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ABSTRACT 

Full Name : Md Sarim Jamal 

Thesis Title : Numerical Modeling of Flow in Karst Reservoirs 

Major Field : Petroleum Engineering 

Date of Degree : April, 2018. 

Modelling and simulation studies of fractured carbonate reservoirs is a challenging 

problem in the oil and gas industry. This challenge increases furthermore in Karst 

reservoirs, due to the presence of geomorphological features such as fractures, vugs, and 

caves etc. on a micro and macro scale, which introduce complex flow regimes due to 

introduction of non-Darcy flow in the free flow region. This research deals with modelling 

flow in karst reservoirs while taking into consideration the heterogeneities introduced, due 

to macro scale features, such as caves. The motivation to model flow in caves lies in the 

fact that caves are responsible for large hydrocarbon accumulation and also acts as highly 

permeable conduits for flow. 

In this work we will use the Brinkman’s equation to model flow in karst reservoirs. The 

use of Brinkman’s equation is motivated by the fact that it simplifies the numerical 

modelling by allowing the use of a single equation to model the effect of both free flow 

and porous regions, thus in effect reducing the error due to improper modelling of the 

interface between the two regions. 

In this research we have attempted to perform simulation studies of flow and tracer 

transport in karst reservoirs using the Brinkman’s equation on a field scale. Comparisons 

have been made to the Darcy’s model and the effect of Peclet number on tracer transport 

have been studied.  
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We have also considered the effects of unsteady flow conditions in karst aquifers by 

assessing the addition of an unsteady flow term to the Brinkman’s equation. We solved the 

coupled mass conservation-transport equations that models unsteady fluid transport in karst 

aquifers and studied the effects of unsteady flow conditions on tracer transport in two 

different sample aquifers and compared to the results obtained from the steady flow 

Brinkman’s equation. 

The methods available to model flow within karst reservoirs are either computationally 

expensive (Brinkman’s model or Darcy-Stokes model) or provides inaccurate results 

(Darcy’s model). In this research we have developed two different alternative models 

(Sector Modelling Approach and Darcy Model with Optimized Permeability Distribution 

(DMOPD) Approach), that provides excellent match with the Brinkman’s model but is 

computationally very cheap. 

Finally, we have modified the Brinkman’s equation to model two phase flow within karst 

reservoirs. We have also used the DMOPD approach to simulate two phase flow of oil-

water in karst reservoirs.  
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 ملخص الرسالة

 
 

   مد صارم جمال الاسم الكامل:
 

  محاكاة تدفق السوائل في خزانات الكارستعنوان الرسالة: 
 

 هندسة البترول التخصص: 
 

 2018ابريل تاريخ الدرجة العلمية: 

 تزدادبالنسبة لمجال النفط و الغاز.  هي مهمة صعبةخزانات الحجر الجيري إن محاكاة تدفق السوائل في 
بعض الظواهر الجولوجية مثل التشققات و الفجوات و   الصعوبات في خزانات الكارست لوجود ههذ

الكهوف و التي تكون بابعاد دقيقه او كبيره و التي تؤدي الي وجود مناطق ندفق حر و بالمجمل تؤدي 
الي تعقيد طبيعة تدفق السوائل. يتناول هذا البحث محاكاة حركة السوائل في خزانات الكارست التي 

ره المقياس مثل الكهوف. ان السبب الرئيسي للبحث في هذا الموضوع تحتوي علي ظواهر جولوجية كبي
هو قابلية الكهوف لتخزين كميات ضخمة من الهيدروكاربونات  بالاضافة الي انها تسهل حركتها في 

 باطن الارض. 
في هذا البحث سوف نستخدم معادلة برينكمان لمحاكاة حركة السوائل. ان الدافع وراء استخدام هذه 

دلة هو انها تقوم بدمج حركة السوائل في كل من النسيج الصخري و مناطق التدفق الحر في معادلة المعا
 واحدة و بالتالي تقليل الخطء الناتج عن محاكاة السطح المشترك بينهم.

 معادلة باستخدام الكارست مكامن في الشوائب ونقل للتدفق محاكاة دراسات إجراء حاولنا البحث هذا في
 على بيكلت رقم تأثير دراسة تم وقد دارسي نموذج مع مقارنات إجراء تم. ميداني نطاق على برينكمان

 .الشوائب نقل
جزء  اضافة طريق عنالمائية  الكارست مكامن في المستقر غير التدفق ظروف ةدرسقمنا ايضا ب كما
 غير للشوائب في حالة السريانبقاء الكتلة  معادلات قمنا بحل لقد. برينكمان لمعادلة مستقر غير دفقالت

 نقل على المستقر غير التدفق ظروف تأثيرات ودرسنا الكارستية الجوفية المياه طبقات في المستقر
 من عليها الحصول تم التي بالنتائج ومقارنتها الجوفية المياه طبقات من مختلفين نموذجين في الشوائب

 .المستقرة برنكمان معادلة
معظم الطرق المتاحة لمحاكة ظروف التدفق في خزانات الكارست تتطلب وقت كثير مثل معادلة برينكمان 
او معادلة دارسي ستوك او انها غير دقيقة مثل معادلة دارسي. في هذه الدراسة قمنا بتطوير نموذجين 

ما يعطي نتائج ( و كلاهDMOPDبديلين ) نمذجة القطاعات و نموذج دارسي مع توزيع نفاذية محسنة 
 متماثلة الي حد كبير مع نموذج برينكمان ولكن بوقت اقل للحسابات.

في النهاية قمنا بتعديل معادلة برنكمان لكي تكون ملائمة لنمذجة سائلين في خزانات الكارست. لقد قمنا 
  .لمحاكاة حركة النفط و الماء في خزانات الكارست DMOPDايضا باستخدام 
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CHAPTER 1 

INTRODUCTION 

Fractured Carbonate reservoirs are responsible for more than 60% of oil reserves and about 

40% of the gas reserves (Schlumberger, 2008). Therefore, it is not surprising to know that 

a large amount of research is directed towards carbonate reservoirs.  

One of the major topographical features in carbonates is the presence of karsts. Typically, 

Karst reservoirs have a high porosity and permeability and consists of vugs, fractures, 

caves, karrens, dolines etc. These karsts provide economical gains to the oil operator 

because they provide storage volume and also act as high permeability conduits for the 

flow of hydrocarbon. They also affect the EOR processes as they have a direct impact on 

the movement of the injected fluids (Trice, 2005).  Apart from the importance of the Karst 

features to the oil and gas industry, the Karst aquifers cover 12% of the terrestrial land and 

provide a source of drinking water to almost a quarter of the world’s population (Ford and 

Williams, 2007; Andreo et al., 2010; Hartmann et al., 2014). 

Trice, 2005 has separated karst reservoirs into two types: 1) microkarst, 2) megakarst. 

Microkarsts are defined as consisting of vugs and fractures having openings so small that 

they cannot be observed by routine borehole logging tools but can only be observed 

through core and from nuclear magnetic resonance and borehole imaging tools. Megakarsts 

on other hand is a term used to define karst reservoirs consisting of large conduits and 

caves. In this work we will be dealing with the flow modeling of reservoir fluids in 

reservoirs consisting of caves.  
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Caves are considered as important features in karst reservoirs because through independent 

researches of Maoshan & Shifan (2011); Montaron et. al. (2014) and CIPR (2016) we know 

that most of the hydrocarbon accumulation occurs within these caves and therefore can 

contribute to more oil recovery. Due to the high permeability and extensive reach of caves 

they can also act as conduits for tracer and EOR fluid (surfactants, polymers, etc.) injection. 

Caves can be defined as channels which are greater than 5- 15mm in diameter.  

Simulation of fractured karst reservoirs is considered a challenge in the oil and gas industry 

because of the presence of fractures, vugs and caves which introduce a complexity in the 

equations by introduction of non-darcy flow equations such as the Navier-Stokes equation 

for flow in the non-porous free flow region. Popov et. al. (2009) mentioned other 

difficulties apart from the co-existence of two different flow regions. They are: 

1) Presence of vugs, caves and fractures can alter the effective permeability of the 

system 

2) Lack of knowledge of the exact position of the interface between porous media and 

vugs/caves 

3) Modelling the effects of formation damage at the interface between porous media 

and the free flow region 

In this research work we have used the Brinkman’s equation to model flow through both 

the porous and the free flow region. The use of Brinkman’s equation is motivated by the 

fact that it simplifies the numerical modelling by allowing the use of a single equation to 

model the effect of both free flow and porous regions, thus in effect reducing the error due 

to improper modelling of the interface between the two regions. 
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A literature review discussing the features of karst reservoirs and aquifers and the 

numerical methods available to model flow within such features have been presented in 

Chapter 2.  

Chapter 3, discusses the problem statement and the research objectives of this dissertation. 

Chapter 4, presents the use of the Brinkman’s model to solve for tracer transport in the 

Karst reservoir using the cell-centered finite volume method. The results of the Brinkman’s 

model are then compared to the Darcy’s model. The effect of Peclet number on tracer 

transport is also studied. 

Chapter 5, studies the effect on tracer transport due to the unsteady flow conditions in an 

aquifer using the unsteady flow Brinkman’s equation. Unsteady flow Brinkman’s model 

was obtained by adding the unsteady flow term present in the Navier-Stokes equation to 

the Brinkman’s equation. The results obtained from the unsteady flow Brinkman’s are 

compared to the results obtained from the steady flow Brinkman’s model. 

Chapter 6, proposes a sector modelling approach to model fluid and contaminant transport 

within karst aquifers/reservoirs. The method exploits the fast computation associated with 

the Darcy’s model and the accuracy of modeling flow in the caves associated with the 

Brinkman’s model. Thus, the method runs much faster than the Brinkman’s model without 

compromising the accuracy of results obtained in the caves.  

Chapter 7, proposes a Darcy Model with Optimized Permeability Distribution (DMOPD) 

approach to model fluid transport in karst aquifers. This approach divides the free flowing 

regions (caves) into different zones and optimizes the permeability ratios in those zones to 
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mimic the velocity profile obtained using the Brinkman’s model. The permeability ratio is 

the ratio of the permeability in that zone to the maximum permeability in the central zone. 

This method provides a good match to the solution obtained using the Brinkman’s model. 

This method significantly speeds up the simulation run compared to the Brinkman’s model. 

Chapter 8, presents the mathematical formulation for the modified Brinkman’s model to 

numerically model two-phase flow in karst reservoirs. A cell-centered finite volume 

discretization of the modified Brinkman’s model has also been presented. The chapter also 

presents a method to solve two phase flow in Karst reservoirs using the Darcy Model with 

Optimized Permeability Distribution (DMOPD) approach. 

Chapter 9, presents a concluding remark.
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Karst Reservoirs 

2.1.1 Introduction 

Karst represents a topography consisting of complex geological features and specific 

hydrogeological characteristics which are generally formed in carbonate rock reservoirs 

and are highly heterogeneous. They are mainly composed of limestone, dolomite, gypsum, 

halite and conglomerates. Carbonate karsts are highly abundant and its most representative 

morphological features are karrens, tectonic fractures, dolines, shafts, diagenetic fractures, 

poljes, caves, vugs, ponors, caverns, estavelles, intermittent springs, lost rivers, stylolite, 

dry river valleys, intermittently inundated poljes, underground river systems, denuded 

rocky hills, karst plains and collapses (Milanovic, 2005). Figure 1 and Figure 2 show the 

general topography of karst systems. 

Karst aquifers cover 12% of the terrestrial land and provide a source of drinking water to 

almost a quarter of the world’s population (Ford and Williams, 2007; Andreo et al., 2010; 

Hartmann et al., 2014).  

2.1.2 Karstification Process 

Karstification is the geological process which produces the unique morphological features 

of the karst topography, including caverns and channels, by the chemical and mechanical 
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action of water which has penetrated into the permeable and soluble rock masses (Jackson, 

1997).  The karstification process may take millions of years, but small scale caves can 

form within hundreds to thousands of years. 

 

Figure 1: Topography of Karst System 

 

Figure 2: Topography of Karst Systems  
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Turbulence plays an important role in determining the effectiveness of the karstification 

process. It has been experimentally shown that the increase in flow velocity and 

consequently an increase in turbulence increases the dissolution process, a Reynolds 

number increase from 250 to 25,000 increased the rate of solution by approximately a 

factor of 3 (White, 1977). 

Castany (1966) And Corbel (1959) in their research concluded that temperature is a very 

important factor and low temperature favoured the karstification process. In the 

experiments conducted by Castany it was found that 1 litre of water at 00C dissolved 4-5 

times more limestone than water at 300C, and 6 times more than water at 400C. 

2.1.3 Karst Porosity 

Karst porosity can be classified into two main types: Primary porosity and Secondary 

porosity. 

Primary porosity is not very common in karsts and are syngenetic that means it is formed 

at the time of deposition of sediments. 

Secondary porosity are generally more widely present in karsts than the primary porosity 

and consists of channels, sediments, joints and caverns. Vuggy porosity is a type of 

secondary porosity and it is due to the presence of vugs; these are voids or larger pores in 

rocks which are normally associated with karsting and massive dissolution (Lucia, 2007). 

Vuggy Porosity can be classified into four main types (Milanovic, 2005): 

1. Occasional Vugs: Less than 2% rock volume 
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2. Scattered Vugs: 2 to 5% of rock volume 

3. Vuggy: 5 to 10% rock volume 

4. Very vuggy: Greater than 10% rock volume 

The presence of these vugs contribute towards higher hydrocarbon storage. These vugs can 

either be connected to the fracture system or are isolated. Isolated means the vugs that are 

not connected to the overall fracture system or are not interconnected with other vugs in 

the matrix rock (Kossack and Gurpinar, 2001).  

2.1.4 Karst Caves 

In this work the primary interest is to model the flow in caves. Caves can be defined as 

channels which are greater than 5- 15mm in diameter. The international Speleological 

Union defines caves as a natural underground opening in rock large enough for a human to 

enter. Caves contain underground flows that provide natural access to oil and groundwater 

and act as access ways for exploratory or drilled openings, they can also be used for tracer 

transport. Most of the hydrocarbon accumulation occur within these karst caves (Maoshan 

and Shifan, 2011). The largest cave system is 560 km long and is called Mammoth cave 

system in Kentucky, USA. The deepest is the Krubera Cave in Wester Caucasus, Russia 

and is 2080m deep. 

Norwegian research institution Uni Research CIPR has recently claimed that cave systems 

are a new type of reservoirs that accommodate significant petroleum resources and are 

present in Middle East, China, the North Sea and USA (CIPR, 2016).  
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Figure 3 shows the karst reservoir at different scale. Our work deals with the modelling of 

flow in karst reservoir on a field scale. Therefore, this work deals with flow through caves 

and we will neglect the effects of vugs on the much smaller microscale. 

 

 

Figure 3: Karst Reservoirs on Multiple Scale (Popov et. al., 2009) 

2.2 Mathematical Models for Fluid Flow 

It is important to carry out simulation studies of a particular real world physical 

phenomenon to understand its behaviour properly on a small scale before reproducing it 

on a larger scale, it becomes more important in fields where actual experiments are very 

risky, time consuming, may have inaccessible inputs, and maybe economically expensive. 
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But before the simulation studies can be carried out it is imperative that a mathematical 

model is developed for that particular physical phenomenon. Mathematical modelling of 

real world scenarios make it easier to quantify, visualize, simulate and overall easier to 

understand. 

Fluid flow dynamics is an important phenomenon that needs to be studied in the oil and 

gas industry. It deals with the motion of fluids inside a media. Some of the most important 

equations are the Hagen-Poiseulle equation, the Bernoulli’s equation, the Navier-Stokes 

Equation and the Darcy’s equation. Here we will describe in more detail the latter two as 

those are the equations we will be dealing with in our work. 

2.2.1 Navier-Stokes Equation  

Navier-Stokes equation is used to model viscous flow in free flow regions and is named 

after Claude-Louis Navier (Navier, 1822) and George Gabriel Stokes. It is very widely 

used to study various different flow problems which carries a research interest for scientists 

and engineers around the globe. In the oil and gas industry the Navier-Stokes equation is 

used to model flow in fractures, vugs, caves and pipes.  

The Navier-Stokes equation consists of three momentum equation (3D flow) and is used 

in conjecture with a material balance equation (the continuity equation). 

The continuity equation for Navier-Stokes is given by: 

 
.( ) m

b

q
v
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. (2.1) 
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The Navier-Stokes equation itself is given by 

 
.

dv
p g

dt
     , (2.2) 

where,  is the density of fluid,  p is the pressure,   is the deviatoric stress tensor, g is 

the acceleration due to gravity, and v is the free flow velocity, mq is the sink/source term 

in terms of mass flow rate, bV  is the block volume, and t  is the time. The deviatoric stress 

tensor can be given as follows. 
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2 .v .v

3
I I  
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Where,  is the viscosity of the fluid and  is the second coefficient of viscosity.  can be 

given as follows 

 
   

1
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. (2.4) 

For incompressible flow with constant viscosity, Equation 2.2 can be rewritten as follows, 

 2dv
p g

dt
v      . (2.5) 

Equation 2.5, is a vector equation as all the terms are vectors and therefore we can get three 

equations from it, so in total we will have to solve a system of four equations to obtain our 

solution. 
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If we now assume a steady state flow, i.e. 0
dv

dt
 we will get the Stokes Flow equation. 

 2p gv    . (2.6) 

All the above equations and their simplifications can be found in Bird et. al. (2002). 

The boundary condition for solving such equations can be Dirichtet type with velocity 

given at each boundary. No slip condition is generally assumed parallel to the boundary at 

the boundary, i.e. the velocity is zero (Yao et al., 2010). 

2.2.2 Darcy’s Equation 

Henry Darcy, a French engineer, developed the Darcy’s Law (Darcy, 1856), to describe 

the flow of fluids in porous media. It is one of the most widely used equations in petroleum 

engineering. Although the equation was developed by conducting experiments but recently 

it has also been found that the Darcy’s equation can be found by the homogenization of the 

Navier-Stokes equation (Allaire, 1989).  

A porous media can be defined as having a solid matrix with interconnected void. Some of 

the best examples are sandstone, limestone or wood. The porous media is characterized as 

having a porosity and permeability. 

The flow in porous media can be found by using the continuity equation along with 

equation for Darcy’s Law. 

The continuity equation can be defined as 
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The above equation is similar to equation 2.1, the only difference being the density is now 

multiplied with the porosity because flow is no longer free flow.  

The Darcy’s law can be given by the following equation 

 
 

1

p K gzu 


  , (2.8) 

in the above equations,  is the density of fluid,  is the viscosity of the fluid, p is the 

pressure, g is the acceleration due to gravity,  is the porosity of the porous media, K  is 

the permeability tensor, and u  is the Darcy flux/velocity. 

There are two different methods of solving these systems of equations. Either equation 

number 2.8 is rearranged and then the value of u is substituted in equation 2.7 and then 

that equation is solved or we can keep both equations 2.7 and 2.8 separate and solve them. 

The boundary conditions can be either Dirichlet type, with pressure specified at the 

boundaries or they can be Neumann type with Darcy flux/velocity specified at the 

boundaries. 

2.3 Mathematical Model for Flow in Coupled Systems 

In the previous section we dealt with mathematical models for flow through a single media, 

i.e. the flow is either in a porous media or through a free flow region. For flow in reservoirs 

this is not always the case, because a reservoir may consist of fractures, vugs and caves, 



14 
 

especially the carbonate reservoirs. Modelling flow through such heterogeneous reservoirs, 

with coexisting free flow and Darcy flow, is considered a challenge in the petroleum 

industry because the modelling equations as shown in the previous section are different for 

different sections. An added difficulty is the fact that these vugs, caves and fractures have 

varying size, connectivity and distribution depending on the depositional environment and 

the diagenetic process involved. These physical properties affect the rate and direction in 

which the oil moves in the reservoir (Kossack and Gurpinar, 2001). This rate of movement 

also depends on the type of forces that are acting on the fluids, these forces are the gravity 

forces, viscous forces and the diffusive forces. 

It is not surprising to learn that various different researches are being conducted in this 

field in order to determine the best method to model flow in coupled systems because 

fractured karst carbonate reservoirs are located all around the world and is responsible for 

a large percent of the oil reserves. 

In this section we will be discussing some of the major methods used to model coupled 

Darcy and non-Darcy flows in reservoirs.  

2.3.1 Multiple Continuum Method 

The Multiple Interacting Continua (MINC) method was first introduced in 1984 by Pruess 

& Narasimhan. It was based on the dual porosity model (DPM) made famous by Warren 

& Root (1962) and Odeh (1964). In this method the fractures and the matrix blocks were 

grouped into two separate but interacting continua. The MINC method also permits the 

solution for flow of multiphase fluids. It considers a fractured porous reservoir consisting 
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of three perpendicular sets of infinite, plane parallel fracture of equal spacing and aperture 

and can work on different dimensions with regular or irregular geometry.  Pruess & 

Narasimhan verified their MINC model with the analytical solution of Warren & Root and 

found their solution gave a good match. This method discretizes the matrix blocks based 

on the distance from the fractures and thus creates a sequence of nested volume elements. 

By using this form of division the transient interaction between matrix and fractures were 

able to be treated in a more realistic fashion. The difference in discretization of a dual 

porosity model and an MINC can be seen in Figure 4. 

 

Figure 4: Discretization of Matrix Blocks (a)MINC (b) DPM ( Wu & Pruess, 1988) 
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Wu & Pruess (1988), used the MINC method and demonstrated its utility in different 

petroleum engineering problems such as modelling oil-recovery problems using water 

imbibition and five spot water flooding in fractured reservoirs. They compared their results 

with the dual porosity method and the explicit method and found that the MINC method 

gave a better match with the actual result. They also concluded that it would be much better 

to use the dual porosity model for the simpler problems and the use of MINC should only 

be reserved for the more geologically complex problems.  

Bai et. al. (1993), in their paper developed various conceptual deformation-dependent 

multiporosity and multipermeability models to assist in the simulation of naturally 

fractured reservoirs. Their work is different from the dual porosity model in such a way 

that it is not only porosity oriented but also considers permeability as one of the critical 

factors in affecting flow in reservoirs.  

Kossack & Gurpinar (2001), realized that most of the simulators are dual porosity system 

so they used a dual porosity simulator to emulate oil production from a triple porosity 

system vugular system. They therefore developed composite relative permeability and 

capillary pressure curves in a two phase oil-water system, to incorporate the behaviour of 

vugs in a matrix-fracture system. 

An another approach to model fracture/matrix flow is the effective continuum model 

(ECM), this method has an upper hand in comparison to the MINC method in that it does 

not require detailed fracture and matrix geometric properties and their spatial distribution. 

It is therefore computationally effective. This approach uses an effective porous media to 

approximate the fracture/matrix system. The ECM method assumes thermodynamic 
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equilibrium and it can be considered as one of the disadvantages of using this method, as 

the whole method would breakdown if thermal equilibrium is not reached or is not present. 

This method has been successfully used by Pruess (1988), Wu (1996), Wu (1999) 

Wu et. al. (2006), proposed a multiple-continuum method, which effectively was an 

expansion on the earlier introduced MINC. They conceptualized the fracture-vug-matrix 

system to consist of the following 1) fracture continuum 2) vug continuum 3) matrix 

continuum and 4) small-scale fractures. Figure 5 shows the visualization of the 

conceptualized continuum. 

 

Figure 5: Visualization of the Continum conceptualization by Wu et. al., 2006 
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They used an effective porous media approach to approximate the permeabilities and the 

porosity. They used their model to simulate single phase and multi-phase flow using a finite 

difference approach. 

2.3.2 Discontinuum Model or Darcy-Stokes Model 

Although the continuum model was simple and easy, the disadvantage of the method is 

that it over simplifies a very complex flow pattern consisting of Darcy velocity and free 

flow velocity into a straightforward mathematical and geometrical model. This may not 

always give the accurate result. The discontinuum model or Darcy-Stokes model attempts 

to remove this simplification and provides a more natural approach in representing these 

systems in which the complex flow patterns exist. This method models Navier-Stokes 

Equation in the free flow region and the Darcy’s equation in the porous region. Appropriate 

boundary conditions are also used at the interface between the porous region and the free 

flow region. Various researches have been conducted on the use of Darcy-Stokes model to 

simulate flow in fractured reservoirs ( Arbogast & Lehr, 2006; Arbogast & Brunson, 2007; 

Arbogast & Gomez, 2009; Peng, Du, Liang, & Qi, 2009). 

It has been experimentally proved in different papers ( Beavers & Joseph, 1967; Beavers, 

Sparrow, & Magnuson, 1970), that the effects of viscous shear in the unobstructed channel 

flow parallel to the surface of a porous media, penetrates the permeable surface to form a 

boundary layer region in the porous medium. The Darcy equation is not compatible with 

the existence of a boundary layer region in the porous medium because no macroscopic 

shear term is associated with this equation (Neale and Nader, 1974). Figure 6 shows the 
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actual velocity profile for a complex coupled flow in a system consisting of both free 

channels and porous media. 

 

Figure 6: Actual velocity profile for coupled flow (Neale & Nader, 1974) 

To model this change in velocity at the boundary, Beavers & Joseph (1967), developed a 

mathematical equation that introduces a fluid-slip phenomenon at the boundary.  

 
v

y
u

K v







  (2.9) 

Where v  is the free flow velocity; u is the Darcy velocity in the porous media; K  is the 

permeability, and  is the dimensionless slip coefficient. Saffman (1971), justified the use 

of Equation 2.9 theoretically and even showed that the Darcy’s velocity can be dropped 

altogether from the equation. Jones (1973), then further modified the equation to fit curved 

boundaries and non-tangential flows. 
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Where  is the unit tangential vector of boundary. 

For Newtonian fluids the boundary conditions are given by 
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(2.12) 

Equation 2.12 is called the Beavers-Joseph-Saffman (BJS) boundary condition. 

Figure 7 shows the velocity profile that would be modelled by using the above mentioned 

boundary conditions.  

 

Figure 7: Velocity profile with the Beavers & Joseph slip boundary condition 
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Zhang et. al. (2004), studied the influence of vugs on flow and transport behavior. To do 

that they combined simulation studies and performed lab experiments. They used the Darcy 

equation throughout the pores and vugs, but conceded that the use of Darcy equation in 

porous media and Stokes in vugs would give much better results. 

Vassilev & Yotov (2009), developed a mathematical model using Darcy-Stokes coupled 

model to solve not just for the velocities but also for chemical transport using a finite 

element method. 

Yao et al. (2010), proposed a discrete fracture vug network (DVFN) model consisting of 

1) macro fractures system, 2) porous rock matrix system, 3) macro vug systems. They used 

the Navier-Stokes equation in the vugular region and Darcy’s law within the porous region, 

and used the BJS boundary condition to model their work. 

Huang et al. (2013), calculated the effective permeability tensor of grid blocks using Darcy-

Stokes coupling equations and homogenization theory. They then calculated effective 

relative permeability curves using analytical equations. Finally using the effective 

permeability and the effective relative permeability curves they used an IMPES simulator 

to model two phase flow in reservoirs. 

2.3.3 Brinkman Equation 

Motivated by the complexity of modeling flow in a coupled free flow and porous region, 

(Brinkman, 1949), developed a general equation that can be used to model the coupled 

flow. The Brinkman’s equation incorporates the effect of viscous shear in the Darcy’s 
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model. The viscous shear is basically the viscous interaction between the molecules  among 

themselves and the media. 

  1
2

effp K uu g  


     . (2.13) 

Equation 2.13 is called the Brinkman’s equation. From the equation p  is the pressure,   

is the viscosity, K  is the permeability tensor, u  is the velocity (darcy or free flow) vecor, 

  is the density, g  is gravity and 
eff  is the effective fluid viscosity. One of the greatest 

advantages of using the Brinkman’s equation is that it can theoretically interpolate between 

the Stokes equation and the Darcy’s equation.  

If 
eff  and K   , Equation 2.13 converts into Stokes equation, it becomes similar to 

Equation 2.6. Similarly, if 0eff  and  K K   , Equation 2.13 now converts into 

Darcy’s equation and becomes similar to Equation 2.8.  

Brinkman’s equation therefore offers more advantages than directly using the Darcy-

Stokes model. Firstly, the requirement of a boundary condition between the porous media 

and the free flow region disappears. Secondly, the BJS boundary condition models a slip 

velocity at the boundary which is not actually what happens in reality as can be seen in 

Figure 6. In actual flow the free flow velocity gradually decreases inside the porous media 

until it becomes equal to the Darcy velocity. Further inside the porous region the shear term 

in the Brinkman equation will be unmeasurably small and therefore make the equation 

equivalent to the Darcy’s equation (Neale and Nader, 1974). Figure 8, compares the 

velocity profiles generated for the Darcy-Stokes model and the Brinkman’s model.  
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Figure 8: Velocity Profile when using a) Darcy-Stokes model with BJS boundary condition, 

and b) Brinkman's Equation (single domain model) 

According to Durlofsky & Brady (1987), on small length scales the pressure gradient 

balances the laplacian of velocity and the flow is viscous but deeper in the porous media, 

the velocity vary very slowly, therefore in this region, the pressure gradient balances the 

average velocity similarly to Darcy’s law.  

Different combination of equation can be used to model such complex flows; 1) Navier-

Stokes equation can be used in the free flow region and the Brinkman’s equation can be 

used in the porous region, 2) Brinkman’s equation can be used throughout the reservoir 

while keeping 
eff  and using an arbitrarily chosen high permeability value in the free 

flow region to mimic infinite permeability, 3) Divide the flow into three regions: free flow 

region, the Brinkman flow region and the porous flow region, Brinkman’s equation can be 

used in all the three regions but the value set for permeability and 
eff would depend on 

which region we are modelling.  
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The values set for the two parameters for different regions will be as follows: 

a) Free flow Region: K   or an arbitrarily chosen high value; 
eff   

b) Brinkman’s Flow Region:  K K   ; 
eff   

c) Darcy Flow Region:  K K   ; 0eff   

Figure 9 shows how this division of regions are done. The advantage of dividing into 

regions is the ease it brings in the computation of results. As has been mentioned before 

that deeper into the porous media the velocity varies very slowly when compared to the 

distance we could just neglect the 
eff term and it would decrease the size of the matrix 

needed to be solved. 

 

Figure 9: Flow Regions in Brinkman’s Flow 
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Brinkman initially had fixed the 
eff term to be  , but since then a lot of researches have 

taken place in finding the optimum value of effective viscosity. Happel & Brenner (1981); 

Howells (2006), gave justification for using the viscosity value in place of effective 

viscosity, Adler (1979); Russel & Sangtae (1985), showed that 1
eff




 ; According to the 

researches of Nield (2013); Koplik, (1983), the value of viscosity ratio is 1
eff




 . 

Durlofsky & Brady (1987), showed that the viscosity ratio depends on porosity and behaves 

in a non-monotonic manner. Belhaj et. al. (2003), in their paper used a value of eff





 . 

Popov et al. (2007), carried out sensitivity studies on different values of effective viscosity 

Neale & Nader (1974), provided a practical significance of the use of Brinkman’s equation 

in coupled parallel flows within a channel and a bounding porous media. 

Popov et.al. (2007); Popov et al. (2007b); Popov et.al. (2009), successfully carried out 

various upscaling analysis of distributed caves and vugs and verified that the Brinkman 

equation can be used to model flows in vuggy, fractured karst reservoirs. Their results also 

prove that the Brinkman equation allow the simulation of high porosity, finite permeability 

fill-in regions in fractures and the equation can also be used to model the uncertainty at the 

interface between fractures and porous media. 

Ligaarden et.al. (2010); Krotkiewski et.al. (2011) used the Brinkman’ equation to model 

flow in carbonate Karst reservoirs. In their work they computed the effective permeability 

of the rock samples. They found that if the free flow region is very large and surrounded 
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by low permeability matrix the effective permeability can be found by just using the Stokes 

equation and not considering the Brinkman’s equation. 

Bi et. al. (2009), proposed the Brinkman’s equation as a unified multi-physics model for 

modeling fluid flow in Karst resrevoirs. The model represented flow in rock matrix, void 

caves and intermediate flows. 

He et. al. (2015); He et. al. (2015b) modeled single phase flow in a Karst reservoir using 

the Brinkman’s equation. They solved the proposed equation using the finite difference 

method, they concluded that the use of a fully implicit finite difference method to solve the 

Brinkman’s equation is straightforward, mathematically simpler and could be easily 

generalized. 

 2.4 Mathematical Solution to Brinkman’s Equation 

The Brinkman’s equation for a single phase flow can be solved by using a combination of 

Equation 2.7 and Equation 2.13. 
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When solving for 3D flow, equation 2.13 will give three equations, one for each dimension; 

as Equation 2.13 is a vector. For the 3D case there will be 4 unknowns: Pressure (p), xu ,

yu ,and zu . The above equations can be solved using different numerical techniques for 

solution of PDE such as: 
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1) Finite Volume Method: Not a lot of work has been conducted on the use of FVM 

method to solve for the Brinkman’s equation. Hu et. al. (1985) performed a finite 

volume discretization to solve for the Brinkman’s equation for flow of an 

incompressible fluid on a porous media 

2) Finite Element Method: Almost all the researches that have been conducted 

employ the finite element method for the solution of Brinkman’s equation ( Popov 

et al., 2007;Bi et al., 2009; Gulbransen, Hauge, & Lie, 2009; Popov et al., 2009; 

Ligaarden et al., 2010; Krotkiewski et al., 2011). 

3) Finite Difference Method: He et al., (2015); He et al. (2015b) used the finite 

difference technique to solve the Brinkman’s equation for a small section of a 

vuggy karst carbonate reservoirs.  

In this work we will be using the Finite volume method to solve the Brinkman’s 

equation. 
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CHAPTER 3 

PROBLEM STATEMENT 

3.1 Research Gap 

As is clear from the literature review, most of the modelling studies that have been 

performed on flow in karst reservoirs deals with the calculation of an effective permeability 

to model flow, not a lot of research have been performed in modelling flow using the 

Brinkman’s equation. The simulation studies that have already been done deals with micro 

and meso scale vugs and fractures. No proper studies have been done on a field case. This 

research aims to close this gap by performing simulation studies of flow of fluids using the 

Brinkman’s equation on a field scale and concentrate more on large scale caves. 

Most of the equations available to model flow within karst aquifers deal with steady flow 

conditions. This may not be accurate in aquifers where unsteady conditions exist. To the 

best of our knowledge no studies have been conducted to model tracer transport in a single-

phase, slightly-compressible flow using unsteady Brinkman’s equation in karst 

aquifers/reservoirs. 

The methods available to model flow within karst reservoirs are either computationally 

expensive (Brinkman’s model or Darcy-Stokes model) or provides inaccurate results 

(Darcy’s model). There is a need to develop alternative models that provide excellent 

match with the Brinkman’s model but are computationally cheap. 

Moreover, to the best of our knowledge, no studies have yet been performed on modelling 

multiphase flow using the Brinkman’s equation. The methods currently available to model 
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two phase (oil-water) flow in karst reservoirs deal with either the Darcy-Stokes model or 

the effective porous media approach. 

3.2 Research Objectives 

The main objectives of this research are  

• To use Brinkman’s model to simulate flow and tracer transport on a field scale 

within karst reservoirs and to study the effect of Peclet number on the tracer profile. 

• To modify Brinkman’s equation to account for unsteady flow conditions existing 

in the reservoir by addition of a parameter into the Brinkman’s model that accounts 

for the unsteady flow 

• To develop new, computationally cheap and accurate models of flow to numerically 

simulate flow and contaminant transport within karst reservoirs 

• To modify the Brinkman’s equation to allow the modelling of two phase flow 

within karst reservoirs 

• To develop new, computationally cheap and accurate models of flow to numerically 

simulate two phase flows (oil-water) within karst reservoirs 
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CHAPTER 4 

A FINITE VOLUME DISCRETIZATION APPROACH TO 

SOLVING FLOW AND TRACER TRANSPORT IN KARST 

RESERVOIRS 

4.1 Introduction 

Tracer tests provide a valuable tool in understanding the flow path of the caves and hence 

in properly studying the underlying karst (Borghi, Renard and Cornaton, 2016). These tests 

provide a basis for developing a more realistic and accurate geological model for further 

testing. Several real-life tracer tests to better understand the karst terrain has been 

performed all over the world (Cabras et al., 2008; Häuselmann et al., 2003; Smart, 1988; 

Staut and Auersperger, 2006; White et al., 2013). The physical processes that are 

responsible for flow of tracers are advection, diffusion and adsorption. Numerical studies 

have been conducted on modelling transport of chemicals within karst aquifers by using 

Darcy’s equation along with the advection-diffusion equation (Morales-Juberías et al., 

1997; Maloszewski, Herrmann and Zuber, 1999; Kincaid, Hazlett and Davies, 2002; 

Rivard and Delay, 2004; Göppert and Goldscheider, 2007), this however is not very 

accurate as Darcy’s equation does not hold true for free flow regions. Joodi et al., 2010, 

modelled the transport of Uranine in the Val d'Orleans aquifer in France using the 

Brinkman's equation in the conduits, and Darcy's equation in the porous region with a 

continuous pressure boundary condition between the two regions, using Finite Element 
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Method in COMSOL. They used a very high contrast in the conductivity between the two 

regions of flow. Oehlmann et al., 2015, used the Manning equation to model flow within 

the Karst conduits and coupled it with the Advection-Diffusion equations to model tracer 

transport.  

In this section, we model the flow of nonreactive tracers in karst reservoirs by coupling the 

continuity equation, the Brinkman’s equation to the Advection-Diffusion-Adsorption 

equation. The flow of fluid is modelled as single-phase, slightly-compressible flow in a 2D 

karst aquifer consisting of megakarstic geological terrains such as caves by solving the 

continuity equation and the Brinkman’s equation simultaneously to obtain the pressure and 

velocity distribution in the entire reservoir. Using the computed velocity distribution, the 

Advection-Diffusion-Adsorption equation is then solved numerically to model the 

transport of the tracers through the reservoir. The cell-centered finite volume discretization 

approach was adopted in this work in solving the differential equations of flow and tracer 

transport. The transport of tracer as modelled in this work is then compared with the tracer 

transport obtained by using Darcy’s equation in place of the Brinkman’s equation. Two 

examples are presented to study the transport of tracers and to show the difference in results 

between using the Brinkman’s equation and using the Darcy’s equation. The first example 

consists of a simple linear aquifer model being flooded from one side. The aquifer consists 

of three regions: two porous regions on each side of a free-flow conduit (cave region). We 

studied the effect of Peclet number on tracer transport, and the effect it has on the 

mathematical flow model selection.  The second example is a more complex heterogeneous 

geological structure consisting of more realistic caves with randomly placed water 

producers and injectors.  
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4.2 Mathematical Models for Flow 

4.2.1 Mathematical Equations for Flow 

Brinkman’s equation for a single phase flow can be used to model flow by using a 

combination of Equation 2.7 and Equation 2.13. 

 ( )
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t V
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The mass flow rate can be rewritten in terms of volumetric flow rate as 

 
m wq q  (4.1), 

where, wq  is the volumetric flow rate. 

4.2.2 Discretization of Equations of Flow 

To discretize the equations, the perturbation is done such that the pressures are at the center 

of the grid blocks while the velocities are at the grid interfaces. 

Equation 2.7 for slightly compressible flow, with volumetric flow rate, can be re-written 

as (Chen, 2007) 
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where tc  is the total compressibility of the system. In a slightly compressible flow it is 

assumed that the pressure has small effects on the porosity of the rock and density of the 

flowing fluid.  

The two-dimensional discretization of Eq. 4.2 is  

 
1 1 1 1

, , , ,
2 2 2 2

1 1 1 1 1

, ,
h i h i h i h i

n n n n n nt t
h i y xy h i

b

w
x

c q c
P u u u u P

t y y x x V t

     

   

      
     

    , (4.3) 

where h  and i  are the indices of the grid blocks in the x and y-directions, respectively, 

and n  is the index of the time.  

The discretization of Eq. 4.3 will give two equations representing the x and y directions. 

These equations are  
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4.3 Mathematical Model for Tracer Transport 

4.3.1 Mathematical Equations for Tracer Transport 

The advection-diffusion-adsorption equation is used to model the flow of tracers within a 

karst medium. The equation is given by: 

 
 

 
 .( . ) . 1 a

s r

c c
D c uc c

t t


  

 
      

 
, (4.6) 

where, D , is the dispersion coefficient tensor, c is the concentration of the tracer, sc is the 

sink/source term of the tracer in terms of specific mass rate, r  is the density of the rock, 

and ac is the adsorption of tracer on the surface of the rock (dimensionless). 

The dispersion coefficient tensor when the axis is aligned to the velocity directions is given 

by 

0

0
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y

D
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where, xD and yD , are the principal terms of the diffusion coefficient tensor. We have used 

the following definitions of the diffusion coefficients (Zhang and Bennett, 2002): 
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And, 
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 2 2
*x

y L T

yu u
D

u u
D    , (4.8) 

where, 
*D , is the molecular diffusion coefficient, and  

 2 2

x yu u u  . (4.9) 

L and T are the longitudinal and transverse dispersivity. The equations to solve for 

longitudinal dispersivity are by (Neuman, 1990): 
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, (4.10) 

where L  is the scale of observation. 

The transverse dispersivity is fixed at 30% of the longitudinal dispersivity (ASTM, 1994). 

The tracer adsorption on the surface of the rock can be described using different isotherms 

such as Langmuir, Freundlich, and linear. In this study, we have used a linear isotherm (Eq. 

4.11) because the tracer concentration levels in most interwell tracer tests are low and linear 

isotherms can provide a useful model for tracer adsorption effects (Zemel, 1995). The 

linear isotherm is  

 
a dc K c , (4.11) 

where, dK , is the adsorption coefficient.  
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In our work, cesium was used as a tracer because it is considered to be very effective and 

yields excellent results in carbonate reservoirs (Bjørnstad, Haugen and Hundere, 1994). 

The value of the adsorption coefficient of cesium on carbonate rocks is 13.5ml/g (Singhal 

and Gupta, 2010). 

4.3.2 Discretization of the Advection-Diffusion-Adsorption Equation 

To discretize the equations, the perturbation is done such that the concentrations are at the 

center of the grid blocks while the velocities are at the grid interfaces. 

If we substitute Eq. 4.11 into Eq. 4.6 and assume constant porosity value we obtain 
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(4.12) 

Using the retardation factor, R, given by 

 1
1 drR K







  , (4.13) 

in Equation 4.12 yields 
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The discretized form of the advection-diffusion-adsorption equation is 
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. (4.15) 

In Eq. 4.14 the term, 'c , is set using the upwinding technique.  Eqs. 4.3, 4.4 and 4.5 are 

solved implicitly to obtain the values of pressure and velocities in x and y directions; and 

then using the predicted velocity fields, Eq. 4.15 is then solved to obtain the concentrations 

of tracers in the grid blocks. 

4.4 Example Applications, Results and Discussions 

Two examples are presented. The first example uses a simple two-dimensional aquifer 

model consisting of a free-flow region surrounded in the y-direction by porous regions. 

The examples are used to study the transport of cesium as simulated under two models. 

The first model, named Darcy’s model in this paper, is that in which the fluid transport in 

both the free-flow and porous regions is modeled using Darcy’s equation. The second 

model, named the Brinkman’s model, is that in which Darcy’s equation is used to model 

the flow in the porous region while Brinkman’s equation is used to model the flow in the 

free-flow region.   
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4.4.1 Example 1 

The first example consists of a two-dimensional karst aquifer model flooded with 

underground water carrying cesium (the tracer) at a velocity of 0.6m day from the left 

boundary. The aquifer is closed at the top and bottom edges. The aquifer dimension is 

3240 40 1m   and the total number of grids used in the problem is 20 40 1  . In the 

schematic of the aquifer presented in Figure 10, the region with 100% porosity is the free-

flow region (a cave). This region is surrounded by a porous region of porosity 25% . The 

initial aquifer pressure is 1.38MPa . The aquifer rock and fluid properties are listed on 

Table 1. In using the  Darcy’s model; the permeability of the free-flow region was 

calculated by using the Poisseuille’s equation for flow between parallel plates (Zimmerman 

and Bodvarsson, 1994)  

 2

12

d
K  , (4.16) 

where d  is the width of the conduit. The permeability within the porous region was set to 

15 23.95 10 m . In the Brinkman’s model, the permeability of the free-flow region is 

infinite. 

The simulation time was taken as 100 days. In this example, the number of unknowns when 

solving the fluid flow equation is 2360  while the number of unknowns when solving the 

advection-diffusion-adsorption equation is 800 . The initial concentration of the tracer 

throughout the aquifer was set to zero. 
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Figure 10: Schematic of the Aquifer used in Example 1. The red portion in the middle is the 

cave while the blue portions are porous media 

Table 1: Aquifer Rock and Fluid Properties 

Parameter Value 

Porosity of Porous Region 25% 

Porosity of Conduit 100% 

Compressibility of the Rock (MPa-1) 2.2 X 10-3 

Compressibility of Water (MPa-1) 4.35 X 10-4 

Viscosity of Water (MPa-s) 1 

Formation Volume Factor of Water 1 
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We study the effect of Peclet number  Pe  on the flow of tracers within the aquifer. The 

Peclet number is given by  

 uL
Pe

D
 , (4.17) 

where u  is the inlet velocity, L  is the width of the conduit opening, and D , the dispersion 

coefficient, found by averaging xxD  and yyD . In this example, we set xx yyD D D   and 

vary the value of D  in order to change the Peclet number associated with the tracer 

transport. Thus, as the value of D  changes, the Peclet number changes. A Peclet number 

of zero means advection effects are absent and a Peclet number of infinity means diffusion 

effects are absent. The retardation factor was set to 1, implying the absence of adsorption.  

Figure 11 shows two sets of concentration profiles: one set obtained by using Darcy’s 

equation as the transport model in the entire aquifer (porous and free-flow regions); and 

the other set obtained using Brinkman’s equation as the transport model in cave and 

Darcy’s equation as the transport model in the porous region. The concentration profiles 

are obtained for different Peclet Numbers. It can be seen from the figure that for very high 

Peclet numbers, the use of Brinkman’s equation results in a sharp parabolic profile within 

the cave whereas the use of Darcy’s equation leads to a flattened, piston-like flow profile 

within the cave. Also, the concentration front in the cave moves faster under the Brinkman’ 

model than under the Darcy’s model. However, at low Peclet Number, the speeds of the 

concentration fronts in the cave remain almost the same under the Darcy and Brinkman’s 

models. Furthermore, we observe that, regardless of the value of Peclet number, the speeds 

of the concentration fronts in the porous region obtained by using the Brinkman’s model 
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in the cave does not differ appreciably from the speed of the front when the Darcy’s 

equation is used in the cave. As the Peclet number decreases, the effect of diffusion 

becomes increasingly prominent and the front obtained from the Brinkman’s model starts 

to spread. When the Peclet number dropped below 100 , both Brinkman’s and Darcy’s gave 

almost similar responses within the aquifer. This observation is further confirmed in Fig. 

12. Figure 12 shows the variations of tracer concentration with time at grid block  10, 20 . 

The plots of tracer concentration shown on the figure are obtained using the Darcy’s 

equation and Brinkman’s equation at Peclet numbers of 10000 (Fig. 12a) and 10 (Fig. 12b), 

respectively. It is observed that at a higher Peclet number the difference between the 

concentration obtained from Brinkman’s model and that obtained from Darcy’s model is 

large. However, at a lower Peclet number both transport equations give almost similar 

results. Thus, the observations in this example implies that at lower values of Peclet 

number, Darcy’s equation with very high permeability value can be used within the free-

flow region when modelling tracer or contaminant transport. However, at higher Peclet 

numbers, Darcy’s equation underestimates the tracer transport within free-flow regions 

such as caves. 

The effect of adsorption on tracer transport was also studied. Figure 13 shows that the 

amount of tracer advected reduces when adsorption is present. The effect of adsorption is 

more prominent in the porous region and near to the walls of the cave than at the center of 

the cave.  
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Figure 11: Concentration maps at different values of Peclet numbers when using a) 

Brinkman’s Equation (left column), and b) Darcy's Equation (right column)  
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Figure 12: Concentration Plots comparing Brinkman's , and Darcy's Equation at different 

values of Peclet number  

 

 

Figure 13: Concentration maps with and without adsorption effects 
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4.4.2 Example 2 

In this example, a more realistic and complex 2D heterogeneous synthetic aquifer (Figure 

14) with randomly placed 7 producers and 6 injectors, is used. Four of the seven producers 

and three of the six injectors are located in the caves, while three producers and three 

injectors are located in the porous region. The aquifer of size 
3609.6 609.6 7.62m 

 32000 2000 25 ft   is located at a depth of 106m. The aquifer is assumed to be closed 

at all sides and the flow within the aquifer is due to the producers and injectors. The initial 

pressure of the aquifer is 1.03 MPa. The rock and fluid properties of the aquifer is same as 

presented in Example 1 on Table 1. 

There are three main megarkarsts in the aquifer, each with a  9.14 30m ft wide opening. 

The hydraulic permeability within the free flow regions is assumed infinite in the 

Brinkman’s model. In the Darcy’s model, the permeability of the cave is 
233.3m  (as 

computed from Eq. 4.17). The porous region is heterogeneous and the hydraulic 

conductivity within this region is log-normally distributed with an average value of 

15 23.95 10 m . 

The simulation time was 6000 days, during which the producers are producing water at a 

rate of  323.85 / 150 /m day bbls day and the injectors are injecting at a rate of 

 327.82 / 175 /m day bbls day . Cesium was injected at a concentration of 250 /g L  into 

the aquifer through the injectors for 2.4 hours after every five years.  
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The aquifer is meshed into 51,889 unequally sized Cartesian grids, with local refinement 

to the grids inside the caves and the porous regions adjacent to the caves. Refinement is 

carried out by breaking each grid in these regions into 2 2  grids. Because of the unequal 

sizing of the grids, the discretized equations presented are no longer entirely applicable 

because: 1) some girds are now connected to more than four grid blocks, and the number 

of grid connections depends on the location being considered; and, 2) the flow fluxes in 

the regions with grid refinement are no longer perpendicular to the grid faces. Therefore, 

prior to implementation of the model, the discretized equations were modified to account 

for these differences.  A MATLAB code has been written to perform the refinement and 

solve the Brinkman’s equation along with the advection-diffusion-adsorption equation. 

The dispersion coefficients were calculated using Eqs. 4.2 and 4.3.  

In the Brinkman’s model, the number of unknowns in the coupled continuity-transport 

equation is 156,201 and the number of unknowns in the Advection-Diffusion-Adsorption 

equation is 51,889.  

Figure 15 shows the concentration distribution within the aquifer obtained from the 

Brinkman’s model at different times. We observe that the tracer transport within the free-

flow conduits is fast while the transport of the tracers within the porous medium is slow 

due to poor conductivity and the adsorption of the tracer on the surface of the porous media.  

Therefore, tracer tests can provide a better understanding of the karst terrain in places 

where the geology is not yet properly understood. 

The simulation of tracer transport was also done using Darcy’s model with a high value of 

permeability in the caves, and the results from this were compared to those from the 
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Brinkman’s model. Comparisons were made using the concentrations of tracer produced 

at the production wells. Figure 16 shows the tracer concentration profile at the producers. 

Also, Table 1 shows the concentrations of the tracer at the producers at the end of the 

simulation run for both models. Producers P1-P4, which are in the caves, produced water 

with higher concentrations of tracer when Brinkman’s model was used than they produced 

when Darcy’ model was used. This is due to the faster moving concentration front in the 

Brinkman’s model relative to the Darcy’s model (already discussed in Example 1).  

Figure 17 shows the difference in concentration profiles between the two models. Shades 

of dark red/yellow define areas where the tracer concentrations obtained from Brinkman’s 

model are higher than those from the Darcy’s model while the blue spots indicate areas 

where the tracer concentrations obtained from Darcy’s model are higher. Close to injectors 

I1-I3, located within the caves, the tracer concentration obtained from the Darcy’s model 

is higher because of the slower moving front. In the Brinkman’s model, the injected tracer 

moves much quicker and is transported farther away from these injectors.   

Producer, P6, whose main sources of tracer is the injector, I2, gives a higher concentration 

when the Darcy’s equation is used. The reason for this is, when Brinkman’s equation is 

used the injected tracers move much quicker towards the producer, P4, due to a higher 

drawdown in that direction, whereas when the Darcy’s equation is used the tracer front 

tend to remain behind and move equally around the injector in each direction. Similar flow 

patterns (Figure 17) can be seen around the injectors I4-I6, which are in the porous region. 

It is observed that a higher tracer concentration from these wells flow towards the caves 

when the Brinkman’s equation is used because of the higher drawdown towards the caves.  
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The results obtained from this example conclude that the use of Darcy’s equation tends to 

underestimate the flow velocity and tracer transport further away from the injection source 

within the conduits. At the same time, it overestimates tracer concentration near the source 

because of the slower moving front. 

 

Figure 14: Schematic of the Aquifer used in Example 2 
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Figure 15: Tracer concentration distribution in the aquifer at different times 
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Figure 16: Produced tracer Concentrations at different producers 
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Table 2: Comparison of Tracer Concentration produced using Brinkman's and Darcy's 

equation at the end of the simulation time (T=6000 days) 

 
 
 

Produced Concentration of Tracer at T = 6000 days (mg/L) 

Producer Brinkman's Equation Darcy's Equation 

P1 0.054 0.024 

P2 2461.680 2109.803 

P3 6.978 4.077 

P4 11451.633 10487.646 

P5 2629.729 2639.202 

P6 0.016 0.020 

P7 0.539 0.508 

 

 

 

Figure 17: Difference in tracer flow patterns when using Darcy's equation and Brinkman's 

equation 
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4.5 Conclusion 

We have presented the use of the cell-centered finite volume method to solve the problem 

of flow in Karst reservoirs. In our work, the Brinkman’s equation was used to model flow 

in the free-flow region while the Darcy’s equation was used to model flow in the porous 

region. We named the combination of these two the Brinkman’s model and compared the 

results from this to the case in which Darcy’s equation was used to model the flow in both 

the free-flow region and the porous region (Darcy model). Using the velocities obtained 

from these two model, we further solve the advection-diffusion-adsorption equation for 

tracer transport in the Karst reservoir using the cell-centered finite volume method.  

Two example applications were presented. Results from these examples show that the 

difference between the concentration profiles obtained from Brinkman’s model and those 

obtained from the Darcy’s model could be appreciable in some cases. Specifically, 

Example 1 showed that at high Peclet number, the results obtained from the two models 

are significantly different while at low Peclet number, the difference between the two 

models are not significant. Also, in Example 2, faster transport of tracers in the free-flow 

region was observed in the Brinkman’s model than in the Darcy’s model.
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CHAPTER 5 

UNSTEADY BRINKMAN’S MODEL FOR FLOW IN KARST 

RESERVOIRS 

5.1 Introduction 

Almost all the models currently being used to model flow through karst reservoirs are 

steady models. This approach however might not be very accurate in modeling flow during 

the early times when the unsteady characteristics of the aquifer might dominate the flow 

profiles. The unsteady characteristics in the flow profile can be introduced because of 

unsteady pressure gradients which are more apparent at the early stages of flow and decays 

gradually with time. Unsteady flow can also be observed in cases with changing boundary 

conditions, such as the change in the aquifer influxes due to increase in rainfall during the 

monsoon seasons or the subsequent decrease of groundwater flux during periods of drought 

(Weeks and Sposito, 1998; Zhu et al., 2014).  Other reasons that could lead to the 

introduction of transient unsteady characteristics are recharge events, well pumping, and 

exposure of coastal settings to oceanic tides (Covington, Wicks and Saar, 2009; Loper and 

Eltayeb, 2010; Reimann et al., 2011). Unsteady characteristics can also be observed in 

aquifers where the flow is non-isothermal. The viscous shear term in the Brinkman’s 

equation is impacted because of the changes in viscosity due to temperature changes.  Very 

few studies have been attempted to add the unsteady parameter to model flow within karst 

aquifers. Some MODFLOW based programs have been developed to couple unsteady 
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streamflow (Jobson and Harbaugh, 1999; LaBaugh and Rosenberry, 2008; Reimann et al., 

2011). 

This paper models the flow of nonreactive tracers in karst aquifers consisting of 

megakarstic geological terrains such as caves, under unsteady flow conditions, by coupling 

the mass conservation equation, the unsteady Brinkman’s equation and the Advection-

Diffusion-Adsorption equation. To the best of our knowledge no studies have been 

conducted to model tracer transport in a single-phase, slightly-compressible flow using 

unsteady Brinkman’s equation in karst aquifers. We solve the coupled differential 

equations of flow and tracer transport by adopting the cell-centered finite-volume 

discretization approach. The transport of tracer modelled in this work is then compared 

with the tracer transport obtained using the steady flow approach. Two examples have been 

solved to study the effects of unsteady flow term in the Brinkman’s equation. The first 

example is a single linear aquifer model that is flooded with water (carrying a tracer) from 

one side. The aquifer consists of a free-flow conduit (cave) surrounded by two porous 

regions. The second example is a complex heterogenous geological structure consisting of 

more realistic caves. 

5.2 Mathematical Model for Flow 

This section describes the differential equations governing the flow of a single-phase fluid 

in a complex karst aquifer and the mathematical formulations used to solve those equations 



54 
 

5.2.1 Mathematical Equations for Unsteady Flow 

Brinkman (1949) developed an equation that could model the coupled flow in an aquifer 

consisting of free-flow and porous regions. The Brinkman’s equation given by 

 1
2 0effp K uu 



      (2.13) 

The Brinkman’s equation can be modified to add the effects of change in velocity with 

time and therefore incorporate the unsteady characteristics of flow within the equation. 

Several studies have been conducted to find an efficient value of the effective viscosity 

parameter (Adler, 1979; Happel and Brenner, 1981; Koplik, 1983; Russel and Sangtae, 

1985; Durlofsky and Brady, 1987; Belhaj et al., 2003; Howells, 2006). However, in this 

work the value of effective viscosity has been kept as the value of viscosity which was 

initially suggested by Brinkman in his work. The unsteady Brinkman’s equation is given 

by (Srinivasan and Nakshatrala, 2012; Nield and Bejan, 2013) 

 1
2 0eff

dv
p K u u

dt



       . (5.1) 

In Eq. 5.1,  is the density of the flowing fluid, v is the intrinsic average velocity and is 

related to u by the Dupuit-Forcheimer relationship  u v , where  is the porosity 

(Nield and Bejan, 2013). Eq. 2 can be further expanded as:  

 
 

1
2. 0eff

v
v v p K uu

t

 
        

   . (5.2) 
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In Eq. 5.2, the term 
v

t

 
 
 

 is known as the local acceleration and it is a result of velocity 

changes with time at a single point. The second term,  .v v , is known as convective 

acceleration and it occurs due the change in velocity from one point to the other at the same 

time. Both these terms together take into consideration the change in velocity both in space 

and time (Hornberger, 2014). On applying the Dupuit-Forcheimer relationship, Eq. 5.2 can 

be re-written as 

 
 

1
2

2

1 1
. 0eff

u
u u p K u

t
u

 
       

 
  

 
. (5.3) 

The significance of using the unsteady Brinkman’s equation is that it can theoretically 

interpolate between the Navier-Stokes equation and the unsteady Darcy’s equation by 

adjusting the values of K ,   and eff . When eff   , K   , and 1 , Eq. 5.3 becomes 

Navier-Stokes equation (Navier, 1822):  
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which can be used to model flow in the free flow region that includes fractures and caves. 

When 0eff  , K K  ( ), and 1 , Eq. 5.3 becomes equivalent to unsteady Darcy’s 

equation which can be used to model flow of fluids in porous media. 
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When eff   , K   ,  and 1 , Eq. 5.3 is used to model the Brinkman’s region which 

starts just at the boundary of the two regions and extends some distance into the porous 

region until the effect of the viscous shear term becomes negligible.  To solve for pressure 

and velocity of flow of a single-phase fluid, Eq. 5.3 is coupled with the mass conservation 

equation given by Eq. 2.2.  

5.2.2 Discretization of Equations of Flow 

While discretizing the equations of flow, the perturbation is done such that the pressures 

are at the center of the grid blocks while the velocities are at the grid interfaces. The 

convective acceleration terms in the unsteady Brinkman’s equation introduces nonlinearity 

to the equation. Therefore, the discretized equations are written as residual functions and 

the Newton-Raphson method for solving nonlinear simultaneous equations is used to solve 

the problem.  

The discretization for the conservation of mass (Eq. 2.2) in two-dimensions is given by 
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, (5.6) 

where h  and i  are the indices of the grid blocks in the x and y-directions, the superscript 

 is the iteration index, while the superscript n is the index of time. 
1

CR 
, is the residual 

function for the conservation of mass. 

The Brinkman’s equations representing the flow in x  and y  directions, respectively, are  
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The discretization of Eq 5.7 will give the following equation 
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where, 
1

xuR 
, is the residual function for the Brinkman’s equation in the x-direction. The 

values of 
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 are evaluated using the upwinding technique 
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And, 
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The discretization of Eq. 5.9 will give the following equation 

 
1 1

, ,
2 2

1 1 1
, , ,

2 2 2

1 1 1
1, , 1,

2 2 2

1
1 1 1 1 1 1

1 1 1 1

2 2

1 1

, 1

2

,

2

h i h i

h i h i h i

h i h i

y

i h

n

y y
y y y y

u

eff

h i h i

x y y

y

y y y

u u
u u u u

R u u u
t

p p

x y x K

u u u
x

  


     

   

  

   

  



 

  

    




     

   

  


    

     
    

 
 

 
    
  

 

  
 3 1 1

, , ,
2 2 2

1 1 1 1

2
2 0

h i h i h i
y y y

eff
u u u

y

  


  

     
     




  

, (5.12) 

where 
1

yuR 
 is the residual function for the Brinkman’s equation in the y-direction. The 

values of 
1
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and 
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(5.14) 

5.3 Mathematical Model for Tracer Transport 

The mathematical models for tracer transport has already been discussed in detail in 

Section 4.3 of this manuscript. 

5.4 Example Applications, Results and Discussions 

Two examples are presented to study the effects of adding the unsteady flow term to the 

Brinkman’s equation. The first example is a simple two-dimensional linear aquifer model 

consisting of a single conduit (free-flow region) surrounded on both sides in y-direction by 

porous regions. The second example is a more complicated heterogeneous aquifer 

consisting of more realistic cave-like structures embedded in a porous media. The transport 

of a tracer (cesium) is used to quantify the effect of presence of the unsteady flow term in 

the Brinkman’s equation.  

5.4.1 Example 1 

The first example is a simple two-dimensional linear aquifer model being flooded with 

underground water carrying a tracer (cesium) at a velocity of 0.6 m day from the left 
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boundary. The aquifer length  L  is 1040m , and its width  W is 40m . In solving this 

problem numerically, the aquifer was discretized into 40 40 1  grids, with the thickness 

kept as 1m  throughout the aquifer. The aquifer is closed at the top, right and bottom 

boundaries.  In the aquifer presented in Fig. 18, the region with 100% porosity (red portion 

in the middle) is the conduit/cave (free-flow region). This region is surrounded by a porous 

region of porosity 25%  (blue portions). The initial aquifer pressure was 1.38MPa . The 

aquifer rock and fluid properties are listed on Table 1. The numerical simulation was run 

for 50 days. A time-step of 0.1 day was used for up to one day, and after that a time-step 

of one day was used till the end of the simulation. 

The number of unknowns solved in the coupled continuity-transport equation was 4720 

and the number of unknowns in the Advection-Diffusion-Adsorption equation was 1600.   

 

Figure 18: Schematic of the aquifer used in Example 1 
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Figure 19 shows the comparison of concentration profiles obtained from the steady and 

unsteady Brinkman’s models at different timesteps. The concentration profile obtained 

from the steady Brinkman’s model is more parabolic compared to the profile obtained from 

the unsteady Brinkman’s model. The differences becomes more apparent in Figs. 20 and 

21 where the instantaneous concentration of tracer obtained using both the equations at 

different locations within the aquifer are presented together. Figure 20 and 21 shows that 

when the steady flowmodel was used, the tracer reached the observation stations earlier 

than when the unsteady flow model was used. This phenomenon can be explained by 

observing the velocity profiles presented in Fig. 22. This figure shows the plot of velocity 

profile for both the steady flow and the unsteady flow conditions at a distance one-fouth of 

the aquifer length (i.e. at 270m from the inlet). The velocity profile from the steady flow 

Brinkman’s model shows an expected parabolic shape in the cave. The velocity profile 

within the porous media is not evident here because of the very low values of velocity 

within the porous regions. Although, a steady flow Brinkman’s model was used, a change 

in the velocity is observed initially when the time duration changes from 0.1 day to 1  day 

(Fig. 22a), this change is observed because of the slightly compressible nature of the fluid 

being assumed, this assumption initially provides unsteady pressure gradients across the 

aquifer. After this the velocity profile remains the same from then on until the end of 

simulation. The velocity profile for the unsteady Brinkman’s equation (Fig 22b) does not 

show an instantaneous parabolic shape, instead at the very early stages the profile is linear. 

As the time proceeds the velocity profile gradually develops into a more parabolic shape, 

the gradual development in velocity profile leads to delay in tracer transport when 

compared to the steady flow. As the velocity profile within the caves develop, the 
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instantaneous tracer concentration at the desired locations start converging for both the 

equations, with the convergence quicker at 0.25L when compared to the location 0.5L , 

because of it being closer to the source, and there being no other disturbance in the aquifer. 

This gradual change in the profile shape for the unsteady flow is due to the interaction of 

pressure gradient with viscosity. As time proceeds, the viscous forces slow the flow near 

the wall whereas the pressure gradient accelerates the flow uniformly in the free-flowing 

region (Zhu et al., 2014).  
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a)  b)  

 

c) d)  

Figure 19: Concentration maps obtained using a) Steady Brinkman's equation, after 10 

days, b) Unsteady Brinkman's equation, after 10 days, c) Steady Brinkman's equation, after 

50 days, d) Unsteady Brinkman's equation, after 50 days 
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a)  

b)  

Figure 20: Instantaneous tracer concentration after 10 days at location a)  from the inlet, b)  

from the inlet 
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a)  

b)  

Figure 21: Instantaneous tracer concentration after 50 days at location a) 0.25L from the 

inlet, b) 0.5L from the inlet 
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a)  

b)  

Figure 22: Velocity profiles for a) Steady flow, and b) Unsteady flow at the location 0.25L 

within the linear aquifer 
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5.4.2 Example 2 

The second example is a more realistic and complex two dimensional heterogenous 

synthetic aquifer (Figure 23) of size 
3304.8×304.8×7.62m  31000×1000×25ft  located at 

a depth of 250m  and is assumed to have an initial pressure of 2.41 MPa . The aquifer was 

meshed into 200 200 1   grids and was assumed to be closed on all sides and the only 

flow within the aquifer is due to five injectors and six producers placed in the aquifer. Also, 

five observation wells were placed in the aquifer and were used to monitor the movements 

of the injected tracer. The rock and fluid properties are shown on Table 1. There are three 

main megakarstic structures as shown in Fig 23. The porous region is heterogeneous and 

the permeability within this region is log-normally distributed with an average value of 

-15 23.95×10 m .  

The simulation time was 50 days, during which the producers produced water at a rate of 

 331.8m /day 200bbls/day  and the injectors injected tracer-laden water at a rate of 

 363.59m /day 400bbls/day . 169g/L of Cesium was injected from the injectors. The 

number of unknowns solved in the coupled continuity-transport equation is 119,600 and 

the number of unknowns in the Advection-Diffusion-Adsorption equation is 40,000.   

Figure 24, shows the concentration distribution within the aquifer at different times when 

the unsteady Brinkman’s equation was used. It is evident from the figure that the tracer 

transport within the conduits is much faster than that in the porous media. The transport in 

porous media is slower due to the lower permeability of porous material to flow and the 

adsorption of tracer on the surface of the rocks. Also, the figure shows that the tracer 
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injected from the well I3, which is located in the porous media, moves towards the cave 

due to a lower resistance to flow in the conduit. This is inspite of the fact that a producer 

P3 is located close to injector I3 and would exert some pull on the injected fluid.  

 

Figure 23: Schematic of the Synthetic Aquifer  (Example 2) 
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The same problem in this example was solved using steady Brinkman’s equation and the 

results were compared with those from the unsteady Brinkman’s equation. The 

comparisons were made using the instantaneous concentration values obtained at the 

observation wells. Figures 25 – 29 shows the concentration values obtained from 

Observation Wells 1 to 5, using the Steady and Unsteady-flow Brinkman’s equations. All 

the observation wells except O4 are located within the cave. At the observation wells within 

the caves (i.e. Figs. 25, 26, 27 and 29), the difference in tracer concentrations obtained 

from the steady and unsteady-flow Brinkman’s model is apparent. In these cases, the 

unsteady flow Brinkman’s model gave lower concentrations than the steady-flow 

Brinkman’s model because its velocity profile takes time to fully develop. However, the 

difference in tracer concentration between the steady and unseady-flow model, at the 

observation well O4 (located in the porous media), is very small and not obvious (Fig. 12). 

This shows that the effect of addition of unsteady flow parameter for a slightly 

compressible flow in porous media is negligible and can be neglected.  
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a)  b)  

 

c)  d)  

Figure 24: Tracer concentration obtained in the aquifer using Unsteady flow Brinkman's 

equation after a) 12.5 days, b) 25 days, c) 37.5 days, d) 50 days 
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a)  b)  

 

c)  d)  

Figure 25: Instantaneous Concentration Profile at Observation Well 1 after a) 12.5 days, b) 

25 days, c) 37.5 days, d) 50 days 
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a)  b)  

 

c)  d)  

Figure 26:  Instantaneous Concentration Profile at Observation Well 2 after a) 12.5 days, b) 

25 days, c) 37.5 days, d) 50 days 
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a)  b)  

 

c)  d)  

Figure 27: Instantaneous Concentration Profile at Observation Well 3 after a) 12.5 days, b) 

25 days, c) 37.5 days, d) 50 days 
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a)  b)  

 

c)  d)  

Figure 28: Instantaneous Concentration Profile at Observation Well 4 after a) 12.5 days, b) 

25 days, c) 37.5 days, d) 50 days 
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a)  b)  

 

c)  d)  

Figure 29: Instantaneous Concentration Profile at Observation Well 5 after a) 12.5 days, b) 

25 days, c) 37.5 days, d) 50 days 
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5.5 Conclusions 

An unsteady flow Brinkman’s model was used to assess the effects of unsteady flow 

conditions in an aquifer. Unsteady flow Brinkman’s model was obtained by adding the 

unsteady flow term present in the Navier-Stokes equation to the Brinkman’s equation. We 

used the cell-centered finite-volume approach to solve the partial differential equation 

arising from the model. The results obtained from the unsteady flow Brinkman’s equation 

were compared to those obtained from the steady flow Brinkman’s model. The velocities 

obtained from the two models were used to simulate tracer transport within the karst 

aquifers by solving the advection-diffusion-adsorption equation. Two examples were 

presented to illustrate the effect of the unsteady-flow term on the simulation of tracer 

transport. The examples showed that the steady and unsteady flow models yielded different 

tracer concentrations at observation wells located in the free-flow region but almost equal 

concentrations values at observation points located in the porous media 
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CHAPTER 6 

FULL FIELD TO SECTOR MODELLING FOR EFFICIENT 

SIMULATION IN KARST RESERVOIRS 

6.1 Introduction 

The Brinkman’s model attempts to model flow within karst aquifers by simultaneously 

solving the mass continuity equation and the momentum equation (Brinkman’s equation) 

for the pressures and velocity distribution within the karst aquifer. Because the Brinkman’s 

model solves one continuity equation and up to three momentum balance equation per grid 

block, the method is very expensive particularly for large aquifers. The Darcy’s model on 

the other hand does not require the need to solve multiple equations per grid. A 

simplification is made by replacing the velocity term in the mass continuity equation by 

the Darcy’s law. This allows solving for only the pressure distribution at the new time step 

in the aquifer and then updating the velocities with these pressures. This makes the Darcy’s 

model a very cheap alternative to the Brinkman’ model. However, the Darcy’s equation 

produces inaccurate results within the caves.  

We propose a sector modeling approach for fluid flow in Karst aquifers. In this approach, 

sectors are carefully chosen to consist of only the caves and a small area of the porous 

region surrounding the caves. The Darcy’s model is first solved in the entire aquifer to 

obtain the pressure and velocity distributions. The Brinkman’s model is then used to solve 

for pressure and velocity in the identified sectors. Because the sectors are much smaller 
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than the aquifer, solving the Brinkman’s model in these sectors is much faster than solving 

it in the entire aquifer. Thus, the method works in three stages: first solving the cheap 

Darcy’s model in the entire aquifer, followed by solving the more expensive Brinkman’s 

model on isolated sectors surrounding each distinct cave, and then updating results from 

the full-field model with those from the sector model. In addition to fluid flow modeling, 

tracer transport in the karst aquifer is implemented to enable us compare the performance 

of sector modeling with those of the Darcy’s and Brinkman’s models.   

Two examples are presented to show the effectiveness of this method. The first example 

involves a simple aquifer model consisting of a cave surrounded on two sides by porous 

media. The second example is a more complex heterogeneous geological structure 

consisting of more realistic caves with randomly placed water producers and injectors. The 

results from the Sector modeling approach were compared with results from the Darcy’s 

and Brinkman’s models. Results showed excellent match between the sector modeling 

approach and the Brinkman’s model. In addition, the sector modeling approach was much 

faster than the Brinkman’s approach. 

6.2 Mathematical Models for Flow 

This section describes the differential equations governing the flow of a single-phase fluid 

in a complex karst aquifer and the mathematical formulations used to solve those equations 
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6.2.1 The Brinkman’s Model 

The mathematical equations and discretization of the Brinkman’s model have been 

discussed in detail in the sections 4.2.1 and 4.2.2 of this manuscript 

6.2.2 The Darcy’s Model 

Based on experimental observations, Darcy (1856) developed a simple correlation to model 

flow across porous media. The Darcy’s equation, shown in Eq. 2.8 can be rearranged as 

 1u K p    . (6.1) 

Similar to Brinkman’s equation, Darcy’s equation for flow has to be combined with the 

continuity equation (Eq. 2.7) to model flow in karst aquifers. In the Darcy’s model, Eq. 6.1 

is substituted into Eq. 2.7 to produce one parabolic equation: 
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. (6.2) 

which can be solved for pressure. This means that only one equation is solved per grid 

block and the size of the linear system of equations remains M M , where M is the 

number of grids in the discretized system. Once the pressures are obtained, the velocities 

can be calculated using Eq. 9 wherever required. This method is well documented (Ertekin, 

Abou-Kassem and King, 2001; Chen, 2007). We note that in the Darcy’s model, the 

permeability in the cave is set to a very high value typically 
1210K  , which is much greater 

than the permeability in the porous media.  
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6.2.3 Discretization of the Darcy’s Model 

Equation 6.2 can be written for slightly compressible flow as (Chen, 2007) 
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Equation 6.3 for a 2D aquifer can be expanded as 
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The discretized form of Eq. 6.4 is given as 
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where h  and i  are the indices of the grid blocks in the x and y-directions, respectively, and 

n  is the index of the time. The above equation is then solved for pressures across the 

aquifer at different time steps. There is only one pressure equation per grid and the solution 

can be computed in much less time. The pressure obtained from solving Eq. 6.5 is used to 

compute the velocity distribution in the aquifer. The computation of velocities in this case 

is very cheap as no system of linear equations is required.  
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6.3 Mathematical Models for Tracer Transport 

The mathematical models for tracer transport has already been discussed in detail in 

Section 4.3 of this manuscript 

6.4 Sector Modeling Approach 

The numerical solution of the Brinkman’s model is a computationally expensive but gives 

accurate fluid velocity profiles in both the porous media and the free-flow regions. On the 

other hand, the numerical solution to the Darcy’s model is very cheap but gives an 

inaccurate fluid velocity profile in the free-flow region. Consequently, we introduce a 

sector modeling approach that exploits the computational inexpensiveness of the Darcy’s 

model and the accuracy of the Brinkman’s model in the caves. The sector modeling 

technique solves the Darcy’s model on the full-field (entire aquifer) and then solves the 

Brinkman’s model on small sectors carved out from the full-field. In doing so, dynamic-

flux boundary conditions (obtained from the solution of the Darcy’s model on the entire 

aquifer) are imposed on the sectors and the results obtained from solving the Brinkman’s 

model (on the small sectors) are used to update the results from the full-field model. A 

description of the sector modeling approach is as follows: 

1. Simulate the pressure distribution in the entire aquifer by solving the Darcy’s model 

(Eq. 6.5). This is the full-field model.  

2. Compute the velocities xu , yu  and zu  at all grid interfaces using Darcy’s law (Eq. 

6.1).  

3. Extract a small region surrounding each distinct cavern.  
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4. Set the velocities obtained at the grid interfaces forming the boundary of each sector 

as the dynamic-flux boundary condition for that sector.  

5. Solve for pressure and velocity distributions in each sector using the Brinkman’s 

model (Eqs. 2.7 and 2.13). This is the sector model.  

6. Update the full-field model with the results from the sector models. 

7. Model tracer transport using the velocity distribution in the updated full-field 

model.  

Figure 30 illustrates the procedure used in sector modeling. Three distinct caves are present 

in the karst aquifer shown in Fig. 30a. In sector modeling, a sector surrounding each of 

these caves would be extracted to obtain three sectors as shown in Fig. 30b. Then the 

Brinkman’s model is run on each of these small sectors to obtain reasonably accurate 

pressure and velocity distributions in the caves.   

To avoid confusion, we define some terminologies introduced in this section. Cave is 

synonymous with free-flow region while Full-field is synonymous with entire aquifer. 

However, a full-field model involves solving the Darcy’s model on the entire aquifer. A 

sector consists of a cave and a small porous region surrounding it. A sector is extracted 

from the full-field. A sector model involves solving the Brinkman’s model on a sector 

while imposing dynamic flux boundary conditions (obtained from the full-field model) on 

the sector.   
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a)  

b)  

Figure 30: Sector extraction from full-field (a) full-field (b) extracted sectors. Note that the 

yellow regions indicate the caves 
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6.5 Example Applications, Results and Discussions 

Two examples are presented to evaluate the accuracy and computational performance of 

the sector modeling technique. The first example is a simple two-dimensional linear aquifer 

model consisting of a cave surrounded on both sides in the y-direction by porous media. 

The second example is a more complicated heterogeneous aquifer consisting of more 

realistic cave-like structures embedded in porous media. The transport of a tracer is used 

to quantify the results.  

6.5.1 Example 1 

The first example consists of a simple linear flow in a two-dimensional aquifer model being 

flooded from the left side at a velocity of 3.26 m day . The aquifer, of dimensions 

1220 41 1.5m m m  , was discretized into 40 41 1   grids (Fig. 31). The aquifer is closed 

at the top and bottom.  In Fig. 31a, the region with 100% porosity (red portion in the 

middle) is the cave, and this section corresponds to Grids 11 31 . This region is surrounded 

by a porous media whose porosity is 25%  (blue portions). The initial aquifer pressure was 

1.38MPa . The aquifer rock and fluid properties are listed on Table 1. Initially, the 

concentration of tracer in the aquifer was set to zero. Then, 30 /g L  of tracer was injected 

from. The numerical simulation was run for 50 days. 

To apply the sector modeling approach, the full-field (Fig. 31a) is reduced to a sector (Fig. 

31b). The number of grids was reduced from 1640 in the full-field to 1080 in the sector.  

Darcy’s model was run on the full-field to obtain the aquifer pressure distribution. The 

velocity distributions in the full-field (Fig. 32a-c) are then computed from the pressure 
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distribution. The velocities at the locations where the sector is extracted from the full-field 

are used as the (flux) boundary conditions of the sector. Because these velocities change 

with time, the boundary conditions imposed on the sector is dynamic and will vary from 

one time to another. The Brinkman’s model is subsequently run on the sector to obtain the 

pressure and velocity distributions in the sector. Results from the portion of the full-field 

model corresponding to where the sector was carved out are then replaced by the results 

from the sector model (Fig. 33a-c).  

To evaluate the accuracy and performance of the sector modeling approach, the 

Brinkman’s model and Darcy’s model approaches were equally solved to obtain the 

pressure, velocity and concentration distributions in the aquifer. Results from the three 

approaches (Darcy, Brinkman and sector modeling) are shown in Figs. 34. The velocity 

profiles from the three approaches are displayed in Fig. 35. We observe an excellent match 

between the profiles from the sector modeling and Brinkman’ model. The Darcy’s model 

however gave a very poor match to the Brinkman’s model. As shown in Fig. 34, the 

concentration distributions obtained from the sector modeling approach and the 

Brinkman’s model are also similar to each other but different from that from the Darcy’s 

model. Thus, the sector modeling approach is more accurate than the Darcy’s model, with 

the accuracy of the sector modeling approach reasonably close to that of the Brinkman’s 

model.  
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a)  

b)  

Figure 31: Schematic of the aquifer used in Example 1: (a) full-field (b) sector 
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a) b)  

 

c)  

Figure 32: Velocity plots obtained after solving Darcy’s equation on the full-field (a) 

velocity distribution in the x-direction, (b) velocity distribution obtained in the y-direction, 

and (c) Quiver plot using the velocity distributions in x and y-directions 
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a) b)  

 

c)  

Figure 33: Velocity plots obtained after updating the results obtained from solving the 

Brinkman’s equation on the sector a) velocity distribution in the x-direction, b) velocity 

distribution obtained in the y-direction, and c) Quiver plot using velocity distribution 
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a) b)  

 

c)  

Figure 34: Concentration maps from different modeling techniques (a) Brinkman’s model 

(b) Darcy’s model (c) sector modeling technique 
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Figure 35: Velocity profiles from different modeling techniques 
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Figure 36 shows a plot of instantaneous tracer concentration at two different observation 

stations. The first observation station (Observation Station 1) is located in Grid  10,21 , 

which is 305m from the inlet.  The second observation station (Observation Station 2) is 

located in Grid  20,21 , which is 610m from the inlet. We observe that the sector modeling 

technique gives a very close match to the Brinkman’s model. Darcy’s model however gives 

inaccurate and much lower concentration values when compared to the other two 

approaches.  

Table 3 displays the sizes of the linear equations solved in the three approaches, their 

complexities, and the runtime taken to solve the problem by those approaches. Also, 

displayed on the table are the ratios of runtimes from the methods to the runtime from the 

Darcy’s model. One way to roughly compare the computational performances of the 

approaches is by analyzing the complexity of problem solved in each approach. A method 

with a higher complexity requires larger simulation time. The set of linear equations 

generated in this example was solved using the LU factorization method. The 

computational complexity or the cost of computation of LU is given as (Boyd and 

Vandenberghe, 2004) 

 3 22
2

3
Cost n n   (6.6) 

where n  is the size of the problem or the number of unknowns. For large values of n  the 

leading term becomes dominant so that the second term  22n  becomes negligible and 
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thus can be neglected. Therefore, in calculating the cost of running the Brinkman’s model 

and the Darcy’s model we have used 

 32

3
Cost n . (6.7) 

Because there are two stages of simulation in the sector modeling approach, the 

computational complexity of this approach is computed from  

 3 3

1 2

2 2

3 3
Cost n n    (6.8) 

where 1n  is the size of the problem solved in the first stage (running the Darcy’s model on 

the entire aquifer) and 2n is the size of the problem solved in the second stage (running the 

Brinkman’s model on the sector). The computational complexities of the three approaches 

in this example are listed on Table 3. We observe that the Brinkman’s model has the largest 

complexity while the Darcy’s model has the lowest complexity.     

Darcy’s model is the fastest of the three methods with a matrix size of 1640 1640  and a 

runtime of 6.941s ( 7.6  times faster than Brinkman’s model). This is because the Darcy’s 

model solves for only pressure and hence solves only one equation per grid block. The 

sector modeling technique is the second fastest ( 2 times faster than the Brinkman’s 

model). The Brinkman’s model is the slowest (with a runtime of 52.856s) due to its high 

computational complexity. We note the relative speed-up achieved by the sector modeling 

approach over the Brinkman’ model approach depends on the size of the carved out sector 

relative to the full-field (entire aquifer). The smaller the sector relative to the aquifer, the 
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larger the speed-up in computational time.  Also, where there exist several unconnected 

caves that require separate sectoral models, all those separate models can be simulated 

simultaneously if parallel computing is available. This is because the simulation of one 

sector does not rely on another sector for inputs. Rather, every sector takes input (in the 

form of dynamic flux boundary conditions) from the solution of the Darcy’s model on the 

entire aquifer (i.e. from the full-field model) 

Table 3: Comparison of problem sizes and simulation runtimes (Example 1) 

Model 
Number of 

Unknowns 

Coefficient 

Matrix Size 

Computational 

Complexity 

Runtime 

(seconds) 

Time 

Ratio 

w.r.t 

Darcy 

Model 

Brinkman's Model 

Approach 
4839 4839 4839  107.56 10  52.856 7.615 

Darcy's Model 

Approach 
1640 1640 1640  92.95 10  6.941 1.000 

Sector 

Modeling 

Approach 

Full-

field 

model 

1640 1640 1640  
112.43 10  26.193 3.774 

Sector 

model 
3173 3173 3173  
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a)  

b)  

Figure 36: Instantaneous contaminant concentrations obtained from the different modeling 

techniques at (a) Observation Station 1  (b) Observation Station 2 
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6.5.2 Example 2 

The second example consists of a complex, more realistic, heterogeneous, two-dimensional 

aquifer (Fig. 37a). The aquifer dimensions are 304.8 304.8 7.62m m m 

 1000 1000 25ft ft ft  .  The aquifer is discretized into 200 200 1   grid blocks. The 

initial aquifer pressure is 2.41MPa . The cave is about 7.5m  wide. The aquifer is closed 

on all sides and the flow and transport of tracers within the model is due to five randomly 

placed injectors and six randomly placed producers. The injector wells are responsible for 

injecting Cesium at a concentration of 30 /g L . The rock and fluid properties used in this 

example is the same as those used in Example 1 and is given on Table 1. The porous region 

is heterogeneous and the permeability within this region is log-normally distributed with 

an average value of 
-15 23.95×10 m (40 )md . There are 6 producers each producing at a rate 

of  363.59m /day 400bbls/day and 5 injectors each injecting at a rate of 

 331.79m /day 200bbls/day .  

The numerical simulation was run for 50 days using a time-step of 0.1 day. Figure 37b 

shows the sector extracted from the aquifer. The number of grids in this sector is 7491  

while that in the full-field is 40000 . The Brinkman’s model, Darcy’s model and sector 

modeling approaches were used to solve for the pressure and velocity distributions in the 

aquifer and the results from these methods were used to solve for the tracer concentration 

in the aquifer. Table 4 lists the number of unknowns, the sizes of the coefficient matrices, 

the computational complexities and the runtimes associated with the three approaches. The 

table shows that the Brinkman’s model approach has the highest complexity while the 
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Darcy’s approach has the lowest complexity. The table also shows that in this particular 

example, the Sector modeling approach is about 13 times faster than the Brinkman’s model 

approach while the Darcy’s model is about 27 times faster than the Brinkman’s model 

approach.  

Figure 38 shows the concentration distribution within the aquifer at different times 

obtained from the sector modeling technique. It is evident from the figure that tracer 

transport within the caves is much faster than that in the porous media. The transport in 

porous media is slower due to the lower permeability of porous media to flow and the 

adsorption of tracer on the surfaces of the rocks.  

In Fig. 39, we compare the instantaneous tracer concentration observed at different 

production wells located within the aquifer. All the producers except P6 are located within 

the caves. The producer P6 is located in the porous region. It is evident from the figure that 

the Darcy’s model gave wrong concentration values at the wells located in the caves. In 

fact, the Darcy’s model underestimated the tracer concentration at the wells located in the 

caves. On the other hand, the sector modeling technique gave an excellent match to the 

Brinkman’s model. In P6, all the three methods gave similar results because the 

Brinkman’s model becomes  Darcy’s model in the porous media.  
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Table 4: Comparison problem sizes and simulation runtimes in Example 2 

Model 

Number 

of 

Unknowns 

Coefficient 

Matrix Size 

Computational 

Complexity 

Runtime 

(seconds) 

Time 

Ratio 

w.r.t. 

Darcy 

Model 

Brinkman's Model 

Approach 
119600 119600 119600  151.14 10  55021.27 27.887 

Darcy's Model 

Approach 
40000 40000 40000  134.27 10  1973.01 1.000 

Sector 

Modeling 

Approach 

Full-

field 

model 

40000 40000 40000  
134.95 10  4161.09 2.109 

Sector 

model 
21735 21735 21735  
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 a)  

b)  

Figure 37: The full-field, the wells and the extracted sector (a) full-field showing the wells 

(b) extracted sector (Example 2)  



99 
 

 

 

 

a) b)  

c) d)  

Figure 38: Concentration maps at (a) 12.5 days (b) 25 days (c) 37.5 days (d) 50 days. 
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a) b)  

c) d)  

e) f)  

Figure 39: Instantaneous tracer concentration at different production wells (a)P1, (b)P2, 

(c)P3, (d)P4, (e)P5 and (f)P6 
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6.6 Conclusion 

A sector modeling approach was proposed to model fluid transport in karst aquifers. The 

approach involves first solving the Darcy’s model on the entire aquifer(full-field model), 

then solving the Brinkman’s model on small sectors extracted from the aquifer (sector 

model) and finally updating the results from the full-field model with those from the sector 

model. Each sector is extracted from a region surrounding a distinct cave in the aquifer. 

The method exploits the fast computation associated with the Darcy’s model and the 

accuracy of modeling flow in the caves associated with the Brinkman’s model. Thus, the 

method runs much faster than the Brinkman’s model without compromising the accuracy 

of results obtained in the caves.  

Two examples were presented to illustrate the effectiveness of the sector modeling 

approach. The first example uses a simple cave surrounded by porous regions in two 

dimensions while the second involves flow in a larger and more complex heterogeneous 

aquifer with realistic cave structures. Both examples clearly show that the sector modeling 

approach is computationally more efficient than the Brinkman’s model and it also gives 

results that matches those from the Brinkman’s model. The Darcy’s model although runs 

faster than both the Brinkman’s model and the sector modeling approach, gave inaccurate 

results within the free-flow regions. We also noticed that the computational speed-up 

realized from the sector modeling approach is higher when the size of the extracted sector 

relative to the full-field is smaller. 
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CHAPTER 7 

DARCY MODEL WITH OPTIMIZED PERMEABILITY 

DISTRIBUTION (DMOPD) TECHNIQUE FOR EFFICIENT 

SIMULATION IN KARST RESERVOIRS 

7.1 Introduction 

As discussed in the previous chapter the issue with both the Brinkman’s model and the 

Darcy-Stokes model is that although both provide fairly accurate results, they are however 

computationally expensive as both these methods attempt to model flow within karst 

aquifers by simultaneously solving the mass conservation equation and up to three 

transport equation per grid block, for the pressure and velocity distribution within the 

aquifer. Darcy’s model on the other hand although inaccurate provides a cheaper 

alternative to the other models as it does not need to solve multiple equations per grid. A 

simplification wherein the transport equation (Darcy’s equation) is substituted into the 

mass conservation equation requires the solution of only one parabolic equation for 

pressure distribution throughout the aquifer.  

The velocity profile obtained when using the Darcy’s model has a more flattened and piston 

like shape which is not accurate and hence it underestimates the flow and therefore 

contaminant transport within the aquifer. The actual velocity profile obtained within free-

flowing regions should be parabolic in shape which is obtained when using the Brinkman’s 

equation or the Navier-Stokes equation. It was observed after running a few test cases that 
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Darcy’s model can be used to mimic the velocity profile obtained from the Brinkman’s 

equation by using a gradually decreasing permeability values from the center towards the 

edges of the free-flowing regions instead of using a single value throughout. This can be 

done by fixing the value of permeability at the center of the free-flowing region equal to 

the value obtained from comparing the Darcy’s law to the Poiseuille Equation of flow 

between two parallel plates  maxk . The permeability values for the consequent zones can 

then be obtained by multiplying maxk with a value between 0.1 – 1 (permeability ratio). 

This value is largest for the zone next to the central region and decreases towards the 

boundaries of the free flow region. Hence in this study, we propose the use of Darcy’s 

model with optimized permeability distribution (DMOPD). This method comprises of the 

following steps: Firstly, the Brinkman’s model is run on the whole aquifer for the first 

timestep. The next step comprises the estimation of the permeability ratios using a global 

optimization technique such as differential evolution (DE). The computations are further 

sped up by parallelly computing each agent within an iterant. Finally, the Darcy’s model 

is run for the remaining timesteps using the optimized values of permeability obtained in 

the second step.  

Three examples are presented to compare the effectiveness of this method to the other 

existing methods. The first example involves a simple aquifer model consisting of a cave 

surrounded on two sides by porous media, this example has a small problem dimension 

with the aquifer having been discretized into 40 41 1   grids. The second example has a 

slightly larger problem dimension with the aquifer having been discretized into 

200 200 1   grids. It has a more complex heterogeneous geological structure consisting 
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of more realistic caves with randomly placed water producers and injectors. The third 

example has the largest problem dimension with the aquifer having been discretized into 

400 400 1   grids. Similar to the second example this is also a complex heterogenous 

geological structure being flooded from one corner of the aquifer and water being produced 

from randomly located producers.  The results from the DMOPD modeling approach were 

compared with results from the Darcy’s model and the Brinkman’s model. Results showed 

a fairly accurate match between the DMOPD approach and the Brinkman’s model. 

DMOPD method was also faster when compared to the Brinkman’s model. 

7.2 Optimization Strategy 

The permeability ratios within the different zones in the caves are estimated using a global 

optimization algorithm. We have used differential evolution (DE) as the global optimizer 

in this work and this section describes the DE algorithm.  

7.2.1 Differential Evolution (DE) 

Differential evolution is an evolutionary type global optimization algorithm developed in 

1997 (Storn and Price, 1997). At each generation, the DE generates a population of 

agents  PN . The population size can be determined using the equation 

  4 3 logPN floor M     , (7.1) 

where, M is the problem dimension or in our case the length of vector r , and the  floor  

function rounds a number to its nearest integer towards negative infinity. Equation 7.1 has 
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previously been previously been used in literature to obtain the population size for different 

evolutionary algorithms  (Auger and Hansen, 2005; Liao and Stützle, 2013). It has also 

been shown to be very efficient with DE (Awotunde, 2015, 2016).  

The best agent and its fitness values are saved as the best solution  bx
 found for the current 

generation  . This is updated whenever a better solution is found during the optimization 

process. The candidate agents for the next generation is then created using methods such 

as mutation, cross-over and selection. For a given vector jx , the mutation process is carried 

out by first selecting three other random vectors 1kx
, 2kx

, and 3kx
  from the population. A 

mutant vector 
1

j

 
is then generated using the equation  

  1

1 2 3kj k kFx x x        , (7.2) 

or, 

  1

1 2bj k kFx x x        , (7.3) 

where,  0,2F  , is the mutation factor.  

The cross-over is carried out by generating a trial vector 
1

j

 
 from each parent vector jx . 

A crossover parameter,  0,1CR , is selected at random by the user, and a random 

number is drawn from a uniform distribution between zero and one. The drawn number is 

then compared to the crossover parameter, if it is less than the crossover parameter the 

element in the trial vector is picked from the mutant vector, otherwise it is picked from 
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the parent vector. The final step is selection, which is carried out by comparing the fitness 

values from both the trial vector and the parent vector. The vector which gives the 

minimum value is selected for the next generation. This process of mutation, cross-over 

and selection is carried out until a pre-determined stopping criteria has been reached 

7.3 The Darcy Model with Optimized Permeability Distribution 

(DMOPD) Approach 

The Brinkman’s model is computationally expensive but accurate in modeling flow in karst 

aquifers. Its high computational requirement results from the fact that it requires the 

simultaneous solution of mass conservation and up to three transport equations for a 3D 

aquifer. The Darcy’s model on the other hand is computationally cheap but is less accurate 

in modeling fluid flow within the caves.  

Here, we introduce a Darcy Model with Optimized Permeability (DMOPD) approach 

which divides the caves into an odd number of zones and then estimates an apparent 

permeability value in each zone such that using the optimized permeability values, the 

Darcy’s model can accurately describe the true velocity profile of flow similar to that 

obtained from the Brinkman’s model. To estimate the permeability distribution within the 

zones, a parameter-estimation algorithm is used to obtain an acceptable match between the 

velocity distribution in the cave computed by the Darcy’s model and that computed by the 

Brinkman’s model. Thus, within the parameter estimation framework, the objective 

function minimized to obtain the set of permeability ratios that provide a velocity profile 

match of the Darcy’s model with the Brinkman’s model is given as 
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2

2

1
BE Dr u u


  , (7.4) 

where r  is the vector of unknown permeability ratios, BEu  is a vector containing the 

velocities xu , yu  and zu  in all the grids within the caves, calculated using the Brinkman’s 

model at the first time-step, Du  a vector containing the velocities xu , yu  and zu  in all the 

grids within the caves, calculated using the Darcy’s model, and   is the length of vectors 

BEu  and Du . Notice that these are velocities computed within the caves only.  

The steps involved in the DMOPD approach are the following: 

1. At the first simulation time-step, use the Brinkman’s model to compute the pressure 

and velocity distribution in the aquifer.  

2. Partition each cave in the aquifer into an odd number of zones.  

3. Assign a maximum permeability value, maxk  to the zone in the central zone of each 

cave.  

4. Use an efficient optimization algorithm to compute the ratio of permeabilities in 

the other zone with respect to the permeability in the central zone. This ratio should 

decrease as we move toward the walls of the cave.  

5. Compute the permeability value for each zone within the cave by multiplying the 

estimated permeability ratio for that zone by the permeability value  maxk  assigned 

to the central zone.  

6. Use the Darcy’s model with the optimized permeability distribution to model 

velocity and pressure distribution for the remaining time-steps.  
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7. Model the tracer transport at subsequent time-steps using the velocity distribution 

obtained in Step 6. 

In Step 3, maxk  is obtained from Poiseuille's equation for flow in pipes. The global 

optimization performed in Step 4 is carried out using parallel computation techniques, 

whereby the objective function for each agent in an iteration is computed simultaneously.  

Figure 40 illustrates the procedure of the selection of zones within the caves. The cave in 

the example shown in Fig. 40 is divided into nine zones, four on each side of the high 

permeability central zone (Zone 5). As can be seen in Fig. 40c, corresponding zones on the 

two sides of the central zone have the same permeability ratio. Thus, every zone except the 

central zone occurs twice so that we only have labels for Zones 1 to 5 for this nine-zone 

partitioning. The permeability ratio of each of Zones 1 to 4 is then estimated using an 

optimization algorithm. The permeability ratio is the ratio of the permeability in that zone 

to the ratio of the permeability in the central zone.  
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a)  

b)  

 c)  

Figure 40: Figure showing the division of caves into different zones and the permeability 

assignment into those zones (a) full-field model (b) division of caves into different zones (c) 

magnification of a section of cave in Fig. 40b 
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7.4 Example Application, Results and Discussions 

To evaluate the computational accuracy of the DMOPD model three examples have been 

studied in this study. The first example is a simple 2D linear aquifer model consisting of a 

cave surrounded by porous media on either side of it. The second example is a slightly 

larger 2D aquifer consisting of more realistic caves embedded into a heterogeneous porous 

media, this example studies the transport of tracers being injected into the aquifer through 

injection wells. The third and the final example is the largest aquifer model studied in this 

study and it studies the transport of contaminants entering the area of interest from one 

corner of the aquifer, with the contaminants being produced at randomly located producer 

wells within the aquifer.  

7.4.1 Example 1 

The first example studied in this paper consists of a simple two-dimensional linear aquifer 

(Fig. 41), consisting of a cave surrounded by porous media on either side of it.  The aquifer 

dimensions are 1220 41 1.5m m m  and it has been discretized into 40 41 1   grids. The 

aquifer is being flooded with water carrying 30 /g L  of contaminant from the left boundary 

at a velocity of 3.26 m day .  The aquifer is closed at the top and bottom. The initial aquifer 

pressure was 1.38MPa . The aquifer rock and fluid properties are listed on Table 1. In Fig. 

41a, the region with 100% porosity (red portion in the middle) is the cave, and this section 

corresponds to Grids 11 31 . This region is surrounded by a porous media whose porosity 

is 25%  (blue portions). 
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Figure 41b, presents the division of the aquifer into different zones for the DMOPD model. 

The aquifer in this example has been divided into 10 separate zones on either side of the 

central zone. The central zone is assigned a very high permeability value, and an optimizer 

is used to estimate the permeability ratios of the other 10 zones.   

7.4.1.1 Trial using rough estimation of permeability ratios 

To check the effectiveness of assigning permeability ratios to different zones a trial case 

was run where instead of optimizing the permeability ratios, they were assigned rough 

estimates. The results showed an improvement in comparison to using a Darcy’s model 

with a single large value of permeability in the whole cave. The estimated permeability 

ratios are shown in Table 5. The permeability ratios are roughly estimated in such a manner 

that lower permeability ratios are used for the zones near the edges of the cave (closer to 

the porous media) and larger permeability ratios are used for zones near the center of the 

caves. This is done because the flow is faster in the center compared to the edges because 

of the viscous shear effects.  

Figure 42 displays the concentration profiles obtained at the end of the simulation run using 

the three different models and it can be observed that the model with the rough permeability 

estimates showed a more parabolic profile which is comparable to the results obtained from 

the Brinkman’s model. The Darcy’s model provides a concentration profile with a flatter 

front.  
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a)  

b)  

Figure 41: Schematic of the aquifer used in Example 1: (a) full-field model (b) division of 

the caves into different zones 
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Table 5: Rough estimated permeability ratios and the corresponding permeability values 

for the 11 zones in Example 1 

Zones 

Permeability 

Ratio 

Permeability 

Value (md) 

Zone 1 0.3  
121.011 10  

Zone 2 0.4  
121.348 10  

Zone 3 0.5  
121.685 10  

Zone 4 0.6  
122.022 10  

Zone 5 0.65  
122.191 10  

Zone 6 0.7  
122.359 10  

Zone 7 0.75  
122.528 10  

Zone 8 0.8  
122.696 10  

Zone 9 0.85  
122.865 10  

Zone 10 0.9  
123.033 10  

Zone 11 (Central 

Zone) 

1  
123.370 10  
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Figure 43, displays the velocity profiles obtained at the center of the aquifer from the three 

models and it can be seen here that the velocity profile obtained using the estimated 

permeability is closer to the parabolic shape obtained using the Brinkman’s model. 

The above results prove that estimating permeability ratios within the zones work and can 

be used to mimic the velocity profiles obtained using the Brinkman’s model. The 

permeability ratios can be more accurately estimated using optimization techniques which 

is performed in the DMOPD model.   
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a) b)  

c)  

Figure 42: Concentration maps obtained from the three different models (a) Brinkman’s 

model (b) Darcy’s model (c) Rough Estimated permeability ratios in the 10 different 
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Figure 43: Velocity Profiles obtained using the three different modelling techniques 
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7.4.1.2 Actual run using the DMOPD model 

The DMOPD model was run on aquifer of example 1 and the results obtained were 

compared to the results of the Brinkman’s model and the Darcy’s model. Differential 

Evolution algorithm was used to estimate the permeabilities by minimizing the objective 

function shown in Eq. 7.4. The upper and lower limits of permeability ratios to be 

optimized for each zone was fixed as 0.1 and 1 respectively. The optimization termination 

criteria was set as 1500 function evaluations. Figure 44 displays the minimization of the 

objective function. Table 6 lists the permeability ratios estimated at the end of the 

optimization cycle in the DMOPD model.  

To evaluate the accuracy and performance of the DMOPD model, the Brinkman’s model 

and the Darcy’s model were solved as well. Figure 45 compares the velocity profiles 

obtained using the different techniques. It can be observed that the velocity profile 

generated by the DMOPD modelling technique produced a very good match with the 

velocity profiles generated from the Brinkman’s model. The velocity profile generated by 

the Darcy’s model did not give a good match in comparison to the other two techniques. 

Fig. 46 shows the contaminant concentration profile generated from the three models. The 

concentration profiles generated by the DMOPD is similar to the concentration profiles 

generated by the Brinkman’s model. The Darcy’s model on the other hand provides a poor 

match in comparison to the Brinkman’s model. 
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Figure 44: Graph showing the minimization of the objective function (Example 1) 

Table 6: Optimized permeability ratios and the corresponding permeability values for the 

11 zones in Example 1 

Zones 
Permeability 

Ratio 

Permeability 

Value 

Zone 1 0.172  
120.580 10  

Zone 2 0.331  
121.115 10  

Zone 3 0.470  
121.584 10  

Zone 4 0.596  
122.009 10  

Zone 5 0.703  
122.369 10  

Zone 6 0.795  
122.679 10  

Zone 7 0.866  
122.918 10  

Zone 8 0.926  
123.121 10  

Zone 9 0.967  
123.235 10  

Zone 10 0.996  
123.357 10  

Zone 11 (Central 

Zone) 
1.000  

123.370 10  
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Figure 45: Velocity Profiles obtained using the three different modelling techniques 

  



120 
 

 

 

a) b)  

c)  

Figure 46: Concentration maps from different modeling techniques (a) Brinkman’s model 

(b) Darcy’s model (c) DMOPD model 
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To further quantify the results the instantaneous contaminant concentration was observed 

at two different locations within the aquifer. The first observation station (Observation 

Station 1) is located in Grid  10,21 , which is 305m from the inlet.  The second observation 

station (Observation Station 2) is located in Grid  20,21 , which is 610m from the inlet. It 

can be observed from Fig. 47 that the DMOPD model gave a very close match to the results 

obtained from the Brinkman’s model. The Darcy’s model however underestimated the 

contaminant concentration at the observed locations.  

Table 7 shows the runtime taken by each model to solve the problems. The table also 

displays the ratios of the runtime taken to solve the problem by each of the approaches to 

the runtime taken to solve the problem using the Darcy’s model. Darcy’s method is the 

fastest amongst all the methods with a runtime of only 0.437 minutes and is almost 7.615 

times faster than the Brinkman’s model, but the problem with this model which has been 

earlier discussed is that it provides erroneous results. The DMOPD model takes 0.803 

minutes to generate the results and is faster than the Brinkman’s model. The interesting 

thing to notice for this case is the majority of time is being taken to estimate the 

permeability. The time taken to run the remaining timesteps is only 0.08 minutes, which is 

closer to Darcy’s model. The number of unknowns when solving the Brinkman’s model is 

4839 compared to 1640 for solving the Darcy’s model or the DMOPD model. For very 

large cases or cases which has more timesteps the DMOPD model can potentially provide 

even faster results. This would be further clarified and tested in the next two examples.  
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a)  

b)  

Figure 47: Instantaneous contaminant concentrations obtained from the different modeling 

techniques at (a) Observation Station 1  (b) Observation Station 2 
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Table 7: Comparison of the simulation run times (Example 1) 

Model Time Taken (min) 

Time Ratio 

w.r.t. Darcy 

Model 

Brinkman's Model 0.881 7.615 

Darcy's Model 0.116 1 

DMOPD 

Time for Permeability 

Estimation: 0.723 
0.803 6.92 

Time to run using the 

estimated Permeability: 0.08 

 

7.4.2 Example 2 

The second example (Fig. 48) studied in this paper is a slightly larger model with the 

dimensions 304.8 304.8 7.62m m m   1000 1000 25ft ft ft   and has been discretized 

into 200 200 1  grid blocks. This is a more realistic example consisting of geometrically 

complex caves embedded in a heterogeneous porous media. The rock and fluid properties 

used in this example is the same as those used in Example 1 and is given on Table 1. The 

aquifer is closed on all sides and the flow and transport of tracers within the model is due 

to five randomly placed injectors and six randomly placed producers. The injector wells 

are responsible for injecting a tracer at a concentration of 30 /g L . The porous region is 

heterogeneous and the permeability within this region is log-normally distributed with an 

average value of 
-15 23.95×10 m (40 )md . There are 6 producers each producing at a rate of 

 363.59m /day 400bbls/day and 5 injectors each injecting at a rate of 
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 331.79m /day 200bbls/day .The numerical simulation wad run for 50 days using a time-

step of 0.1 day.   

Figures 49a and 49b show the division of the caves into three zones. Two above and below 

the central zone.  

This case requires the estimation of only two permeability ratios.  The upper and lower 

limits of permeability ratios to be optimized for each zone was fixed as 0.1 and 1 

respectively. The optimization termination criteria was set as 400 function evaluations. 

Figure 50 shows the minimization of the objective function using the DE optimization 

algorithm. Table 8 lists the permeability ratios estimated and the corresponding 

permeability values of each zones.  

The concentration profile obtained using the DMOPD model at the end of the simulation 

run after 50 days is shown in Fig. 51a. Figure 51b shows the quiver plot of the velocities 

in the aquifer. The quiver plot shows the velocity magnitude. The larger and more thicker 

the size of the arrows the larger the magnitude of velocity in the region. Note that the 

velocity is higher in the areas where the wells are located. It is evident from these figures 

that the tracer travels faster within the caves in comparison to the porous media. The 

transport in porous media is slower due to the lower permeability of porous media to flow 

and the adsorption of tracer on the surfaces of the rocks. 
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Figure 48: Aquifer model used in Example 2 

a) b)  

Figure 49: (a) Figure showing the division of the caves into three different zones (b) 

magnification of a section of the cave 
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Figure 50: Graph showing the minimization of the objective function (Example 2) 

Table 8: Optimized permeability ratios and the corresponding permeability values for the 3 

zones in Example 2 

Zones Permeability Ratio 
Permeability 

Value 

Zone 1 0.485  
101.091 10  

Zone 2 0.863  
101.942 10  

Zone 3 (Central Zone) 1.000  
102.250 10  
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a)  

b)  

Figure 51: (a) Plot of concentration profile at the end of 50 days (b) quiver plot showing the 

velocity direction and magnitude within the aquifer 
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The instantaneous tracer concentration at the producers obtained from the DMOPD model 

were compared to the results obtained from the Brinkman’s model and the Darcy’s model 

(Fig. 52). All the producers are located in the caves except for P6 which is located in the 

porous region. It is evident from the results that the Darcy’s model produced erroneous 

results as it underestimated the tracer concentration in the caves except for in the porous 

region where it gave similar results to the Brinkman’s model. The DMOPD model provided 

a very good match with the Brinkman’s model. Table 9 compares the runtime for each 

modelling technique and the ratio with respect to time taken to run Darcy model. The fastest 

of all techniques is the Darcy’s model but it produces erroneous results. The DMOPD 

model gives very accurate results and is about 24 times faster than the Brinkman’s model. 

Compared to Example 1 DMOPD model provided much faster results because of the 

increase in model size. The number of unknowns to be solved in DMOPD or Darcy’s model 

is only 40000 compared to 119600 for the Brinkman’s model.  
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a) b)  

c) d)  

e) f)  

Figure 52: Instantaneous tracer concentration at different production wells (a)P1, (b)P2, 

(c)P3, (d)P4, (e)P5 and (f)P6  
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Table 9: Comparison of the simulation run times (Example 2) 

Model Time Taken (min) 

Time Ratio 

w.r.t. Darcy 

Model 

Brinkman's Model 917.021 27.887 

Darcy's Model 32.884 1 

DMOPD 

Time for Permeability 

Estimation: 3.266 

37.929 1.153 Time to run using the 

estimated Permeability: 

34.664 

 

7.4.3 Example 3 

The third example (Fig. 53) is the largest model studied in this paper and has the 

dimensions 609.6 609.6 7.62m m m   2000 2000 25ft ft ft   which has been discretized 

into 400 400 1  grid blocks. Similar to the second example this aquifer model consists of 

geometrically complex cave structure embedded into a heterogeneous porous media. The 

aquifer model is closed on the top and right boundaries. The bottom and left boundaries 

are partially open such that contaminant laden water enters the aquifer from the bottom left 

corner of the aquifer at a velocity of 2.57 m day .  There are five randomly placed 

producers in the aquifer producing at the rate of  315.9m /day 100bbls/day . The rock and 

fluid properties are provided in Table 1. The simulation was run for 50 days while using a 

time-step of 0.1 days. 
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The aquifer has been divided into four different zones, with three zones on either side of 

the high permeability central zone (Fig 54 a & b).  

 

Figure 53: Aquifer model used in Example 3 
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a) b)  

Figure 54: (a) Figure showing the division of the caves into four different zones (b) 

magnification of a section of the cave 

 

This example required the estimation of permeability ratios in three different zones around 

the central layer. The minimization of the objective function is shown in Fig. 55. The upper 

and lower limits of permeability ratios to be optimized for each zone was fixed as 0.1 and 

1 respectively. The optimization termination criteria was set as 400 function evaluations. 

Table 10 lists the estimated permeability ratio and the corresponding permeability values.  

Figure 56a displays the contaminant distribution in the aquifer after 50 days. Figure 56b 

displays the quiver plot of velocities. The contaminant moves faster within the caves than 

it does in the porous media.  

The instantaneous contaminant concentration at the producers obtained from the DMOPD 

model were compared to the results obtained from the Brinkman’s model and the Darcy’s 

model (Fig. 57). All the producers are located in the caves except for P3 which is located 

in the porous region. Similar to the previous example it can be noticed that the Darcy model 
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although the fastest, underestimates the contaminant concentration inside the caves. The 

DMOPD model gives very good match to the Brinkman’s model and it is only 1.084 times 

slower than Darcy, and about 35.5 times faster than the Brinkman’s model. The 

Brinkman’s model was the slowest and took almost 13 days to complete 500 timesteps.  

Table 11 lists the time taken to complete 500 timesteps using each modelling technique.  
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Figure 55: Graph showing the minimization of the objective function (Example 3) 

Table 10: Optimized permeability ratios and the corresponding permeability values for the 

4 zones in Example 3 

Zones 
Permeability 

Ratio 

Permeability 

Value 

Zone 1 0.361  
90.812 10  

Zone 2 0.699  
91.573 10  

Zone 3 0.913  
92.054 10  

Zone 4 (Central 

Zone) 
1.000  

92.250 10  
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a)  

b)  

Figure 56: (a) Plot of concentration profile at the end of 50 days (b) quiver plot showing the 

velocity direction and magnitude within the aquifer 
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a) b)

c) d)  

 e)  

Figure 57: Instantaneous tracer concentration at different production wells after 50 days 

(a)P1, (b)P2, (c)P3, (d)P4, and (e)P5 
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Table 11: Comparison of the simulation run times for first 500 timesteps (Example 3) 

Model Time Taken (min) 

Time Ratio 

w.r.t. Darcy 

Model 

Brinkman's Model 18605.836 38.522 

Darcy's Model 482.992 1 

DMOPD 

Time for Permeability 

Estimation: 33.328 

523.771 1.084 Time to run using the 

estimated Permeability: 

490.443 

 

7.5 Conclusion 

A Darcy Model with Optimized Permeability Distribution (DMOPD) was proposed to 

model fluid transport in karst aquifers. This approach divides the free flowing regions 

(caves) into different zones and optimizes the permeability ratios in those zones to mimic 

the velocity profile obtained using the Brinkman’s model. The permeability ratio is the 

ratio of the permeability in that zone to the maximum permeability in the central zone. This 

method provides a good match to the solution obtained using the Brinkman’s model. 

Three examples were presented to illustrate the effectiveness of the DMOPD model. The 

first example is a simple linear aquifer model consisting of only 1640 grids. The velocity 

profiles and the contaminant concentration obtained were an excellent match to the results 

obtained using the Brinkman’s model. The DMOPD model was 1.1 times faster than the 

Brinkman’s model. The second example is a larger and more complex hetrogeneous aquifer 

consisting of 40000 grids. The results obtained here were also a good match to the 
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Brinkman’s model and was found to be 24 times faster than the Brinkman’s model. The 

final example is the largest model consisting of 160000 grids and the DMOPD model was 

found to be 35.5 times faster than the Brinkman’s model. After looking at these cases it 

can be concluded that as the number of grids was increased the DMOPD modelling 

technique was more computationally effective in comparison to the Brinkman’s model. 
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CHAPTER 8 

MODELLING OF TWO PHASE FLOW IN KARST 

RESERVOIRS 

8.1 Introduction 

The rapid increase in the oil demand makes it a must to tackle complex reservoirs. The 

numerical modelling of carbonate karst reservoirs is considered to be one of the more 

challenging and attractable problems to be studied. Statistical studies revealed that 20%-

30% of recoverable hydrocarbons are stored in unconformity surfaces (Flügel, 2004). 

Many oil reservoirs and water aquifers are related to paleokarst, such as Hainaut carbonate 

and sulphate karstic aquifer (Licour, 2014) , Raspo Mare reservoir (Gauchet and Corre, 

1996; Bellentani et al., 2016), gas reservoirs of Sinian (Zou, 2013), Yarqon-Taninim 

aquifer (Dafny, Burg and Gvirtzman, 2010), Buda thermal karst system (Albert, Virág and 

Erőss, 2015) and Tahe oil reservoir in Tarim Basin in China (Peng et al., 2009; Li, Hou 

and Ma, 2016). Keeping all these factors in mind it is important to come up with a 

numerical formulation which can model two phase flow in such reservoirs. Methods have 

been developed to estimate oil recovery factor in karst reservoirs consisting of cave systems 

by determination of connected caves from 3D maps using advanced workflows which 

integrate all sources of data: 3D seismic to production data (Montaron et al., 2014). 

One method to model two phase flow in karst reservoirs consisting of macroscopic 

structures such as caves is by using the Darcy-Stokes discontinuum model along with a 
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BJS boundary condition. A study was conducted on the Tahe oil reservoir where a 

streamline based Darcy-Stokes model was used to model flow of two phase slightly 

compressible fluids in karst reservoirs. The Navier Stokes equation for two phase was used 

in the caves and the two phase Darcy’s equation was used in the porous media. Both the 

equations were coupled using the BJS boundary condition. The solution was compared to 

the Darcy’s model in both the regions and it was found that Darcy-Stokes model provided 

a faster breakthrough at the producers when compared to the Darcy’s model (Peng et al., 

2009). 

Another method to model two phase flow through such fractured karst reservoirs is by 

using an effective permeability tensor obtained using the homogenization theory and the 

Darcy Stokes discontinuum model while using the BJS boundary condition. Once the 

tensor is obtained the next step is the calculation of the pseudo relative permeabilities using 

an analytical method. Once the permeability tensor and the the pseudo relative 

permeabilities are obtained, the simple elliptic formulation of the Darcy’s model can be 

used to model flow within such reservoirs. This is a form of the EPM (effective porous 

media) method discussed in the literature review section of the manuscript. This study was 

conducted on the Tahe oil reservoir in western china (Huang, Yao and Wang, 2013). 

In this chapter we have attempted to develop numerical formulations to model two phase 

flow in karst reservoirs using a modified Brinkman’s model. We have also attempted to 

model two phase flow in karst reservoir using the DMOPD (Darcy Model with Optimized 

Permeability Distribution) model discussed in detail in the previous section. The only 

difference is that instead of using the elliptic model of the Darcy’s equation we used the 
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decoupled model where the Darcy’s equation is solved separately from the mass 

conservation equation. A finite volume approach is used to model two phase flow in karst 

reservoirs using the DMOPD model. A simple linear aquifer model consisting of a cave 

surrounded by porouse media on either side is used to study the effect of two phase flow 

in karst reservoirs. The reservoir is initially at the initial water saturation and is being 

flooded by water from the left side of the aquifer.  

8.2 Mathematical Models for Flow in Caves and Porous Media 

8.2.1 Mathematical Equations for Two Phase Flow in Caves 

A two phase Navier-Stokes equation can be used to model flow in the caves. The mass 

conservation equation for a two-phase immiscible laminar flow can be given by (Ishii and 

Hibiki, 2011) 

  
 

b

qS
v S

Vt

   
  

 



 


. (8.1) 

Where,   denotes the phase, either oil or water in this case. The S  denotes the fraction of 

the area covered by the phase  . The detailed derivation for Eq. 8.1 is as follows 

 
source accumulationin outm m m m   . (8.2) 

Equation 8.2 shows the mass balance. Each of the terms is shown are shown in Eqs. 8.5, 

8.7 and 8.8  
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  .in out

A

m m u n dA     , (8.3) 

Where, A is the area occupied by the particular phase , it can be related to the total area 

of flow by Eq. 8.4 

 
bA S A  , (8.4) 

Where bA is the total area available for flow 
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Combining Eqs. 8.5, 8.7 and 8.8 and substituting them in Eq. 8.2 we get 
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Applying the Gauss Divergence Theorem on Eq. 8.9 we get 
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Removing the integral from Eq. 8.10 and rearranging it, we would obtain Eq. 8.1. 

The momentum conservation equation for two phase flow or the Steady Flow Navier-

Stokes equation for modelling flow in caves can be given by  

 0S p     , (8.11) 

Where ,   is the deviatoric stress tensor for that particular phase. The deviatoric stress 

tensor for two phase flow can be given as follows. 

 
 

1
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 . (8.12) 

Where,  is the viscosity of the fluid.  can be given as follows 

 
   

1

2

T
v v 

    
 

. (8.13) 

For an incompressible system Eq. 8.2 can be rewritten as 
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    . 0
T
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. (8.14) 

8.2.2 Mathematical Equations for Two Phase Flow in Porous Media 

The mass conservation equation for two phase flow in porous media can be given by the 

following equation 
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 (8.15) 

Where   is the porosity of the porous media 

The momentum conservation equation or the transport equation is given by the Darcy’s 

equation for two phase flow 

 1

0rkp uK   


   , (8.16) 

Where rk   is the relative permeability of that phase 

8.3 Modified Brinkman’s Model for Two Phase Flow in Karst 

Reservoirs 

In this section we have attempted to modify the single phase Brinkman’s equation in order 

to obtain a set of equations that would be able to solve the flow of two phase fluids in karst 

reservoirs.  
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8.3.1 Mathematical Equations 

The mass conservation equations can be obtained by comparing Eqs. 8.1 and 8.15, and is 

as follows 
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, (8.17) 

Where,  

 0,
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. (8.18) 

The momentum equation can be given by comparing Equations 8.14 and 8.16 and is given 

as follows 
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. (8.19) 

The significance of using the two-phase Brinkman’s equation is that it can theoretically 

interpolate between the two-phase steady flow Navier-Stokes equation and the two-phase 

Darcy’s equation by adjusting the values of K ,   and eff .    

8.3.2 Solution of the Two-Phase Modified Brinkman’s Equation 

Equation 8.17 gives two mass conservation equations for each phase. These equations are 

as follows: 
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For Oil, 
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For Water, 
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The formation volume factor of the fluid is given by w wsc w
B   , and oo sc o

B   , 

where, osc and wsc are the fluid densities at standard conditions. The inverse of the 

formation volume factors are given by 1
o

o

b
B

 , and 1
w

w

b
B

 . Equations 8.20 and 8.21 

can be rewritten as 

For Oil, 
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For Water, 

  
 w w w w

w w w

b

b q

V

S b
b u S

t


 


, (8.23) 

Equation 8.19 is in a vectoral form and provides two equations (momentum equations in 
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the x and y direction) per phase. Giving a total of four equations. They are as follows: 

For Oil, 
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For Water, 
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The equations 8.22 – 8.27 are solved along with some closure equations. The closure 

equations are as follows: 

 1S  , (8.28) 
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c o wp p p  , (8.29) 

Where, cp , is the capillary pressure which is the difference in pressure across the interface 

between two phases. In this research we assume zero capillary pressure. Therefore, 

 
o wp p p  , (8.30) 

8.3.2 Discretization of the Two-Phase Modified Brinkman’s Equation 

While discretizing the equations of flow, the perturbation is done such that the pressures 

are at the center of the grid blocks while the velocities are at the grid interfaces. The system 

of equations to be solved are non-linear. The primary unknowns are the pressure ( p ), 

water saturation ( wS ), velocity of oil in x-direction ( oxu ), velocity of water in x-direction (

wxu ), velocity of oil in y-direction ( oyu ), and velocity of water in y-direction ( wyu ). Because 

of the non-linearity of the problem, the discretized equations are written as residual 

functions and the Newton-Raphson method for solving nonlinear simultaneous equations 

is used to solve the problem.  

The discretization for the conservation of mass for each phase (Eq. 8.22 & Eq. 8.23) in 

two-dimensions is given by 
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Where, the values of saturation at the grid boundaries are evaluated using the upwinding 

technique, For example: 
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where h  and i  are the indices of the grid blocks in the x and y-directions, the superscript 

 is the iteration index, while the superscript n is the index of time. 
1

MCOR 
, is the residual 

function for the conservation of mass of oil phase, and 
1

MCWR 
, is the residual function for 

the conservation of mass of water phase. 
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The discretization for Eq. 8.24 is as follows: 
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1

oxMuR 
is the residual for the oil velocity in the x-direction  
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The discretization for Eq. 8.25 is as follows: 
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1

oyMuR 
 is the residual for the oil velocity in the y-direction 
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The discretization for Eq. 8.26 is as follows: 
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1

wxMuR 
is the residual for the water velocity in the x-direction  



153 
 

The discretization for Eq. 8.257 is as follows: 

 

3 1

1 1

1 1
, ,

2 2

, ,
2 2

1
1

2
1,

1 1

, 1 ,

1 1
1 1

2 2, 1 ,

1 1
1

1 1 1 12 2, ,
2 2 2

1

2

2 2

1 1

h i h i

wy

h i h i

h i h

w w

weff wy weff wy

weff wy

Mu h i h i

w wh i h i

w wwh i h ieff wy

R

S S

S S

p p
y y

u u
y y

uS S u
x x

  

  

  

 

 

 

 

 

 

  

  



 
 



 


   


 

        

      









,
2

,
2

1
,

1

1

2

1
,

2

1

1 1

2 2, 1 ,

1 1
1

1 1 1 12 2, ,
2 2 2 2

1

1

1 1
,

2 2

2 2

1 1

1

i

h i

h i

h i

weff weff

weff weff wy

w

y rw

wef

w wh i h i

w wh i

wf

h i

h i

S S

S S

K

y y

u
x x

x y

k

S



 

  





 

 















 



 


   





 

 
 
 
 
 
  
 
 
 
 
 
 

       

        

   




1 1

, 1 ,
2 2

1 1
, 1 , 1

2 2

1 1
1 1

1 1
,

2 2

1 1
1 1

1 1 1 1
, ,

2 2 2 2

1

1 1

h i h i

h i h i

wx weff wx

we

w h i

w wh i h iff wx weff wx

u u
x y

u u
x y x y

S

S S

  

  



 

  

   

 
 

 

 
 

   

   

      


  





. 

(8.38) 

 

1

wyMuR 
 is the residual for the water velocity in the y-direction 
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8.4 Numerical Modelling of Two-Phase Flow Using the Darcy Model 

with Optimized Permeability Distribution (DMOPD) Approach 

The Modified Brinkman’s model for two phase flow is complicated to model and code 

because it requires the simultaneous solution of six different equations. Here, we introduce 

a Darcy Model with Optimized Permeability (DMOPD) approach for two-phase flow 

which is similar to the DMOPD approach for single phase flow wherein it divides the caves 

into an odd number of zones and then estimates an apparent permeability value in each 

zone such that using the optimized permeability values, the Darcy’s model can accurately 

describe the true velocity profile of flow similar to that obtained from the Brinkman’s 

model. The difference here from the DMOPD approach discussed in Chapter 7 is that the 

permeability distribution within the caves is obtained by assuming single phase flow 

through the reservoir. Once the permeability distribution has been obtained the two-phase 

Darcy’s model (Eq. 8.15 & Eq. 8.16), can be used to predict flow within the reservoir. To 

estimate the permeability distribution within the zones, a parameter-estimation algorithm 

is used to obtain an acceptable match between the velocity distribution in the cave 

computed by the Darcy’s model and that computed by the Brinkman’s model. Thus, within 

the parameter estimation framework, the objective function minimized to obtain the set of 

permeability ratios that provide a velocity profile match of the Darcy’s model with the 

Brinkman’s model is given by Eq. 7.4.  

The steps involved in the DMOPD approach are the following: 

1. Initially the Brinkman’s model for single phase fluid (water) is used to compute the 

pressure and velocity distribution in the aquifer.  
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2. Partition each cave in the aquifer into an odd number of zones.  

3. Assign a maximum permeability value, maxk  to the zone in the central zone of each 

cave.  

4. Use an efficient optimization algorithm to compute the ratio of permeabilities in 

the other zone with respect to the permeability in the central zone. This ratio should 

decrease as we move toward the walls of the cave.  

5. Compute the permeability value for each zone within the cave by multiplying the 

estimated permeability ratio for that zone by the permeability value  maxk  assigned 

to the central zone.  

6. The two-phase Darcy’s model with the optimized permeability distribution is then 

used to model velocity and pressure distribution within the reservoir.  

8.5 Example Application, Results and Discussions 

The example studied here consists of a simple linear flow in a two-dimensional reservoir 

model being flooded with water from the left side at a velocity of 3.18m day . The aquifer, 

of dimensions 1220 41 1.5m m m  , was discretized into 40 41 1   grids (Fig. 58). The 

aquifer is closed at the top and bottom.  In Fig. 31a, the region with 100% porosity (red 

portion in the middle) is the cave, and this section corresponds to Grids 14 28 . This 

region is surrounded by a porous media whose porosity is 25%  (blue portions). The initial 

aquifer pressure was 27.58MPa .The numerical simulation was run for 50 days. Different 

correlations have been used to calculate the oil and water properties at each timesteps. They 

are as follows (Note: All these equations input and output values in field units)  
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86 10

w
c

   

Relative Permeabilities within porous media is given by: 
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Within the caves the Relative permeabilities are linear with respect to saturation 

 1 1

ro ok S   . (8.43) 

 1 1

rw wk S   . (8.44) 

The caves have been divided into eight different zones, seven on either side of the cenral 

zone (Fig. 59). The initial water saturation in the reservoir is 35%. The irreducible water 

saturation is 20% and the residual oil saturation is 10%. 

The DMOPD model was run on reservoir shown in Fig. 58 & 59. Differential Evolution 

algorithm was used to estimate the permeabilities by minimizing the objective function 

shown in Eq. 7.4. The upper and lower limits of permeability ratios to be optimized for 

each zone was fixed as 0.1 and 1 respectively. The optimization termination criteria was 

set as 3000 function evaluations. Figure 60 displays the minimization of the objective 

function. Table 12 lists the permeability ratios estimated at the end of the optimization 

cycle in the DMOPD model. The same case was run using the Darcy’s model to compare 

the results obtained using the DMOPD model 

Figure 61 shows the plot of water saturation obtained after 20 days and after 50 days using 

the DMOPD model. We can observe the parabolic shape obtained due to the free-flowing 

region. To further quantify the results the instantaneous water saturation was observed at 

two different locations within the aquifer (Fig 62). The first observation station 

(Observation Station 1) is located in Grid  10,21 , which is 305m from the inlet.  The 

second observation station (Observation Station 2) is located in Grid  20,21 , which is 

610m from the inlet. It can be observed from Fig 62 that breakthrough occurred quicker in 
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both the locations when DMOOD model has been used. This is due to the parabolic shape 

of the front.  

 

Figure 58: Reservoir Model Used 

 

Figure 59: Division of Cave into 8 different zones 
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Figure 60: Graph showing the minimization of the objective function 

Table 12: Optimized permeability ratios and the corresponding permeability values for the 

8 zones  

Zones 
Permeability 

Ratio 

Permeability 

Value 

Zone 1 0.234  
120.819 10  

Zone 2 0.437  
121.473 10  

Zone 3 0.609  
122.052 10  

Zone 4 0.750  
122.528 10  

Zone 5 0.859  
122.895 10  

Zone 6 0.938  
123.161 10  

Zone 7 0.985  
123.319 10  

Zone 8 (Central 

Zone) 
1  

123.370 10  
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a)  

b)  

Figure 61: Figure Showing the Plot of Water Saturation after a) 20 days, and b) 50 days 
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a)  

b)  

Figure 62: Plot Showing the Water Saturation a) Observation Station 1, b) Observation 

Station 2 
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8.6 Conclusion 

We have presented the mathematical formulation for the modified Brinkman’s model to 

numerically model two-phase flow in karst reservoirs. A cell-centered finite volume 

discretization of the modified Brinkman’s model has also been presented.  

Due to the complexities associated with the development of codes for a two phase modified 

Brinkman’s model we used the DMOPD model for two-phase flow. This approach divides 

the free flowing regions (caves) into different zones and optimizes the permeability ratios 

in those zones to mimic the velocity profile obtained using the Brinkman’s model assuming 

single phase flow. The permeability ratio is the ratio of the permeability in that zone to the 

maximum permeability in the central zone. Once the permeabilities for each zones have 

been obtained a two-phase Darcy’s model is used to simulate flow within the reservoir. 

We presented one example to study this method. The example studied is a simple linear 

reservoir consisting of a cave surrounded by porous media on either side. The resulting 

water saturation plot showed a parabolic shape within the cave. When compared to the 

Darcy’s model, the DMOPD model observed a faster breakthrough of water at the 

observation locations. 
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CHAPTER 9 

CONCLUSIONS AND RECOMMENDATIONS 

9.1 Conclusions 

The primary outcomes of this research work are as follows 

• Brinkman’s equation was used to model flow in karst reservoirs using the cell-

centered finite volume method and then the advection-diffusion-adsorption 

equations were used to model tracer transport. Comparisons were made to the 

Darcy’s model and it was found that at high Peclet number, the results obtained 

from the two models are significantly different, with transport being faster in the 

Brinkman’s model, while at low Peclet number, the difference between the two 

models are not significant. 

• An unsteady flow Brinkman’s model was obtained by adding the unsteady flow 

term present in the Navier-Stokes equation to the Brinkman’s equation. The results 

obtained from the unsteady flow Brinkman’s equation were compared to those 

obtained from the steady flow Brinkman’s model. The examples showed that the 

steady and unsteady flow models yielded different tracer concentrations at 

observation wells located in the free-flow region but almost equal concentrations 

values at observation points located in the porous media. The velocity profile 

generated by the unsteady Brinkman’s model does not produce a parabolic shape 

instantaneously, but gradually becomes more parabolic with time.  
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• A sector modeling approach was proposed to model fluid transport in karst aquifers.  

The method exploits the fast computation associated with the Darcy’s model and 

the accuracy of modeling flow in the caves associated with the Brinkman’s model. 

Thus, the method runs much faster than the Brinkman’s model without 

compromising the accuracy of results obtained in the caves. Results clearly show 

that the sector modeling approach is computationally more efficient than the 

Brinkman’s model and it also gives results that matches those from the Brinkman’s 

model. For a model consisting of 40000 grids the Sector modelling approach was 

found to be 13 times faster than the Brinkman’s model.  

• A Darcy Model with Optimized Permeability Distribution (DMOPD) was proposed 

to model fluid transport in karst aquifers. Results obtained show that as the number 

of grids was increased the DMOPD modelling technique was more computationally 

effective in comparison to the Brinkman’s model. For a model consisting of 40000 

grids the DMOPD model was found to be 24 times faster than the Brinkman’s 

model. 

• The mathematical formulation for the modified Brinkman’s model to numerically 

model two-phase flow in karst reservoirs was developed. A cell-centered finite 

volume discretization of the modified Brinkman’s model has also been presented. 

The DMOPD modelling technique was used to model flow within the reservoir. 

The resulting water saturation plot showed a parabolic shape within the cave. When 

compared to the Darcy’s model, the DMOPD model observed a faster breakthrough 

of water at the observation locations. 
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9.2 Recommendations 

Based on the insights obtained from this research work, we propose the implementation of 

the following items to further improve upon the methods that have already been discussed 

in this dissertation: 

• Modelling reactive transport within the karst caves by coupling advection-

diffusion-adsorption-reaction equation along with the Brinkman’s model 

• Application of the Sector Modelling approach and the DMOPD approach to 

irregular shaped grids, while using different discretization techniques 

• Study the existence of a correlation between the cave dimensions and the 

permeability ratios in the DMOPD model 

• Codes can be developed for the modified Brinkman’s model for two phase flow 

and the results can be compared with the DMOPD model to check the accuracy of 

the results obtained 



166 
 

REFERENCES 

Adler, P. M. (1979) ‘Motion and Rupture of a Porous Sphere in a Linear Flow Field’, 

Journal of Rheology, 23(1), p. 25. doi: 10.1122/1.549514. 

Albert, G., Virág, M. and Erőss, A. (2015) ‘Karst porosity estimations from archive cave 

surveys - Studies in the Buda Thermal Karst System (Hungary)’, International Journal of 

Speleology, 44(2), pp. 151–165. doi: 10.5038/1827-806X.44.2.5. 

Allaire, G. (1989) ‘Homogenization of the stokes flow in a connected porous medium’, 

Asymptotic Analysis. IOS Press, pp. 203–222. doi: 10.3233/ASY-1989-2302. 

Andreo, B., Carrasco, F., Duran, J. J. and LaMoreaux, J. W. (2010) Advances in Research 

in Karst Media. Leipzig: Springer-Verlag Berlin Heidelberg. doi: 10.1007/978-3-642-

12486-0. 

Arbogast, T. and Brunson, D. S. (2007) ‘A Computatonal Method for Approximating a 

Darcy-Stokes system Governing a Vuggy Porous Media’, Computational Geosciences, 

11(3), pp. 207–218. 

Arbogast, T. and Gomez, M. S. M. (2009) ‘A discretization and multigrid solver for a 

Darcy-Stokes system of three dimensional vuggy porous media’, Computational 

Geosciences, 13(3), pp. 331–348. doi: 10.1007/s10596-008-9121-y. 

Arbogast, T. and Lehr, H. L. (2006) ‘Homogenization of a Darcy – Stokes system 

modeling vuggy porous media’, Media, 78712, pp. 291–302. doi: 10.1007/s10596-006-

9024-8. 

ASTM (1994) 1994 Annual Book of ASTM Standards: Emergency Standard Guide for 

Risk-Based Corrective Action Applied at Petroleum Release Sites (Designation: ES 38-

94). West Conshohocken, PA: American Society for Testing and Materials. 

Auger, A. and Hansen, N. (2005) ‘A Restart CMA Evolution Strategy With Increasing 

Population Size’, in 2005 IEEE Congress on Evolutionary Computation. IEEE, pp. 1769–

1776. doi: 10.1109/CEC.2005.1554902. 

Awotunde, A. A. (2015) ‘Estimation of well test parameters using global optimization 

techniques’, Journal of Petroleum Science and Engineering. Elsevier, 125, pp. 269–277. 

doi: 10.1016/J.PETROL.2014.11.033. 

Awotunde, A. A. (2016) ‘Generalized field-development optimization with well-control 

zonation’, Computational Geosciences. Springer International Publishing, 20(1), pp. 

213–230. doi: 10.1007/s10596-016-9559-2. 



167 
 

Bai, M., Elsworth, D. and Roegiers, J.-C. (1993) ‘Multiporosity/multipermeability 

approach to the simulation of naturally fractured reservoirs’, Water Resources Research, 

pp. 1621–1633. doi: 10.1029/92wr02746. 

Beavers, G. S. and Joseph, D. D. (1967) ‘Boundary conditions at a naturally permeable 

wall’, Journal of Fluid Mechanics. Cambridge University Press, 30(1), p. 197. doi: 

10.1017/S0022112067001375. 

Beavers, G. S., Sparrow, E. M. and Magnuson, R. A. (1970) ‘Experiments on Coupled 

Parallel Flows in a Channel and a Bounding Porous Medium’, Journal of Basic 

Engineering. American Society of Mechanical Engineers, 92(4), p. 843. doi: 

10.1115/1.3425155. 

Belhaj, H., Agha, K., Butt, S. and Islam, M. (2003) ‘A Comprehensive Numerical 

Simulation Model for Non-Darcy Flow including Viscous Inertial and Convective 

Contributions. Paper SPE-85678-MS’, in Nigeria Annual International Conference and 

Exhibition, 4-6 August. Abuja, Nigeria: Society of Petroleum Engineers. doi: 

http://dx.doi.org/10.2118/85678-MS. 

Bellentani, G., Godi, A., Siliprandi, F., Terdich, P., Famy, C., Fournier, F., Jumeaucourt, 

C., Leandri, P. and Le Maux, T. (2016) ‘Rospo Mare Integrated Reservoir Study Italy, 

Adriatic Sea: An Innovative Approach of Karst System Modeling and History Match’, in. 

Society of Petroleum Engineers. doi: 10.2118/181636-MS. 

Bi, L., Qin, G. and Popov, P. (2009) ‘An Efficient Upscaling Process BMulti-Physics 

Model for Flow ased on a Unified Fine-scale Simulation in Naturally Fracture Carbonate 

Karst Reservoirs.Paper SPE 125593’, in SPE/EAGE Reservoir Characterization and 

Simulation Conference, 19-21 October. Abu Dhabi: Society of Petroleum Engineers. doi: 

10.2118/125593-MS. 

Bird, R., Stewart, W. and Lightfoot, E. (2002) Transport phenomena. Second. John 

Wiley & Sons. 

Bjørnstad, T., Haugen, O. B. and Hundere, I. A. (1994) ‘Dynamic behavior of radio-

labelled water tracer candidates for chalk reservoirs’, Journal of Petroleum Science and 

Engineering. Elsevier, 10(3), pp. 223–238. doi: 10.1016/0920-4105(94)90083-3. 

Borghi, A., Renard, P. and Cornaton, F. (2016) ‘Can one identify karst conduit networks 

geometry and properties from hydraulic and tracer test data?’, Advances in Water 

Resources. Elsevier Ltd, 90, pp. 99–115. doi: 10.1016/j.advwatres.2016.02.009. 

Boyd, S. and Vandenberghe, L. (2004) Convex Optimization. Cambridge University 

Press. Available at: https://dl.acm.org/citation.cfm?id=993483 (Accessed: 20 October 

2017). 



168 
 

Brinkman, H. C. (1949) ‘A calculation of the viscous force exerted by a flowing fluid on 

a dense swarm of particles’, Applied Scientific Research, 1(1), pp. 27–34. doi: 

10.1007/BF02120313. 

Cabras, S., De Waele, J. and Sanna, L. (2008) ‘Caves and Karst Aquifer Drainage of 

Supramonte (Sardinia, Italy): A Review.’, Acta Carsologica, 37(2–3). doi: 

10.3986/ac.v37i2.148. 

Castany, G. (1966) Traite Partique des Equx Souterraines. Edited by Dunod. Pariss. 

Chen, Z. (2007) Reservoir Simulation: Mathematical Techniques in Oil Recovery. 

Society for Industrial and Applied Mathematics. doi: 10.1137/1.9780898717075. 

CIPR, U. R. (2016) Oil in ancient caves poses new challenges. ScienceDaily, 

ScienceDaily. Available at: www.sciencedaily.com/releases/2016/01/160125090756.htm 

(Accessed: 28 March 2016). 

Corbel, J. (1959) ‘Karsts du Yucatan et de la Floride’, Bulletin de l’Association de 

géographes français. Persée - Portail des revues scientifiques en SHS, 36(282), pp. 2–14. 

doi: 10.3406/bagf.1959.7594. 

Covington, M. D., Wicks, C. M. and Saar, M. O. (2009) ‘A dimensionless number 

describing the effects of recharge and geometry on discharge from simple karstic 

aquifers’, Water Resources Research, 45(11). doi: 10.1029/2009WR008004. 

Dafny, E., Burg, A. and Gvirtzman, H. (2010) ‘Effects of Karst and geological structure 

on groundwater flow: The case of Yarqon-Taninim Aquifer, Israel’, Journal of 

Hydrology, 389(3–4), pp. 260–275. doi: 10.1016/j.jhydrol.2010.05.038. 

Darcy, H. (1856) Les Fontaines Publiques de la Ville de Dijon. Edited by V. Dalmont. 

Paris, France. 

Donald A. Nield, A. B. (2013) Convection in Porous Media. Edited by 4. New York: 

Springer-Verlag New York. doi: 10.1007/978-1-4614-5541-7. 

Durlofsky, L. and Brady, J. F. (1987) ‘Analysis of the Brinkman equation as a model for 

flow in porous media’, Physics of Fluids, 30(11), pp. 3329–3341. doi: 10.1063/1.866465. 

Ertekin, T., Abou-Kassem, J. H. and King, G. R. (2001) Basic applied reservoir 

simulation. Society of Petroleum Engineers. Available at: http://store.spe.org/Basic-

Applied-Reservoir-Simulation--P12.aspx (Accessed: 13 September 2017). 

Flügel, E. (2004) Microfacies of Carbonate Rocks - Analysis, Interpretation and 

Application. Berlin: Springer Berlin Heidelberg. 

Ford, D. and Williams, P. (2007) Karst Hydrogeology and Geomorphology. West Sussex, 

England: John Wiley & Sons Ltd,. doi: 10.1002/9781118684986. 



169 
 

Gauchet, R. and Corre, B. (1996) ‘Rospo Mare Field : A Unique Experience of Heavy Oil 

Production with Horizontal Wells in a Karst Reservoir in Presence of a Strong Tilted 

Hydrodynamism’, in. Society of Petroleum Engineers. doi: 10.2118/36869-MS. 

Göppert, N. and Goldscheider, N. (2007) ‘Solute and Colloid Transport in Karst Conduits 

under Low- and High-Flow Conditions’, Ground Water, 46(1), pp. 61–68. doi: 

10.1111/j.1745-6584.2007.00373.x. 

Gulbransen, A., Hauge, V. and Lie, K. (2009) ‘A multiscale mixed finite element method 

for vuggy and naturally fractured reservoirs’, in SPE Reservoir Simulation Symposium, 2-

4 February. The Woodlands, Texas, USA: Society of Petroleum Engineers. Available at: 

https://www.onepetro.org/conference-paper/SPE-119104-MS. 

Happel, J. and Brenner, H. (1981) Low Reynolds number hydrodynamics. Dordrecht: 

Springer Netherlands (Mechanics of fluids and transport processes). doi: 10.1007/978-94-

009-8352-6. 

Hartmann, A., Goldscheider, N., Wagener, T., Lange, J. and Weiler, M. (2014) ‘Karst 

water resources in a changing world: Review of hydrological modeling approaches’, 

Reviews of Geophysics, 52(3), pp. 218–242. doi: 10.1002/2013RG000443. 

Häuselmann, P., Otz, M. and Jeannin, P. Y. (2003) ‘A review of the dye tracing 

experiments done in the Siebenhengste karst region (Bern, Switzerland)’, Eclogae 

Geologicae Helvetiae, 96, pp. 23–36. Available at: http://boris.unibe.ch/86628/ 

(Accessed: 17 December 2016). 

He, J., Killough, J. E., Fadlelmula, F., Mohamed, M. and Fraim, M. (2015) ‘A Unified 

Finite Difference Model for The Simulation of Transient Flow in Naturally Fractured 

Carbonate Karst Reservoirs’, SPE Reservoir Simulation Symposium. 

He, J., Killough, J. E., Fadlelmula F., M. M. and Fraim, M. (2015) ‘Unified Finite 

Difference Modeling of Transient Flow in Naturally Fractured Carbonate Karst 

Reservoirs - A 3D Case Study. Paper SPE-175098-MS’, in SPE Annual Technical 

Conference and Exhibition. Houston, Texas: Society of Petroleum Engineers. doi: 

10.2118/175098-MS. 

Hornberger, G. M. (2014) Elements of physical hydrology. Johns Hopkins University 

Press. 

Howells, I. D. (2006) ‘Drag due to the motion of a Newtonian fluid through a sparse 

random array of small fixed rigid objects’, Journal of Fluid Mechanics. Cambridge 

University Press, 64(3), p. 449. doi: 10.1017/S0022112074002503. 

Hu, Y., Li, D., Shu, S. and Niu, X. (2016) ‘Finite-volume method with lattice Boltzmann 

flux scheme for incompressible porous media flow at the representative-elementary-



170 
 

volume scale.’, Physical review. E. American Physical Society, 93(2–1), p. 23308. doi: 

10.1103/PhysRevE.93.023308. 

Huang, Z. Q., Yao, J. and Wang, Y. Y. (2013) ‘An efficient numerical model for 

immiscible two-phase flow in fractured karst reservoirs’, Communications in 

Computational Physics, 13(2), pp. 540–558. doi: 10.4208/cicp.160711.240212a. 

Ishii, M. and Hibiki, T. (2011) Thermo-fluid dynamics of two-phase flow. Springer. 

Jackson, J. A. (1997) Glossary of Geology. Virgina, USA: American Geological Institute. 

Jobson, H. E. and Harbaugh, A. W. (1999) Modifications to the diffusion analogy 

surface-water flow model (DAFLOW) for coupling to the modular finite-difference 

ground-water flow model (MODFLOW), Open-File Report 99-217. U.S. Dept. of the 

Interior. Available at: https://pubs.er.usgs.gov/publication/ofr99217 (Accessed: 25 May 

2017). 

Jones, I. P. (1973) ‘Low Reynolds number flow past a porous spherical shell’, 

Mathematical Proceedings of the Cambridge Philosophical Society, 73(1), pp. 231–238. 

doi: 10.1017/S0305004100047642. 

Joodi, A., Sizaret, S., Binet, S., Bruand, A., Alberic, P. and Lepiller, M. (2010) 

‘Development of a Darcy-Brinkman model to simulate water flow and tracer transport in 

a heterogeneous karstic aquifer (Val d’Orléans, France)’, Hydrogeology Journal, pp. 

295–309. doi: 10.1007/s10040-009-0536-x. 

K. Pruess, J.S.Y. Wang, Y. W. T. (1988) Effective Continuum Approximation for 

Modeling Fluid and Heat Flow in Fractured Porous Tuff. Report SAND86-7000. 

Albuquerque, New Mexico. 

Kincaid, T. R., Hazlett, T. J. and Davies, G. J. (2002) ‘Quantitative groundwater tracing 

and effective numerical modeling in karst : an example from the Woodville Karst Plain of 

North Florida’, Ground Water, (850), pp. 1–8. doi: 10.1061/40796(177)13. 

Koplik, J. (1983) ‘Viscosity renormalization in the Brinkman equation’, Physics of 

Fluids. AIP Publishing, 26(10), p. 2864. doi: 10.1063/1.864050. 

Kossack, C. A. and Gurpinar, O. (2001) ‘A Methodology for Simulation of Vuggy and 

Fractured Reservoirs. SPE-66366-MS’, in SPE Reservoir Simulation Symposium, 11-14 

February. Houston, Texas: Society of Petroleum Engineers. doi: 10.2118/66366-MS. 

Krotkiewski, M., Ligaarden, I. S., Lie, K. A. and Schmid, D. W. (2011) ‘On the 

importance of the stokes-brinkman equations for computing effective permeability in 

karst reservoirs’, Communications in Computational Physics, 10(5), pp. 1315–1332. doi: 

10.4208/cicp.290610.020211a. 



171 
 

LaBaugh, J. W. and Rosenberry, D. O. (2008) ‘Introduction and Characteristics of Flow’, 

in Field Techniques for Estimating Water Fluxes Between Surface Water and Ground 

Water. U.S. Geological Survey Techniques and Methods 4–D2. Available at: 

https://pubs.usgs.gov/tm/04d02/ (Accessed: 25 May 2017). 

Li, Y., Hou, J. and Ma, X. (2016) ‘Data integration in characterizing a fracture-cavity 

reservoir, Tahe oilfield, Tarim basin, China’, Arabian Journal of Geosciences, 9(8). doi: 

10.1007/s12517-016-2562-z. 

Liao, T. and Stützle, T. (2013) ‘Bounding the population size of IPOP-CMA-ES on the 

noiseless BBOB testbed’, in Proceeding of the fifteenth annual conference companion on 

Genetic and evolutionary computation conference companion - GECCO ’13 Companion. 

New York, New York, USA: ACM Press, p. 1161. doi: 10.1145/2464576.2482694. 

Licour, L. (2014) ‘The geothermal reservoir of Hainaut: the result of thermal convection 

in a carbonate and sulfate aquifer’, Geologica Belgica. 

Ligaarden, I., Krotkiewski, M., Lie, K. A., Pal, M. and Schmid, D. (2010) ‘On the 

Stokes-Brinkman Equations for Modeling Flow in Carbonate Reservoirs’, in ECMOR XII 

- Proceedings of the12th European Conference on the Mathematics of Oil Recovery. doi: 

10.3997/2214-4609.20144924. 

Loper, D. E. and Eltayeb, I. (2010) ‘A linear model of conduit waves in karstic aquifers’, 

Geophysical & Astrophysical Fluid Dynamics.  Taylor & Francis Group , 104(4), pp. 

309–322. doi: 10.1080/03091921003610152. 

Lucia, F. J. (2007) Carbonate Reservoir Characterization An Integrated Approach. 

Maloszewski, P., Herrmann, A. and Zuber, A. (1999) ‘Interpretation of tracer tests 

performed in fractured rock of the Lange Bramke basin, Germany’, Hydrogeology 

Journal, 2(7), pp. 209–218. 

Maoshan, C. and Shifan, Z. (2011) ‘Detecting Carbonate-karst Reservoirs Using the 

Directional Amplitude Gradient Difference Technique; Paper SEG-2011-1845’, 2011 

SEG Annual …, pp. 1845–1849. doi: 10.1190/1.3627564. 

Milanovic, P. T. (2005) Water Resources Engineering in Karst, CRC Press. Florida. doi: 

10.1017/CBO9781107415324.004. 

Montaron, B. A., Xue, F. J., Tian, W. and Han, P. R. P. S. (2014) ‘Cave Geomorphology 

and its Effects on Oil Recovery Factors in Tarim Karst Reservoirs , West China. Paper 

IPTC-17722-MS’, in Conference, I. P. T. (ed.) International Petroleum Technology 

Conference, 10-12 December. Kuala Lumpur, Malaysia. doi: 10.2523/17722-MS. 

Morales-Juberías, T., Olazar, M., Arandes, J. M., Zafra, P., Antigüedad, I. and Basauri, F. 

(1997) ‘Application of a solute transport model under variable velocity conditions in a 



172 
 

conduit flow aquifer: Olalde karst system, Basque Country, Spain’, Environmental 

Geology. Springer-Verlag, 30(3–4), pp. 143–151. doi: 10.1007/s002540050141. 

Navier, C. L. (1822) Memoire Sur les lois du mouvement des fluides. Edited by M. A. 

Sci. France. 

Neale, G. and Nader, W. (1974) ‘Practical significance of brinkman’s extension of 

darcy’s law: Coupled parallel flows within a channel and a bounding porous medium’, 

The Canadian Journal of Chemical Engineering, 52(4), pp. 475–478. doi: 

10.1002/cjce.5450520407. 

Neuman, S. P. (1990) ‘Universal scaling of hydraulic conductivities and dispersivities in 

geologic media’, Water Resources Research, 26(8), pp. 1749–1758. doi: 

10.1029/WR026i008p01749. 

Nield, D. A. and Bejan, A. (2013) Convection in Porous Media. New York, NY: Springer 

New York. doi: 10.1007/978-1-4614-5541-7. 

Odeh, A. S. (1964) ‘Unsteady-State Behavior of Naturally Fractured Reservoirs. SPE-

966-PA’, Society of Petroleum Engineers Journal. Society of Petroleum Engineers, 5(1), 

pp. 60–66. doi: 10.2118/966-PA. 

Oehlmann, S., Geyer, T., Licha, T. and Sauter, M. (2015) ‘Reducing the ambiguity of 

karst aquifer models by pattern matching of flow and transport on catchment scale’, 

Hydrology and Earth System Sciences, 19(2), pp. 893–912. doi: 10.5194/hess-19-893-

2015. 

Peng, X., Du, Z., Liang, B. and Qi, Z. (2009) ‘Darcy-Stokes Streamline Simulation for 

the Tahe-Fractured Reservoir With Cavities’, SPE Journal, 14(September), pp. 543–552. 

doi: 10.2118/107314-PA. 

Popov, P., Efendiev, Y. and Qin, G. (2009) ‘Multiscale modeling and simulations of 

flows in naturally fractured Karst reservoirs’, Communications in Computational Physics, 

6(1), pp. 162–184. doi: 10.4208/cicp.2009.v6.p162. 

Popov, P., Qin, G., Bi, L. and Efendiev, Y. (2007) ‘Multiphysics and multiscale methods 

for modeling fluid flow through naturally fractured carbonate karst reservoirs’, in SPE 

Middle East Oil & Gas Show and Conference, 11-14 March. Kingdom of Bahrain: 

Society of Petroleum Engineers. Available at: https://www.onepetro.org/journal-

paper/SPE-105378-PA. 

Popov, P., Qin, G., Bi, L., Efendiev, Y., Ewing, R., Kang, Z. and Li, J. (2007) ‘Multiscale 

Methods for Modeling Fluid Flow Through Naturally Fractured Carbonate Karst 

Reservoirs’, in SPE Annual Technical Conference and Exhibition, 11 - 14 November. 

Anaheim, California, USA: Society of Petroleum Engineers. 



173 
 

Pruess, K. and Narasimhan, T. N. (1985) ‘A Practical Method for Modeling Fluid and 

Heat Flow in Fractured Porous Media. SPE-10509-PA’, Society of Petroleum Engineers 

Journal, 25(1), pp. 14–26. doi: 10.2118/10509-PA. 

Reimann, T., Geyer, T., Shoemaker, W. B., Liedl, R. and Sauter, M. (2011) ‘Effects of 

dynamically variable saturation and matrix-conduit coupling of flow in karst aquifers’, 

Water Resources Research, 47(11). doi: 10.1029/2011WR010446. 

Rivard, C. and Delay, F. (2004) ‘Simulations of solute transport in fractured porous 

media using 2D percolation networks with uncorrelated hydraulic conductivity fields’, 

Hydrogeology Journal. Springer-Verlag, 12(6), pp. 613–627. doi: 10.1007/s10040-004-

0363-z. 

Russel, W. and Sangtae, K. (1985) ‘Modeling of Porous Media by Renormalization of the 

Stokes Equations’, Journal of Fluid Mechanics, 154, pp. 269–286. doi: 

10.1017/S0022112085001525. 

Saffman, P. G. (1971) ‘On the Boundary Condition at the Surface of a Porous Medium’, 

Studies in Applied Mathematics, 50(2), pp. 93–101. doi: 10.1002/sapm197150293. 

Schlumberger (2008) ‘Characterization of Fractured Reservoirs’. Available at: 

www.slb.com/carbonates. 

Singhal, B. B. S. and Gupta, R. P. (2010) Applied Hydrogeology of Fractured Rocks. 

Dordrecht: Springer Netherlands. doi: 10.1007/978-90-481-8799-7. 

Smart, C. (1988) ‘Artificial Tracer Techniques for the Determination of the Structure of 

Conduit Aquifers’, Ground Water, 26(4), pp. 445–453. doi: 10.1111/j.1745-

6584.1988.tb00411.x. 

Srinivasan, S. and Nakshatrala, K. B. (2012) ‘A stabilized mixed formulation for 

unsteady Brinkman equation based on the method of horizontal lines’, International 

Journal for Numerical Methods in Fluids, 68(5), pp. 642–670. doi: 10.1002/fld.2544. 

Staut, M. and Auersperger, P. (2006) ‘Tracing of the Stream Flowing Through the Cave 

Ferranova Buža, Central Slovenia’, Acta Carsologica, 35(2–3). doi: 10.3986/ac.v35i2-

3.231. 

Storn, R. and Price, K. (1997) ‘Differential Evolution – A Simple and Efficient Heuristic 

for global Optimization over Continuous Spaces’, Journal of Global Optimization. 

Kluwer Academic Publishers, 11(4), pp. 341–359. doi: 10.1023/A:1008202821328. 

Trice, R. (2005) ‘Challenges and Insights in Optimising Oil Production form Middle 

Eastern Karst Reservoirs. SPE-93679-MS’, in Proceedings of SPE Middle East Oil and 

Gas Show and Conference, 12-15 March. Bahrain: Society of Petroleum Engineers. doi: 

10.2118/93679-MS. 



174 
 

Vassilev, D. and Yotov, I. (2009) ‘Coupling Stokes-Darcy Flow with Transport’, SIAM 

Journal on Scientific Computing, 31(5), pp. 3661–3684. doi: 10.1137/080732146. 

Warren, J. E. and Root, P. J. (1962) ‘The Behavior of Naturally Fractured Reservoirs. 

SPE-426-PA’, Society of Petroleum Engineers Journal. Society of Petroleum Engineers, 

3(3), pp. 245–255. doi: 10.2118/426-PA. 

Weeks, S. W. and Sposito, G. (1998) ‘Mixing and stretching efficiency in steady and 

unsteady groundwater flows’, Water Resources Research, 34(12), pp. 3315–3322. doi: 

10.1029/98WR02535. 

White, K. A., Aley, T. J., Cobb, M. K., Weikel, E. O. and Beeman, S. L. (2013) ‘Tracer 

Studies Conducted Nearly Two Decades Apart Elucidate Groundwater Movement 

Through A Karst Aquifer In The Frederick Valley Of Maryland’, pp. 101–112. 

White, W. B. (1977) ‘Role of Solution Kinetics in the Development of Karst Aquifers’, 

Karst Hydrogeology, 12, pp. 503–517. 

Wu, Y.-S. (1999) On the Effective Continuum MEthod for Modeling Multiphase Flow, 

Multicomponent Transport and Heat Transfer in Fractured Rock. LBNL-42720. 

Berkeley. 

Wu, Y.-S. and Pruess, K. (1988) ‘A Multiple-Porosity Method for Simulation of 

Naturally Fractured Petroleum Reservoirs. SPE-15129-PA’, SPE Reservoir Engineering, 

3(1), pp. 327–336. doi: 10.2118/15129-PA. 

Wu, Y., Qin, G., Ewing, R. and Efendiev, Y. (2006) ‘A multiple-continuum approach for 

modeling multiphase flow in naturally fractured vuggy petroleum reservoirs’, in 

International Oil & Gas Conference and Exhibition in China, 5-7 December. Beijing, 

China: Society of Petroleum Engineers. doi: http://dx.doi.org/10.2118/104173-MS. 

Y.S. Wu, C. Finsterle, K. P. (1996) ‘Computer Models and their development for the 

unsaturated zone model at Yucca Mountain’, in G.S. Bodvarsson, M. B. (ed.) 

Development and Calibration of the three dimensional site-scale unsaturated-zone model 

of Yucca Mountain, Nevada. Berkeley, CA: Lawrence Berkely National Laboratory. 

Yao, J., Huang, Z., Li, Y., Wang, C., Lv, X. and Engineering, P. (2010) ‘Discrete 

Fracture Vug Network Model for Modeling Fluid Flow in Fractured Vuggy Porous 

Media; SPE 130287’, SPE International Oil & Gas Conference and Exhibition, (2005), 

pp. 1–14. 

Zemel, B. (1995) Tracers in the Oil Field. Amsterdam: Elseiver Science B.V. 

Zhang, C. and Bennett, G. D. (2002) Applied Contaminant Transport Modeling. 2nd edn. 

New York: John Wiley & Sons Inc. 



175 
 

Zhang, L., Bryant, S. L., Jennings, J. W., Arbogast, T. J. and Paruchuri, R. (2004) 

‘Multiscale Flow and Transport in Highly Heterogeneous Carbonates. Paper SPE-90336-

MS’, in SPE Annual Technical Conference and Exhibition, 26-29 September. Houston, 

Texas: Society of Petroleum Engineers. doi: http://dx.doi.org/10.2118/90336-MS. 

Zhu, T., Waluga, C., Wohlmuth, B. and Manhart, M. (2014) ‘A Study of the Time 

Constant in Unsteady Porous Media Flow Using Direct Numerical Simulation’, 

Transport in Porous Media, 104(1), pp. 161–179. doi: 10.1007/s11242-014-0326-3. 

Zimmerman, R. W. and Bodvarsson, G. S. (1994) Hydraulic Conductivity of Rock 

Fractures. Berkeley, CA. Available at: 

http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/26/034/26034259.pdf. 

Zou, C. (2013) ‘Carbonate Fracture-Cavity Reservoir’, in Unconventional Petroleum 

Geology. Elsevier, pp. 191–221. 

 

 

 

  



176 
 

VITAE 

Name    : Md Sarim Jamal 

Nationality   : Indian 

Date of Birth   : 1/5/1989 

 Email    : sarim.jamal@gmail.com 

Address   : 56, A.N. Path, South P.P. Colony, Patna-13, Bihar, India 

Educational Qualification : Ph.D. (Petroleum Engineering), April 2018  

      King Fahd University of Petroleum & Minerals (KFUPM) 

      Dhahran, Saudi Arabia 

 

  MSc (Petroleum Engineering), August 2012  

      Heriot-Watt University 

      Edinburgh, United Kingdom 

 

      B.Tech (Petrochemical Engineering), May 2010 

      Aligarh Muslim University (A.M.U.) 

      Aligarh, India 

 

Publications: 

  
• ‘Darcy’s Model with Optimized Permeability Distribution (DMOPD) for Efficient 

Simulation of Fluid Transport in Karst Aquifers’ (Submitted to Advances in Water 

Resources) 

• ‘Full-Field to Sector Modeling for Efficient Simulation of Fluid Flow in Karst 

Aquifers’, Journal of Hydrology, 564, pp. 682-696. DOI: 

https://doi.org/10.1016/j.jhydrol.2018.07.028. 

• ‘A Finite Volume Discretization Approach to Solving Groundwater and Tracer 

Transport in Karst Aquifers’ (Submitted to Applied Water Sciences) 

• ‘Unsteady Brinkman’s Model for Flow in Karst Aquifers’ (Submitted to Journal 

of Hydroinformatics) 

• ‘The Importance of Stokes-Brinkman’s Equation in the Simulation of Fluid Flow 

https://doi.org/10.1016/j.jhydrol.2018.07.028


177 
 

in Geothermal Karst Reservoirs’ (Submitted to Computational Geosciences) 

• ‘Utilization of the Brinkman’s Equation to Model Flow and Tracer Transport 

within Karst Reservoirs’, Conference paper at 80th EAGE Annual Conference, 11-

14 June 2018, Copenhagen, Denmark. DOI: 10.3997/2214-4609.201800839  

• ‘Modeling of Unsteady Flow in Karst Reservoirs using a modified Brinkman’s 

equation’, Conference paper at Innovations in Geosciences – Time for 

Breakthrough, 9 – 12 April 2018, St. Petersburg, Russia. DOI: 10.3997/2214-

4609.201800120  

• ‘Optimal Parameter Selection in a Polymer Alternating Gas (PAG) Process’, SPE-

182794-MS, SPE Kingdom of Saudi Arabia Annual Technical Symposium and 

Exhibition, 25-28 April, Dammam, Saudi Arabia. DOI: 

https://doi.org/10.2118/182794-MS 

• ‘Multi-objective Well Placement Optimization Considering Energy Sustainability 

Along with Economical Gains’, SPE-175842-MS, SPE North Africa Technical 

Conference and Exhibition, 14-16 September, Cairo, Egypt. DOI: 

https://doi.org/10.2118/175842-MS 

• ‘A Pareto-based Well Placement Optimization’, 76th EAGE Conference & 

Exhibition, 16-19 June 2014, Amsterdam, Netherlands. DOI: 10.3997/2214-

4609.20140947  

• ‘Effect of Project Life Time on Well Placement Optimization’, 76th EAGE 

Conference & Exhibition, 16-19 June 2014, Amsterdam, Netherlands. DOI: 

10.3997/2214-4609.20141519 

• ‘Effect of DFN  upscaling  on History Matching  and Prediction of Naturally 

Fractured Reservoirs’, SPE-164838-MS, EAGE Annual Conference and 

Exhibition incorporating SPE Europec, 10-13 June 2013, London, UK.DOI: 

http://dx.doi.org/10.2118/164838-MS  

 

https://doi.org/10.2118/182794-MS

