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THESIS ABSTRACT
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Accurate target parameter estimation and localization with fine resolution is im-

portant in radar systems. In this thesis, target parameter estimation methods

are proposed for multiple-input multiple-output (MIMO) radars. The two dif-

ferent categories of radars, monostatic and bistatic radars from signal processing

perspective are addressed. The proposed algorithms are developed to reduce the

computational complexity while keeping low mean-square error.

In the first part of the thesis, target parameter estimation methods in colo-

cated MIMO radar are discussed. Conventional algorithms used for parameter

estimation in colocated MIMO radars require the inversion of the covariance ma-

trix of the received spatial samples. In these algorithms, the number of received

snapshots should be at least equal to the size of the covariance matrix. For large

size MIMO antenna arrays, the inversion of the covariance matrix becomes com-

xv



putationally very expensive. Compressive sensing (CS) algorithms which do not

require the inversion of the complete covariance matrix can be used for parameter

estimation with fewer number of received snapshots. In this work, it is shown

that the spatial formulation is best suitable for large MIMO arrays when CS

algorithms are used. A temporal formulation is proposed which fits the CS algo-

rithms framework, especially for small size MIMO arrays. The simulation results

show the advantage of CS algorithm utilizing low number of snapshots and better

parameter estimation for both small and large number of antenna elements.

In the second part of the thesis, we propose a reduced dimension and low com-

plexity algorithm to estimate direction-of-arrival (DOA), direction-of-departure

(DOD) and the Doppler shift of a moving target for a MIMO radar. We derive

two cost functions based on two different objective functions. First, we solve

each cost function with a low complexity FFT-based solution in three dimen-

sions. We further carry out a derivation to reduce the three-dimensional search to

two-dimensional search and solve it with a 2D-FFT. Another reduced dimension

algorithm is derived using the generalized eigen value method which finds the

estimate of unknown parameters in one dimension with less memory constraints.

This way, we propose three algorithms based on the first cost function and an-

other three algorithms based on the second. We show simulation results for a

static target case and a moving target case. We compare the mean-square-error

(MSE) performance and computational complexity of our proposed algorithms

with existing algorithms as well. We show that our proposed algorithms have

xvi



better MSE performance than existing algorithms and achieves the Cramér-Rao

lower bound (CRLB) for all unknown target parameters. The proposed algorithms

exhibit lower computational complexity than the existing ones and also provide

an estimate for the Doppler shift.

Finally, in the last part of the thesis, we discuss the application of regularized

least-squares in DOA estimation. If the covariance matrix of received signal is

rank deficient, then we cannot find the inverse of the covariance matrix. Regular-

ized least-squares algorithms deal with ill-conditioned matrices and rank deficient

matrices. In this part of the thesis, we solve the DOA problem by using regu-

larized least-squares algorithms when the covariance matrix of received signal is

rank deficient. The simulation results show that it can recover the unknown target

locations when the covariance matrix of received signal is rank deficient.

xvii
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 ص الرسالةلخّ مُ 
 حسين علي   الاسم الكامل:
 اترجالمخمتعددة ت خلاالهدف في الرادارات متعددة المد معاملتقدير   عنوان الدراسة:

 كهربائيةهندسة     التخصص:
  2017ديسمبر   :تاريخ الدرجة العلمية

 
 في. اتالـرادار  أنظمـة في ةهمـالم بجـودة عاليـة مـن الاولويـات تحديـد مكانـهو  الهـدف عامـلالدقيق لم تقديريعتبر ال

-MIMO( المخرجــات متعــددة المــدخلات متعــددة راداراتلــل الهــدف معامــل تقــديرل أســاليب تم إقــتراح الأطروحــة، هــذه

radars .( ومـن ثم .زدواجيةوالإ الأحادية الراداراتهما  ،الإشارات معالجة منظور من الرادارات من نوعين تناولقد تم و 
 .منخفض خطأ مربع متوسط على الحفاظ مع الحسابي التعقيد لتقليل المقترحة الخوارزميات تطور 

. المتحـدة الموقـع MIMO رادارات في الهـدف معامـل تقـدير أساليب مناقشة يتم الأطروحة، من الأول الجزء في
 لعينــاتا تبــاين مصــفوفة عكــس الــرادارات في هــذة المعامــل لتقــدير المســتخدمة التقليديــة الخوارزميــات في الواقــع تتطلــب

مســاويا علــى الأقــل لحجــم مصــفوفة  المســتقبلةفي هــذه الخوارزميــات، يجــب أن يكــون عــدد اللقطــات  المســتقبلة. المكانيــة
في  .حسـابيا مكلفـا جـدا التبـاين مصـفوفة عكـس يصـبح الكبيرة الحجـم، MIMOوبالنسبة لمصفوفات هوائيات  .التباين

يمكــن اســتخدامها لتقــدير  -صــفوفة التبــاينكــل مالــتي لاتتطلــب عكــس  -المقابــل فــإن خوارزميــات الاستشــعار المقلــص 
 موائمـــةالعمـــل، تم توضـــيح ان الصـــيغة المكانيـــة هـــي أكثـــر  هـــذا في .المســـتقبلةعـــدد أقـــل مـــن اللقطـــات ب امـــل الهـــدفعم

إطــار وتم إقــتراح صــيغة زمانيــة تتــواءم مــع  .المقلــص الاستشــعارالكبــيرة عنــد اســتخدام خوارزميــات  MIMOلمصــفوفات 
وتظهــر نتــائج المحاكــاة ميــزة خوارزميــة  .الصــغيرة الحجــم MIMOالمقلــص، لا ســيما لمصــفوفات  خوارزميــات الاستشــعار

المقلص باستعمال عدد قليل مـن اللقطـات وتقـدير أفضـل للمعامـل لكـل مـن العـدد الصـغير والكبـير لعناصـر  الاستشعار
 .الهوائي

 ومقــدار والوصــول الــذهاب اتجــاهى لتقــدير والأبعــاد التعقيــد قليلــة خوارزميــة نقــترح الرســالة مــن الثــاني الجــزء في
 اسـتنتاج على مبنية الخوارزمية هذه. والاستقبال الارسال هوائيات متعدد لرادار متحرك هدف(Doppler shift)  إزاحة
 قليلـة)  FFT-based( طريقـة باستخدام التكلفة دالتى من كل  حل تم. مختلفتين هدف دالتى على نتعتمدا تكلفة دالتى

-2D( باســتخدام الأبعــاد ثنــائى لآخــر الأبعــاد ثلاثــى مــن البحــث مجــال تخفــيض تم ثم ومــن. الأبعــاد ثلاثــى حــلا التعقيــد

FFT (و )generalized eigen value .(تقيـيم وتم متحـرك وآخـر ثابـت لهـدف المقترحـة للخوارزميـة المحاكـاة اجـراء تم 
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 مـن المقترحـة الخوارزميـة كفـاءة  البحث نتائج أظهرت. الموجودة بالخوارزميات ومقارنته الخطأ معدل بحساب وكفائته أدائه
 .الأخرى بالخوارزميات مقارنة تعقيده قلة على علاوة وكفائته الخطأ معدل حيث

 تقـدير فى) (regularized least-squaresخوارزميـة  اسـتخدام ننـاقش الرسالة، من الأخير الجزء في وأخيرا،
 لا و مكتملــة غــير رتبتهــا كانــت  اذا المســتقبلة للإشــارة التبــاين مصــفوفة مــع التعامــل علــى لقدرتــه) DOA( الوصــول اتجــاه
 كـــون  حالـــة فى بدقـــة الهـــدف موقـــع تعيـــين يمكـــن الخوارزميـــة هـــذا باســـتخدام أنـــه  النتـــائج وتبـــين. معكوســـها إيجـــاد يمكـــن

 ).مكتملة غير رتبتها(  مرنة غير التباين مصفوفة



CHAPTER 1

INTRODUCTION

Radars have both civilian and military applications and are used for the purpose of

surveillance, collision avoidance of vehicles, earth resources monitoring and track-

ing of aircrafts and vehicles. The challenges in radar design is to reduce the data

size, the operational complexity, the power consumption and the weight of radar

equipment for ease of mobility. The key functions of a radar is to detect, localize,

identify and track a possible target. In localizing a target, a radar engineer will

be interested in finding its range, velocity (Doppler), direction of arrival (DOA)

and maybe direction of departure (DOD). Interference introduced in the received

signal of a radar include echos from the environment (also known as clutter),

noise at the receiver, electromagnetic interference and possibly electronic counter

measures or jamming signals.

Radars can be classified as active radars or passive radars based on the availability/non-

availability of control on the transmitter, also termed as cooperative/non-cooperative

transmitters in literature. In an active radar, the transmitted waveform is known a
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priori at the receiver whereas no prior knowledge of transmitted signal is available

in the passive radar receiver. Radars can also be classified based on the receiver

location as monostatic radar in which the trasmitter/receiver pair are colocated

and bistatic radar where we have wide separation between the transmitter and the

receiver. In this dissertation, our focus is mainly on the categories of monostatic

MIMO radar and bistatic MIMO radar parameter estimation for target localiza-

tion. The unknown parameters that need to be estimated are reflection coefficient,

direction of arrival, direction of departure and Doppler shift associated with the

target.

1.1 MIMO Radar

The theory of multiple-input multiple-output (MIMO) radars was motivated by

MIMO antennas in wireless communication. Similar to MIMO communication

systems, MIMO radars are equipped with antenna arrays at the transmitter and

the receiver. MIMO radars are shown to have improved degrees of freedom and

better resolution as compared to phased array ones [1]. MIMO radars also provide

better target localization and flexibility of transmit beampattern designs [2], [3].

The antenna elements in the transmitter/receiver array can be closely spaced [4]

allowing coherent processing of the received signals at the receiver array. MIMO

radar can also be designed with widely separated transmitter/receiver antennas

[5], also know as non-coherent MIMO radar.
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1.1.1 Monostatic MIMO Radar

Colocated (monostatic) MIMO radars have been extensively studied in literature

for surveillance applications [1], [2], [4], [6], [7] and references therein. The con-

ventional phased array radar consists of a phased array antenna or electronically

scanned antenna at the front end with each antenna element transmitting the

phase shifted version of the same waveform to steer the transmit beam. There-

fore, in phased array radar, the transmitted waveforms are fully correlated. In

contrast, MIMO radar can be seen as an extension of phased array radar, where

transmitted waveforms can be independent or partially correlated. Such wave-

forms yield extra degrees of freedom that can be exploited for better detection

performance and resolution [4]. The received signal is processed coherently when

the array elements are closely spaced at the receiver.

For monostatic MIMO radar, many parameter estimation algorithms have been

studied to estimate the direction of arrival (DOA) and reflection coefficient which

is proportional to the radar cross section, such as Capon [8], amplitude-and-phase

estimation (APES) [9], Capon and APES (CAPES) [10], approximate maximum

likelihood (AML) [11], Capon and approximate maximum likelihood (CAML) [6],

iterative adaptive approach (IAA) [12] and its efficient implementation in [13]

(further details can be found in [7], [14] and the references therein). Almost all

of these algorithms require the inverse of the received samples covariance matrix.

Therefore, for these algorithms to work, a reasonable number of snapshots are

required so that the covariance matrix of the received signal matrix is full rank.
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Furthermore, for large size antenna arrays, to invert the covariance matrix, large

number of snapshots will be required and it will be computationally expensive.

Moreover, MIMO radar beamforming has been addressed in [15], [16]. A low com-

plexity algorithm is recently proposed for DOA estimation for colocated MIMO

for moving target in [17], [18] where the Doppler and DOA are jointly estimated

for both on and off-grid targets but it cannot work with rank deficient covariance

matrices.

1.1.2 Bistatic MIMO Radar

Bistatic MIMO radar has the transmitter and receiver separated by large dis-

tances. Bistatic radar has some additional advantages over monostatic radar,

such as better performance for target detection and covert operation [5]. The

target localization in bistatic MIMO radar can be achieved by finding its DOA

and DOD. The DOA and DOD are the same in colocated MIMO radar whereas

in bistatic MIMO radar they are two different unknown parameters. Several algo-

rithms have been proposed in literature for the estimation of these two unknown

parameters in bistatic MIMO radars.

The DOA and DOD parameter estimation is a two-dimension search problem

for static targets. The conventional estimation method of signal parameters via

rotational invariance technique (ESPRIT) [19] for DOA and DOD estimation have

been presented in [20]. The ESPRIT algorithm exploits the invariance property

to convert the two-dimension search problem into two independent one-dimension
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search problems but it requires pair matching between the estimates of transmit

and receive angles. A low complexity ESPRIT algorithm which automatically per-

forms the pair matching is proposed in [21]. Another scheme based on ESPRIT

has been proposed in [22] for three transmitters only which is extended and gen-

eralized in [23] for any number of transmitters. The Cramér-Rao Bound (CRB)

found in [22] was not derived completely in closed form rather it was found by

finding and inverting the Fisher information matrix (FIM) and it was restricted

to three transmitters.

The two-dimension multiple signal classification (2D-MUSIC) algorithm has

better estimation performance for DOA and DOD estimation than ESPRIT meth-

ods but it is computationally expensive because it requires a two-dimensional

search. In [24], a reduced-complexity multiple signal classification (RD-MUSIC)

algorithm has been proposed which requires one-dimension search and its per-

formance is very close to 2D-MUSIC with lower complexity. A joint DOA and

DOD estimation by polynomial root finding technique was proposed in [25] which

is shown to have lower computational complexity than 2D-MUSIC. Another es-

timation algorithm based on properties of Kronecker product is discussed in [26]

whereas in [27] the DOA and DOD estimation problem for coherent targets was

investigated. In [28], the Capon beamformer is used to improve parameter esti-

mation but the presented method required two-dimensional computationally ex-

pensive search.

Another method for direction finding in bistatic MIMO radar was presented
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in [29] that was based on the solution of a constrained minimization problem to

find the directions which is a computationally expensive method. In [30], the non-

circular characteristics of transmitted signals were exploited for DOA and DOD

estimation in bistatic MIMO radar. Maximum likelihood estimation for DOA and

DOD was discussed in [31]. CRB was also derived for two parameters, i.e. DOA

and DOD, but assuming the target reflection coefficients as deterministic. In [32],

a joint diagonalization based method for DOA and DOD has been proposed.

CRB was also derived for DOA and DOD but assuming the target reflection

coefficients as deterministic. The signal model used in most of the existing works

was based on matched filtering with the transmitted signal and assumed that the

covariance matrix of the transmitted signal is identity. The performance of DOA

and DOD estimation using velocity sensors were investigated in [33], [34] and

reduced complexity algorithms based on MUSIC were derived. The estimation

problem for non-uniform array was investigated in [35]. The algorithm proposed

in [36] was also based on ESPRIT and MUSIC. The joint 4-dimensional angle and

Doppler shift estimation via tensor decomposition for MIMO array was proposed

in [37].

1.2 Compressive Sensing

Compressive sensing (CS) is a technique that is used to recover information from

sparse signals. The signal with incomplete information can be reconstructed by

CS techniques. CS techniques can be classified as on-grid CS where the locations
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of sparse entries are restricted to a finite grid and off-grid CS where the locations

of sparse entries lie on a continuous interval. These two categories are discussed

briefly as follows.

1.2.1 On-grid CS

CS [38], [39] is a technique that is used to recover information from signals that are

sparse in some domain, using fewer measurements than required by Nyquist the-

ory. According to the classical approach, a large number of samples are required

to reconstruct a signal completely from a received version (Nyquist citeria). For

higher data resolution, this constraint puts all the pressure on signal processing

part and storage. Compressive sensing provides a solution to compress data and

then reconstruct from under sampled signals.

Some efficient algorithms proposed, that fall in the category of greedy algo-

rithms, include orthogonal matching pursuit(OMP) [40], regularized orthogonal

matching pursuit (ROMP) [41], stagewise orthogonal matching pursuit (StOMP)

[42] and compressive sampling matching pursuit (CoSaMP) [43]. There is another

category of CS algorithms called Bayesian algorithms that assume the a priori

statistics are known. These algorithms include sparse Bayes [44], Bayesian com-

pressive sensing (BCS) [45] and the fast Bayesian matching pursuit (FBMP) [46].

Another reduced complexity algorithm based on the structure of sensing matrix

is proposed in [47]. In addition to these algorithms, support agnostic Bayesian

matching pursuit (SABMP) is proposed in [48] which assumes that the support
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distribution is unknown and finds the Bayesian estimate for the sparse signal by

utilizing noise statistics and sparsity rate.

1.2.2 Off-grid CS

The classical CS algorithms are discrete and require a grid. If there is any thing

that is off-grid, the CS algorithms fails to recover. Recently, the problem of com-

pressive off-grid has been solved in [49]–[51]. The work in [49], [51] is also called

super resolution and is shown to recover the signal from sub-sampled measure-

ments. Consider the following signal model

x =
∑
j

ajδtj (1.1)

where {tj} are locations on a continuous interval [0, 1] and δtj is a spike at tj with

amplitude aj ∈ C. The measurements are n = 2fc + 1 low-frequency coefficients

given by

y(k) =

∫ 1

0

e−i2πktx(dt) (1.2)

=
∑
j

aje
−i2πktj , k ∈ Z, |k| ≤ fc (1.3)

y = Fnx (1.4)
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The equivalent problem of spectral estimation can be obtained by swapping time

and frequency. Thus, for a signal x(t)

x(t) =
∑
j

aje
i2πωjt, aj ∈ C, ωj ∈ [0, 1] (1.5)

The problem is to recover the sparse x from y. The signal x can be recovered by

solving

min ‖x̃‖TV subject to Fnx̃ = y (1.6)

The total variation norm is defined as

‖x‖TV =

∫
|x(dt)| (1.7)

which is the continuous analog of the �1-norm. Equation (1.6) is the primal

solution for which the solution is not straightforward. Therefore, the problem is

solved by finding it’s dual. The semidefinite program to solve the dual program

is available along with [51].

Super resolution CS with prior information is presented in [52], [53]. To solve

for more than one measurement vector with common sparse location, the multiple

measurement vectors (MMV) version of the off-grid CS appeared in [54].
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1.3 Compressive Sensing in MIMO Radar

1.3.1 On-grid targets

Generally, target detection in radars requires a finite grid and is assumed that

the target lies on the grid. To lower the probability of miss, the grid should

be fine enough. Most of the literature existing on MIMO radar assumes that

the target lies on the grid. With this assumption, on-grid CS algorithms can

be used with application to MIMO radar. To estimate the reflection coefficient

and location angle of the target, the MIMO radar problem can be formulated

as a sparse estimation problem, which allows us to use existing CS algorithms.

It has been shown in [55]–[57] that the MIMO radar problem can be seen as an

�1-norm minimization problem. In DOA estimation, a discretized grid is selected

to search all possible DOA estimates. The grid is equal to the search points in the

angle domain of MIMO radar. The complexity of the CS method developed for

MIMO radar in [56] grows with the size of the grid for higher resolution. In [57],

the minimization problem is solved based on the covariance matrix estimation

approach which requires large number of snapshots. The work published in [58]

provides a CS based estimation but does not provide a fast parameter estimation

algorithm and assumes that the number of targets, sparsity rate and noise variance

are known.
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1.3.2 Off-grid targets

As previously mentioned, most of the CS based parameter estimation methods

discussed in literature assumes that the targets lie on the grid. Super resolution

theory developed in [49] was extended to MIMO array in [59] which solves the off-

grid estimation problem by convex optimization semi-definite programming (SDP)

but are computationally expensive. Some recent work in off-grid CS includes [60]–

[62]. The work proposed in [63] addresses the pulsed-Doppler radar parameter

estimation using CS which has a different signal model than MIMO radar. In [64],

off-grid DOA is estimated using sparse Bayesian inference where the number of

sources or targets is assumed to be known.

1.4 Thesis Statement

The problem statement of this thesis is to address the problem of target parame-

ter estimation, in particular MIMO radars. The main objective of the thesis is to

address the target parameter estimation problem from signal processing perspec-

tive. Apart from the existing algorithms, we develop low complexity algorithms

with near optimal performance.

1.5 Overview of Contributions

Several contributions have been achieved in this work, specifically

1. In Chapter 2, we present colocated MIMO radar setup. We use CS algo-
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rithms to find the DOA. We discuss the performance of CS algorithms in

temporal and spatial formulations. The proposed formulation works with

low number of snapshots and have fine resolution.

2. In Chapter 3, we propose reduced complexity algorithms for DOA and DOD

estimation for a moving target. In that Chapter, we develop algorithms

based on minimum-power distortionless response of the received signal and

derive the cost function to minimize the mean-square error (MSE). The

three-dimensional problem obtained by solving the cost function is simpli-

fied to two-dimensional and one-dimensional problems. The proposed algo-

rithms have low computational time because they are based on fast-Fourier

transform.

3. In Chapter 4, we propose reduced complexity algorithm for DOA and DOD

estimation for moving target with amplitude and phase estimation formu-

lation. We also derive Cramer-Rao lower bound (CRLB) for the discussed

signal model. The algorithms are compared against the existing algorithms

as well as CRLB. It is shown that the proposed algorithms have near op-

timal performance close to CRLB. Their computational complexity is also

shown to be lower than existing algorithms.

4. In Chapter 5, we address the rank deficiency problem of covariance ma-

trix of received signal in DOA estimation problem. We discuss the use of

regularized least-squares (RLS) algorithms for DOA problem with rank de-

ficient covariance matrix. It is shown that the proposed method using RLS
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algorithm can recover DOAs from multiple sources.
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CHAPTER 2

TARGET PARAMETER

ESTIMATION IN MIMO

RADARS USING

COMPRESSIVE SENSING

Conventional algorithms used for parameter estimation in colocated multiple-

input-multiple-output (MIMO) radars require the inversion of the covariance ma-

trix of the received spatial samples. In these algorithms, the number of received

snapshots should be at least equal to the size of the covariance matrix. For large

size MIMO antenna arrays, the inversion of the covariance matrix becomes com-

putationally very expensive. Compressive sensing (CS) algorithms which do not

require the inversion of the complete covariance matrix can be used for param-

eter estimation with fewer number of received snapshots. In this chapter, it is
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shown that the spatial formulation is best suitable for large MIMO arrays when

CS algorithms are used. A temporal formulation is proposed which fits the CS al-

gorithms framework, especially for small size MIMO arrays. A recently proposed

low-complexity CS algorithm named support agnostic Bayesian matching pursuit

(SABMP) is used to estimate target parameters for both spatial and temporal

formulations for the unknown number of targets. The simulation results show

the advantage of SABMP algorithm utilizing low number of snapshots and bet-

ter parameter estimation for both small and large number of antenna elements.

Moreover, it is shown by simulations that SABMP is more effective than other

existing algorithms at high signal-to-noise ratio (SNR).

2.1 Introduction

Colocated multiple-input-multiple-output (MIMO) radars have been extensively

studied in literature for surveillance applications. In phased array radars, each

antenna transmits the phase shifted version of the same waveform to steer the

transmit beam. Therefore, in phased array radars, the transmitted waveforms at

each antenna element are sufficiently correlated resulting in a single beamformed

waveform. In contrast, MIMO radar can be seen as an extension of phased array

radar, where transmitted waveforms can be independent or partially correlated.

Such waveforms yield extra degrees of freedom that can be exploited for bet-

ter detection performance and resolution and to achieve desired beam patterns

achieving uniform transmit energy in the desired direction.
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The target parameters to be estimated are the reflection coefficients (path

gains) and location of the target. To estimate the reflection coefficient and the

location angle of the target, existing CS algorithms can be utilized by formulating

the MIMO radar parameter estimation problem as a sparse estimation one. It

is shown in [55]–[57] that the MIMO radar problem can be seen as an �1-norm

minimization problem. In DOA estimation, a discretized grid is selected to search

all possible DOA estimates. The grid is equal to the search points in the angle

domain of MIMO radar. The complexity of the CS method developed in [56]

grows with the size of the discretized grid. In [57], the minimization problem

is solved based on the covariance matrix estimation approach which requires a

large number of snapshots. The work in [58] does not provide a fast parameter

estimation algorithm and assumes that the number of targets, sparsity rate, and

noise variance are known. The authors in [65] have used CVX (a package to solve

convex problems) to solve the minimization problem obtained by CS formula-

tion of MIMO radar. The solution of CS problems by CVX is computationally

expensive for large angle grids. In [64], off-grid DOA is estimated using sparse

Bayesian inference where the number of sources or targets is assumed to be known.

An off-grid CS algorithm called adaptive matching pursuit with constrained total

least squares is proposed in [66] with application to DOA estimation. Another

algorithm based on iterative recovery of off-grid target is proposed in [17], [18].

For recent developments that are useful in off-grid recovery, please see [67] and

references therein.
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In this chapter, our contribution is two-fold. First, we solve the spatial formu-

lation for parameter estimation by SABMP for on-grid targets assuming that the

number of targets and noise variance are unknown. Second, we solve an alterna-

tive temporal formulation to find estimates for the unknown parameters. We also

make comparisons of mean-square error (MSE) and complexity of our work with

the existing conventional algorithms. Specifically, the advantages of using a CS

based algorithm are as follows:

1. The spatial formulation can recover the unknown parameters when the num-

ber of snapshots is less than the number of receiving antennas.

2. The proposed approach for parameter estimation is capable of estimating

unknown parameters even away from the broadside of the beam pattern.

3. The recovery of the reflection coefficient in CS temporal formulation using

SABMP is better than Capon, APES and CoSaMP algorithms.

4. The complexity of SABMP algorithm is not much effected by the number

of receive antenna elements in the spatial formulation.

2.1.1 Organization of the Chapter

The rest of the chapter is organized as follows: In Section 2.2, the signal model

for MIMO radar DOA problem is formulated. In Section 2.3, the system model

is reformulated in a CS environment for on-grid parameter estimation along with

the spatial and temporal formulations for large and small arrays (Section 2.3.1
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& 2.3.2) respectively. In Section 2.4, we show the derivation for the Cramér Rao

lower bound (CRLB). The simulation results are discussed in Section 2.5 and the

chapter is concluded in Section 2.6.

2.1.2 Support Agnostic Bayesian Matching Pursuit

CS technique is used to recover information from signals that are sparse in some

domain, using fewer measurements than required by Nyquist theory. Let x ∈ CN

be a sparse signal which consists of K non-zero coefficients in an N -dimensional

space where K � N . If y ∈ CM be the observation vector with M � N , then

the CS problem can be formulated as

y = Φx+ z (2.1)

where Φ ∈ CM×N is referred to as sensing matrix and z ∈ CM is complex additive

white Gaussian noise, CN (0, σ2
zIM). The theoretical way to reconstruct x is to

solve an �0-norm minimization problem when it is known a priori that the signal

x is sparse and measurements are noise free, i.e.,

min ‖x‖0, subject to y = Φx. (2.2)

Solving the �0-norm minimization problem is NP-hard problem and requires ex-

haustive search to find the solution. Therefore, a more tractable solution [68] is
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to minimize the �1-norm with a relaxed constraint, i.e.

min ‖x‖1, subject to ‖y −Φx‖2 ≤ δ, (2.3)

where δ =
√

σ2
z(M +

√
2M). �1-norm minimization problem reduces to a linear

program known as basis pursuit.

SABMP algorithm [48] is a Bayesian algorithm which provides robust sparse

reconstruction. As discussed in [48], Bayesian estimation finds the estimate of x

by solving the conditional expectation

x̂ = E [x|y] =
∑
S

p(S|y)E [x|y,S] (2.4)

where S denotes the support set which contains the location of non-zero entries

and p(S|y) is the probability of S given y which is found by evaluating Bayes

rule. In SABMP algorithm, the support set S is found by greedy approach. Once

the support set S is known, the best linear unbiased estimator is found using y to

estimate x. SABMP algorithm, like other Bayesian algorithms, utilizes statistics

of noise and sparsity rate. SABMP algorithm assumes prior Gaussian statistics

of the additive noise and the sparsity rate. The estimates of noise variance and

sparsity rate need not to be known rather SABMP algorithm estimates them

in a robust manner. The statistics of locations of non-zero coefficients or signal

support are assumed either non-Gaussian or unknown. Hence, it is agnostic to the

support distribution. SABMP is a low complexity algorithm as it searches for the
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Figure 2.1: Colocated MIMO radar setup.

solution in a greedy manner. The matrix inversion involved in the calculations is

done in an order-recursive manner which leads to further reduction in complexity.

2.2 Signal Model

We focus on a colocated MIMO radar setup as illustrated in Fig. 2.1. In colo-

cated MIMO radar, the transmitting antenna elements in the transmitter and the

receiving antenna elements in the receiver are closely spaced. Both the trans-

mitter and receiver are closely spaced too in a monostatic configuration. In the

monostatic configuration, the transmitter and receiver see the same aspects of a

target. In other words, the distance between the target and transmitter/receiver is

large enough that the distance between transmitter and receiver becomes insignif-
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icant. Consider a MIMO radar system of nT transmit and nR receive antenna

elements. The antenna arrays at the transmitter and receiver are uniform and

linear, the inter-element-spacing between any two adjacent antennas is half of

the transmitted signal wavelength, and there are K possible targets located at

angles φk ∈ [φ1, φ2, . . . , φK ]. Let s(n) denote the vector of transmitted symbols

which are uncorrelated quadrature phase shift keying (QPSK) sequences. If z(n)

denotes the vector of circularly symmetric white Gaussian noise samples at nR

receive antennas at time index n, the vector of baseband samples at all nR receive

antennas can be written as [4]

y(n) =
K∑
k=1

βk(φk)aR(φk)a
T
T (φk)s(n) + z(n), (2.5)

where (.)T denotes the transpose, βk denotes the reflection coefficient of the k-

th target at location angle φk, while aT (φk) = [1, eiπ sin(φk), . . . , eiπ(nT−1) sin(φk)]T

and aR(φk) = [1, eiπ sin(φk), . . . , eiπ(nR−1) sin(φk)]T respectively denote the transmit

and receive steering vectors. We have assumed z(n) as uncorrelated noise. A

correlated noise model can be found in [69]. We are interested in estimating the

two parameters: DOA represented by φk and reflection coefficient βk which is

proportional to the radar cross section (RCS) of the target. It is assumed that

the targets are in the same range bins.

The reflection coefficient gives us a measure of how much the energy is reflected

back from the target. In the received signal model of (2.5), the reflection coefficient

denoted by βk for k-th target can be represented by a complex number. It is

21



observed that large size targets (such as ships) have high value of β whereas the

small size target have low value of βk. The value of βk is proportional to RCS

which characterizes the target. (In this Chapter, we assume βk = eiϕ where

ϕ ∼ U(0, 1) for simplicity of simulations. The amplitude of βk is assumed to be 1

but for more practical scenarios it can be anything.)

2.3 CS for Target Parameter Estimation

CS formulation for target parameter estimation can be done in two different ways.

First, via spatial formulation in which the samples at all antennas constitute a

measurement vector. In the second approach, termed as temporal formulation,

all snapshots in time at one antenna represent a measurement vector. These two

methods are discussed next.

2.3.1 Spatial Formulation

Suppose each antenna transmit L uncorrelated symbols, the matrix of all received

samples can be written as [6], [65]

Y =
K∑
k=1

βk(φk)aR(φk)a
T
T (φk)S+ Z, (2.6)

where

Y = [y(0),y(1), . . . ,y(L− 1)] ∈ CnR×L (2.7)
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and

S = [s(0), s(1), . . . , s(L− 1)] ∈ CnT×L (2.8)

is a matrix of all transmitted symbols from all antennas. For independent trans-

mitted waveforms the rows of S will be uncorrelated. It should be noted that (2.6)

holds if and only if the targets fall in the same range bins which is a special case.

The model in (2.6) can be generalized for delay by adding the delay parameter in

the transmitted waveform S. If the targets are in different range bin, there will be

another parameter of delay or time of arrival associated with each target making

the problem more complex. Since the targets are located at only finite discretized

locations in the angle range [−π/2, π/2], by dividing the region-of-interest into

N grid points {φ̂1, φ̂2, . . . , φ̂N} and assuming AR = [aR(φ̂1), aR(φ̂2), . . . , aR(φ̂N)],

AT = [aT (φ̂1), aT (φ̂2), . . . , aT (φ̂N)], and B = diag{β1, β2, . . . , βN}, we have

Y = ARBAT
TS+ Z (2.9)

It should be noted here that the diagonal elements of B will be non-zero if and

only if the target is present at the corresponding grid location. If N 
 K, the

columns of the matrix BAT
TS will be sparse. Therefore, (2.9) can be written as

[y(0),y(1), . . . ,y(L− 1)] = AR[x̃(0), x̃(1), . . . ,

x̃(L− 1)] + Z, (2.10)
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where x̃(l) = BAT
T s(l) for l = 0, 1, . . . , L − 1 is a sparse vector. For a single

snapshot, we can solve

y(l) = ARx̃(l) + z(l) (2.11)

by optimizing the cost function

min
x̃(l)

‖x̃(l)‖1 subject to ‖y −ARx̃(l)‖2 ≤ η (2.12)

and assuming AR as the sensing matrix using convex optimization tools. The

sensing matrix AR is a structured matrix similar to the Fourier matrix. For

guaranteed sparse recovery, there are conditions on the sensing matrix. One such

condition is called restricted isometry property (RIP) [70] which says a matrix Φ

satisfies RIP with constant δk if

(1− δk)‖x‖22 ≤ ‖Φx‖2 ≤ (1 + δk)‖x‖22 (2.13)

for every vector x with sparsity k. For guaranteed sparse recovery in unbounded

noise, δ2k should be less than
√
2−1. To find the exact value of δk is a combinatorial

problem which requires exhaustive search. For noiseless recovery of sparse vectors,

the coherence criteria is more tractable. The coherence of a sensing matrix with

column norms 1 is given by

μ(Φ) = max
i �=j

|〈φi, φj〉| (2.14)
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where {i, j} = 1, 2, . . . , N and φi is the i-the column of Φ. In general for any

matrix Φ, 0 < μ ≤ 1 but for guaranteed sparse recovery, μ should be as small as

possible and it must be less than one. The sensing matrix AR can be used for

sparse reconstruction because it satisfies the coherence criteria with μ(AR) < 1.

Convex optimization methods require randomness in the sensing matrix. The

structure in the sensing matrix deteriorates the performance of convex optimiza-

tion methods due to high μ(Φ). But the properties of the structured sensing

matrix can be exploited for reduced complexity sparse reconstruction. It is shown

in [47] that for a Toeplitz matrix exhibiting structure and μ(Φ)  0.9, Bayesian

reconstruction is more efficient than convex optimization methods. Furthermore,

the matrix AR has Vandermonde structure and its usage for sparse recovery with

a similar matrix to AR is also discussed in [58]. Ref [71] analyzed Fourier-based

structured matrices for CS.

Group sparsity algorithms were used to solve (2.10) for multiple snapshots

and showed that the complexity grows with the number of measurement vectors

as well as handling of the sensing matrix becomes difficult due to a Kronecker

product involved in the construction of the group sensing matrix [72]. Since

the column vectors x̃(l), for l = 0, 1, . . . , L − 1 in (2.12) are sparse, using AR

as the sensing matrix, CS algorithms can be used to estimate the location and

corresponding values of non-zero elements in x̃(l). Once they are known, the

reflection coefficients and location angles of the targets can be easily found.

The formulation developed in (2.9) can be considered as block-sparse and can
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be solved by SABMP for block sparse signals [73]. SABMP is a low complex-

ity algorithm and provides an approximate minimum mean-square error (MMSE)

estimate of the sparse vector with unknown support distribution. It should be

emphasized that SABMP does not require the estimates of sparsity rate and noise

variance rather it refines the initial estimates of these parameters in an iterative

fashion. Therefore, it is assumed that the noise variance and the number of tar-

gets are unknown. Moreover, SABMP is a low complexity algorithm because it

calculates the inverses by order-recursive updates. The undersampling ratio in

CS environment is defined as the length of sparse vector divided by the number

of measurements, i.e. N/M . As the undersampling ratio increases, the perfor-

mance of CS algorithms deteriorates (please see [48] and the references therein).

The results in [48] show that the best performance of SABMP algorithm can be

achieved when the undersampling ratio is 1 < N/M < 7. Since the number of

measurements is nR, it can be deduced for the number of receiving antennas that

N/7 < nR < N . For a given grid size and to maintain a low undersampling ratio,

the spatial formulation is best suitable for large arrays.

2.3.2 Temporal Formulation

For smaller antenna arrays, where nR � N , the formulation mentioned above can

have a very high undersampling ratio which will lead to poor sparse recovery. To

overcome this problem, by taking the transpose of (2.9) an alternate formulation
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can be written as

YT = STATBAT
R + ZT (2.15)

Since B is sparse, X̄ = BAT
R will consist of sparse column vectors, the new sensing

matrix will be

Ψ = STAT ∈ CL×N . (2.16)

Similar to the argument of target range bins on (2.6), the model in (2.15) holds

if and only if the targets fall in the same range bins. Moreover, if there is any

delay in waveform S, it will effect the RIP of Ψ. Although the sensing matrix Ψ

exhibits structure, the coherence of this sensing matrix is less than 1. Here, we are

assuming that the transmitted waveforms matrix S is known at the receiver and

AT can be reconstructed at the receiver in the absence of any calibration error.

Therefore, the second formulation for CS becomes

Ȳ = ΨX̄+ Z̄, (2.17)

where Ȳ = YT and Z̄ = ZT. As long as μ(Ψ) < 1, the solution obtained for X̄ is

the sparsest solution. More specifically, if any vector x̄ in X̄ satisfies the following

inequality

‖x̄‖0 < 1

2

(
1 + μ(Ψ)−1

)
(2.18)

then �1-minimization recovers x̄ [74], [75].

With this new formulation, the advantage that we get is that the undersam-
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pling ratio will become N/L. Using a similar argument for the undersampling

ratio as made in the spatial formulation, it can be shown that N/7 < L < N

because the number of measurements is now L. Since the undersampling ratio is

determined by the number of snapshots for a given grid size, this formulation is

more suitable for small arrays. This formulation also has the additional advantage

of increasing the number of grid points N for finer resolution by keeping a low

undersampling ratio N/L by increasing the number of snapshots L at the same

time.

2.4 Cramér Rao Lower Bound

In the following subsections, we discuss the CRLB for two cases, i.e. for known φk

and for unknown φk respectively. Although both φk and βk are unknown, yet we

need to differentiate between the two cases of CRLB based on the assumption that

either the target lies on-grid or off-grid. For CRLB, the error has to be consistent.

In order to keep the consistency of error for CRLB, we will use the CRLB for

known φk when the target is on-grid and we will use CRLB for unknown φk when

the target is off-grid.

2.4.1 CRLB for known φk

Let’s define:

η =

[
R(βk) I(βk)

]
. (2.19)
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The Fisher information matrix (FIM) for the unknown parameters is given by the

Slepian-Bang’s formula assuming that the noise samples are uncorrelated [76].

F(η) =
2

σ2
z

R
[
N−1∑
n=0

(
∂uH(n)

∂η

∂u(n)

∂ηT

)]
(2.20)

where

∂uH(n)

∂η
=

⎡
⎢⎢⎢⎣

∂uH(n)

∂R(βk)

∂uH(n)

∂I(βk)

⎤
⎥⎥⎥⎦

2×nR

, (2.21)

∂u(n)

∂ηT
=

[
∂u

∂R(βk)

∂u

∂I(βk)

]
nR×2

(2.22)

and

u(n) = βk(φk)aR(φk)a
T
T (φk)s(n) (2.23)

The two terms with partial derivatives in (2.22) are found to be:

∂u(n)

∂R(βk)
= aR(φk)a

T
T (φk)s(n) (2.24)

and

∂u(n)

∂I(βk)
= jaR(φk)a

T
T (φk)s(n) (2.25)
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The other two partial derivatives in (2.21) can be found by using the identity

∂xH = (∂x)H. Thus, (2.20) can be solved by using (2.24) and (2.25). The CRLB

is found by inverting F(η).

2.4.2 CRLB for unknown φk

Next, we derive CRLB for unknown φk. Let’s define:

α =

[
R(βk) I(βk) φk

]
(2.26)

The FIM for the unknown parameters is given by the Slepian-Bang’s formula

assuming that the noise samples are uncorrelated.

F(α) =
2

σ2
z

R
[
N−1∑
n=0

(
∂uH(n)

∂α

∂u(n)

∂αT

)]
(2.27)

where

∂uH(n)

∂α
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂uH(n)

∂R(βk)

∂uH(n)

∂I(βk)

∂uH(n)

∂φk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3×nR

(2.28)

and

∂u(n)

∂αT
=

[
∂u

∂R(βk)

∂u

∂I(βk)

∂u

∂φk

]
nR×3

(2.29)
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The partial derivatives with respect to R(βk) and I(βk) are given in (2.24) and

(2.25) respectively. The third partial derivative is found as follows by taking the

second order derivative. Therefore,

∂u(n)

∂φk

= βk (jπ cos(φk))
(
aT
T (φk)AT s(n)aR(φk)

+ aT
T (φk)s(n)ATaR(φk)

)
(2.30)

where

AT = diag{0, 1, . . . , nT − 1}

FIM can be found by above equation (2.30) along with (2.24) and (2.25) and the

inversion of F(α) leads to CRLB.

2.5 Simulation Results

We present here some simulation results to validate the methods discussed in

this work. We assume a single target (K = 1) located at φk. The parameters

to be estimated are the reflection coefficient βk and DOA of the target φk. To

assess the performance of the algorithms, the unknown parameters are generated

randomly according to φk ∼ U(−60◦, 60◦) and βk = eiϕk of amplitude unity where

ϕk ∼ U(0, 1). The grid is uniformly discretized between −90◦ to +90◦ with

N grid points. The number of grid points N is 512 in all the simulations. All
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Figure 2.2: MSE performance for βk estimation. Simulation parameters: L = 20,
nT = 16, nR = 16, N = 512, φk ∼ U(−60◦, 60◦) but on-grid, βk = ejϕk where
ϕk ∼ U(0, 1).

algorithms are iterated for 104 iterations. The noise is assumed to be uncorrelated

Gaussian with zero mean and variance σ2
z. The algorithms that are included for

comparisons are Capon, APES and CoSaMP algorithms. In the simulation results,

while referring to SABMP means the SABMP for block sparse signals. Also, for

CoSaMP algorithm, its block-CoSaMP version is used as in [77].

2.5.1 CS Spatial Formulation

In this sub-section, we discuss the simulation results for the spatial formulation.

Figs. 2.2 and 2.3 show the MSE performance for estimating βk and φk respectively.

The number of antenna elements nT and nR is 16 and the number of snapshots

L is 20. This is the case where L > nR. Both APES and Capon algorithms
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Figure 2.3: MSE performance for φk estimation. Simulation parameters: L = 20,
nT = 16, nR = 16, N = 512, φk ∼ U(−60◦, 60◦) but falling off-grid, βk = ejϕk

where ϕk ∼ U(0, 1).

require L > nR to evaluate the correlation of the received signal. The estimation

performance of βk utilizing Capon reaches an error floor because Capon estimates

are always biased [7]. APES algorithm shows the best estimation for βk for SNR

values greater than −8 dB. Both SABMP and CoSaMP algorithms do not perform

well due to the high under-sampling ratios. But SABMP has better performance

than CoSaMP algorithm for βk estimation. For φk estimation, the results in

Fig. 2.3 show that the Capon algorithm has the best performance at SNR levels

greater than 3 dB. In Capon algorithm, at high SNR, the covariance matrix of

received signals becomes close to singular causing poor estimation of φk. That is

why, the results are not plotted after 22 dB. Nevertheless, the results available

in Fig. 2.3 will serve the purpose of comparison. SABMP performs worse in
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this scenario because it requires more measurements for better sparse recovery.

All four algorithms reach an error floor because the grid is finite. In [78], this

phenomenon is referred to as off-grid effect.

In Figs. 2.4 and 2.5, we discuss the case when L < nR. To simulate this

case, we choose nT and nR equal to 128 and L is kept to 10 only to keep a high

under-sampling ratio for SABMP algorithm. In this case, both Capon and APES

will fail to recover the estimates due to rank deficiency of the received signal

covariance matrix. However, CoSaMP and SABMP algorithms will still be able

to work for both βk and φk estimation. For βk estimation, SABMP algorithm

has better estimation than CoSaMP algorithm up to SNR 22 dB. At high SNR,

both CoSaMP and SABMP algorithms almost have the same performance for

βk estimation. Both CoSaMP and SABMP are not able to achieve the CRLB

due to high under-sampling ratio. The results obtained in Fig. 2.5 show that

SABMP algorithm has slightly better performance than CoSaMP algorithm for

φk estimation.

We show the complexity comparison in Fig. 2.6. The plot is shown for pro-

cessing time against nR. For all cases of nR, the number of snapshots L is 10

for CS. For both Capon and APES algorithms, if we keep L = 10, it will not

recover the unknown parameters. However, the comparison remains fair if we

assume L at least equal to nR because the computational burden is on the inver-

sion of the covariance matrix. It can be seen that as nR increases, the processing

time for Capon and APES algorithm increases significantly. Since the size of the
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Figure 2.4: MSE performance for βk estimation. Simulation parameters: L = 10,
nT = 128, nR = 128, N = 512, φk ∼ U(−60◦, 60◦) but on-grid, βk = ejϕk where
ϕk ∼ U(0, 1). No recovery for Capon and APES methods.
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Figure 2.5: MSE performance for φk estimation. Simulation parameters: L = 10,
nT = 128, nR = 128, N = 512, φk ∼ U(−60◦, 60◦) but falling off-grid, βk = ejϕk

where ϕk ∼ U(0, 1). No recovery for Capon and APES methods.
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Figure 2.6: Complexity comparison. Simulation parameters: nT = nR, SNR = 20
dB, φk ∼ U(−60◦, 60◦) but on-grid, βk = ejϕk where ϕk ∼ U(0, 1).

covariance matrix is equal to nR × nR, the size of covariance matrix increases

with nR. Both Capon and APES need to invert the covariance matrix obtained

from the received samples which increase the processing time with increased nR.

For SABMP, the increase in computation is mainly dependent on L in spatial

formulation and is less dependent on nR. That’s why SABMP complexity does

not change drastically with nR. From Fig. 2.6, we can note that for nR greater

than or equal to 32, the complexity of SABMP algorithm is lower than APES

but higher than Capon algorithm. CoSaMP algorithm has lower complexity than

SABMP algorithm but is increasing significantly with nR because its complexity

is dependent on both the number of measurements nR and the number of blocks

L. Since it has lower complexity, a trade-off between performance and complexity

exists between SABMP and CoSaMP with spatial formulation.
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Figure 2.7: Resolution comparison. Simulation parameters: L = 256, nT = 10,
nR = 10, SNR = 0 dB (left), SNR = 25 dB (right). CS algorithm used is SABMP.

2.5.2 CS Temporal Formulation

In this subsection, the simulation results for the temporal formulation as an al-

ternative to the spatial one are presented. First, a comparison of resolution is

made. Fig. 2.7 shows a comparison of resolution of the three algorithms. The

plot shows φ◦ versus spectral estimates obtained by β. The true value of |βk| is 1

for the k-th source located at φk = 47.6◦. The two figures are shown for two SNR

levels, i.e. 0 dB (left) and 25 dB (right). APES has wider resolution than both

Capon and SABMP algorithms. Capon has finer resolution, but its amplitude is

biased downwards. SABMP algorithm gives the best resolution because on-grid

CS algorithms are based on recovery of non-zero entries. That is why SABMP

algorithm provides a single sample at the target location. A similar behavior can

be anticipated for CoSaMP algorithm because it is also an on-grid CS algorithm.

The MSE is shown in Fig. 2.8 and 2.9 respectively for βk and φk estimates.

The number of snapshots L = 256 and the array size is kept small, i.e. nT = 10

and nR = 10. We plot the MSE obtained by using Capon, APES and CoSaMP
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Figure 2.8: MSE performance for βk estimation. Simulation parameters: L = 256,
nT = 10, nR = 10, N = 512, φk ∼ U(−60◦, 60◦) but on-grid, βk = ejϕk where
ϕk ∼ U(0, 1).

along with SABMP for comparison versus SNR. CRLB is also plotted. In Fig 2.8,

we assume that the target lie on the grid to plot MSE of βk and to compare it

with CRLB for known φk. Otherwise, we need infinite grid points to compare the

performance of algorithms with CRLB. The simulation results show that SABMP

performs better than all algorithms, i.e. Capon, APES and CoSaMP in estimating

βk at high SNR levels. This better performance of SABMP is due to its Bayesian

approach and its robustness to noise. Moreover, the coherence of the sensing

matrix is also less than 1 which guarantees sparse recovery at low noise. In Fig

2.9, we simulate the algorithms by generating φk anywhere randomly and not

necessarily on the grid. Due to this reason, it can be seen that MSE of φk reached

the error floor which is due to the discretized grid and depends on the difference
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Figure 2.9: MSE performance for φk estimation. Simulation parameters: L = 256,
nT = 10, nR = 10, N = 512, φk ∼ U(−60◦, 60◦) but falling off-grid, βk = ejϕk

where ϕk ∼ U(0, 1).

between the two consecutive grid points. For φk estimation, SABMP performs

better than APES algorithm beyond 10 dB but worse than Capon algorithm.

CoSaMP algorithm has the worst performance because it cannot work well with

structured sensing matrices.

The above mentioned simulation results are obtained for L > nR. Now, we

discuss the case when L < nR and the number of snapshots is low. In the simu-

lation results shown in Fig. 2.10 and 2.11, the number of snapshots L is 8 only.

In this case, there will be no recovery by both Capon and APES methods due to

rank deficiency of the covariance matrix. But both CS algorithms can work in

this scenario. SABMP performs better than CoSaMP algorithm for both βk and

φk estimation. SABMP cannot achieve the CRLB because of very low number of
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measurements in this case.
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Figure 2.10: MSE performance for βk estimation. Simulation parameters: L = 8,
nT = 10, nR = 10, N = 512, φk ∼ U(−60◦, 60◦) but on-grid, βk = ejϕk where
ϕk ∼ U(0, 1). No recovery for Capon and APES methods.

Next, we compare the performance of algorithms at two different target loca-

tions. We choose one location at 5◦ and a second location at 70◦. The simulation

results in Fig. 2.12 and 2.13 show the estimation performance for φk and βk

respectively. The performance of all algorithms is degraded for φk = 70◦ case

because it comes in the low power region. For βk estimation, the results show

that for the φk = 5◦, the APES and SABMP algorithms achieve the bound earlier

than φk = 70◦.

We compare the complexity of the discussed algorithms. Fig. 2.14 gives the

processing time plotted against the number of grid points N . The runtime is cal-

culated using a machine with Xeon E5-2680 2.8 GHz dual-processors with max-
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Figure 2.11: MSE performance for φk estimation. Simulation parameters: L = 8,
nT = 10, nR = 10, N = 512, φk ∼ U(−60◦, 60◦) but falling off-grid, βk = ejϕk

where ϕk ∼ U(0, 1). No recovery for Capon and APES methods.

imum available RAM of 64 GB. The results show that SABMP algorithm has

the higher complexity than Capon and APES algorithms but lower than CoSaMP

algorithm. CoSaMP algorithm has the highest complexity due to a Kronecker

product involved in the construction of its sensing matrix. The complexity of

SABMP is dependent on the number of multiple-measurement-vectors. In this

case the number of multiple-measurement-vectors is equal to number of receive

antennas. Therefore, there exists a tradeoff between performance and complexity

of Capon, APES, CoSaMP and SABMP algorithm.

Lastly, we show a comparison of receiver operating characteristic (ROC) curves.

At high SNR, the probability of detection for all algorithms is 1 almost for all prob-

abilities of false alarm. Therefore, MSE criteria is better to compare performance
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Figure 2.12: MSE performance for βk estimation. Simulation parameters: L =
256, nT = 10, nR = 10, N = 512, φk = 5◦ (solid lines) & φk = 70◦ (dashed lines)
but on-grid, βk = ejϕk where ϕk ∼ U(0, 1) and is same for all iterations.

of different algorithms at high SNRs. However, we can choose small SNR value

of -12 dB to plot ROCs for all four algorithms. Figure. 2.15 shows the ROC

comparison of the four algorithms discussed. The probability of detection is close

to one for both Capon and APES algorithms for a wide range of probabilities of

false alarm. SABMP algorithm has a little worse performance than both Capon

and APES algorithms because we have chosen a low SNR value of -12 dB but

SABMP performance gains are at usually at high SNRs CoSaMP algorithm has

slightly better performance than SABMP algorithm for low values of probability

of false alarm but its performance deteriorates afterwards.
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Figure 2.13: MSE performance for φk estimation. Simulation parameters: L =
256, nT = 10, nR = 10, N = 512, φk = 5◦ (solid lines) & φk = 70◦ (dashed lines)
but falling off-grid, βk = ejϕk where ϕk ∼ U(0, 1) and is same for all iterations.
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Figure 2.14: Complexity comparison. Simulation parameters: L = 256, nT = 10,
nR = 10, SNR = 20 dB, φk ∼ U(−60◦, 60◦) but on-grid, βk = ejϕk where ϕk ∼
U(0, 1).
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SNR = −12 dB, φk ∼ U(−60◦, 60◦) but on-grid, βk = ejϕk where ϕk ∼ U(0, 1).
(Markers are added in this plot only for the purpose of identification of different
curves.)

2.6 Conclusion

In this chapter, the MIMO radar parameter estimation problem was solved by two

methods: the spatial method for large arrays and temporal method for small arrays

by a fast and robust CS algorithm. It is shown that SABMP provides the best

estimates for parameter estimation at high SNR even when the number of targets

and noise variance are unknown. It is shown that SABMP has better resolution

than both the Capon and APES algorithms. Furthermore, it is shown that the

best estimation for reflection coefficient is obtained by SABMP algorithm. The

complexity of SABMP algorithm is shown to be lower than CoSaMP but higher

than Capon and APES algorithms.

44



CHAPTER 3

MPDR-BASED REDUCED

COMPLEXITY DOA AND DOD

ESTIMATION FOR MOVING

TARGET IN BISTATIC MIMO

RADAR

In this chapter, a reduced dimension and low complexity algorithm is proposed

to estimate the DOA, direction-of-departure (DOD) and the Doppler shift of a

moving target for a MIMO radar. We derive the cost function based on minimum

power distortionless response (MPDR). First, we solve the cost function with a

low complexity FFT-based solution in three dimensions. We further carry out a

derivation to reduce the three-dimensional search to two-dimensional search and
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solve it with a 2D-FFT. Another reduced dimension algorithm is derived using the

generalized eigen value method which finds the estimate of unknown parameters

in one dimension with less memory constraints. This way, we propose three al-

gorithms based on the simplification of the derived cost function. The simulation

results are presented for a static target case and a moving target case. Also, the

scenarios of on-grid targets and off-grid targets are considered. We compare the

MSE performance and computational complexity of our proposed algorithms with

existing algorithms as well. The proposed algorithms exhibit lower computational

complexity than the existing ones and also provide an estimate for the Doppler

shift which was not accomplished in most of previous works.

3.1 Introduction

MIMO radars have been extensively investigated in literature for surveillance ap-

plications. A MIMO radar can be seen as an extension of a phased array radar,

where the transmitted waveforms can be independent or partially correlated. Such

waveforms yield extra degrees of freedom that can be exploited for better detection

performance and resolution [4], [5], [79]. MIMO radars with colocated antennas

can be classified into two categories; monostatic and bistatic radars. A bistatic

radar has some additional advantages over the monostatic one, such as better

performance for target detection and covert operation [5]. The target localization

in bistatic MIMO radar can be achieved by finding its DOA and DOD. The DOA

and DOD are the same in colocated MIMO radars whereas in bistatic MIMO
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radars they are two different unknown parameters. Several algorithms have been

proposed in literature for the estimation of these two unknown parameters in

bistatic MIMO radars.

For a static target, the estimation of DOA and DOD is a two-dimensional

search problem. To estimate DOA and DOD for a static target, a technique

called estimation method of signal parameters via rotational invariance technique

(ESPRIT) was presented in [20]. The ESPRIT algorithm exploits the invariance

property to convert the two-dimensional search problem into two independent

one-dimensional search problems but it requires pair matching between the esti-

mates of transmit and receive angles. A low complexity ESPRIT algorithm which

automatically performs the pair matching was proposed in [21]. Another scheme

based on ESPRIT has been proposed in [22] for three transmitters only which is

extended and generalized in [23] for any number of transmitters. The drawback

of ESPRIT based algorithms is the poor estimation performance.

The two-dimensional multiple signal classification (2D-MUSIC) algorithm has

better estimation performance for DOA and DOD estimation than ESPRIT but

it is computationally expensive [80]. In [24], a reduced-complexity MUSIC (RD-

MUSIC) algorithm was proposed which requires one-dimensional search and its

performance is very close to 2D-MUSIC with less complexity. A joint DOA and

DOD estimation via polynomial root finding technique was proposed in [25] which

was shown to have less computational complexity than 2D-MUSIC. Another es-

timation algorithm that is simplified based on the properties of the Kronecker

47



product was discussed in [26] whereas in [27] the DOA and DOD estimation prob-

lem for coherent targets were investigated. In [28], a Capon beamformer is used to

improve parameter estimation but the presented method required two-dimensional

computationally expensive search.

The work in [81] outperforms 2D-Capon of [28] in both estimation performance

and complexity but is based on coarse grid and then iterative grid refinement which

is considered a trivial approach. This algorithm will be computationally expensive

for a finer grid.

Another method for direction finding in bistatic MIMO radar was presented

in [29] that is based on the solution of a constrained minimization problem to

find the directions which is again a computationally expensive method. In [30],

the non-circular characteristics of transmitted signals are exploited for DOA and

DOD estimation in bistatic MIMO radar but the estimation performance of the

proposed algorithm in [30] did not achieve the CRLB. Maximum likelihood esti-

mation for DOA and DOD was discussed in [31]. The algorithm developed in [31]

to solve the maximum likelihood estimation is an iterative search method which

is computationally expensive. The signal models presented in [27], [28], [30], [31],

[80], [81] did not consider a Doppler shift.

In [32], a joint diagonalization based method for DOA and DOD was proposed.

The signal model used in most of the existing work is based on matched filtering

with the transmitted signal and assume that the covariance matrix of transmitted

signal is identity. The performance of DOA and DOD estimation using velocity
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sensors are investigated in [33], [34] and reduced complexity algorithms based on

MUSIC were derived. The DOA and DOD estimation problems for non-uniform

array were investigated in [35]. The algorithm proposed in [36] is also based

on ESPRIT and MUSIC. The algorithm presented in [82] did not estimate the

Doppler shift, its angle estimation performance does not achieve the CRLB and

it has heavier computational load than ESPRIT [20]. Also, [69] and [83] did not

estimate the Doppler shift. In all of the aforementioned algorithms for DOA and

DOD estimation, the Doppler shift was not estimated.

The algorithm presented in [84] provides an estimate of the Doppler shift but

the algorithm is based on a computationally expensive exhaustive search. The

algorithm exhibited better estimation performance than [20]–[22] for three trans-

mit and four receive antennas but showed close performance for eight transmit

and six receive antennas when compared to [20], [21]. The algorithm developed

in [85] showed better estimation performance than some existing algorithms but

it estimates the Doppler shift by three-dimensional ESPRIT. The method is also

computationally expensive than two-dimensioanl (2D) ESPRIT for angles search.

The tensor decomposition based algorithm developed in [37] seems promising be-

cause it is also estimating the Doppler shift for uniform linear array as well as

uniform rectangular array but it suffers from high computational complexity.

In this chapter, the contribution is multifold. In contrast to previous works,

we consider a more realistic model where the target is moving. This adds the

Doppler shift in the signal model that must be estimated for the accurate local-
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ization of the target. Now, the estimation of DOA, DOD and Doppler shift is

a three-dimensional search problem where computational complexity can be very

high. To solve this problem, based on MPDR, new low complexity algorithms are

derived. The cost function obtained with the derivation is a three-dimensional

non-linear exhaustive search problem. To solve it, we derive a reduced complexity

fast-Fourier-transform (FFT)-based algorithm for the DOA, DOD and Doppler

shift parameter estimation in three-dimensions [86]. Furthermore, we carry out

the derivation of each cost function to transform the three-dimensional search

problems to two-dimensional search problems and then subsequently converting

to one-dimensional searches. The conversion of three-dimensional problems into

two-dimensional ones reduces the complexity significantly. Furthermore, with the

use of generalized eigenvalues, the problem is solved by one dimensional search

leading to low memory constraints.

3.1.1 Organization of the Chapter

The rest of the chapter is organized as follows: The bistatic MIMO radar signal

model for DOA, DOD and Doppler estimation is presented in section 3.2. Section

3.3 presents the proposed parameter estimation algorithms for DOA, DOD and

Doppler estimation and the derivations to reduce the dimensions. In section 3.4,

we develop the FFT-based algorithm to estimate the parameters. The complexity

analysis and its comparison with existing algorithms is shown in section 3.5. Sim-

ulation results are presented in section 3.6 and we conclude the chapter in section
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3.7.

3.2 Signal Model

Consider a bistatic MIMO radar setup with nT colocated antennas at the trans-

mitter and nR antennas at the receiver. The transmitter and receiver are sepa-

rated by a large distance as illustrated in Fig. 3.1. The antenna arrays at the

transmitter and receiver are uniform and linear, the inter-element-spacing be-

tween any two adjacent antenna elements at the transmitter/receiver is half of

the transmitted signal wavelength. Each antenna transmits a narrowband signal

using a common carrier frequency. There is a possible point target present at

(θk, φk), where θk and φk are respectively the DOD from the transmitter to the

target and DOA from the target to the receiver. (The notation (θ, φ) is not to

be confused with azimuth and elevation. In this chapter, θ refers to the DOD

or the angle of elevation from the transmitter and φ denotes the DOA or the

angle of elevation at the receiver. Since linear arrays are assumed in this chap-

ter, they are independent of azimuth.) Assume s(n) = [s0(n), s1(n), . . . , sL−1(n)]T

is the vector of transmitted symbols (known at the receiver) at time index n,

y(n) = [y0(n), y1(n), . . . , yL−1(n)]T is the vector of nR baseband received samples

for all antennas, and z(n) = [z0(n), z1(n), . . . , zL−1(n)]T is the vector of circularly

symmetric white Gaussian noise samples at nR receive antennas. The received
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Figure 3.1: Bistatic radar geometry.

signal vector can be written as [87]

y(n) = βke
i(2πnfdk )aR(φk)a

T
T (θk)s(n) + z(n), n = 0, 1, . . . , L− 1, (3.1)

where

aT (θk) = [1, eiπ sin(θk), . . . , eiπ(nT−1) sin(θk)]T (3.2)

aR(φk) = [1, eiπ sin(φk), . . . , eiπ(nR−1) sin(φk)]T, (3.3)

βk and fdk denotes the transmit steering vector, receive steering vector, reflection

coefficient of the target and the Doppler shift of the target, respectively. The

total number of snapshots is denoted by L. For different range bins, θk and φk

will be different. In the following section, we propose low complexity algorithms

to estimate these target parameters.
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3.3 MPDR-based Reduced Dimension Estima-

tion

The received signal vector in (3.1) can be multiplied by a weight vector w(φ) to

increase the signal-to-noise ratio, as follows

wH(φ)y(n) = βej(2πnfd)wH(φ)aR(φ)a
T
T (θ)s(n) + wH(φ)z(n) (3.4)

There can be more than one approach to calculate the weight vector w(φ). The

first approach based on minimum power distortionless response (MPDR) is dis-

cussed in this chapter. In the majority of the literature, MPDR is also referred to

as minimum variance distortionless response (MVDR) or Capon beamformer [8].

We use MPDR to emphasize that the estimated covariance matrix of the entire

received signal is utilized instead of the noise covariance matrix [88].

The MPDR based beamforming weight vector [8] can be found by solving the

following linearly-constrained optimization problem

wM(φ) = min
w(φ)

wH(φ)R̂yw(φ) subject to wH(φ)aR(φ) = 1 (3.5)

where

R̂y =
YYH

L
(3.6)

is the estimated covariance matrix of the received samples withY = [y(0),y(1), . . . ,y(L−

53



1)]. The solution of the constrained optimization problem in (3.5) yields

wM(φ) =
R̂−1

y aR(φ)

aH
R(φ)R̂

−1
y aR(φ)

(3.7)

The output of the filtered signal is found by putting (3.7) in (3.4)

wH
M(φ)y(n) = βej(2πnfd)aT

T (θ)s(n) +
aH
R(φ)R̂

−1
y z(n)

aH
R(φ)R̂

−1
y aR(φ)

. (3.8)

The spatial spectrum of the three unknown parameters φ, θ and fd can be found

by finding β. To find β, we need to minimize the following cost function

JM(β, φ, θ, fd) = min
β,φ,θ,fd

E |wH
M(φ)y(n)− βej(2πnfd)aT

T (θ)s(n)|2 (3.9)

We can write the equivalent matrix form of (3.9)

JM(β, φ, θ, fd) = min
β,φ,θ,fd

1

L

∥∥wH
M(φ)Y − βaT

T (θ)SF(fd)
∥∥2

2
(3.10)

where F(fd) = diag([ 1 ej2πfd . . . ej2π(L−1)fd ]) and S = [s(0), s(1), . . . , s(L −

1)]. The minimization of (3.10) with respect to β yields

βM(φ, θ, fd) =
wH

M(φ)YFH(fd)d(θ)

‖d(θ)‖2 (3.11)
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where we have defined

d(θ) � SHa∗T (θ) (3.12)

for simplicity of notation. Note that in (3.7), R̂−1
y is positive-definite so that it

can be factored as R̂−1
y = R̂

−H/2
y R̂

−1/2
y . For simplicity of notation, we define the

following vectors

b(φ) � R̂−1/2
y aR(φ) (3.13)

c(θ, fd) � R̂−1/2
y YFH(fd)d(θ) (3.14)

By putting (3.7) in (3.11), we get

βM(φ, θ, fd) =
bH(φ)c(θ, fd)

‖b(φ)‖2 ‖d(θ)‖2 (3.15)

Since β is a function of φ, θ and fd, to estimate these parameters substituting

(3.11) in (3.10), we get

JM(φ, θ, fd) = wH
M(φ)R̂ywM(φ)−

∣∣wH
M(φ)YFH(fd)d(θ)

∣∣2
L‖d(θ)‖2 (3.16)

By putting (3.7) in (3.16), we get

JM(φ, θ, fd) =
1

‖b(φ)‖2
[
1− |bH(φ)c(θ, fd)|2

L‖b(φ)‖2 ‖d(θ)‖2
]

(3.17)
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The minimization of the cost function JM(φ, θ, fd) in (3.17) gives us the estimates

φ̂k, θ̂k, f̂dk of the unknown parameters of k-th target. The global minimum of

JM(φ, θ, fd) in (3.17) is difficult to find because this function is multimodal, highly

non-linear and can have several local minima.

By treating the outside bracket as a constant (as shown in Appendix 3.8),

the cost function can be minimized by minimizing the function inside the bracket

given by

J ′M(φ, θ, fd) = 1− |bH(φ)c(θ, fd)|2
L‖b(φ)‖2 ‖d(θ)‖2 (3.18)

The minimization of J ′M(φ, θ, fd) is equivalent to maximizing

J ′′M(φ, θ, fd) =
|bH(φ)c(θ, fd)|2

L‖b(φ)‖2 ‖d(θ)‖2 (3.19)

The expression of J ′′M(φ, θ, fd) is similar to that of βM(φ, θ, fd) in (3.15). It will

give a three-dimensional spectrum from which φ̂k, θ̂k and f̂dk can be found by

searching the peak. These estimates can be used to minimize JM(φ, θ, fd). To

estimate φk, θk and fdk using (3.19), a three-dimensional computationally expen-

sive exhaustive search can be performed. We develop a faster three-dimensional

FFT-based equivalent of the exhaustive search to solve (3.19). The details of the

FFT-based evaluation are discussed in Section 3.4. We call this three-dimensional

algorithm as MPDR-3D.

Next, we show the derivation to reduce the three-dimensional problem into
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a combination of two-dimensional and one-dimensional problems. The function

J ′′M(φ, θ, fd) is a three-dimensional function and is computationally expensive. We

try to reduce the complexity by reducing its dimension. We can make the vectors

b(φ) and c(θ, fd) unit-norm and write (3.19) as

J ′′M(φ, θ, fd) =
|b̃H(φ)c̃(θ, fd)|2 ‖c(θ, fd)‖2

L‖d(θ)‖2 (3.20)

where

b̃(φ) =
b(φ)

‖b(φ)‖ (3.21)

and

c̃(θ, fd) =
c(θ, fd)

‖c(θ, fd)‖ (3.22)

We note that for uncorrelated waveforms ‖d(θ)‖2 = LnT and 1/‖b(φ)‖2 is given by

(3.42). Thus treating the denominator of J ′′M(φ, θ, fd) in (3.20) as a constant, the

cost function can be maximized by maximizing its numerator. Furthermore, the

numerator will be maximized when the two unit norm vectors b̃(φ) and c̃(θ, fd) are

equal. In fact, both vectors cannot be equal in the presence of the noise. However,

the fact that when φ = φk, θ = θk and fd = fdk , (3.20) will be maximized and

b̃(φ) will be approximately equal to c̃(θ, fd), can be exploited to convert the

three-dimensional problem into a two-dimensional problem. Thus, replacing b̃(φ)
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by c̃(θ, fd) in (3.20), we get the two-dimensional function given by

gM(θ, fd) =
‖c(θ, fd)‖2
L‖d(θ)‖2 (3.23)

The estimates θ̂k and f̂dk are found by searching the peak in two-dimensional

spectrum of gM(θ, fd). The function in (3.23) can be solved by two-dimensional

exhaustive search. To reduce the complexity, the numerator in (3.23) is converted

into a 2D-FFT expression as shown in Appendix 3.9. The estimates θ̂k and f̂dk

obtained by gM(θ, fd) can be used to solve J ′′M(φ, θ, fd). By using the estimates

θ̂k and f̂dk , J
′′
M(φ, θ̂k, f̂dk) will be a one-dimensional function in φ. We call this

two-dimensional (in θ and fd) and one-dimensional (in φ) algorithm as MPDR-2D

and its complete FFT-based evaluation is discussed in Section 3.4.

Next, we further reduce the two-dimensional problem of (3.23) into two one-

dimensional problems. The function gM(θ, fd) is still two-dimensional which can

be written as

gM(θ, fd) =
aT
T (θ)A(fd)A

H(fd)a
∗
T (θ)

aT
T (θ)SS

Ha∗T (θ)
(3.24)

where

A(fd) � SF(fd)Y
HR̂−H/2

y (3.25)
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which can be solved as a generalized eigenvalue problem. We can write

hM(fd) = λmax(fd) (3.26)

where λmax(fd) denote the generalized eigenvalue of A(fd)A
H(fd) and SSH. Thus,

(3.23) can be written as a one-dimensional approximate function

g′M(θ) =
‖c(θ, f̂d)‖2
L‖d(θ)‖2 (3.27)

Therefore, the reduced dimension functions in (3.26), (3.27) and J ′′M(φ, θ̂k, f̂dk) give

the initial estimates of the unknown parameters in three one-dimensional searches

which will be used to minimize the cost function in (3.17). We call this three

one-dimensional search algorithm as MPDR-1D.

Therefore, the initial estimates obtained by J ′′M(φ, θ, fd) can be used to solve

JM(φ, θ, fd). The global minimum of (3.17) will be located correctly.

3.4 Reduced Complexity FFT-based Solution

The evaluation of cost functions (3.19) derived in the previous section requires a

three-dimensional search. To reduce the complexity and to accelerate the three-

dimensional search, we can use FFT algorithm. In this section, FFT is exploited

to evaluate all terms in the cost functions (3.19).

The terms that need to be evaluated can be separated as three-dimensional,

two-dimensional and one-dimensional terms. In the following, we show the FFT-
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based evaluation of each of them and present the resulting algorithm in Table

3.1.

3.4.1 Evaluation of Three-Dimensional Terms by FFT

The three-dimensional term in (3.19) is bH(φ)c(θ, fd). This term has most of the

computational load. Expanding bH(φ)c(θ, fd), we can write

bH(φ)c(θ, fd) = aH
R(φ)R̂

−1
y YFH(fd)S

Ha∗T (θ) (3.28)

First, we define X = YFH(fd)S
H and show its solution by FFT as follows,

vec(X) = vec(YFH(fd)S
H) (3.29)

= [S∗ ⊗Y]vec(FH(fd)) (3.30)

= [Ksy](nTnR × L2)
vec(FH(fd)) (3.31)

where Ksy = S∗⊗Y. Since FH(fd) is a diagonal matrix, vec(FH(fd)) has at most

L non-zero values. Therefore, by choosing non-zero entries in vec(FH(fd)) and

corresponding columns in Ksy, we can write the equivalent of (3.31) as

vec(X) =
[
K′

sy

]
(nTnR × L)

a(fd) (3.32)
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where a(fd) = [ 1 e−j2πfd . . . e−j2π(L−1)fd ]T. The matrix K′
sy is found by the

operation of choosing the columns and is elaborated further as follows:

S∗ ⊗Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

s∗1(0) s∗1(1) · · · s∗1(L− 1)

...
. . . · · · · · ·

s∗nT
(0) s∗1(1) · · · s∗nT

(L− 1)

⎤
⎥⎥⎥⎥⎥⎥⎦
⊗Y

=

⎡
⎢⎢⎢⎢⎢⎢⎣

s∗1(0)Y s∗1(1)Y · · · s∗1(L− 1)Y

...
. . . · · · · · ·

s∗nT
(0)Y s∗1(1)Y · · · s∗nT

(L− 1)Y

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.33)

Choosing the columns in the above matrix gives us:

K′
sy =

⎡
⎢⎢⎢⎢⎢⎢⎣

s∗1(0)y(0) s∗1(1)y(1) · · · s∗1(L− 1)y(L− 1)

...
. . . · · · · · ·

s∗nT
(0)y(0) s∗1(1)y(1) · · · s∗nT

(L− 1)y(L− 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

= [s∗(0)⊗ y(0) · · · s∗(L− 1)⊗ y(L− 1)] (3.34)

Therefore, Ksyvec(F
H(fd)) is nothing but [S

∗
�Y]a(fd). This equation shows that

we have less entries to calculate by reducing the size of Ksy from (nTnR × L2) to

the size of K′
sy which is (nTnR × L). Now for m-th row vector kT

m in K′
sy,

kT
ma(fd) =

L−1∑
n=0

kne
−j2πnfd (3.35)
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This is equivalent to evaluating the FFT of kT, F [kT]. Thus (3.32) can be evalu-

ated for all fd ∈ [−1
2
,−1

2
] for a given resolution by taking row-by-row NFFT -point

FFT of K′
sy, i.e., Fr[K

′
sy]. After evaluating F [K′

sy], we get back [X](nR × nT ) by

reshaping [vec(X)]
(nTnR × 1)

.

The next step is to evaluate SHa∗T (θ) which is the solution for the second

dimension θ. It can be easily shown in a similar way to (3.35) that for any m-th

row vector sTm in S, we have

sTma
∗
T (θ) =

nT−1∑
p=0

sm(p)e
−jπp sin(θ)

=

nT−1∑
p=0

sm(p)e
−j2πpfθ ≡ F [sTm] (3.36)

where fθ =
sin(θ)

2
∈ [−1

2
, 1
2
].

The third step is to evaluate aH
R(φ)R̂

−1
y which is the third dimension φ. For

n-th column vector r(n) in R̂−1
y , we have

aH
R(φ)r(n) =

nR−1∑
m=0

rm(n)e
−jπm sin(φ)

=

nR−1∑
m=0

rm(n)e
−j2πmfφ ≡ F [r(n)] (3.37)

where fφ = sin(φ)
2
∈ [−1

2
, 1
2
]. The three-dimensional term aH

R(φ)R̂
−1
y Xa∗T (θ) can be

solved by using above-mentioned three steps.
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3.4.2 Evaluation of Two-Dimensional Terms by FFT

The two-dimensional term that appears in (3.23), as shown in Appendix 3.9, it can

be represented by 2D-FFT. In more compact matrix form, (3.45) can be written

as

‖c(θ, fd)‖2 ≡
nR−1∑
q=0

|F2[S
∗
� Xq]|2 (3.38)

3.4.3 Evaluation of One-Dimensional Terms by FFT

The one-dimensional terms are b(φ) and d(θ). These terms are one-dimensional

so there evaluation is straight forward by using (3.37) and (3.36).

3.4.4 Algorithms

The cost function derived in Section 3.3 can be solved efficiently by the above

mentioned procedure using FFT for grid of size NFFT -points. The minimum of

the solution of (3.17) gives us the estimates of the unknown parameters f̂θk , f̂φk

and f̂dk . We can find θ̂k and φ̂k by using the relations θ̂k = sin−1(2f̂θk) and

φ̂k = sin−1(2f̂φk
). Using the above mentioned FFT-based evaluations, we can

develop algorithms using the cost functions derived in Section 3.3. We write

the three MPDR-based algorithms in pseudocode form in Table 3.1. MPDR-

3D, MPDR-2D and MPDR-1D respectively are based on three-dimensional, two-

dimensional and one-dimensional FFT.
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The static target case is a special case of the above formulation when the

Doppler shift is zero and F(fdk) = I. The static target case for comparison with

2D-MUSIC and RD-MUSIC is solved in the coming sections.

3.5 Complexity Analysis

We discuss the complexity of our proposed algorithm in comparison with 2D-

MUSIC, RD-MUSIC algorithms [24] and the tensor decomposition based method

of [37]. Since, 2D-MUSIC and RD-MUSIC do not estimate the Doppler shift,

we make the complexity analysis for static target case only. The same analysis

can be extended to the moving target case. The 2D-MUSIC algorithm requires

O{Ln2
Tn

2
R+n3

Tn
3
R+m2[nTnR(nTnR−K)+nTnR−K]} form searches andK targets

(note that m represents number of grid points which is represented by NFFT for

our algorithm). The second algorithm used for comparison is RD-MUSIC which

requires O{L2n2
Tn

2
R +n3

Tn
3
R +m[n2

TnR(nTnR−K) +n2
T (nTnR−K) +n2

T ]} where

the complexity reduction is achieved by reducing m2 factor to m by converting

the 2D-search problem into two one-dimensional search problem. The tensor

decomposition based algorithm requires O{n(K3 + KnTnRL) + (n3
T + n3

R)K}

where n is the number of iterations required for the convergence of the algorithm

[37]. The algorithm converges at an n of 83 on average and is also dependent on

K. In contrast, our lowest complexity proposed algorithm (MPDR-2D) requires

O{NFFT [nR logNFFT + 3nT logNFFT + 2M + L + 1] + L(2NL + 2N + LM)}

for the static target case. The complexity of our proposed algorithm is lower
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Table 3.1: MPDR-based low complexity proposed algorithms

1: procedure MPDR-3D(Y)

2: Compute Rs =
SSH

L
, R̂y =

YYH

L
and R̂

−1/2
y

3: Compute K = S∗ � Y
4: Compute K = Fr[K]
5: K← reshape(K)
6: P← Fr[K]

7: Compute R̂−1/2
y = Fc[R̂

−1/2
y ]

8: Get R̂−1
y ← R̂−1

y

9: Compute SH = F [SH]

10: Compute X← diag(R̂−1/2
y × [R̂−H/2

y ])

11: Compute Y← diag([S−1/2s ]T × [S−1/2s ]∗)

12: {φ̂k, θ̂k, f̂dk} = argmax
|R̂−1

y ×P|◦2
L2 ×X ◦ Y

13: end procedure

1: procedure MPDR-2D(Y)

2: Compute Rs =
SSH

L
, R̂y =

YYH

L
and R̂−1

y

3: X = R−1
y Y

4: Solve (3.23)
5: {φ̂k, f̂dk} ← argmax (3.27)

6: {φ̂i
k} ← argmax (3.19) using {φ̂k, f̂dk}

7: end procedure

1: procedure MPDR-1D(Y)

2: Compute Rs =
SSH

L
, R̂y =

YYH

L
and R̂−1

y

3: f̂ i
dk
← argmax eig(A(fd), L

2R̂−1
y )

4: φ̂i
k ← argmax (3.27) using f̂ i

dk

5: {φ̂k, θ̂k, f̂dk} ← argmax (3.19) using {φ̂k, f̂dk}
6: end procedure
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than the three algorithms used for comparison in this complexity analysis. This

reduced complexity is achieved because our algorithm exploits the low complexity

of the FFT and is reduced dimension. The average runtime for the three above

mentioned algorithms is independent of SNR.

3.6 Simulation Results and Discussion

We run some simulations to validate the algorithms proposed in this chapter. We

assume multiple targets (K = 3) at φk = [10◦, 20◦, 30◦] and θk = [−10◦, 0◦, 10◦]

with normalized Doppler shift fdk = [−0.1, 0.1, 0.2]. The grid search is varied from

−90◦ to +90◦. For simplicity, we assume that the targets lie on some grid point

which means they are on-grid targets. The transmitted signals are uncorrelated

quadrature phase shift keying (QPSK) symbols. The noise is assumed to be

uncorrelated Gaussian with zero mean and variance σ2
z. The noise variance σ2

z

was varied to control the SNR. For the simulations, SNR is defined as SNR =

10 log(1/σ2
z) where the power at each antenna is normalized so that total transmit

power is unity. The number of antenna elements are nT = 8 and nR = 8, the

number of snapshots L are 64, the number of grid points are 512 in most of the

results and the MSE is averaged over 1000 iterations, otherwise the values are

mentioned accordingly.
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3.6.1 Static Target Comparison

We assume that a single target lies on the grid at (θk, φk). The two parame-

ters to be estimated (θk and φk) are generated randomly according to [θk, φk] ∼

U(−10◦, 10◦). In Fig. 3.2 and Fig. 3.3, the MSE error performance for the DOA

(φ̂k) estimation and DOD (θ̂k) estimation are plotted respectively, of the proposed

algorithm for static target case. We also compare the performance of our algo-

rithm with both 2D-MUSIC and RD-MUSIC algorithms. The number of antenna

elements are nT = 10 and nR = 10, the number of snapshots L are 256 and the

number of grid points are 512. The 2D-MUSIC and RD-MUSIC algorithms have

almost the same performance. The results show that our proposed algorithm out-

performs 2D-MUSIC and RD-MUSIC algorithms. The error floor that appears in

the MSE of θ̂k for 2D-MUSIC and RD-MUSIC requires some explanation. The

signal model used in 2D-MUSIC and RD-MUSIC assumes that the transmitted

signals are fully uncorrelated and orthogonal, i.e. E [s(n)sH(n)] = I where I is the

identity matrix. If the transmitted signals are not fully uncorrelated, then 2D-

MUSIC and RD-MUSIC algorithms fail to recover θk. Our approach utilizes s(n)

and does not require the assumption E [s(n)sH(n)] = I, therefore, it outperforms

both 2D-MUSIC and RD-MUSIC algorithms in estimating θk.

3.6.2 MSE Performance of φk Estimation

First we show how the MSE performance is effected by reducing the dimensions.

Figure 3.4 shows the MSE performance of DOA (φ̂k) obtained by all of the pro-
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Figure 3.2: MSE performance for DOA estimation (φ̂k) using J1(φk, θk). Simula-
tion parameters: L = 256, nT = 10, nR = 10.
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Figure 3.3: MSE performance for DOD estimation (θ̂k) using J1(φk, θk). Simula-
tion parameters: L = 256, nT = 10, nR = 10.

posed three algorithms. The results show that at an MSE of 10−2, the SNR loss

incurred in going from 3D to 2D is 1 dB whereas from 2D to 1D is 1.5 dB approx-

imately. The performance loss that occurred in reducing the dimensions is due

the assumptions that were made in the cost function simplification.
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Figure 3.4: MSE performance of DOA φk for moving target. Simulation parame-
ters: L = 64, nT = 8, nR = 8, K = 3.

3.6.3 MSE Performance of θk Estimation

The simulation results for θk estimation are shown in Fig. 3.5. The results show

that both MPDR-1D outperforms the algorithms presented in [89], [84] and [90].

The algorithms of [89], [84] and [90] are all subspace methods and are unable

to provide optimum results for multiple target parameter estimation. Only the

method of [90] shows slightly better performance than [89] and [84] at high SNR.

The two algorithms [89] and [84] reach an error floor while resolving multiple

targets.

3.6.4 MSE Performance of fdk Estimation

The MSE performance results for Doppler shift estimation are shown in Fig. 3.6.

The simulation results show that our proposed algorithms MPDR-1D outperforms

the algorithms of [89], [84] and [90]. Only the algorithm of [84] shows slight

improvement at high SNR.
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Figure 3.5: MSE performance of DOD θk for moving target. Simulation parame-
ters: L = 64, nT = 8, nR = 8, K = 3.
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Figure 3.6: MSE performance of Doppler fdk for moving target. Simulation pa-
rameters: L = 64, nT = 8, nR = 8, K = 3.

3.6.5 Complexity Comparison

The processing time for the proposed algorithms is shown in Table 3.2. Both

the average runtime and memory required is shown for the discussed algorithms.

It is evident from the results that the minimum processing time is achieved by

1D-FFT based algorithms for MPDR. Here, we will mention two more direction

finding algorithms 2D-MUSIC and RD-MUSIC [24]. Both these algorithms cannot
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Table 3.2: Complexity comparison.

Algorithm Average
Runtime
(sec)

Memory
requirements

(MB)

MPDR-3D 7.33 -

MPDR-2D 0.13 61.84

MPDR-1D 0.09 1.01

Ref. [89] 2.02 4.56

Ref. [84] 0.53 673.99

Ref. [90] 0.33 0.81

estimate the Doppler shift. However, the average runtime per iteration is found to

be 29.87 and 0.14 seconds for 2D-MUSIC and RD-MUSIC, respectively without

estimating the Doppler shift for nT = nR = 8. The runtime for both algorithms

is higher than our proposed 1D algorithms. In contrast, for the same number of

antennas, MPDR-2D took 0.11 seconds with the Doppler estimation. The runtime

is calculated using a machine with Xeon E5-2680 2.8 GHz dual-processors with

maximum available RAM of 64 GB. Furthermore, for a same set of parameters,

it is found by using the complexity analysis in section 3.5 that MPDR-2D is

approximately 7 times faster than the tensor decomposition based algorithm of

[37].

3.7 Concluding Remarks

In this chapter, a new FFT-based DOA, DOD and Doppler shift estimation algo-

rithms using adaptive beamformer weight vector at the receiver for bistatic MIMO

radar is proposed. We derive the reduced-dimension cost functions for MPDR es-
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timators for the moving target case. The MPDR-based algorithms exhibit an

error floor at high SNR. The MSE performance of MPDR-3D is shown to have

better performance than 2D-MUSIC and RD-MUSIC.

As far as computational complexity is concerned, the MPDR-1D (with the

Doppler shift estimation) beat 2D-MUSIC and RD-MUSIC (without the Doppler

shift estimation). The reduced-dimension MPDR-1D algorithm have the lowest

memory requirements because they are based on one-dimensional search. Since,

FFT can be deployed easily on hardware, the approach presented here is also

practical in radar applications.

3.8 APPENDIX A: Proof of Equation (3.18)

We need to evaluate the following expression

1

‖b(φ)‖2 =
1

aH
R(φ)R

−1
y aR(φ)

(3.39)

The received signal covariance matrix R̂y for k-th target is given by

R̂y = nT |βk|2aR(φk)a
H
R(φk) + σ2

zInR
(3.40)

where we have assumed that z(n) is zero mean uncorrelated Gaussian noise with

variance σ2
z and is independent from the transmitted signal s(n). The inverse of
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R̂y is found by using the matrix inversion lemma,

R̂−1
y =

1

σ2
z

InR
− nT |βk|2aR(φk)a

H
R(φk)

σ4
z + σ2

znTnR|βk|2 (3.41)

Using (3.41), the expression of (3.39) is given by

1

‖b(φ)‖2 =
σ4
z + σ2

znTnR|βk|2
σ2
znR + nT |βk|2[n2

R − |aH
R(φk)aR(φ)|2] (3.42)

The result obtained in (3.42) depends on βk. For the case when φ = φk, βk will

have a non-zero value (target is present) but for the case when φ �= φk, βk will

be zero (target is absent). Thus, we can interpret the relation in (3.42) as the

following

1

‖b(φ)‖2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
nT |βk|2 + σ2

z

nR

, φ = φk

σ2
z

nR

, φ �= φk

(3.43)

Therefore, the last result in (3.43) shows that the expression in (3.39) can be

treated as constant.

3.9 APPENDIX B: Proof of Equation (3.38)

The two-dimensional term is given by

‖c(θ, fd)‖2 = aT
T (θ)SF(fd)Y

HR̂−1
y YFH(fd)S

Ha∗T (θ)
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= aT
T (θ)SF(fd)X

HXFH(fd)S
Ha∗T (θ) (3.44)

where X = R̂
−1/2
y Y. First we solve SHa∗T (θ) by opening the matrices,

SHa∗T (θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s∗0(0) s∗1(0) . . . s∗nT−1(0)

s∗0(1) s∗1(1) . . . s∗nT−1(1)

...
. . . . . .

...

s∗0(L− 1) s∗1(L− 1) . . . s∗nT−1(L− 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

e−j2πfθ

...

e−j2π(nT−1)fθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

[
nT−1∑
m=0

s∗m(0)e
−j2πmfθ ,

nT−1∑
m=0

s∗m(1)e
−j2πmfθ , . . . ,

nT−1∑
m=0

s∗m(L− 1)e−j2πmfθ

]T

Then, we solve XFH(fd)

XFH(fd)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0(0) x0(1) . . . x0(L− 1)

x1(0) x1(1) . . . x1(L− 1)

...
. . . . . .

...

xnR−1(0) xnR−1(1) . . . xnR−1(L− 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0

0 e−j2πfd . . . 0

...
. . . . . .

...

0 0 . . . e−j2π(L−1)fd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Multiplying the above two results of SHa∗T (θ) and XFH(fd), we get

XFH(fd)S
Ha∗T (θ)
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0(0) . . . x0(L− 1)e−j2π(L−1)fd

x1(0) . . . x1(L− 1)e−j2π(L−1)fd

... . . .
...

xnR−1(0) . . . xnR−1(L− 1)e−j2π(L−1)fd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nT−1∑
m=0

s∗m(0)e
−j2πmfθ

nT−1∑
m=0

s∗m(1)e
−j2πmfθ

...

nT−1∑
m=0

s∗m(L− 1)e−j2πmfθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

[
nT−1∑
m=0

L−1∑
p=0

s∗m(p)x0(p)e
−j2πmfθe−j2πpfd ,

nT−1∑
m=0

L−1∑
p=0

s∗m(p)x1(p)e
−j2πmfθe−j2πpfd , . . . ,

nT−1∑
m=0

L−1∑
p=0

s∗m(p)xnR−1(p)e
−j2πmfθe−j2πpfd

]

The term aT
T (θ)SF(fd)X

H is the Hermitian ofXFH(fd)S
Ha∗T (θ). Thus, multiplying

the vector above with its Hermitian gives,

aT
T (θ)SF(fd)X

HXFH(fd)S
Ha∗T (θ)

=

∣∣∣∣∣
nT−1∑
m=0

L−1∑
p=0

s∗m(p)x0(p)e
−j2πmfθe−j2πpfd

∣∣∣∣∣
2

+

∣∣∣∣∣
nT−1∑
m=0

L−1∑
p=0

s∗m(p)x1(p)e
−j2πmfθe−j2πpfd

∣∣∣∣∣
2

+ . . .

+

∣∣∣∣∣
nT−1∑
m=0

L−1∑
p=0

s∗m(p)xnR−1(p)e
−j2πmfθe−j2πpfd

∣∣∣∣∣
2

=

nR−1∑
q=0

∣∣∣∣∣
nT−1∑
m=0

L−1∑
p=0

s∗m(p)xq(p)e
−j2πmfθe−j2πpfd

∣∣∣∣∣
2

(3.45)

This evaluated term is equivalent to 2D-FFT expression. Its FFT-based solution

is further discussed in Section 3.4.
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CHAPTER 4

APES-BASED REDUCED

COMPLEXITY DOA AND DOD

ESTIMATION FOR MOVING

TARGET IN BISTATIC MIMO

RADAR

4.1 Introduction

In this chapter, we propose another reduced dimension and low complexity algo-

rithm to estimate DOA, DOD and the Doppler shift of a moving target for a MIMO

radar. We derive the cost function based on APES objective function. First, we

solve each cost function with a low complexity FFT-based solution in three dimen-
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sions. We further carry out a derivation to reduce the three-dimensional search to

two-dimensional search and solve it with a 2D-FFT. Another reduced dimension

algorithm is derived using the generalized eigen value method which finds the

estimate of unknown parameters in one dimension with less memory constraints.

This way, we propose three algorithms based on the cost function simplification.

We show simulation results for a static target case and a moving target case.

Also, we have considered the scenarios of on-grid targets and off-grid targets. We

compare the MSE performance and computational complexity of our proposed

algorithms with existing algorithms as well. We show that our proposed algo-

rithms have better MSE performance than existing algorithms and achieves the

CRLB for all unknown target parameters. The proposed algorithms exhibit lower

computational complexity than the existing ones and also provide an estimate for

the Doppler shift.

4.1.1 Organization of the Chapter

The rest of the chapter is organized as follows: The bistatic MIMO radar sig-

nal model for DOA, DOD and Doppler estimation is the same as presented in

Chapter 3 Section 3.2. Section 4.2 presents the proposed parameter estimation

algorithms for DOA, DOD and Doppler estimation and the derivations to reduce

the dimensions. In section 4.3, we develop the FFT-based algorithm to estimate

the parameters. The complexity analysis and its comparison with existing algo-

rithms is shown in section 4.4. In section 4.5, we show the necessary calculations
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to find CRLB for both cases of static target and moving target. Simulation results

are presented in section 4.6 and we conclude the chapter in section 4.7.

4.2 APES-based Reduced Dimension Estimation

The received signal vector in (3.1) can be multiplied by a weight vector w(φ) to

increase the SNR, as follows

wH(φ)y(n) = βej(2πnfd)wH(φ)aR(φ)a
T
T (θ)s(n) + wH(φ)z(n) (4.1)

There can be another approach to calculate the weight vector w(φ). The first

approach is based on MPDR as discussed in Chapter 3. The second approach is

called APES and is discussed here.

In this section, the parameters are estimated on the basis of APES algorithm

[91]. In APES, we want to choose the weight vector w such that the filter output

is as close as possible in least-squares (LS) sense to βke
j(2πnfdk )aT

T (θk)s(n) while

keeping the desired signal undistorted. Therefore, we need to solve the following

linearly-constrained optimization problem,

{wA(φ), βA} = min
w(φ),β

E |wH(φ)y(n)− βej(2πnfd)aT
T (θ)s(n)|2

subject to wH(φ)aR(φ) = 1 (4.2)
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which can be re-written in equivalent matrix form as

{wA(φ), βA} = min
w(φ),β

1

L
‖wH(φ)Y − βaT

T (θ)SF(fd)‖22

subject to wH(φ)aR(φ) = 1 (4.3)

The objective function in the above equation can be simplified as,

1

L
‖wH(φ)Y − βaT

T (θ)SF(fd)‖22 (4.4)

= wH(φ)R̂yw(φ)− wH(φ)YFH(fd)S
Ha∗T (θ)a

T
T (θ)SF(fd)Y

Hw(φ)

LaT
T (θ)SS

Ha∗T (θ)

= wH(φ)

[
R̂y − YFH(fd)S

Ha∗T (θ)a
T
T (θ)SF(fd)Y

H

LaT
T (θ)SS

Ha∗T (θ)

]
w(φ)

= wH(φ)Q̂w(φ) (4.5)

where

Q̂ � R̂y − YFH(fd)d(θ)d
H(θ)F(fd)Y

H

L‖d(θ)‖2 . (4.6)

Using the above result, equation (4.5) can be re-written as

min
w(φ)

wH(φ)Q̂w(φ) subject to wH(φ)aR(φ) = 1 (4.7)

which yields [91]

wAPES(φ) =
Q̂−1aR(φ)

aH
R(φ)Q̂

−1aR(φ)
(4.8)
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Using (4.8) to solve (4.5), we denote

JA(φ, θ, fd) =
1

aH
R(φ)Q̂

−1aR(φ)
(4.9)

and use the matrix inversion lemma to find the inverse of Q̂, given by

Q̂−1 = R̂−1
y +

R̂
−H/2
y c(θ, fd)c

H(θ, fd)R̂
−1/2
y

L‖d(θ)‖2 − ‖c(θ, fd)‖2 (4.10)

By putting Q̂−1 in (4.9) and taking the factor 1/‖b(θ)‖2 common, we express

(4.9) as,

JA(φ, θ, fd) =
1

‖b(φ)‖2 ×
1

1 +
|bH(φ)c(θ, fd)|2

‖b(φ)‖2[L‖d(θ)‖2 − ‖c(θ, fd)‖2]
(4.11)

The cost function in (4.11) is non-convex, non-linear and can have local min-

ima. By using the proof in Section 3.8 of Chapter 3, we can minimize (4.11) by

minimizing J ′A(φ, θ, fd) as follows

J ′A(φ, θ, fd) =
1

1 +
|bH(φ)c(θ, fd)|2

‖b(φ)‖2[L‖d(θ)‖2 − ‖c(θ, fd)‖2]
(4.12)

which is equivalent to the maximization of

J ′′A(φ, θ, fd) =
|bH(φ)c(θ, fd)|2

‖b(φ)‖2[L‖d(θ)‖2 − ‖c(θ, fd)‖2] (4.13)

The maximization of the cost function in (4.13) gives us the initial estimates
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φ̂k, θ̂k, f̂dk of the unknown parameters of the target to minimize (4.11). The cost

function in (4.13) is a three-dimensional function and its global minimum can be

found by exhaustive search. We propose a fast algorithm to solve this exhaustive

search by using three-dimensional FFT in Section 4.3. We call this proposed

algorithm as APES-1.

In the following, we show the derivation to reduce the dimensions of the three-

dimensional search of (4.13). By using the definitions

b(φ) � R̂−1/2
y aR(φ) (4.14)

c(θ, fd) � R̂−1/2
y YFH(fd)d(θ) (4.15)

we can express (4.13) as the following

J ′′A(φ, θ, fd) =
|b̃H(φ)c̃(θ, fd)|2‖c(θ, fd)‖2
L‖d(θ)‖2 − ‖c(θ, fd)‖2 (4.16)

Replacing b̃(φ) by c̃(θ, fd), we get

gA(θ, fd) =
‖c(θ, fd)‖2

L‖d(θ)‖2 − ‖c(θ, fd)‖2 (4.17)

The function gA(θ, fd) can be solved by 2D-FFT as shown in Section 3.9 of Chapter

3. The estimates θ̂k and f̂dk can be found by searching the peak in the two-

dimensional function gA(θ, fd). Using the initial estimates θ̂k and f̂dk , (4.13) will

be a one-dimensional function in φ. Thus, we have reduced the three-dimensional
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search problem into a combination of two-dimensional and one-dimensional search.

We name this algorithm as APES-2D.

Next, we convert the two-dimensional search into two one-dimensional searches.

The function θ̂k and f̂dk can be written as

gA(θ, fd) =
aT
T (θ)

[
A(fd)A

H(fd)
]
a∗T (θ)

aT
T (θ) [LSS

H −A(fd)AH(fd)] a∗T (θ)
(4.18)

where we have used the definition

A(fd) � SF(fd)Y
HR̂−H/2

y (4.19)

for the matrix A(fd). The function in (4.18) can be seen as a generalized eigen

value problem. The maximum generalized eigen value of the two matricesA(fd)A
H(fd)

and LSSH −A(fd)A
H(fd),

hA(fd) = λmax(fd) (4.20)

where λmax(fd) denote the maximum generalized eigen value of the matrices

A(fd)A
H(fd) and LSSH −A(fd)A

H(fd) for a given fd. The estimate f̂dk can be

found by searching the peak in the one-dimensional function (4.20). The estimate

f̂dk is substituted in (4.17) to get

g′A(θ) =
‖c(θ, f̂dk)‖2

L‖d(θ)‖2 − ‖c(θ, f̂dk)‖2
(4.21)
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The reduced dimension functions in (4.20), (4.18) and J ′′A(φ, θ̂, f̂dk) gives the initial

estimates of the unknown parameters in three one-dimensional searches which will

be used to minimize the cost function in (4.11). We name this algorithm as APES-

1D.

4.3 Reduced Complexity FFT-based Solution

The evaluation of cost functions (4.13) derived in the previous section requires a

three-dimensional search. To reduce the complexity and to accelerate the three-

dimensional search, we can use FFT algorithm. In this section, FFT is exploited

to evaluate all terms in the cost functions (4.13).

The terms that need to be evaluated can be separated as three-dimensional,

two-dimensional and one-dimensional terms. In the following, we show the FFT-

based evaluation of each of them and present the resulting algorithm in Table

4.1.

4.3.1 Evaluation of Three-Dimensional Terms by FFT

The three-dimensional term that is same in both (3.19) and (4.13) is bH(φ)c(θ, fd).

This term has most of the computational load. Expanding bH(φ)c(θ, fd), we can

write

bH(φ)c(θ, fd) = aH
R(φ)R̂

−1
y YFH(fd)S

Ha∗T (θ) (4.22)
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First, we define X = YFH(fd)S
H and show its solution by FFT as follows,

vec(X) = vec(YFH(fd)S
H) (4.23)

= [S∗ ⊗Y]vec(FH(fd)) (4.24)

= [Ksy](nTnR × L2)
vec(FH(fd)) (4.25)

where Ksy = S∗⊗Y. Since FH(fd) is a diagonal matrix, vec(FH(fd)) has at most

L non-zero values. Therefore, by choosing non-zero entries in vec(FH(fd)) and

corresponding columns in Ksy, we can write the equivalent of (4.25) as

vec(X) =
[
K′

sy

]
(nTnR × L)

a(fd) (4.26)

where a(fd) = [ 1 e−j2πfd . . . e−j2π(L−1)fd ]T. The matrix K′
sy is found by the

operation of choosing the columns and is elaborated further as follows:

S∗ ⊗Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

s∗1(0) s∗1(1) · · · s∗1(L− 1)

...
. . . · · · · · ·

s∗nT
(0) s∗1(1) · · · s∗nT

(L− 1)

⎤
⎥⎥⎥⎥⎥⎥⎦
⊗Y

=

⎡
⎢⎢⎢⎢⎢⎢⎣

s∗1(0)Y s∗1(1)Y · · · s∗1(L− 1)Y

...
. . . · · · · · ·

s∗nT
(0)Y s∗1(1)Y · · · s∗nT

(L− 1)Y

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.27)
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Choosing the columns in the above matrix gives us:

K′
sy =

⎡
⎢⎢⎢⎢⎢⎢⎣

s∗1(0)y(0) s∗1(1)y(1) · · · s∗1(L− 1)y(L− 1)

...
. . . · · · · · ·

s∗nT
(0)y(0) s∗1(1)y(1) · · · s∗nT

(L− 1)y(L− 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

= [s∗(0)⊗ y(0) · · · s∗(L− 1)⊗ y(L− 1)] (4.28)

Therefore, Ksyvec(F
H(fd)) is nothing but [S

∗
�Y]a(fd). This equation shows that

we have less entries to calculate by reducing the size of Ksy from (nTnR × L2) to

the size of K′
sy which is (nTnR × L). Now for m-th row vector kT

m in K′
sy,

kT
ma(fd) =

L−1∑
n=0

kne
−j2πnfd (4.29)

This is equivalent to evaluating the FFT of kT, F [kT]. Thus (4.26) can be evalu-

ated for all fd ∈ [−1
2
,−1

2
] for a given resolution by taking row-by-row NFFT -point

FFT of K′
sy, i.e., Fr[K

′
sy]. After evaluating F [K′

sy], we get back [X](nR × nT ) by

reshaping [vec(X)]
(nTnR × 1)

.

The next step is to evaluate SHa∗T (θ) which is the solution for the second

dimension θ. It can be easily shown in a similar way to (4.29) that for any m-th

row vector sTm in S, we have

sTma
∗
T (θ) =

nT−1∑
p=0

sm(p)e
−jπp sin(θ)

=

nT−1∑
p=0

sm(p)e
−j2πpfθ ≡ F [sTm] (4.30)
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where fθ =
sin(θ)

2
∈ [−1

2
, 1
2
].

The third step is to evaluate aH
R(φ)R̂

−1
y which is the third dimension φ. For

n-th column vector r(n) in R̂−1
y , we have

aH
R(φ)r(n) =

nR−1∑
m=0

rm(n)e
−jπm sin(φ)

=

nR−1∑
m=0

rm(n)e
−j2πmfφ ≡ F [r(n)] (4.31)

where fφ = sin(φ)
2
∈ [−1

2
, 1
2
]. The three-dimensional term aH

R(φ)R̂
−1
y Xa∗T (θ) can be

solved by using above-mentioned three steps.

4.3.2 Evaluation of two-dimensional terms by FFT

The two-dimensional term that appears in (4.13) and (4.17). As shown in Section

3.9 of Chapter 3, it can be represented by 2D-FFT. In more compact matrix form,

(3.45) can be written as

‖c(θ, fd)‖2 ≡
nR−1∑
q=0

|F2[S
∗
� Xq]|2 (4.32)

where � represents Khatri-Rao product.

4.3.3 Evaluation of one-dimensional terms by FFT

The one-dimensional terms are b(φ) and d(θ). These terms are one-dimensional

so there evaluation is straight forward by using (4.31) and (4.30).
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4.3.4 Algorithms

The cost function derived in Section 4.2 can be solved efficiently by the above

mentioned procedure using FFT for grid of size NFFT -points. The minimum

of the solution of (4.11) gives us the estimates of unknown parameters f̂θk , f̂φk

and f̂dk . We can find θ̂k and φ̂k by using the relations θ̂k = sin−1(2f̂θk) and

φ̂k = sin−1(2f̂φk
). Using the above mentioned FFT-based evaluations, we can

develop algorithms using the cost functions derived in Section 4.2. We write the

three APES-based algorithms in pseudocode form in Table 4.1. APES-3D, APES-

2D and APES-1D respectively are based on three-dimensional, two-dimensional

and one-dimensional FFT.

The static target case is a special case of the above formulation when the

Doppler shift is zero and F(fdk) = I. We solve the static target case for comparison

with 2D-MUSIC and RD-MUSIC in the coming sections.

4.4 Complexity Analysis

We discuss the complexity of our proposed algorithm in comparison with 2D-

MUSIC, RD-MUSIC algorithms [24] and tensor decomposition based method

of [37]. Since, 2D-MUSIC and RD-MUSIC do not estimate the Doppler shift,

we make the complexity analysis for static target case only. The same analysis

can be extended to the moving target case. The 2D-MUSIC algorithm requires

O{Ln2
Tn

2
R+n3

Tn
3
R+m2[nTnR(nTnR−K)+nTnR−K]} form searches andK targets

(Note that m represents number of grid points which is represented by NFFT for
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Table 4.1: APES-based Low complexity proposed algorithm

1: procedure APES-3D(Y)

2: Compute Rs =
SSH

L
, R̂y =

YYH

L
and R̂−1

y

3: Compute K = S∗ � Y
4: Compute K = F [K]
5: K← reshape(K)
6: P← F [K]

7: Compute R̂−1
y = F [R̂−1

y ]

8: Get R̂−1
y ← R̂−1

y

9: Compute R−1/2
s = F [R

−1/2
s ]T

10: Compute X← diag([R−1/2
s ]T × [R−1/2

s ]∗)

11: Compute Y← diag(R̂−1/2
y × [R̂−H/2

y ])

12: Compute Z← PH × R̂−1
y ×P

13: {φ̂k, θ̂k, f̂dk} = argmax
|R̂−1

y ×P|◦2
Y ◦ [L2 ×X ◦Z]

14: end procedure

1: procedure APES-2D(Y)

2: Compute Rs =
SSH

L
, R̂y =

YYH

L
and R̂−1

y

3: X = R̂−1
y Y

4: Solve (3.45)
5: {φ̂k, f̂dk} ← argmax (3.45)

6: {φ̂k, θ̂k, f̂dk} ← argmax (4.13) using {φ̂k, f̂dk}
7: end procedure

1: procedure APES-1D(Y)

2: Compute Rs =
SSH

L
, R̂y =

YYH

L
and R̂−1

y

3: f̂dk ← argmax eig(B(fd),C(fd))

4: φ̂k ← argmax (4.17) using f̂dk
5: θ̂k ← argmax (4.13) using {φ̂k, f̂dk}
6: end procedure
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our algorithm). The second algorithm used for comparison is RD-MUSIC which

requires O{L2n2
Tn

2
R +n3

Tn
3
R +m[n2

TnR(nTnR−K) +n2
T (nTnR−K) +n2

T ]} where

the complexity reduction is achieved by reducing m2 factor to m by converting the

2D-search problem into two one-dimensional search problem. The tensor decom-

position based algorithm requires O{n(K3 +KnTnRL) + (n3
T + n3

R)K} where n

is the number of iterations required for the convergence of the algorithm [37].

The algorithm converges at an n of 83 on average and is also dependent on

K. In contrast, our lowest complexity proposed algorithm (APES-1D) requires

O{NFFT [nR logNFFT + 3nT logNFFT + 2M + N + 1] + N(2NL + 2N + LM)}

for the static target case. The complexity of our proposed algorithm is lower

than the three algorithms used for comparison in this complexity analysis. This

reduced complexity is achieved because our algorithm exploits the low complexity

of the FFT and is reduced dimension. The average runtime for the three above

mentioned algorithms is independent of SNR.

4.5 Cramér-Rao Lower Bound

In the following subsections, the CRLB for the static target and moving target

scenarios are discussed.
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4.5.1 CRLB for Static Target

Let’s define,

η =

[
R(βk) I(βk) θk φk

]
(4.33)

The FIM for the unknown parameters assuming that the noise samples are un-

correlated is given by the Slepian-Bang’s formula

F(η) =
2

σ2
z

R
[
N−1∑
n=0

(
∂uH(n)

∂η

∂u(n)

∂ηT

)]
(4.34)

where

u(n) = βkaR(φk)a
T
T (θk)s(n), (4.35)

∂uH(n)

∂η
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂uH(n)

∂R(βk)

∂uH(n)

∂I(βk)

∂uH(n)

∂θk
∂uH(n)

∂φk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4×nR

, (4.36)

and

∂uH(n)

∂ηT
=

[
∂u(n)

∂R(βk)

∂u(n)

∂I(βk)

∂u(n)

∂θk

∂u(n)

∂φk

]
nR×4

. (4.37)
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The evaluation of (4.36) requires the evaluation of the four partial derivatives

involved in the equation. These four partial derivatives are found as

∂u(n)

∂R(βk)
= aR(φk)a

T
T (θk)s(n), (4.38)

∂u(n)

∂I(βk)
= jaR(φk)a

T
T (θk)s(n), (4.39)

∂u(n)

∂θk
= βk (jπ cos(θk)) aR(φk)a

T
T (θk)AT s(n), (4.40)

∂u(n)

∂φk

= βk(jπ cos(φk))ARaR(φk)a
T
T (θk)s(n), (4.41)

where

AT = diag([ 0 1 . . . nT − 1 ]) (4.42)

and

AR = diag([ 0 1 . . . nR − 1 ]). (4.43)

The other four partial derivatives in (4.37) can be found by using the identity

∂xH = (∂x)H. Therefore, the FIM in (4.34) can be found using (4.38) – (4.41).

The CRLB is found by inverting the FIM F(η).
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4.5.2 CRLB for Moving Target

For the moving target case, we have the additional parameter fdk . Let’s define

the vector α of unknown parameters as the following,

α =

[
R(βk) I(βk) θk φk fdk

]
(4.44)

The FIM for the unknown parameters is again given by the Slepian-Bang’s formula

assuming that the noise samples are uncorrelated.

F(α) =
2

σ2
z

R
[
N−1∑
n=0

(
∂vH(n)

∂α

∂v(n)

∂αT

)]
(4.45)

where

v(n) = βke
j2πnfdkaR(φk)a

T
T (θk)s(n), (4.46)

∂vH(n)

∂α
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂vH(n)

∂R(βk)

∂vH(n)

∂I(βk)

∂vH(n)

∂θk
∂vH(n)

∂φk

∂vH(n)

∂fdk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5×nR

(4.47)
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and

∂vH(n)

∂αT
=[

∂v(n)

∂R(βk)

∂v(n)

∂I(βk)

∂v(n)

∂θk

∂v(n)

∂φk

∂v(n)

∂fdk

]
nR×5

(4.48)

The evaluation of (4.47) requires the evaluation of the five partial derivatives

involved in the equation. These five partial derivatives are found as the following

∂v(n)

∂R(βk)
= ej2πnfdkaR(φk)a

T
T (θk)s(n) (4.49)

∂v(n)

∂I(βk)
= jej2πnfdkaR(φk)a

T
T (θk)s(n) (4.50)

∂v(n)

∂θk
= jπ cos(θk)βke

j2πnfdkaR(φk)a
T
T (θk)AT s(n) (4.51)

∂v(n)

∂φk

= jπ cos(φk)βke
j2πnfdkARaR(φk)a

T
T (θk)s(n) (4.52)

∂v(n)

∂fdk
= j2πnβke

j2πnfdkaR(φk)a
T
T (θk)s(n) (4.53)

where AT and AR are the same as defined in (4.42) and (4.43) respectively. The

other five partial derivatives in (4.48) can be found by using the identity ∂xH =

(∂x)H. Therefore, the FIM in (4.45) can be found using (4.49) – (4.53). The

CRLB is found by inverting the FIM F(α).

4.6 Simulation Results and Discussion

We run several simulations to validate the algorithms proposed in this chapter. We

assume multiple targets (K = 3) at φk = {10◦, 20◦, 30◦} and θk = {−10◦, 0◦, 10◦}
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with normalized Doppler shift fdk = {−0.1, 0.1, 0.2}. The grid search is varied

from −90◦ to +90◦. For simplicity, we assume that the all targets lie on some

grid point which means on-grid targets. The transmitted signals are uncorrelated

quadrature phase shift keying (QPSK) symbols. The noise is assumed to be

uncorrelated Gaussian with zero mean and variance σ2
z. The noise variance σ2

z

was varied to control the SNR. For the simulations, SNR is defined as SNR =

10 log(1/σ2
z) where the power at each antenna is normalized so that total transmit

power is unity. The number of antenna elements are nT = 8 and nR = 8, the

number of snapshots L are 64, the number of grid points are 512 in most of

the results and the MSE is averaged over 1000 iterations, otherwise mentioned

accordingly.

4.6.1 MSE Performance of φk Estimation

First we show how the MSE performance is effected by reducing the dimensions.

Figure 4.1 shows the MSE performance of DOA (φ̂k) obtained by all of the pro-

posed six algorithms. The CRLB is also plotted for comparison. The results

show that at an MSE of 10−2, the SNR loss incurred in going from 3D to 2D is 1

dB whereas from 2D to 1D is 1.5 dB approximately. The performance loss that

occurred in reducing the dimensions is due the assumptions that were made in

the cost function simplification. Since it is suboptimal solution, that is why it is

away from the CRLB. Although MPDR and APES algorithms are derived from

two different cost functions but they have almost the same MSE performance.
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Figure 4.1: MSE performance of DOA φk for moving target. Simulation parame-
ters: L = 64, nT = 8, nR = 8, K = 3.

4.6.2 MSE Performance of θk Estimation

The simulation results for θk estimation are shown in Fig. 4.2. The results show

that both MPDR-1D and APES-1D outperforms the algorithms presented in [89],

[84] and [90]. The algorithms of [89], [84] and [90] are all subspace methods and

are unable to provide optimum results for multiple target parameter estimation.

Only the method of [90] shows slightly better performance than [89] and [84] at

high SNR. The two algorithms [89] and [84] reach an error floor while resolving

multiple targets. The performance of our proposed algorithms is close to CRLB.

4.6.3 MSE Performance of fdk Estimation

The MSE performance results for Doppler shift estimation are shown in Fig. 4.3.

The simulation results show that our proposed algorithms MPDR-1D and APES-

1D outperforms the algorithms of [89], [84] and [90]. Only the algorithm of [84]

shows slight improvement at high SNR. Our proposed algorithm approach the
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Figure 4.2: MSE performance of DOD θk for moving target. Simulation parame-
ters: L = 64, nT = 8, nR = 8, K = 3.
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Figure 4.3: MSE performance of Doppler fdk for moving target. Simulation pa-
rameters: L = 64, nT = 8, nR = 8, K = 3.

CRLB at SNR greater than −5 dB.

4.6.4 Complexity Comparison

The processing time for the proposed algorithms is shown in Table 4.2. Both the

average runtime and memory required is shown for the discussed algorithms. It is

evident from the results that the minimum processing time is achieved by 1D-FFT
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Table 4.2: Complexity comparison

Algorithm Average
Runtime
(sec)

Memory
requirements

(MB)

MPDR-3D 7.33 > 103

MPDR-2D 0.13 61.84

MPDR-1D 0.09 1.01

APES-3D 11.79 > 103

APES-2D 0.12 63.80

APES-1D 0.09 1.01

Ref. [89] 2.02 4.56

Ref. [84] 0.53 673.99

Ref. [90] 0.33 0.81

based algorithms for both MPDR and APES methods. Here, we will mention

two more direction finding algorithms 2D-MUSIC and RD-MUSIC [24]. Both

these algorithms cannot estimate Doppler shift. However, the average runtime per

iteration is found to be 29.87 and 0.14 seconds for 2D-MUSIC and RD-MUSIC,

respectively without estimating the Doppler shift for nT = nR = 8. The runtime

for both algorithms is higher than our proposed 1D algorithms. In contrast, for

the same number of antennas, APES-2D took 0.12 seconds with the Doppler

estimation. The runtime is calculated using a machine with Xeon E5-2680 2.8

GHz dual-processors with maximum available RAM of 64 GB. Furthermore, for

a same set of parameters, it is found by using the complexity analysis in section

4.4 that APES-1D is approximately 7 times faster than the tensor decomposition

based algorithm of [37].
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4.7 Concluding Remarks

In this chapter, we present new FFT-based DOA, DOD and Doppler shift estima-

tion algorithms using two adaptive beamformer weight vectors at the receiver for

bistatic MIMO radar. We derive the reduced-dimension cost function for APES

estimator for the moving target case. We show that the APES-based algoithms

achieve the CRLB for the estimation performance of DOA, DOD, Doppler shift

and reflection coefficient.

As far as computational complexity is concerned, the 1D-FFT-based APES-1D

(with the Doppler shift estimation) beat the compared algorithms. The reduced-

dimension 1D-FFT-based APES-Algorithm-1D have the lowest memory require-

ments because it is based on one-dimensional search. Since, FFT can be deployed

easily on hardware, the approach presented here is also practical in radar appli-

cations.
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CHAPTER 5

DOA ESTIMATION BY

REGULARIZED

LEAST-SQUARES

In the widely discussed approaches for direction of arrival (DOA) estimation in

literature (and also in previous chapters), the covariance matrix of the received

signal is full rank and the sources are assumed to be uncorrelated. If the covariance

matrix of received signal is rank deficient, then we cannot find the inverse of the

covariance matrix. Also, if the sources are coherent, then some of the algorithms

fail to recover the estimate of the DOA. Regularized least-squares algorithms deal

with ill-conditioned matrices and rank deficient matrices. In this chapter, we

solve the DOA problem by using regularized least-squares algorithms when the

covariance matrix of received signal is rank deficient and the sources are coherent.
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5.1 Introduction

The DOA algorithms often face the scenario of coherent (or fully correlated)

sources. The coherent source problem in DOA estimation may arise due to mul-

tipath reflections or intentional jamming. Some of the DOA algorithms are not

able to resolve coherent sources such as Capon [8] and MUSIC [92]. The ESPRIT

algorithm [19] and the root-MUSIC algorithm [93] can resolve coherent sources.

In most of the DOA problems discussed in literature, the covariance matrix

of received signal snapshots is assumed to be full rank. The techniques which

require the inversion of covariance matrix do not work if the covariance matrix is

rank deficient. The ESPRIT algorithm [19] and the root-MUSIC algorithm [93]

can resolve coherent sources but they suffer from performance degradation when

the number of samples is low or the covariance matrix of received signal is rank

deficient.

In order to tackle both problems of coherent sources and rank deficiency in the

covariance matrix, we propose regularized least-squares (RLS) algorithms to solve

the DOA problem. The RLS algorithms are designed to solve the linear system of

equations y = Ax+ z when the matrix A is ill-conditioned or rank deficient. By

ill-conditioned matrix, we mean that the condition number of the matrix is high.

There are many algorithms available in literature that solves the RLS problem.

They include the L-curve [94], normalized cumulative periodogram (NCP) [95]

and perturbation-based regularization (PBR) [96] etc. These algorithms differ

mainly in the approach of finding the regularization parameter.
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In this chapter, we will use the existing RLS algorithms to solve the DOA

estimation problem. We will address the problem under the scenario when the

sources are fully correlated and the covariance matrix is rank deficient.

5.1.1 Organization of the Chapter

The DOA problem is formulated in Section 5.2 and its solution with RLS is

discussed in Section 5.3. Section 5.4 presents the simulation results and Section

5.5 concludes this chapter.

5.1.2 Regularized Least-Squares

Regularized least-squares (RLS) is a variation of standard least-squares problem.

In RLS, we seek a vector ŵ that solves

min
w

[
(w − w̄)HΠ(w − w̄) + ‖y −Hw‖2] (5.1)

The term (w−w̄)HΠ(w−w̄) is the regularization term where Π is positive-definite

matrix, usually Π = δI for δ > 0 and w̄ is usually 0.

The solution to the regularized LS can be found by following methods

� Geometric argument

� Completion-of-squares argument

� Differentiation argument
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The differentiation argument is discussed here. (For the geometric argument

and completion-of-squares argument, the reader is referred to [97]). Let’s denote

the cost function that we want to minimize by J (w),

J (w) � (w − w̄)HΠ(w − w̄) + ‖y −Hw‖2 (5.2)

= wHΠw −wHΠw̄ − w̄HΠw + w̄HΠw̄

+ yHy − yHHw −wHHHy +wHHHHw (5.3)

Differentiating with respect to w to find the gradient vector, we get

∇wHJ (w) = Πw − Πw̄ −HHy +HHHw (5.4)

The gradient evaluates to zero at all ŵ that satisfy

Πŵ − Πw̄ −HHy +HHHŵ = 0 (5.5)

[Π +HHH]ŵ − Πw̄ −HHy = 0 (5.6)

[Π +HHH]ŵ − Πw̄ −HHHw̄ = HHy −HHHw̄ (5.7)

[Π +HHH](ŵ − w̄) = HH(y −Hw̄) (5.8)

Therefore, the solution of regularized LS is given by

ŵ = w̄ + [Π +HHH]−1HH(y −Hw̄) (5.9)
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when H is full column rank.

The solution(s) ŵ so obtained correspond to minima of J (w) since its Hessian

matrix is non-negative

∇2
wJ (w) = Π +HHH ≥ 0 (5.10)

for regularization Π > 0.

For the case of w̄ = 0 and Π = δI, we have the simplified RLS solution given

by

ŵ = [δI+HHH]−1HHy (5.11)

The advantage of COPRA algorithm [96] is that it optimally chooses the regular-

ization parameter δ.

5.2 Problem Formulation

The DOA problem for a uniform linear array is formulated as the following. The

received signal vector at an antenna array is given by

y = hs(t) + v (5.12)

where

h =

[
1 ej

2π
λ
d cosφ ej

4π
λ
d cosφ . . . ej

(M−1)π
λ

d cosφ

]T
M×1

(5.13)
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This is linearly-constrained minimum-variance problem orminimum-variance distortionless-

response problem, given by

min
k

kHRvk subject to kHh = 1 (5.14)

The minimum mean-square estimator for s(t) is given by

ŝ(t) = [hHR−1
v h]−1hHR−1

v y (MVDR) (5.15)

If Rv = σ2
vI, then

ŝ(t) = [hHh]−1hHy (LS) (5.16)

=
1

M

M−1∑
n=0

yne
−j 2πn

λ
d cosφ (5.17)

which is the least-squares solution of this problem.

For the signal model

y = hs(t) + v (5.18)

we seek a weighting vector w such that wHy = s(t). The weighting vector w for

minimum-power distortionless-response (MPDR) is given by

w =
R−1

y h

hHR−1
y h

(5.19)
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The beamformer output is given by

wHy =
hHR−1

y

hHR−1
y h

y (5.20)

The power of the beamformer output is given by

PBF = E [|wHy|2] (5.21)

= wHRyw (5.22)

=
1

hHR−1
y h

(5.23)

Re-writing above using the relation A−1 = A−H/2A−1/2

PBF =
1

hHR
−H/2
y R

−1/2
y h

(5.24)

=
1

bHb
(5.25)

where b � R
−1/2
y h. Thus, we can solve h = R

1/2
y b to find b using standard LS

if the covariance matrix Ry is full rank. But if the covariance matrix Ry is rank

deficient, the standard LS will not work. Thus, RLS can solve (5.25) if the matrix

Ry is rank deficient. The rank deficiency in the covariance matrix Ry occurs when

the number of snapshots are less than the number of antennas.

105



5.3 DOA estimation by RLS

In this section, we propose the approach to use RLS for DOA estimation. It should

be noted from the definition of h that (5.25) is a function of φ. We re-write (5.25)

showing the dependence on φ as follows

PBF (φ) =
1

bH(φ)b(φ)
(5.26)

where

b(φ) � R−1/2
y h(φ) (5.27)

which implies

h(φ) = R1/2
y b(φ) (5.28)

The equation (5.26) is a spectrum as a function of φ and its peaks give us the

location of the targets. Next, we show the validity of (5.28).

Suppose a k-th single target is located at φk. The theoretical covariance matrix

Ry is given by

E yyH = E [h(φk)s(t) + v][h(φk)s(t) + v]H (5.29)

= E [h(φk)s(t) + v][s∗(t)hH(φk) + vH] (5.30)
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= E h(φk)s(t)s
∗(t)hH(φk) + E vvH + E h(φk)s(t)v + E vs∗(t)hH(φk)

(5.31)

Assuming independence between the noise and source waveform and assuming the

noise to be uncorrelated, we have

Ry = h(φk)[E s(t)s∗(t)]hH(φk) + E vvH (5.32)

= σ2
kh(φk)h

H(φk) +Rv (5.33)

where σ2
k = E s(t)s∗(t) is the power of the source signal and Rv = E vvH is the

covariance matrix of the noise. The estimated covariance matrix R̂y obtained

from N number of time samples will be approximately equal to (5.33). In the

presence of a source, Ry is given by (5.33) but in the absence of source Ry = Rv.

In order to get a solution of (5.28), we need the initial estimate of φk, say φ̂i
k.

We initialize the algorithm using correlation by solving

Ψ = yHH (5.34)

where H is the matrix of all possibilities of φ. By searching the peaks in Ψ, we

find the initial estimate φ̂i
k. Then, using RLS algorithms we solve (5.28). The

pseudocode form of the algorithm is shown in Table 5.1.
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Table 5.1: DOA estimation by RLS

1: procedure DOA-RLS(Y)
2: Compute Ψ = YHH from the observation matrix Y
3: Calculate mean of rows of Ψ and find peak locations as DOA estimates
{φ̂i

1, . . . , φ̂
i
K}

4: Estimate R̂y =
YYH

N
and calculate R̂

1/2
y

5: Solve (5.28) by RLS around each φ̂i
k

6: Find the maximum in the spectrum obtained in step 5 which gives φ̂k.
7: end procedure

5.4 Simulation Results

We shown some simulation results to benchmark the performance of the proposed

algorithm. We assume two coherent source located at φ1 = −10◦, φ2 = 10◦. The

grid search is varied from −90◦ to +90◦ with a resolution of 0.1◦. We also assume

that the source location falls on some grid point. The waveform of the two sources

is fully correlated, i.e. s2(t) = 2s1(t) where s1(t) is QPSK waveform. The noise

is assumed to be uncorrelated Gaussian with zero mean and variance σ2
z. For

the simulations, SNR is defined as SNR = 10 log(1/σ2
z) where the power at each

antenna element is normalized so that the total transmit power is unity. The

spacing between antenna elements is assumed to be half-wavelength of the source

waveform. The number of iterations for averaging the results is 104.

Fig. 5.1 shows the RMSE performance of the proposed method compared with

MUSIC and root-MUSIC. We assume uncorrelated sources with the waveform of

the two sources as uncorrelated and we choose s1(t) and s2(t) to be a QPSK

waveform. The simulation results show that MUSIC and root-MUSIC can resolve
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Figure 5.1: RMSE performance. Simulation parameters: N = 8, nR = 10, K = 2
uncorrelated sources.

the uncorrelated sources. MUSIC gives the best RMSE performance with the

compared algorithms. All the RLS algorithms reach an error floor. This error

floor requires some explanation. The regularization parameter diverges as we go

away from the true location of the target. Therefore, slight mismatch in the actual

location and estimated location can cause big divergence in the regularization

parameter. That is why the performance of RLS algorithms is limited to an error

floor.

Fig. 5.2 shows the RMSE performance of the proposed method. The number

of antenna elements are nR = 10 and the number of snapshots are N = 8 so that

the covariance matrix of the received signal is rank deficient. The waveform of the

two sources is fully correlated, i.e. s2(t) = 2s1(t) where s1(t) is QPSK waveform.

The simulation results show that MUSIC and root-MUSIC are not able to recover

the DOAs of the two coherent sources. Root-MUSIC suffers due to low number

of snapshots. The proposed RLS-based algorithm is able to recover the coher-
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Figure 5.2: RMSE performance. Simulation parameters: N = 8, nR = 10, K = 2
coherent sources.

Table 5.2: Complexity comparison.

Algorithm MUSIC QuasiOpt COPRA

Average runtime (sec) 0.05 0.12 0.36

Algorithm NCP L-curve Root-MUSIC

Average runtime (sec) 0.37 0.34 0.02

ent sources with rank deficient covariance matrix. The best RMSE performance

among the RLS algorithms used is shown by the RLS approach of COPRA.

The complexity comparison is shown in Table 5.2. Although root-MUSIC

has lowest complexity but its MSE performance deteriorates at low number of

snapshots. Among the RLS algorithms that are able to recover the coherent

sources, l-curve algorithm has the lowest complexity and the COPRA algorithm

has the second lowest complexity.
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5.5 Concluding Remarks

In this work, we proposed the RLS algorithms to solve the DOA problem for rank

deficient covariance matrix and coherent sources. The state-of-art RLS algorithm

called COPRA shows the best performance with very low complexity.
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CHAPTER 6

CONCLUSIONS AND FUTURE

WORK

6.1 Concluding Remarks

The dissertation has addressed the problem of target parameter estimation for

MIMO radars. For the case of monostatic MIMO radar, we show that the CS

algorithms show some improvement in certain parameter estimation but at the

expense of high complexity. The CS algorithms are not generally designed for

structured sensing matrices. If the structured matrices are used to recover sparse

signals, the number of sparse unknown element to be recovered becomes limited

due to coherence in the columns of the sensing matrix. That is why, the SABMP

algorithm performed good at high SNR but suffered a lot at low SNR levels. The

only improvement that is obtained using SABMP algorithm was for the case of

reflection coefficient estimation. SABMP algorithm, like any other CS algorithm,
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is a matching pursuit algorithm that requires some search space. That is why, no

matter how good the SABMP algorithm is, its computational complexity cannot

be reduced from a certain level.

In bistatic MIMO radar, we conclude that CRLB can be achieved by the

proposed algorithms in this work. Reduced complexity algorithms provide per-

formance near to CRLB but the complexity is shown to be low due to reduction

in search dimensions. The reduced dimension algorithms show remarkable perfor-

mance and exhibits near optimal performance by achieving CRLB, especially in

single target case. For multiple target case, the performance is still better than lat-

est published algorithms. The computational time for the one-dimensional search

algorithm was the lowest.

The algorithms proposed for bistatic radar has the condition on its covariance

matrix that it must be full rank. This condition is addressed using RLS where

the problem of DOA is addressed with rank deficient covariance matrix.

6.2 Future Work

Some parts that have some extended work are:

� The CS algorithms has some limitations with structured matrices. Since in

most radar problems, the transformation matrix has Vandermonde struc-

ture, they are not suitable candidates for radar problems. The main reason

of this limitation is the coherence among the columns of the sensing matrix.

� The bistatic radar model sufferes from synchronization issues. This factor
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needs to be incorporated in the radar model.

� The proposed model needs to be tested for strong interference and jamming

conditions. Also colored noise model can be added.

� The proposed model assumes isotropic antenna elements. These model can

be extended to more realistic non-isotropic/directional antenna models.

� The bistatic algorithms proposed depend on the inversion of covariance ma-

trix of the received snapshots. If the covariance matrix is ill-conditioned or

rank deficient, the proposed algorithm will not work.

� More investigation is required for the use of regularized least-squares in radar

problems.
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