analysis using EWT with deep learning networks for

financial time-series analysis and forecasting. Our work aims at filling this gap by

designing an efficient and accurate forecasting model based on using multiresolution

analysis for data decomposition and denoising. We compared forecast results of the

EWT analysis method with the traditional Stationary Wavelet Transform (SWT).

Moreover, we studied the integration and investigation of TIs with deep learning

networks to build accurate forecasting models. Our study explored the impact of using

TIs as input features to deep learning networks to perform forecasting. Our proposed

solution combined both multiresolution analysis and deep learning techniques with

TIs to build an efficient an MRA-DNN solution for financial time-series forecasting.

We investigated multiple architectures based on different parameters and multiple

time steps for forecasting several time horizon scales in the future. Many models were

developed based on the proposed methodology by applying changes to the types of

deep learning networks and multiresolution wavelet analysis methods. Besides, several

trials were conducted using different combinations of input features. Some of the

developed models were trained using raw stock market data only whereas other models

employed TIs as additional input features. Different deep recurrent neural networks,

such as, Gated Recurrent Unit (GRU) and Long-Short Term Memory (LSTM), were

designed using stacked and bidirectional architectures. We also developed different
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models using raw stock data as input features without performing multiresolution

analysis. All models developed by this work were evaluated using S&P and DJIA

stock market indices which are two of the most common benchmark datasets used for

evaluating financial time-series forecasting approaches in the literature. �We further

evaluated the forecasting approach proposed by this study on Saudi stock market using

the Tadawul All Share Index (TASI). The best developed models were also analyzed

and compared to some previous work in the literature.

Proving the predictability of the market is an arguable subject that has been much

investigated by researchers and academics. A hypothesis in finance, known as the

Efficient Market Hypothesis (EMH) devised in 1960s implies that forecasting efficient

market is impossible. However, so far there has been no ultimate empirical evidence on

the validity of EMH (more details can be found in Appendix A) [15]. Many studies [16–

18] argued the validity of the EMH by developing market forecasting models and the

results do not support the EMH and question the applicability of this hypothesis with

respect to employed data and investigated markets. Therefore, before we perform

forecasting experiments using benchmark datasets, we prove that daily returns of the

benchmark datasets are not randomly distributed. Testing for non-randomness of

time series provides an indication that the forecasting task is possible. To contribute

to the answer of the question of stock market predictability, we compare the results

of our proposed methodology to the results produced by the Random Walk (RW)

model implied by the EMH. Failing to outperform RW model emphasizes that the

stock market prices are unpredictable which may provide a supportive evidence for

the EMH. Most of the forecasting models proposed in the literature test the EMH in
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its weak or semi-strong form [19, 20]. The scope of this work will be limited to testing

the weak form of the EMH by working on technical data which involves analyzing

changes of prices over the past to forecast the future. Expanding the scope of this

study to test the semi-strong form of the EMH is beyond the scope of this work

due to the unavailability of required fundamental data about the market shares and

companies.

1.1 Motivation

Financial time series are highly volatile noisy data streams and stock market fore-

casting is typically regarded as a challenging application. The research of accurately

forecasting stock market prices is in progress with the goal of fulfilling best economic

gain and better profitable return.

Many studies found that time-series data tends to exhibit nonlinear pattern and

they thus adopted different kinds of nonlinear modeling approaches. However, new

trends in machine learning showed that deep learning methodology can model highly

nonlinear data efficiently. It can be observed from the literature that exploring and

addressing the integration of deep learning methodology to time-series analysis and

forecasting is an important area of research which is receiving increasing attention.

We also observe that there is still room to investigate the application of deep learning

combined with different kinds of preprocessing techniques such as multiresolution

analysis to forecast financial time series.

Using multiresolution analysis for denoising, analyzing and decomposing the data,
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is an important research field and a key factor to developing efficient time-series fore-

casting models. Besides, technical analysis and TIs help develop representative, effec-

tive new features, free of noise, and free of unanticipated patterns in the data. The

impact of TIs on the analysis of time series has been addressed by some research with

respect to some modeling techniques such as ANNs [21], yet it was not adequately

explored regarding deep learning methodologies using multiresolution analysis. Thus,

applying deep learning to financial time series with the integration of multiresolution

analysis techniques and TIs is an open question that needs to be addressed. It is an

interesting problem domain worthy to be studied and analyzed.

1.2 Objectives

The objectives of this thesis are as follows:

• Intensively review related work on multiresolution forecasting of financial mar-

kets.

• Apply and compare different deep learning architectures to perform stock mar-

ket forecasting for multiple time scale horizons using different time steps input

structure.

• Design and develop a multiresolution forecasting approach of financial stock

markets using deep learning techniques.

• Analyze the significance of various TIs in improving the forecasting of financial

markets.
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• Explore the impact of combining TIs with multiresolution analysis and deep

learning on the forecasting results.

1.3 Contributions

• Evaluation of several variants of deep recurrent neural networks such as LSTM

and GRU for stock market forecasting using different deep layered architectures.

• Stock market forecast using multivariate analysis by comparing deep architec-

tures with shallow neural networks.

• Perform stock market forecasting using combination of TIs and deep autoen-

coder GRU for data denoising.

• Conduct comparative experiments using Bidirectional Long Short Term Memory

(BLSTM) deep network to forecast stock market using EWT and SWT for

mutliresolution analysis.

• Forecasting stock market using Bidirectional Gated Recurrent Unit (BGRU)

and EWT using both raw stock prices and log returns of stock prices.

• Develop a deep learning architecture using BGRU with combination of TIs and

multiresolution analysis using EWT.
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1.4 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 introduces some related

works and classifies them according to the employed approach and methodology to

perform the forecasting. Chapter 3 describes the details of the proposed methodology

for financial time-series forecasting. Chapter 4 describes the benchmarking datasets

and applies some statistical methods to explore their characteristics. It also describes

various techniques for data preprocessing. Chapter 5 discusses the conducted experi-

ments to evaluate the proposed methodology. Chapter 6 summarizes the conclusions

drawn by this study in addition to limitations and suggestions for future work.
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CHAPTER 2

RELATED WORK

The analysis of time series mainly comprises statistical techniques to characterize,

describe, and model data patterns. Forecasting time series aims to employ historical

data to predict future values. Weather, wind speed, water demand, electricity con-

sumption and many other problem domains apply time-series forecasting techniques

to predict future values [22–24]. Financial time series forecasting [25, 26] is one of the

important fields in time series used for making best choices to reach objectives and

achieve profitable goals. In the following sections, we discuss some related works which

developed financial time-series forecasting models. Figure 2.1 shows classification of

some related works based on type of forecasting models. Some linear forecasting mod-

els in the literature are discussed in Section 2.1. Moreover, we review some related

works which used nonlinear forecasting techniques to perform the forecasting in Sec-

tion 2.2. Section 2.3 describes some related works that used deep learning techniques

in financial time series forecasting. Some related works which developed forecasting

models based on MRA are discussed in Section 2.4. Related works which developed

forecasting models using TIs are discussed in Section 2.5.
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Figure 2.1: Classification of some related works according to type of forecasting models

2.1 Linear Forecasting Models

Time-series forecasting involves different linear modeling techniques such as AR, Mov-

ing Average (MA), ARMA, and Autoregressive Integrated Moving Average (ARIMA).

Many research [27–30] adopted ARMA modeling technique for time-series forecasting

and prediction. Chen-Xu et al. [27] built a model based on ARMA to predict bank

cash flow. The performance was compared with the MA model only. Kim [28] dis-

cussed the symmetric maximum likelihood loss function and proposed asymmetric loss

function to build ARMA model to forecast stock returns. The proposed cost-sensitive

loss function outperformed ML estimator function, yet it was not compared with any

other forecasting models. Chen et al. [30] applied an adaptive approach to build

ARMA model by deriving the error based on the theory of Minimum Mean Square

Error (MMSE). Similarly, ARIMA modeling was adopted by [31–34] for time series-
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forecasting. The constructed models were evaluated on different application domains

including stock market forecasting. All linear modeling techniques cited above, were

not compared with nonlinear modeling techniques or other types of modeling.

2.2 Nonlinear Forecasting Models

Mainly, nonlinear modeling techniques when compared with linear techniques show

good performance and better accuracy. Studies [7, 35–37] that compare the per-

formance of the linear and nonlinear forecasting models support the superiority of

nonlinear models. Thus, many nonlinear modeling techniques were employed to fore-

cast time series. Santos et al. [7] investigated the advantages of integrating nonlinear

Multilayer Perceptron Neural Network (MLP) with Radial Basis Functional Neural

Network (RBFNN) and the Takagi-Sugeno fuzzy system to exchange-rate forecasting.

The performance of the proposed model was compared with the performance of the

linear ARMA and ARMA-GARCH models and showed better forecasting accuracy.

Another study was conducted by Pao et al. [38] to compare the performance of lin-

ear and nonlinear models, particularly two nonlinear ANN models and three linear

time-series cross sectional models. It demonstrated that ANN models exhibit higher

forecasting accuracy.

ANNs are widely used for time-series analysis and forecasting due to its ability

to model nonlinearity in time-series data. Many studies investigated the merits and

abilities of ANNs in time-series forecasting. Xiao-Ming et al. [39] combined ten ANN

models together to learn the forecasting model. They used Adaboost technique to
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train the combined models by selecting 38 TIs of Shanghai Stock Exchange and inter-

national stock markets. The proposed model forecasts the weekly direction of stock

index movement. The combination of ANN weak predictor models were employed to

form a more efficient model. They verified the performance of the proposed model by

comparing the prediction results of the single ANN models on the same test set with

the results recorded by the combined model. Guo et al. [40] also used ANN to build a

hybrid dimensional reduction approach. The model combined Two-Directional Two-

Dimensional Principal Component Analysis (2DPCA) with RBFNN to forecast stock

market daily closing price trend. The proposed model input features consisted of 36

stock market technical variables and use a sliding window to shape the input data. The

dimension of the input data reduced by 2DPCA to extract its intrinsic features. The

data was fed into RBFNN to forecast the next day’s stock movement and price. The

evaluation used the Shanghai stock market index. Zhong et al. [41] devised that the

best technique to forecast time series is ANN and put more emphasis on data prepro-

cessing phase. They proposed using three mature dimensionality reduction techniques,

including Principal Component Analysis (PCA), Fuzzy Robust Principal Component

Analysis (FRPCA), and Kernel-based Principal Component Analysis (KPCA). The

ANN model with the PCA gives slightly higher classification accuracy than the KPCA

or FRPCA.

Some other modeling techniques such as Adaboost, and Hidden Markov Model

(HMM) were also applied to time-series forecasting. Hassan and Nath [42] came up

with a new approach which depends on using HMM to predict next day�return value.

The proposed approach searches for patterns in the dataset that matches specific
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query. They used daily stock data of Southwest Airlines for training and testing.

They also compared the new model with other four ANNs models and found that

the Mean Absolute Percentage Error (MAPE) values are quite similar. Huanga et

al. [43] used Support Vector Machine (SVM) technique to train a model to forecast

the direction of the weekly movement of the NIKKEI 225 index. They compared

the produced model with other models generated by Linear Discriminant Analysis,

Quadratic Discriminant Analysis and Elman Backpropagation Neural Networks. They

found that SVM produces the best results.

Moreover, Majhi et al. [44] introduced a nondominated sorting genetic algorithm

version-II (NSGA-II) and Multi-Objective Particle Swarm Optimization (MOPSO)

to efficiently design models for stock market prediction to adjust four performance

constrains. The developed adaptive model was introduced with nonlinearity at the

input end by Legendre polynomial expansion scheme. It was developed by adapting

the stepwise algorithms. A decision-making strategy based on fuzzy logic suggested

to get the best solutions from models. Comparison of the results showed that the

performance of multi-objective optimization model is better while the single objective

optimization model exhibited better performance in terms of the Theil’s U.

Another study conducted by Liu et al. [45] employed automatic clustering and

features categorizing of growing hierarchical self-organizing map (GHSOM) to build

the model. They described patterns and criteria to determine stocks for investment

and maximize profits. The proposed approach adopts Elite Particle Swarm Opti-

mization (EPSO) to elucidate optimal trading opportunities and combines Growing

Hierarchical Self-Organizing Map (GHSOM) and EPSO in its stock selection strategy.
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Table 2.1 shows some related works that use different kinds of techniques for financial

time-series prediction and forecasting.

Table 2.1: List of some forecasting techniques im the literature

Ref Technique Dataset
[42] Hidden markov model The daily stock data of southwest airlines
[43] Support vector machine NIKKEI 225 index
[39] Adaboost and ANN Shanghai stock exchange and international stock

markets
[40] Two-directional two-dimensional PCA and a radial

basis function neural network
Shanghai stock market index

[44] NSGA-II, MOPSO DJIA stock index.
[46] Bayesian regularized ANN Microsoft corp. and Goldman Sachs group Inc.
[41] PCA, FRPCA, KPCA, ANN S&P index ETF (SPY)
[45] EPSO, GHSOM Taiwan stock market.
[47] Adaboost (SVM), Adaboost (QGA-SVM), Ad-

aboost (GA-SVM)
MTK and China steel, Taiwan stock market

2.3 Deep Learning Forecasting Models

Generally, nonlinear techniques outperformed linear models and produced better fore-

casting methods. The majority of the reviewed research above, suggested that ANN

modeling technique is adequate to represent the nonlinearity of time-series data for

forecasting and prediction. However, it did not succeed to provide an efficient models

with encouraging performance. According to Singh et al. [11], ANNs don’t produce

quite enough performance to warrant being the best modeling technique for financial

time series. DNNs, on the other hand, showed superior performance in many other

areas of science such as signal processing, speech recognition, and image classifica-

tion. Therefore, adopting DNNs techniques into financial time-series forecasting is

a promising research area. Singh et al. [11] proposed an approach using Recurrent

Neural Network (RNN) and suggested that DNNs models are better than ANNs.
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Although there are limited number of DNNs techniques proposed, they tend to

produce more efficient models. More investigation to examine the advantages and

limitations of using deep learning methodologies is needed to improve financial time-

series forecasting. Chong et al. [8] explored the potential advantages and drawbacks

of using and integrating DNNs into stock market forecasting. They used it to extract

features from high frequency raw data collected from intra-day stock returns. They

conducted experiments to study the effects of three unsupervised feature extraction

techniques on the network� to predict market direction. It showed that DNNs can

improve the results of the autoregressive model and enhance the prediction ability of

the model.

Shen et al. [9] also designed a model using an improved Deep Belief Network

(DBN). The proposed model designated to forecast exchange rates. Continuous re-

stricted Boltzmann machines (CRBMs) used to construct and improve the DBN.

Tsantekidis et al. [48] applied Convolutional Neural Network (CNN) on special kind

of high frequency data collected by limit order book (LOB). Limit order data is col-

lected from a specific set of constraints established to buy or sell a specific number

of shares within a set price. The proposed model outperformed both SVM and MLP

models.

Li et al. [12] attempted to improve the prediction model built using LSTM neural

network by integrating naïve bayes modeling technique to include and extract investor

sentiment and market factors from forum posts. Some researchers use different kinds

of data to train deep learning models. Chen et al. [49] transferred time-series data

into 2D images and fed them into CNN for training.
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2.4 Multiresolution Analysis

Characterizing, modeling, and extracting features of time series is best achieved by

integrating signal processing methodologies into time-series analysis and decomposi-

tion. Time series can be represented using different kinds of signal transforms such as

Fourier and wavelet transforms. Wavelet transform outperforms Fourier transform in

analyzing nonstationary data thus making it a good candidate for time-series decom-

position. Some research suggested that the use of wavelet transform is better than

Fourier transform, hence, Fourier transform is not a perfect choice for non-stationary

time-series analysis. And using Short-Time Fourier Transform (STFT) for MRA is

not the best choice as devised by Kilic et al. [2]. Wavelet methodology was first

introduced by Grossmann and Morlet [50]. This pioneering work was followed by pre-

senting MRA by Mallat [51]. Combining multiresolution wavelet methodology showed

a significant improvement in data analysis and decomposition in many scientific areas

including time series.

Many researchers explored the advantage of representing time-series data using

MRA. Ismail et al. [52] for example, attempted to understand and characterize fi-

nancial time series using MRA. The study used Linear ARIMA with wavelets to

address forecasting results using multiresolution approach fitting. Kilic et al. [2] con-

ducted experiments to analyze S&P stock market data using MRA, and some other

descriptive statistical modeling. They also conducted experiments to investigate and

compare the integration of MRA with linear as well as nonlinear forecasting meth-

ods. They concluded that using nonlinear models with MRA produced better results.
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Some other studies concluded that nonlinear modeling techniques and ANNs partic-

ularly show better performance as Bekiros et al. [53] suggested. The study applied

MRA to linear and nonlinear models involving neural networks that show superior

performance. Zhan et al. [13] also found that the integration of wavelet transforms

with ANN produce better forecasting results. They used shift invariant scale-related

wavelet transform representation. The transformation established based on Autocor-

relation Shell Representation (ASR). The proposed approach transforms the financial

time series and extracts wavelet coefficient by ASR and applies Bayesian method of

automatic relevance determination (ARD) to select best features for the first layer

that is composed of multiple MLP predictors. The output of this layer is input to the

second layer that consists of one MLP predictor. The proposed model proved to be

efficient when compared with another MLP model without wavelet transform.

Few research attempted to combine wavelet transforms with deep learning tech-

niques to learn financial time-series prediction model. Persio et al. [10] explored the

effectiveness and efficiency of wavelet analysis with deep learning techniques in finan-

cial time-series forecasting . The study included several experiments comparing the

forecasting performance of CNN and LSTM. The study concluded that CNN when

combined with MRA tend to outperform other compared DNNs. Other types of DNNs

such as Stacked Autoencoders (SAEs) used by Bao et al. [14] to propose a prediction

approach using LSTM combined with wavelet transform to denoise input features.

The combined model outperformed the other three separated single models.

Moreover, discrete wavelet transform (DWT) and multiplicative seasonal algorithm

(MSA) are both preprocessing techniques , used to analyze and decompose time series
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into sub-components by isolating seasonal and trend elements of the time-series data to

produce higher accuracy forecasting performance. Altunkaynak et al. [22], conducted

experiment to compare between the impact of (DWT) and (MSA) with regard to

water-consumption time-series data. The study train two MLP models each of which

combined with one of the preprocessing analytical techniques. The MSA-MLP model

tend to produce better performance than DWT-MLP.

2.5 Technical Analysis and Technical Indicators

Another area of data preprocessing techniques, especially for financial time series, is

Technical Analysis (TA). It is one of the effective tools used to improve time-series

forecasting accuracy. New input features are forged by TIs based on some technical

means to represent trends and patterns of the data. The new technical features use

raw features such as opening, low, high and closing price values to form a new more

expressive and representative features. Number and type of TIs used is subject to

the problem domain. TIs, such as RSI, are mathematical operations employed to rule

whether a stock is overbought or oversold or a price trend is strong or weak, and

thus to predict stock price trend movements. Some studies conducted experiments to

examine the impact of TIs on time-series forecasting. They used different kinds of TIs

as listed in Tables 2.3 and 2.4. Some research [14, 49, 54, 55] adopted deep learning

methodology and use TIs to improve the forecasting results. Yet, no research - as

far as we know - analytically compare and investigate the impact of using TIs with

respect to deep learning techniques and multiresolution preprocessing methodologies.
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Table 2.3: Some technical indicators adopted in other studies to perform stock market
forecasting

Reference TIs
[56] SMA, EMA, RSI, ROC, MACD, ATR
[57] RSI, MACD
[58] SMA, EMA, RSI, ROC, ADX, DEMA, KAMA, Momentum, TEMA,

TRIX, WilliamsR%, WMA
[59] SMA, EMA, RSI, ROC, MACD, ATR, WilliamsR%, ADMI, Stochastic

%K
[21] SMA, RSI, MACD, ATR, Momentum, WilliamsR%, CCI, Stochastic

%K, EMVA
[60] SMA, EMA
[61] EMA, Stochastic %K, Stochastic %D, Stochastic %J, WMR, OBV
[14] SMA, EMA, ROC, MACD, ATR, CCI, BOLL, MTM, SMI, WVAD
[62] SMA, RSI, ROC, MACD, WilliamsR%, Stochastic %K, Stochastic %D,

OBV, VR
[63] SMA, RSI, ROC, MACD, CCI, CMO, PPO, STOCH
[64] SMA, EMA, RSI, ROC, MACD, ADX, TEMA, WilliamsR%, WMA,

ADMI, CCI, CMO, HMA, PPO, CMFI
[1] EMA, RSI, ROC, MACD, Stochastic %K, Stochastic %D, OBV, HMA,

TSI, STOCH
[59] SMA, EMA, RSI, ROC, ATR, WilliamsR%, ADMI, CCI, Stochastic

%K, Stochastic %D
[65] SMA, EMA, RSI, ROC, Momentum, WilliamsR%, Stochastic %K
[66] SMA, EMA, RSI, ROC, MACD, ATR, Momentum, WilliamsR%,

WMA, CCI, Stochastic %K, Stochastic %D, PPO, DIS, BIAS, BB,
MFI, SLOW D, CLV, ADO

[67] SMA, RSI, MACD, Momentum, WilliamsR%, WMA, CCI, Stochastic
%K, Stochastic %D, ADO

[68] SMA, RSI, Stochastic %K, Stochastic %D, BIAS
[69] SMA, RSI, MACD, WilliamsR%, BIAS, ADO, MO1, MO2, DIFN,

DIFF, DIFE
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Table 2.4: Continuous of Table 2.3

Reference TIs
[70] SMA, WilliamsR%, BIAS, mo1, DIFN, DIFT
[71] SMA, RSI, ROC, Stochastic %D, OBV, VR, DIS, PSY, AR
[72] SMA, EMA, RSI, ROC, Momentum, WilliamsR%, CCI, Stochastic

%K, Stochastic %D, DIS, ADO
[73] SMA, EMA, MACD, ATR, Momentum, WilliamsR%, CCI, Stochastic

%K, Stochastic %D, PPO, TSI, BIAS, Ulcer, UO, SignalLine
[74] SMA, RSI, MACD, WilliamsR%, Stochastic %K, BIAS, DIF, Trans-

action Volume (TV)
[75] SMA, EMA, Momentum, WilliamsR%, Stochastic %K, Stochastic %D,

SLOW D, ADO
[76] SMA, EMA, RSI, ROC, MACD, TRIX, WilliamsR%, CMO, STOCH,

ADO

[77] SMA, RSI, MACD, Momentum, WilliamsR%, CCI, Stochastic %K,
Stochastic %D, ADO

[78] MACD, Stochastic %K, Stochastic %D
[79] SMA, WilliamsR%, Stochastic %K, Stochastic %D
[80] SMA, RSI, MACD, Momentum, WilliamsR%, BIAS, PSY, DIFN,

DIFF, DIFE
[81] RSI, MACD
[46] EMA, RSI, WilliamsR%, Stochastic %K, Stochastic %D
[82] SMA, RSI, Momentum, WilliamsR%, Stochastic %K, Stochastic %D,

VR, PSY, AR
[83] RSI
[84] SMA, RSI, MACD, Momentum, WilliamsR%, WMA, CCI, Stochastic

%K, Stochastic %D, ADO
[85] SMA, RSI, Momentum, WilliamsR%, Stochastic %K, Stochastic %D,

VR, PSY, AR
[86] SMA, EMA, RSI, WilliamsR%, OBV, STOCH, ADO, PROC, CPACC,

HPACC
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CHAPTER 3

PROPOSED METHODOLOGY

In this chapter, we describe the proposed methodology for short- and long-term fore-

casting of financial time series. The proposed methodology is composed of three main

processing techniques: data preprocessing, multiresolution and technical analysis, and

deep neural network learning approach. Overview about the adopted methodology is

discussed in Section 3.1. Technical and multiresolution analysis are described in Sec-

tions 3.2 and 3.3, respectively. Discussion about the adopted deep learning method-

ology is included in Section 3.4.

3.1 Methodology Overview

The proposed methodology is based on a three-stage architecture as depicted in Figure

3.1. The first stage performs data exploration and preprocessing. The second stage

includes technical and multiresolution data analysis. The third stage is based on deep

learning networks to build forecasting models. The input data is first analyzed using

some time-series statistical tests to check for randomness. The data is then technically
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Figure 3.1: Overview of the proposed methodology

analyzed and a group of TIs are computed to extract more informative input features,

which are typically used by technical analysts of financial markets.

Data preprocessing is an important factor in learning forecasting models. It plays

a significant role in defining the best input features by analyzing, transforming and

decomposing the dataset. The effectiveness of forecasting models greatly depends on

the statistical stationarity assumption of the time-series dataset. Hence, we first con-

vert benchmark dataset into a stationary series using log returns. Another important

step is the decomposition of the time series on different scales using MRA. Multiple

streams of data are generated and utilized in building deep learning based forecasting

models. Applying different processing mechanisms on multiple data representations

is likely to increase the findings and leads to better forecasting results. Choosing

the best MRA parameters setup relies on conducting experiments to devise the best

configuration that has the highest performance results.

The learning methodology adopted by this work depends on deep learning tech-

niques. The input features are fed into a deep neural network for learning network

24



weights. We adopt Deep Recurrent Neural Network (RNN) technique which is com-

monly used to process sequential data. It can process and model temporal patterns

in time series. Two variants of deep recurrent neural networks, which are LSTM

and GRU, are explored in this study to perform forecasting. Several experiments are

conducted to select the best network design and parameters.

Multiple architectures are developed by this work using different configuration

setup and multiple time steps for forecasting several time horizon scales in the future.

The developed models used raw stock prices and log returns as input features. TIs

are included as input features to some of the trained models and compared to those

trained without using TIs. The best model is compared with several other approaches

in the literature.

The following subsections provide more details about the main components in the

proposed methodology: technical analysis, multiresoultion analysis, and deep learning

models.

3.2 Technical Analysis

Technical analysis is a combination of mathematical and graphical tools used to predict

the movement of market prices for a specific period in the future. TIs are a major

and significant part of the technical analysis methodology. They are mainly used by

traders to predict prices using trend and pattern recognition. Mostly, TIs are derived

by applying some mathematical formulas to the stock price data such as the closing

or opening prices. Many financial time-series forecasting researchers use TIs as input
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features to denoise the data series and stabilize the modeling process.

This work aimed at incorporating TIs as input features into the deep learning

models to study its impact and determine the best number and combination of TIs to

improve the learning process and forecasting performance. Experiments are conducted

to examine different TIs that are likely to create an efficient forecasting model. We

select ten of the most commonly used TIs of financial time series based on surveying

several studies in the literature, as listed in Tables 2.3 and 2.4. More details about

these TIs and their computations are provided in Appendix C.

3.3 Multiresolution Analysis

Financial time series may enclose several temporal and spectral patterns, which can

be revealed by applying analysis methods to extract and process each pattern based

on multiple resolution scales. MRA decomposes a time series into several but different

mini-series that describe parts of the data based on predefined scales. Each part of

the decomposed data can be distinguished and analyzed independently then used for

data modeling and learning.

MRA allows removing unwanted noisy parts of the data and including the impor-

tant influential ones by zooming-in into specific detailed data and at the same time

gaining an overall picture of the data. Adopting this kind of significant abilities sup-

ports building an efficient forecasting model. Our proposed methodology depends on

analyzing and decomposing the data into multiple scale data sets using EWT which

is an adaptive signal and time-series analysis technique developed based on a combi-
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nation of Empirical Mode Decomposition (EMD) and wavelet analysis. Each part or

subset of the data is used for learning different instances of deep neural networks. We

compare the adopted EWT analysis method to a stationary wavelet analysis method

which is widely used in the literature for financial time-series analysis. To the best of

our knowledge, we are the first to propose a forecasting model developed by combin-

ing EWT for data preprocessing with deep learning methodology to perform financial

time-series forecasting. Based on trial and error experimental methodology, we de-

fine and determine best parameters and resolution level well-suited for defining more

accurate models.

3.3.1 Wavelet Transform Concept

Wavelet transform is a generalization of Fourier transform, which is very common to

extract features at multiple resolution levels of the time-series data. The decomposi-

tion is accomplished by defining basis functions using a mother wavelet then multiscale

resolutions are extracted by projecting the given signal onto the basis functions. The

main advantage of wavelet decomposition is that it extracts local and global features

including the trend and spurious short fluctuations [87, 88]. The basis functions are

defined in terms of the mother wavelet as follows [87],

ψa,b(t) =
1√
|a|
ψ

(
t− b

a

)
, a, b ∈ IR, a ̸= 0 (3.1)
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where b and a denote the translation (location) and dilation (scaling) parameters,

respectively. For |a| > 1, the wavelet is stretched in time and captures low frequencies

in the series. For |a| < 1, the wavelet is compressed in time and captures high

frequencies in the series.

In order to get a multiresolution representation for the data, all the input data

are decomposed by varying the translation and dilation parameters. There are several

forms of mother wavelets such as those adopted in Haar, Daubechies and Symlets

transformations. Daubechies wavelets are used by many time-series forecasting ap-

plications [13, 89, 90]. Discrete Wavelet Transform (DWT) basis function at time

location n and dyadic scaling m is given by [88],

ψm,n(t) = 2
−m
2 ψ(2−m · t− n) (3.2)

The wavelets of DWT generated by the dyadic grid sampled wavelets are orthonormal.

The inner product of the time-series data denoted by x(t) and the basis function ψm,n

expressed in Equation 3.2 is as follows,

dm,n =
N−1∑
t=0

x(t)ψm,n(t) (3.3)

The wavelet coefficient dm,n is defined by Equation 3.3 and parameterized by dilation

m and translation n to return the detailed information (high frequencies) presented

in the time series.

Using the mother wavelet to decompose a signal will result in infinite number of
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basis functions to accurately represent the signal. In order to have a finite set of basis

wavelet, an auxiliary function ϕ(t), known as a scaling function or father wavelet, is

defined and associated with the mother wavelet ψ(t) to capture the rest of the signal.

The scaling function at level m and shift n has similar form to the mother wavelet,

ϕm,n(t) = 2
−m
2 ϕ(2−m · t− n) (3.4)

The scaling function is orthogonal to itself, but not to its dilations. The smoothing

of the time-series data is produced by the inner product of the time series with the

scaling function. The obtained samples are called approximation coefficients (low

frequencies) and are defined as

am,n =
N−1∑
t=0

x(t)ϕm,n(t) (3.5)

An approximation of the data at level m can be computed using,

xm(t) =
∑
n

am,nϕm,n(t) (3.6)

Given the approximation coefficients am0,n generated at level m0 chosen arbitrarily

and the wavelet detailed coefficients dm,n at levels 1, 2, ..,m0, the final multiresolution

representation of the data can be obtained as follows,

x(t) =
∑

n am0,nϕm0′n(t) +
∑m0

m=1

∑
n dm,nψm,n(t) (3.7)
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Figure 3.2: Wavelet and scaling functions

.

Figure 3.3: Decomposition block diagram of stationary wavelet transform

An example of wavelets is Daubechies wavelets which are orthogonal wavelets with

a maximal number of vanishing moments for some given support. We used Daubechies-

20 wavelet to perform the multiresolution analysis using stationary wavelet transform,

where the index 20 refers to the number of coefficients. Figure 3.2 shows an illustration

of the scaling and wavelet function1. The stationary wavelet transform is an extension

of the typical discrete wavelet transform which is commonly used for exploratory

statistical and signal analysis [88]. We noticed that this type of wavelet transformation

is commonly used in time-series analysis and decomposition due to its shift-invariant
1https://github.com/PyWavelets/pywt
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property [13, 89]. The number of resolution levels used for data decomposition in

many studies in the literature [13, 89, 90] is up to four levels. The block diagram of

the undecimated wavelet decomposition representation is shown in Figure 3.3, where

Dj and Aj represent the detail and approximation coefficients at level j, respectively.

The high frequency components Dj are generated from the high-pass filter Hj, and

the low frequency components Aj are generated from the low-pass filter Lj. Figure 3.4

shows an illustrative example of the data before applying wavelet decomposition and

Figure 3.5 shows its corresponding multiresolution decomposition into four detailed

coefficients and approximation coefficients at level four. It can be noticed that the

higher the level of decomposition, the smoother the approximation coefficients and

the lower the level of the detailed coefficients, the higher the captured frequencies.

Figure 3.4: Plot of part of the actual S&P data before performing wavelet analysis

3.3.2 Empirical Wavelet Transform

Applying different types of wavelet transforms and multiresolution analysis methods

aims at exploring and devising better forecasting approaches. In our study, we applied

empirical wavelet transform to perform multiresolution analysis of the financial time

series in order to build more effective forecasting models. EWT is an adaptive wavelet
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Figure 3.5: Stationary wavelet decomposition for part of the S&P data

transform developed by Jérôme Gilles [91]. The main advantage of this transform

is that without any prior information about the data, it automatically analyzes the

data and identifies a small number of coefficients to pack the signal information. It

facilitates time-series processing and forecasting by generating higher time-frequency
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resolution. EWT approach performs data analysis to define a set of adaptive filter

banks extracted from the data based on its prominent frequency components. It

identifies a set of maxima in the Fourier spectrum (X(ω)) of the signal with a set of

corresponding frequency indices (ωn) by defining frequency and magnitude thresholds.

The range of the frequency axis
[
0−π

]
is segmented into N segments defined as Λn =[

ωn−1, ωn

]
using boundary values defined by a selected number (N) of maxima [92].

The boundaries ωi are obtained by setting ω0 = 0 and ωN = π. The Fourier segments

will be
[
0, ω1

]
,
[
ω1, ω2

]
, ...

[
ωN−1, π

]
. The filter bank represented by N − 1 band-pass

filters and one low-pass filter, is constructed depending on set boundaries. Supports

for filters can be calculated using the following equations [92],

Sn = (ωn − ωn−1) + 2γωn (3.8)

where γ is small value between 0 and 1 defined to ensure that the two consecutive

transition bands are not overlapping. The value of γ can be computed using the

following equation,

γ ≤ min
n

[
ωn+1 − ωn

ωn+1 + ωn

]
(3.9)

The empirical scaling function ϕ̂n(ω) and wavelet function ψ̂n(ω) are given by,
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ϕ̂n(ω) =



1 if |ω| ≤ (1− γ)ωn

cos
[
π
2
β
(

1
2γωn

(|ω| − (1− γ)ωn)
)]

if (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0 otherwise

(3.10)

ψ̂n(ω) =



1 if (1 + γ)ωn ≤ |ω| ≤ (1− γ)ωn+1

cos
[
π
2
β
(

1
2γωn+1

(|ω| − (1− γ)ωn+1)
)]

if (1− γ)ωn+1 ≤ |ω| ≤ (1 + γ)ωn+1

sin
[
π
2
β
(

1
2γωn

(|ω| − (1− γ)ωn)
)]

if (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0 otherwise

(3.11)

The function β(x) can be defined using the following equation,

β(x) = x4(35− 84x+ 70x2 − 20x3) (3.12)

Other functions can used as long as they satisfy the following condition,

β(x) =



0 if x ≤ 0

β(x) + β(1− x) = 1 if x ∈ [0, 1]

1 if x ≥ 1

(3.13)
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Based on this defined set of band filters, the EWT can be defined in a similar way

as the normal wavelet transform. The approximation coefficients are obtained by the

inner product of applied signal with the empirical scaling function as [92],

Wx(0, t) = ⟨x, ϕ1⟩ = IFFT (X(ω)Φ1(ω)) (3.14)

The inner product of the empirical wavelets with applied signal produces the detailed

coefficients as,

Wx(n, t) = ⟨x, ψn⟩ = IFFT (X(ω)Ψn(ω)) (3.15)

We applied EWT on part of the S&P financial time series, which is shown in Figure

3.4, and the resulting decomposition is shown in Figure 3.6.

3.4 Deep Learning Based Models

Deep learning networks are developed using several stacked hidden layers to train on

huge amount of data and massive computing power. Each intermediate layer extracts

certain kind of information from the data and redirects the learned features to the

following layers to perform another type of information extraction. A hierarchy of

patterns are extracted from the training data and employed to perform the forecasting

process. The decomposition of the time series patterns into sub-patterns enables

learning complicated hierarchies out of simpler ones. The input features are fed into

the deep neural network to adjust the network parameters [93].

35



Figure
3.6:

A
daptive

wavelet
decom

position
for

part
ofthe

S&
P

data.

36



Defining best learning network architecture requires conducting several experi-

ments to deduce the best network type and parameters that produce the highest

accuracy on the presented learning data. Based on different sub-series generated from

the multiresolution multiscale analysis and technical analysis, several instances of the

deep learning networks are trained and evaluated to select the best network that has

the minimum error and best accuracy of forecasting future stock prices. We developed

different bidirectional and stacked architectures of deep recurrent neural networks such

as LSTM and GRU to forecast financial time series.

The proposed learning architecture as illustrated in Figure 3.7, is divided into three

stages. The first stage performs data analysis and decomposition into many sub-series.

The second stage represents the learning phase which includes several deep recurrent

neural networks trained on the resolution levels produced by the first stage. The

forecasts of each network associated to each resolution level in addition to set of TIs

are fed into another deep recurrent neural network to perform the final learning stage

and produce the final output. Input features are formed according to various time

lags adopted in this work. At time step t, we use a sliding window of k past values

(xt−k+1, xt−k+2, ...., xt−1, xt) to forecast the xt+h in the future, where h is the forecast

horizon. Figure 3.8 illustrates the methodology used for reforming the data.

3.4.1 Deep Recurrent Neural Networks (RNNs)

Recurrent Neural Network (RNN) constructs learning architectures using current and

preceding input data to adjust network weights. The network learns by cascading for-

ward through sequences of input data. The hidden states of the network can preserve
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Figure 3.7: Framework of the proposed methodology

Figure 3.8: Sliding window and input features reshaping to perform forecast

information which is used in the training operation. Backpropagation Through Time

(BPTT) is the training algorithm used by recurrent neural networks. It processes

data sequences according to its order by linking data element at each time step to

data elements in preceding time steps [94].

With the remarkable success of deep learning, deep RNN is becoming popular to

process sequential data. It is characterized by the ability to preserve network preceding

states and information is retained in its hidden network cells while cascading forward

through data sequences [94]. We adopt two deep RNN models (LSTM and GRU) for

constructing financial time-series forecasting models.
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3.4.2 Long-Short Term Memory (LSTM)

Capturing long-term dependencies is infeasible using RNN due to the vanishing gradi-

ent problem. LSTM solves this problem by enhancing the hidden states of the RNN to

remember longer sequences of data. It is devised by Hochreiter and Schmidhuber [95]

by the addition of input, forget, and output gates that control information to or out

of the memory cells using point-wise multiplication and sigmoid neural network layer.

The gated cells act on the received current input data by revoking or letting informa-

tion pass based on the import of the data element to the target value. A graphical

illustration of a basic LSTM is shown in Figure 3.9 (a)2. Its transition equations are

as follows [96]:

it = σ(Wixt + Uiht−1 + Vict−1) (3.16)

ft = σ(Wfxt + Ufht−1 + Vfct−1) (3.17)

ot = σ(Woxt + Uoht−1 + Voct) (3.18)

c̃t = tanh(Wcxt + Ucht−1) (3.19)

ct = f i
t ⊙ ct−1 + it ⊙ c̃t (3.20)

ht = ot ⊙ tanh(ct) (3.21)

where it denotes the input gate, ot denotes the output gate, and ft, ct, and ht denote

the forget gate, memory cell, and hidden state, respectively.
2https://isaacchanghau.github.io/post/lstm-gru-formula/
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3.4.3 Gated Recurrent Unit (GRU)

GRU is an extended development of LSTM. The network architecture consists of

blocks of gated recurrent units to control memory reset and update. GRU achieves

comparable performance to that of LSTM, but uses less number of parameters, which

makes it faster to train. The only gates used in GRU are the update and reset gates.

The update gate is responsible for renewing the current memory of the network which

enables the network to remember certain data input based on its importance. The

reset gate is responsible of deleting the current memory of the network, which allows

the network to forget certain values at any time step. The transition equations in

hidden units of GRU are given as follows [97]:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (3.22)

h̃t = tanh(Whxt + Uh(rt ⊙ ht−1) + bh) (3.23)

zt = σ(Wzxt + Uzht−1 + bz) (3.24)

rt = σ(Wrxt + Urht−1 + br) (3.25)

where ht and ht−1 denote the output of the current and previous states, respectively. rt

and zt denote the reset and update gates, respectively. An illustration of the internal

architecture of GRU is shown in Figure 3.9 (b)3.
3https://isaacchanghau.github.io/post/lstm-gru-formula/
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Figure 3.9: Illustration of the internal architecture of the LSTM and GRU hidden
units

3.4.4 Stacked and Bidirectional RNNs

We developed two architectures by stacking deep recurrent layers as illustrated in

Figure 3.10 and 3.11. The first two layers in the first architecture can use LSTM or

GRU layers and process the data in the same direction. The second architecture is

similar but first two layers process the data in opposite directions. One layer performs

the operations following the same flow direction of the data sequence whereas the

other layer is reversely applying its operations on the data sequence. Neurons in the

first two layers are denoted by h1 to hn, where n is the number of neurons. The output

of the network is computed using a dense layer with linear activation function.
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Figure 3.10: Stacked architecture used to train deep RNN

Figure 3.11: Bidirectional architecture used to train deep RNN
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CHAPTER 4

DATA EXPLORATION AND

PREPROCESSING

In this chapter, we discuss benchmark datasets and perform data exploration and

analysis. Three financial market datasets are used in our experiments as described in

Section 4.1. The data is transformed using natural log as described in Section 4.2.

Then the raw and transformed financial data are analyzed by applying autocorrelation,

randomness tests, and white noise tests in Sections 4.3, 4.4, and 4.5, respectively.

4.1 Benchmark Datasets

Recording stock market data is based on a defined time period such as daily, weekly,

and monthly basis. We use daily data in the experiments conducted to meet the ob-

jectives of this thesis. Daily closing price is one of the variables recorded to summarize

shares trade transactions. It refers to the traded stock price at the end of the day.

It is commonly used by researchers as the target of the forecasting models [98–100].
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Most stock market traders depend on the closing price in the estimation and analysis

process. They use it to derive expectation of future trading prices. More information

about stock market data and financial time series is provided in Appendix B.

The evaluation experiments conducted by this study use S&P, DJIA, and TASI

stock market indices. Both S&P and DJIA belong to US stock market while TASI

is an indicator of Saudi stock market. S&P and DJIA are benchmark datasets com-

monly employed to evaluate and compare stock market forecasting models. They

are widely used to evaluate many forecasting architectures in literature [14, 101–105].

The purpose of using three datasets in the evaluation process, is to make sure that

the evaluation process is not biased by or dependent on a certain single dataset and

the results can be generalized to stock market and financial time-series forecasting.

We use the historical data of the S&P, DJIA and TASI indices to train and evaluate

the forecasting models developed by this work. The daily data of the datasets are

downloaded from Yahoo finance for period from 01/01/2010 to 29/06/2018 which are

used in most of the experiments conducted by this study. Figures 4.1, 4.2, and 4.3

show the data curve of the daily closing price of the three datasets. Some statistical

analysis of the data is included in Table 4.1. Description of the three datasets is as

follows,

• The S&P dataset is one of the important benchmark and leading indicator for

stocks of 500 companies in the U.S. market. It represents the market capi-

talizations of 500 large companies in the American stock market which have

common stock listed on the NASDAQ or New York Stock Exchange (NYSE).
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Many traders consider S&P as one of the best commonly followed stock indices,

and one of the best representations of the U.S. stock market. It was initially

declared when US introduced its first stock index in 1923, and began with a lim-

ited number of stocks. After three years, it expanded to 90 stocks and then in

1957 it grew to include its current 500 stocks. It uses the market capitalization

of each company based on the number of shares available for public trading.

• The DJIA represents an indication of 30 large publicly owned companies traded

on the NYSE and NASDAQ. It is a price-weighted average calculated from the

sum of the price of single share of stock for each of the 30 companies. The

sum changes whenever one of the companies has a stock split or stock dividend.

The DJIA was invented by Charles Dow in 1896 and named after him and his

business partner Edward Jones.

• The Tadawul All-Share Index (TASI) is a major stock market index which tracks

the performance of all companies listed on the Saudi Stock Exchange. The index

has a base value of 1000 as of 1985 and it was reorganized in 2008. Tadawul is the

sole entity authorized in the Kingdom of Saudi Arabia to act as the Securities

Exchange. It mainly carries out listing and trading in securities, as well as

deposit, transfer, clearing, settlement, and registry of ownership of securities

traded on the Exchange.
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Figure 4.1: Plot of the closing price of S&P index

Figure 4.2: Plot of the closing price of DJIA index
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Figure 4.3: Plot of the closing price of TASI index

Table 4.1: Statistical summary for benchmark datasets

Dataset Observations Minimum Maximum Mean Std. deviation
S&P 2139 1022.58 2872.870117 1802.39172 483.452688
DJIA 2139 9686.48 26616.71094 16118.34461 4031.16452
TASI 2119 5323.27 11149.36 7384.26 1195.4698
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4.2 Data Transformation

Most financial time series are not stationary in their original observations. Generally,

stationary time series is characterized by constant statistical properties over time.

The mean, variance, and autocorrelation are constant in the future as in the past.

Financial time series can be transformed into stationary using mathematical transfor-

mations to ease forecasting. The transformation process can be reversed to reconstruct

the original time series from forecasts using the inverse of the transformation formula.

Basically, one of the methods which is widely used to transform trending stock market

time series into stationary is using the financial return of prices. Using returns nor-

malizes the data through processing all variables in a comparable metric. Despite the

different value measuring ranges of the price series, it enables evaluation of analytic

relationships amongst two or more variables. Total returns rt at time t for period t−h

is calculated using prices xt and xt−h by the following equation:

rt =
xt − xt−h

xt−h

(4.1)

1 + rt =
xt
xt−h

(4.2)

We transform benchmark time series into stationary using the natural log transforma-

tion of stock returns. It helps making the seasonal fluctuations more consistent over

time, this means that the model can fit the data more accurately. The log return Rt

of the stock closing price at day t is calculated by computing the natural logarithm
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for the ratio between the closing price xt at day t and at day t− h, where h denotes

the future time scale used to perform the forecast.

Rt = ln(1 + rt) = ln( xt
xt−h

) = ln(xt)− ln(xt−h) (4.3)

In our work we conduct experiments to investigate the performance of the forecast

based on both raw closing prices and log returns of closing prices. Plots of the log

returns of the three datasets are shown in Figure 4.4.
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4.3 Autocorrelation Analysis

Time series generated from random process observations are serially uncorrelated, in

that using linear modeling of the past observation variables to account for the behav-

ior of the current variable may not be feasible. Evidently, a serially independent time

series implies that the relation between past information and current variable does

not exist. Therefore, applying autocorrelation analysis on raw data series provides in-

formation which may help improve data modeling by characterizing relations between

time lags of time series.

4.3.1 Autocorrelation Plot (Correlogram)

It is a graphical representation of the autocorrelation function/coefficient at different

time lags denoted as ρ̂(k). For x1, x2, ....., xn, observations recorded at equally spaced

times t1, t2, ....., tn, the autocorrelation coefficients (vertical axis) are calculated by the

following formulas 1 [106]:

ρ̂(k) = Ck/C0 (4.4)

Ck =
1

n

n−k∑
t=1

(xt − x̄)(xt+k − x̄) (4.5)

1https://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
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C0 =

∑n
t=1(xt − x̄)2

n
(4.6)

where k denotes time lags (horizontal axis), n denotes length of the time series, and

x̄ is the mean. ρ̂(k) always takes values between −1 and +1.

The autocorrelation estimates the serial interdependency between time lags of the

time series. Therefore, we employ it as an indicator of randomness. If the time series

exhibits a random pattern, the autocorrelation should be near zero for any and all

time lags, otherwise, one or more of the time lags autocorrelations shall be non-zero

based on level of significance.

4.3.2 Partial Autocorrelation Plot

The partial autocorrelation function (PACF) gives the partial correlation of a time

series with its own lagged values, controlling for the values of the time series at all

shorter lags. It contrasts with the autocorrelation function, which does not account for

other lags. For a time series, the partial autocorrelation between xt and xt−k is defined

as the conditional correlation between xt and xt−k, conditional on xt−k+1, ..., xt−1, the

set of observations that come between the time points t and t− k.

The first order partial autocorrelation will be defined to be equal to the autocor-
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relation. The 2nd order (lag) partial autocorrelation is defined as follows2 .

Covariance(xt, xt−2|xt−1)√
Variance(xt|xt−1)Variance(xt−2|xt−1)

(4.7)

The third order (lag) partial autocorrelation is defines as follows.

Covariance(xt, xt−3|xt−1, xt−2)√
Variance(xt|xt−1, xt−2)Variance(xt−3|xt−1, xt−2)

(4.8)

and so on for the partial autocorrelation of the other lags.

4.3.3 Autocorrelation Analysis Results

We calculated the autocorrelation plot (ACF) and partial autocorrelation plot (PACF)

for both datasets. Initially, we perform analysis using raw data consisting of the closing

price of both datasets for period from 01/01/2010 to 29/06/2018 which are used in

most of the experiments. The autocorrelation plots are shown in Figures 4.5, 4.7, and

4.9 while the partial autocorrelation are shown in Figures 4.6, 4.8, and 4.10

It is obvious that there is a strong correlation between time lags for both time

series. According to autocorrelation plots, we notice that the further the time lags

of the target variable, the less its correlation significance. We may also notice from

the partial autocorrelation plots that the first time lag has the highest correlation

significance. It indicates that there is a significant correlation at lag one followed by

correlations that are not significant which may indicate that time lag one represents
2https://onlinecourses.science.psu.edu/stat510/node/62/
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Figure 4.5: Autocorrelation plot of the S&P closing price

Figure 4.6: Partial autocorrelation plot of the S&P closing price
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Figure 4.7: Autocorrelation plot of the DJIA closing price

Figure 4.8: Partial autocorrelation plot of the DJIA closing price
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Figure 4.9: Autocorrelation plot of the TASI closing price

Figure 4.10: Partial autocorrelation plot of the TASI closing price
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most of the data needed to perform short-term forecasting. However, performing

analysis using different forms of the data may help investigating data patterns and

clarify relation between explanatory variables of time series. One of the most common

useful data transformation is the natural log transformation which makes the variance

more homogeneous throughout the sample [107]. To perform deep analysis to data,

we stationarize time series using the first difference of the log transformed data. A

stationarized series is relatively easy to predict since its statistical properties are con-

stant and stable during the past and future as well. We apply equations discussed in

Section 4.2 to calculate the log return of closing price. The autocorrelation plots of

the natural log returns of datasets are illustrated in Figures 4.11, 4.13, and 4.15, while

the partial autocorrelation plots are illustrated in Figures 4.12, 4.14, and 4.16.

Figure 4.11: Autocorrelation plot of the log returns of S&P closing price
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Figure 4.12: Partial autocorrelation plot of the log returns of S&P closing price

Figure 4.13: Autocorrelation plot of the log returns of DJIA closing price
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Figure 4.14: Partial autocorrelation plot of the log returns of DJIA closing price

Figure 4.15: Autocorrelation plot of the log returns of TASI closing price.
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Figure 4.16: Partial autocorrelation plot of the log returns of TASI closing price

The autocorrelation analysis figures of the log returns data of S&P and DJIA show

that some of the time lags, such as 1, 5, 9, 10, 18, and 25, show a small level of

significance reach to or beyond confidence bands which may represent an indication

of predictable pattern in the structure of the data. We also notice that both datasets

exhibit semi-identical analysis results due to the relation between the two stock market

indices since they represent the same market. Therefore, we integrated TASI dataset

which represents the Saudi stock market into some of the experiments conducted by

this study to perform the forecasting. The results of the autocorrelation analysis of

log returns of TASI data show that time lag one has high significant impact reach

beyond confidence bands.
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4.4 Randomness Test

Random models are the simplest time series, in which the variance is constant and data

points vary around a constant mean, and represent independent identical observations.

Mainly, a random time series does not have any predictable pattern and values are not

trending, meaning that the variance does not increase with time. Developing a system

to predict random sequence of observations without prior knowledge of the sequence

may not be possible [108, 109]. It means that using past information of a random time

series to forecast the future will not produce an accuracy better than that produced by

the random walk model. According to the efficient market hypothesis, stock market

time-series values are independent of each other and the best way to forecast the

price of tomorrow is to use the price of today which implies the random walk model.

Applying randomness tests to stock market time series may support the predictability

of stock market time series. One of the most popular tests of randomness is the Run

test which we use to prove the non-randomness of the benchmark datasets used to

conduct experiments. The statistical test is applied using the closing price of both

datasets for the period from 01/01/2010 to 29/06/2018.

4.4.1 Run Test

Run test is a nonparametric statistical test which is used as an alternative to auto-

correlation in the data. It is applied to test if a time series of a particular stock is

behaving randomly, or if any predictable pattern is observed in the data. The test

assumes that the mean and variance are constant and the probability is independent.
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A run is defined as consecutive elements of either increasing or decreasing series. The

number of consecutive similar symbols (decreasing or increasing) represents the length

of the run. In random time series, the probability that any of the two symbols is larger

or smaller than the other follows a binomial distribution which forms the basis of the

run test. Applying the run test on time series requires transforming it into sequential

elements of two symbols (positive or negative). Values above the median are coded as

positive, and negative coding refers to values below the median. The null hypothesis

assumes that sequences are produced in a random manner. The test is defined as3

[106, 110, 111]:

Z =
R− R̄

SR

(4.9)

where the number of observed runs (similar sequences) is denoted by R,whereas R̄

denotes the expected number of runs, and SR is the standard deviation of the number

of runs. The values of R̄ and SR are defined as follows:

R̄ =
2m1m2

m1 +m2

+ 1 (4.10)

S2
R =

2m1m2(2m1m2 −m1 −m2)

(m1 +m2)2(m1 +m2 − 1)
(4.11)

where m1 and m2 refer to the number of negative and positive values in the series.
3https://www.itl.nist.gov/div898/handbook/eda/section3/eda35d.htm
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For large number of runs test, greater than 20, the test statistic follows the standard

normal distribution. For a large-sample run test (where m1 > 10 and m2 > 10),

the test statistic is compared to a standard normal table. That is, at the 5 % sig-

nificance level, a test statistic with an absolute value greater than 1.96 indicates

non-randomness.

4.4.2 Results of the Run Test

Initially, we perform differencing on log transformation of the data to remove trend

and seasonality from time series as discussed in Section 4.2. Next, we convert the

time series by replacing data elements greater than the median/mean by 1 and data

elements less than median/mean by -1. Under the null hypothesis of this test, at the

5% significance level, if the absolute value of the test is less than 1.96, the data is

random and the null hypothesis cannot be rejected. The results of the run test using

median and mean as reference values to divide the data are shown in Table 4.2.

For S&P and TASI time series, the null hypothesis is rejected and the data found

to be non-random. On the other hand, the p-value of the DJIA dataset using the

median as reference value is slightly greater than 0.05 which may not provide sufficient

evidence to reject the null hypothesis or prove the data is non-random. However, the

statistic results of using the mean as reference value provide sufficient evidence against

the null hypothesis, thus we may consider it an indication that the DJIA dataset is

not an output of a random process. Despite the results of the run randomness test

which support predictability of benchmark dataset, white noise tests are also applied

in the next section to investigate datasets randomness.
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Table 4.2: The results of the run test using the median as reference value

Reference Value Dataset
Raw data Log Returns

Test P-value Test P-value

Median

S&P -45.427 < 2.20E-16 2.7689 0.005625
DJIA -44.389 < 2.20E-16 1.9036 0.05696
TASI -44.099 < 2.20E-16 -5.0423 4.60E-07

Mean

S&P -45.859 < 2.20E-16 2.51 0.01207
DJIA -45.08 < 2.20E-16 1.9917 0.04641
TASI -44.099 < 2.20E-16 7.65E-06 -4.4748

4.5 White Noise Tests

Serial dependence in time series is commonly measured using the autocorrelation which

is used by many statistical tests of white noise. Researchers investigated and studied

the dependence structure of time-series data by calculating sample autocorrelations

and Q test of Box and Pierce (1970) to check the joint significance of these statistics.

The Q test proposed by Ljung and Box (1978) is also employed to analyze and test

serial dependence in time series. One of the important steps in financial time-series

analysis is to check serial correlations of squared series which could be achieved by the

Q test of McLeod and Li (1983) [112]. The three white noise tests adopted by this

work are discussed in the following.

4.5.1 Box-Pierce Test

Box-Pierce test is a statistical test of white noise based on the autocorrelation (ACF)

[113]. The Box-Pierce QBP statistic is computed as the weighted sum of squares of a

sequence of ACF ρ̂1(k), for k number of time lags, defined as follows [113, 114].

Let xt be a time series with the mean µ and variance σ2. So the autocorrelation
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function (ACF) ρ̂1(k) of lag k can be defined as follows [115].

ρ̂1(k) =

n−k∑
t=1

(xt − x̄) (xt+k − x̄)

n∑
t=1

(xt − x̄)2
(4.12)

QBP (k) = n
k∑

j=1

ρ̂21(j) (4.13)

If the series is white noise, then the QBP (k) statistic is distributed approximately

as a chi-square distribution with k degrees of freedom. It is sometimes known as a

portmanteau test.

4.5.2 Ljung-Box Test

The Ljung-Box QLB test is closely connected to the Box�-Pierce test. It is a white

noise test for a time series which depends on the accumulated sample autocorrelations

(ACF) ρ̂1(k) as defined in 4.12. For any range of time lags k, and the length of the

time series n, the mathematical equation is defined [112, 113] as follows.

QLB(k) = n(n+ 2)
k∑

j=1

ρ̂21(j)

n− j
(4.14)

Ideally, for any time series generated by a random process, the time lags are assumed

to be identically independently distributed from each other, therefore, the ACF is zero

[116]. The rationale behind this statistic is that, if all the ACF values of the time

lags are very close to zero, then we may conclude that the underlaying time series is
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white noise. The higher the value of the QLB(k), the more unlikely the time series is

a white noise. The null distribution of the QLB(k) is approximately a Chi-square χ2

distribution with k degrees of freedom.

4.5.3 McLeod-Li Test

It uses the ACF of the squared series x2t , and tests whether the first k ACF ρ̂2(k) for

the squared time series are collectively small in magnitude. The QML statistic is as

follows [112, 113].

QML(k) = n(n+ 2)
k∑

j=1

ρ̂22(j)

n− j
(4.15)

ρ̂2(k) =

n−k∑
t=1

(x2t − σ̂2
n)

(
x2t+k − σ̂2

n

)
n∑

t=1

(x2t − σ̂2
n)

2
(4.16)

σ̂2
n =

1

n

n∑
j=1

x2t (4.17)

If the series is white noise, then the QML(k) statistic is distributed approximately as

χ2 distribution with k degrees of freedom.
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4.5.4 Results of White Noise Tests

We apply the three statistical white noise tests on the S&P, DJIA, and TASI datasets.

The three tests conducted using the raw closing price and the log returns of the closing

price. The null hypothesis of the tests implies that the data are white noise. The

results are shown in Table 4.3. The p-value holds a significant evidence against the

null hypothesis, meaning that the data is not white noise and we cannot accept the

null hypothesis. This result encourages us to forge ahead in developing the forecasting

models and start up conducting forecasting experiments.

Table 4.3: Results of white noise statistics for S&P dataset

Dataset Test DF
Closing price raw data Log returns of closing

price
Value P-Value Value P-Value

S&P

Box-Pierce
6 12675.77 < 0.0001 32.34 < 0.0001
12 25087.33 < 0.0001 613.24 < 0.0001

Ljung-Box
6 12708.36 < 0.0001 32.44 < 0.0001
12 25186.90 < 0.0001 617.15 < 0.0001

McLeod-Li
6 12689.21 < 0.0001 670.20 < 0.0001
12 25107.37 < 0.0001 1489.79 < 0.0001

DJIA

Box-Pierce
6 12660.75 < 0.0001 33.26 < 0.0001
12 12693.30 < 0.0001 33.36 < 0.0001

Ljung-Box
6 12679.07 < 0.0001 618.13 < 0.0001
12 25026.83 < 0.0001 601.66 < 0.0001

McLeod-Li
6 25126.10 < 0.0001 605.48 < 0.0001
12 25063.54 < 0.0001 1380.71 < 0.0001

TASI

Box-Pierce
6 12443.49 < 0.0001 37.15 < 0.0001
12 12475.74 < 0.0001 37.21 < 0.0001

Ljung-Box
6 12493.34 < 0.0001 552.69 < 0.0001
12 24418.58 < 0.0001 42.79 < 0.0001

McLeod-Li
6 24516.02 < 0.0001 42.88 < 0.0001
12 24575.30 < 0.0001 630.80 < 0.0001
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CHAPTER 5

EXPERIMENTS AND RESULTS

The experiments conducted by this study are initiated by developing and comparing

different deep recurrent neural networks, such as, GRU and LSTM, designed using

stacked and bidirectional architectures. Description of the experimental settings and

performance evaluation measures which are employed to compare and estimate the

performance of the forecasting models are discussed in Section 5.1. Section 5.2 dis-

cusses experiments conducted to develop many architectures based on different pa-

rameters and multiple time steps for forecasting several future horizon scales.

The proposed solution combines MRA with deep recurrent neural network tech-

niques to build a multiresolution deep learning neural network (MRA-DNN) solution

for financial time series forecasting. Section 5.3 discusses experiments conducted using

BGRU and empirical wavelet transform to perform forecast for short and long-term.

Several models are employed to perform forecast using variable rolling windows to

reshape the input data. Section 5.5 studies the impact of combining ten of the most

common TIs with EWT-BGRU approach. In Section 5.6, we summarize the results

and compare our proposed model with some related works.
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5.1 Experimental Settings

The conducted experiments and evaluation procedure are based on historical data of

S&P, DJIA, and TASI indices downloaded from Yahoo finance for the period from

01/01/2010 to 29/06/2018. The closing price at the end of every trading day is

used for the purpose of the forecasting. The training process uses daily closing price

to forecast the closing price in the future. We use the adopted time lag method-

ology whereby the data is rearranged using a sliding window of size k denoted as

(xt−k+1, xt−k+2, ...., xt−1, xt) to forecast a time lag xt+h at time step t, where h denotes

the forecasting horizon. Figure 5.1 illustrates the input values (predictors) and out-

put (target) for short-term and long-term forecast. The experiments conducted using

different sliding window sizes to forecast closing prices at different horizon scales in

the future.

Figure 5.1: Illustration of short-term and long-term forecast
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The data is normalized between the range (0, 1) using min-max normalization to

ease computations and decrease multivariate values divergence. The normalization is

accomplished by performing a linear transformation on the input data values. The

following equation represents the min-max normalization process.

norm(x) =
x−mini

maxi −mini

(5.1)

where mini and maxi denote the original interval, x represents every value, norm(x)

denotes the normalized value. The data is split into three parts: training, validation,

and testing. The first 80% duration of the whole data is allocated for training and

the rest 20% duration is allocated for testing. The last 20% of the training data is

allocated for validation. Illustration of data split into training, validation, and testing

is shown in Figure 5.2.

Figure 5.2: Illustration of data split into training, validation and testing

Figure 3.11 illustrates the methodology followed to construct bidirectional architec-

tures for LSTM and GRU. Similarly, Figure 3.10 illustrates the methodology followed

to construct stacked architectures for LSTM and GRU. Both LSTM and GRU lay-
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ers use tanh transfer function for the output layer and use the hard sigmoid transfer

function for the recurrent activation. The final output is produced by a linear ac-

tivation function of a dense layer. The developed models are tuned by conducting

a set of experiments on different structures. Different number of memory cells are

used to train many models to deduce best training structure. The training process

is performed using training data and best network weights are determined based on

the results generated from the validation data. The number of epochs used to train

all developed networks is 800 epochs and batch size of 32. After each epoch, based

on the evaluation on validation data, the trained network architectures are evaluated

and compared depending on the results generated using test data.

To measure how well the model forecasts representing the actual data, we use four

performance measures in the experiments: Mean Absolute Error (MAE), Root Mean

Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and coefficient of

determination which is denoted as R2. For better forecast, MAE, RMSE, and MAPE

should be close to zero and R2 should be close to one. These measures are defined

mathematically as follows:

MAE =
1

n

n−1∑
t=0

|xt − x̂t| (5.2)

RMSE =

√√√√ 1

n

n−1∑
t=0

(xt − x̂t)2 (5.3)
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MAPE =

n−1∑
t=0

|xt−x̂t

xt
|

n
× 100% (5.4)

R2 = 1−
∑n−1

t=0 (xt − x̂t)
2∑n−1

t=0 (xt − x̄)2
(5.5)

where xt and x̂t represent the actual and forecast values at step t for 0 ≤ t < n,

respectively, and x̄ =
∑n−1

t=0 xt/n.

We implement the proposed forecasting methodology in Python using Keras open-

source package for deep learning with TensorFlow backend 1. The stationary wavelet

analysis is performed using PyWavelets open-source library 2. The empirical adap-

tive wavelet analysis is accomplished using empirical wavelet transforms matlab tool-

box [91]. We use Ta-Lib library 3 to define TIs over benchmark datasets. It is used

in many studies to compute TIs for stock market forecasting [117–119].

1https://github.com/keras-team/keras
2https://github.com/PyWavelets/pywt
3https://www.ta-lib.org/
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5.2 Comparison Between Bidirectional and

Stacked (GRU, LSTM)

Initially, we start the experiments by investigating different forecasting parameters, we

investigate different options such as the number of lags (time steps), number of neurons

(memory blocks), different types of techniques, and multiple time scale horizons. The

experiments help us decide the best parameters and techniques that can be used to

perform forecast. We aim at forecasting multiple time scale horizons in the future,

which are 1, 5, 7, 10, 15, 22, and 30 days.

The data is framed using multiple numbers of time lags with overlapping. The

numbers of time lags used to reshape the data are 1, 3, 5, 7, and 10 days from the

past. Four architectures are used to perform the experiments. The four techniques

are BLSTM, Stacked Long-Short Term Memory (SLSTM), BGRU, and Stacked Gated

Recurrent Unit (SGRU). We use the same experimental settings discussed in Section

5.1. For each technique we design multiple networks using different numbers of mem-

ory blocks using even numbers between 1 and 17.

The number of developed networks for both datasets is large due to the various set

of options used to perform the experiments, since we use 4 techniques with 8 different

numbers of neurons using 5 different number of time steps for 6 different time scales,

the final number of trained networks is 960 networks for each dataset. Therefore,

showing detailed results of experiments is impossible, instead, we show the averages
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of the RMSE result of the test data for each time scale based on the number of time

steps and based on the number of neurons. Figures 5.3 and 5.4 show a clustered

column charts for both datasets used in the experiments. They illustrate differences

between the performance of the four techniques based on averages of RMSE of test

data. The performance of different networks developed using different numbers of

neurons are grouped by time steps for all forecast horizons. Likewise, the averages of

the performance of the trained networks are grouped by number of memory blocks

(neurons) for each time scale. They are illustrated in Figures 5.5 and 5.6. From the

results of the experiment we learn the following :

• We can conclude that the bidirectional architecture outperforms stacked archi-

tecture.

• It is clear from column charts that the further the time scale forecast horizon

in the future, the higher the error scale and the less the performance of the

forecast.

• The BGRU networks outperform almost all other types of networks which may

opt this architecture as the best candidate for developing the forecasting ap-

proach.

• The pattern generated from experiments of forecasting one day ahead in the fu-

ture does not show big differences between the four techniques (BLSTM, BGRU,

SLSTM, SGRU). However, it may show that bidirectional architecture produces

slightly higher performance. Increasing the number of epochs may clarify the

difference.
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• Using one time lag (time step) to forecast the future produces an adequate fore-

casting performance compared to the performance produced by models trained

using more than one time lag, specially for long-term forecast. Therefore, in-

cluding one time lag training architecture is preferred for planned experiments

in the future. For the rest of the time lag options of BGRU and BLSTM, we

notice that mostly ten time steps is better and we need to perform more exper-

iments using much longer time lags of the past. For the SLSTM and SGRU,

we notice that using much longer time lags may not make the performance any

better, since the larger the number of time lags, the higher the mean error.

• The result of networks developed to forecast 30 days ahead in the future does

not benefit from increasing the number of time lags, but rather it affects the

performance negatively. We may learn that performing forecast of very long time

scales in the future may not be efficient, since the further the time duration

between the training time lags window (predictors) and the target value, the

more the forecasts become noisy and prone to errors.

• We can notice that the error for all networks gets smaller as we increase the

number of neurons. Thus, the number of memory blocks (neurons) used in the

experiments may not be optimal, therefore we need to perform more experiments

using larger number of neurons.
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Figure 5.3: Comparison between RMSE averages of S&P test data based on different time
lags for multiple time scales

Figure 5.4: Comparison between RMSE averages of DJIA test data based on different time
lags for multiple time scales
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Figure 5.5: Comparison between RMSE averages of S&P test data based on different
number of neurons for multiple time scales

Figure 5.6: Comparison between RMSE averages of DJIA test data based on different
number of neurons for multiple time scales
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Extended Evaluation of BGRU and BLSTM

The results of the experiments conducted in previous section show that the more

number of neurons we use to build the network, the better the forecasting perfor-

mance, thus conducting experiments using higher number of neurons and time lags is

preferred. The results also show that bidirectional architectures of GRU and LSTM

produce performance higher than that of the stacked architectures of GRU and LSTM.

Therefore, we perform the experiments using only bidirectional architecture which pro-

duces higher forecast performance as shown in the previous section. We investigate

additional parameters to compare and evaluate the forecasting performance of BGRU

and BLSTM networks. The additional parameters include longer time lags of input

data and larger number of neurons to design the networks.

As in the experiments discussed in Section 5.2, the forecasting models are devel-

oped to forecast multiple time scales including 1, 5, 7, 10, 15, 22, and 30 days in the

future. The data is reshaped using multiple number of time lags with overlapping.

The numbers of time lags used to frame the data are 1, 3, 5, 7, 10, 13, 15, 20, and 24

time steps. Two techniques are used to perform the experiments. We use BLSTM and

BGRU to build multiple networks based on different number of neurons. In addition

to the different number of neurons used in models developed in Section 5.2, we develop

additional models using 18, 24, 28, and 32 neurons.

The number of developed networks is 1512 which represents two techniques

(BGRU, BLSTM) using 9 time lag window sizes with 12 different neurons numbers

for 7 future horizon scales using BGRU and BLSTM architectures for each dataset.
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Averages of RMSE measure on test data are illustrated by a clustered column charts

in Figures 5.7 and 5.8. The averages of the performance of the trained networks

grouped by number of neurons for each time scale are illustrated in Figures 5.9 and

5.10. Based on the experiments discussed in this section in addition to Section 5.2,

the best trained models classified by forecasting time scale are shown in Figures 5.11

and 5.12.

Figure 5.7: Comparison between RMSE averages of S&P test data based on additional
different time lags for multiple time scales

From the results of experiments summarized in this section and Section 5.2, we

learn the following :

• BGRU models show better performance than all other types of models. Though

difference between performance of BGRU and BLSTM for one day ahead forecast

is not significant, BGRU tend to produce slightly better forecasts.

• Comparing the performance of BLSTM models based on different time lags,

79



Figure 5.8: Comparison between RMSE averages of DJIA test data based on additional
different time lags for multiple time scales

Figure 5.9: Comparison between RMSE averages of S&P test data based on additional
different number of neurons for multiple time scales
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Figure 5.10: Comparison between RMSE averages of DJIA test data based on additional
different number of neurons for multiple time scales

we see that performance produced by models that use one time lag as input is

better.

• Comparing the performance of BGRU models based on different time lags, we see

from Figures 5.7 and 5.8 that not only one time lag produces high performance,

but also other time lags such as 13, 15, and 24, produce high performance.

BGRU is the only technique that produced high performance using different

number of time lags. Therefore, BGRU is a highly preferred solution to perform

forecasting using multiple time lags, especially for mid and long-term time scales.

• We can notice from Figures 5.9 and 5.10 that using larger number of neurons

(memory blocks) tends to produce higher performance, especially for 30 days

ahead forecasting. However, increasing the number of neurons in the developed

models more than 32 neurons may not produce any better performance, specially

for short-term forecasting such as 1, 5, and 7 days. For the long-term forecasting,
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increasing number of neurons might improve the performance.

• It is clear that the performance of the BGRU model is so close to the random

walk model performance as shown in Figures 5.11 and 5.12.

Figure 5.11: Comparison between best RMSE results of S&P test data for multiple horizon
scales
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Figure 5.12: Comparison between best RMSE results of DJIA test data for multiple horizon
scales
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5.3 Empirical Wavelet Transform and BGRU

Based on the experiments conducted in Section 5.2, we noticed that BGRU networks

attain the best performance compared to other deep learning architectures. Therefore,

we develop a forecasting model by a combination of BGRU learning methodology

and EWT analysis method. The proposed architecture uses BGRU in learning the

decomposed data using empirical wavelet multiresolution analysis. The forecasting

approach methodology is illustrated in Figure 5.13.

Figure 5.13: The architecture employed to develop the forecasting approach using
BGRU learning technique and EWT method (EWT-BGRU)

We evaluate the proposed model which is composed of empirical wavelet analysis

and BGRU using S&P and DJIA datasets to forecast closing prices for one day and

one month ahead (22 working days) in the future. The experiments conducted in this

section used two forms of data. The first type of experiments used raw closing price

data which is normalized between 0 and 1. The second type of the experiments used

log returns of closing price as input data. The results of both types of experiments are
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compared and analyzed. The log return of closing prices are calculated using formula

discussed in Section 4.2. Same experimental settings discussed in Section 5.1 are used

in the experiments summarized in this section. The parameters configuration considers

changing and investigating several slide window sizes (time steps) and different neuron

numbers for each model. The different parameters are selected based on models which

produce high performance measures in experiments summarized in Section 5.2. Both

log returns and normalized raw closing prices are reshaped using slide window using

the adopted time lag methodology described in Section 3.4. The different sliding

window sizes selected are 1, 5, 10, 15, and 24 days time steps with overlapping. The

developed models are tuned using 16, 32, and 48 neurons. Each resolution level is

fed into the intermediate deep network designed using sequence of two BGRU layers

and a dense layer. The final stage deep network is also designed using another deep

network constructed of sequence of a two BGRU layers and a dense layer. The final

forecast is generated from the final network which inverts the decomposition process

using intermediate forecasts of each resolution level produced by the intermediate

deep network. The conducted experiments can be divided into two parts based on

time horizon forecast in future; the first part of the experiments aims to accomplish

short-term (one day) forecasting and the second part performs the training process to

carry out long-term (22 working days) forecasting.

The short-term forecasting results generated from the proposed EWT-BGRU ar-

chitecture are shown in Tables 5.1 and 5.2 for both S&P and DJIA dataset, respec-

tively. The results are classified based on window size used to reshape the data and

number of neurons used to build both intermediate and final stages models. They
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show comparison between models which use raw closing price data and models which

use log returns of closing prices. To clarify the difference between the two types of

models, Figures 5.14 and 5.15 illustrate the results based on the RMSE of test data

using clustered column charts. Similarly, Tables 5.3 and 5.3 show the results of long-

term forecasts and Figures 5.16 and 5.17 illustrate the results using clustered column

charts.

Figure 5.14: Comparison between test data RMSE of trained models to forecast S&P
short-term closing prices using raw data and log returns based on different time lags
and number of neurons

Based on the results, we may conclude the following:

• Using a combination of EWT analysis method and BGRU learning architec-

ture (EWT-BGRU) improved the forecast performance, compared to results of

experiments conducted so far.

• The best trained models for both experiments which use raw closing prices and

those which use log returns are shown in Table 5.5. The difference between
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Figure 5.15: Comparison between test data RMSE of trained models to forecast DJIA
short-term closing prices using raw data and log returns based on different time lags
and number of neurons

Figure 5.16: Comparison between test data RMSE of trained models to forecast S&P
long-term closing prices using raw data and log returns based on different time lags
and number of neurons
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Table 5.1: Short-term forecast results of S&P test data using raw closing prices and
log returns of closing prices

Window Size
Network Raw closing prices Log Returns of closing prices

1st
stage

2nd
stage

MAE RMSE MAPE R2 MAE RMSE MAPE R2

1

16
16 13.23 17.75 0.5600 0.99549 8.2566 13.0610 0.3242 0.99517
32 12.51 16.83 0.5326 0.99595 8.2505 13.0633 0.3240 0.99516
48 12.12 16.33 0.5178 0.99618 8.2679 13.0628 0.3247 0.99516

32
16 12.39 16.65 0.5281 0.99603 8.2529 13.0622 0.3241 0.99516
32 11.75 15.84 0.5038 0.99641 8.2719 13.0637 0.3248 0.99516
48 11.36 15.39 0.4891 0.99661 8.2705 13.0630 0.3248 0.99516

48
16 12.87 17.19 0.5471 0.99577 8.2540 13.0630 0.3241 0.99516
32 12.03 16.13 0.5148 0.99628 8.2574 13.0618 0.3243 0.99517
48 10.95 14.90 0.4735 0.99682 8.2558 13.0634 0.3242 0.99516

5

16
16 5.91 8.19 0.2369 0.99904 1.5423 2.0432 0.0608 0.99988
32 4.10 5.42 0.1680 0.99958 1.5231 2.0257 0.0600 0.99988
48 4.17 5.43 0.1709 0.99958 1.5303 2.0417 0.0603 0.99988

32
16 2.26 3.20 0.0936 0.99985 1.5368 2.0448 0.0606 0.99988
32 2.22 3.12 0.0922 0.99986 1.5477 2.0556 0.0610 0.99988
48 1.69 2.22 0.0724 0.99993 1.5530 2.0554 0.0612 0.99988

48
16 1.74 2.26 0.0747 0.99993 1.5343 2.0274 0.0605 0.99988
32 1.89 2.67 0.0799 0.99990 1.5591 2.0578 0.0615 0.99988
48 1.82 2.55 0.0770 0.99991 1.5373 2.0284 0.0606 0.99988

10

16
16 13.06 20.46 0.5068 0.99402 1.5392 2.0357 0.0608 0.99988
32 10.72 16.88 0.4169 0.99593 1.5308 2.0279 0.0604 0.99988
48 11.19 17.50 0.4352 0.99563 1.5312 2.0234 0.0604 0.99988

32
16 7.03 10.88 0.2749 0.99831 1.5652 2.0683 0.0618 0.99988
32 5.44 8.37 0.2143 0.99900 1.5425 2.0373 0.0609 0.99988
48 6.22 9.49 0.2443 0.99871 1.5605 2.0679 0.0616 0.99988

48
16 9.29 14.74 0.3608 0.99689 1.5420 2.0391 0.0609 0.99988
32 8.35 13.07 0.3254 0.99756 1.5546 2.0512 0.0614 0.99988
48 8.05 12.61 0.3138 0.99773 1.5491 2.0449 0.0612 0.99988

15

16
16 5.12 7.65 0.2022 0.99917 1.5689 2.0461 0.0619 0.99988
32 3.99 5.88 0.1590 0.99951 1.5671 2.0474 0.0618 0.99988
48 4.58 6.66 0.1820 0.99937 1.5625 2.0362 0.0617 0.99988

32
16 3.39 4.62 0.1375 0.99969 1.5829 2.0654 0.0624 0.99988
32 2.11 2.79 0.0882 0.99989 1.5884 2.0702 0.0626 0.99988
48 2.24 2.98 0.0935 0.99987 1.5847 2.0722 0.0625 0.99988

48
16 4.21 6.13 0.1679 0.99946 1.5976 2.0874 0.0630 0.99987
32 3.51 4.98 0.1411 0.99965 1.5804 2.0669 0.0623 0.99988
48 3.50 4.93 0.1408 0.99965 1.5970 2.0870 0.0630 0.99987

24

16
16 2.90 3.64 0.1212 0.99981 1.5944 2.0849 0.0627 0.99987
32 2.24 3.00 0.0951 0.99987 1.6133 2.1133 0.0636 0.99987
48 2.25 3.10 0.0955 0.99986 1.6059 2.0990 0.0633 0.99987

32
16 3.99 5.75 0.1588 0.99953 1.6107 2.1083 0.0634 0.99987
32 3.17 4.44 0.1275 0.99972 1.6054 2.1065 0.0632 0.99987
48 2.91 3.99 0.1177 0.99977 1.6075 2.1031 0.0633 0.99987

48
16 5.16 3.67 0.1472 0.99962 1.6244 2.1147 0.0640 0.99987
32 7.11 4.99 0.1980 0.99928 1.6217 2.1112 0.0639 0.99987
48 5.74 4.14 0.1655 0.99953 1.6167 2.1083 0.0637 0.99987
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Table 5.2: Short-term forecast results of DJIA test data using raw closing prices and
log returns of closing prices

Window Size
Network Raw closing prices Log Returns of closing prices

1st
stage

2nd
stage

MAE RMSE MAPE R2 MAE RMSE MAPE R2

1

16
16 135.86 189.69 0.6343 0.99575 76.7673 128.5205 0.3320 0.99639
32 125.24 173.76 0.5904 0.99643 76.7604 128.5569 0.3320 0.99639
48 121.56 168.72 0.5748 0.99664 76.8287 128.5417 0.3323 0.99639

32
16 129.93 180.20 0.6101 0.99617 76.8030 128.5316 0.3322 0.99639
32 116.40 160.85 0.5536 0.99694 76.7465 128.5414 0.3319 0.99639
48 109.11 151.18 0.5229 0.99730 76.7668 128.5592 0.3320 0.99639

48
16 123.15 170.90 0.5815 0.99655 76.8350 128.5316 0.3323 0.99639
32 102.22 141.76 0.4941 0.99763 76.7954 128.5284 0.3322 0.99639
48 99.09 138.09 0.4807 0.99775 76.8928 128.5566 0.3326 0.99639

5

16
16 111.08 165.02 0.4819 0.99679 9.8369 13.2021 0.0432 0.99996
32 95.44 139.65 0.4163 0.99770 9.8027 13.1246 0.0431 0.99996
48 93.42 136.37 0.4079 0.99781 9.7769 13.1481 0.0429 0.99996

32
16 125.63 214.57 0.5312 0.99457 9.7053 13.0540 0.0426 0.99996
32 109.33 187.43 0.4627 0.99586 9.7552 13.1238 0.0429 0.99996
48 108.21 185.14 0.4581 0.99596 9.7411 13.0453 0.0428 0.99996

48
16 22.00 30.52 0.1014 0.99989 9.8308 13.2825 0.0431 0.99996
32 20.19 27.54 0.0940 0.99991 9.8679 13.2863 0.0433 0.99996
48 13.51 17.71 0.0662 0.99996 9.7590 13.1663 0.0428 0.99996

10

16
16 19.80 28.26 0.0919 0.99991 8.8311 11.4748 0.0391 0.99997
32 23.50 37.19 0.1065 0.99984 8.8117 11.4567 0.0390 0.99997
48 28.15 45.15 0.1255 0.99976 8.7255 11.3871 0.0387 0.99997

32
16 71.71 115.97 0.3078 0.99842 8.7053 11.2890 0.0386 0.99997
32 59.02 95.65 0.2541 0.99892 8.7642 11.3008 0.0389 0.99997
48 55.66 89.26 0.2403 0.99906 8.7800 11.3343 0.0389 0.99997

48
16 62.54 100.69 0.2691 0.99881 8.7131 11.3165 0.0386 0.99997
32 39.95 63.12 0.1744 0.99953 8.8906 11.4581 0.0393 0.99997
48 36.37 57.29 0.1594 0.99961 8.8913 11.5083 0.0393 0.99997

15

16
16 138.86 261.82 0.5801 0.99192 8.7084 11.3327 0.0386 0.99997
32 126.51 242.71 0.5280 0.99305 8.6418 11.2239 0.0383 0.99997
48 121.66 234.29 0.5079 0.99353 8.6628 11.2848 0.0384 0.99997

32
16 103.56 179.52 0.4380 0.99620 8.8980 11.6069 0.0394 0.99997
32 96.79 166.89 0.4101 0.99672 8.8919 11.6115 0.0394 0.99997
48 89.75 155.16 0.3806 0.99716 8.9197 11.6494 0.0395 0.99997

48
16 102.60 172.40 0.4359 0.99649 9.0026 11.6847 0.0399 0.99997
32 99.23 166.16 0.4220 0.99674 8.9523 11.6501 0.0397 0.99997
48 97.16 162.10 0.4135 0.99690 8.9973 11.7514 0.0398 0.99997

24

16
16 130.35 223.14 0.5517 0.99414 9.3370 12.3769 0.0413 0.99997
32 123.31 211.62 0.5220 0.99473 9.2164 12.2164 0.0407 0.99997
48 109.16 188.44 0.4625 0.99582 9.2293 12.1619 0.0408 0.99997

32
16 105.05 179.24 0.4452 0.99622 9.2941 12.3704 0.0410 0.99997
32 98.09 167.61 0.4160 0.99669 9.2924 12.3753 0.0410 0.99997
48 90.91 156.08 0.3857 0.99713 9.3052 12.2985 0.0411 0.99997

48
16 44.15 69.82 0.1922 0.99943 9.2894 12.3073 0.0410 0.99997
32 29.68 45.13 0.1319 0.99976 9.2204 12.2763 0.0407 0.99997
48 33.20 49.76 0.1471 0.99971 9.2539 12.2885 0.0409 0.99997
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Table 5.3: Long-term forecast results of S&P test data using raw closing prices and
log returns of closing prices

Window Size
Network Raw closing prices Log Returns of closing prices

1st
stage

2nd
stage

MAE RMSE MAPE R2 MAE RMSE MAPE R2

1

16
16 66.18 82.55 2.8688 0.90286 51.8805 64.2244 2.0434 0.87597
32 66.42 82.71 2.8785 0.90249 51.8010 64.2635 2.0400 0.87582
48 67.57 83.79 2.9247 0.89993 50.7598 63.3974 1.9985 0.87915

32
16 66.44 82.34 2.8817 0.90337 51.9673 64.3116 2.0485 0.87564
32 64.80 80.53 2.8170 0.90756 55.7266 67.4007 2.1975 0.86340
48 66.50 82.03 2.8853 0.90409 53.0313 65.2688 2.0919 0.87191

48
16 64.29 79.99 2.7971 0.90881 52.8052 64.9017 2.0807 0.87334
32 66.27 81.86 2.8765 0.90449 54.3893 66.3863 2.1462 0.86748
48 65.39 80.93 2.8418 0.90666 52.5934 64.8717 2.0741 0.87346

5

16
16 99.52 121.28 4.1622 0.79065 52.9455 64.2976 2.0886 0.87470
32 98.89 120.59 4.1375 0.79303 53.0199 64.3084 2.0915 0.87466
48 99.41 121.14 4.1578 0.79112 56.7592 67.8217 2.2416 0.86059

32
16 95.29 116.27 4.0116 0.80758 59.3929 72.3776 2.3342 0.84123
32 94.90 115.76 3.9975 0.80926 58.1324 71.2288 2.2839 0.84623
48 95.00 115.73 4.0024 0.80936 58.4179 71.7840 2.2945 0.84382

48
16 142.28 187.78 5.7629 0.49813 57.4819 71.5319 2.2590 0.84492
32 144.85 190.54 5.8662 0.48328 61.0709 74.3845 2.4037 0.83230
48 141.61 187.26 5.7352 0.50089 59.9546 73.5670 2.3584 0.83597

10

16
16 101.75 123.14 4.2457 0.78442 60.7164 80.8984 2.3805 0.79987
32 102.36 123.68 4.2711 0.78254 60.1975 80.3131 2.3598 0.80275
48 101.11 122.43 4.2205 0.78690 62.2980 82.4420 2.4438 0.79216

32
16 66.62 81.54 2.8852 0.90547 61.0321 80.7656 2.3963 0.80053
32 66.76 81.85 2.8897 0.90476 61.2571 81.5504 2.4046 0.79663
48 67.35 82.26 2.9144 0.90380 61.4139 80.3959 2.4129 0.80235

48
16 88.68 148.90 3.6729 0.68478 60.1248 74.0956 2.3714 0.83211
32 92.02 155.60 3.7967 0.65578 56.9387 71.7729 2.2414 0.84247
48 91.72 155.41 3.7864 0.65662 58.8870 73.4450 2.3203 0.83505

15

16
16 71.50 83.67 3.1171 0.90053 61.1218 79.8333 2.3937 0.80316
32 70.79 83.03 3.0879 0.90204 60.4139 79.0248 2.3660 0.80713
48 71.58 83.65 3.1208 0.90058 61.1422 79.6678 2.3949 0.80398

32
16 211.32 314.77 8.3766 -0.40785 63.7013 81.6884 2.5002 0.79391
32 210.72 314.37 8.3521 -0.40424 62.0721 80.2226 2.4353 0.80124
48 211.11 314.63 8.3679 -0.40660 62.1894 80.6221 2.4394 0.79925

48
16 68.82 83.38 2.9897 0.90122 59.8218 77.1688 2.3484 0.81608
32 69.36 83.74 3.0123 0.90036 61.5102 78.4130 2.4172 0.81010
48 69.73 84.18 3.0264 0.89932 61.0519 78.0314 2.3988 0.81195

24

16
16 97.51 116.55 4.1127 0.80719 56.0475 78.9394 2.1964 0.80548
32 96.49 115.54 4.0718 0.81053 55.8717 79.2463 2.1887 0.80396
48 95.79 114.49 4.0462 0.81393 56.1111 79.3530 2.1984 0.80343

32
16 61.33 78.30 2.7008 0.91298 61.5369 79.6791 2.4130 0.80181
32 61.83 79.05 2.7199 0.91131 63.8904 81.0258 2.5101 0.79506
48 61.88 78.78 2.7225 0.91190 62.6184 80.3886 2.4574 0.79827

48
16 75.04 91.02 3.2255 0.88242 54.0709 70.3440 2.1356 0.84553
32 72.79 88.62 3.1374 0.88852 53.7931 69.8069 2.1247 0.84788
48 73.29 89.14 3.1571 0.88721 53.6552 69.7929 2.1191 0.84794
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Table 5.4: Long-term forecast results of DJIA test data using raw closing prices and
log returns of closing prices

Window Size
Network Raw closing prices Log Returns of closing prices

1st
stage

2nd
stage

MAE RMSE MAPE R2 MAE RMSE MAPE R2

1

16
16 651.99 817.43 3.2030 0.92130 575.6115 713.0406 2.5355 0.88160
32 664.60 829.01 3.2610 0.91905 554.1286 689.3551 2.4399 0.88934
48 660.92 820.38 3.2479 0.92073 552.4919 692.0979 2.4304 0.88846

32
16 643.14 804.34 3.1675 0.92380 528.2125 673.9007 2.3199 0.89424
32 647.63 809.81 3.1865 0.92276 602.6155 735.4357 2.6595 0.87405
48 664.23 823.81 3.2630 0.92006 528.8901 670.5115 2.3248 0.89531

48
16 629.45 785.82 3.1095 0.92727 561.6852 698.4747 2.4731 0.88639
32 636.08 793.40 3.1386 0.92586 559.6221 703.4197 2.4616 0.88478
48 647.90 805.48 3.1912 0.92358 572.4663 714.5664 2.5202 0.88110

5

16
16 1354.25 1745.57 6.1841 0.64157 583.8907 721.9168 2.5735 0.87769
32 1334.96 1723.52 6.0981 0.65057 610.3459 745.2283 2.6947 0.86966
48 1333.86 1719.68 6.0949 0.65213 572.9031 710.6742 2.5242 0.88147

32
16 1392.96 1812.31 6.3396 0.61364 588.0429 721.9520 2.5939 0.87768
32 1388.94 1807.41 6.3218 0.61573 584.3072 718.3002 2.5771 0.87891
48 1364.06 1775.97 6.2128 0.62898 582.6229 716.7858 2.5692 0.87942

48
16 972.64 1206.51 4.5962 0.82877 579.3880 719.9311 2.5540 0.87836
32 979.46 1212.62 4.6293 0.82703 613.9655 750.9024 2.7124 0.86767
48 975.88 1210.20 4.6112 0.82772 566.5414 702.0350 2.4950 0.88433

10

16
16 633.07 781.68 3.1392 0.92820 605.2163 750.0340 2.6532 0.86685
32 623.13 765.99 3.0945 0.93105 613.8751 757.6987 2.6944 0.86412
48 635.45 779.73 3.1502 0.92855 611.7435 755.8725 2.6840 0.86477

32
16 804.83 955.57 3.9148 0.89270 638.1729 785.5308 2.8001 0.85395
32 800.44 950.37 3.8948 0.89386 644.5937 791.5618 2.8293 0.85170
48 806.60 957.90 3.9223 0.89217 633.4297 782.4309 2.7775 0.85510

48
16 833.79 1043.21 3.9433 0.87211 663.7819 821.3189 2.9141 0.84034
32 834.19 1043.13 3.9458 0.87213 666.8277 826.8532 2.9267 0.83818
48 833.23 1043.09 3.9406 0.87214 673.3980 833.1543 2.9567 0.83571

15

16
16 696.77 862.75 3.4304 0.91258 624.3024 785.3183 2.7397 0.85271
32 683.33 841.07 3.3712 0.91691 639.8254 798.3629 2.8114 0.84777
48 704.42 869.59 3.4642 0.91118 636.2081 793.2626 2.7962 0.84971

32
16 1874.70 2980.88 8.2726 -0.04364 630.1827 773.2048 2.7801 0.85722
32 1790.50 2831.90 7.9244 0.05807 638.3242 786.8991 2.8140 0.85211
48 1814.09 2877.54 8.0212 0.02747 636.1582 790.6737 2.8026 0.85069

48
16 791.57 971.06 3.8305 0.88925 588.5270 742.7324 2.6001 0.86825
32 789.43 968.47 3.8214 0.88984 596.9240 747.1950 2.6392 0.86666
48 826.56 1011.38 3.9801 0.87986 598.3657 753.9272 2.6441 0.86425

24

16
16 658.06 828.40 3.2582 0.91950 692.9759 859.0261 3.0610 0.82210
32 658.20 827.76 3.2590 0.91962 696.9250 863.8191 3.0784 0.82011
48 655.11 822.76 3.2459 0.92059 703.0613 868.9272 3.1064 0.81798

32
16 641.84 805.09 3.1891 0.92397 674.5746 845.6055 2.9813 0.82762
32 650.30 813.83 3.2269 0.92231 672.6436 842.5281 2.9730 0.82887
48 636.96 797.15 3.1661 0.92546 674.0590 842.5258 2.9796 0.82887

48
16 1181.81 1451.69 5.5138 0.75279 612.6368 805.2216 2.6996 0.84369
32 1197.90 1471.97 5.5834 0.74583 605.1485 801.3691 2.6654 0.84518
48 1191.09 1465.06 5.5527 0.74821 611.3338 805.9974 2.6931 0.84339
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Figure 5.17: Comparison between test data RMSE of trained models to forecast DJIA
long-term closing prices using raw data and log returns based on different time lags
and number of neurons

the performance of models which use raw closing price and log returns is not

significant. However, using log returns of closing prices showed slightly higher

and more consistent results.

• It is clear from Figures 5.14 and 5.15 of the short-term forecast, that using one

time lag (time step) to forecast the future is not sufficient. Yet, using longer

time steps showed better accuracy which does not coincide with the random

walk model which assumes that only the recent observation is the best way to

forecast prices in the future.

• Comparing EWT-BGRU results shown in Table 5.5 with RW model forecast

results shown in Table 5.6, we notice that EWT-BGRU outperforms the RW

model for short-term time scale forecast. These findings may contradict the

efficient market hypothesis for the short-term forecast since we use historical
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price data to produce forecast performance better than RW. We may also notice

that for the long-term time scale forecast, both EWT-BGRU and RW models

produce comparable performance. Results of long-term forecasts may support

the validity of the efficient market hypothesis for the long-term.

Table 5.5: Best trained EWT-BGRU models based on test data forecast results of
S&P and DJIA for short and long-term

Datasets Times cale
Raw closing prices Log Returns of closing prices

MAE RMSE MAPE R2 MAE RMSE MAPE R2

S&P
Short-Term 1.68834 2.21816 0.07239 0.99993 1.53115 2.02342 0.06043 0.99988
Long-Term 61.33463 78.29714 2.70081 0.91298 50.75976 63.39741 1.99854 0.87915

DJIA
Short-Term 13.51417 17.71492 0.06617 0.99996 8.64185 11.22386 0.03834 0.99997
Long-Term 623.12674 765.99069 3.09446 0.93105 528.21249 673.90067 2.31995 0.89424

Table 5.6: Forecast results of the RW model using S&P and DJIA for short and
long-term

Dataset Time scale MAE RMSE MAPE R2

S&P
Short-Term 11.19000 17.49600 0.44111 0.99132
Long-Term 57.69060 69.25050 2.26590 0.83941

DJIA
Short-Term 103.30290 163.11330 0.46949 0.99580
Long-Term 541.18800 679.77900 2.44303 0.92281

5.4 Multi-Step Forecast Using Hybrid Direct Re-

cursive Method

All long-term forecasting models developed by this work so far use the direct method

to forecast the future. The direct method uses rolling window of size k at time step t to

forecast price after h time steps in the future. The time duration separating predictors

and target variables affects the forecast accuracy significantly. Intuitively, the further

the forecast horizon in the future, the higher the error term between forecasts and
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actual prices. The direct method performs the forecasting as follows:

Ŷt+h = fh(xt, xt−1, xt−2, .., xt−k) (5.6)

However, forecasting one step ahead produces less error scale compared to fore-

casting more than one step. To use the advantage of the good performance of one-

step forecasting models, the recursive long-term forecasting method employs one-step

forecasting model to iteratively forecast many steps in the future. The intermediate

produced forecasts are progressively used as input to forecast next time steps. Since

actual observations of time duration between t1 and th−1 cannot be used in the fore-

casting process, they can recursively be estimated using one-step forecasting models

and employed to forecast time step th. Single one-step model can be developed to

perform the forecasting as follows:

Ŷt+1 = f(xt, xt−1, xt−2, .., xt−k) (5.7)

Ŷt+2 = f(Ŷt+1, xt, xt−1, xt−2, .., xt−k) (5.8)

Ŷt+h = f(Ŷt+h−1, xt, xt−1, xt−2, .., xt−k) (5.9)

The recursive method differs from the direct method by employing one step fore-

casting model to progressively forecast succeeding steps. The hybrid method combines

both direct and recursive forecasting by developing many models for each intermedi-

ate future horizon scale. Estimation of intermediate time steps provides forecasting

models with additional information which can be used to improve the accuracy. The
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hybrid method defined as follows:

Ŷt+1 = f1(xt, xt−1, xt−2, .., xt−k) (5.10)

Ŷt+2 = f2(Ŷt+1, xt, xt−1, xt−2, .., xt−k) (5.11)

Ŷt+h = fh(Ŷt+h−1, xt, xt−1, xt−2, .., xt−k) (5.12)

We investigate forecasting long-term using the hybrid direct recursive method by the

EWT-BGRU methodology proposed in Section 5.3. The forecasting experiments aim

at forecasting up to one month (22 working days). We use the same experimental

setup employed in Section 5.3. Initially, we perform preprocessing to raw closing

prices by calculating log returns of 22 days as discussed in section 4.2. The log return

series are then decomposed into many sub-series using EWT. We use experimental

settings described in Section 5.1. A rolling window of size ten is defined to shape and

arrange each resolution level of the decomposed data. The forecasting process starts

by learning one-step model using ten time steps rolling window. The succeeding model

uses the output of previous models in addition to the ten time steps input data defined

at the beginning of the forecasting process. Illustration of the forecasting models with

the corresponding input structure is shown in Figure 5.18. The intermediate and final

network architectures designed using 48 memory cell units. The performance of the

trained networks estimated using the test data. We compare the forecasting results

of the proposed methodology with results of BGRU and random walk models. The

results of the experiments are shown in Tables 5.7 and 5.8 for both S&P and DJIA

datasets, respectively.

95



Figure 5.18: Input structure of multi-step forecasting models using hybrid direct re-
cursive method

Table 5.7: Results of S&P data for both BGRU and EWT-BGRU models using hybrid
direct recursive multi-step forecasting for up to one month (22 working days)

Horizon
EWT-BGRU BGRU

MAE MAPE RMSE R2 MAE MAPE RMSE R2
1 0.654 0.026 0.819 1.000 15.198 0.596 20.770 0.987
2 1.309 0.052 1.580 1.000 26.492 1.035 33.920 0.965
3 2.505 0.100 2.956 1.000 32.479 1.265 41.446 0.947
4 2.245 0.089 2.946 1.000 56.612 2.219 65.930 0.866
5 3.715 0.147 4.567 0.999 53.814 2.080 67.808 0.858
6 3.233 0.126 4.823 0.999 68.309 2.652 82.648 0.788
7 4.098 0.160 5.735 0.999 74.152 2.879 89.289 0.752
8 3.570 0.140 5.058 0.999 84.083 3.269 99.729 0.689
9 4.371 0.169 6.350 0.999 69.691 2.700 86.403 0.765
10 5.355 0.207 7.911 0.998 54.092 2.095 69.909 0.846
11 7.255 0.282 10.522 0.996 48.377 1.878 62.752 0.875
12 9.984 0.390 14.171 0.993 52.153 2.027 66.672 0.858
13 12.343 0.480 18.081 0.989 52.037 2.027 66.233 0.858
14 13.847 0.538 20.775 0.986 42.561 1.662 55.017 0.902
15 16.459 0.638 24.536 0.980 67.677 2.636 83.318 0.774
16 18.373 0.712 27.180 0.975 68.067 2.648 84.409 0.767
17 21.736 0.843 31.662 0.966 78.177 3.034 95.838 0.698
18 23.874 0.925 35.842 0.956 92.484 3.566 113.979 0.571
19 26.620 1.032 40.055 0.945 111.258 4.271 136.783 0.379
20 36.942 1.432 54.237 0.899 163.710 6.298 191.539 -0.224
21 49.578 1.929 66.873 0.846 218.515 8.419 249.774 -1.094
22 47.097 1.823 68.388 0.838 235.547 9.061 270.281 -1.467
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Table 5.8: Results of DJIA data for both BGRU and EWT-BGRU models using
hybrid direct recursive multi-step forecasting for up to one month (22 working days)

Horizons
EWT-BGRU BGRU

MAE MAPE RMSE R2 MAE MAPE RMSE R2
1 8.830 0.038 12.180 1.000 206.352 0.885 270.483 0.983
2 13.791 0.061 18.027 1.000 514.276 2.201 635.611 0.908
3 22.332 0.099 28.310 1.000 599.660 2.550 763.237 0.866
4 21.553 0.094 30.456 1.000 909.686 3.918 1067.583 0.736
5 41.623 0.184 50.536 0.999 790.846 3.372 981.706 0.776
6 33.744 0.146 50.571 0.999 931.716 3.990 1125.027 0.704
7 34.058 0.147 49.731 0.999 1114.987 4.784 1317.155 0.592
8 34.839 0.151 50.857 0.999 1046.306 4.520 1212.366 0.652
9 41.775 0.180 59.907 0.999 1302.585 5.601 1511.495 0.457
10 52.313 0.224 75.326 0.999 1378.630 5.916 1606.955 0.383
11 69.080 0.298 98.537 0.998 1332.248 5.692 1582.033 0.398
12 92.370 0.398 131.449 0.996 1444.593 6.186 1687.918 0.310
13 118.820 0.512 171.403 0.993 1536.617 6.579 1786.481 0.221
14 136.132 0.585 202.217 0.990 1507.865 6.436 1775.716 0.226
15 163.466 0.700 241.147 0.985 1729.185 7.409 1986.507 0.025
16 187.603 0.803 275.027 0.981 1798.691 7.690 2079.945 -0.075
17 249.014 1.072 360.844 0.967 1871.133 7.947 2237.633 -0.251
18 290.669 1.244 443.223 0.949 1997.501 8.404 2504.516 -0.577
19 341.055 1.459 505.947 0.934 2475.474 10.372 3156.441 -1.518
20 381.923 1.635 556.146 0.920 2465.197 10.285 3219.789 -1.636
21 453.989 1.952 624.640 0.898 2821.113 11.810 3592.239 -2.302
22 446.720 1.914 652.851 0.888 2767.154 11.565 3554.026 -2.254

Figure 5.19: Comparison between EWT-BGRU, BGRU, and RW models based on
Curves of MAE, MAPE, RMSE for multi-step forecasting of S&P data
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Figure 5.20: Comparison between EWT-BGRU, BGRU, and RW models based on
Curves of MAE, MAPE, RMSE for multi-step forecasting of DJIA data

Figure 5.21: Multi-step forecast curves for BGRU and EWT-BGRU models with
actual prices of first sample of S&P test data

Figure 5.22: Multi-step forecast curves for BGRU and EWT-BGRU models with
actual prices of first sample of DJIA test data
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The results achieved by EWT-BGRU show superior performance compared to both

BGRU and RW models. Figures 5.19 and 5.20 show that the error generated form

EWT-BGRU forecasts is less than the error of the RW model, whereas error produced

by BGRU model forecasts is higher than the error of the RW model. It is also clear

from Figures 5.21 and 5.22 that forecasting the future for up to two weeks (ten working

days) produces high accuracy that almost matches actual prices. Forecasts of more

than two weeks start to gradually deviate form actual prices. The reason may return

to new emerging patterns in prices which may not be captured using series of prices

(slide window) recorded before more than two weeks. The reason also might be caused

by occurrence of some new financial and economical events that may impact changes

of prices. Evidently, keeping level of error scale below random walk model error

curve means that we still have an advantage over the market, since the best available

information are the most recent observations or current prices, therefore, forecasts of

EWT-BGRU even after one month (22 working days) still provide useful information

about price movements in the future.

The high accuracy produced by EWT-BGRU forecasting model is attributed to

the ability of the EWT to separate each component of the price series based on price

fluctuations and frequency bands included in price series. This kind of analysis enables

BGRU networks to model data patterns independently. Considering and processing

price series as signal, facilitates modeling price abrupt changes since each level of price

fluctuation represents certain level in the frequency bands of the signal. Moreover, us-

ing a second level training network to combine multilevel resolution forecasts provides

extra level of processing to reduce error produced form first level training network. It
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also eliminates the need to any information related to the signal for the decomposition

inverse process since information about signal in the future is not available.

5.5 Multiresolution Analysis and Technical Indica-

tors

Performing forecast by means of TIs is one of the most common forecasting methods

in literature. Many research used TIs as input to the learning methodologies. In this

section we investigate combining TIs to our multiresolution architecture proposed in

Section 5.3 which attains the highest forecasting performance so far. Our proposed

architecture described in Section 5.3 is designed using two learning stages. The first

stage performs learning and training using the decomposed data generated by the

empirical wavelet decomposition method. It is designed to forecast new future values

for each resolution level. The second stage uses forecasts generated from the first stage

to forecast final prices. We add TIs values as input to the second stage to perform

final forecast. The updated architecture is illustrated by Figure 5.23.

There are several TIs in literature employed to forecast stock prices. Determining

which TIs to use in the forecasting process is an important factor in developing efficient

forecasting models. To determine which TIs to use as input to our forecasting model,

we survey 37 studies to identify most common TIs adopted by different studies to

perform forecast operations. The surveyed studies are listed in Tables 2.3 and 2.4.

We identify ten TIs that are widely used in forecasting approaches. We select TIs that

are used by higher number of studies. The selected TIs along with number of studies
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Figure 5.23: Design of decomposition and learning methodology combined with tech-
nical indicators

that use each indicator are shown in Table 5.9. Therefore, we use these indicators

as input features into our forecasting approach. Description of the TIs used by this

study is included in Appendix C.

Table 5.9: Selected technical indicators and the corresponding number of studies

Indicators No. of Studies
SMA 29
RSI 28
Williams R% 24
Stochastic %K 21
MACD 20
Stochastic %D 18
EMA 17
ROC 14
Momentum 13
CCI 11

Basically, most TIs require deciding time interval to be used in the calculation

process. Commonly, in stock market technical analysis, choosing time period depends

on personal experience and type of stocks. Based on experiments conducted in Section

5.3, using log returns as input data to the proposed architecture produces high, stable,
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and consistent results. We adopt the same experiment setup used in Section 5.3, where

log returns of closing price from historical data is used as input to the forecasting model

to forecast log returns in the future. We use a slide window of size fifteen time lags

to reshape the data as per the time lags methodology adopted by this work which

has been described in section 3.4. The developed models designed using 48 neurons

which found to be effective in many models developed in most experiments conducted

in previous sections.

Experiments are conducted to evaluate the impact of using TIs in financial time

series forecasting. Therefore, we keep all experimental settings fixed and just change

TIs which are used as input data along with forecast of the decomposed historical

time lags as described earlier. We investigate and evaluate all combinations of the ten

TIs for the two datasets and for the two time scales. Accordingly, we execute (4096)

trials representing all possible TIs combinations for both S&P and DJIA benchmark

datasets for both short-term (one day) and long-term (22 working days) one month

in the future. We show only the results of ten models which produce the highest

performance accuracy based on evaluation measures using test data. Tables 5.10 and

5.11 show the results of short-term forecast for the two benchmark datasets. Similarly,

Tables 5.12 and 5.13 show the results for long-term forecast.
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Table 5.10: Best trained models for short-term forecasting based on performance of
S&P test data with corresponding employed technical indicators

TIs RMSE MAE MAPE R2

SMA,MACD 2.072891 1.589026 0.062623 0.999875
SMA,MOM, MACD 2.074915 1.585859 0.062517 0.999875
SMA 2.07868 1.59368 0.062821 0.999875
MACD 2.087522 1.598501 0.063055 0.999873
SMA,EMA, MACD 2.090606 1.589391 0.062692 0.999873
SMA,MOM 2.091433 1.598672 0.063069 0.999874
MOM, MACD 2.094229 1.602426 0.063147 0.999873
MOM, 2.095015 1.604614 0.063291 0.999873
SMA,EMA, MOM 2.095263 1.596851 0.06299 0.999873
SMA,EMA, MOM, MACD 2.103967 1.610576 0.063486 0.999871

Table 5.11: Best trained models for short-term forecasting based on performance of
DJIA test data with corresponding employed technical indicators

TIs RMSE MAE MAPE R2

SMA,MACD 11.55025 8.867546 0.039323 0.99997
MACD 11.58436 8.971536 0.039784 0.99997
MOM 11.58753 8.953808 0.039727 0.99997
SMA,MOM 11.60751 8.894454 0.039431 0.99997
SMA,MOM, MACD, 11.64987 8.938591 0.039607 0.99997
MOM, MACD 11.70321 8.896335 0.039426 0.999969
SMA,EMA 11.70649 8.951302 0.039631 0.999969
SMA,EMA, MOM, MACD 11.81264 8.95661 0.039656 0.999969
EMA, MOM 11.82494 8.984909 0.039797 0.999969
SMA,EMA, MACD 12.01208 9.07649 0.040163 0.999968
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Table 5.12: Best trained models for long-term forecasting based on performance of
S&P test data with corresponding employed technical indicators

TIs RMSE MAE MAPE R2

SMA,CCI 77.12196 53.82822 2.104637 0.816305
ROC, MOM 74.71854 54.03905 2.114248 0.827575
RSI, ROC, MOM, CCI 74.52202 54.42259 2.140761 0.828481
EMA, CCI 76.08336 54.48944 2.137529 0.821219
SMA,EMA, MOM, CCI 82.08397 55.14226 2.149598 0.791906
SMA,ROC, 75.51996 55.33812 2.172967 0.823857
RSI, MOM, MACD 74.27474 55.37726 2.172906 0.829618
RSI, MOM 73.2972 55.40349 2.17635 0.834073
ROC, MACD, StochasticD 74.81034 55.50442 2.172406 0.827152
SMA,RSI 73.40194 55.69163 2.185955 0.833598

Table 5.13: Best trained models for long-term forecasting based on performance of
DJIA test data with corresponding employed technical indicators

TIs RMSE MAE MAPE R2

EMA, MOM, CCI, MACD 681.7108 550.9256 2.451498 0.889008
SMA,RSI, MACD 701.1583 548.7164 2.41944 0.882585
ROC, CCI, MACD 702.2335 555.5717 2.471731 0.882225
SMA,EMA, CCI, MACD 708.2653 557.3193 2.478914 0.880193
SMA,EMA, MOM, CCI, MACD 711.2577 574.8473 2.554347 0.879178
SMA,ROC, MACD 713.2154 565.9677 2.513816 0.878512
MOM, CCI 716.9817 561.0728 2.488989 0.877226
SMA,RSI, ROC, MACD 718.3025 567.8869 2.496063 0.876773
ROC, MOM, CCI, MACD 718.3445 567.6002 2.52711 0.876759
EMA, RSI, MOM, CCI 720.4978 580.2866 2.569296 0.876019
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The results of the experiments show that:

• The best ten trained models for short-term use only four TIs to produce the best

performance using both datasets. The best four TIs are SMA, EMA, MOM, and

MACD. To support and validate this conclusion, we counted the number of times

each technical indicator is used in the top (100) best models. Table 5.14 lists all

TIs used in the top (100) best models along with number of models for which

each corresponding technical indicator is used as input.

Table 5.14: Number of times each technical indicator is used in the top best 100
models for both S&P and DJIA datasets for short-term forecast

Dataset S&P DJIA
MACD 53 52
EMA 53 49
MOM 50 50
SMA 49 51
ROC 22 20
WR 16 16
RSI 19 12

StochasticK 12 16
StochasticD 11 16

CCI 11 9

• The results of the long-term forecast show that five TIs have higher impact on

the forecasting accuracy. The five TIs are MACD, SMA, MOM, ROC, and CCI.

Table 5.15 lists all TIs used in the top (100) best models along with number of

models for which each corresponding technical indicator is used as input.

• We notice that MACD, SMA, and MOM have higher impact on forecasting

both short and long-term which emphasizes the positive impact of these three
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indicators and suggests using them in the forecasting models for short and long-

term forecast.

• The results of the experiments conducted in this section, shown in Tables 5.10,

5.11, 5.12, and 5.13, produce similar performance to that of the EWT-BGRU

model which uses only log returns of closing prices without the integration of

TIs. Apparently, adding TIs as input data to the EWT-BGRU models may not

improve the performance, yet it produces an accuracy results higher than results

of random walk model for the short-term forecast.

Table 5.15: Number of times each technical indicator is used in the top best 100
models for both S&P and DJIA datasets for long-term forecast

Dataset S&P DJIA
MACD 51 58
SMA 49 47
MOM 45 49
ROC 49 40
CCI 36 44
EMA 21 44
RSI 31 32
WR 15 25

StochasticD 22 5
StochasticK 16 9

5.6 Benchmarking of Proposed Forecasting Models

Three kinds of forecasting approaches are proposed by this work:

• The first approach is developed using deep learning techniques by adopting

variants of deep recurrent neural networks. The proposed architectures are
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SLSTM, BLSTM, SGRU, and BGRU.

• The second type of forecasting models is based on performing data preprocessing

and decomposition using mutiresolution analysis. Two types of wavelet analysis

which are stationary wavelet transform and empirical wavelet transform are used

in the forecasting operations (more details are provided in Appendix D.3). The

preprocessed data is fed into two types of deep architectures namely SLSTM

and BGRU. The proposed architectures are EWT-BGRU, EWT-SLSTM, and

SWT-SLSTM. Experiments are conducted using raw and log returns data.

• The third forecasting approach uses TIs as input to the best selected model which

is developed using BGRU with empirical wavelet decomposition (EWT-BGRU).

The experiments aim at investigating the impact of adding TIs to forecast short

and long-term time scales.

Best models selected based on the forecasting performance using test data for each

developed approach is shown in Tables 5.16, 5.18, and 5.17. The results are based

on data for the period from 01/01/2010 to 29/06/2018 which are used in most of the

experiments conducted by this study. The results of the TASI dataset are produced

using forecasting models based on best parameters concluded from the experiments

conducted using S&P and DJIA datasets. We investigate different networks architec-

tures using 32, 48, and 16 cell units (neurons). We use different sizes of rolling windows

varied between 1, 10, and 24 timesteps. The developed networks are trained for up

to 800 epochs. The same experimental configuration used to develop the forecasting

models is also employed for the experiments conducted using TASI dataset.
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Performing comparison between variants of deep recurrent neural networks namely,

SLSTM, BLSTM, SGRU, and BGRU, results in proposing BGRU as the best among

the four evaluated architectures. Despite the high performance of the BGRU models

for short-term forecast, they are unable to outperform random walk model. On the

other hand, the integration of empirical wavelet transform into the forecasting process

improves the performance significantly. The results of performing forecasts for each

decomposed resolution level reveal patterns in the data and help the learning models

to extract useful information from the data to forecast the future.

Table 5.16: Performance of forecasting models trained on S&P dataset for each pro-
posed approach

Model Data
Short-Term Long-Term

RMSE MAE MAPE R2 RMSE MAE MAPE R2

SLSTM Closing price 21.089 15.445 0.60210 0.98730 157.321 138.523 5.38350 0.28090
SGRU Closing price 22.668 17.271 0.67290 0.98540 131.286 116.205 4.55167 0.49620

BLSTM Closing price 18.370 12.750 0.50112 0.99020 84.861 71.012 2.79080 0.79070
BGRU Closing price 17.610 11.570 0.45580 0.99104 65.126 49.260 1.95200 0.87520

Random Walk Closing price 17.496 11.190 0.44110 0.99132 69.251 57.690 2.26500 0.83900
SWT-SLSTM Closing price 90.506 70.688 3.70000 0.51700 261.659 443.101 23.13000 -13.17100
EWT-SLSTM Closing price 11.785 7.920 0.56514 0.99572 200.177 151.348 6.37400 0.60570

Autoencoder-BGRU TIs and Closing
price

19.453 12.815 0.50710 0.98910 91.486 77.084 3.02400 0.71420

EWT-BGRU Closing price 2.218 1.688 0.07239 0.99993 78.297 61.335 2.70081 0.91298
EWT-BGRU Log Returns of

Closing price
2.023 1.531 0.06043 0.99988 63.397 50.760 1.99854 0.87915

EWT-BGRU TIs and Log Re-
turns of Closing
price

2.073 1.589 0.06262 0.99988 77.122 53.828 2.10464 0.81631

The combination of empirical wavelet analysis with SLSTM network surpasses the

random walk model performance and produces higher accuracy in terms of short-

term forecast (more details are provided in Appendix D.3). Interestingly, combining

both BGRU with EWT outperforms all other forecast models developed by this work.

Hence the random walk model implies that the best way to forecast new values in the

future is to look into the most recent values in the past. The goal of producing forecasts
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Table 5.17: Performance of forecasting models trained on DJIA dataset for each pro-
posed approach

Model Data
Short-Term Long-Term

RMSE MAE MAPE R2 RMSE MAE MAPE R2
SLSTM Closing price 97.06617 73.72221 1.01842 0.958114 312.5247 245.4714 3.368251 0.530398
SGRU Closing price 95.91118 72.6193 1.002081 0.957368 344.6899 264.5928 3.64488 0.42876
BLSTM Closing price 98.37343 74.74841 1.03172 0.955151 303.1167 240.838 3.300468 0.542834
BGRU Closing price 93.47912 70.69195 0.978782 0.961153 341.0954 271.0361 3.713915 0.421097
Random Walk Closing price 57.00601 41.50527 0.576057 0.985241 309.7339 236.9174 3.238895 0.446407
SWT-SLSTM Closing price 102.7647 80.87954 1.234189 0.946732 438.9384 333.9867 4.76625 0.43871
EWT-SLSTM Closing price 5.709127 4.49609 0.064597 0.999944 433.0479 320.5417 4.612354 0.653442
Autoencoder-BGRU TIs and Closing price 73.85378 53.954 0.801523 0.98659 365.8683 287.2014 4.266223 0.671611
EWT-BGRU Closing price 5.358447 4.197835 0.059955 0.999953 423.5878 313.1841 4.507908 0.668418
EWT-BGRU Log Returns of Closing

price
4.46899 3.56689 0.04969 0.999902 305.8661 237.5797 3.205838 0.456346

EWT-BGRU TIs and Log Returns of
Closing price

5.49201 4.288375 0.061255 0.99994 309.8572 235.5669 3.231088 0.462559

Table 5.18: Performance of forecasting models trained on TASI dataset for each pro-
posed approach

Model Data
Short-Term Long-Term

RMSE MAE MAPE R2 RMSE MAE MAPE R2

SLSTM Closing price 209.695 152.219 0.65490 0.99030 1474.376 1278.246 5.52350 0.51144
SGRU Closing price 237.116 178.084 0.76437 0.98760 1263.396 1081.616 4.69570 0.63882

BLSTM Closing price 182.042 124.435 0.54267 0.99260 877.117 726.986 3.19800 0.82700
BGRU Closing price 184.373 128.010 0.55930 0.99240 779.106 530.350 2.81310 0.86060

Random Walk Closing price 163.110 103.300 0.46900 0.99500 679.770 541.180 2.44300 0.92200
SWT-SLSTM Closing price 3293.859 1472.678 6.35287 -1.35830 4927.731 3164.494 14.37543 -2.67653
EWT-SLSTM Closing price 80.087 55.039 0.29228 0.99946 2423.028 1832.389 8.65374 0.50854

Autoencoder-BGRU TIs and Closing
price

194.802 128.000 0.56160 0.99160 1154.292 1019.787 4.52240 0.65410

EWT-BGRU Closing price 17.715 13.514 0.06617 0.99996 765.991 623.127 3.09446 0.93105
EWT-BGRU Log Returns

of Closing price
11.224 8.642 0.03834 0.99997 673.901 528.212 2.31995 0.89424

EWT-BGRU TIs and Log Re-
turns of Closing
price

11.550 8.868 0.03932 0.99997 681.711 550.926 2.45150 0.88901
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closer to the actual values than the most recent observations in the past is satisfied

for short-term using EWT-SLSTM and EWT-BGRU models and for long-term using

EWT-BGRU model.

The adaptive decomposition of data using empirical wavelet analysis provides the

proper mechanism to extract sparse representations of the data based on information

included in the dataset. The ability to design basis wavelet function constructed based

on the information involved in the data leads into developing forecasting models suit-

able to each resolution level. Performing prior analysis of Fourier spectrum of the data

to identify optimal number of resolution levels is a key point to providing a successful

decomposition process for time series forecasting. In addition, the use of bidirectional

architecture to design GRU network improves the forecast accuracy significantly. The

methodology of the bidirectional architecture in using past information in both direc-

tions (forward and backward) results in a better accuracy. The context of the input

data extracted by the bidirectional architecture which is used in feeding GRU network

produces efficient forecasting models especially for the short-term.

The experiments conducted by this work to study the impact of using TIs suggest

that MACD, SMA, and MOM have the highest positive impact on the short and long-

term forecasting using EWT-BGRU model. Despite the high performance produced

by the integration of TIs into the input data of the forecasting process, the accuracy

performance did not outperform best produced accuracy by EWT-BGRU models using

only log returns as input data.
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Comparisons with Related Work

The best results of this work are achieved by EWT-BGRU model using log returns of

closing prices. Our proposed architecture shows superior results compared to some re-

cent related work in literature. Comparisons between the performance of our proposed

architecture and some related work based on S&P and DJIA benchmark datasets are

shown in Tables 5.19 and 5.20 for S&P and DJIA datasets, respectively. Same re-

sult values in the related work articles are used for comparison purposes. We use the

same time duration used in experiments of the related work and the same settings of

data split into testing and training. The results show that our proposed architecture

produces superior performance compared to the list of related works in Tables 5.19

and 5.20. We use evaluation measures described in section 5.1 which are used by the

related works to perform comparison experiments. The definition of the Theil U and

SD measures are as defined in [14, 120], respectively.
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Table 5.19: Comparison between our proposed approach and some related work using
S&P dataset

Reference
Period

Model Time scale Measures Related Work EWT-BGRUfrom to

[14] 01/07/08 30/09/16 WSAEs-LSTM 1

Theil U 0.007 0.00041
R 0.946 0.9997

MAPE 0.011 0.00067

[103] 02/01/09 15/03/13 Firefly 1

MAPE 0.0141 0.00209
MSE 0.00019 0.00000441

RMSE 0.0141 0.0021

[101] 03/01/94 23/10/06 BFO

1

MAPE%

0.8108 0.305
3 1.0105 0.4204
5 1.2399 0.5142
7 1.3912 0.662
15 1.8365 1.73437

[102] 02/01/13 30/08/13 APMS 1
RMSE 0.0454 0.0365
MAE 0.0357 0.0117

[120] 03/03/11 10/03/16 LDBN 1

MSE 0.00251 0.000016
MAE 0.0403 0.00327
SD 0.049 0.0039

[121] 03/01/94 23/10/06 BFO

1

MAPE%

0.606 0.305
7 1.3852 0.662
15 1.8091 1.73437

[122] 01/10/98 31/01/08 ARIMA-MLP 1

RMSE 12.62 1.3092
MAPE% 0.64 0.0689

MSE 159.33 1.71400464
MAE 9.02 0.982

[123] 04/08/06 31/08/12 PCA-STNN 1

MAE 15.5181 1.2946
RMSE 19.2467 1.661

MAPE% 1.1872 0.1003

Table 5.20: Comparison between proposed approach and some related work using
DJIA dataset

Article
Period

Model Time Scale Measures Related Work EWT-BGRUfrom to

[14] 01/07/08 30/09/16 WSAEs-LSTM 1

Theil U 0.007 0.0005
R 0.949 0.9996

MAPE 0.011 0.000821

[124] 02/01/03 31/12/05 ICA-CCA-SVR 1

MAPE 0.011 0.00065
RMSE 16.54 8.55
MAE 12.638 6.93
MSE 273.56 73.1025
R2 0.9486 0.9977

[101] 03/01/94 23/10/06 BFO

1

MAPE%

0.6623 0.17
3 0.9534 0.1848
5 1.187 0.355
7 1.3811 0.4083
15 1.8893 1.289

[123] 04/08/06 31/08/12 PCA-STNN 1

MAE 192.1769 11.446
RMSE 220.4365 14.566

MAPE% 1.5183 0.0935

[121] 03/01/94 23/10/06 BFO

1

MAPE%

0.5848 0.17
7 1.3229 0.4083
15 1.8529 1.289
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CHAPTER 6

CONCLUSIONS & FUTURE

WORK

Financial market is affected by political and economical changes. Several kinds of fac-

tors play important role in determining daily prices. These factors in a way or another

are reflected in historical prices which form the basic element of financial time series.

Consequently, forecasting financial time series is considered a challenging problem

which requires sophisticated approach to solve. This work explores different aspects

of integrating a combination of deep learning, multirsolution analysis, and technical

indicators into financial time series forecasting. The conclusions drawn by this study

are discussed in Section 6.1. Scope and limitations of this study are discussed in

Section 6.2. Suggestions for future work are discussed in Section 6.3.
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6.1 Conclusions

In this study, we initially use autocorrelation analysis in addition to statistical ran-

domness and white noise tests to generate a clue about the possibility of performing

forecasting using the benchmark datasets. Consequently, several deep architectures

such as stacked and bidirectional layers are exploited to train deep networks designed

using deep recurrent neural networks such as LSTM and GRU. Three of the bench-

mark datasets namely, S&P, DJIA, and TASI indices, are used in the evaluation

process. The training process depends on examining and investigating historical data

based on multiple input structures including different sliding window sizes and several

TIs. Four deep architectures are proposed, evaluated and compared using multiple

input structures and different future horizon time scales. Through analytical compar-

ative experiments established based on trial and error, best models are selected and

compared to determine best deep learning technique, input structure, and network

architecture.

The best selected deep learning architecture is combined with multiresolution anal-

ysis method to improve the forecasting accuracy. Performing preprocessing to input

data using multiresolution analysis with empirical wavelet transform shows superior

performance and produces accurate forecasting models. We compare and apply stock

market forecasting using both stationary wavelet transform and empirical wavelet

transform (more details are provided in Appendix D.3). To the best of our knowledge,

our work is the first to introduce integrating empirical wavelet analysis into financial

time series forecasting and the first to propose a time series forecasting approach us-
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ing combination of empirical wavelet analysis and BGRU deep learning architecture.

We perform experiments using raw closing prices and log returns of closing prices.

Data transformation using log returns attains the best accuracy results for short and

long-term future time scale forecast. The achieved results surpass the performance

produced by the random walk model especially for short-term forecast which holds

an evidence against the efficient market hypothesis discussed in Appendix A. Com-

parisons with related work summarized in Section 5.6 show the superiority of the

forecasting approach proposed by this work.

To study the impact of TIs on the forecasting accuracy, several models are de-

veloped using different combinations of TIs. To determine which TIs are the most

likely to improve forecast accuracy, we survey several financial time series forecasting

studies which use TIs as input data. Based on survey results, ten of the most common

TIs are selected to perform forecasting experiments using best architecture developed

using EWT and BGRU. Experiments are conducted by trial and error to evaluate all

the ten TIs combinations for short and long-term forecast. MACD, SMA, and MOM

TIs found to have higher positive impact on forecasting both short and long-term time

scale. Despite the high performance exhibited by models developed using TIs, it is

not high enough to outperform models composed of empirical wavelet transform and

BGRU. Similar conclusion devised by Hsu et al. [125] who argued that informational

value of TIs may not hold very significant impact on forecasting financial time series.

Same conclusion is supported by other studies in literature [15, 126].

Generally, we find that forecasting long-term error scale is higher than that of

the short-term due to the time period separating between explanatory and target
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variables. During this time period, emerging changes in trends may not be captured

by the forecasting models. Accordingly, using big rolling window of time lags from

the past to forecast the future may not help increasing the performance since distant

past has less impact on the future.

Furthermore, the results of our study support conclusions drawn by studies [16, 18,

127] which argued against the weak form of the efficient market hypothesis which states

that all consecutive price changes represent random departures from historical prices.

Assuming isolation and independency between sequential prices implies the random

walk model. Thus, developing a forecast methodology which utilizes previous prices

to forecast the future with an accuracy higher than that of the random walk model

can be employed as an evidence against the efficient market hypothesis. The higher

the difference between performance of the two models, the stronger the evidence.

Evidently, our proposed methodology achieves high difference in the performance

compared to random walk model for the short-term forecasting, but for the long-

term, the difference is not significant. Therefore, it could be the case that we can

approve the efficient market hypothesis for long-term forecast and argue against it for

the short-term which coincides with arguments stated by Fama [128] and aligns with

conclusions drawn by some studies [129–131].

6.2 Limitations

• The aim of this study is to forecast exact prices of financial time series consid-

ering S&P and DJIA indices as two selected benchmark financial time series.
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The two benchmark datasets are used in comparisons with many related work

discussed in Section 5.6.

• All conclusions made by this study is subject to experiments conducted using

daily closing prices of S&P and DJIA indices datasets downloaded from Yahoo

finance.

• All experiments of this work are implemented in Python using Keras open-source

package for deep learning with TensorFlow backend 1. The stationary wavelet

analysis are performed using PyWavelets open-source library 2. The empirical

adaptive wavelet analysis is accomplished using empirical wavelet transforms

Matlab toolbox [91]. We use Ta-Lib library3 to define TIs over both benchmark

datasets.

• Results of experiments in Section 5.6 conducted to compare our proposed

methodology with some related works are subject to experimental training and

testing data split and time periods described in the related work publications.

• Reproducing same results of experiments conducted by this study depends on

the random initializations for network weight layers established by Keras library

random initialization modules. Executing the experiments several times using

seed number seven will lead to similar results.

1https://github.com/keras-team/keras
2https://github.com/PyWavelets/pywt
3https://www.ta-lib.org/
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6.3 Future Work

• Forecasting the long-term is a challenging problem which needs more analysis

and investigation. The time distance separating the data employed to fore-

cast the future has a significant impact on the accuracy. The further the time

scale forecast period in the future, the weaker the forecasting model to cap-

ture movements in trend and abrupt changes of prices. Although our proposed

methodology has produced slightly better performance than that of the random

walk model, suggesting one methodology for both short and long-term forecast

may not be sufficient and more sophisticated approach could be dedicated to

long-term forecast only.

• Forecasting real time online intra-day prices is a more challenging problem which

requires special access to data. More sophisticated methodology could be pro-

posed to forecast new prices in real time.

• Due to the big time complexity required to study the impact of using large

number of TIs, our study is restricted to ten TIs. The impact of higher number

of TIs using multiple time periods can be addressed and investigated.
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APPENDIX A

EFFICIENT MARKET

HYPOTHESIS (EMH)

The question of whether financial stock markets can be predicted is an issue of discus-

sion and debate. Some research doubts the possibility of forecasting financial stock

markets which coincides with what EMH implies [132]. Other research works claim

that this is not a clear-cut and it cannot be generalized on all financial markets cases

[18, 127]. There are also some researchers who believe that forecasting stock market

is possible, limiting their claim to short term forecasting only [129, 130]. Generally,

three forms of EMH is discussed by [132], as follows:

• The weak form of the EMH states that all historical information is already

reflected in the stock prices, which implies that forecasting future prices by

analyzing past prices is impossible. It is also implied that the sequential depen-

dency or pattern between future and past stock prices does not exist, meaning

that information which determines price changes is not contained in the price
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time series. This form of EMH rejects any kind of forecasting models which

depends only on technical analysis methods based on past stock prices. Yet, it

leaves a space for the possibility of using forecasting methods designed based on

fundamental analysis methods.

• The semi-strong EMH implies the weak form and also states that prices always

change as a response to new public information. Thus, future information or

events are not predictable which makes forecasting stock returns impossible.

This implies that neither technical analysis nor fundamental analysis will be able

to consistently produce stock returns. This form of EMH rejects the possibility

of using technical or fundamental analysis methods to perform stock forecasting.

• The strong EMH incorporates both of the two previous forms and further claims

that hidden information contributes to the instant changes of prices, meaning

that no one is able to predict stock markets no matter what information is

available.

Obviously, the weak form of the EMH implies that the stock market price changes

follow the Random Walk (RW) model meaning that all new price changes represent

random departures from past prices. It also means that new price changes reflect

only news in the future and past prices are independent of price changes in the future.

However, Some studies [16–18] argue that there is no ultimate evidence for the validity

of the EMH. They suggest that whether the market is predictable or not is still an

open question.
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APPENDIX B

FINANCIAL TIME SERIES

A time series is a series of values obtained at successive equal time intervals which

can be graphed and represented as a sequence of discrete-time data. Stock market

prices, wind speed observations, rain rate reads, etc, are examples of time series.

Contrary to cross-sectional data, time-series data are data points ordered in time and

can be plotted via line charts. The analysis of time series mainly comprises statistical

techniques to characterize, describe, and model data patterns. Meaningful statistics

can be extracted from the time series by means of statistical methods to perform

analysis and capture other characteristics of the data. In the context of financial

data, the price that a particular security is traded at can be recorded as a time series,

where the last or the first recorded traded price at a given period of time is used

as data point in the financial time series. In general, the time series then can be

defined as a simple curve of historical prices for any particular security. Section B.1

of this Appendix introduces some concepts about stock market. Section B.3 describes

overview about stock market data. We discuss technical and fundamental analysis for

stock market forecasting in Section B.2.
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B.1 Financial Stock Market

The financial market is a general term referring to any marketplace wherein trading of

securities occurs enclosing equities, bonds, derivatives and currencies. Stock markets

are financial markets where investors buy and sell shares of publicly traded compa-

nies. It enables companies to access to capital from investors by giving them partial

ownership represented by number of shares. Companies collect the money raised by

providing shares of their stock to public investors. Once stock shares start trading

by selling and buying them by traders, companies do not receive any funds from the

trading process. Stockbrokers are the licensed authorized persons to sell and buy secu-

rities on behalf of investors. They act as a trading agents who provide investors with

information, advice, and act as intermediaries between investors and stock exchanges.

Stock market indices are indicators of the whole market or for a group of stocks in

the market. They give an idea about stock market relative value at any time.

Stock analysts are professionals who perform research and market analysis to help

investors make decisions, such as, buy, sell, or hold stock shares. They use some

analysis methods to forecast and predict the behaviour of the stock market in the

future. Stock analysis is a set of methodologies that can be used to make stock

trading decisions by studying and evaluating current or historical data related to

stock market. It uses many measurement tools to evaluate certain trading strategy

for the goal of achieving best returns in as short time as possible. There are two types

of stock market analysis methods, technical and fundamental analysis.
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B.2 Technical and Fundamental Analysis

Technical and fundamental analyses are basically used for forecasting stock prices in

the future. Technical analysis mainly includes performing different types of statistical

methods using past prices and volumes to predict future stock prices. Fundamental

analysis on the other hand uses publicly available information, such as, accounting

earnings, growth factors, and dividends to study intrinsic values of securities.

The theory behind technical analysis is that the constantly changing attributes of

investors force share prices to move in trends. Technical analysts use methods such

as price and volume charts to predict stock prices in the future. The main concern

about this method is that following trading rules extracted by the study of charts is

highly subjective, thus multiple trading rules can be extracted by different technical

analysts using same charts.

Fundamental data includes global economy and firms data, such as debt, earnings,

and other data that can be extracted from trading interactions, trading activities,

the financial growing of companies, and the global economy. Professional financial

analysts use this information to perform analysis on regular basis to companies and

international economies to measure and estimate the intrinsic value of stock shares

of companies and firms. This kind of analysis is intended to give an indication of

the �true value of stocks. Determining the best set of fundamental data to perform

fundamental analysis of stock shares of companies is still an open question, moreover

the accessibility to this kind of information may not be possible since most companies

consider this information classified.
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B.3 Stock Market Data

In the context of stock market time series, not only the last traded price (closing price)

of stock shares at time period is recorded, but also the first traded prices (open price)

is also recorded in addition to the highest and lowest traded prices over the same time

period. These time series are usually accompanied with the trading volume of stock

share are also recorded and represented as time series.

The data generated from stock market trade interactions as it is quoted on the

market are represented by seven main variables mainly used to reflect an estimation

of stock price level and fluctuation during specific period of time. The available

data classified using three main time frames, daily, weakly, and monthly. Based on

the assumption that weekly and monthly data are already represented in daily data

since it is a summarized form of daily prices, daily raw data and other types of data

derived from it, is the main input data used in this thesis to develop the forecasting

methodology. Many financial websites provide free access to this data in three time

frames represented by the following seven variables:

Date: The time or date when the data was recorded.

Opening: The price of the first trade of the stock at the beginning of the trading time

period specified by the date variable. Usually the opening price is different from

the closing price of the previous time period due to the fluctuation of supply

and demand forces, which determine the prices at which stocks are bought and

sold upon the beginning of the trading time period.
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Closing: Refers to the last price at which the stock is traded by at the end of the

trading time period. Most daily, weakly, monthly traders consider the closing

price in deciding trading decisions.

High: The highest price of the stock during the trading time period.

Low: The lowest price of the stock during the trading time period. The highest

and lowest prices are used as input data in multivariate financial time-series

forecasting. They are used as input to some TIs formulas.

Adjusted Close: Refers to the stock closing price adjusted for any stock offerings,

dividends, and stock splits.

Volume : Refers to the amount of stocks traded during the time period.
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APPENDIX C

TECHNICAL INDICATORS

Technical indicators are a technical analysis mathematical tools developed for inter-

preting and estimating market trend and behavior. Technical indicators can be used

to measure different types of factors, such as the number of shares traded, the ratio

of stocks rising to those declining, and the number of stocks making a new high or

low1. Figure C.1 illustrates the application of different types of technical indicators

including simple moving average, exponential moving average, weighted moving av-

erage, relative strength index, momentum, moving average convergence / divergence,

and Stochastic oscillators2.

1http://www.businessdictionary.com/definition/technical-indicator.html
2https://wikifinancepedia.com/e-learning/definition/trading-terms/
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Figure C.1: Illustration of some technical indicators applied on S&P CNX Nifty index

C.1 Simple Moving Average (SMA)

It uses a sliding window over specified period of time. Calculating the simple moving

average (MA) for n samples would average out the prices for the first n prices as the

first data element. The next data element would not include the earliest price, rather,

it adds the price at n + 1 and takes the average. The simple moving average of the

previous n values (Xt, Xt−1, . . . , Xt−(n−1)) can be computed as follows,

MAt =
Xt +Xt−1 + · · ·+Xt−(n−1)

n

=
1

n

n−1∑
i=0

Xt−i

(C.1)
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C.2 Exponential Moving Average (EMA)

The exponential moving average applies weighting factors which decrease exponen-

tially. For a series X, it can be calculated recursively as follows:

EMAt =


X1, t = 1

α ·Xt + (1− α) · EMAt−1, t > 1

(C.2)

Where the weighting is represented by a constant factor α between 0 and 1 and Xt is

the price at a time t.

C.3 Weighted Moving Average (WMA)

A weighted average has multiplying factors to give different weights to each element

of the elements for which the average is calculated. The weighted moving average is

computed by multiplying each value in a given time duration by a decreasing factor.

For duration of n-elements, the latest element has weight n, the second latest has

n−1, and etc, down to zero

WMAt =
nXt + (n− 1)Xt−1 + . . .+ 2Xt−n+2 +Xt−n+1

n+ (n− 1) + . . .+ 2 + 1
(C.3)
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C.4 Momentum (MOM)

Momentum is a simple technical indicator because it is used to show the difference

between prices for the first and the last of set of prices between t and t− n duration.

It usually uses closing prices as input.

MOMt = Xt −Xt−n (C.4)

C.5 Rate of Change (ROC)

Rate of change is calculated based on the difference between prices at the beginning

and ending of certain time duration, but it is scaled by the old price,

ROC =
Xt −Xt−n

Xt−n

(C.5)

C.6 Relative Strength Index (RSI)

The RSI is a momentum indicator which is used to measure the speed and magnitude

of directional price movements. The calculation of RSI depends on upward change (U)

or downward change (D) for each element at time t. U is calculated by the difference
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between prices at time t and time t− n.

D = 0

U = Xt −Xt−n (C.6)

Similarly D for at time t is calculated by the difference between price at time t − n

and time t.

U = 0 (C.7)

D = Xt−n −Xt (C.8)

For certain set of n elements, Relative Strength RS is the ratio of exponential moving

averages for U and D,

RS =
EMA(n)of U

EMA(n)of D
(C.9)

Relative Strength Index (RSI) is calculated between 0 and 100 using the following,

RSI = 100− 100× 1

1 +RS
(C.10)
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C.7 Moving Average Convergence / Divergence

(MACD)

It is used to reflect an idea about the difference between long and short exponential

moving average (EMA) of prices. The value of MACD is calculated by subtracting

the longer exponential moving average (m elements EMA) from the shorter exponen-

tial moving average (n elements EMA). The signal line is the exponential moving

average of k elements of MACD line. Traders use the MACD’s histogram to identify

when bullish or bearish momentum is high. When MACD < MACD Signal || MACD

Difference < 0, the price trend will be bearish and investors expect losses, otherwise

the price increases (bullish).

MACD = EMA(n)− EMA(m) (C.11)

MACD Signal = EMAk(MACD) (C.12)

MACD Difference =MACD − MACD Signal (C.13)

Typical values of n, m, and k are 12, 26, and 9, respectively3.

3https://www.investopedia.com/terms/m/macd.asp
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C.8 Stochastic Oscillator

It is one of the fast indicators used in analysis. The values of stochastic oscillator is

calculated as follows ,

%K = 100× (Xt − Ln)

(Hn − Ln)
(C.14)

Xt denotes the most recent closing price, Ln denotes the low of the n previous trading

period, and Hn denotes the highest price traded during the same n period. The

%K refers to the current market rate for the currency pair whereas %D calculated

3-period moving average of %K. Stochastic Oscillator predicts the future trend which

is for short time frame, that is why it is called as fast indicator.

C.9 Williams R% (WR)

Similar to Stochastic Oscillator, Williams R% is a fast and simple technical indicator.

Below is the formula of the calculation,

WR =
H(t to t− n)−Xt

H(t to t−n) − L(t to t−n)

× 100 (C.15)
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APPENDIX D

ADDITIONAL EXPERIMENTS

In this Appendix, we discuss some initial experiments conducted to perform basic

analysis and investigation to datasets. They are conducted to help us form basic un-

derstanding of the underlying methodology proposed by this study. Evaluation and

comparison between bidirectional and stacked LSTM with shallow neural networks

are discussed in Section D.1. In Section D.2, multivariate input structure is used to

perform the learning process using LSTM and GRU networks for short-term forecast.

Section D.3 summarizes experiments conducted to investigate and compare using sta-

tionary wavelet transform and empirical wavelet transform for financial time series

forecasting. Section D.4 evaluates using two of the most important TIs. The learning

approach employs data preprocessing and denoising using deep GRU autoencoder.

Both denoised data and TIs are fed into BGRU to accomplish forecasting.
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D.1 Evaluation of Bidirectional and Stacked LSTM

LSTM is one of the deep learning techniques proposed to process sequential data in-

cluding time series. It uses gated units to remember and process long sequences of

data. The structure of a unidirectional SLSTM depends on dealing and learning from

data inputs on which its hidden states have passed through. It only sees informa-

tion from the past. It has no mechanism to enable it to consider information in the

future while predicting the present. On the other hand, BLSTM has the ability to

process and learn from data in both directions; from future to past and from past to

future. BLSTM while going through data combines forward and backward contextual

information and use it to make forecasting or classification operations. To investigate

and compare the two architectures and use the advantages of these features in stock

market forecasting, we conduct experiments to build the forecasting models.

In this experiment, the historical data of the S&P for the period from 04/01/2010

to 30/11/2017 is downloaded from Yahoo finance to perform experiments. We split

the data into two parts: training and testing. The first 80% duration of the whole data

is allocated for training and the rest 20% duration is allocated for testing. We use a

sliding window of size 10 (working days of two weeks) to forecast one-day ahead (short

term) and 30-days ahead (long term). Initially, we conduct four sets of experiments by

applying both BLSTM and SLSTM networks for short- and long-term forecast. Four

network structures are designed for each applied technique by varying the number of

units to be 4, 8, 16 and 32 neurons (memory cells). The networks are trained using one

to ten epochs using training batches of size one for several runs and based on random
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initials for each epoch. We also design MLP-ANN and simple LSTM networks for

comparison and analysis.

The final results are dependent on averages of the performance of many differ-

ent executions of the learning operations for every structure. The averages of the

results per network structure and the total average of all networks structures for each

technique are shown in Tables D.1, D.2, D.3, and D.4. For short-term forecast, the

MAE and RMSE averages using normalized data of the BLSTM network are 0.023

and 0.0289, respectively. In contrast, the MAE and RMSE averages of the short-

term SLSTM networks are 0.031 and 0.0382, respectively. For long-term forecast,

the MAE and RMSE averages using normalized data of BLSTM networks are 0.0633

and 0.0746, respectively, and the MAE and RMSE averages of SLSTM network are

0.076 and 0.090, respectively. We can see that both LSTM networks show high per-

formance for forecasting short-term and long-term prices. BLSTM networks produce

higher performance and better convergence for short-term forecast and the difference

gets much higher for long-term forecast.

Table D.1: MAE, RMSE, and R2 of BLSTM network results for short-term forecast

Networks MAE RMSE R2

Testing Training Normalized
Testing

Normalized
Training

Normalized
Testing

Normalized
Training

Testing Training

4 Neurons Network 54.651 20.065 0.034062 0.012506 0.044202 0.015934 70.920 25.566 0.993
8 Neurons Network 34.768 19.352 0.021669 0.012061 0.027032 0.015135 43.372 24.284 0.994
16 Neurons Network 28.664 18.883 0.017865 0.011769 0.022718 0.015340 36.451 24.613 0.994
32 Neurons Network 29.677 18.496 0.018496 0.011527 0.021747 0.014549 34.893 23.344 0.994
Total average 36.940 19.199 0.023023 0.011966 0.028925 0.015240 46.409 24.452 0.994

For more analysis and investigation, we select the best produced models and com-

pare them based on normalized RMSE, MAE, and R2. The comparisons are designed

to investigate the performance of BLSTM and SLSTM network structures for short-
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Table D.2: MAE, RMSE, and R2 of SLSTM network results for short-term forecast

Networks MAE RMSE R2

Testing Training Normalized
Testing

Normalized
Training

Normalized
Testing

Normalized
Training

Testing Training

4 Neurons Network 65.463 23.162 0.040801 0.014436 0.052363 0.018228 84.014 29.247 0.991
8 Neurons Network 54.990 22.902 0.034273 0.014274 0.042244 0.017729 67.779 28.445 0.992
16 Neurons Network 44.120 19.278 0.027498 0.012015 0.033103 0.015353 53.113 24.633 0.994
32 Neurons Network 34.950 18.384 0.021783 0.011458 0.025862 0.014663 41.495 23.526 0.994
Total average 49.740 20.891 0.031001 0.013020 0.038264 0.016465 61.393 26.418 0.993

Table D.3: MAE, RMSE, and R2 of BLSTM network results for long-term forecast

Networks MAE RMSE R2

Testing Training Normalized
Testing

Normalized
Training

Normalized
Testing

Normalized
Training

Testing Training

4 Neurons Network 120.988 46.813 0.075407 0.029176 0.089146 0.036763 143.031 58.985 0.968
8 Neurons Network 110.066 48.459 0.068600 0.030203 0.079403 0.037441 127.399 60.072 0.966
16 Neurons Network 91.857 47.883 0.057251 0.029843 0.067557 0.037199 108.393 59.684 0.967
32 Neurons Network 83.687 48.576 0.052159 0.030276 0.062648 0.038041 100.517 61.035 0.965
Total average 101.650 47.933 0.063354 0.029875 0.074689 0.037361 119.835 59.944 0.966

Table D.4: MAE, RMSE, and R2 of SLSTM network results for long-term forecast

Networks MAE RMSE R2

Testing Training Normalized
Testing

Normalized
Training

Normalized
Testing

Normalized
Training

Testing Training

4 Neurons Network 135.944 47.340 0.084729 0.029505 0.101257 0.036984 162.463 59.340 0.967
8 Neurons Network 124.323 47.807 0.077486 0.029796 0.091482 0.036919 146.780 59.235 0.967
16 Neurons Network 119.455 51.293 0.074452 0.031969 0.087484 0.039332 140.365 63.107 0.963
32 Neurons Network 108.131 47.780 0.067394 0.029779 0.080033 0.037301 128.411 59.849 0.967
Total average 121.963 48.555 0.076015 0.030262 0.090064 0.037634 144.504 60.382 0.966
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Figure D.1: The short-term forecast versus target curve for BLSTM, SLSTM, LSTM,
and MLP Models

and long-term forecast. The selected models are compared with another two models

developed using simple LSTM and MLP-ANN. The short-term forecast comparison

is shown in Table D.5. The long-term forecast comparison is shown in Table D.6.

The short- and long-term forecast versus target curves for all compared models are

illustrated in Figures D.1 and D.2, respectively. The forecast curves plotted to clarify

the difference between the four compared models. The results of the experiment show

that:

• The BLSTM network attains higher performance and better convergence for

short- and long-term forecasts.

• The difference between the performance of the short-term and long-term fore-

casts is big and the error scale of the long-term forecast is much higher than the

short-term.
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Figure D.2: The long-term forecast versus target curve for BLSTM, SLSTM, LSTM,
and MLP Models

Table D.5: Comparison between best selected models for short-term forecast

Raw Data Normalized Data
MAE RMSE R2 MAE RMSE R2

MLP-ANN 51.37 62.18 0.995 0.03202 0.03875 0.995
LSTM 22.43 25.38 0.996 0.01398 0.01582 0.996
SLSTM 15.84 20.02 0.996 0.00987 0.01248 0.996
BLSTM 11.82 15.20 0.997 0.00736 0.00947 0.997

• Both SLSTM and BLSTM show better performance than both simple LSTM

and traditional MLP-ANN.

• The random walk model forecast results are shown in Table D.7. Despite the

good performance produced by BLSTM networks, it does not produce accuracy

better than random walk model which coincides with what the efficient market

hypothesis implies. Meaning that the best way to forecast tomorrow’s price is

by looking at today’s.
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Table D.6: Comparison between best selected models for long-term forecast

Network Raw Data Normalized Data
MAE RMSE R2 MAE RMSE R2

MLP-ANN 132.94 150.32 0.96 0.08285 0.09369 0.96
LSTM 114.29 134.31 0.96 0.07123 0.08371 0.96
SLSTM 90.95 106.50 0.95 0.05668 0.06637 0.95
BLSTM 84.11 97.16 0.96 0.05242 0.06055 0.96

Table D.7: Results of random walk model forecast for short and long-term

Dataset Time scale MAE RMSE R2

S&P
Short-Term 8.47310 12.36740 0.99399
Long-Term 50.67000 61.38590 0.83391

D.2 Forecast Using Multivariate Analysis

In this section, we use multivariate input structure to perform the learning process.

We conduct several experiments to address the application of variants of deep RNN

for forecasting financial time series. We compare and evaluate the use of SLSTM ,

SGRU , BLSTM, and BGRU architectures for short-term stock market forecasting.

We use multivariate input structure to perform the learning process. Moreover, we

compare the performance of deep RNN variants with shallow neural networks. The

conducted experiments and evaluation procedure is based on historical data of S&P

index for period from 01/01/2010 to 30/11/2017 downloaded from yahoo finance.

The experiments conducted using a window of size ten (working days of two weeks)

to forecast closing prices of one-day and thirty days ahead in the future. We apply

differencing to time series to transform it into stationary by stabilizing mean, avoiding

changes in time series levels, and reducing seasonality and trend. The used differencing

equation is : diff(xt) = xt − xt−1.
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After differencing the dataset, the multivariate time series values are normalized

between the range (0, 1) using min-max normalization. The data consists of five input

variables: Closing price, Opening price, Low price, High price, and Volume. We aim

at forecasting the closing price at the end of every trading day using a range of ten

preceding days for training. Each data sample formed by a sliding window of ten

consecutive days with overlapping. The five daily price variables mentioned earlier

are used as input to the training process to forecast the closing price in the future.

The data is split into two parts: training and testing. The training part consists of

the first 70% duration of the whole data and the testing part consists of the rest 30%

duration of the data.

Several models developed in this experiment to forecast prices in the future using

BLSTM, SLSTM, SGRU, BGRU, and MLP. Many networks are designed for each

technique by varying the number of memory cells to be 8, 16, or 32 neurons. Each

network is trained several times using from one to twenty epochs with different ran-

dom initials each run. The averages of the performance of all network structures

executions for each technique are collected to compare the final results of the experi-

ments. The MLP network are constructed using different architectures with one, two,

and three hidden layers and different number of neurons including (10|20|30) neurons

and different number of iterations including (100|1000|10000|100000).

Table D.8 shows results averages of normalized data for each corresponding archi-

tecture. Comparisons between best models of each architecture are shown in Table

D.9. The results show that all developed architectures produced close forecasting

performance with slightly small differences. However, we can notice that models
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Table D.8: Comparison between forecasting performance averages of several network
structures using normalized data

Arch Training Testing
MAE RMSE R2 MAE RMSE R2

BGRU 0.06959 0.09249 0.99 0.07879 0.11146 0.99
BLSTM 0.06822 0.09158 0.99 0.07702 0.10991 0.99
SGRU 0.06851 0.09192 0.99 0.07734 0.11007 0.99
SLSTM 0.06793 0.09177 0.99 0.07604 0.10884 0.99
MLP 0.07701 0.10360 0.99 0.08641 0.12211 0.99

Table D.9: Comparison between best forecasting performance models based on testing
results

Arch Neurons Epochs Raw Data Normalized Data
MAE RMSE R2 MAE RMSE R2

BGRU 8 7 11.286 16.381 0.99 0.07385 0.10719 0.99
BLSTM 8 4 11.212 16.337 0.99 0.07337 0.10690 0.99
SGRU 32 14 11.229 16.305 0.99 0.07348 0.10669 0.99
SLSTM 16 3 11.136 16.283 0.99 0.07287 0.10655 0.99
MLP 10 100 11.494 16.89 0.99 0.07556 0.10719 0.99

developed using SLSTM architecture attained higher performance and better conver-

gence. Based on the RMSE and MAE measures on testing data, the best performance

is produced by SLSTM network trained for 3 epochs using a structure of 16 neurons.

The forecasting curves of the developed models versus actual data curve are illustrated

in Figure D.3. The forecasting curves are plotted using the last 100 days of the test

data to illustrate the difference between developed models. The learning curves are

illustrated in Figure D.4.

According to results we may conclude the following:

• In Table D.9, we can see that the stacked architectures including SLSTM and

SGRU produce performance better than BLSTM and BGRU models developed

using bidirectional architecture. However, the compared averages of the results

in Table D.8 show that both BLSTM and SLSTM produce RMSE and MAE
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Figure D.3: The short-term forecasting curve for actual data and forecasts using
BLSTM, SLSTM, SGRU, BGRU, and MLP Models

values better than BGRU and SGRU.

• Generally, all developed architectures showed a performance better than that of

the MLP network.

• The difference between trained models is so small which may not help making

valid conclusions about the best architecture based on this result.

• Though they have close performance accuracy, the best results produced by

experiments in this section does not outperform those conducted in Section D.1.

• The RMSE of the developed architectures in this section is close to the RMSE of

the random walk model results shown in Table D.7, which urges us to perform

deeper analysis and conduct more experiments to improve forecast results.
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Figure D.4: Learning curve of BLSTM, SLSTM, SGRU, and BGRU Models for short-
term forecasting

D.3 Evaluation of Empirical and Stationary

Wavelet Transforms

The experiments summarized in this section apply, compare and evaluate two types

of multiresolution analysis methods; SWT and EWT. We investigate the application

of EWT for multiresolution analysis in financial time series forecasting based on deep

learning approach. The methodology followed to construct the network architecture

is illustrated in Figure D.5. The proposed architecture consists of three stages. The

first stage performs data analysis and decomposition into many sub-series. The sec-

ond stage trains multiple intermediate networks based on the number of resolution

levels generated from the previous stage. Forecasts of each sub-series is produced by

corresponding intermediate networks which are constructed using two layers of LSTM

and one dense layer. The first LSTM layer uses N memory units which varies between
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8, 16, and 32 based on experiments conducted to select the best network configura-

tion, whereas the second LSTM layer uses N/2 memory units. The forecast of each

resolution level is produced by a dense layer which uses a linear activation function.

The third stage of the proposed architecture receives forecasts produced by the second

stage as input features. Similarly, It is constructed using two stacked layers of LSTM

and one dense layer. We use the same experimental settings discussed in Section 5.1

The numbers of time steps used to form data are five and ten working days (working

days of one and two weeks).

Figure D.5: Methodology proposed to design the MRA-SLSTM architecture

In order to evaluate the proposed approach, we use Mackey-Glass (MG) [133]

chaotic time series introduced as a model of white blood cell production. The following

time-delay ordinary differential equation used to generate the time series,

dx(t)

dt
= −bx(t) + ax(t− τ1)

1 + x(t− τ1)10
(D.1)

Where τ is a delay parameter which must be greater than 16.8 for generating chaotic

time series. The parameters selected for generating the time series are a = 0.2, b
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= 0.1, τ = 17, and the initial value x0 = 1.2. The time series composed of the last

2000 of 2123 samples generated for the differential equation. The MG time series is

split into two parts; the first 75% duration of the data is allocated for training and

validation; the remaining 25% is allocated for the testing part. Figure D.6 shows plot

of data generated by the Mackey-Glass time series.

Figure D.6: Plot of data generated by the Mackey-Glass time series (a = 0.2, b = 0.1,
τ = 17, and x0 = 1.2)

The short-term forecasting results generated from the proposed EWT-SLSTM and

SWT-SLSTM architectures are as shown in Table D.10. The results are classified

based on different number of neurons for the intermediate and final networks layers

and based on different window sizes varying between five and ten time steps. It

is also classified based on normalized and original raw data and based on the type

of multiresolution analysis method using EWT and SWT. The R2 is calculated for

the whole dataset including training and testing parts. Figure D.7 illustrates the

difference between actual data and forecasts of the two best short-term forecasting
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Table D.10: Results of forecasting using EWT-SLSTM and SWT-SLSTM models for
Mackey-Glass time series normalized and original test data

Window Network Stationary wavelet tranform Empirical wavelet transform
1st stage 2nd stage MAE RMSE R2 MAE RMSE R2

Norm. Origin. Norm. Origin. Value Norm. Origin. %Improv Norm. Origin. %Improv Value %Improv

5

8
8 0.11434 0.10015 0.15808 0.13846 0.67061 0.00255 0.00223 97.77 0.00326 0.00286 97.94 0.99987 49.10

16 0.09990 0.08750 0.15038 0.13171 0.74139 0.00252 0.00221 97.48 0.00322 0.00282 97.86 0.99987 34.86
32 0.06293 0.05512 0.10755 0.09421 0.87956 0.00252 0.00221 96.00 0.00322 0.00282 97.01 0.99987 13.68

16
8 0.11190 0.09801 0.15973 0.13990 0.69960 0.00256 0.00224 97.71 0.00331 0.00290 97.93 0.99986 42.92

16 0.08177 0.07162 0.12885 0.11286 0.81233 0.00255 0.00223 96.89 0.00327 0.00286 97.46 0.99987 23.09
32 0.07829 0.06857 0.12525 0.10971 0.82800 0.00252 0.00221 96.78 0.00322 0.00282 97.43 0.99987 20.76

32
8 0.14229 0.12463 0.19145 0.16769 0.50372 0.00255 0.00223 98.21 0.00327 0.00287 98.29 0.99987 98.50

16 0.08492 0.07438 0.13353 0.11695 0.79384 0.00253 0.00222 97.02 0.00324 0.00284 97.57 0.99987 25.95
32 0.06203 0.05433 0.12037 0.10543 0.89556 0.00253 0.00222 95.92 0.00323 0.00283 97.32 0.99987 11.65

10

8
8 0.11973 0.10487 0.16464 0.14421 0.63091 0.00287 0.00252 97.60 0.00378 0.00331 97.70 0.99984 58.48

16 0.07883 0.06905 0.12676 0.11103 0.82431 0.00284 0.00249 96.40 0.00366 0.00320 97.12 0.99985 21.30
32 0.07797 0.06830 0.12619 0.11053 0.82679 0.00285 0.00250 96.34 0.00364 0.00319 97.11 0.99985 20.93

16
8 0.11374 0.09963 0.16935 0.14833 0.68524 0.00258 0.00226 97.73 0.00340 0.00298 97.99 0.99986 45.91

16 0.08951 0.07840 0.13492 0.11817 0.78426 0.00257 0.00225 97.13 0.00333 0.00292 97.53 0.99986 27.49
32 0.06875 0.06022 0.11509 0.10081 0.86713 0.00253 0.00221 96.32 0.00323 0.00283 97.19 0.99987 15.31

32
8 0.12701 0.11125 0.17897 0.15675 0.61429 0.00263 0.00230 97.93 0.00345 0.00302 98.07 0.99986 62.77

16 0.08898 0.07793 0.13534 0.11854 0.79356 0.00256 0.00225 97.12 0.00330 0.00289 97.56 0.99987 26.00
32 0.06592 0.05774 0.11319 0.09914 0.86528 0.00259 0.00227 96.07 0.00333 0.00291 97.06 0.99987 15.55

models produced using EWT-SLSTM and SWT-SLSTM approaches.

The S&P data is also used to evaluate the proposed architecture. We use the his-

torical data for the period from 01/01/2010 to 20/02/2018 downloaded from Yahoo

finance. The conducted experiments on S&P dataset composed of two parts. The

first part of the experiments applies multiresolution analysis to data and performs

the training process to do short-term forecasting, and the second part performs the

training process to do long-term forecasting. The short-term forecasting aims at fore-

casting the close price one-day ahead in the future, whereas the long-term aims at

forecasting the close price 30-days ahead in the future.

The short-term forecasting results generated from the proposed architecture for

both EWT and SWT are shown in Table D.11. The results are classified based on

number of neurons and slide window size (time steps). They are also classified based

on type of multiresolution analysis method. The R2 is calculated for the whole dataset

including training and testing parts. The best performance is achieved using EWT-

SLSTM architecture. The best achieved RMSE, MAE, and R2 are 0.0019, 0.0014,
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Figure D.7: Mackey-Glass data curves of actual values versus forecasts using best
selected models of EWT-SLSTM and SWT-SLSTM architectures

and 0.99997, respectively. These results were produced using ten time steps input

features to LSTM network architecture designed of 16 neurons in the intermediate

network and 32 in the final network. For the SWT-SLSTM architecture, the best per-

formance for short-term forecasting was achieved using ten time steps input features to

a network architecture composed of 16 neurons in both intermediate and final LSTM

networks. As we can see in Table D.11 that the best SWT-SLSTM model produced

0.0489 for RMSE, 0.0382 for MAE, and 0.97504 for R2. Figure D.8 illustrates the

difference between actual data and forecasts of the two best short-term forecasting

models produced using EWT-SLSTM and SWT-SLSTM approaches.

For the long-term forecasting using S&P dataset, the conducted experiments aim at

forecasting the exact close price 30-days ahead in the future. We allocate the last 30%

of the whole data for the testing, while the remaining 70% is allocated for training and

validation. The results of both stationary and empirical wavelet transforms are shown

in Table D.12. The highest performance of the EWT analysis method is produced
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Table D.11: Results of short-term forecasting using EWT-SLSTM and SWT-SLSTM
for S&P normalized and original test data

Window

Network Stationary wavelet transform Empirical wavelet transform

1st stage 2nd stage
MAE RMSE R2 MAE RMSE R2

Norm. Origin. Norm. Origin. Value Norm. Origin. %Improv Norm. Origin. %Improv Value %Improv

5

8
8 0.1299 240.32 0.2079 384.70 0.97445 0.0035 6.45 97.32 0.0052 9.66 97.49 0.99955 2.58

16 0.0763 141.25 0.1134 209.78 0.97501 0.0033 6.08 95.70 0.0041 7.64 96.36 0.99947 2.51
32 0.1031 190.76 0.1618 299.41 0.97426 0.0033 6.14 96.78 0.0042 7.81 97.39 0.99957 2.60

16
8 0.1448 268.01 0.2352 435.10 0.97415 0.0146 27.03 89.92 0.0243 44.87 89.69 0.99973 2.63

16 0.1385 256.23 0.2180 403.40 0.97461 0.0124 22.87 91.08 0.0206 38.08 90.56 0.99968 2.57
32 0.0944 174.59 0.1549 286.67 0.97365 0.0118 21.75 87.54 0.0199 36.78 87.17 0.99985 2.69

32
8 0.1083 200.38 0.1737 321.35 0.96946 0.0114 21.07 89.48 0.0183 33.83 89.47 0.99984 3.13

16 0.0536 99.14 0.0816 150.98 0.97461 0.0066 12.26 87.63 0.0106 19.69 86.96 0.99992 2.60
32 0.1204 222.80 0.1858 343.78 0.92290 0.0045 8.31 96.27 0.0071 13.08 96.20 0.99993 8.35

10

8
8 0.0438 81.03 0.0581 107.56 0.97584 0.0020 3.72 95.40 0.0028 5.27 95.10 0.99981 2.46

16 0.0472 87.37 0.0627 115.95 0.97665 0.0018 3.37 96.14 0.0024 4.49 96.13 0.99969 2.36
32 0.0437 80.87 0.0570 105.51 0.97555 0.0033 6.15 92.40 0.0045 8.27 92.17 0.99983 2.49

16
8 0.0412 76.23 0.0542 100.21 0.97592 0.0016 3.03 96.02 0.0022 4.10 95.91 0.99995 2.46

16 0.0382 70.69 0.0489 90.51 0.97504 0.0014 2.51 96.45 0.0020 3.78 95.82 0.99996 2.56
32 0.0401 74.17 0.0504 93.25 0.97525 0.0014 2.65 96.42 0.0019 3.52 96.22 0.99997 2.54

32
8 0.0435 80.43 0.0564 104.28 0.96636 0.0108 19.92 75.23 0.0175 32.32 69.01 0.99987 3.47

16 0.0436 80.64 0.0559 103.50 0.97661 0.0049 9.06 88.77 0.0083 15.30 85.22 0.99997 2.39
32 0.0389 71.95 0.0501 92.78 0.97621 0.0043 7.97 88.93 0.0074 13.63 85.31 0.99997 2.43

Table D.12: Results of long-term forecasting using EWT-SLSTM and SWT-SLSTM
for S&P normalized and original test data

Window

Network Stationary wavelet transform Empirical wavelet transform

1st stage 2nd stage
MAE RMSE R2 MAE RMSE R2

Norm. Origin. Norm. Origin. Value Norm. Origin. %Improv Norm. Origin. %Improv Value %Improv

5

8
8 0.1764 326.42 0.3037 562.01 0.84507 0.0629 116.32 64.36 0.0897 165.96 70.47 0.91717 8.53

16 0.1746 323.02 0.3032 560.95 0.87988 0.0625 115.69 64.19 0.0889 164.48 70.68 0.91727 4.25
32 0.1744 322.70 0.3033 561.10 0.87804 0.0620 114.79 64.43 0.0881 162.94 70.96 0.91746 4.49

16
8 0.1676 310.08 0.2933 542.77 0.86644 0.0650 120.34 61.19 0.0937 173.29 68.07 0.91609 5.73

16 0.1687 312.05 0.2972 549.88 0.86703 0.0648 119.86 61.59 0.0930 172.13 68.70 0.91719 5.79
32 0.1707 315.84 0.2987 552.72 0.84565 0.0646 119.55 62.15 0.0928 171.74 68.93 0.91759 8.51

32
8 0.1717 317.61 0.3014 557.65 0.86890 0.0678 125.36 60.53 0.0987 182.62 67.25 0.91565 5.38

16 0.1718 317.84 0.3005 555.99 0.86229 0.0665 123.03 61.29 0.0966 178.74 67.85 0.91623 6.25
32 0.1724 319.02 0.3028 560.33 0.87795 0.0664 122.93 61.47 0.0964 178.32 68.18 0.91766 4.52

10

8
8 0.1711 316.50 0.2945 544.96 0.83302 0.0665 123.00 61.14 0.0959 177.35 67.46 0.91575 9.93

16 0.1705 315.39 0.2946 545.18 0.86787 0.0649 120.06 61.93 0.0931 172.22 68.41 0.91793 5.77
32 0.1689 312.60 0.2948 545.39 0.83482 0.0646 119.56 61.75 0.0925 171.10 68.63 0.91776 9.93

16
8 0.1414 261.66 0.2395 443.10 0.86339 0.0657 121.49 53.57 0.0950 175.86 60.31 0.91863 6.40

16 0.1420 262.68 0.2406 445.23 0.85832 0.0654 120.96 53.95 0.0945 174.91 60.72 0.91978 7.16
32 0.1432 265.03 0.2428 449.34 0.85117 0.0650 120.28 54.62 0.0941 174.02 61.27 0.92030 8.12

32
8 0.1714 317.12 0.3004 555.83 0.87440 0.0624 115.42 63.60 0.0894 165.38 70.25 0.92027 5.25

16 0.1698 314.15 0.2981 551.62 0.88114 0.0609 112.77 64.10 0.0868 160.55 70.89 0.92247 4.69
32 0.1701 314.77 0.2979 551.24 0.87725 0.0622 115.17 63.41 0.0886 163.84 70.28 0.92247 5.15
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Figure D.8: S&P data curves of actual prices versus short-term forecasts using best
selected models of EWT-SLSTM and SWT-SLSTM approaches

using ten time steps window size as input features to a network consisting of 32

neurons in the intermediate network and 16 neurons in the final network. The best

achieved performance showed RMSE at 0.0868, MAE at 0.0609, and R2 at 0.92247.

On the other hand, the best results of the SWT analysis method are attained using

ten time steps features to a network architecture composed of 16 neurons in both

intermediate and final LSTM networks. The produced results are 0.2395 for RMSE,

0.1414 for MAE, and 0.86339 for R2. Comparing the results of the two approaches,

we can notice the following:

• The results produced from the evaluation experiments conducted using Mackey-

Glass time series and S&P stock index show that using empirical wavelet analysis

attains superior performance compared to stationary wavelet analysis.
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• Using an adaptive method to perform data decomposition and analysis helps in

finding sparse representations of the data based on information included in the

dataset.

• Stationary wavelet transform uses basis functions designed independently of the

data representation which may result in insufficient multiresolution representa-

tion of the data. The wavelet coefficients include very large redundancy which

increase computational complexity.

• The optimal number of resolution levels of the SWT is not easy to determine.

On the other hand, EWT has the ability to design a basis wavelet function

constructed based on the information involved in the data. The number of

resolution levels depends on the Fourier spectrum of the data. The decomposi-

tion process is accomplished by segmenting the Fourier spectrum and applying

filtering to separate each different mode.

D.4 Deep Autoencoder and Technical Indicators

Performing data denoising and smoothing is a very important step in the preprocessing

stage for many data science problems. In this section, two TIs are used as input

features to the training network. Besides, a GRU autoencoder is adopted to extract

smoother and denoised features from time series data. Generally, it consists of two

GRU layers, the first one is the encoder and the other one is the decoder. The input

to the GRU autoencoder is represented by sequence of vectors.

The autoencoder is a feature learning neural network designed to extract better
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representation of data features. It is based on learning a function that is approxi-

mated to the identity function and aims at generating a set of new features x̂ that

approximately matches original features x using backpropagation training algorithm,

by setting the target value same as input.

h = f(x) (D.2)

x̂ = f ′(h) (D.3)

x̂ ≈ x (D.4)

The objective of the training algorithm is to minimize the difference between input

and target features. The learned features are subject to some constraints placed

on the network by limiting the number of hidden states to extract extra patterns

and constructs from original data. Original input can be reconstructed form noisy,

compressed, or corrupted data [134].

Deep autoencoders are normally constructed using deep architectures, such as

LSTM or GRU networks. Feature learning involves two phase operations; the first

phase (encoding), performs data transformation into a smaller or larger dimension

space, while the second phase (decoding), retransforms the data back to its approx-

imated original representation. The compressed representation of the data in the

intermediate layers defines the latent space representation. Deep autoencoders are

commonly employed for image and signal compression and denoising. Particularly,

for input features that exhibit random noisy patterns in its construct, deep autoen-

coders can be learned to extract noise-free meaningful data by subtracting the noise
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and controlling the latent space [135].

Sequential data can be compressed and denoised using recurrent autoencoder

model. The input data is encoded into a fixed-length vector using one or more layers

of encoder and then reconstructed into its approximated original sequential form by

one or more decoding layers. Decoder structure can be trained by controlling the

size of the latent space to produce new transformed features that possess new mean-

ingful properties contributing to fulfilling model development objectives. Relaxing

the placed conditions on the decoder reconstruction training process could result in

smoother and noise-free features which produce more efficient forecasting models.

After learning all the input sequences, an estimation of the target sequence is

then generated. Partial reconstruction of input features helps improve the forecasting

performance by subtracting noise and randomness from data. Relaxing autoencoder

hidden layers conditions produces new data features characterized by additional prop-

erties and better data representation. The autoencoder network structure used by this

work to extract denoised features is illustrated in Figure D.9. After data denoising

and smoothing, we use a BGRU network to perform the forecast learning process.

The number of time steps used to form data is ten, fourteen, and twenty-four

working days. Two technical indicator variables are added to the data to enhance

and support feature smoothing and denoising. The employed variables are the simple

and exponential moving averages discussed in appendix C. The technical indicator

variables are computed based on two input sizes; the first one consists of n time

steps, while the other input size consists of 2n time steps where n represents size

of slide window used to reshape the data into supervised learning. The process of
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Figure D.9: Methodology used to train the GRU autoencoder

Figure D.10: Defining simple moving and exponential moving averages
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Figure D.11: Input data composed of denoised features and moving averages

Figure D.12: Methodology used to train the model

defining the two TIs is illustrated in Figure D.10. The final input features used to

train the network is composed of the denoised features and two TIs. Figure D.11

illustrates the input features structure. The methodology followed to construct the

network architecture is illustrated in Figure D.12. Different structures of GRU layers

developed by changing the number of memory cells (neurons) that determines the

dimensionality of the output space.

To evaluate the methodology proposed in this section, we use the data of S&P

and DJIA stock market indices data to perform the forecasting. The closing price
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data was reshaped into a group of sequences, each consists of 10, 14, and 24 time

steps to forecast the closing price one day ahead and twenty-two working days ahead

(one month) in the future. All samples sequences are fed into the GRU autoencoder.

Figure D.14 shows original and denoised data curves to express how new features align

with data. Four input features is generated by computing the moving average and

exponential moving average as illustrated in Figure D.11. Figure D.13 shows curves

of the original data with the corresponding four generated technical features. The

combination of the denoised features and technical indicator variables represents the

input data to the deep BGRU.

Figure D.13: The curves of the original and denoised data for part of the data

The averages results of the short and long-term forecast are shown in Table D.13.

Results grouped by number of time lags (time steps). Best selected models based on

performance on test data, classified by number of time steps are shown in Table D.14.
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Figure D.14: Curves of part of the original data with corresponding generated tech-
nical features

Based on results, we may conclude the following:

• Comparing averages and minimum results in Tables D.13 and D.14, we notice

that using window size of ten days produces the highest performance.

• It is clear that using larger window size for defining TIs may not increase the

forecasting accuracy.

• The performance of the best models of both short and long-term time scales does

not surpass that of the random walk model shown in Table 5.6. Consequently,

the performance produced by BGRU model proposed in section 5.2 produces

slightly higher accuracy. Therefore, using more TIs may improve the forecast

accuracy.
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Table D.13: Performance averages for both short- and long-term forecast of S&P and
DJIA datasets

Dataset Time scale Time steps RMSE MAE MAPE

DJIA

1

10 365.036 265.879 1.1363
14 575.864 443.043 1.8823
24 3310.135 2801.638 11.9529

22

10 2731.921 2440.811 10.5153
14 3377.711 2974.319 12.7082
24 3588.998 3191.744 13.6700

S&P

1

10 19.453 12.816 0.5071
14 23.351 15.079 0.5950
24 23.211 16.518 0.6535

22

10 196.378 179.503 6.9852
14 182.298 164.968 6.4161
24 251.568 231.503 8.9839

Table D.14: Best performance based on the RMSE results using test data for both
short- and long-term forecast of S&P and DJIA datasets

Dataset Time scale Time steps Neurons BGRU
Epochs

Autoencoder
Epochs

RMSE MAE MAPE R2

DJIA

1

10 48 400 200 194.802 128.000 0.5616 0.9916
14 16 400 100 211.764 138.447 0.6065 0.9900
24 48 800 400 214.043 144.682 0.6367 0.9896

22

10 32 400 800 1154.292 1019.787 4.5224 0.6541
14 16 400 200 1682.222 1520.050 6.5785 0.2611
24 48 400 800 1384.410 1234.506 5.4925 0.4939

S&P

1

10 48 400 100 19.453 12.815 0.5071 0.9891
14 16 800 800 21.774 15.366 0.6101 0.9863
24 32 400 800 23.211 16.518 0.6534 0.9843

22

10 16 400 800 118.635 103.675 4.0555 0.5223
14 32 800 800 91.486 77.084 3.0240 0.7142
24 16 800 200 154.608 141.088 5.5009 0.1739
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APPENDIX E

THESIS PUBLICATIONS

• Published Work:

- K. A. Althelaya, E. S. M. El-Alfy, and S. Mohammed, “Evaluation of bidi-

rectional lstm for short-and long-term stock market prediction,” in Proceedings

of the IEEE 9th International Conference on Information and Communication

Systems (ICICS),2018, pp. 151–156.

- K. A. Althelaya, E. S. M. El-Alfy, and S. Mohammed, “Stock Market Forecast

Using Multivariate Analysis with Bidirectional and Stacked (LSTM, GRU),”

in Proceedings of the IEEE 21st Saudi Computer Society National Computer

Conference,2018.

• Under Review:

- K. A. Althelaya, E. S. M. El-Alfy, and S. Mohammed, “Evaluation of bidirec-

tional LSTM for short-and long-term stock market prediction,” in Concurrency

and Computation: Practice and Experience,2018.

- K. A. Althelaya, E. S. M. El-Alfy, and S. Mohammed, “Forecasting of Bahrain
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Stock Market with Deep Learning: A Case Study,” in Proceedings of the IEEE

8th International Conference on Modeling, Simulation and Applied Optimiza-

tion,2019.

• Under Preparation:

- K. A. Althelaya, E. S. M. El-Alfy, and S. Mohammed, “Combining Multires-

olution Analysis and Technical Indicators for Stock Market Forecasting Using

Deep Learning,” ,2019.
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