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Tremendous amount of opinions, regarding almost every topic, is available on the 

internet these days through social media. Evidences show that such opinions play 

important role in our life and affect behavior of individuals, communities, industries, and 

governments. Availability of such wealth of opinions in the social media motivated 

researchers to develop automated systems for opinion mining, also known as sentiment 

analysis. A sentiment represents a polarity of opinion that is typically expressed as one of 

three classes: positive, negative, or neutral. Many tools are currently available for 

sentiment mining in short text, referred to as micro-blogs, for different languages but 

their efficacies are still limited. Such limitations include and not limited to dealing with 

specific domains and providing limited performance.

In this work, we developed an approach for topic identification and polarity classification 

of opinions offered in the form of micro-blogs. We propose a new context-based analysis 

system for detecting targets among a set of micro-blogs and detecting sentiment polarities 

towards categorized topics that describe the targets. Our literature review revealed that 

the research direction has been originally focusing on classifying sentiments polarities 

towards specific targets, i.e., topics, in the micro-blogs. A more recent direction currently 
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addresses the problem of detecting the target and identifying the sentiment polarity 

toward it. While, the former direction is referred to as target-dependent sentiment 

classification, the latter one is referred to as open domain targeted sentiment 

classification.

Our literature review also revealed that majority of the state of the art approaches use 

supervised learning techniques for both target-dependent and open domain targeted 

sentiment classification. Such techniques need a huge amount of labeled data for 

increasing classification accuracy. However, preparing labeled data from social media 

needs a significant effort and may cause inaccurate results if some micro-blogs are 

annotated incorrectly. For that matter, we propose new techniques to employ semi-

supervised learning methods for improving the performance of both target-dependent and 

open domain targeted sentiment classification by using partially labeled data.

Additionally, we propose new supervised techniques for improving the performance of 

both target-dependent and open domain targeted sentiment classification. Numerous 

experiments are conducted to show that our proposed techniques outperform prominent 

ones available in the literature. A comparison framework and statistical analysis are 

included in this work as well to validate experiment results.
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CHAPTER 1

INTRODUCTION

In the last decade, the social media has become a major part in our life through including 

its services to build social networks or social relations with other people who share 

similar personal or career interests, activities, backgrounds or real-life connections. For 

example, due to advances in information technology and communication, the number of 

users in social networks has increased significantly.

Social media plays the most effective role in enabling people to freely share their 

opinions with regard to almost everything. Popularity of social media sites has been

increasing sharply in the world especially after spreading civil movement in many 

countries. This popularity assists in generating a massive data for different topics 

especially on some famous social media sites such as Facebook and Twitter. 

The availability of tremendous public opinions opens the door to researchers and scholars 

to mine people's polarity of opinions with regard to almost every topic of interest in 

almost any domain. This introduces what is popularly known as sentiment analysis.

Nowadays, sentiment analysis is employed in many services that are available on the 

Internet. For example, it is used for detecting polarity of opinions expressed in forums.

1.1 General Problem Statement

Sentiment analysis which is also known as opinion mining is one of the major tasks under 

umbrella of natural language processing (NLP) [1][2]. It is also one of the active research 
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areas in text mining (TM) which has gained much attention nowadays. The main goal of 

sentiment analysis is identifying polarity of opinions [3]. Sentiment analysis includes 

numerous subtopics such as polarity classification [4], subjectivity detection [5], review 

summarization [6], and rumor detection [7][8]. Our research focuses specifically on 

polarity classification. In the rest of this dissertation, we use term analysis to describe 

mainly classification task. However, there are other tasks included such as detecting 

named entities.  

Sentiment analysis has been included in many systems. For example, many websites of 

electronic commerce provide services to recommend products and analyze product 

reviews. Sentiment analysis is a main component in these websites to find buyer's 

opinion and increase purchasing power. Another important example is related to 

predicting directions of voters in the election process by analyzing their opinions on the 

social media through governmental institutions.

State-of-the-art systems for sentiment analysis deal mainly with three levels of annotation 

granularity towards the input: document, sentence, aspect, or phrase (word) [9]. Our 

research focuses on the sentence level and especially a short sentence namely micro-blog 

in social media. Different tools are available nowadays for opinion mining of micro-

blogs. Typically, the input to such tools is a short sentence that is gathered from the social 

media by querying about a specified target (what the opinion is about). The output is the 

opinion polarity that is inferred from the input text and expressed in one of three options: 

positive, negative, or neutral.
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Most available sentiment analysis tools are based on target-independent strategy. Thus, 

these applications may fail to assign correct sentiment polarity to a micro-blog that 

includes more than one target (topic). For Example, consider the micro-blog: “Windows 

is much better than iOS!”. A target-independent system would classify this micro-blog as 

positive since it contains only positive words (much better). However, a target-dependent 

system would classify this micro-blog as negative if “iOS” is a target of interest.

Otherwise, it would be classified as positive if the target of interest is “Windows”.

A more challenging scenario deals with detecting the name entities (targets) in the micro-

blog and identifying sentiment polarities toward them. Referring to the above example, 

the system detects firstly words “Windows” and “iOS” as targets and then identifies

opinions toward them as discussed previously. Such scenario is referred to as open 

domain targeted sentiment classification which helps in detecting opinions in micro-

blogs towards any named entity (such as person or organization).

According to the best of our knowledge, all previous work proposed only supervised 

learning techniques for improving the performance of both target-dependent and open 

domain targeted sentiment classification. Thus, training all previous supervised learning 

methods require a huge amount of labeled micro-blogs. While, preparing labeled micro-

blogs is a time-consuming process and usually leads to inaccurate results.

Providing a huge number of labeled micro-blogs needs significant effort since we need to 

annotate them manually. Using manual methodology for annotating micro-blogs may 

lead to inaccurate results that are related to human errors. Moreover, employing 

additional workers for annotating micro-blogs more accurately will increase efforts and 
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may cause biased decisions. On the other hand, using automated tools [10] for annotating 

micro-blogs may affect also on classification accuracy since their efficiency are still

limited. As a result of this, some micro-blogs may be annotated incorrectly. It is worth 

mentioning also that supervised learning machines may converge to overfitting 

phenomenon [11].

In this research, new techniques have been proposed for improving the performance of

both target-dependent and open domain targeted sentiment classification. We improve the 

performance by increasing classification accuracy or improving the results of other 

evaluation measures such as F1-score, precision and recall. We evaluated and validated

the applicability of different learning techniques such as supervised, unsupervised 

techniques to our problem. We propose as well new semi-supervised learning techniques

that decrease the need to use only labeled data and overcome the overfitting phenomenon

for both target-dependent and open domain targeted sentiment classification. To the best 

of our knowledge, our work is the first research that employs semi-supervised learning 

techniques in both research directions.

Additionally, a new system is proposed that differs from status quo followed in

developing systems for open domain targeted sentiment classification. Existing systems 

detect opinions in each micro-blog individually. While, our proposed approach helps in 

developing a context-based analysis system among a set of micro-blogs. The proposed 

system detects context patterns among a set of micro-blogs by detecting targets and 

identifying sentiment polarities towards categorized topics that describe the detected

targets.
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1.2 Contributions

This section summarizes the main contributions of our research work by describing 

briefly new techniques proposed for improving both target-dependent and open domain 

targeted sentiment classification.

1.2.1 Survey on Target-Dependent Sentiment Analysis

We carried out a comprehensive review on sentiment analysis in social media. A survey 

on target-dependent sentiment analysis is carried out also with summarized results. The 

survey revealed some gaps to be addressed in future research and illustrates that there are 

still many limitations in previous research works. Some discussions are included in this 

survey on target-dependent sentiment analysis as promising future research direction.

Findings have been recently published [12

1.2.2 Comparative Study on Target-Dependent Sentiment Analysis

].

An extension to our recent survey has been presented by compiling accuracy reported by 

researchers with respect to the application of different techniques applied to the same 

dataset. Our study presents comparisons between different techniques with regard to both 

the target-dependent and the open domain targeted sentiment classification. The study 

identifies some gaps to be addressed in future research. For instance, it shows that 

performance of both target-dependent and open domain targeted sentiment classification 

is still limited, and further future research could be promising. Findings have been 

recently published [13].
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1.2.3 Target-dependent Sentiment Analysis

Performance of applying many supervised learning techniques has been evaluated and 

new solutions are proposed for improving the performance of target-dependent sentiment 

classification. Experiment results are provided to show efficacy of the proposed 

solutions. Additionally, we have addressed the difficulty of preparing labeled data from 

social media by employing semi-supervised learning techniques that have not been used 

before for detecting opinion polarity of micro-blogs based on target-dependent sentiment 

classification.

To the best of our knowledge, our work is the first research that employs semi-supervised 

learning techniques in this research direction. We also have proposed a new semi-

supervised learning technique that uses partially labeled micro-blogs. Experiment results 

show that the proposed technique performs competitive performance.

Moreover, efficiency of using deep learning techniques has been addressed for improving 

the performance of target-dependent sentiment classification. We have compiled all 

previous works that employed deep learning techniques for both target-dependent and 

open domain targeted sentiment classification. We evaluated as well the efficiency of 

applying neural networks and deep conventional neural networks on target-dependent 

sentiment classification. Findings have been recently published [14

1.2.4 Open Domain Targeted Sentiment Analysis

].

In this research direction, adequacy of developing new semi-supervised learning 

technique has been addressed to serve open domain targeted sentiment classification. 

Two new solutions have been proposed for improving the performance of open domain 
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targeted sentiment classification. The first solution is a supervised learning technique

while that other one is a semi-supervised learning technique.

To the best of our knowledge, our solution is a new semi-supervised learning technique 

that is proposed for open domain targeted sentiment classification. We conducted 

numerous experiments for showing that the proposed solutions outperform other pervious 

related works. Additionally, a new system has been developed for context-based target-

dependent sentiment analysis. The proposed system detects context patterns among a set 

of micro-blogs by detecting targets and identifying sentiment polarities towards 

categorized topics that describe the detected targets.

1.3 Thesis Organization

The rest of this dissertation is organized as illustrated in Figure 1.1. Chapter 2 presents 

a background on some topics necessary to understand the rest of the dissertation. Chapter 

3 includes a literature review to related works in the state of the art. Chapter 4 defines the 

research problem and describes the approach used for finding a solution. Chapter 5

describes the experiment design used for conducting our experiments. Chapter 6

describes in details our solutions proposed for improving the performance of target-

dependent sentiment classification. Chapters 7, 8, and 9 show experiment results 

provided by using target-dependent sentiment classification. Chapter 10 describes in 

details our solutions proposed for improving the performance of open domain targeted 

sentiment classification. Chapters 11 shows experiment results provided by using open 

domain targeted sentiment classification. Finally, Chapter 12 concludes the dissertation 

and presents suggestions for a future work.
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Figure 1.1: Overview of the dissertation organization.
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CHAPTER 2

BACKGROUND

This chapter presents an overview on the general framework of sentiment analysis. We

also present topics necessary to understand the rest of the dissertation.

2.1 General Framework for Sentiment Analysis

Sentiment analysis of micro-blogs can be accomplished by passing through different 

stages [15 Figure 2.1] as shown in . It starts by collecting data and building corpus of 

micro-blogs. After collecting data, the next step is preprocessing the data by removing 

unrelated contents and keeping the text only. Then, the filtering stage is applied for

removing unnecessary words without affecting the meaning of input micro-blog. The 

next stage is extracting features from the text and selecting the best ones. This stage 

converts the text into a vector of feature attributes which is referred to as a data point.

The final step includes applying classification methods to classify the data point into 

different classes such as positive, negative, and neutral. The following subsections 

describe some details for these stages which are related to our work.        

Figure 2.1: General framework for sentiment analysis.
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2.1.1 Data Collection

In this step, various micro-blogs should be collected from different topics to train the 

proposed system and test the performance. The collected data can be used also to build 

a big corpus for evaluating the proposed techniques and providing experimental results.    

2.1.2 Preprocessing

The preprocessing step is used to clean text from unsentimental contents, such as user-

names, pictures, hash-tags, and URLs [16

2.1.3 Filtering

]. These contents may decrease accuracy of 

classification system. For example, URLs and user-names are not related to the topic of 

micro-blog. After the preprocessing stage the outcome will be only a pure text.  

Some proposed techniques use this stage to filter the micro-blog before extracting feature 

attributes from it. Filtering stage may include many steps to enhance the text for 

increasing the accuracy of the classification technique. One of the required steps in 

filtering stage is correcting misspelling since most of bloggers type micro-blogs quickly 

and some of them do not have enough capabilities to spell words correctly.

Moreover, some micro-blogs contain words with repeated letters and the filtering stage 

should tackle theses words by removing the repeated letters manually or automatically

[17]. There also some stop words that may be included in tweets such as prepositions. 

The stop words will not affect the meaning of micro-blogs and they should be removed in 

this stage. Finally, the filtering stage will normalize the micro-blog by removing 

punctuation, non-letters, short vowels, etc. 
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2.1.4 Feature Identification

This stage is referred to also as feature engineering. In this stage, different features are

extracted from the filtered text by using different methods proposed in the literature. The 

most suitable features should be also selected to reduce dimensionality of the 

accumulated data. The output of this stage is a vector of feature attributes that is referred 

to as a data point.

2.1.5 Classification

This is the final stage in any sentiment analysis system. Numerous methods could be used 

in this stage to classify the data points that are generated from the previous stage. The 

outcome of this step expresses the sentiment polarity toward each input micro-blog. The 

outcome, for example, may be represented as one of three options: positive, negative, or 

neutral. Most of classification methods are based on supervised or unsupervised machine 

learning techniques. Section 2.3 presents different machine learning methods.

2.2 Challenges

Sentiment analysis on sentence level is a very difficult task by itself and there are

additional challenges for dealing with non-English languages [18

2.2.1 Difficulties Related to Sentiment Analysis

]. This section describes

some difficulties that are revealed when developing sentiment analysis systems. 

Detecting opinion polarities expressed in text is a challenging task. The following 

difficulties affect on the general process of sentiment analysis regardless of which

language is used:

1) People do not always express their opinions in the same way.
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2) The word which is expressed to be positive in some sentences may be considered as 

negative in others. 

3) Some web users use different opinions in the same text which is easy to classify by 

human and difficult to parse by machine. 

4) Shuffle words in the same sentence will change semantic meaning which makes 

sentiment analysis more difficult. 

5) Using negations in sentence is still an open research problem in sentiment analysis.

2.2.2 Difficulties Related to Social Media Text

There are many difficulties for applying sentiment analysis specifically in social media. 

The following points describe some challenges related to this issue:  

1) The used language in social media is highly unstructured and contains misspellings, 

slang words, contractions and abbreviations.  

2) The content of text messages such as tweets includes many peculiarities. For 

examples: string “RT” is an acronym for a “re-tweet”. The hash-tag “#” is used to 

organize tweets. Emoticon “:-)” indicates a smiley face. The tweets also may include 

external web links. 

3) The produced data is continuous with a large and uncontrolled number of users.

4) The produced micro-blogs in social media tend to be very short, for example tweet 

length is limited to 140 characters. This limitation increases hardness of sentiment 
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analysis in comparison with using document that includes more information for 

detecting opinions. 

5) Words and phrases that are used by web users for expressing their sentiments are 

subjective and tend to user cultures. For example, some users use a metaphor to 

describe their opinions which increases difficulty of sentiment analysis.

2.2.3 Difficulties Related to Non-English Language

Analyzing text of a non-English language is a difficult task in comparison with English 

language. The following points shed the light on some difficulties for identifying 

sentiments in Arabic micro-blogs [19

1) The Arabic language is a rich language and one lemma can have thousands of surface 

forms.

]:       

2) The unavailability of Arabic labeled corpora is one of the serious issues which are 

revealed when building systems for Arabic sentiment analysis.

3) Most of Arabic tweets contain informal phrases since web users use different dialects.

2.3 Machine Learning

This section presents a background to the machine learning methods that are used in our 

work. These methods are used to make comparisons with our proposed solutions and 

develop more efficient systems for target-dependent sentiment classification. These 

methods are categorized into supervised, unsupervised, and semi-supervised learning 

methods as presented in the next three subsections.
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2.3.1 Supervised Learning

Learning-based method is the most used classifier in sentiment analysis. Supervised 

learning method uses only labeled data for training the model. We used various

supervised learning methods for checking their efficiency in sentiment classification and 

making comparisons. The next subsections describe some methods used in our research 

work.

2.3.1.1 Decision Tree Classifier

Decision tree classifier [20

2.3.1.2 Naive Bayes

] creates a model for detecting the label of a new data point by 

learning some decision rules that are formed from the data features. This classifier is 

simple to understand and can be visualized easily. It can be also used as a baseline 

classifier since it does not use any parameter.

Decision tree classifier suffers from some limitations because it is based on the structured 

decision tree. It is an uneasy task to describe all data using a decision tree and creating

a complex decision tree may end up with the overfitting problem. Moreover, finding an 

optimal decision tree for describing the training data is an NP-complete problem.

Naive Bayes [21] is one of the most famous learning methods and used frequently by 

scholars for improving performance of sentiment analysis. This method is based on 

Bayes theorem for calculating confidence level of classifying classes. It uses also naive 

independence assumption when states relationship between each pair of feature attributes.

There are many classifiers that are inspired by Naive Bayes approach such as Gaussian 

Naive Bayes classifier which assumes that the likelihood of features is Gaussian.
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2.3.1.3 Discriminant Analysis

Discriminant analysis classifier [22

2.3.1.4 Nearest Neighbors

] uses Bayes rule to generate a boundary that splits all 

dense regions in the training data. There are two main types of Discriminant analysis. The 

first one is a linear discriminant analysis which learns only linear boundaries for fitting 

the dense regions of data. The second one is quadratic discriminant analysis which is 

used to learn quadratic boundaries in a more flexible way.

The main principle behind nearest neighbors approach is based on finding the closest data 

points to label them as same class. There are two main classifiers that are based on 

principle of nearest neighbors. The first one called k-nearest neighbors (kNN)

classifier which finds k data points closest in distance to the new data point and detect the 

label from these k data points. The distance can be measured by numerous measures such 

as Euclidean or Cosine. To decrease time complexity of finding k nearest neighbors, 

process of accessing data points is transformed into fast indexing structure such as KD-

tree [23][24] or Ball tree.

The second main classifier is based on finding the neighbors that are close to the nearest 

centroid classifier. The idea of building nearest centroid classifier [25] is close to label 

update phase in K-means clustering algorithm. It calculates centroids for representing 

each class in training phase and uses these centroids for detecting the label of the new 

data point in testing phase. This classifier can be used as baseline classifier since it does

not use any parameter. It also has limitations similar to K-means algorithm as it is not 

suitable to classify classes of non-convex shapes.
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2.3.1.5 Generalized Linear Models

Linear models are based on performing recognition by detecting the target value to be 

a linear combination of inputs. These models are designed basically to deal with binary 

classification problem. Modified models use sigmoid function (logistic function) for 

solving multiclass classification problem. There are many models in this category such as

stochastic gradient descent [26], logistic regression and passive aggressive classifiers

[27

2.3.1.6 Support Vector Machine

]. Logistic regression is very effective and usually outperforms other linear models.

Additionally, implementation concepts of logistic regression are used widely in deep 

learning when building neural network models.

Support vector machine (SVM) [28

2.3.1.7 Deep Learning 

] is basically a linear classifier that divides data points

into two classes based on the gap located in the space between the data points of classes.

There is another version of SVM for performing a non-linear classification by using 

kernel that maps data points to higher dimensional space. Efficiency of SVM is sensitive 

to the selected value of C parameter, and to which kernel is used. C parameter calibrates 

the margin size between the hyperplane (which separates the data points) and the nearest 

data point in each class.

Deep learning is a powerful machine learning technique that provides learning functions 

by using networks of multiple layers. Deep learning has become popular nowadays and 

has been employed in many research areas. This interest has appeared after the decay in 

using traditional neural networks for about 20 years due to the current available powerful 

machines for high performance computing.
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Neural networks [29] mimic working mechanisms of neurons located in human brain. It 

is dissimilar with logistic regression in adding non-linear layers between input and output 

layers. Thus, it can learn non-linear online (real-time) models. However, its classification 

accuracy may converge to suboptimal solution since its hidden layers have non-convex 

loss functions. It is also sensitive to feature scaling and a many parameters. To increase 

confidence of classification accuracy, we run the model many times with different 

random initializations.

There are numerous forms of neural networks that are proposed for deep learning. 

Convolutional neural network (CNN) [30] is a one of these forms which is employed 

basically in the field of computer vision by using convolutional and subsampling 

(pooling) layers. There are other forms of deep learning techniques such as recursive 

neural networks (RNN) [31], recurrent neural network [32], long short term memory 

(LSTM) [33] and gated recurrent unit (GRU) [34

2.3.1.7.1 Word Embeddings

].

Word embeddings is a method for substituting each word in text by a numerical vector. 

This method has enabled researchers for applying standard machine learning methods to

achieve numerous tasks of NLP. Word embeddings preserve similarity between similar 

words in meaning. Thereby, word embeddings convert words to vectors while the 

similarity between vectors mimics semantic similarity between words. These word 

embeddings have been used broadly in deep learning and play an important role in 

developing many NLP systems.
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There are many forms of word embeddings and the most two effective ones are GloVe 

[35] and word2vec [36]. These word embeddings are formed by using different deep 

learning methods for learning vector representation of words. Word2vec embeddings are 

designed for the first time in 2013 by using unsupervised learning techniques developed 

by researchers at Google. GloVe is an abbreviation of global vectors for word 

representation and it differs from word2vec in that it is a count-based model while 

word2vec is a predictive model.

Typically, we needs to train word2vec and GloVe models from scratch to fit with own 

context. In this case, a large number of micro-blogs are required for generating accurate 

word embeddings. Alternatively, we can use pre-trained word embeddings available in 

the literature such as Polyglot [37] and fastText [38

2.3.1.8 Pros and Cons of Supervised Learning

]. In our work, we used pre-trained 

word embeddings from different sources.

Using only learning-based technique for classifying sentiment polarities expressed in 

micro-blogs has a key advantage in enabling the classifier to learn automatically from all 

kinds of features [39

In the same context, supervised learning techniques may work better with document 

classification since more feature attributes can be extracted from the document. While,

using supervised learning classifiers with micro-blogs may provide worse results since 

]. Learning the classifier with various labeled data may lead to hit 

optimal results and usually gives high classification accuracy. However, we should take 

care of overfitting phenomena to enable the model for classifying unseen data when using 

it in a real environment.
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each micro-blog contains little information. As a result of this, we cannot extract enough 

features from micro-blogs for training the model very well and may be the classification 

accuracy converges to local optimum solution.      

On the other hand, preparing labeled data for training supervised learning models is 

a time consuming process since it is mainly achieved manually. Additionally, preparing 

labeled data manually may cause various errors and may generate biased data. Using 

automatic tools for labeling data may also generate incorrect labels.  

2.3.2 Unsupervised Learning

Unsupervised learning technique uses only unlabeled data for training the model. The 

most famous topic in unsupervised learning belongs to data clustering. Data clustering 

methods are based on dividing data into groups (clusters) in which each group has similar 

properties. We tested efficiency of classifying opinions by using data clustering methods

in comparison with other machine learning techniques. The next subsections describe 

some data clustering algorithms that are used in this dissertation work.      

2.3.2.1 Birch

Birch [40] algorithm divides data by building a tree called the characteristic feature tree

(CFT). Each node in CFT contains a number of subclusters that have closed 

characteristics. The Birch algorithm has two parameters: the threshold and the branching 

factor. The branching factor is used to specify the number of subclusters in each node of 

CFT. The threshold parameter specifies the value of distance which is used for merging

each data point with the closest subcluster.
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2.3.2.2 K-means Clustering

K-means [41

2.3.2.3 Pros and Cons of Unsupervised Learning

] algorithm uses a 2-phase iterative algorithm to minimize the sum of

distances between each data point and centroid, summed over all k clusters. During the 

first phase, each iteration helps in reassigning data points to their nearest cluster centroid 

and recalculating cluster centroids. In the second phase, each data point is reassigned 

individually.

The K-means has 2 main advantages: it is very easy to implement and the time 

complexity is only O(n) (n is number of data points). Thus, K-means algorithm is suitable 

for clustering large datasets. On the other hand, K-means suffers from some

disadvantages. The user has to specify the number of classes in advance. The 

performance of the algorithm is data-dependent and it depends on the initial conditions. 

This often leads K-means to converge to suboptimal solutions.

The main advantage of using unsupervised learning for sentiment classification is that we 

can use only unlabeled data when building the model. However, we cannot use most of 

features when building unsupervised learning model since we do not have enough 

information for applying them on unlabeled data. Additionally, unsupervised learning 

methods can be improved easily by modifying simple rules. However, we need more

efforts for finding the best rules that enables the model to work very well.

2.3.3 Semi-supervised Learning

Semi-supervised learning technique uses labeled and unlabeled data in the training phase 

[42]. Semi-supervised learning is a special form of learning that addresses the problem of 
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preparing labeling data. Semi-supervised learning uses large amount of unlabeled data 

points, together with the labeled data points, to build better classifiers. Unlabeled data 

points may be relatively easy to collect. The simplest semi-supervised learning technique 

uses unsupervised word representations as extra features with a supervised classifier [43

2.3.3.1 Label Propagation

].

Semi-supervised learning techniques include also self-training, co-training, multiview 

learning, and graph-based. 

Using semi-supervised learning techniques add more beneficial characteristics for 

building sentiment analysis system. One of these characteristics is related to decreasing 

the need for annotating numerous micro-blogs when training sentiment analysis systems. 

Another characteristic we should consider in this work that supervised learning machines 

may cause overfitting, while using semi-supervised learning techniques may decrease the

effect of this phenomenon. We selected some semi-supervised learning techniques to 

achieve our research goals. The next subsections describe theoretical background of these 

selected techniques.

Label propagation is based on an iterative method that propagates labels by detecting 

high density regions in unlabelled data. Their implementations are based on constructing 

a similarity graph over all data points in the dataset. Label propagation method is an 

improved version of k-Nearest-Neighbor (kNN) method developed for finding closer 

unlabelled data points that are similar to labeled data points [44]. There is another similar 

method called label spreading that uses additionally affinity matrix and soft clamping 

across labeled data points [45]. 
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2.3.3.2 Semi-supervised K-means

Since K-means is sensitive to initializing the centroids, many techniques are proposed to 

decrease this effect. One of research direction is based on initializing the centroids from 

a little amount of labeled data points while the clustering process is applied as usual on 

unlabeled data [46] [47

2.3.3.3 Self-Training

]. This direction makes K-means method mimics semi-supervised

learning techniques. 

Self-training (also called self-learning or self-labeling) is a well known technique used to 

learn from unlabeled data [48]. In this technique, we train a supervised learning model by 

using labeled data points. Then, we use the same model to detect sentiment polarities of 

the unlabeled data points. All unlabeled data points that generate high confidence 

predictions are added to the labeled data. After that, we learn again the supervised 

learning model with the bigger labeled data to increase the performance. This process 

should be repeated for many rounds to hit the best performance. There are many spatial 

cases of this technique such as semi-supervised text classification by using expectation

maximization (EM) [49

2.3.3.4 Quasi-Newton Semi-supervised Support Vector Machines

].

Quasi-Newton semi-supervised support vector machines (QN-S3VM) is an extended 

method of SVM to mimic a semi-supervised learning technique [50]. The QN-S3VM 

method deals with linear and non-linear kernels [51]. It uses Quasi-Newton optimization

algorithm for finding local optimum solutions. It is also sensitive to setting some 

parameters initialized randomly. 
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2.3.3.5 Pros and Cons of Semi-supervised Learning

Semi-supervised learning techniques can merge advantages of supervised and 

unsupervised learning techniques. Using semi-supervised learning methods decreases the 

need for preparing labeled data since we can use partially labeled data [52

2.3.4 Cross Validation and Overfitting

]. Additionally, 

using both labeled and unlabeled data may decrease the effect of overfitting phenomena 

that is revealed with supervised learning techniques. As a result of this, semi-supervised 

learning methods may outperform other machine learning methods in some cases since 

they may avoid overfitting along with utilizing unlabeled data for improving the 

performance.

Learning the classifier too much or testing its efficacy by using training data are

inefficient strategies. Learning the classifier too much will make it fits only training data. 

Thereby, it will not be able to classify new unseen data. Testing the classifier by using

same data that is applied during the training phase will provide high performance but it 

will fail to detect new unseen data points when solving real problems. This phenomenon 

is called overfitting and should be avoided for building more efficient classifiers.

One of the proposed solutions to avoid overfitting is a procedure called cross 

validation (CV for short). For applying this strategy, we divide the training data into 

k sets (k folds) while we use the testing data without any change for the final evaluation. 

During each round, the classifier is trained by using the k-1 folds and the trained classifier 

is validated on the remaining part of the data by evaluating the improvement in the 

performance. Finally, the overall performance is measured for the k-fold cross validation 

by calculating the average of all computed values.
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2.3.5 Multiclass Strategies

There are some classifiers that are implemented specifically to solve problem of two 

classes which are called binary classifiers. To enable these classifiers for classifying more 

than two classes (multiclass), we need firstly to apply multiclass strategies [53

2.3.6 Dimensionality Reduction

]. The most 

two famous strategies are referred to as one-versus-rest (OvR) (called also one-versus-all) 

and one-versus-one (OvO). 

For applying OvR strategy to classify three classes, we need to build three binary

classifiers and select the outcome from one classifier when classifying each data point.

Selection mechanism may be based on finding the classifier which provides the 

maximum classification confidence or using voting strategy. When building each 

classifier of the three binary classifiers, we select one class form the three original ones.

While, the second class contains all data points of the other two classes.

Applying OvO strategy to solve the problem of classifying three classes needs also to 

build three binary classifiers. With each binary classifier, we select the first class as one 

of the three original classes. While, the second class contains only data points of one 

class of the other two classes. Selection mechanism may be used also with voting strategy

or confidence property.

Most real problems deal with high dimensional data and sometimes reducing the number 

of dimensions may improve performance of classifying the data. There are many methods 

for reducing number of dimensions (feature attributes) that represent each data point. 
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We used two methods of dimension reduction through our dissertation work. The first 

method is called principle component analysis (PCA) [54] which uses statistics to convert 

a set of correlated data points into a set of linearly uncorrelated values called principal 

components. The second method is called linear discriminant analysis (LDA) [55

2.4 Open Domain Targeted Sentiment Analysis

] which 

is based on Fisher's linear discriminant, pattern recognition and machine learning. LDA 

expresses each dependent variable as a linear combination of other features to separate

classes of data points. LDA is used also as a linear classifier. LDA is related to analysis 

of variance (ANOVA) and regression analysis.

This section presents a background to open domain targeted sentiment classification.

There are mainly two scenarios for implementing open domain targeted sentiment 

classification. The first scenario consists of two subtasks: name entity recognitions (NER) 

and target-dependent sentiment classification. NER is used for detecting targets as 

entities in the micro-blog. While, target-dependent sentiment classification identifies 

sentiment towards detected targets.

The second scenario is based on detecting targets along with their sentiment polarities

expressed in the micro-blog. This scenario is a sort of a structured prediction since it 

predicts two labels (target and sentiment) for each token (word) in the micro-blog. This 

scenario is implemented mainly by using a method that is referred to as sequence 

labeling. The next subsections describe the main subtopics that are related to open 

domain targeted sentiment classification. We also describe a Markovian SVM which has 

been used for the first time in our work for improving the performance of open domain 

targeted classification.
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2.4.1 Name Entity Recognition

NER [56] is a main classification task in NLP which identifies named entities (such as 

name of person or organization) in readable text (such as micro-blog). The output of this 

operation is a categorization tag that describes each named entity. Open domain targeted 

sentiment analysis includes NER [57

2.4.2 Sequence Labeling

] task for identifying all named entities in the micro-

blog. Then, the targeted topic is detected from the name entities.

Since entity recognition deals with entities (elements) in the input sentence (such as 

micro-blog), the research direction is shifted from sentence level into word level. 

Thereby, we need to deal with a sequence of words that form each sentence. The most 

famous method used for classifying sequence of words is called sequence labeling.

Sequence labeling [ 72F58] is used broadly in NLP for classifying each word in the input text.

Open domain targeted sentiment classification is based on representing each micro-blog 

(such as tweet) as a sentence of words (tokens). Then, sequence labeling is used for 

identifying all words that are related to names such as persons, organizations, etc. The 

typical way to implement sequence labeling problem is called BIO tagging. Each token is 

labeled as “B” (beginning) tag if it is the first element in the named entity, or it is labeled 

as “I” (inside) tag if it is a subsequent token in the named entity, otherwise the token will 

be tagged as “O” (outside) tag. We can use other encoding strategy with sequence 

labeling but BIO tagging is the most famous one and it is used also with open domain 

targeted sentiment classification.
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There are three techniques that can be used for applying sequence labeling to open 

domain targeted sentiment classification. The first one converts the problem into

a traditional classifying method by using BIO encoding. Thereby, we can use any 

classifier such as SVM. The second technique uses neural networks for building the 

model of open domain targeted sentiment classification. The third technique uses hidden 

Markov models such as HMM and CRF for building the model of open domain targeted 

sentiment classification.

2.4.3 Sequence Tagging with Structural Support Vector Machines

In this research work, we employ sequence tagging with structural support vector 

machines for developing open domain targeted sentiment classification. To the best of

our knowledge, this technique has not been used before in this direction. Hidden Markov 

support vector machine [59] is a famous method used for sequence tagging with 

structural support vector machines. This method combines hidden Markov model with 

SVM to build a model for sequence labeling. We specifically use this method for

improving the performance of open domain targeted sentiment classification.
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CHAPTER 3

LITERATURE REVIEW

This chapter presents prominent related work and analyzes their strengths and 

shortcomings. The chapter concludes by identifying the gaps to be pursued in future 

work. Those gaps are used to formulate the research problem addressed in this 

dissertation.

3.1 Sentiment Analysis Feature Engineering Techniques

Features engineering is the most important phase in sentiment analysis since performance

of classification technique depends on the used features. Various features have been 

proposed to improve performance of sentiment analysis system. The three categories of 

features: syntactic, semantic, and stylistic are discussed in the sequel.

Syntactic features [60] are the most used features in sentiment analysis. For example, N-

gram [61] is a famous feature that consists of a continuous sequence of N items from 

a given text. Also, Part-of-Speech is another popular syntactic feature. This type of

features is based on ignoring unimportant parts and using certain parts of speech (text) 

such as adjectives. Moreover, frequency of marks and punctuation [62] is also used as 

a syntactic feature. This type of features is used broadly with sentiment analysis since it 

provides accurate results. For example, Sayfullina [63] used bigrams, emoticons, syntax, 

unigrams and other syntactic features for showing efficacy of his solution in reducing 

sparsity by using dimensionality reduction.   
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Semantic features are based on extracting semantic properties which are related to the 

meaning of specific words in the input text. Some used semantic features are based on 

context and domain [64] and other ones are based on using emoticons and hash-tags [65]. 

Furthermore, some famous semantic features are based on using polarity lexicon and

others deal with negation. Some researchers employ only this type of features for 

improving performance of sentiment analysis [66

There are various stylistic features used in literature such as frequency of letters, number 

of characters per word, inclusion of re-tweet, frequency of digits or special characters, 

and so on [

] which highlights the importance of 

using these features.

67]. This type of features has not been used broadly with sentiment 

classification since these features do not add significant information when classifying the 

data points. Thus, researchers combine this type of features with other the two types for

improving the performance [68

3.2 Sentiment Classification Techniques

].

Various techniques have been proposed in literature to classify sentiment polarities [69].

Classification techniques use data point to identify sentiment polarity expressed in the 

corresponding text. These techniques can be combined together to improve sentiment 

classification [70][71]. Employing classification techniques for improving the 

performance of sentiment classification is discussed in the sequel. The classification 

techniques are categorized into three classes: supervised, unsupervised, and semi-

supervised.
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Various learning-based techniques are used for sentiment classification. For example, 

support vector machines (SVM) and Naive Bayes (NB) have been used broadly to create 

a model for identifying sentiment polarities [72]. Numerous improved techniques have 

been proposed for improving the performance of sentiment classification. For example, 

Go et al. [73] employed distant supervision to train a supervised learning classifier. 

Some unsupervised learning techniques have been developed for improving performance 

of sentiment classification such as lexicon-based method. Lexicon-based method is based

mainly on a corpus or dictionary. These methods classify directly each data point by 

using a dictionary of words without training the model. For example, Thelwall et al. [74]

proposed a lexicon-based technique called SentiStrength that assigns a sentiment polarity 

and strength level to the input text. Another example, Kumar and Sebastian [75

The state of the art has recently shifted toward proposing novel semi-supervised learning 

techniques [

]

proposed a method to calculate a sentiment score for a tweet based on a sentiment 

lexicon.

76

76

]. Some techniques, such as incorporating word embeddings to represent 

the context of words and concepts, have been proposed to train sentiment classifier by 

providing weakly supervised mechanisms [ ]. Other techniques involve building models 

such as LCCT [77

3.3 Sentiment Analysis on Social Media

] for detecting sentiment polarities in tweets.

There are many directions used in the literature for developing sentiment analysis 

systems. We designed some criteria for categorizing research works through 

presenting a comprehensive literature review and building a comparison framework. To 
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the best of our knowledge, our literature review is the first work that includes these 

criteria together.

The included criteria are based on classification techniques, feature attributes, data 

source, data language, and whether the used dataset is public or collected. We also 

include a criterion that reflects the measure used to evaluate performance of proposed 

technique. Our review revealed that most of the research works use accuracy and F1-

score to measure the performance. Moreover, additional criteria are designed for dealing 

with recent directions such as implementing real-time system, using emoticons (emotion 

icons) included in micro-blogs for increasing the performance, developing target-

dependent sentiment classification system, reducing sparsity in the dataset, using external 

syntactic analyzer, and dealing with open domain targeted sentiment classification.

The real-time [78

Target-dependent sentiment classification performs a finer-grained analysis and improves 

the performance by using an aspect level of opinions [

] technique is employed for enabling systems to work dynamically with 

limited resources. Regarding using emoticons, most prominent classifiers proposed in the 

literature filter emoticons as noise. However, some studies use emoticons to collect more 

information about sentiments expressed in micro-blogs which leads to improve the 

performance of identifying sentiment polarities.

79

Table 3.1

]. Accordingly, we designed 

another criterion for categorizing the research works based on employing target-

dependent sentiment classification. summarizes different research works based 

on our designed criteria. It is worth noting here that the table only discusses what we 
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believe to be prominent work in this research area. Other work has also been surveyed 

but not reflected in this table [80][81][82][83][84][85][86][87][88][89][90][91][92

We observe from 

].

Table 3.1 that there are many gaps which have not been addressed yet 

by researchers. Some research works also focused on specific aspects rather than 

classifying data such as dealing with real-time aspect. We selected some gaps to be 

investigated in our thesis such as employing semi-supervised learning techniques for 

developing target-dependent sentiment classification by using partially labeled data.

On another aspect, we noticed that most of research works are reported with classification 

accuracy in the range of 60%-70%. Even the highest result (between 90% and 100%) is 

restricted to a special collected data with specific feature and technique. The results also 

are sensitive to setting some parameters while the table illustrates only the best values 

and ignores the average of all experimental results. Thus, the results provided by using

methods proposed for achieving same research goals are still limited since the 

experimental environments are different. The low performance of some research works 

introduces a motivation that there is still more work that can be done in this research area.

3.4 Target-dependent Sentiment Analysis on Social Media

Recent studies have been conducted to develop target-dependent sentiment analysis 

systems. Dong et al. [93] integrated target information with recursive neural network for 

employing the strength of deep learning. While, Changqin Quan and Fuji Ren [94

Some effective features are extracted [

]

proposed a similarity based approach to provide more fine grained sentiment analysis. 

95] and employed to build classifiers by using 

supervised classification technique. Duy-Tin Vo and Yue Zhang [96] proposed 
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a technique that does not use external syntactic analyzers, by leveraging distributed word 

representations and rich automatic features. We extended our literature review in the 

previous section by focusing on summarizing research works that deal specifically with 

target-dependent sentiment analysis as illustrated in Table 3.2.

We categorized the selected research works by illustrating whether they are using 

external syntactic analyzer. Developing a system that does not depend on external 

syntactic analyzer improves the performance of classifying micro-blogs regardless with 

which language they are used. However, decreasing the dependency on the external 

syntactic analyzer is a more challenging scenario. We also categorized the works by 

illustrating whether they deal with open domain targeted sentiment classification. Our 

literature review shows that developing open domain targeted sentiment system without 

using external analyzer is still an open issue and limited works are done in this direction.
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CHAPTER 4

RESEARCH PROBLEM AND SOLUTION APPROACH

In this chapter, we state the research problem that we address in this research. The goals 

and scope of this thesis along with a discussion of the methodology followed to achieve 

the stated goals are described in next sections.

4.1 Problem Statement

Considering the gaps identified by our literature review presented in Chapter 3, we 

explored the potential of using semi-supervised learning techniques in sentiment analysis. 

Our research focuses on open domain targeted sentiment classification which was 

revealed to have been not adequately investigated. A major objective is to improve the 

performance of open domain targeted sentiment classification. The corresponding 

hypotheses are:

1. “Using semi-supervised techniques in identifying sentiment polarities will 

improve the performance of open domain targeted sentiment classification for 

micro-blogs in social media.”

2. “There is no super classifier that can identify correctly all sentiment

polarities expressed in micro-blogs.”

3. “There is no statistical difference between different classifiers used for 

improving the performance of open domain targeted sentiment classification.”
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Our research tests the first hypothesis by evaluating different semi-supervised techniques 

against many collected micro-blogs and examines their effectiveness in comparison with 

some prominent techniques. We also investigate in the second hypothesis improving the 

performance of open domain targeted sentiment classification. Our work is extended to 

see whether we can develop a super classifier the works better in all situations. Through 

our research work, we check as well the statistical differences among different proposed 

techniques to test the third hypothesis.

4.2 Motivation 

Several reasons motivated us to select the open domain targeted sentiment classification 

and semi-supervised learning domains as the topic for this PhD study. The potential 

impact of this topic in academia and the commercial world is one of the major motives in 

conducting this study. Many applications [132] rely on sentiment analysis which means 

that any improvement in this area will result in an important impact on a large range of 

domains. There are also recent advances [133

4.3 Research Objectives

] in semi-supervised learning domain that

can be employed to improve the performance of sentiment analysis systems. In addition, 

the limited work conducted on open domain targeted sentiment classification motivated

us to employ more machine learning techniques in this direction.

Most of the studies reported in the literature have considered sentiment analysis within 

the context of target independent classification. To the best of our knowledge, the 

problem of open domain targeted sentiment classification using a mix of labeled and 

unlabeled data has not been addressed before. Consequently, we set the main goal of our
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research effort to investigate semi-supervised learning techniques to maximize efficiency 

of open domain targeted sentiment classification.

Additionally, we set a goal for developing a context-based analysis system that identifies 

the context of a given set of micro-blogs and analyzes their sentiments within that 

context. Another goal is set to develop new techniques that are capable of improving the 

performance of open domain targeted sentiment classification. In order to achieve these

goals, the following objectives are set:

RO1. Complete the comparison framework for open domain targeted sentiment 

classification.

RO2. Develop a context-based analysis system for open domain targeted sentiment 

classification.

RO3. Develop a semi-supervised learning approach for open domain targeted 

sentiment classification.

RO4. Develop and validate techniques for improving the performance of open 

domain targeted sentiment classification.

4.4 Research Approach

This section describes the framework which guides our work to achieve the research 

objectives. This section describes also the measures that are used for evaluating our work.

4.4.1 Research Framework 

In this research work, we develop an open domain targeted sentiment classification 

technique that does not use external syntactic analyzer. The framework of our research is 
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illustrated in Figure 4.1. It is inspired by the work of Vo and Zhang [96]. Initially, the 

name entities (topics or targets) are detected in the tweet, and then the sentiment polarity

towards each target is identified by extracting a rich set of features.

Figure 4.1: Framework for open domain targeted sentiment classification.

We explore efficacy of using different methods for extracting a set of rich features such 

as using neural pooling functions and word embeddings. We also investigate efficacy of 

using traditional features such as lexicon, n-gram, and part of speech (POS) [106].

Feature extraction methods are affected by the target (topic) included in the micro-blog.

Thus, we need to adapt the extracted feature attributes to be sensitive to the included

target. This issue is not mutilated in target-independent systems.

Figure 4.2 shows an example which is also inspired by the work of Vo and Zhang [96]. 

The figure shows how sentiment polarity is identified by using target-independent 

system. The system classified the input tweet as positive sentiment since all words in the 

tweet are positive. It is clear from the figure that the target-independent system did not 

consider the presence of more than one target (Windows and iOS).  
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Figure 4.2: Example of sentiment analysis in target-independent system.

Figure 4.3 shows how sentiment polarity is identified by using target-dependent system.

It is clear from the figure that feature attributes is modified based on the selected target.

The output of the same input tweet (used by Figure 4.2) will be positive if the target is 

“Windows” and its corresponding output will be changed to negative if the requested 

target is “iOS”.

Figure 4.3: Example of sentiment analysis in target-dependent system.
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4.4.2 Research Directions

In this research work, we develop a system for context-based target-dependent sentiment 

analysis. The lower level of our research work is based on developing new solutions in 

two main directions:

1. We explore some advanced semi-supervised learning techniques that are proposed 

for solving general classification problem and adapt them for developing target-

dependent sentiment classification with partially labeled data. To the best of our 

knowledge, our work is the first research that employs semi-supervised learning 

techniques for target-dependent sentiment classification. We also propose new 

solutions for improving the performance of target-dependent sentiment 

classification.

2. We developed a new technique for applying open domain target-dependent

classification by using partially labeled data. To the best of our knowledge, our 

work is the first research that uses partially labeled data with open domain 

targeted sentiment classification. We also propose new solutions that use fully 

labeled data for improving the performance of open domain targeted sentiment 

classification. As a result of this, our research work has filled some gaps that are 

described in Section 3.4.

4.5 Evaluation Measures

Empirical results obtained from experiments provide a good way to evaluate performance 

of both target-dependent and open domain targeted sentiment classification. This section

describes the measures that are used to assess our proposed solutions. We use accuracy,
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precision, recall, specificity and F1-score [134

%100
Samples_All

Samples_Classified_Correclty
Accuracy ��

] for evaluating tasks of sentiment 

classification and NER. Other evaluating measures have been specifically used for 

evaluating the performance of open domain targeted sentiment classification.   

Accuracy

The accuracy is the ratio of all samples (such as micro-blogs) that are classified correctly. 

We can simply calculate it by using the following formula:

(4.1)

Precision

Precision is the ratio of samples which are correctly classified as positive to all samples 

classified as positive. Next formula is used to calculate it:

%100
Samples_Positive_FalseSamples_Positive_True

Samples_Positive_True
Precision �

�
� (4.2)

Recall

Recall (which also known as sensitivity or true positive rate) is the ratio of samples which 

are classified correctly as positive to all positive samples.

%100
Samples_Negative_FalseSamples_Positive_True

Samples_Positive_True
Recall �

�
� (4.3)

Specificity

Specificity (which also known as true negative rate) is the ratio of samples which are 

classified correctly as negative to all negative samples.

%100
Samples_Negative_TrueSamples_Positive_False

Samples_Negative_True
ySpecificit �

�
� (4.4)
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F1-score

The F1-score (also known as F-score or F-measure) is the harmonic mean of precision 

and recall, and its best value is 1 while the worst score is 0. It is calculated as: 

callecision
callecisionscoreF

RePr

RePr
21

�
�

���                      (4.5)

The F1-score is basically used with binary classification and there are different 

modifications [135

The macro-average F1-score is straight forward. It is calculated by taking the average of 

the precision and recall of the system on different sets. While, each set is generated by 

using binary classifier applied to two selected classes. In micro-average F1-score, we 

firstly calculate the individual true positives, true negatives, false positives, and false 

negatives of each set. Then, we use the sum of these values to find the micro-average 

precision and the micro-average recall. Finally, the micro-average F1-score will be the 

harmonic mean of the micro-average precision and the micro-average recall. We use 

macro-average method for studying how the system performs across overall sets of data. 

Micro-average method can be used when dataset varies in size to come up with a specific 

decision.

Acc-all

] to use it with multiclass classification such as the macro-average F1-

score, and the micro -average F1 score. 

This measure [124] is used specifically with open domain targeted sentiment 

classification. It measures the accuracy of the entire named entity span along with the 

sentiment span. It primarily measures the correctness of O labels.
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Acc-Bsent 

We use this measure [124] to evaluate specifically performance of open domain targeted 

sentiment classification. It measures accuracy of identifying the start of a named entity 

(B-labels) along with the sentiment expressed towards it. Thus, it focuses only on the 

beginning of named entities.

Zero/one-error

The zero/one-error calculates percentage of micro-blogs that had at least one 

misclassified tag. We use this measure to validate efficacy of our proposed solution in 

improving performance of open domain targeted sentiment classification.



45

CHAPTER 5

EXPERIMENT DESIGN

This chapter describes the experiment environment used for conducting numerous 

experiments to show performance of both target-dependent and open domain targeted

sentiment classification. We also describe the used datasets and analyzing them. The 

chapter presents also feature engineering methods used in this work.

5.1 Datasets

In this section, we describe the characteristics of all datasets that are used for conducting 

our experiments. We used different datasets for showing the performance of our solutions

proposed for both target-dependent and open domain targeted sentiment classification.

Table 5.1 shows a summary of all datasets used in this research work. 

Table 5.1: Summary of Datasets used for conducting experiment work.

Name Source Language Original Use Experiment Use
DatasetA Dong et al. [93]. English T T/O

DatasetB Mitchell et al. [124] English/Spanish O O

DatasetC Zhang et al. [128] English T O

DatasetD El-Kilany et al. [136 Arabic] O O

Used for: T= target-dependent sentiment. O= open domain targeted sentiment

We conducted experiments for target-dependent sentiment classification on a popular 

dataset (DatasetA) that is compiled by Dong et al. [93]. The dataset consists of 6248 

tweets for training and 692 tweets for testing. The distribution of sentiment polarities of 

micro-blog (in both training and testing data) is 25% are positive tweets, 25% are 

negative tweets, and the rest 50% are neutral tweets. The assigned labels which are used 
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in the dataset are 2 for representing positive tweets, 0 for representing negative tweets, 

and 1 for representing neutral tweets. 

Our experiments conducted for showing the performance of open domain targeted 

sentiment classification are applied to two datasets. The first dataset (DatasetB) is 

collected originally by Mitchell et al. [124] which is available publically
1

125

. This dataset is

used also by other researchers [ ][130]. Thus, using this dataset enables us to make 

real comparisons with previous related works. The dataset includes both English and 

Spanish tweets where each word (token) is located in a separated line. Table 5.2 shows 

statistics of the dataset as described by Zhang et al. [125]. The second dataset (DatasetC)

used in this research direction is collected by Zhang et al. [128]. Table 5.3 shows 

statistics of the dataset as described in their research work. Both datasets consists of 10 

folds and each fold is divided into training, testing, and development sets. Additionally, 

we used the training set (1999 tweets) of dataset (DatasetD) that is collected by [136] for 

showing performance of applying our proposed context-based system to Arabic language.

Table 5.2: Statistics of DatasetB used for open domain targeted sentiment classification.

Domain #Sent #Entities #+ #- #0
English 2,350 3,288 707 275 2,306

Spanish 5,145 6,658 1,555 1,007 4,096

Table 5.3: Statistics of DatasetC used for open domain targeted sentiment classification.

#Targets #+ #- #0
Training 9,489 2,416 2,384 4,689

development 1,036 255 272 509

Testing 1,170 294 295 581

1
http://www.m-mitchell.com/code/index.html
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5.2 Feature Engineering

We use the code
2

96provided by Vo and Zhang [ ] to extract feature attributes for target-

dependent sentiment classification. The code generates word2vec embeddings
3

We used same discrete features that are generated by Mitchell et al. [

that are 

suitable for target-dependent sentiment classification. Word2vec embeddings represents 

each word of micro-blog in a lexicon by using low dimensional vector. Words with 

similar meanings have vectors with close values that reflect the distance with the other 

words of different meanings.

124] and used by 

Zhang et al. [125] and Li et al. [130] for conducting experimental work of open domain 

targeted sentiment classification. These discrete features are shown in Table 5.4. We used 

these features form the implementation code provided by Zhang et al. [125]. Additionally 

we used continuous features (word2vec embeddings) that are generated also by Zhang et 

al. [125].

It is interesting to clarify that number of discrete features in English data equals 10717. 

While, number of discrete features in Spanish data equals 20033 features. Moreover, as 

illustrated in Table 5.2, data of Spanish language is larger than data of English language. 

Thus, we expect that using Spanish data will provide more accurate results since it will 

train the used machine learning models much better in comparison with using English 

data.

2https://github.com/duytinvo/ijcai2015

3 https://code.google.com/p/word2vec
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Table 5.4: Discrete features used for open domain targeted sentiment classification.

Surface Features
binned word length, message length, sentence position; Jerboa features; word 

identity; word lengthening; punctuation characters, has digit; has dash; is lower 

case; is 3 or 4 letters; first letter capitalized; more than one letter capitalized, etc.

Linguistic Features
function words; can syllabify; curse words; laugh words; words for good/bad; 

slang words; abbreviations; intensiers; subjective suffixes and prefixes (such as 

diminutive forms); common verb endings; common noun endings

Brown Clustering Features
cluster at length 3; cluster at length 5

Sentiment Lexicon Features
is sentiment-bearing word; prior sentiment polarity

5.3 Data Enhancement

We noticed that 1
st

fold is missed (it is a copy of 2
nd

fold) in DatasetB. Thus, we

developed a code to find feature vectors of missing words. We generated all files of the 

1
st

fold (testing, training, and development sets) to complete the dataset and conducting 

our experiments.

To achieve our goal, we used testing and training sets of 1
st

fold that are included in the 

original dataset. We used the dataset which is provided by Mitchell et al. [124]. Since 

data included by Zhang et al. [125] splits original training data provided by Mitchell et al.

into training and development sets, we faced a problem in determining number of tweets 

in development set of 1
st

fold. To solve this problem, we used number of tweets in 

training data equals 1903 tweets which is equal to number of tweets that are used in 

training set of 2
nd

fold.

Thereby, we selected the first 1903 tweets from the original training set of 1
st

fold 

provided by Mitchell et al. [124] as training set of 1
st

fold in our dataset. While, the rest 

of tweets (212 tweets) in the original training set of 1
st

fold (provided by Mitchell et al.)
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are used as development set of 1
st

fold in our dataset. Then, we found all corresponding 

discrete and continuous features for preparing all sets of 1
st

fold.

5.4 Data Scaling

The original data of DatasetA suffered from scaling problem where feature attributes that 

represent each data point are generated by using different scales. Based on our 

experiment results, we noticed that the result of using unscaled data is bad and the 

accuracy achieved did not exceed 50%. Scaling the data (feature scaling) would make all 

feature attributes with the same scale and range [137]. Scaling the data increases

classification accuracy since it increases distances between data points in high 

dimensional space which helps in separating classes more efficiently. Thus, we scaled all 

training and testing data using the LibLinear library
4

5.5 Data Visualization

. Scaling the data by using this 

library has also reduced number of feature attributes from 3600 into 3450 since the values 

of the removed 150 attributs were too close to zero.

It is important to get a view of the topology of the dataset for interpreting the behavior of 

applied machine learning techniques and improving the performance. Since the dataset 

includes n-dimensional data points, we cannot visualize the data in a convenient 2D plot. 

In an attempt to get a bird-eye view on the classification of the tweets in two dimensions,

we used two methods of dimensionality reduction: principle component analysis (PCA)

and linear discriminant analysis (LDA). These methods are applied to DatasetA for 

interpreting the behavior of target-dependent sentiment classification.

4
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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Figure 5.1 and Figure 5.2 visualize training and testing data after reducing number of 

dimensions by using PCA. We can note from the figures that the three sentimental classes 

(negative, positive, and neutral) have complex shapes and they are too close to each

other. These figures illustrate clearly that classifying this dataset is not an easy task.

Applying PCA reduction did not provide well results because working mechanism of 

PCA is based only on using unlabeled data which decreases ability to separate the three 

classes during the process of reducing dimensions.

Figure 5.1: Visualizing training data reduced by PCA.

Figure 5.2: Visualizing testing data reduced by PCA.

Figure 5.3 and Figure 5.4 visualize training and testing data after applying LDA for 

reducing number of dimensions. The figures show clearly shapes of the three classes. 
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LDA provides more clear results because it builds a learning model based on the actual 

labels. The figures show that the classes are connected with each other. It is clear also 

that some data points cannot be classified easily by using a simple classifier. Moreover, 

the shapes of the three classes are more complicated in testing data.

Figure 5.3: Visualizing training data reduced by LDA.

Figure 5.4: Visualizing testing data reduced by LDA.

5.6 Experiment Setup

We used some machines and tools for conducting many experiments in this research 

work. The development tools and hardware platform specification are described in Table 

5.5 and Table 5.6 respectively. We use same tools for conducting experiment work for 

both target-dependent and open domain targeted sentiment classification. We used same 
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machine (Machine A) for conducting most of experiments. Additionally, we used

specifically a machine with limited specification (Machine B) for adding more challenges 

when applying some deep learning methods.

Table 5.5: Tools and programs.

Tool Version Purpose

Python 2.7
Extracting Features, building and learning models for developing 

experiments, classifying micro-blogs, and computing results.

Anaconda 4.2.0
Open data science platform powered by Python for providing an 

environment that facilitates developing our experiments.

Spyder 2.3.8 Graphical platform for editing, testing and debugging Python codes.

LibLinear 2.1 Scaling and learning data for building SVM models.

QN-S3VM 2012 Building and learning semi-supervised SVM models.

MS Excel 2016 Analyzing data and plotting graphs.

Kutools 16.50
A Powerful tool used for MS Excel that helping in performing quickly 

time-consuming operations. 

Minitab 18.1.0 Analyzing data and plotting graphs. 

Vim 7.4 Text editor for editing huge data files.

Table 5.6: Platform specifications.

Component Machine A Machine B Virtual Machine

CPU
Intel(R) Core (TM) i7-

3720 3.40 GHZ

Intel(R) Celeron(R) 

1.6GHZ

Intel(R) Core (TM) i7-

3720 3.40 GHZ

Memory 8.00 GB 4.00 GB 2.00 GB

OS Windows 8 (64-bit) Windows 10 (64-bit) Upuntu 14.0 (32-bit)

Moreover, we developed some experiments for open domain targeted sentiment 

classification by using virtual machine with specifications that are included in Table 5.6.

We installed on the virtual machine some of tools that are included in Table 5.5 for 

developing more experiments. Moreover, we conducted some experiments by using high 

performance computing (HPC) account
5

5

that is provided by KFUPM. We used HPC 

account because some experiments need huge memory for training the models 

specifically when using Spanish dataset.

http://hpc.kfupm.edu.sa
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5.7 Conclusion

This chapter describes the datasets that are used for conducting our experiment work. The 

chapter presents also the features that are used in this work. We analyzed the used

datasets by using data visualization methods. Based on our analysis of experiment results, 

we deduced different conclusions. We conclude that the dataset used with target-

dependent sentiment classification should be normalized firstly before applying any 

machine learning technique. Thus, we normalized (scaled) data to the same scale for 

improving the performance.

We conclude also that using LDA is better than using PCA when reducing number of 

feature attributes because PCA is based on employing unlabeled data which mimics 

unsupervised learning technique. While, LDA learns the model by using actual labeled 

data before applying dimension reduction.
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CHAPTER 6

TARGET-DEPENDENT SENTIMENT ANALYSIS

Recent studies showed that target-dependent sentiment analysis increases significantly 

classification accuracy. In this chapter, we present different solutions for improving the

performance of target-dependent sentiment classification by employing numerous 

machine learning techniques. We successfully employed semi-supervised learning 

techniques to improve the performance of target-dependent sentiment classification in 

comparison with employing other supervised and unsupervised learning techniques.

Additionally, we propose new semi-supervised learning technique (which meets research 

objective RO3 in our dissertation) to decrease the need for using labeled data when 

training models of target-dependent sentiment classification. Our semi-supervised

learning solution provides a comparable performance to pervious supervised learning 

techniques that are proposed in the state of the art. Moreover, we present new supervised 

learning solutions (which meets research objective RO4 in our dissertation) for 

improving the performance of target-dependent sentiment classification. The proposed 

solution improves the performance in comparison with pervious prominent work.

6.1 The Approach

Our goal in this research direction is based on developing a system for target-dependent 

sentiment classification that can to be applied easily to any language (language 

independent). To achieve this goal, we work on developing sentiment classification 
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system that does not use an external analyzer. Getting rid of using external analyzer

enables us to develop a language independent system. Thus, we did not need to use any 

NLP tools for designing external analyzer when building the developed system. 

Additionally, we did not use sentiment lexicons [138] as exploited in traditional systems. 

Such traditional systems are meant to detect sentiment polarity expressed in the micro-

blog by summing sentimental scores that represent included words (tokens). These scores 

are extracted directly from the sentiment lexicons. Thus, the traditional system depends 

mainly on these sentiment lexicons. As a result of this, using sentiment lexicons

decreases possibility of developing language independent system. Thereby, we avoid 

using these sentiment lexicons when building the proposed system.  

Recent studies use word embeddings to map each word in input text into a vector of 

numerical values. This method generates close values to words that have similar 

meanings and forms longer distances to represent words with different meanings. We 

depend on this method for extracting feature attributes since this method is flexible and 

can be applied easily to any language. Our work is based on using a famous form of word 

embeddings called word2vec [139]. We use specifically a word2vec embeddings that are 

designed for target-dependent sentiment classification. As a result of this, our proposed 

system converts each input micro-blog into one vector of numerical values. We refer to 

this resulted vector as a data point. Then, the data points are classified into positive, 

negative or neutral sentiments.
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6.2 Proposed Solutions

We propose novel techniques for improving the performance of target-dependent 

sentiment classification. Some of proposed techniques are based on employing semi-

supervised learning for increasing classification accuracy with partially labeled data. The 

other proposed techniques improve the performance of target-dependent sentiment 

classification by using fully lapped data. We describe all the implementation details of 

the techniques in the sequel.

6.2.1 Performance Enhancement

We evaluated performance of applying numerous supervised and unsupervised learning 

methods that have not been used before in this research direction. We also enhanced 

working mechanism of some learning methods for improving the performance of target-

dependent sentiment classification. For example, we suggested different mechanisms for 

initializing centriods of K-means method to improve its efficacy with target-dependent 

sentiment classification. Chapter 8 gives all relevant details. Additionally, we evaluated 

performance of employing some deep learning techniques that have not been used before 

for developing target-dependent sentiment classification. All relevant details are included 

in Chapter 7.

Moreover, we employed different semi-supervised learning techniques for developing 

target-dependent sentiment classification with partially labeled data. We added some 

contributions for improving efficacy of some existing semi-supervised learning methods 

in solving our research problem. As a result of this, enhancing the semi-supervised 

learning methods improved the performance of target-dependent sentiment classification 
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with partially labeled data. Some of our contributions in this direction are described 

briefly in the sequel while all relevant details are included in Chapter 8.

We improved efficacy of applying QN-S3VM classifier for improving target-dependent 

sentiment classification. QN-S3VM has been proposed basically to solve the problem of 

binary classification (deals only with two classes). Thus, we used multiclass classification 

strategy to make this classifier suitable to deal with our classification problem that 

includes three classes (positive, negative, and neutral). We also modified the working 

mechanism of QN-S3VM by providing numerical values that measure distances from the 

decision boundary for each data point. Then, we used these values to apply multiclass 

strategies. 

We also applied self-training technique by using different methods. One of these methods 

is based on calculating confidence by using a formula presented by S. Ravi [48]. We 

applied this formula to fit our classification problem that includes three classes (positive, 

negative, and neutral) and constructing a hyperplane decision boundary of three 

dimensions. This work adds the unlabeled data points to a labeled training set and 

removes them from the unlabeled set by using the following equation:

(6.1)

where d is the distance between data point x and the decision boundary, y is the label of

data point x according to the decision boundary, µ is mean of distances to the decision 

boundary�� �� 	
� ��� 
�������� ��	��	��� ��� �	
����
� ��� ��� decision boundary, and � is 

a selected threshold.
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6.2.2 Improved Semi-supervised Target-Dependent Sentiment Classification

The high level overview of the system components used for target-dependent sentiment 

classification with partially labeled data is illustrated in Figure 6.1. The objective of the 

proposed system is to allow classifying micro-blogs into more than two classes and not 

be restricted to only solve problems of binary classification as the case with many 

systems proposed in the literature. As a proof of concept and for the sake of simplicity, 

the system is currently implemented to classify micro-blogs into three categories: 

positive, negative, and neutral. Thus, our proposed system is a multiclass sentiment 

classifier.

Figure 6.1: High level overview of the system components.

The proposed system is based on reducing the need for annotating micro-blogs when 

training the system of target-dependent sentiment classification. As a result, our system 

can be used for target-dependent sentiment classification with partially labeled micro-

blogs. We show, through experiments, that the performance improves gradually as we 

increase the percentage of unlabeled micro-blogs during the learning process of the 

proposed system. However, the performance reaches a peak and starts to decrease as the 
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percentage of unlabeled data increases further. Corresponding experiments are discussed 

in Chapter 8.

We selected some semi-supervised learning methods and applied them to target-

dependent sentiment classification. Then, we used the most suitable one for developing 

our proposed technique. Additionally, we added some contributions to propose new 

technique for improving the performance of target-dependent sentiment classification

with partially labeled data. We selected specifically self-training technique for 

developing the proposed technique since it provides competitive accuracy in comparison 

with other semi-supervised learning methods. Based on our experiment work, we noticed 

also that self-training technique provides more stationary results (high confidence) in 

comparison with other semi-supervised learning techniques such as QN-S3VM which is 

sensitive to setting parameters. 

Figure 6.2 illustrates the training model of the proposed solution. For training the model,

we input three sets of data that are denoted as Xu, Xl, and L. Xu symbolizes all data points 

that are generated by using word2vec embeddings for representing unlabelled micro-

blogs. Xl represents all labeled data points that are generated by using word2vec 

embeddings. L denotes values of labels that are corresponding to data points Xl. Such 

that, if there is a data point v ��Xl, then Lv contains the corresponding label value in L.

In our proposed technique, we use two SVM models: SVMT and SVME. It is noteworthy 

that we used SVM classifiers because it provides competitive performance. However, 

other classifiers, such as linear logistic regression, can be used. Our experiment results 

showed that using linear logistic regression provides also high performance with target-

dependent sentiment classification. 
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SVMT represents a support vector machine model used for applying self-training

technique. While, SVME denotes to a support vector machine model used for predicting 

misclassified data points. SVME is used to achieve our idea of improving classification 

accuracy by trying to predict misclassified data points before detecting the sentiment 

polarity expressed in the micro-blog. SVME is trained by grouping two data classes from 

the training set. The first class includes all labeled data points that are classified correctly 

by using SVMT model. The other class contains all labeled data points that are 

misclassified by using SVMT model. The data points included in the two classes are 

denoted as Xclass and their corresponding labels are denoted as Lclass.

Figure 6.2: Training model of the proposed semi-supervised learning technique for target-dependent 

sentiment classification.
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The proposed technique uses input parameter P for specifying confidence level of 

selecting unlabelled data points that are classified to be added to an incremental labeled 

data during each round in self-training phase. We initialize this parameter before running 

the technique and use trial and error to select the optimum value that performs high 

classification accuracy. In addition, we select the best value of C parameter that is used 

for building SVM models (SVMT and SVME). The proposed technique is sensitive to the 

initial value of C parameter and its performance is affected by efficacy of SVMT and 

SVME classifiers.

Figure 6.3 shows how our proposed technique detects sentiment polarity of input micro-

blog. We use SVMT for calculating the three probabilities (P+, P-, Po) toward input 

micro-blog. P+ value determines confidence probability of detecting the sentiment

polarity as positive, while P- and Po refer to confidence probabilities of negative and 

neutral polarities respectively.

The prediction model is based also on SVME classifier for predicting whether a data 

point m is misclassified or classified correctly. If SVME classifies m as correct class (c =

1), then the sentiment polarity will belong naturally to the opinion which refers to the 

highest value of the three probabilities P+, P- and Po (max(P+, P-, Po)). While, if m is 

predicted as misclassified (c = 0), then the model will select the sentiment polarity that 

refers to the second highest value of the three probabilities P+, P- and Po (max2(P+, P-,

Po)).

Working mechanism of the proposed technique is based on an expectation that the 

smallest value of the three probabilities P+, P- and Po refers usually to wrong sentiment 
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polarity. Thereby, the outcome will belong usually to the sentiment polarity which refers 

to the maximum value of the three probabilities P+, P- and Po when SVME model 

predicts the micro-blog as correctly classified. Otherwise, the technique will select the

other sentiment polarity which refers to the second highest value of the three probabilities

P+, P- and Po.

Figure 6.3: Flowchart of detecting sentiment polarity towards input micro-blog by using the proposed semi-

supervised learning technique for target-dependent sentiment classification.

6.2.3 Supervised Classification using Dimension Reduction

This section describes two proposed techniques for improving the performance of target-

dependent sentiment classification by using fully labeled data. These techniques are 

based on reducing number of feature attributes that represent each micro-blog in the 
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dataset. Then, each technique uses a different method for detecting sentiment polarities. 

All details are discussed in the sequel.

6.2.3.1 Supervised Classification using K-means with Dimension Reduction

This technique is based on exploiting efficacy of applying dimension reduction by using 

LDA method. Using LDA makes the sentimental classes (positive, negative, and neutral)

more separable and easy to classify by reducing number of dimensions of each data point

in the dataset and transferring the problem into a lower dimensional level. We applied K-

means method after applying LDA for increasing classification accuracy of target-

dependent sentiment classification.

Figure 6.4 shows the training model of the proposed technique. The unlabeled data is

used as input to the K-means method for applying data clustering. Since K-means method 

is sensitive to the initial values of centriods, we develop new methods for selecting the

initial values of centriods. Process of initializing centriods is based on selecting randomly 

each centriod from its corresponding class. 

There are three centriods since the dataset include three sentimental classes. The first 

centriod is selected randomly from the data points located in positive class. Similarly, the 

second and third centriods are selected randomly from the data points located in

corresponding negative and neutral classes. Thus, the output of the proposed training 

model is a three centriods that represents the three resulted clusters (positive, negative, 

and neutral). Each centriod represents one cluster (group) of data points which forms one 

of corresponding classified classes (positive, negative, or neutral).
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Figure 6.4: Training model of the proposed supervised learning technique that combines dimension 

reduction with K-means.

The reason behind initializing each centriod to its corresponding labeled class is two 

folds. First, it reduces the randomness in initializing the centriods and increases 

probability of locating each centriod in its correct corresponding class. Second, it

increases classification accuracy since it decreases the randomness in initializing 

centriods. Experiment results are shown in Chapter 8 for validating these two folds. 

Figure 6.5 illustrates how our proposed technique detects sentiment polarities expressed

in input micro-blog. Firstly, feature vector is extracted from the input micro-blog. It is 

noteworthy that the feature vector (represents each micro-blog) is normalized as 

described in Chapter 6. Then, the feature vector is reduced to lower level by using LDA. 

After that, the technique finds which centriod is closest to the reduced feature vector. 

Finally, the output label is specified based on the closest centriod to the reduced feature 

vector. For example, if the positive centriod was the closest one, then the technique will 

assign positive as a sentiment polarity to the given micro-blog. 
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Figure 6.5: Flowchart of detecting sentiment of micro-blog by using proposed supervised solution.

To find the closest centriod to the reduced feature vector, we use different distance

measures [140

9.3.1

]. Thus, we select the best distance measure that provides the best 

classification accuracy when classifying the dataset. Section shows efficiency of 

using different distance measures when applying our proposed technique. Moreover, 

Section 9.3.2 shows efficiency of our proposed technique when applying different 

clustering scenarios.

6.2.4 Combined Supervised Learning Technique

As an alternate to the technique presented above, we propose a technique that combines 

two supervised learning methods for improving the performance of target-dependent 

sentiment classification. Our contribution here is due to the dimension reduction. The 

proposed solution combines both LDA with other supervised learning method such as

linear logistic regression. We use LDA method for reducing number of feature attributes 

and then apply linear logistic regression for classifying the output of LDA. We used LDA 

for reducing number of dimensions because it is more efficient in comparison with other 

methods such as PCA as shown in Chapter 6. 
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In this technique, we use linear logistic regression instead of K-means method. In 

contrast to the K-means method, linear logistic regression does not require to initialize 

centriods. However, it requires adjusting a parameter C when building the model.

Moreover, we use neural networks instead of linear logistic regression to employ deep 

learning in our proposed technique. In this case, we tune more parameters to hit the best 

accuracy. We discuss the corresponding experiment design in Section 9.4.
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CHAPTER 7

EXPERIMENT RESULTS: SUPERVISED LEARNING FOR 

TARGET-DEPENDENT SENTIMENT ANALYSIS

This chapter presents all results of applying numerous supervised learning techniques to 

DatasetA for target-dependent sentiment analysis. We also include comparisons with 

previous results reported in the literature. We selected basically the research work of Vo

and Zhang [96] as a benchmark to make comparisons. The rationale behind selecting this 

work is that it meets research objective RO1 in our dissertation. We discuss the 

application of different supervised learning techniques in the sequel.

7.1 Simple Classifiers

This section shows results of evaluating some selected classifiers. The section includes 

these selected classifiers together since they are applied easily without a need to setting 

many parameters. While, the next sections in the chapter discuss individually results of 

applying other classifiers.

Applying decision tree classifier provides always fixed results. The resulted classification 

accuracy is 51.9% while the macro-average F1-score is 48.8%. We evaluated 

performance of applying two forms of Naive Bayes classifiers. We used Gaussian Naive 

Bayes classifier which provides always fixed results. The resulted classification accuracy 

is 53.6% and the macro-average F1-score is 50.6%. We also evaluated performance of
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Naive Bayes classifier for multivariate Bernoulli models which provides always

classification accuracy that is equal to 62.7% while macro-average F1-score equals 

61.6%.

Discriminant analysis methods are designed basically for solving binary classification 

problem (includes only two classes). Thus, we applied multiclass strategy to apply these 

methods to the used dataset which includes three classes (positive, negative, and neutral). 

Linear and quadratic discriminant analysis methods are used in conducting these 

experiments. Linear discriminant analysis provides always fixed results. Using one-vs-

rest (on-vs-all) strategy provides classification accuracy that is equal to 56.4% and the 

macro-average F1-score equals 53.7%. While, applying one-vs-one strategy provides 

lower classification accuracy that is equal to 49.9% and lower macro-average F1-score 

that is equal to 47.6%. Using quadratic discriminant analysis provides lower accuracy.

When using one-vs-rest strategy the classification accuracy becomes 50.4% and the 

macro-average F1-score equals 25.5%. While, using one-vs-one strategy provides 

classification accuracy that is equal to 50.1% and the macro-average F1-score equals

24.7%.

We used k-Nearest neighbors classifier to check its efficacy in classifying the dataset.

For simplicity, we set leaf size parameter to 30 when constructing the tree while the 

selected distance measure was Minkowski with uniform weights. This classifier applies 

the k-nearest neighbors vote. Thereby, it is sensitive to the value of parameter which 

represents the k-nearest neighbors. 
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To find the best results that can be achieved by k-nearest neighbors classifier, we 

changed the value of k-nearest neighbors from 1 into 45 by using increasing step that is 

equal to one. When we set k-nearest neighbors to a value that is equal to one, then the 

classification accuracy becomes 56.5% and the macro-average F1-score equals 53.8%.

The performance is improved gradually by increasing value of k-nearest neighbors until it 

reaches the best classification accuracy.

The best classification accuracy achieved by this classifier is equal to 62.9% while the

corresponding macro-average F1-score equals 57.9% when setting k-nearest neighbors to

18. Then, the performance is decreased again by increasing value of k-nearest neighbors 

over 18 until it reaches 58.8% and 50.6% for classification accuracy and macro-average 

F1-score respectively when the value of k-nearest neighbors equals 45. We also tested 

efficiency of nearest centroid classifier by setting Minkowski distance measure.

However, using other distance measures did not change the results. The reported 

classification accuracy and the macro-average F1-score are 56.2% and 55.3% 

respectively.

7.2 Generalized Linear Models

We tested efficacy of applying different linear classifiers to the dataset. We used ridge 

regression which provides always fixed classification accuracy that is equal to 60.0% 

while macro-average F1-score equals 57.3%. We also used logistic regression with cross 

validation (CV) for classifying the dataset. This classifier is based on logistic regression 

and uses liblinear library which is the same library used for implementing the classifier 

that is selected by Vo and Zhang [96]. We tested logistic regression with CV that is equal

to 5 folds which provided classification accuracy that is equal to 70.4% while the 
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corresponding macro-average F1-score equals 68.0%. The performance is decreased 

when using CV that is equal to 10 folds by providing classification accuracy that is equal

to 70.2% and the macro-average F1-score equals 67.8%.

Additionally, we applied regularized linear models with stochastic gradient descent 

(SGD) learning for classifying the same dataset. The regularizer adds a penalty to the 

loss function for shrinking model parameters towards the zero vectors. We tested effects 

of changing penalty as shown in Table 7.1 by using either the Squared Euclidean norm 

L2 or the absolute norm L1 or a combination of both (Elastic Net).

Table 7.1: Regularized linear model with different settings.

Loss Penalty Accuracy Macro-F1
Hinge Norm L1 62.3 62.4

Hinge Norm L2 65.6 57.0

Hinge Elasticnet 63.0 56.4

Hinge None 67.5 65.9
Log None 67.5  64.7

modified_huber None 66.6  63.6

squared_hinge None 64.5   58.3

Perceptron None 62.6  62.5

We also checked effects of changing loss function as illustrated in Table 7.1. We tested 

‘hinge’ loss function for giving a linear SVM. Additionally, we tested ‘log’ loss function 

for giving logistic regression as a probabilistic classifier. Another smooth loss function 

called ‘modified_huber’ is checked also to bring tolerance to outliers as well as 

probability estimates. The ‘squared_hinge’ loss function is tested as well to mimic 

‘hinge’ loss function with quadratic penalty. Moreover, we tested ‘perceptron’ loss 

function to build linear loss that can be used by the Perceptron method.

The best results are reported with ‘hinge’ loss function and without adding penalty. We 

run the experiment of best results 12 times to find confidence interval with confidence 
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equals 95%. The maximum reported results are 67.5% and 65.9% for accuracy and 

macro-average F1-score respectively. While, the average reported values are 64.8% and 

62.7% for accuracy and macro-average F1-score respectively with confidence interval 

that is equal to ± 1.5% for accuracy and ± 1.2% for macro-average F1-score. For more 

details, refer to Table I.1 in Appendix I to see all numerical values that are provided when 

conducting this experiment.

Moreover, we used ridge classifier with built-in cross validation for classifying the 

dataset. We tested this classifier without CV and applied also 5 and 10 folds, but the 

results did not change when selecting different folds of CV. The provided results are 

65.5% and 63.0% for classification accuracy and macro-average F1-score respectively.

We also tested efficiency of two other generalized linear classifiers called logistic 

regression and passive aggressive. All details of the experiment work developed by using 

these two classifiers are described in the sequel. These classifiers acquired on our concern 

because they are too close (in implementation) to the baseline classifier which is used by 

Vo and Zhang [96].

Logistic regression classifier is implemented by using liblinear library which is the same 

library used for implementing the classifier that is selected by Vo and Zhang [96]. Vo and 

Zhang tried to find the best value of C parameter for optimizing the performance. Best 

classification accuracy provided by using their implementation code is 69.9% at C value

that is equal to 0.001 while the best reported accuracy is 71.1%. They explained the 

difference in results by clarifying that reported accuracy is achieved by evaluating more 

fine grained values of C parameter.
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Vo and Zhang tried to find the best C value for increasing classification accuracy of the 

training data (which is divided into training and development sets). Then, they used the 

best selected C value for classifying the testing data. Table 7.2 shows results of 

classifying the training data by using their implementation code. They used 5 folds for 

training the classifier with cross validation. They selected value of C that is equal to 

0.001 for providing the maximum accuracy of using 5-fold training. Then, they classified 

testing data by using this value of C parameter. The resulted classification accuracy of 

classifying testing data with C=0.001 is 69.9% which means that 484 tweets out of 692 

tweets are classified correctly.

Table 7.2: Classifying training data with different C values.

Average accuracy C Average accuracy C
53.0 10

-5
66.7 0.01

59.3 3×10
-5

65.1 0.03

62.1 5×10
-5

64.1 0.05

63.8 7×10
-5

63.5 0.07

64.5 9×10
-5

62.8 0.09

65.0 0.0001 62.5 0.1

66.9 0.0003 60.9 0.3

67.4 0.0005 60.3 0.5

67.6 0.0007 59.9 0.7

67.8 0.0009 59.9 0.9

67.8 0.001 59.6 1.0

67.5 0.003 58.9 3.0

67.2 0.005 58.3 5.0

67.2 0.007 58.6 7.0

66.8 0.009 58.8 9.0

In our work, we mimic the same strategy in finding the best value of C parameter by 

using the same values illustrated in Table 7.2. We tried to find the best C value that 

increases classification accuracy of testing data instead of evaluating training data. Table 

7.3 shows results of our experiment by learning logistic regression classifier. The left 

columns show accuracy and F1-score of classifying training data to illustrate whether 
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there is an overfitting during learning phase at each C value. The right columns show 

classification accuracy and macro-average F1-score of classifying testing data after 

learning the model by using training set.

Table 7.3: Unbalanced logistic regression.

Classifying Training Data Classifying Testing Data CAccuracy F1-score Accuracy F1-score
50.0 22.2 50.1 22.6 10-5

50.7 24.1 50.6 24.2 3×10-5

52.0 27.6 50.7 26.1 5×10-5

53.2 30.8 51.9 29.9 7×10-5

54.2 33.8 54.0 34.9 9×10-5

54.9 35.6 55.1 37.2 0.0001

62.4 52.7 61.7 52.9 0.0003

65.3 58.5 64.6 58.2 0.0005

66.8 61.0 65.3 59.8 0.0007

67.4 62.3 65.9 60.8 0.0009

67.9 63.0 66.9 62.1 0.001

71.5 68.4 69.2 65.8 0.003

72.8 70.0 69.9 67.1 0.005

73.9 71.4 70.5 67.8 0.007

74.5 72.1 71.0 68.4 0.009
74.9 72.6 70.8 68.2 0.01

77.8 76.0 70.4 68.0 0.03

79.6 77.9 69.8 67.5 0.05

80.6 79.2 69.4 67.1 0.07

81.5 80.1 69.4 67.1 0.09

81.8 80.5 68.9 66.7 0.1

86.0 85.1 67.1 65.0 0.3

87.8 87.1 66.3 64.2 0.5

89.2 88.6 65.9 63.8 0.7

90.1 89.6 65.5 63.4 0.9

90.5 90.1 65.6 63.7 1.0

94.0 93.8 63.4 61.5 3.0

95.7 95.6 62.3 60.2 5.0

96.7 96.6 61.4 59.4 7.0

97.4 97.4 60.5 58.6 9.0

Since the dataset contains unequal distribution of three classes (positive, negative, and 

neutral) we tested a “balanced” mode for changing weight of each class. The balance 

mode adjusts automatically weights inversely proportional to class frequencies in the 

input data. All classes are supposed to have weight one, since no class weight is given in 
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the dataset. Table 7.3 shows results of using unbalanced mode while Table 7.4 shows 

results of applying balanced mode. We noticed that classification accuracy is converged 

to maximum value at C that is equal to 0.009 which is different to the C value revealed 

when applying implementation code provided by Vo and Zhang [96]. We also noticed 

that execution time of each run is increased sharply with increasing C value.

Table 7.4: Balanced logistic regression.

Classifying Training Data Classifying Testing Data CAccuracy F1-score Accuracy F1-score
50.9 24.8 50.6 24.2 10-5

55.5 37.5 55.8 39.6 3×10-5

60.0 48.3 60.8 51.0 5×10-5

62.5 54.0 61.7 53.9 7×10-5

63.5 56.6 62.6 56.3 9×10-5

63.9 57.6 62.7 56.6 0.0001

67.2 64.4 66.3 63.4 0.0003

68.1 66.0 68.1 65.8 0.0005

68.2 66.4 68.2 66.1 0.0007

68.5 66.7 68.2 66.3 0.0009

68.8 67.1 68.5 66.5 0.001

70.7 69.3 68.1 66.6 0.003

71.5 70.3 68.6 67.2 0.005

72.3 71.1 68.4 67.0 0.007

73.1 71.9 68.5 67.1 0.009

73.3 72.1 68.4 67.0 0.01

77.2 76.2 68.9 67.5 0.03
79.1 78.3 68.4 66.9 0.05

80.3 79.5 68.4 67.1 0.07

81.4 80.6 68.4 67.0 0.09

81.8 81.1 67.9 66.6 0.1

86.0 85.5 66.3 65.0 0.3

88.2 87.8 66.3 64.9 0.5

89.7 89.4 65.5 64.0 0.7

90.5 90.2 65.5 63.9 0.9

90.9 90.6 65.3 63.7 1.0

94.4 94.2 63.6 61.9 3.0

96.0 95.9 62.9 61.2 5.0

96.8 96.8 61.7 60.1 7.0

97.3 97.3 61.3 59.6 9.0

We also checked effect of overfitting by applying 5-fold validation by using two selected 

C values that are reported in Table 7.4. To make a good comparison, we selected the first 
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C value equals 0.009 since it provides the best classification accuracy while the other C

value equals 9.0 to provide worse accuracy. The results provided by using 5-fold CV of 

the two states are illustrated in Table 7.5. As shown in the table, the overfitting status 

(when C=9.0) generates low accuracies in all 5 folds and the resulted average accuracy is 

low. Whereas, setting C=0.009 provides higher classification accuracies in all 5 folds and 

the resulted average accuracy is high as well which means that there is no overfitting in 

this case.

Table 7.5: Effect of overfitting.

C Fold 1 
Accuracy

Fold 2 
Accuracy

Fold 3 
Accuracy

Fold 4 
Accuracy

Fold 5 
Accuracy

0.009 68.7  68.1      70.1 67.3  68.5

9.0 60.2       60.3 60.4 60.0 57.9

We evaluated performance of applying passive aggressive classifier by using same 

strategy with same C values. All results provided by this classifier are reported in Table 

I.2 in Appendix I. The best results achieved by using this classifier are 69.7% and 67.3% 

for classification accuracy and macro-average F1-score respectively when C equals 

0.0007.

7.3 Support Vector Machine

This section shows efficiency of applying two SVM models that are implemented by 

using two different libraries: linear support vector classification and C-support vector 

classification. We developed the experiments by applying the same strategy which is 

used in previous section when evaluating generalized linear models.
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7.3.1 Linear Support Vector Classification

Linear support vector classification (SVC) is a support vector machine tool with linear 

kernel. It is implemented in terms of liblinear library which is used by Vo and Zhang

[96]. We tested this classifier with two multiclass strategies: one-vs-the-rest (OvR) and 

one-vs-one (OvO) as illustrated in Table I.3 and Table I.4 respectively in Appendix I.

Applying linear SVC again by using same C value and multiclass strategy provides 

always the same results. Thus, we did not repeat running these experiments for 

calculating confidence intervals.

The best results achieved by using linear SVC with OvR multiclass strategy was 70.5% 

and 68.1% for classification accuracy and macro-average F1-score respectively when C

value equals 0.003. While, the best results that achieved by using linear SVC with OvO 

multiclass strategy was 70.7% and 67.9% for classification accuracy and macro-average 

F1-score respectively when C value equals 0.0009. We noticed clearly that there is an 

overfitting in the learning model when increasing C value more than 0.003. We also

noticed that there is no significant difference between using OvR or OvO multiclass 

strategies when finding the maximum classification accuracy.

7.3.2 C-Support Vector Classification

C-support vector classification is a support vector machine model that is implemented in 

terms of libsvm
6

6

library. Table I.5 and Table I.6 in Appendix I show results of applying

C-SVC when using unbalanced and balanced modes respectively. Based on our 

experiment results, we noticed that using OvO and OvR multiclass strategies with C-SVC 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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generate approximately similar results. Thus, we selected OvO as default multiclass 

strategy. 

Since the dataset is unbalanced (25% positive, 25% negative, and 50% neutral). We set 

the parameter C of each class i to class_weight[i]*C. Table I.6 shows results of applying 

balanced mode. As shown in the table, there is no improvement in the performance in 

comparison with unbalanced mode. Thus, in the reset of experiment work we used only 

unbalanced mode.

The maximum result achieved by using unbalanced C-SVC linear kernel was 70.2% and 

67.7% for classification accuracy and macro-average F1-score respectively when C value 

equals 0.01. We noticed clearly from Table I.5 that increasing C value more than 0.01 

causes overfitting (accuracy of classifying training data is high) and decreases 

classification accuracy sharply (accuracy of classifying testing data is low).

The maximum result achieved by using balanced C-SVC linear kernel was 67.6% and 

66.9% for classification accuracy and macro-average F1-score respectively when C value 

equals 0.009. We noticed clearly from Table I.6 that increasing C value more than 0.009 

causes overfitting (accuracy of classifying training data is high) and decreases 

classification accuracy sharply (accuracy of classifying testing data is low).

We also checked effect of selecting different kernels when building different C-SVC 

models. Tables from Table 7.6 to Table 7.11 illustrate results of selecting different 

kernels. The maximum result achieved by using C-SVC with RBF kernel was 70.4% and 

66.9% (as shown in Table 7.6) for classification accuracy and macro-average F1-score 

respectively when C value equals 5.0. While, the maximum result achieved by using C-
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SVC with sigmoid kernel was 70.1% 66.2% (as shown in Table 7.7) for classification 

accuracy and macro-average F1-score respectively when C value equals 7.0.

Table 7.6: C-SVC with RBF kernel.

Classifying Training Data Classifying Testing Data CAccuracy F1-score Accuracy F1-score

50.0 22.2 50.0 22.2
10

-5

~0.05

50.4 23.1 50.0 22.6 0.07

51.4 26.2 50.0 24.3 0.09

51.5 26.3 50.1 24.6 0.1

56.1 38.9 56.4 41.5 0.3

60.5 49.4 60.7 51.1 0.5

62.9 54.1 61.6 53.4 0.7

64.7 57.3 63.4 56.5 0.9

65.4 58.4 64.3 57.7 1.0

70.5 66.7 68.8 64.5 3.0

73.1 70.1 70.4 66.9 5.0
74.9 72.3 69.9 66.6 7.0

76.2 73.8 69.9 66.7 9.0

Table 7.7: C-SVC with sigmoid kernel.

Classifying Training Data Classifying Testing Data CAccuracy F1-score Accuracy F1-score

50.0 22.2 50.0 22.2
10

-5

~0.1

52.3 28.5 51.2 27.2 0.3

55.1 36.2 55.1 37.7 0.5

58.3 44.4 59.1 47.6 0.7

60.2 48.8 61.0 51.2 0.9

60.9 50.3 61.6 52.6 1.0

68.0 63.0 66.2 60.9 3.0

69.8 65.8 68.4 64.0 5.0

71.2 67.7 70.1 66.2 7.0
72.2 69.2 69.5 65.8 9.0

The maximum performance achieved by using C-SVC with poly kernel was 70.5% 

67.6% (as shown in Table 7.10) for classification accuracy and macro-average F1-score 

respectively when C value equals 230.0. As shown in tables from Table 7.9 to Table 7.11,

we added more scales of selected C values to show maximum classification accuracy that 

can be reached when using this kernel. We noticed that the learning phase converged to 

maximum accuracy which is equal to 70.4% when value of degree equals 1, 2, and 4.
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Table 7.8: C-SVC of poly kernel with degree =1.

Classifying Training Data Classifying Testing Data CAccuracy F1-score Accuracy F1-score

50.0 22.2 50.0 22.2
10

-5

~0.09

50.1 22.3 50.0 22.2 0.1

52.3 28.6 51.2 27.1 0.3

55.2 36.6 55.2 38.3 0.5

58.6 45.1 59.1 47.6 0.7

60.3 49.0 60.8 51.2 0.9

61.1 50.6 61.6 52.6 1.0

68.1 63.1 66.5 61.3 3.0

70.0 66.0 68.6 64.4 5.0

71.4 68.1 70.4 66.7 7.0
72.6 69.6 69.2 65.4 9.0

Table 7.9: C-SVC of poly kernel with degree =2.

Classifying Training Data Classifying Testing Data CAccuracy F1-score Accuracy F1-score
50.0 22.2 50.0 22.2 10

-5
~0.03

50.9 24.7 50.1 24.3 0.5

51.6 26.7 50.1 24.6 0.7

51.9 27.5 50.9 26.4 0.9

52.5 28.9 51.3 27.4 1.0

60.7 49.8 60.8 51.2 3.0

64.7 57.0 63.4 56.1 5.0

66.8 60.7 65.3 59.4 7.0

68.3 63.0 67.2 62.0 9.0

69.7 65.1 68.2 63.5 11.0

70.6 66.5 68.2 63.8 13.0

71.3 67.4 68.2 63.8 15.0

71.6 68.0 68.6 64.4 17.0

72.3 68.9 69.8 65.8 19.0

73.6 70.5 69.7 65.8 23.0

74.4 71.5 70.4 66.8 27.0~100.0
88.8 88.1 69.9 67.5 210.0

The best results achieved by using C-SVC with poly kernel was 70.5% and 67.6% for 

classification accuracy and macro-average F1-score respectively when C equals 230.0 

and degree equals 3. This result is the best reported accuracy among all C-SVC settings. 

Applying C-SVC again with the same settings provides always the same results. Thus,

we did not repeat running these experiments for calculating confidence intervals.
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Table 7.10: C-SVC of poly kernel with degree =3.

Classifying Training Data Classifying Testing Data CAccuracy F1-score Accuracy F1-score

57.7 42.6 57.2 43.4
10

-5

~9×10
-5

57.7 42.6 57.2 43.4 11.0

57.7 42.6 57.2 43.4 13.0

80.7 78.9 70.5 67.3 210.0

81.5 79.8 70.5 67.6 230.0
82.1 80.6 70.5 67.5 250.0

82.9 81.5 70.1 67.2 270.0

84.9 83.7 70.1 67.3 330.0

Table 7.11: C-SVC of poly kernel with degree =4.

Classifying Training Data Classifying Testing Data CAccuracy F1-score Accuracy F1-score

50.3 22.9 50.1 22.6
10

-5

~9×10
-5

72.5 68.5 68.2 63.6 250.0

74.3 70.9 69.2 65.0 330.0

75.2 72.1 69.4 65.3 370.0

76.4 73.6 69.8 65.9 430.0

77.0 74.3 69.4 65.4 470.0

78.2 75.7 69.7 65.9 530.0

79.7 77.6 69.9 66.5 630.0

80.9 79.1 70.4 67.1 730.0
82.2 80.5 69.7 66.4 830.0

83.3 81.8 70.1 66.9 930.0

84.0 82.7 70.2 67.2 1030.0

85.1 83.8 69.8 66.6 1130.0

7.4 Deep Learning

This section shows results of evaluating two deep learning techniques that have not been 

used before in this research direction. We evaluated efficiency of using both neural

networks and convolutional neural networks. We applied these two deep learning models 

to the used dataset for making fair comparisons with other related works.
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7.4.1 Neural Networks

This section shows efficiency of applying neural networks with using different settings. 

We tested performance of using different activation functions such as ‘identity’,

‘logistic’, ‘tanh’, and ‘relu’. The ‘identity’ activation function has no activation and it is 

useful to implement linear bottleneck by returning f(x) = x. The ‘logistic’ activation 

function uses logistic sigmoid function by returning f(x) = 1 / (1 + exp(-x)). The ‘tanh’ 

activation function uses the hyperbolic tan function by returning f(x) = tanh(x). While, 

the ‘relu’ activation function uses rectified linear unit function that returns 

f(x) = max(0, x)).

Efficacy of using different solvers is checked also. The evaluated solvers include ‘lbfgs’ 

(an optimizer in the family of Quasi-Newton methods), ‘sgd’ (stochastic gradient 

descent), and ‘adam’ (stochastic gradient-based optimizer). Moreover, we changed value 

of Epsilon parameter which is used only with ’adam’ solver for applying numerical 

stability. All relevant results are included in Table 7.12.

The best performance is reported by using ‘relu’ activation function and 'adam' solver. 

We run this experiment 12 times for calculating confidence interval with confidence 

equals 95% when selecting the best setting. The maximum reported performance is

70.8% and 68.6% for accuracy and macro-average F1-score respectively. While, the 

average values are 69.9% and 67.2% for accuracy and macro-average F1-score 

respectively with confidence interval equals ± 0.5% for accuracy and ± 0.7% for macro-

average F1-score. For more details, refer to Table I.7 in Appendix I to see all numerical 

values that are generated from this experiment.
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Table 7.12: Neural networks with different settings.

Hidden 
layers

#

Neurons
1st layer

#

Neurons
2nd layer

#

Neurons
3rd layer

#
Activate Solver Eps Acc F1-

score

1 1000 ‘relu’ 'adam' 10-8 64.5 62.5

1 1000 ‘relu’ 'adam' 0.01 66.3 65.9

1 1000 ‘relu’ 'adam' 0.1 70.4 67.9

1 1000 ‘relu’ 'adam' 0.9 70.5 67.4

1 1000 ‘relu’ 'adam' 1.0 69.4 66.3

1 1000 ‘relu’ 'adam' 1.3 68.5 64.9

1 1000 ‘relu’ 'adam' 3.0 65.8 61.0

1 100 ‘relu’ 'adam' 0.9 68.1 64.8

1 900 ‘relu’ 'adam' 0.9 70.1 67.0

1 1000 ‘relu’ 'adam' 0.9 70.5 67.4

1 1100 ‘relu’ 'adam' 0.9 70.2 67.1

1 1500 ‘relu’ 'adam' 0.9 69.8 66.9

1 1000 ‘relu’ ‘sgd’ 0.9 68.4 65.6

1 1000 ‘relu’ ‘lbfgs’ 0.9 63.9 62.2

2 1000 10 ‘relu’ 'adam' 0.9 70.1 67.8

2 1000 50 ‘relu’ 'adam' 0.9 70.7 68.4

2 1000 100 ‘relu’ 'adam' 0.9 70.7 68.3

2 1000 300 ‘relu’ 'adam' 0.9 69.4 66.4

2 1000 600 ‘relu’ 'adam' 0.9 70.5 67.7

2 1000 700 ‘relu’ 'adam' 0.9 70.8 68.1

2 1000 900 ‘relu’ 'adam' 0.9 69.7 67.0

2 1000 700 ‘identity’ 'adam' 0.9 70.5 68.4

2 1000 700 ‘logistic’ 'adam' 0.9 50.0 22.2

2 1000 700 ‘tanh’ 'adam' 0.9 70.5 68.3

2 1000 700 ‘relu’ 'adam' 0.9 70.8 68.1

3 1000 700 50 ‘relu’ 'adam' 0.9 70.2 67.3

3 1000 700 100 ‘relu’ 'adam' 0.9 69.2 66.9

3 1000 700 300 ‘relu’ 'adam' 0.9 69.2 66.7

3 1000 700 500 ‘relu’ 'adam' 0.9 70.8 68.3
3 1000 700 600 ‘relu’ 'adam' 0.9 68.2 66.1

7.4.2 Convolutional Neural Networks

We evaluated efficacy of applying convolutional neural networks (CNN) to the used 

dataset. We selected CNN for conducting our experiments since this method has not been 

used before in this research direction. CNN is proposed basically for dealing with image

processing. To make CNN model fits our research problem, we used convolutional layer

of one dimension instead of two dimensions.



83

This experiment was conducted by using a machine with limited specifications (Machine 

B) as described in Table 5.6 for making our work more competitive. However, applying 

deep learning methods needs a powerful machine. This experiment was implemented by 

using specific packages [ 155F141] that are used by Python platform for evaluating deep 

learning techniques. We built a CNN model that includes only one convolutional layer 

and one hidden layer. We reported the best classification accuracy that is provided when

changing settings of pool function, size of pool function, split ratio for validation, 

optimizer, batch size, padding method, dropout value, activation function, and number of

epochs. The best achieved classification accuracy was 62.31%.

7.5 Discussion

Experiment results show clearly that using balanced mode does not improve the 

performance. The balanced mode is not suitable with the used dataset because the dataset

does not include specific weight for each tweet. Using specific weight for each tweet with 

best mode will change definitely classification accuracy and it may be an effective

method in the future.

We also noticed that the optimum values of C parameter are not similar when using 

different classification methods such as linear regression and support vector machine. 

This change is expected since these models are implemented by using different libraries

and they are based on different theoretical backgrounds. For example, logistic regression 

is converged to maximum accuracy at C value equals 0.009 which is different to the C

value that is picked by using implementation code of Vo and Zhang work. This means 

that when using different models we need to adjust the C parameter again.
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Additionally, we noticed obviously that increasing degree of polynomial kernel will 

increase C value that is required to hit maximum accuracy. This phenomenon is appeared 

because using higher degree of polynomial kernel makes equation of discussion boundary 

more complex and leads to duplicating values of C parameter. We also noticed that using 

all training data for learning each model causes overfitting (after selecting the best value 

of C parameter). This illation opens the door for employing semi-supervised learning 

techniques to decrease effect of overfitting and improving classification accuracy.

Decreasing amount of labeled data used for learning the model may improve performance 

of classifying testing data.

Moreover, we noticed that there is no significant difference between using OvR or OvO 

multiclass strategies when finding the maximum classification accuracy. Our explication 

for this phenomenon is based on complexly of the used dataset. In addition to that, using 

multiclass strategy with binary classifiers provides alternative misclassified data points.

Most of misclassified data points are belong basically to neutral tweets since they reserve 

the dominant amount of the dataset (50%). Mainly, classifying neutral tweet is not 

an easy task by nature since it may tend to positive or negative sentiment polarities.

Employing multiclass strategies increase difficulty of classifying neutral tweets and may

lead to misclassifying them when applying OvR and OvO strategies. As a result of this,

the accuracy of using OvR and OvO strategies become close to each other.

Table 7.13 shows a summary of the best achieved results provided when evaluating

supervised learning models. As shown in the table, linear classifiers, SVM, and neural 

networks provide the best results while logistic regression classifier outperforms all 
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evaluated models. Logistic regression classifier is the best classifier among all linear 

classifiers since its learning phase mimics deep learning technique.

Table 7.13: Summary of best results provided by using supervised learning methods.

Method Setting Acc Macro-
F1

Decision Tree Classifier 51.9 48.8

Naive Bayes

Gaussian Naive Bayes 53.6 50.6

Naive Bayes classifier for 

multivariate Bernoulli 

models

62.7 61.6

Discriminant Analysis

Linear Discriminant Analysis
OVR 56.4 53.7

OVO 49.9 47.6

Quadratic Discriminant 

Analysis

OVR 50.4 25.5

OVO 50.1 24.7

Nearest Neighbors
k-Nearest neighbors classifier

Leaf size=30,

Measure= ‘minkowski’,

k neighbors=18 

62.9 57.9

Nearest Centroid Classifier 56.2 55.3

Generalized Linear

Ridge Regression 60.0 57.3

Logistic Regression CV CV=5 folds 70.4 68.0

Stochastic Gradient Descent 

learning

Penalty= none,

Loss Function= Log
67.5 64.7

Ridge classifier with built-in 

cross validation
CV=5 65.5 63.0

Logistic Regression C=0.009 71.0 68.4
Passive aggressive classifier C=0.0007 69.7 67.3

Support Vector 

Machine

Linear Support Vector 

Classification

OVR, C=0.003 70.5 68.1

OVO, C=0.0009 70.7 67.9

C-Support Vector 

Classification
Kernel=RBF, C=5.0 70.4 66.9

Neural Networks

Hidden layers=3,

Activation=’relu’,

Solver=’adam’, Eps=0.9

70.8 68.3

CV= Cross Validation

OVR= One-VS-Rest (One-VS-ALL) multiclass strategy

OVO= One-VS-One multiclass strategy

We also noticed that using neural networks with ‘adam’ solver achieves the best accuracy 

among all settings since this solver works pretty well on relatively large datasets (with 

thousands of training data points or more). For smaller datasets, however, ‘lbfgs’ can 

converge faster and perform better. It is interesting as well to clarify that using deep 

learning provides competitive results.
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7.6 Conclusion 

Based on our experiment results, the best results are achieved by using linear classifiers

such as SVM with linear kernel and also neural networks. Linear classifiers are the best 

choice for classifying the used dataset since they provide comparable results. In the same 

context, linear regression provided the best results. While, neural networks provided the

highest confidence for its confidence interval that include mean value. Performance of 

discriminant analysis classifiers is not so good but these classifiers are faster and they 

provide consistence results when using scaled or unscaled data.

Additionally, our experimental results show clearly that using all training data for 

learning each model will cause overfitting. This illation opens the door for employing 

semi-supervised learning techniques to decrease effect of overfitting and improving 

classification accuracy. We also noticed that there is no significant difference between 

using OvR or OvO multiclass strategies when comparing the maximum achieved

accuracies.

Moreover, the optimum values of C parameter are different when using linear regression 

and support vector machine. Thus, when applying different models, we need firstly to 

adjust the C parameter by using an optimization method. Additionally, the best value of C

parameter that provides the optimum accuracy is different when using different 

implementations of SVM.
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CHAPTER 8

EXPERIMENT RESULTS: SEMI-SUPERVISED 

LEARNING FOR TARGET-DEPENDENT 

SENTIMENT ANALYSIS

This chapter includes all results that are provided by applying different semi-supervised 

learning techniques to DatasetA. We also make comparison with previous related works 

that are reported in literature. We selected basically research work achieved by Vo and 

Zhang [96] as baseline to make our comparisons and we use the same dataset for making

fair comparisons. Moreover, this chapter shows performance of our proposed solutions 

for developing target-dependent sentiment classification with partially labeled data.

8.1 Labeling Models

Labeling models work by constructing a similarity graph over all data points in the input 

dataset. Thus, changing number of input data points will be affected directly on the

working mechanism of these models. Table II.1 in Appendix II shows effect of changing 

labeling ratio (ratio of labeled data) on classification accuracy. The values of labeling 

ratio are increased from 0.01 up to 0.63 with using increasing step that is equal to 0.02. 

For each selected ratio we reported results of four runs (R1, R2, R3, and R4). We use in 

this experiment a label propagation method with RBF kernel when the value of Gamma 
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parameter is fixed at 0.07. This table illustrates clearly that classification accuracy will be

changed directly when modifying percentage of labeled tweets over unlabeled ones.

It is clear also from Table II.1 that increasing ratio of labeled data causes overfitting and 

decreases classification accuracy significantly. Based on this note, we conducted another 

experiments by changing ratio of labeled data from 0.01 up to 0.63 with using increasing

step that is equal to 0.02. For each selected ratio we reported results of 12 runs (R1-R12).

We selected the labeled data from different parts in the training data. In the first run (R1), 

we selected the labeled data from the first part of training data. The second run (R2) 

generates results by selecting labeled data from the last part of training data. The reset of 

runs (R3-R12) shows results of selecting randomly labeled data from the training data by 

shuffling training data randomly and then select labeled data from first part or last part of 

shuffled training data. The next subsections describe all details of our experiment work.

8.1.1 Label Propagation

We used kNN kernel and evaluated effect of changing number of neighbors. When 

conducting this experiment, we fixed number of labeled training data (51% of training 

data) to be approximately equals unlabeled training data. In next experiments, we 

selected labeled data from the first part of training data. We changed number of 

neighbors (k) from 1 into 55 by using increasing step that is equal to 2. Table II.2 in 

Appendix II shows all numerical values that are generated from these experiments. The 

maximum achieved result was 61.7% and 62.7% for classification accuracy and macro-

average F1-score respectively when number of neighbors equals one.
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To make our results more obvious, we classified testing data by using kNN kernel with 

different ratio of labeled data and fixed number of neighbors to 21 (this value generates 

one of top ten maximum accuracies). As described above, we also selected the labeled 

data from different parts in the training data when conducing the 12 runs. Figure 8.1

illustrates results of each selected ratio with its corresponding confidence interval for the 

12 runs. For more details, refer to Table II.3 in Appendix II to see all numerical values 

that are provided from this experiment.

As shown in Figure 8.1, modifying ratio of labeled data will change classification 

accuracy significantly. This illation is obvious in the figure since there are some mean 

values of specific ratios (such as ratios between 0.45 and 0.63) do not fall inside the 

confidence intervals resulted by using other labeling ratios. We also noticed that there is 

no significant change in the classification accuracy after reaching labeling ratio equals

0.45. The maximum achieved classification accuracy was 54.91% when setting labeling 

ratio to 0.41.
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Figure 8.1: Effect of changing ratio of labeled data when applying label propagation.

with kNN kernel (k=21)



90

Figure 8.2 shows results of applying label propagation when using kNN kernel with

different ratio of labeled data and fixing number of neighbors to 1 (which generated 

maximum accuracy). For more details, refer to Table II.4 in Appendix II to see all 

numerical values that are provided when conducting this experiment. We noticed from 

the table that this experiment provides higher accuracy while differences between 

confidence intervals are high. The maximum classification accuracy was 56.36% when 

the labeling ratio equals 0.01.
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Figure 8.2: Effect of changing ratio of labeled data when applying label propagation 

with kNN kernel (k=1).

We also developed an experiment to evaluate performance of using RBF kernel when 

changing value of Gamma parameter. When conducting this experiment, we fixed

number of labeled training data to 51% of training data. We changed values of Gamma

parameter from 0.01 to 2.23 by using increasing step that is equal to 0.02. For more 

details, refer to Table II.5 in Appendix II to see all numerical values that are provided 

when conducting this experiment. The maximum reported result was 59.0% and 54.2% 
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for classification accuracy and macro-average F1-score respectively when setting Gamma

parameter to 0.13. We also noticed that the performance becomes fixed when the value of 

Gamma parameter is equal to or greater than 2.23. Using these settings provides the 

lowest performance among all runs with 25.0% and 13.3% for classification accuracy and 

macro-average F1-score respectively.

Figure 8.3 illustrates results of applying label propagation when using kNN kernel. We

use here a fixed value of Gamma parameter which equals 0.07 since it provides the 

highest classification accuracy. For more details, refer to Table II.6 in Appendix II to see

all numerical values that are provided when conducting this experiment. The maximum 

classification accuracy was 60.84% when the corresponding labeling ratio equals 0.07.
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Figure 8.3: Effect of changing ratio of labeled data when applying label propagation 

with RBF kernel (Gamma=0.07).

8.1.2 Label Spreading

We applied label spreading method with kNN kernel and evaluated effect of changing 

number of neighbors. When conducting this experiment, we fixed ratio of labeled training 
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data to 51%. The maximum reported result was 58.1% and 53.1% for classification 

accuracy and macro-average F1-score respectively when number of neighbors equals 7.

For more details, refer to Table II.7 in Appendix II to see all numerical values that are 

provided when conducting this experiment.

Figure 8.4 illustrates results of applying label spreading when using RBF kernel. We used

a fixed number of neighbors that is equal to 7 since it provides the highest classification 

accuracy. For more details, refer to Table II.8 in Appendix II to see all numerical values 

that are provided when conducting this experiment. The maximum classification 

accuracy was 59.83% when labeling ratio equals 0.27.

0.6
3

0.6
1

0 .590.5
7

0.5
5

0 .530 .510.4
9

0.4
7

0.4
5

0 .430.4
1

0.3
9

0.3
7

0.3
5

0.3
3

0.3
1

0.2
9

0.2
7

0.2
5

0.2
3

0.2
1

0 .190.1
7

0.1
5

0 .130 .110.0
9

0.0
7

0 .050.0
3

0.0
1

52

50

48

46

44

42

40

Ratio

Ac
cu

ra
cy

Interval Plot of Accuracy
95% CI for the Mean

Individual standard deviations are used to calculate the intervals.

Figure 8.4: Effect of changing ratio of labeled data when applying label spreading 

with kNN kernel (k=7).

Figure 8.5 illustrates results of applying label spreading with RBF kernel. We used

a fixed value with Gamma parameter which equals 0.19 since it provides the highest 

classification accuracy as shown in Table II.9 in Appendix II. For more details, refer to 

Table II.10 in Appendix II to see all numerical values that are provided when conducting
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this experiment. The maximum classification accuracy was 61.42% when labeling ratio

equals 0.05.

Table II.9 in Appendix II shows effect of changing values of Gamma parameter when 

applying label spreading with RBF kernel. When conducting this experiment, we also

fixed number of labeled data to be 51% of training data. The maximum reported result 

was 59.2% and 54.7% for classification accuracy and macro-average F1-score 

respectively when setting Gamma parameter to 0.19. We also noticed that the 

performance becomes fixed when the value of Gamma parameter equals or greater than 

2.55. These settings provide the lowest performance among all runs with 25.0% and 

13.3% for classification accuracy and macro-average F1-score respectively.
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Figure 8.5: Effect of changing ratio of labeled data when applying label spreading

with RBF kernel (Gamma=0.19).

8.2 Semi-supervised K-means

We evaluated performance of applying semi-supervised K-means. Figure 8.6 illustrates 

results of applying semi-supervised K-means on each selected ratio along with its 
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corresponding confidence interval of the 12 runs. We noticed clearly that the mean of 

classification accuracy is increased gradually when increasing ratio of labeled data. For 

more details, refer to Table II.11 in Appendix II to see all numerical values that are 

provided when conducting this experiment. The maximum achieved classification 

accuracy was 46.82% when using labeling ratio equals 0.37. This maximum value of 

classification accuracy is provided also when the labeling ratio equals 0.57 and 0.41. We

reported only the least ratio that can be used to provide the best performance.

0.6
3

0.6
1

0 .590.5
7

0.5
5

0 .530 .510.4
9

0.4
7

0.4
5

0 .430.4
1

0.3
9

0.3
7

0.3
5

0.3
3

0.3
1

0.2
9

0.2
7

0.2
5

0.2
3

0.2
1

0 .190.1
7

0.1
5

0 .130 .110.0
9

0.0
7

0 .050.0
3

0.0
1

48

46

44

42

40

38

36

34

32

Ratio

Ac
cu

ra
cy

Interval Plot of Accuracy
95% CI for the Mean

Individual standard deviations are used to calculate the intervals.

Figure 8.6: Effect of changing ratio of labeled data when applying semi-supervised K-means.

8.3 Self-Training

This section shows results of using self-training technique by applying different 

supervised methods. We used logistic regression classifier for evaluating performance of 

applying self-training technique. We used two measures to calculate confidence level for 

removing specific data points from unlabelled set and adding them to labeled set during

learning phase. The first measure is the distance between the date point and the decision 

hyperplane. While, the other measure is the confidence probability of predicting each 
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data point as positive, negative, or neutral sentiment. The next subsections describe 

results of all experiments that are conducted for checking efficacy of these methods.

8.3.1 Self-Training Using Logistic Regression Classifier With Distance

Confidence

Another experiment is conducted to evaluate performance of applying self-training by 

using logistic regression with distance confidence. The distance confidence is calculated

by using equation 6.1. We applied this formula to the three classes (positive, negative, 

and neutral) which constructs three dimensional hyperplane decision boundary. We tried

to select the best value of threshold � by changing threshold value and run the experiment 

again. We used only one round at each run since we need only to find the best threshold 

value. Based on the experiment work, we noticed that accuracy does not change after 

three rounds and no significant change within the first three rounds. 

The logistic regression classifier is used in this direction because it provides combative

results as shown in Chapter 7. We set C=0.009 with OvR multiclass strategy while ratio 

of labeled data is fixed to 0.51. Labeled data is selected from the first part of training set.

The maximum achieved accuracy was 70.2% when value of threshold � equals 0.81. For 

more details, refer to Table II.12 in Appendix II to see all numerical values that are 

provided when conducting this experiment.

Based on the best results provided when applying previous experiment, we selected

a value of threshold � that is equal to 0.81. Then, we checked efficiency of applying self-

training using logistic regression classifier with distance confidence. We selected this 

threshold value as the least threshold that gives maximum accuracy for increasing the 
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chance to train more unlabeled data. We also checked efficiency of applying this semi-

supervised learning technique with different ratios of labeled data. We also selected same

ratios (from 0.01 to 0.63) that are used in pervious experiments.

Efficiency of applying logistic regression to the same ratios of labeled data is check 

individually. We conducted this experiment to make a comparison between logistic 

regression and self-training using logistic regression (using distance confidence). Figure 

8.7 illustrates results of applying logistic regression classifier on each selected ratio with 

its corresponding confidence interval among the 12 runs. 
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Figure 8.7: Effect of changing ratio of labeled data when applying logistic regression classifier.

We noticed clearly from Figure 8.7 that the mean of classification accuracy is increased 

gradually when increasing ratio of labeled data. The maximum reported accuracy was 

71.97% with labeling ratio that is equal to 0.45. For more details, refer to Table II.13 in 
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Appendix II to see all numerical values that are provided when conducting this 

experiment.

We also evaluated performance of applying self-training with logistic regression 

classifier (using distance confidence) to all selected ratios of labeled data as shown in

Figure 8.8. We set threshold � to a value equals 0.81. The maximum reported accuracy 

was 70.81% with labeling ratio that is equal to 0.59. For more details, refer to Table II.14 

in Appendix II to see all numerical values that are provided when conducting this 

experiment.
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Figure 8.8: Effect of changing ratio of labeled data when applying self-training with distance confidence 

(�=0.81).

8.3.2 Self-Training Using Logistic Regression Classifier with probabilistic

confidence

Performance of self-training model is evaluated again when using logistic regression with 

probabilistic confidence. The mode is learned for three rounds. Instead of using Equation 

6.1, we use in this experiment a probability of predicting each tweet as positive, negative 
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or neutral sentiment. To select the best probabilistic threshold, we fixed ratio of labeled 

data to 0.45. The labeled data are selected also from the first part of training set. This 

ratio is selected because it provided best performance when applying logistic regression 

classifier as shown in previous section. We reported the performance when changing

probabilistic threshold from 0.01 to 0.99 with increasing step that is equal to 0.01. The 

maximum reported accuracy was 72.1% at probabilistic threshold equals 0.9. For more 

details, refer to Table II.15 in Appendix II to see all numerical values that are provided 

when conducting this experiment.

Figure 8.9 illustrates results of evaluating this model when changing ratio of labeled data.

We set here probabilistic threshold (Prop) to a value that is equal to 0.9 which provided 

the best accuracy. The maximum reported accuracy was 72.11% when the labeling ratio

equals 0.45. For more details, refer to Table II.16 in Appendix II to see all numerical 

values that are provided when conducting this experiment.
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Figure 8.9: Effect of changing ratio of labeled data when applying self-training with probabilistic 

confidence (Prop=0.9).
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8.4 QN-S3VM BFGS Optimizer for Semi-supervised SVM

For evaluation performance of QN-S3VM, we used a tool
7

This tool uses different parameters such as Lamda, LamdaU, Sigma, and Kernel_type.  

Lamda is a regularization parameter (default 1, must be a float > 0). LamdaU is 

a cost parameter that determines influence of unlabeled patterns (default 1, must be float 

which is implemented to 

classify only two classes (positive and negative). Thus, we applied multiclass 

classification strategy to make this tool suitable to classify our dataset which includes

three classes. We modified the implemented code of the used tool to provide numerical

values that measure distances from the decision boundary to each data point. For example 

if the numerical value is -1.9, this means that the corresponding data point is placed in the

negative class. This value clarify also that the distance between the data point and the 

decision boundary is 1.9. Thereby, if this value is increased, then the confidence of

adding this data point to the negative class will be increased. As a result of this, these 

numerical values are employed for building the multiclass classification strategies.

We applied strategies of one-versus-rest (OvR) (called also one-versus-all) and one-

versus-one (OvO) for developing our experiments. We applied OvR strategy by building

three binary classifiers and selecting the outcome from the classifier that provides the 

maximum distance between the data point and the decision hyperplane. While, when 

applying OvO strategy we build three binary classifiers and select the dominant sentiment

polarity for each classified micro-blog by using voting strategy.

7 http://www.fabiangieseke.de/index.php/code/qns3vm
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> 0). If LamdaU equals 0, then the model mimics a supervised learning technique. Sigma 

is a parameter used width RBF kernel (default 1.0, must be a float > 0).

We used Kernel_type parameter to select linear or RBF kernel when building the model.

We use linear kernel by default when conducting the experiments. We noticed that using 

RBF kernel provides always accuracy that is equal to 50% even when changing values of 

Lamda and LamdaU parameters from 0.001 to 17.0. We also changed value of Sigma 

parameter when fixing Lamda and LamdaU values to 1 while the accuracy remained also 

50%.

8.4.1 Using One-VS-Rest Strategy

We evaluated performance of applying OvR strategy when changing values of Lamda

parameter. We set same value to both Lamda and LamdaU parameters. This tool uses 

also another parameter initialized randomly. However, we fixed the value used with this 

parameter to find the best values of Lamda and LamdaU that provide high performance.

We changed Lamda from 0.001 to 0.497 with increasing step that is equal to 0.001. The 

maximum reported accuracy was 71.53% at Lamda equals 0.025. For more details, refer 

to Table II.17 in Appendix II to see all numerical values that are provided when 

conducting this experiment. We also noticed that when setting value 0.025 for both 

Lamada and LamdaU parameters, the classification accuracy hits also the same maximum 

value (71.53%). Thus, we selected this value for both Lamada and LamdaU parameters 

when conducting next experiments.

Effect of modifying value of LamdaU is checked by fixing Lamda value to 0.025 and 

changing values of LamdaU as shown in Table II.18 in Appendix II. We fixed here ratio 
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of labeled data to 51% and changed incrementally values of LamdaU until we observed

that the accuracy is decreased. The maximum reported accuracy was 71.53% at LamdaU 

equals 0.025, 0.009, and 0.005. We noticed that when setting value 0.025 to both Lamada 

and LamdaU parameters, the accuracy value hits also the same maximum value (71.53%) 

as described above.

Effect of fixing both Lamda and LamdaU to value 0.025 and changing ratio of labeled 

data is evaluated also. Figure 8.10 illustrates results of applying QN-S3VM to each

selected ratio of labeled data along with its corresponding confidence interval among the 

12 runs. The maximum reported accuracy was 71.82% when labeling ratio equals 0.63.

For more details, refer to Table II.19 in Appendix II to see all numerical values that are 

provided when conducting this experiment.
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Figure 8.10: Effect of changing ratio of labeled data when applying QN-S3VM BFGS optimizer for semi-

supervised SVM (Lamda=0.025) with OvR multiclass strategy.
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8.4.2 Using One-VS-One Strategy

We built three models of QN-S3VM for developing a semi-supervised learning technique 

that classifies the dataset by using one-vs-one strategy. We fixed the ratio of labeled data 

to 51% and changed both Lamda and LamdaU as shown in Table II.20 in Appendix II.

We changed values of both Lamda and LamdaU from 0.001 to 0.261 by applying 

increasing step that is equal to 0.004. The maximum reported accuracy was 70.1% when 

setting value of both Lamda and LamdaU parameters to 0.045.

Additionally, effect of changing ratio of labeled data is evaluated when fixing value of 

both Lamda and LamdaU parameters to 0.045. The maximum provided accuracy was 

70.52% when setting ratio of labeled data to 0.61. For more details, refer to Table II.21 in 

Appendix II to see all numerical values that are provided when conducting this 

experiment. Similarly, Figure 8.11 illustrates results of applying QN-S3VM with OvO 

strategy.
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Figure 8.11: Effect of changing ratio of labeled data when applying QN-S3VM BFGS optimizer for semi-

supervised SVM (Lamda=0.045) with OvO multiclass strategy.
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8.5 Unsupervised Learning Techniques

This section discuss our experiment work for illustrating performance of applying 

clustering techniques to DatasetA by using fully unlabeled data. Using clustering 

techniques shows performance of applying semi-supervised learning technique when

decreasing extremely number of labeled micro-blogs. It is noteworthy that we selected 

some clustering methods instead of using semi-supervised learning methods for

conducting all relevant experiments. We selected the clustering methods because they are 

designed mainly for working with unlabelled data. We converted the clustering problem 

into a classification problem by clustering the dataset into three clusters since the dataset

includes three classes (positive, negative, and neutral).

We use K-means and Birch methods for conducting our experiments. We did not use 

other clustering methods such as DBSCAN, MeanShift, Agglomerative, and affinity 

propagation because they do not use a parameter for specifying number of required 

clusters in advance while we need to specify exactly three clusters. Moreover, using other 

clustering methods provide results that are sensitive to many parameters such as eps and 

min_samples. Parameter eps is used with some methods for specifying maximum 

distance between two data points to be considered as in the same neighborhood. While, 

min_samples parameter is used for specifying number of data points in a neighborhood of

a selected data point to be considered as a core data point. Thus, using other methods 

reveal some difficulties in validating experimental results. 

8.5.1 Birch

This subsection shows results of applying Birch clustering method. Birch uses two 

parameters: the threshold and the branching factor. In our experiments, we set value of 
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the threshold parameter to 0.5. A description of these parameters is presented in Section

2.3.2.1. Clustering testing data into 3 clusters by using the Birch method provides a poor

result that was 24.4% and 18.5% for classification accuracy and macro-average F1-score,

respectively.

This result is provided because the Birch method generated a cluster that contains only 

one sample and the majority of samples are assigned to incorrect cluster as shown in 

Figure 8.12. The figure shows two views for illustrating the result clearly. The first view

(Figure a) shows how the classes are distributed in each cluster. While, the second view

(Figure b) shows how the clusters are grouped in each class. The horizontal axis in each 

graph represents accuracy of the distribution, while the other one shows corresponding

clusters or classes. For more details, refer to Table II.22 in Appendix II to see all 

numerical values that are provided when conducting this experiment.

(a) (b)

Figure 8.12: Distribution of data points provided when clustering testing data by using Birch method.

Clustering training data into 3 clusters provides classification accuracy that is equal to 

27.6% while the macro-average F1-score equals 26.5%. It is clear that the accuracy is 

improved in comparison with the result shown above when clustering the testing data.

This is an expected result because number of data points in training data is larger which 
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leads to learning Birch model more accurately. In general, the accuracy is still worse

because majority of data points are assigned to incorrect cluster as shown Figure 8.13.

For more details, refer to Table II.23 in Appendix II to see all numerical values that are 

provided when conducting this experiment.

(a) (b)

Figure 8.13: Distribution of data points provided when clustering training data by using Birch method.

To improve the performance, we applied firstly the Birch method to the training data and 

then the testing data is classified. The result was 28.3% and 26.3% for classification 

accuracy and the macro-average F1-score respectively. As we noted, the resulted 

accuracy provided from this experiment is better than previous two experiments since the 

model is learned further. However, the results are still poor in general since the Birch 

method assigns the majority of data points to incorrect cluster as illustrated in Figure 

8.14. For more details, refer to Table II.24 in Appendix II to see all numerical values that 

are provided when conducting this experiment.
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(a) (b)

Figure 8.14: Distribution of data points provided by clustering testing data after clustering training data by 

using Birch.

8.5.2 K-means

This section shows performance of applying K-means method for clustering the dataset. 

To check the effect of initializing the centroids used by K-means clustering, we used 

three methods: 1) Initialize centriods by using K-means++ algorithm [142

8.5.2.1 Clustering Testing Data

]. 2) Initialize

centriods fully randomly from the data. 3) Initialize each centriod at random from data 

points included in its corresponding class. Experiment results provided by using these 

methods are reported in the sequel.

We used K-means method for clustering testing data into 3 clusters. Different methods

are used as well for initializing the centriods as discussed in next subsections.

8.5.2.1.1 Initialized by Using K-means++

When conducting this experiment, the centriods are initialized by using K-means++ 

method. We run this experiment 11 times to find confidence interval with confidence 

equals 95%. The maximum reported result was 27.9% and 23.8% for accuracy and 

macro-average F1-score respectively. While, the average was 24.7% and 20.8% for 



107

accuracy and macro-average F1-score respectively with a confidence interval equals 

±1.9% for both accuracy and macro-average F1-score. For more details, refer to Table 

II.25 in Appendix II to see all numerical values that are provided when conducting this 

experiment.

This poor result shows that there is a cluster contains only one data point and majority of 

data points are assigned incorrectly to the clusters. Experiment result provided from 

a sample run (accuracy equals 27.6%) is shown in Figure 8.15. As shown in the figure, 

the neutral cluster contains only one data point which belongs to negative class. 

Additionally, majority of data points included in negative and positive clusters belong

actually to neutral class. For more details, refer to Table II.26 in Appendix II to see all 

numerical values that are provided when conducting this experiment.

(a) (b)

Figure 8.15: Distribution of data points provided when applying K-means while centroids are initialized by 

using K-means++.

To show the results more clearly, we run this experiment again 10 times and plotted the 

average distribution as shown in Figure 8.16. We used Braycurtis distance measure for 

achieving this experiment. For more details, refer to Table II.27 in Appendix II to see all 

numerical values that are provided when conducting this experiment.
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(a) (b)

Figure 8.16: Average of distributions provided when clustering testing data by applying K-means while 

centroids are initialized by using K-means++.

8.5.2.1.2 Randomly Initialization 

We developed another experiment to test efficiency of initializing centroids. The 

centroids are initialized fully randomly from the whole testing data. The classification 

accuracy is increased in comparison with the previous experiment which uses K-

means++ algorithm. We run this experiment 10 times to find confidence interval with 

confidence equals 95%. The maximum achieved result was 44.9% and 30.4% for 

accuracy and macro-average F1-score respectively. The average values are 33.6% and 

25.3% for accuracy and macro-average F1-score respectively with confidence interval 

that is equal to ±5.1% for the accuracy and ±1.8% for the macro-average F1-score. For 

more details, refer to Table II.28 in Appendix II to see all numerical values that are 

provided when conducting this experiment.

Figure 8.17 shows the distribution of data points among the clusters when conducting a

specific experiment run. For more details, refer to Table II.29 in Appendix II to see all 

numerical values that are provided when conducting this experiment. Figure 8.18

illustrates average of distributions among the clusters and classes. For more details, refer 
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to Table II.30 in Appendix II to see all numerical values that are provided when 

conducting this experiment.

(a) (b)

Figure 8.17: Distribution of data points provided by using K-means while centroids are initialized fully 

randomly.

(a) (b)

Figure 8.18: Average of distributions provided when clustering testing data by using K-means while 

centroids are initialized fully randomly.

8.5.2.1.3 Initialized at Random From Corresponding Classes

To improve the performance, we initialized randomly each centroid from the actual 

corresponding class. Figure 8.19 illustrates the results when the classification accuracy 

was 44.9%. For more details, refer to Table II.31 in Appendix II to see all numerical 

values that are provided when conducting this experiment. To make this figure clearer, 
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we run this experiment 10 times and calculated the average as illustrated in Figure 8.20.

For more details, refer to Table II.32 in Appendix II to see all numerical values that are 

resulted from these experiments.

(a) (b)

Figure 8.19: Distribution of data points provided when clustering testing data by using K-means while 

centroids are initialized randomly from the corresponding classes.

(a) (b)

Figure 8.20: Average of distributions provided when clustering testing data by using K-means while 

centroids are initialized randomly from the corresponding classes.

To find confidence interval with confidence equals 95%, we run again this experiment 33 

times. The maximum provided performance was 51.2% and 30.4% for accuracy and 

macro-average F1-score respectively. The averages are 36.8% and 22.0% for accuracy 

and macro-average F1-score respectively with confidence interval that is equal to ±4% 
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for the accuracy and ±1.7% for the macro-average F1-score. For more details, refer to 

Table II.33 in Appendix II to see all numerical values that are provided when conducting 

this experiment.

8.5.2.2 Clustering Training Data

K-means method is used also for clustering the training data into 3 clusters. Figure 8.21

shows the result provided when initializing each centroid fully randomly while the

accuracy was 39.8%. For more details, refer to Table II.34 in Appendix II to see all 

numerical values that are provided when conducting this experiment. To find confidence 

interval with confidence equals 95%, we run again this experiment 33 times. The 

maximum achieved performance was 43.9% and 39.3% for accuracy and macro-average 

F1-score respectively. The averages are 34.4% and 30.1% for accuracy and macro-

average F1-score respectively with confidence interval that is equal to ±2.1% for 

accuracy and ±1.3% for macro-average F1-score. For more details, refer to Table II.35 in 

Appendix II to see all numerical values that are provided when conducting this 

experiment.

(a) (b)

Figure 8.21: Distribution of data points provided when clustering training data by using K-means while 

centroids are initialized fully randomly.
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Figure 8.22 shows the result provided when initializing randomly each centroid from its 

corresponding class while the classification accuracy was 45.1%. For more details, refer 

to Table II.36 in Appendix II to see all numerical values that are provided when 

conducting this experiment. To find confidence interval with confidence equals 95%, we 

run again this experiment 33 times. 

The maximum achieved performance was 51.7% and 39.3% for accuracy and macro-

average F1-score respectively. The averages are 42.9% and 32.1% for accuracy and 

macro-average F1-score respectively with confidence interval that is equal to ±1.7% for 

the accuracy and ±1.3% for the macro-average F1-score. For more details, refer to Table 

II.37 in Appendix II to see all numerical values that are provided when conducting this 

experiment. We reported only distinct results since many runs provide similar results.

(a) (b)

Figure 8.22: Distribution of data points provided when clustering training data by using K-means while 

centroids are initialized randomly from the corresponding classes.

8.5.2.3 Clustering testing data after clustering training data

This section discusses performance of cluster training data and then using the resulted 

centroids for clustering testing data. Result of clustering training data is provided by 

initializing randomly each centroid from its corresponding class. We used here this 
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method for initializing the centroids because it provided competitive results as discussed 

in pervious sections. We also applied different distance measures
8

We run each experiment 33 times to calculate confidence interval with confidence equals 

95%.

to check efficiency of 

changing distance measures. We used distance measures: Braycurtis, Canberra,

Chebyshev, City Block (Manhattan), Correlation, Cosine, Euclidean, and Squared 

Euclidean. We selected these distance measures because they are suitable for working 

with high dimensional data. We noticed also that these distance measures generated 

better results in comparison with other distance measures evaluated in our work. This 

result is compatible with many findings shown in the literature. 

Figure 8.23 previews interval plot for illustrating confidence intervals when 

changing distance measure. This figure shows clearly that using different measure 

measures will affect on classification accuracy since there are some mean values do not 

fall inside confidence intervals of other ones. For more details, refer to tables from Table 

II.38 into Table II.45 in Appendix II to see all numerical values that are resulted from 

these experiments.

Based on these experiment results, Cosine distance measure provided the best results. 

This result is compatible with many findings shown in the literature since we use 

word2vec embeddings based on Cosine distance similarities. The best achieved result

was 50.7% and 41.5% for accuracy and macro-average F1-score respectively. The 

averages are 39.7% and 30.4% for accuracy and macro-average F1-score respectively 

with confidence interval that is equal to ±2.4% for the accuracy and ±1.8% for the macro-

8
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html#
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average F1-score. For more details, refer to Table II.43 in Appendix II to see all 

numerical values that are provided when conducting this experiment.
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Figure 8.23: Effect of using different distance measures: a) Accuracy, b) F1-score. 

Using Euclidean distance measure provided also the same maximum accuracy (50.7%)

achieved by using Cosine distance measure but the macro-average F1-score was low that 

is equal to 39.5%. This result is compatible also with many findings shown in the 
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literature since many works recommend to using Euclidean distance measure. The 

average of accuracies is equal to 41.7% while the average of macro-average F1-scores is 

equal to 30.1%. The confidence interval in this case is better which is equal to ±2.2% for 

the accuracy and ±1.3% for the macro-average F1-score. For more details, refer to Table 

II.44 in Appendix II to see all numerical values that are provided when conducting this 

experiment.

It is noteworthy that using City Block (Manhattan) distance measure provided the best 

macro-average F1-score that is equal to 41.8%. While, it provides the second maximum 

accuracy that is equal to 50.1%. However, the average of accuracies is similar to the case 

of using Cosine distance measure (39.7%) while the average value of macro-average F1-

scores is low which is equal to 29.5%. The confidence interval equals ±2.5% for the 

accuracy and ±1.5% for the macro-average F1-score. For more details, refer to Table 

II.41 in Appendix II to see all numerical values that are provided when conducting this 

experiment.

8.6 Improved Semi-supervised Target-Dependent Sentiment 

Classification

We evaluated performance of applying our technique proposed for using target-

dependent sentiment classification with partially labeled data. The technique employs

self-training with SVM classifier (or other classifiers such as logistic regression) by using

probabilistic confidence. Table II.46 in Appendix II shows experiment results when 

setting the threshold of probability to 0.9.
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We changed the threshold when setting ratio of labeled data to 0.45. We noticed that 

setting threshold to 0.9 provides the best results. The maximum reported accuracy was 

72.25%. For more details, refer to Table II.46 in Appendix II to see all numerical values 

that are provided when conducting this experiment. Figure 8.24 illustrates experiment 

results as interval plot. We can claim that the provided performance has a high 

confidence since each confidence interval is so small.
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Figure 8.24: Effect of changing ratio of labeled data when applying improved semi-supervised target-

dependent sentiment classification.

8.7 Discussion

We deduced form experiment work that using unscaled data provides poor results. 

Unscaled data is revealed when using different scales and ranges when extracting 

features. Thereby, it will complicate classification task. Thus, for improving the 

performance, we normalized the data to the same scale before applying machine learning 

techniques.
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It is noteworthy that labeling models behave differently in comparison with other 

evaluated semi-supervised techniques. The periods of confidence intervals are large

which means that the confidence level is low. While, behavior of other evaluated semi-

supervised learning techniques (including our proposed technique) are completely

different and work conversely. Our explanation for these phenomena is based on the

implementation scope of labeling models. Labeling models build structured tree based on

the training data which make training phase precise and sensitive to the data points 

included in training set. Thus, increasing ratio of labeled data will increase effect of 

overfitting and decrease the accuracy.

Using probabilistic confidence outperform the other method which uses distance

confidence when applying self-training with logistic regression. It is an expected result 

since calculating distance from each data point to the decision boundary is a difficult 

task. Calculating each distance is affected by different factors such as the measure used 

for calculating the distances and number of dimensions that represents data points. While,

calculating probabilistic confidence is based on the performance of the classifier. As 

a result of this, using probabilistic confidence is better than using distance confidence.

Experiment results show clearly that semi-supervised K-means gives better results in 

comparison with original K-means method. Semi-supervised K-means provides better 

results since using labeled data helps in initializing centriods within their correct 

corresponding classes. As a result of this, these good locations enable K-means method to 

converge usually to better results.
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In general, using data clustering methods for classifying the dataset performs poor results.

Thereby, data clustering is not suitable for classifying the used dataset and we should use 

other machine learning techniques for achieving this task. This poor result is provided 

because unsupervised learning methods work better with well separated classes. While,

the used dataset includes three sentimental classes that are overlapped and their sizes are 

not equal. Additionally, applying unsupervised learning techniques is suitable for low 

dimensional data while the used dataset has large number of dimensions.

Table 8.1 describes all techniques used for making comparisons. All compared 

supervised learning models are reported by Tang et al. [127] except SSWE which is 

proposed by Tang et al. [76] and reported by Vo and Zhang [96] as comparable model. 

The rest of Table 8.1 presents a description to all evaluated semi-supervised learning 

techniques used for making comparisons with our proposed solution.

Table 8.2 shows a summary of experiment results for comparing proposed solution with 

previous related works in the state of the art. The last part in the table illustrates accuracy 

and macro-average F1-score of predicating sentiment polarities. The reported results 

indicate to the highest accuracy and macro-average F1-score that are reported when

training each model with the lowest ratio of labeled data.

Our solution proposed for improving the performance of target-dependent Sentiment 

classification (ImproveSelfTrP) using partially labeled data outperforms all evaluated 

semi-supervised learning techniques as shown in Table 8.2. The proposed technique does

not provide the best macro-average F1-score score in comparison with S3VMOVR. 
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However, the proposed technique outperforms (in terms of both accuracy and macor-F1 

score) TC-LSTM which has been published recently.

Table 8.1: Description of all compared methods used for target-dependent sentiment classification.

Method Description Class
SSWE Sentiment-speci������������	���������[76]. S

SVM-indep SVM classifier uses only target-independent features. S

SVM-dep
SVM classifier uses target-independent features concatenated with target-

dependent features provided by Jiang et al. [98].
S

RecursiveNN Standard RNN with target-dependent dependency tree [93]. S

AdaRNN-w/oE Adaptive recursive neural network (RNN) [93]. S

AdaRNN-w/E Adaptive recursive neural network (RNN) [93]. S

AdaRNN-comb Adaptive recursive neural network (RNN) [93]. S

Target-dep SVM uses rich target-independent and target-dependent features [96]. S

Target-dep+
SVM uses rich target-independent, target-dependent, and sentiment lexicon 

features [96].
S

LSTM

Long short-term memory model (recurrent neural network) uses Glove 

vector. It classifies target-dependent sentiment based on target independent 

strategy [127].

S

TD-LSTM Target-Dependent LSTM [127]. S

TC-LSTM Target-Connection LSTM [127]. S

Bi-GRU
Bi-directional gated recurrent unit for target-dependent sentiment 

classification [131]
S

SK-means
Semi-supervised K-means method with Cosine distance measure (which 

performs better results than Euclidian distance measure).
SM

LabelProK Label propagation by using kNN kernel. SM

LabelProR Label propagation by using RBF kernel. SM

LabelSpK Label spreading by using kNN kernel. SM

LabelSpR Label spreading by RBF kernel. SM

S3VMOvOVote
QN-S3VM with OVO strategy. The voting strategy is used to select the 

most dominant perdition.
SM

S3VMOvR QN-S3VM with OVR strategy. SM

SelfTrH
Self-training with SVM method that uses distance from the hyperplane for 

calculation confidence level. The used formula is inspired by work [128].   
SM

SelfTrP
Self-training with SVM method that uses prediction probability for 

calculating prediction confidence.
SM

ImproveSelfTrP
Our proposed technique that improves self-training with SVM by using

prediction probability for calculating prediction confidence
SM

Class: S=Supervised learning technique, SM= Semi-supervised learning technique.

Additionally, our proposed semi-supervised learning solution provides comparative

accuracy in comparison with previous related supervised learning methods in the state of 
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the art. Moreover, the proposed solution provides the maximum accuracy which is 

achieved also by a very recent work used a deep learning method (Bi-GRU). It is 

interesting as well to clarify that the proposed semi-supervised learning technique 

achieved the maximum classification accuracy when using only 45% of labeled data. 

Whereas, learning the evaluated methods with partially labeled data may decrease the 

classification accuracy. The proposed technique provides the highest accuracy with less 

number of labeled (only 45%) in comparison with other methods such as S3VMOVR 

which used 63% of labeled data.

Table 8.2: Summary of different techniques proposed for target-dependent sentiment classification.

Method, year Setting Acc Macro-
F1

Labeling
Ratio

SSWE, 2014 62.4 60.5 100%

SVM-indep, 2011 62.7 60.2 100%

SVM-dep, 2011 63.4 63.3 100%

RecursiveNN, 2014 63.0 62.8 100%

AdaRNN-w/oE, 2014 64.9 64.4 100%

AdaRNN-w/E, 2014 65.8 65.5 100%

AdaRNN-comb, 2014 66.3 65.9 100%

Target-dep, 2015 69.7 68.0 100%

Target-dep+, 2015 71.1 69.9 100%

LSTM, 2016 66.5 64.7 100%

TD-LSTM, 2016 70.8 69.0 100%

TC-LSTM, 2016 71.5 69.5 100%

Bi-GRU, 2018 72.3 70.5 100%

SK-means Cosine distance measure 46.8 43.0 37%

LabelProK kNN kernel, neighbours #=1 56.4 53.6 1%

LabelProR RBF kernel, Gamma =0.07 60.8 55.4 7%

LabelSpK kNN kernel, neighbours #=7 59.8 53.6 27%

LabelSpR RBF kernel, Gamma= 0.19 61.4 56.6 5%

S3VMOVOvote Linear kernel���Lamda=0.045 70.5 68.4 61%

S3VMOVR Linear kernel���Lamda=0.025 71.7 70.0 63%

SelfTrH C=0.009, Threshold=0.81 70.8 67.9 59%

SelfTrP C=0.009, Prob Threshold=0.9 72.1 69.5 45%

ImproveSelfTrP � C=0.009, P=0.9 72.3 69.7 45%

���
	���RBF kernel does not provide classification accuracy more than 50%.

� Proposed solutions
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It is noteworthy that our proposed technique did not provide the best macro-average F1-

score. Our explanation for this result tends to the nature of used dataset which has a large 

class of neutral sentiment polarity. Our proposed technique detects many neutral tweets 

correctly while it may misclassify some positive or neutral ones. As a result of this, the 

classification accuracy increased while the macro-average F1-score does not match this 

improvement. 

The proposed technique works better when classifying initially neutral tweets incorrectly.

In this case, the proposed technique will correct the sentiment polarity by selecting the 

sentiment that is corresponding to second maximum value of the three prediction

probabilities (P+, P-, and Po). Thereby, the technique predicts correctly neutral sentiment

polarity since neutral polarity leads usually to the second maximum of prediction 

probabilities. While, positive and negative tweets lead alternately to the lowest or largest 

prediction probability since these polarities are clearer than neutral polarity which may 

confuse even the experts.

It deserves attention that S3VMOVR outperforms all semi-supervised learning methods 

in terms of macro-average F1-score. S3VMOVR provides competitive results but it is not 

robust since their provided results are sensitive to setting randomly a parameter used for 

achieving Quasi-Newton optimization. While, applying our proposed technique does not 

need to set randomly any parameter and converges always to the same results when using 

same ratio of labeled data. Moreover, using QN-S3VM needs to set two additional

parameters (Lamda and LamdaU).
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8.8 Conclusion

We evaluated numerous machine learning techniques and proposed new methods for 

improving the performance of target-dependent sentiment classification. We also

investigated in efficiency of employing semi-supervised techniques and proposed a new 

technique for applying target-dependent sentiment classification by using partially 

labeled data.

Based on our statistical analysis, we conclude that using different techniques provide 

different statistical results. Thus, we reject the third hypothesis in our dissertation which 

estimates that there is no statistical difference among the proposed techniques. Moreover, 

experiment results provided when evaluating different semi-supervised learning teachings

show that models of label propagation and spreading provide low confidential results 

while semi-supervised K-means provides medium confidential results. Whereas, self-

training, QN-S3VM, and our proposed technique provide high confidential results. The 

experiment results show also that semi-supervised K-means provides the worst 

performance in comparison with other semi-supervised learning techniques.

The proposed technique outperforms existing semi-supervised learning techniques when 

solving problem of target-dependent sentiment classification. Moreover, using our 

proposed semi-supervised learning technique performs competitive results in comparison 

with other related supervised learning techniques that are proposed in the state of the art.

We also conclude that using semi-supervised methods outperform unsupervised leaning 

techniques. For example, semi-supervised K-means outperforms K-means method.
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We also conclude that semi-supervised K-means method performs combative results in 

comparison with unsupervised learning methods (K-means and Birch). Thus, extending

this work by employing semi-supervised K-means for developing a new technique may

improve the performance of target-dependent sentiment classification. We also suggest 

selecting Cosine, Euclidean, and City Block distance measures when conducting the 

experimental work since using these measures provide high performance.
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CHAPTER 9

EXPERIMENT RESULTS: IMPACT OF DIMENSION 

REDUCTION WITH TARGET-DEPENDENT 

SENTIMENT ANALYSIS

Various experiment results are shown in this chapter for illustrating performance of 

applying PCA and LDA for reducing number of dimensions in DatasetA. Next sections 

describe impact of using dimension reduction when applying data clustering.

Performance of combining LDA with other supervised learning classifiers is shown also 

in the sequel.

9.1 K-means with PCA

Since K-means method works better with low dimensional data, we checked performance 

of applying K-means method after reducing number of dimensions by using PCA. PCA

tries to make feature selection to reduce number of dimensions. We run this experiment 

105 times and reported only non redundant values. We applied K-means method firstly to 

the training data and then the resulted centroids are used to classify testing data by 

assigning each data point to the closest centroid. We achieved this experiment by using 

Cosine distance measure since it provides good results based on our experiment results as 

shown in Section 8.5.2.3.
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Figure 9.1 shows interval plot of 95% confidence for the mean of classification 

accuracies and F1-scores. The figure illustrates clearly that changing number of 

dimensions with PCA has no effect since each mean value is located inside the 

confidence interval of the others. We set number of dimensions to 50, 100, and 300. We 

could not make number of reduced features more than 692, since the maximum number 

of tweets included in testing data is 692. The maximum reported performance was 50.1 

and 34.5% for classification accuracy and macro-average F1-score respectively when

number of dimensions equals 50 and 300. For more details, refer to Table III.1 in 

Appendix III to see all numerical values that are provided when conducting this 

experiment.
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Figure 9.1: Effect of using K-means with PCA: a) Accuracy, b) F1-score.

9.2 Semi-supervised K-Means with PCA

We evaluated performance of reducing number of dimensions when applying semi-

supervised K-means. We set number of dimensions to 300 and 600 dimensions and 

changed ratio of labeled data. Ratio of labeled data is changed from 0.01 to 0.63 with 

increasing step that is equal to 0.02. At each ratio of labeled data we run the experiment 

four times. The maximum achieved accuracy was 50.1% with ratio that is equal to 0.01 
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when selecting number of dimensions equals 300. The same maximum accuracy is 

reported also when setting number of dimensions to 600 with ratio equals 0.11.

Figure 9.2 illustrates results of applying semi-supervised K-means with PCA when

setting number of dimensions to 300. We noticed clearly that there is a change in the 

accuracy when modifying ratio of labeled data. However, the achieved accuracies are

very low. For more details, refer to Table III.2 in Appendix III to see all numerical values 

that are provided when conducting this experiment.
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Figure 9.2: Effect of changing ratio of labeled data when applying semi-supervised K-means with PCA 

(dims#=300).

Figure 9.3 illustrates results of applying semi-supervised K-means with PCA when 

setting number of dimensions to 600. We noticed clearly that there is a change in 

classification accuracy when modifying ratio of labeled data. However, the achieved 

classification accuracies are very low. For more details, refer to Table III.2 in Appendix

III to see all numerical values that are provided when conducting this experiment.

Experiment results show that changing number of dimensions between 300 and 600 has 
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no effect since each mean value is located inside the confidence interval of the other. The 

best accuracy was achieved with ratios 0.01 and 0.11 when setting number of dimensions 

to 300 and 600 respectively.
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Figure 9.3: Effect of changing ratio of labeled data when applying semi-supervised K-means with PCA 

(dims#=600).

9.3 Supervised Classification with K-means and Dimension Reduction

This section discusses different experiments that are conducted to show performance of 

our solution proposed for exploiting dimension reduction. The proposed solution uses 

semi-supervised K-means method with LDA for improving classification accuracy as 

described in Section 5.5.

9.3.1 Using Different Distance Measures

We evaluated performance of using different distance measures when classifying testing 

data after learning the proposed model by using training data as shown in Table 9.1. The 

maximum reported performance was 92.1% and 91.8% for classification accuracy and 
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macro-average F1-score respectively. This maximum performance is achieved when 

using City Block distance measure. It is noteworthy that City Block distance measure

provided the best macro-average F1-score as described in Section 8.5.2.3.

Table 9.1: Effect of using different distance measures when applying K-means with LDA.

Distance Measure Accuracy Macro-F1
Norm 91.5 91.0

Braycurtis 90.3 89.9

Canberra 88.3 88.3

Chebyshev 91.8 91.3

City block 92.1 91.8

Correlation 65.9 51.5

Cosine 89.3 89.0

Euclidean 91.5 91.0

Square Euclidean 91.5 91.0

9.3.2 Using Different Clustering Scenarios   

To show efficiency of our proposed solution, we applied it to different data parts of the

dataset. Next subsections describe all experiments and report a summary of results

provided by using City Block distance measure. We use four scenarios for showing the 

performance. In the first scenario, we applied both clustering (learning) and classifying 

(testing) phases to training data. While in the second scenario, we use only testing data 

for both clustering (learning) and classifying (testing) phases. In the third scenario, we 

apply firstly clustering on testing data and then classify training data. The last scenario is 

a traditional behavior used for learning any model. In this scenario, we apply firstly 

clustering phase to training data and then classify testing data. The next subsections show 

results of applying each scenario individually.

9.3.2.1 Clustering and Classify Training Data

When conducting this experiment, we use only training data for both clustering (learning) 

and classifying (testing) phases. We run this experiment 51 times and reported all results 
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in Table III.3 in Appendix III. The maximum achieved performance was 91.2% and 

91.0% for classification accuracy and macro-average F1-score respectively. Table 9.2

shows a summary of the provided results along with confidence interval of 95% 

confidence.

Table 9.2: Summary of clustering and classifying training data when applying K-means with LDA.

Accuracy Macro-F1
Max 91.2 91.0

Min 4.3 4.0

AVRG 88.2 88.1

CI High 92.4 92.1

CI Low 84.0 84.0

9.3.2.2 Clustering and Classifying Testing Data

When conducting this experiment, we use only testing data for both clustering (learning) 

and classifying (testing) phases. We run this experiment 51 times and reported all results 

in Table III.4 in Appendix III. The maximum achieved result was 92.6% and 92.3% for 

classification accuracy and macro-average F1-score respectively. Table 9.3 shows

a summary of the provided results along with confidence interval of 95% confidence.

Table 9.3: Summary of clustering and classifying testing data when applying K-means with LDA.

Accuracy F1-score
Max 92.6 92.3

Min 26.9 34.1

AVRG 91.3 91.1

CI High 93.9 93.4

CI Low 88.8 88.8

9.3.2.3 Clustering Testing Data and Classify Training Data

When conducting this experiment, we use testing data for clustering (learning) and then 

we use training data for classifying phase. We run this experiment 51 times and reported 

all results in Table III.5 in Appendix III. The maximum achieved performance was 90.8% 
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and 90.4% for classification accuracy and macro-average F1-score respectively. Table 

9.4 shows a summary of the provided results along with confidence interval of 95% 

confidence.

Table 9.4: Summary of clustering testing data and classifying training data when applying K-means with 

LDA.

Accuracy F1-score
Max 90.8 90.4

Min 6.5 6.3

AVRG 85.3 85.3

CI High 90.7 90.3

CI Low 80.0 80.4

9.3.2.4 Clustering Training Data and Classify Testing Data

When conducting this experiment, we use training data for clustering (learning) and then 

we use testing data for classifying phase. We run this experiment 96 times and reported 

all results in Table III.6 in Appendix III. We run this experiment more than 51 (which 

used with previous experiments) since we applied here the traditional scenario that is

designed for learning any model used in literature. The maximum achieved performance

was 92.1% and 91.8% for classification accuracy and macro-average F1-score 

respectively. Table 9.5 shows a summary of the provided results along with confidence 

interval of 95% confidence.

Table 9.5: Summary of clustering training data and classifying testing data when applying K-means 

with LDA.

Accuracy F1-score
Max 92.1 91.8

Min 25.9 32.6

AVRG 89.3 89.4

CI High 92.0 91.8

CI Low 86.7 87.0
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9.4 Combined Supervised Learning Technique

We proposed a technique that combines LAD with supervised learning classifier for 

improving the performance. We applied LDA for reducing number of feature attributes. 

Then, we classified the output of LDA by using linear logistic regression. We selected 

logistic regression method for classifying output of LDA because it provided the best 

performance in comparison with other supervised learning methods as shown in Table 

7.13. The value of C parameter which is used for building logistic regression model 

equals 0.09. The performance of this proposed solution is competitive which is 91.5% 

and 91.0% for classification accuracy and macro-average F1-score respectively.

We also checked efficacy of applying other classifier to the reduced dimensional data. 

The combined technique included neural networks for classifying the output of LDA.

Using deep learning here provided higher performance. The best achieved result was 

91.6% and 91.2% for classification accuracy and macro-average F1-score respectively.

The neural network model includes three layers with the best values used when setting 

the parameters as shown in Table 7.12.

9.5 Discussion

We noticed clearly that dimension reduction makes an obvious change in shapes of 

sentimental classes (positive, negative, and neutral) included in the used dataset. Using 

PCA for dimension reduction does not make effective improvement. While, using LDA 

provides significant improvement in classifying the sentimental classes. After applying 

LDA for reducing number of dimensions to only 2 dimensions, the shapes of sentimental

classes become well separated and can be separated easily by using data clustering or 
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supervised classifier. We used this idea to propose new solutions for improving the 

performance of target-dependent sentiment classification.

LDA outperforms PCA when reducing number of dimensions because it uses linear 

learning model with labeled data for finding the best values that represents the new 

dimensions of each data point. Thus, LDA outperforms PCA which uses only unlabeled 

data for reducing number of dimensions. Moreover, applying PCA for dimension 

reduction is not well with the used dataset because it removes important details that

represent the tweets.

Using different ratio of labeled data when applying semi-supervised K-means with PCA 

will change classification accuracy, but all achieved results are worse. While, using LDA 

with semi-supervised K-means provides competitive results. Our proposed solution 

which is based on using semi-supervised K-means with LDA provides usually high 

accuracy but sometimes it converges to worse results. Thus, we can claim that the 

proposed solution is a metaheuristic technique.

The results converge usually to good solutions because the centriods of K-means are 

initialized randomly from their correct corresponding classes. However, the location of 

centriods may be fall sometimes in a complex region which leads to worse clustering 

solution. We compared performance of our proposed solutions with previous related 

supervised learning techniques in the state of the art. Table 9.6 describes briefly all 

compared techniques, while Table 9.7 shows classification accuracy and macro-average 

F1-scores that are provided by these techniques. For simplicity the reading, we repeated 

again listing all methods included in Chapter 8 and used for making the comparisons.
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Table 9.6: Description of all compared methods.

Method Description
SSWE Sentiment-speci������������	����������76].

SVM-indep SVM classifier uses only target-independent features.

SVM-dep
SVM classifier uses target-independent features concatenated 

with target-dependent features provided by Jiang et al. [98].

RecursiveNN
Standard recursive neural network with target-dependent 

dependency tree [93].

AdaRNN-w/oE Adaptive recursive neural network (RNN) [93].

AdaRNN-w/E Adaptive recursive neural network (RNN) [93].

AdaRNN-comb Adaptive recursive neural network (RNN) [93].

Target-dep
SVM classifier uses rich target-independent and target-

dependent features [96].

Target-dep+
SVM classifier uses rich target-independent, target-dependent, 

and sentiment lexicon features [96].

LSTM

Long short-term memory model (recurrent neural network) uses 

Glove vector. It classifies target-dependent sentiment based on 

target independent strategy [127].

TD-LSTM Target-Dependent LSTM [127].

TC-LSTM Target-Connection LSTM [127].

Bi-GRU
Bi-directional gated recurrent unit for target-dependent 

sentiment classification [131]

Compind_K-means (Max) Maximum accuracy which is achieved by using proposed 

technique that combines LDA with K-means

Compind_K-means (Avg) Average accuracy which is achieved by using proposed 

technique that combines LDA with K-means

Compind_LR Proposed technique that combines LDA with linear regression

Compind_NN Proposed technique that combines LDA with neural networks

Based on the experiment results, we conclude that the proposed solutions outperform all 

previous related works. The performance is increased significantly in terms of both

classification accuracy and macro-average F1-score. The proposed technique

Compind_K-means increases the classification accuracy by about 20% in comparison 

with accuracy of prominent supervised learning method proposed in the state of the art. 
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Table 9.7: Comparing different techniques for target-dependent sentiment classification.

Method, year Setting Acc F1
SSWE, 2014 62.4 60.5

SVM-indep, 2011 62.7 60.2

SVM-dep, 2011 63.4 63.3

RecursiveNN, 2014 63.0 62.8

AdaRNN-w/oE, 2014 64.9 64.4

AdaRNN-w/E, 2014 65.8 65.5

AdaRNN-comb, 2014 66.3 65.9

Target-dep, 2015 69.7 68.0

Target-dep+, 2015 71.1 69.9

LSTM, 2016 66.5 64.7

TD-LSTM, 2016 70.8 69.0

TC-LSTM, 2016 71.5 69.5

Bi-GRU, 2018 72.3 70.5

Compind_K-means (Max) � 92.1 91.8

Compind_K-means (Avg) � 89.3 89.4

Compind_LR � C=0.09 91.5 91.0

Compind_NN � Hidden Layers =3, Act='relu', Solv='adam', Eps=0.9 91.6 91.2

� Proposed solutions

9.6 Conclusion

We checked effect of using dimension reduction by using PCA and LDA. The

experiment results show clearly that LDA outperform PCA when applying dimension 

reduction. As a result of this, using LDA provided significant improvement in 

classification accuracy. Thus, we used LDA to develop new solutions for improving the 

performance of target-dependent sentiment classification. One of proposed solution is 

a metaheuristic technique that combines unsupervised method (K-means) with LDA. This

proposed solution is sensitive to initializing centriods and distance measures. The other 

proposed solution combines LDA with a supervised learning classifier such as linear 

logistic regression and neural networks.

Based on the experiment results, we conclude that the proposed solutions outperform 

significantly all previous related works. The proposed solutions increased the 
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classification accuracy by about 20% over prominent supervised learning method 

proposed in the state of the art. Thus, we conclude that reducing the used feature 

attributes will increase significantly accuracy of target-dependent sentiment 

classification. It is clear also that the proposed technique cannot detect correctly all 

sentiment polarities in the dataset. However, the proposed solution provides high 

accuracy in comparison with other related works. Thus, we approve the second 

hypothesis in our dissertation which estimates that there is no super classifier that can 

identify correctly all sentiment polarity expressed in micro-blogs.



136

CHAPTER 10

OPEN DOMAIN TARGETED SENTIMENT ANALYSIS

This chapter describes our proposed context-based analysis system (which meets research 

objective RO2 in our dissertation) that deals with open domain targeted sentiment among 

a set of micro-blogs. The chapter presents also new supervised and semi-supervised 

learning techniques (which meet research objectives RO3 and RO4 in our dissertation)

proposed for improving the performance of open domain targeted sentiment 

classification.

10.1 Context-Based Targeted Sentiment Analysis System

This section describes our proposed context-based analysis system that deals with open 

domain targeted sentiment among a set of micro-blogs (such as tweets). The next 

subsection describes our approach in designing the proposed system. The second 

subsection describes all details required for implementing the system.

10.1.1 The Approach

In this work, we propose a context-based analysis system. This system is capable of 

detecting targets and most common topics (context) that are discussed among a set of 

micro-blogs and detecting sentiment polarities toward the topics. To the best of our 

knowledge, existing systems in the state of the art deal with detecting topics and 

sentiment polarities expressed in each micro-blog individually [143]. Whereas, our 

proposed system deals with detecting both topics and sentiment polarities expressed in 
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a set of micro-blogs. Some comparisons between the proposed system and other existing 

systems are described in the sequel.

Most of existing systems employ context-based analysis for generating features attributes

[144] that can be used to improve performance of sentiment analysis systems. While, our 

objective in this direction is finding the context (topics) discussed among a set of micro-

blogs. Additionally, some existing systems use documents (granularity level is document)

for detecting topics that are covered in a specific domain such as hotel reviews [145].

While, our goal is developing an open domain analysis system that can detect any topic 

(such as any named person or organization) among a set of micro-blogs (granularity level 

is sentence).

Existing systems may use Hashtags entities to facilitate detecting the common topics

[146] since the micro-blogs are already grouped by Hashtags entities. Additionally, 

existing systems may use conversations written by the same user (user level) [147] to 

facilitate detecting sentiment polarity since each user express usually the same sentiment 

direction. Our proposed system deals with a more changing situation since it does not use 

additional information such as Hashtags and conversations written by the same user.

Based on the previous discussion, we can claim that our proposed system is the first 

context-based analysis system that deals with open domain targeted sentiment analysis 

among a set of micro-blogs. The next subsection describes all details required for 

implementing the proposed system.
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10.1.2 The Architecture

The proposed context-based analysis system can be accomplished by passing through 

different stages as shown in Figure 10.1. It starts by collecting micro-blogs and building 

a set of micro-blogs. After collecting micro-blogs, the next step is preprocessing the 

collected micro-blogs by removing unrelated contents and filtering the text. The next 

stage is identifying the most common targets in the set of micro-blogs. After that, the 

system detects topics that are related to the targets and grouping micro-blogs that are 

belong to the same topic. The final step includes applying classification techniques to 

classify sentiment expressed in each micro-blog into positive, negative, or neutral. The 

next subsections describe all details that are included in these stages.

Figure 10.1: Architecture of proposed context-based targeted sentiment analysis system.

10.1.2.1 Collecting Micro-blogs

In this step, various micro-blogs should be collected from different sources to build a set 

of micro-blogs. This collected set will be used as input to the context-based analysis 

system. We need to collect a huge amount of micro-blogs to guarantee that the system 

can find more common targets described in a suitable number of micro-blogs.

10.1.2.2 Preprocessing

The preprocessing step is used to clean text from undesired contents such as user names, 

pictures, hash-tags, and URLs. This phase includes also filtering the text by removing 
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punctuation, non-letters, short vowels, etc. Additionally, we normalize words by 

combining words that have different surface forms.

10.1.2.3 Identifying Targets

In this stage, the system detects the most common targets described in a set of micro-

blogs. To find targets, we use natural language processing to identify name entities in the 

micro-blogs. To achieve this task, we use external part of speech (POS) tagger. We 

should select an accurate POS tagger to improve the performance of the proposed system.

Finding accurate POS tagger for dealing with non English micro-blogs (such as Arabic 

micro-blogs) is not an easy job because its accuracy is still limited. For example, dealing 

with Arabic language is still an open research problem because there are many challenges 

when developing Arabic POS tagger. For example, same Arabic micro-blog may include 

different dialects.

After extracting name entities from the micro-blogs, we identify the targets from the 

extracted name entities. We use the tag labels that are provided by using POS tagger for 

identifying the targets. For example, we select tag labels that stand for proper noun and 

noun. To make task of detecting targets more accurate, we calculate frequency of phrases

that are labeled as proper noun and noun. Calculating frequency helps also in finding the 

most common targets among the set of micro-blogs.

10.1.2.4 Topic Categorization

After detecting targets, the system groups the micro-blogs based on the detected targets. 

This step helps in finding micro-blogs that are related to the same target. Then, the 

system detects topics (and subtopics) that are discussed among each group of micro-blogs
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discussed same target. Figure 10.2 describes details required for detecting main topics. 

While, Figure 10.3 describes details required for identifying subtopics. Step 4 describes 

process of feature engineering which is based on using word2vec embeddings. The 

output of step 4 is a vector of numerical values which is referred to as a data point. 

Algorithm of detecting main topics in context-based analysis system:

Inputs: a group of micro-blogs that belong to same target
Output: main topics
1) Select noun entities from each micro-blog

2) Count frequency of each noun entity among all tweets

3) Group micro-blogs based on the most common noun entities (main topics)

Figure 10.2: Algorithm of detecting main topics in context-based analysis system.

Algorithm of predicting subtopics in context-based analysis system:

Inputs: a group of micro-blogs that belong to same main topic
Output: subtopics
1) Select noun and adjective entities from each micro-blog

2) Count frequency of each noun and adjective entity among all tweets

3) Find most common and important word in each tweet and select the closest word to the main topic.

4) Convert selected words to word2vec embeddings

5) Cluster selected word2vec embeddings by using hierarchical clustering method.

6) Group micro-blogs based on the subtopics

Figure 10.3: Algorithm of identifying subtopics in context-based analysis system.

We use hierarchical clustering method for clustering the data since using traditional 

clustering algorithms such as K-means is not suitable in this case. K-means works better 

with well separated clusters while our task may include complex clusters. Additionally, 

K-means cannot cluster groups that have too different sizes. While in our problem, we 

need to classify even a cluster that includes only one data point. Thus, using hierarchical 

clustering method is the best choice in this case. To find the optimum number of clusters, 

we need to use an evaluation measure such as Elbow or Silhouette. The system continues 

in detecting topics and subtopic until number of frequencies becomes below the 

threshold.



141

10.1.2.5 Sentiment Classification

This is the final stage in the proposed context-based targeted sentiment analysis system. 

There are many alternative methods could be used to classify sentiment polarity 

expressed in the micro-blogs. The outcome of this step expresses sentiment polarities as 

one of three options: positive, negative, or neutral. We use here target-dependent 

sentiment classification since the system already detected targets in pervious stages. 

However, we can use open domain targeted sentiment classification. In this case, we need 

to link the detected targets resulted from open domain targeted sentiment classification 

with the selected targets. It is noteworthy that using target-dependent sentiment 

classification provides more accurate results with less complexity in implementation.

It is clear that we need to train the classifier by using labeled micro-blogs. We can use 

supervised learning classifier if we have a large number of labeled micro-blogs. 

Otherwise, we can use our proposed semi-supervised learning technique for training the 

classifier with partially labeled micro-blogs. It is important to clarify that using 

unsupervised learning methods for detecting sentiment polarities will enable us to use 

only unlabelled micro-blogs. However, the classification accuracy will be inaccurate and 

we will not be able to validate experiment results.

10.2 Proposed Solutions for Improving Open Domain Targeted 

Sentiment Classification

Three new solutions are proposed for improving the performance of open domain 

targeted sentiment classification. The first one is based on combining discrete features 

with multiple word embeddings. The second solution is based on employing semi-
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supervised learning by generating feature attributes dynamically. The last proposed 

solution combines supervised learning with dynamic generation of feature attributes. All 

details required for implementing the three solutions are included in the sequel.

10.2.1 The Approach

Our goal in this research direction is based on developing sentiment classification system

that does not use an external analyzer and can be applied easily to any language 

(language independent). Thus, we did not use here any NLP tools when building our 

proposed techniques. Additionally, we did not use sentiment lexicons as exploited in 

traditional methods. Thereby, developing open domain targeted sentiment system with 

these restrictions is more changeable.

10.2.2 Feature Engineering

Recent studies use broadly distributed word representations to map text into low 

dimensional vectors. We depend on this method for extracting features that are used in 

our work since this method is flexible and can be applied easily to any language. We used 

specifically a famous form of word embedding called word2vec. Different word2vec

embeddings are used from three sources to decrease effect of unseen word2vec 

embeddings (out-of-vocabulary words). Many unseen word2vec embeddings are revealed 

because micro-blogs include slang words that could not be represented by word2vec

embeddings when using pre-trained word embeddings.

We propose a feature engineering method based on merging more than one word2vec 

vector that are gathered from different sources. The proposed technique concatenates 

more than one word2vec vector and normalizes them to generate longer vector that 
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includes more feature attributes. Normalization process makes the feature attributes 

(numerical values) fall in the same range. Using normalized feature vector improves the 

performance and helps in merging word2vec embeddings with discrete features. We

normalize word2vec vector by applying next formula which makes all numerical values 

located in the range between -1 and 1.
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10.2.3 Supervised Learning of Combined Discrete Features and Multiple

Word Embeddings

Using word embeddings improves significantly the performance of open domain targeted 

sentiment classification. The problem of employing word embeddings in social media

analysis systems is revealed when finding word embeddings that represent all words

included in the micro-blog. Logically, it is impossible to find word embeddings that

represent each word in micro-blog since bloggers usually use slang words. In the ideal

case, we can find word embeddings that represent each word included in micro-blog 

when training the machine learning model. While, we cannot find word embeddings that

represents all words included in testing data since we cannot know all words that may be 

used by bloggers in real life situation.

Of course, existence of unseen word embeddings limits the performance. To decrease 

effect of unseen words, we proposed a solution based on merging pre-trained word 

embeddings that are collected from different resources. Thereby, probability of missing 
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word embeddings when representing all words will be decreased. To improve the

performance, we also concatenated word embeddings with discrete feature attributes.

The proposed solution uses SVM HMM to take into consideration the relations between 

words included in each micro-blog. We selected this machine learning method because 

this research problem can be solved by employing a sequence labeling method. While, it 

is improper to use traditional classifiers such as SVM. Based on our knowledge, our 

research is the first work that employs SVM HMM for improving the performance of 

open domain targeted sentiment classification.

Another reason for choosing SVM HMM comes from its ability to accept numerical 

(continuous) features, categorical (discrete) features and a combination of them.

Moreover, different studies showed efficiency of SVM HMM in comparison with other 

methods such as CRF [148

Figure 10.4

]. All details of training the proposed technique are illustrated 

in .

We use optimization method to find optimum value of C parameter. The optimization 

process is applied by increasing value of C parameter gradually. At each selected value of 

C parameter, we test performance of the model by using the development set and 

calculate “zero/one-error” measure. We selected the best value of C parameter that is 

provided the lowest value of “zero/one-error” measure.
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Figure 10.4: Flowchart of training a model that combines discrete features with multiple word embeddings.

Of course, using testing set instead of using development set will provide better values of 

C parameter. While, we use development set in this optimization process to make our 

proposed solution more realistic. In real problem, we cannot see testing data while we can 

use development data (which is a part of training data) for testing. When classifying 

a new unseen micro-blog, we use the trained SVM HMM which is learned by using the 

best value of C parameter. To check the performance, the proposed technique is applied 
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to the testing data and the evaluation measures are calculated for name entity recognition 

(NER) and sentiment analysis (SA). We used precision, recall, and F1-score because they 

are used broadly in the literature. 

All details of testing the proposed technique are illustrated in Figure 10.5. We collect

word2vec embeddings that represents each word in testing data by using the same 

sources which are selected for training phase. Then, we concatenate multiple word2vec 

embeddings with the discrete features as illustrated in the figure. Finally, we format the

data for fitting the suitable form that is used by SVM HMM (as used in training phase).

Figure 10.5: Flowchart of testing model for combining discrete features with multiple word embeddings.
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10.2.4 Semi-supervised Learning with Dynamic Generation of Feature 

Attributes

A new technique is proposed for employing semi-supervised learning in open domain 

targeted sentiment classification by using partially labeled data. Based on our knowledge, 

our solution is the first work that employs semi-supervised learning technique for open 

domain targeted sentiment classification. The proposed technique is based on improving 

the performance by generating more attributes in the horizontal level that represents data 

points. Thereby, the technique adds more attributes to each feature vector that represents 

each word included in micro-blogs. The proposed solution is based specifically on the 

level of feature attributes because open domain targeted sentiment classification deals 

with word level instead of micro-blog level.

Using traditional semi-supervised learning techniques is not suitable for open domain 

targeted sentiment classification because these techniques ignore the relations between 

each sequence of words in micro-blogs. Thus, using SVM HMM is more suitable for this 

research direction in comparison with other techniques that deal with micro-blog level 

such as self-learning and co-training.

The proposed solution is inspired by Qi et al. [149]. However, we developed a new 

method for generating feature attributes. Qi et al. use supervised classifier for generating 

the new feature attributes. Additionally, their solution counts number of sequences that 

have been classified. Moreover, their proposed equation that is used for generating a new 

feature attribute calculates the total number of sequences that includes selected word in 

all unlabeled dataset.
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Qi et al. proposed also an extension by clustering detected labels that are resulted from

the classifier. Then, they use the cluster ids as additional feature attribute. Thereby, they 

need to find the optimum number of clusters by using optimization method. As a result of 

this, their method consumes more time when generating each feature attribute. While, our 

proposed method is simpler and decreases time consuming when generating feature 

attributes. Figure 10.6 describes the main idea of the proposed technique while all details 

are included in Figure 10.7.

Figure 10.6: Semi-supervised learning technique for open domain targeted sentiment classification.

Algorithm of new semi-supervised learning technique for open domain targeted sentiment classification:

Inputs: Label ratio, training set (trainSet), Development set (DevSet), testing set (TestSet)
Output: precision, recall, and F1-score of classifying testing data

1) Split trainSet into labeled data (trainSetLab) equals ratio value and the rest as unlabeled data 

(trainSetUnLab)

2) Build SVM HMM model and train it by using trainSetLab data with an initial small value of C
parameter

3) Calculate zero/one-error of classifying DevSet
4) Increase value of C parameter and repeat steps 2 and 3 until zero/one-error does not decrease.

5) Check performance of SVM HMM model by using optimum value of C parameter.

6) Find only numerical values in each vector of trainSetUnLab data and store them in trainUnLabArray
7) Cluster the trainUnLabArray by using K-means with initial value of number of clusters (ClusterNum).

8) For each word in trainSetLab determine cluster ID (ClusterID) which the word belongs to.

9) Normalize values of all ClusterID to form ClusterIDNorm for each word in trainSetLab data.

10) Concatenate ClusterIDNorm as new feature attribute to the feature vector of each word in trainSetLab 
to form trainSetLab+.

11) Retrain the SVM HMM model by using trainSetLab+.

12) Increase value of ClusterNum and iterate steps 5 to 10 until stopping criterion is met. 

13) Classify TestSet data by using the best SVM HMM model and output results.

Figure 10.7: Algorithm of semi-supervised learning technique for open domain targeted sentiment.
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The optimization process, which is conducted by using steps 2 and 3, is the same 

optimization method which is illustrated in Figure 10.4 for finding optimum value of C

parameter. The normalization process in step 9 is calculated by dividing each cluster id 

(ClusterID) by the total number of clusters (ClusterNum). Thus, the values of normalized 

cluster ids (ClusterIDNorm) are fallen in the range (0, 1]. The stopping criterion in step 

12 can be conducted by using different ways. In this work, we applied a stopping 

criterion that checks whether the performance of learned SVM HMM (step 5) is

improved significantly after each incremental increase in ClusterNum value.

10.2.5 Supervised Learning with Dynamic Generation of Feature Attributes

This solution is based on the proposed technique that is described in Figure 10.7. While,

we use here all training set (trainSet) as labeled data instead of splitting it into labeled 

and unlabelled data when training the SVM HMM model. We propose this solution for

evaluating the performance of employing supervised learning method with generating 

feature attributes dynamically.

To save memory and make this technique faster, we selected by default half amount

(almost 50%) of training set for conducting clustering process when generating feature 

attributes. However, using larger amount of training set will improve the performance of 

data clustering since more words will be clustered correctly. The outcome is selected 

based on finding the best performance achieved when applying incremental generation of 

feature attributes. Thereby, if the generated feature attributes do not improve the

performance, then the technique will select the outcome immediately from the basic

supervised learning classifier.
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CHAPTER 11

EXPERIMENT RESULTS:

OPEN DOMAIN TARGETED SENTIMENT ANALYSIS

This chapter presents experiment work that is developed to show efficacy of our solutions 

for improving the performance of open domain targeted sentiment classification. Various 

discussions are included also for analyzing numerous experiment results.

11.1 Using Cluster IDs as Feature Attribute

This section describes our work for improving the performance of open domain targeted

sentiment models that are proposed by Mitchell et al. [124]. These models have been 

introduced as the first approach for open domain sentiment classification. We improved 

the performance by adding another feature attribute to the dataset. Since we could not use 

numerical feature attributes with CRF, a data clustering method is applied to the dataset

and the cluster ids (integer values) are used as additional feature attribute.

To achieve our goal, we firstly collected word2vec embeddings that are representing each 

word in the used dataset by using pre-trained word2vec embeddings provided by Zhang

et al. [125]. Then, we clustered the data of word2vec embeddings that represent all 

entities in tweets. Finally, cluster id is concatenated with the discrete feature attributes 

that are used by Mitchell et al. [124]. Thereby, the added feature attribute represents to 

which cluster the corresponding word is belong.
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We applied this technique to the 2nd fold of dataset which is available in implementation

code provided by Mitchell et al. [124]. We used K-means method for clustering all

word2vec embeddings. Number of these word2vec embeddings (includes both training 

and testing data) is 35681 vectors. After adding cluster IDs as feature attribute to the used 

dataset, we checked the improving in performance by training and testing all models 

proposed by Mitchell et al. [124]. We conducted this experiment by modifying 

implementation code provided by Mitchell et al. [124] which is available publically
9

Table 11.1

.

describes all tested models while Table 11.2 and Table 11.3 show results 

provided when conducting the experiments by using cluster granularity equals 0.1. Table 

11.3 does not include base models since they provide same results in comparison with

their corresponding models when applying NER. Moreover, the corresponding results of 

SA could not be calculated for base models.

Table 11.1: Description of all evaluated models.

Model Description

Joint_CRF_Base
Baseline joint model which uses volitional entity labels that are specified by 

Mitchell et al. [124] and assign no sentiment directed towards the entity.

Joint_CRF Joint model proposed by Mitchell et al. [124]

Joint_Clusters_Base Adding clusters ids as feature attribute to Joint_CRF_Base model

Joint_Clusters Adding clusters ids as feature attribute to Joint_CRF model.

Pipeline_CRF_Base
Baseline pipeline model which uses volitional entity labels that are specified by 

Mitchell et al. [124] and assign no sentiment directed towards the entity.

Pipeline_CRF Pipeline model proposed by Mitchell et al. [124]

Pipeline_Clusters_Base Adding clusters ids as feature attribute to Pipeline_CRF_Base

Pipeline_Clusters Adding clusters ids as feature attribute to Pipeline_CRF

Collapsed_CRF_Base
Baseline collapsed model which uses volitional entity labels that are specified 

by Mitchell et al. [124] and assign no sentiment directed towards the entity.

Collapsed_CRF Collapsed model proposed by Mitchell et al. [124]

Collapsed_Clusters_Base Adding clusters ids as feature attribute to Collapsed_CRF_Base

Collapsed_Clusters Adding clusters ids as feature attribute to Collapsed_CRF

9
http://www.m-mitchell.com/code/index.html
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Table 11.2: Results of evaluating models (part 1/2).

Model Acc-all Acc-Bsent

Joint

Joint_CRF_Base 87.25 32.69

Joint_CRF 87.18 32.05

Joint_Clusters_Base 90.18 33.83
Joint_Clusters 89.89 31.84

Pipeline

Pipeline_CRF_Base 87.73 32.01

Pipeline_CRF 87.73 32.01

Pipeline_Clusters_Base 90.3 37.38
Pipeline_Clusters 90.06 35

Collapsed

Collapsed_CRF_Base 89.77 30

Collapsed_CRF 89.77 30

Collapsed_Clusters_Base 90.44 32.41
Collapsed_Clusters 90.44 31.66

Table 11.3: Results of evaluating models (part 2/2).

Model NER SA
Precision Recall Specificity Precision Recall Specificity

Joint_CRF 52.11 70.76 91.78 41 46.59 75

Joint_Clusters 69.17 54.94 96.8 35.48 37.5 74.58

Pipeline_CRF 53.08 65.82 92.66 46.91 43.18 81.78

Pipeline_Clusters 67.76 63.58 96.05 43.43 48.86 76.27

Collapsed_CRF 64.8 52.81 96.29 51.43 9 86.29

Collapsed_Clusters 71.82 54.41 97.2 46.77 15.18 75.19

11.2 Supervised Learning of Combined Discrete Features and Multiple 

Word Embeddings

In this proposed solution, we use sequence tagging with structural support vector which is 

referred to as SVM HMM
10

130

. To make our comparison with previous related works more 

accurate and fair enough, we used the same code that is provided by Li and Lu [ ] for 

calculating evaluation measures. To be able to use the same public DatasetB utilized by 

pervious related works, we reformatted the feature vectors to fit our proposed techniques.

We converted the data form which is provided by Zhang et al. [125] to fit format of 

sequence tagging with structural support vector machines
11

10
https://www.cs.cornell.edu/people/tj/svm_light/svm_hmm.html

(SVM HMM). We prepared 

11
https://www.cs.cornell.edu/people/tj/svm_light/svm_hmm.html
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the data to represent collapsed labels (B-negative, B-neutral, B-positive, I-negative, 

I-neutral, I-positive, and O).

As a result of this work, we prepared numerous datasets as described briefly in Table 

11.4. We used only discrete features for checking performance of using these features 

alone. We refer to this resulted dataset as “Discrete_Data”. We also prepared data that 

includes only features attributes of pre-trained word2vec embeddings provided by Zhang

et al. [125]. We refer to this data as “Word2VecZhang” which include feature vector of 

size 100 attributes. We normalized the “Word2VecZhang” and called it 

“Word2VecZhangNorm”. We prepared as well a dataset that combines both discrete and 

normalized word2vec embeddings to check its efficiency in improving the performance. 

We refer to this merged dataset as “Discrete_Word2VecZhangNorm”. Figure 11.1 shows 

a data point of this resulted dataset.

Figure 11.1: Formatting discrete feature attributes and word2vec embeddings for applying SVM HMM.

Additionally, we prepared data that includes pre-trained wor2vec embeddings provided 

by Al-Rfou et al. [150 130] and used by Li and Lu [ ]. These wor2vec embeddings are 

available online and can be downloaded freely. Each vector of these word2vec 

embeddings contains 64 values. The resulted dataset is called “Word2VecPolyglot” and 

its normalized version is called “Word2VecPolyglotNorm”. We merged 
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“Word2VecPolyglotNorm” and “Word2VecZhangNorm” to build data that includes both 

representations of word2vec embeddings. The combined version is called 

“Word2VecBothPolyglot&ZhangNorm” and the dataset which includes additionally 

discrete features is called “DiscW2VPolyglot&ZhangNorm”.

Table 11.4: Summary of all sets prepared from DatasetB for open domain targeted sentiment.

Dataset Description

Discrete_Data Includes only discrete features that are used by Mitchell et al. [124]

Word2VecZhang
Includes only word2vec embeddings features that are used by 

Zhang et al. [125]

Word2VecZhangNorm Normalized version of “Word2VecZhang” dataset

Discrete_Word2VecZhangNorm
Combines both “Discrete_Data” and “Word2VecZhangNorm” 

datasets

Word2VecPolyglot Includes wor2vec embeddings which are used by Li and Lu [130]

Word2VecPolyglotNorm Normalized version of “Word2VecPolyglot” dataset

Word2VecBothPolyglot&ZhangNorm
Combines both “Word2VecPolyglotNorm” and 

“Word2VecZhangNorm” datasets

DiscW2VPolyglot&ZhangNorm
Combines both “Discrete_Data” and 

“Word2VecBothPolyglot&ZhangNorm” datasets

Word2VecBojanowski Includes wor2vec embeddings used by Bojanowski et al. [151]

Word2VecBojanowskiNorm Normalized version of “Word2VecBojanowski” dataset

Discrete_Word2VecBojanowskiNorm
Combines both “Discrete_Data” and 

“Word2VecBojanowskiNorm”

W2VPolyglotZhangBojanowskiNorm
Combines “Word2VecZhangNorm”, “Word2VecPolyglotNorm”,  

and “Word2VecBojanowskiNorm”

DW2VPolyglotZhangBojanowskiNor
Combines both “Discrete_Data” and 

“W2VPolyglotZhangBojanowskiNorm”

Moreover, we prepared another form of data that includes a third source of pre-trained 

word2vec embeddings called fastText [165F151]. This representation of word2vec 

embeddings has dimension size equals 300 attributes and it is also available online11F

12
. The 

resulted dataset is called “Word2VecBojanowski” and the normalized version is called 

“Word2VecBojanowskiNorm”. We merged also these normalized word2vec embeddings 

with the discrete features and called it as “Discrete_Word2VecBojanowskiNorm”. We 

merged the three forms of word2vec embeddings in one dataset called 

12
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
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“W2VPolyglotZhangBojanowskiNorm”. When combining the discrete features to 

“W2VPolyglotZhangBojanowskiNorm”, the resulted dataset is called 

“DW2VPolyglotZhangBojanowskiNor”.

We apply an optimization task for selecting best value of C parameter when using SVM 

HMM. It is important to clarify that we did not optimize Epsilon parameter since using its 

default value is enough to converge to high performance when changing values of C

parameter. We selected the best value of C parameter that provides lowest "zero/one-

error" when classifying development set. The evaluation measure "zero/one-error" is one 

of results that are provided by the used tool when building SVM HMM model. 

We trained the SVM HMM model by using different values of C parameter in the range 

between 1 and 550 with an increasing step that is equal to 10. With each selected C value 

we learned the SVM HMM model by using training data and calculated "zero/one-error" 

by classifying development data. We use the best C value for classifying the testing data 

and calculating evaluation measures (precision, recall, and F1-score). It is noteworthy 

that using testing data instated of development data will provide better values of C

parameter. However, we use development set rather than testing data for providing real

results. We applied SVM HMM to the 2
nd

fold of all prepared set collected from English 

tweets. We reported all results when using each dataset described above as shown in 

Table 11.5. The maximum values in this table are highlighted as bold font. The 

experiment results show that there are 324 data points that match criteria of open domain 

targeted sentiment classification. These data points specify number of words that are 

targeted as topics and have sentiment polarities.
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Table 11.5: Summary of best result when applying SVM HMM to the 2
nd

fold of prepared datasets.

Dataset Err C Pred
#

NER SA
P R F1 P R F1

Discrete_Data 80.66 111 161 69.57 34.57 46.19 55.9 27.78 37.11

Word2VecZhang 91.51 101 99 57.58 17.59 26.95 43.43 13.27 20.33

Word2VecZhangNorm 91.98 101 118 50.85 18.52 27.15 37.29 13.58 19.91

Discrete_Word2VecZhangNorm 75.47 81 231 64.5 45.99 53.69 48.48 34.57 40.36

Word2VecPolyglot 82.55 41 165 67.88 34.57 45.81 51.52 26.23 34.76

Word2VecPolyglotNorm 82.55 41 178 65.73 36.11 46.61 50.56 27.78 35.86

Word2VecBothPolyglot&ZhangNorm 79.25 41 192 66.15 39.2 49.22 51.56 30.56 38.37

DiscW2VPolyglot&ZhangNorm 73.11 31 226 71.68 50 58.91 54.87 38.27 45.09

Word2VecBojanowski 75 71 220 65.91 44.75 53.31 49.09 33.33 39.71

Word2VecBojanowskiNorm 75 81 220 68.64 46.6 55.51 51.82 35.19 41.91

Discrete_Word2VecBojanowskiNorm 74.06 41 237 73.84 54.01 62.39 54.85 40.12 46.35

W2VPolyglotZhangBojanowskiNorm 73.58 31 220 69.55 47.22 56.25 51.36 34.88 41.54

DW2VPolyglotZhangBojanowskiNor 70.75 21 242 74.38 55.56 63.6 56.61 42.28 48.41

Since DW2VPolyglotZhangBojanowskiNor dataset provides the best results (lowest 

error) as shown in Table 11.5, we applied SVM HMM to all folds of this dataset. All 

results that are generated when using both English and Spanish data are reported in Table 

11.6. This experiment uses optimization method to find best value of C parameter which 

provides the lowest value of "zero/one-error" (Err). We changed value of C parameter 

from 1 into 550 with increase step equals 10. The table includes also number of observed 

data points (obs) and number of data points (Pred) that are detected correctly. The results 

include three evaluations measures: precision (P), recall (R), and F1-score (F1) when 

applying both name entity recognition (NER) and sentiment analysis (SA). The 

maximum values of classification accuracy and F1-score among all folds are highlighted 

by using bold and underlined font.
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Table 11.6: Results of applying SVM HMM to prepared dataset included discrete and three sources of 

word2vec embeddings.

Lang Fold Err C Obs
#

Pred
#

NER SA
P R F1 P R F1

Eng

1 69.34 101 347 311 69.45 62.25 65.65 49.52 44.38 46.81

2 70.75 21 324 242 74.38 55.56 63.6 56.61 42.28 48.41

3 68.87 51 346 274 67.15 53.18 59.35 48.18 38.15 42.58

4 73.11 51 318 253 67.59 53.77 59.89 49.41 39.31 43.78

5 69.34 61 340 259 67.18 51.18 58.1 48.65 37.06 42.07

6 68.87 31 319 243 72.43 55.17 62.63 51.85 39.5 44.84

7 67.92 31 309 218 70.64 49.84 58.44 50.0 35.28 41.37

8 69.34 21 320 233 74.68 54.37 62.93 60.09 43.75 50.63
9 69.34 61 346 295 69.15 58.96 63.65 45.76 39.02 42.12

10 69.81 31 319 232 68.1 49.53 57.35 48.71 35.42 41.02

Avg 69.67 46 329 256 70.08 54.38 61.16 50.88 39.42 44.36

Span

1 64.87 81 677 556 77.16 63.37 69.59 50.54 41.51 45.58

2 64.36 121 656 563 74.96 64.33 69.24 46.36 39.79 42.82

3 62.42 151 676 524 75.38 58.43 65.83 50.19 38.91 43.83

4 65.52 121 641 538 79.0 66.3 72.09 52.23 43.84 47.67

5 64.58 111 669 545 81.28 66.22 72.98 51.56 42.0 46.29

6 64.66 121 663 556 74.1 62.14 67.6 48.38 40.57 44.13

7 65.44 141 651 533 76.17 62.37 68.58 47.28 38.71 42.57

8 65.3 111 681 592 73.82 64.17 68.66 46.62 40.53 43.36

9 62.2 141 661 581 71.77 63.09 67.15 44.75 39.33 41.87

10 66.81 51 675 545 78.17 63.11 69.84 53.58 43.26 47.87
Avg 64.62 115 665 553 76.18 63.35 69.16 49.15 40.85 44.60

11.3 Semi Supervised Learning

This section shows experiment results that are provided by applying different semi-

supervised learning techniques for open domain targeted sentiment classification. The 

next subsection shows efficacy of applying label propagation. The other following

subsection shows experiment results that are provided when applying our proposed 

solution that uses partially labeled data.

11.3.1 Label Propagation

We developed an experiment to evaluate efficacy of applying label propagation method.

We used only feature attributes of word2vec embeddings for training and testing label 

propagation method since this method uses only numerical data for finding nearest 
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neighbors. Thereby, the used data include only numerical vectors that represent each 

word in the dataset.

We used “W2VPolyglotZhangBojanowskiNorm” dataset for conducting this experiment 

since it includes all pre-trained word2vec embeddings that are collected from the three 

resources. We selected different values for setting kNN (k nearest neighbor) parameter. 

We changed as well the ratio of used labeled data that is collected from the training set. 

All results are reported in Table 11.7. We noticed clearly that this method is not suitable 

for solving our research problem because it does not consider the relation between words 

(tokens) in the same tweet.

Table 11.7: Summary of best result provided when applying label propagation.

Ratio
% kNN Pred

#
NER SA

P R F1 P R F1
11 3 4205 4.68 60.8 8.7 0.48 6.17 0.88

51 3 4205 4.68 60.8 8.7 0.48 6.17 0.88

31 81 47 72.34 10.49 18.33 57.45 8.33 14.56

51 81 47 72.34 10.49 18.33 57.45 8.33 14.56

71 81 47 72.34 10.49 18.33 57.45 8.33 14.56

31 150 39 87.18 10.49 18.73 69.23 8.33 14.88

51 150 39 87.18 10.49 18.73 69.23 8.33 14.88

31 200 39 87.18 10.49 18.73 69.23 8.33 14.88
31,51 250,300 0 0 0 0 0 0 0

11.3.2 Semi-supervised Learning with Dynamic Generation of Feature 

Attributes

We developed an experiment to show performance of our proposed semi-supervised 

learning solution. To make our comparison with previous related works more accurate 

and fair enough, we used the same code that is provided by Li and Lu [130] for 

calculating the evaluation measures. We use all results reported by Li and Lu to make our 

comparisons and show efficiency of our proposed solution.
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We changed ratio of labeled data into 25%, 50%, and 75% of training data. At each 

selected ratio of labeled data, we applied both supervised SVM HMM and our proposed 

semi-supervised learning technique. We reported the experiment results to make the 

comparison easier and show the improvement in the performance at each ratio of labeled 

data. We apply as well a simple optimization method when using each ratio of labeled 

data for finding the best value of C parameter that provides the lowest value of "zero/one-

error" (Err). The optimization method includes changing value of C parameter from 1 

into 550 with increase step equals 10. We applied the proposed technique to all folds of 

DW2VPolyglotZhangBojanowskiNor dataset.

All results provided by using both English and Spanish are reported in Table 11.8. The 

table includes also number of observed data points (obs) and number of data points (Pred) 

that are detected correctly. The table shows the average values provided when using the 

10 folds. The maximum values in this table are highlighted by using bold font. For more 

details, refer to tables from Table IV.1 to Table IV.6 in Appendix IV to see all numerical 

values that are resulted from these experiments.

Table 11.8: Average performance of applying semi-supervised learning with dynamic generation of feature 

attributes.

Lang Model Ratio NER SA
P R F1 P R F1

Eng

Supervised
25

64.65 48.57 55.08 45.76 34.19 38.85

Semi-supervised 64.20 50.18 55.84 45.92 35.77 39.86

Supervised
50

66.46 51.92 58.21 47.86 37.31 41.88

Semi-supervised 66.43 53.46 59.13 48.34 38.81 42.97

Supervised
75

68.93 51.86 59.15 50.56 38.00 43.36

Semi-supervised 68.21 53.10 59.65 50.86 39.57 44.46

Span

Supervised
25

68.86 61.12 64.72 40.04 35.53 37.63

Semi-supervised 67.48 62.97 65.05 39.90 37.21 38.45

Supervised
50

73.73 61.18 66.84 45.42 37.66 41.15

Semi-supervised 71.48 64.02 67.39 44.15 39.51 41.61

Supervised
75

74.66 62.34 67.93 47.06 39.27 42.80

Semi-supervised 74.31 63.32 68.27 46.93 39.98 43.12



160

11.4 Supervised Learning with Dynamic Generation of Feature 

Attributes

We developed experiments to evaluate efficacy of merging supervised SVM HMM with 

our proposed method of generating feature attributes dynamically. We applied this 

combined supervised learning technique to all folds of 

DW2VPolyglotZhangBojanowskiNor dataset. With each fold we run optimization 

method for finding the optimum value of C parameter by finding the lowest value of 

"zero/one-error" (Err). We changed value of C parameter from 1 into 550 with increase 

step equals 10. When clustering data which is used for generating feature attributes 

dynamically, we used a ratio of labeled data that is equal to 51% of training set.

All results achieved by applying these experiments to both English and Spanish data are 

reported in Table 11.9. The maximum values of accuracy and F1-score that are generated 

when evaluating sentiment analysis are highlighted by using bold and underlined font. 

While, the average values of all results provided when using all folds are highlighted by 

using only bold font.

11.4.1 Using Additional Dataset

To show performance of using our proposed technique in other environments, we applied 

it to the dataset (DatasetC) which is collected by Zhang et al. [128]. We used evaluation 

measure acc-all for reporting results of this experiment. Our proposed supervised learning

technique provides acc-all equals 91.63% while the lowest zero/one-error achieved by 

SVM HMM is 81.18% when C=111. For making the results more accurate, we used all 

training set during process of date clustering to involve all words.
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Table 11.9: Results of applying supervised learning with dynamic generation of feature attributes.

Lang Fold Err C Obs
#

Pred
#

NER SA
P R F1 P R F1

Eng

1 69.34 101 347 316 68.67 62.54 65.46 49.37 44.96 47.06

2 70.75 21 324 254 72.83 57.1 64.01 55.91 43.83 49.13

3 68.87 51 346 254 69.29 50.87 58.67 50.0 36.71 42.33

4 73.11 51 318 268 65.67 55.35 60.07 48.51 40.88 44.37

5 69.34 61 340 260 66.54 50.88 57.67 50.0 38.24 43.33

6 68.87 31 319 271 67.9 57.68 62.37 49.82 42.32 45.76

7 67.92 31 309 219 71.23 50.49 59.09 50.68 35.92 42.05

8 69.34 21 320 229 76.42 54.69 63.75 60.26 43.13 50.27
9 69.34 61 346 288 70.83 58.96 64.35 47.57 39.6 43.22

10 69.81 31 319 225 71.11 50.16 58.82 52.89 37.3 43.75

Avg 69.67 46 329 258 70.05 54.87 61.43 51.50 40.29 45.13

Span

1 64.87 81 677 576 76.04 64.7 69.91 50.17 42.69 46.13

2 64.36 121 656 564 76.06 65.4 70.33 47.52 40.85 43.93

3 62.42 151 676 571 74.61 63.02 68.32 48.34 40.83 44.27

4 65.52 121 641 538 79.0 66.3 72.09 52.23 43.84 47.67

5 64.58 111 669 604 79.3 71.6 75.26 51.49 46.49 48.86
6 64.66 121 663 556 74.1 62.14 67.6 48.38 40.57 44.13

7 65.44 141 651 533 76.17 62.37 68.58 47.28 38.71 42.57

8 65.3 111 681 658 70.36 67.99 69.16 45.44 43.91 44.66

9 62.2 141 661 665 66.62 67.02 66.82 42.11 42.36 42.23

10 66.81 51 675 594 76.77 67.56 71.87 51.85 45.63 48.54

Avg 64.62 115 665 586 74.90 65.81 69.99 48.48 42.59 45.30

11.5 Context-Based Targeted Sentiment Analysis System

This section shows the performance of our proposed context-based analysis system. We 

applied the proposed system to two datasets. One of these datasets includes English 

tweets while the other one includes Arabic tweets. Next subsections present some case 

studies for showing the performance of the proposed system. 

11.5.1 Using English Micro-blogs

We selected the training set included in DatasetA (6248 tweets) for showing efficiency of 

the proposed system when using English language. We used this dataset to validate the

performance of our proposed system since this dataset is fully labeled. We also used 
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NLTK package
13

Figure 11.2for applying POS English tagger. shows

an example of detecting targets in the tweet by using POS tagger. We noticed that the 

targets are labeled as proper nouns when applying the POS tagger. Figure 11.3 shows 

frequency of targets in the selected set of English tweets. This figure illustrates that our 

system detect targets that consists of more than one entity. For simplicity, we use symbol 

“-” to preview entities of same target in one line.

To validate the results, we compared number of detected targets with number of actual 

labeled targets. we noticed that frequency of detected targets is close to actual labeled 

targets. For example, frequency of detected target “Barack Obama” is 223 while the 

actual frequency is 222. Another example shows that frequency of detected target 

“Jimmy Carter” is 98 while the actual number is 101. The difference in comparisons 

comes from nature of some tweets which include more than one target. Thereby, our 

system counts all targets in the same tweet. While, the dataset includes annotation for one 

target per each tweet.

Figure 11.2: Detecting target in the tweet by using POS tagger.

13
https://www.nltk.org/
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Figure 11.3: Frequency of targets in the set of English tweets.

Figure 11.4 shows sentiment analysis of two targets selected as a case study. We selected 

this case study because there are some shared topics that describe both targets. 

Additionally, frequency of these targets is large which helps in conducting experimental 

work. Our system is able to detect topics by selecting nouns from the tweet as shown in 

Figure 11.5. Frequencies of main topics described in the case study are shown in Figure 

11.6. Figure 11.7 shows results of applying sentiment analysis to the main topics.

Figure 11.4: Sentiment analysis of case study that includes two targets.
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Figure 11.5: Detecting main topics in the micro-blog.

Figure 11.6: Frequency of main topics in the micro-blogs of case study.

The proposed system is able also to detect subtopics as illustrated in Figure 11.8. Figure 

11.9 illustrates results of applying hierarchal data clustering for detecting more subtopics. 

Figure 11.9 (b) shows how we used Elbow measure for detecting the optimum number of 

clusters to make a cut in the resulted dendrogram shown in Figure 11.9 (a). Figure 11.10

shows results of applying sentiment analysis to subtopics discussed in the case study. 

Figure 11.11 and Figure 11.12 show results of analysis two more targets described in the 

selected set of English tweets. The system did not provide sentiment polarities for the 

“Bill Gates” target because number of topics that describe this target are smaller the 

selected threshold.
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a) Sentiment analysis of “Peace” Topic 

b) Sentiment analysis of “Prize” Topic 

c) Sentiment analysis of “Reform” Topic 

Figure 11.7: Sentiment analysis of main topics in the micro-blogs of case study.

Figure 11.8: Detecting subtopics in the micro-blog.
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a) Hierarchal Clustering Dendrogram.

b) Elbow measure.

Figure 11.9: Hierarchal Clustering for detecting subtopics in the micro-blogs of case study.

Figure 11.10: Sentiment analysis of subtopics in the micro-blogs of case study.
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Figure 11.11: Results of analysis “Google Wave” target.

Figure 11.12: Results of analysis “Bill Gates” target.

11.5.2 Using Arabic Micro-blogs

We also selected the training set (1999 tweets) included in DatasetD for showing 

efficiency of the proposed system when using Arabic language. Since tagging Arabic 

words is more difficult, we used a specific package
14

Table 11.10

for applying POS Arabic tagger. 

shows most common targets that are detected by using our proposed system. 

Since target “ !"” is the most common one, we selected it as a case study. 

14
https://github.com/EmilStenstrom/rippletagger/blob/master/README.md
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Table 11.11 shows the main topics that are discussed in micro-blogs included target 

“ !"”. In preprocessing phase, we normalized words that have different surface forms 

and replaced them by one form. For example, we replaced word “#$%” by word “#$&'(”.

This normalization process helps in counting all relevant words. 

Table 11.10: Most common detected targets in Arabic tweets.

FrequencyTargetFrequencyTarget
19�)*+,106� !"
17�-./ '(55�0( /(
16�0( 1255�#34
285(�63746�#$&'(
15�8*9:3;36�<( $'(
13�8=>'(35�8?*'(
13�@(,."A(31�0(>BA(
13�C $'(31�D/ "
12�8*?3:?'(24�E/FG
12�H/I>$:'(24�D'.$'(
11JK:'(24�L/>M'(
11�N*3O'(22�5KP'(

19�E*+( Q(

Table 11.11: Most common topics detected in the case study of Arabic tweets.

Topic Frequency Topic Frequency
�#$&'( 8 DM4 2

�C.R&'( 4 I.:S'( 2

8*9:3; 3 TU(>'( 2

D'.$'( 3 5.?'( 2

0(>BA( 2 ERVW:" 2

@(,."A( 2 #2.XA( 1

 M:$'( 2

Table 11.12 shows results of detecting subtopics among tweets included the topic “#$&'(”

in this case study. Left column shows the detected subtopics while the right column 

illustrates whether the corresponding subtopic is detected correctly. It is clear that our 

proposed system could not detect correctly all subtopics. Section 11.6 discusses some 

explanations for this result. We did not show results of clustering subtopics since 

frequency of each subtopic is small. We also could not apply sentiment classification 

since the dataset does not include sentiment labels.
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Table 11.12: Examples of detected subtopics described in a case study of Arabic tweets.

Detected Subtopic Actual Subtopic
��	 
��	

0(>BA( 0(>BA(
��� �����

8*" 1" 8*" 1"
 V;  V;

L?!'( L?!'(
��� �����

11.5.3 Performance of Existing Text Analysis System

We checked efficacy of existing document analysis system in detecting topics among 

a set micro-blogs. We used software called WordStat document classifier14F

15
v1.0 (Provalis 

Research) to conduct our experiment. This tool is used for applying text categorization 

and document classification. It uses Naive Bayes classifier for classifying the document. 

To conduct this experiment, we input a set of English tweets as one document to see how 

this tool detects the topics.

The results show that this system could not detect the targets described in the set of 

tweets. This tool expects that the whole document covers only one target. While, our 

proposed system detects all targets in the first level of topic categorization. Additionally, 

this tool classifies words to classes of specific domains as shown in Figure 11.13. While, 

our proposed system deals with an open domain aspect.

Figure 11.13: Results of applying WordStat document classifier for detecting topics.

15
https://provalisresearch.com/downloads/trial-versions/
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Figure 11.14 shows some of common words that are detected by using WordStat tool. It

is clear that this tool skipped many name entities such as "Barack Obama" and calculated 

frequency for the rest of words. Thereby, this tool could not identify the targets.

Additionally, it could not identify subtopics after detecting the main topics. Regarding 

sentiment analysis, this tool identifies the whole document as one sentiment. Thereby, it 

could not find sentiment polarities towards all described topics.

Figure 11.14: Results of applying WordStat document classifier for analysis a set of tweets.

11.6 Discussion

Based on the experiment results, we noticed that using cluster ids as additional feature 

attributes improves significantly the performance of open domain targeted sentiment 

classification. We noticed clearly that Collapsed_Clusters_Base model outperforms all 

other models with respect to Acc-all measure. While, Pipeline_Clusters_Base model 

outperforms all other models with respect to Acc-Bsent measure. This means that 
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collapsed models are the best in general. If our interest focuses on accuracy of name 

entity recognition, then our choice should be pipeline models. We also noticed that 

results of Acc-Bsent is too low (does not exceed 40%) since it is difficult to classify 

correctly the beginning of targeted entities.

Based on results reported in Table 11.5, we noticed clearly that using three sources of 

word2vec embeddings decreases effect of unseen words. After using these three sources 

most of words have at least one word2vec representation. We noticed as well that

Bojanowski word2vec embeddings outperforms the other two word2vec embeddings. 

While, concatenate all word2vec embeddings with discrete features provides the best 

results.

To summarize our work, we reported all results that are achieved by our proposed 

solution in comparison with previous related works. We reported the average of all values 

that are achieved by using all folds however using some specific folds provide better 

results. All main results that are achieved for open domain targeted sentiment 

classification are reported in Table 11.13. The maximum achieved results are highlighted 

by using bold font. We noticed clearly that SVM HMM provides competitive results. 

Applying SVM HMM by using discrete features with multiple word2vec embeddings 

outperforms all previous related works. We noticed as well that using some specific folds 

provide better results as shown in Table 11.6.
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Table 11.13: Main results of open domain targeted sentiment classification.

Model, year
English Spanish

Entity Recognition Sentiment Analysis Entity Recognition Sentiment Analysis
P. R. F1 P. R. F1 P. R. F1 P. R. F1

CRF-P [124],13 65.74 47.59 55.18 46.8 33.87 39.27 71.29 58.26 64.11 43.8 35.8 39.4

CRF-C[124],13 54.0 42.69 47.66 38.4 30.38 33.9 62.2 52.08 56.66 39.39 32.96 35.87

CRF-J [124],13 59.45 43.78 50.32 41.77 30.8 35.38 66.05 52.55 58.51 41.54 33.05 36.79

NN-P [125],15 60.69 51.63 55.67 43.71 37.12 40.06 70.77 62.0 65.76 46.55 40.57 43.04

NN-C [125],15 64.16 44.98 52.58 48.35 32.84 38.36 73.51 53.3 61.71 49.85 34.53 40.0

NN-J [125],15 61.47 49.28 54.59 44.62 35.84 39.67 71.32 61.11 65.74 46.67 39.99 43.02

SS [130], 17 63.18 51.67 56.83 44.57 36.48 40.11 71.49 61.92 66.36 46.06 39.89 42.75

SS(+w)[130],17 66.35 56.59 61.08 47.3 40.36 43.55 73.13 64.34 68.45 47.14 41.48 44.13

SS(+P)[130],17 65.14 55.32 59.83 45.96 39.04 42.21 71.55 62.72 66.84 45.92 40.25 42.89

SS(se)[130],17 63.93 54.53 58.85 44.49 37.93 40.94 70.17 64.15 67.02 44.12 40.34 42.14

SVMHMM+FE 70.08 54.38 61.16 50.88 39.42 44.36 76.18 63.35 69.16 49.15 40.85 44.60

Semi-Su-DFG 68.21 53.10 59.65 50.86 39.57 44.46 74.31 63.32 68.27 46.93 39.98 43.12

Super-DFG 70.05 54.87 61.43 51.50 40.29 45.13 74.90 65.81 69.99 48.48 42.59 45.30

Using our proposed semi-supervised learning solution (Semi-Su-DFG) provides 

competitive results with less number of labeled data. The performance of this solution is 

close to performance of prominent related work. Thus, it is a good choice for using our 

proposed solution when there is a lack of labeled data. Moreover, our proposed 

supervised learning solution (Super-DFG) with dynamic generation of feature attributes 

outperforms all models that are proposed so far. To the best of our knowledge, these 

maximum results are not reported before with any related work for open domain targeted 

sentiment classification. To show clearly the performance of our proposed solution 

Super-DFG, a summary of the provided F1-scores along with confidence interval of 95% 

confidence are shown in Table 11.14.

Table 11.14: Summary of applying supervised learning with dynamic generation of feature attributes.

English
F1-score

Spanish
F1-score

NER SA NER SA
Max 65.46 50.27 75.26 48.86

Min 57.67 42.05 66.82 42.23

AVRG 61.43 45.13 69.99 45.30

CI High 63.47 47.17 71.80 47.00

CI Low 59.38 43.09 68.19 43.59
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We should spot the light to using context-based targeted analysis system with the dataset 

of Arabic tweets. We noticed clearly that the system could not identify all subtopics 

correctly. The first reason belongs to the nature of Arabic subtopics that may have many 

meanings. For example, word “ / YW'(” may be a name of place or describes the freedom. 

Another challenge comes from that some words are not related to main topic. Such as, 

word “#$%” may describe other target such as “@(,."Z(” which is not the same target in our 

case study (“ !"”).

Additionally, Arabic tweets contain various slang words that may affect performance of 

detecting subtopics such as “0.&[”. These words cannot be tagged by POS Arabic tagger. 

Moreover, we cannot find word2vec embeddings that represent these words. By default,

our proposed system removes these words in the preprocessing phase. However, some of 

these slang words may describe important topic in the Arabic tweet such as “)/ '(”.

11.7 Conclusion

We conclude that integrating discrete features with word2vec embeddings improves the

performance of open domain targeted sentiment classification when using CRF instead of 

neutral network (NN) which used by Zhang et al. [125]. Moreover, adding word2vec 

embeddings as additional feature will improve the performance immediately without 

using additional feature layer in NN as used by Zhang et al. [125]. Zhang et al. [125]

proposed a new technique by adding the word2vec embeddings to 

a separated layer when building neutral network model. While, we showed efficiency of 

using word2vec embeddings by just concatenating them with discrete feature attributes.
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We showed in this chapter that applying SVM HMM by using discrete features with 

multiple word2vec embeddings outperforms all previous related works. Additionally, 

using our proposed semi-supervised learning solution provides competitive results with 

less number of labeled data. The performance of this solution is close to performance of 

prominent related work.

Thus, we accept the first hypothesis in our dissertation which estimates that semi-

supervised technique improves the performance of open domain targeted sentiment 

classification. Additionally, it is a good choice for using our proposed solution when 

there is a lack of labeled data or preparing it needs a costly process. 

Additionally, we showed that our proposed supervised learning solution with dynamic 

generation of feature attributes outperforms all models proposed so far. To the best of our 

knowledge, this proposed solution achieved results that are not reported before with any 

related work for open domain targeted sentiment classification. Our findings show as 

well that applying NER followed by target-dependent sentiment classification provides 

better performance in comparison with detecting both target and sentiment polarity in one 

shot. Thus, the first scenario in more accurate for open domain targeted sentiment 

classification.

Moreover, it is worth to clarify that our proposed context-based targeted analysis system 

works well with English tweets. However, it needs some improvements for dealing with 

other languages such as Arabic. Using non-English tweets adds more challenges which 

should be treated individually for improving the performance of our proposed solution.
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CHAPTER 12

CONCLUSION AND FUTURE WORK

In this research work, we addressed two recent research problems; namely, target-

dependent and open domain targeted sentiment classification. We evaluated the 

performance of applying numerous supervised, unsupervised and semi-supervised

learning methods to both problems. New semi-supervised learning techniques are 

proposed for both target-dependent and open domain targeted sentiment classification by 

using partially labeled data. Moreover, new supervised learning techniques are proposed 

for improving the performance.

This chapter provides conclusions regarding the findings of the dissertation; it also 

discusses some suggestions for future work. Moreover, the chapter presents some threats

to the validity of our findings.

12.1 Conclusion

This dissertation presents a comprehensive review on sentiment analysis in social media. 

A survey on target-dependent sentiment analysis is carried out also with summarized 

results. The survey revealed some gaps to be addressed in future research and illustrates 

that there are still many limitations in previous research works. Additionally, we carried 

out comparisons between different techniques applied to the same dataset. As a result of 

this, two comparison frameworks are built to validate our solutions proposed for both 

target-dependent and open domain targeted sentiment classification.
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Performance of applying many supervised learning techniques has been evaluated and 

new solutions are proposed for improving the performance of target-dependent sentiment 

classification. The proposed solutions provided a significant increase in classification 

accuracy equals about 20% in comparison with accuracy of prominent method proposed 

in the literature. Additionally, we have addressed the difficulty of preparing labeled data 

from social media by proposing a new semi-supervised learning technique that uses 

partially labeled data.

Additionally, efficiency of using deep learning techniques has been addressed for 

improving the performance of target-dependent sentiment classification. We have 

compiled all previous works that employed deep learning techniques for both target-

dependent and open domain targeted sentiment classification. We evaluated as well the 

efficiency of applying neural networks and deep conventional neural networks on target-

dependent sentiment classification.

Moreover, two new solutions are proposed for improving the performance of open 

domain targeted sentiment classification. The first solution is a supervised learning 

technique while that other one is a semi-supervised learning technique. The best 

improvement in performance reported an increase by more than 4%. This increase in 

performance seems small but it adds a significant contribution since this research 

direction includes different tasks and still an open research problem. A new system has 

been developed also for context-based target-dependent sentiment analysis. The proposed 

system detects context patterns among a set of micro-blogs by detecting targets and 

identifying sentiment polarities towards categorized topics that describe the detected 

targets.
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There are two scenarios for implementing open domain targeted sentiment classification. 

The first scenario consists of two tasks: detecting targets and then identifying sentiment 

polarities towards the targets. The second scenario is based on detecting targets and 

identifying sentiment polarities towards them in one shot. Based on our analysis and 

experiment work, we conclude that the first scenario provides better results in 

comparison with the second one.

Numerous experiments are developed in this research work to show efficacy of our 

proposed solutions. All experimental results show that the proposed techniques 

outperform all previous related works. The performance is improved when applying the

proposed techniques in comparison with other prominent work.

12.2 Threats to Validity

In our target-dependent sentiment classification experiments, we used a very popular 

dataset used in the literature. The dataset includes unbalanced distribution of sentimental 

classes. We believe that applying our techniques to other datasets with different 

balancing schemes may result in different performance. We could not evaluate this effect 

because there was no other public datasets avilable in this direction. Additionally, 

performance of K-means method which used in our solutions is based mainly on 

initializing the centriods. While, initializing the centriods is based basically on the form 

of data and the distribution of data points. Thereby, applying the proposed techniques to 

other datasets may result in different performance. 

When applying context-based analysis system, we remove slang words during the 

filtering phase. If some of those slang words are not caught during the filtering phase, 
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they will be processed at the lower level by word2vec embeddings. In such cases, the 

system will not be able to find word2vec embeddings that represent all corresponding 

slangs. Existence of unseen (missed) word2vec embeddings decreases performance of 

any machine leaning technique as well as our proposed technique. To decrease effect of 

this problem, we developed a method for merging word2vec embeddings from three 

sources [125] [130] [151]. However, there are still some unseen words that do not have 

word2vec embeddings in the three sources.

12.3 Limitations

When applying context-based analysis system, we remove slang words during the 

filtering phase. Thereby, using slang words may result in a change in the accuracy of 

detecting targets and topics among a set of micro-blogs. Additionally, the proposed 

techniques remove all emoticons when filtering micro-blogs. However, employing these 

icons may improve the performance. The proposed techniques remove also some 

acronyms such as “RT” and “#”. “RT” is an acronym for a “re-tweet” while the hash-tag 

“#” is used to organize tweets. Thereby, using these acronyms may add more information 

that helps in improving the performance.

Performance of the proposed context-based analysis system is affected by accuracy of the 

used part of speech (POS) tagger. Thus, we need to evaluate accuracy of POS tagger

especially when applying the system to non English micro-blogs such as Arabic micro-

blogs. Based on our experiment work, finding accurate Arabic POS tagger is not an easy 

job because its performance is still limited. This task is an open research problem because 

there are many challenges when developing Arabic POS tagger. For example, same 

Arabic micro-blog may include different dialects. Additionally, we noticed clearly that 
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the system could not identify all subtopics correctly with Arabic tweets. The reason 

belongs to the nature of Arabic subtopics that may have many meanings.

12.4 Future Work

Guided by the gaps identified by our literature review, and the findings and limitations of 

our research, we identify future work related to target dependent sentiment analysis and 

open-domain targeted sentiment analysis as we discuss in the sequel.

12.4.1 Target-Dependent Sentiment Analysis

This work can be extended in different directions. It is worth to investigate optimization 

methods such as genetic algorithms for finding the global optimum values of parameters 

that are used for building semi-supervised learning models in general. It will be efficient 

work when running more experiments to find effect of changing more than one parameter 

independently. 

Additionally, it is worth a try to detect the best ratio of labeled data by using 5-fold cross 

validation applied to training data before calculating classification accuracy. It may be 

also a good improvement if there is a check of differences between runs while changing 

place of labeled data selected from training data. Moreover, we should try to use different 

weight for each micro-blog and check the performance when applying balanced mode.

Another research direction may improve the performance by combining more than one 

semi-supervised techniques such as merging our proposed solution with QN-S3VM. In 

the same manner, extending label propagation method may improve the performance by 

using lower ratio of labeled data. It is also worth a try to employ semi-supervised learning 

with deep learning for improving the performance. 
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This work can be extended also by testing performance of using other semi-supervised 

learning techniques. It would be interesting to develop methods for detecting minimal 

number of micro-blogs that are required to be labeled for providing the best performance.

Such micro-blogs should form a representative sample adequate enough to classify the 

overall input data. Moreover, future work may investigate developing cluster-based 

technique for partitioning input micro-blogs and selecting specific ones that provide high 

performance.

Based on our experiment results, we noticed that SVM as supervised learning and K-

means as unsupervised learning provide the best results. Thus, it is worth a try to merge 

them for developing models under umbrella of semi-supervised learning. Additionally, 

using other methods rather than PCA and LDA for dimension reduction may improve 

performance of target-dependent sentiment classification. We also should check 

efficiency of applying other data clustering methods instead of using K-means. Using 

more multicast strategies and developing new strategies may also improve the 

performance.

12.4.2 Open Domain Targeted Sentiment Analysis

It is clear that using word embeddings provides significant improvement in the 

performance. Thus, it is interesting to check efficiency of employing additional forms of 

word embeddings in this research direction such as using global vectors for word 

representation (GloVe). Additionally, it may be efficient to develop new mechanisms for 

generating feature attributes automatically. Moreover, developing a new optimization 

solution for finding optimum value needed to setting parameters (such as C parameter 
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with SVM HMM) may be an important direction. It would be of interest also to employ 

more sequence labeling methods for improving the performance.

It is noteworthy that study deeply effect of unseen word2vec embeddings (out-of-

vocabulary words) on the performance is a very important direction. Developing a new 

method for decreasing the effect may be a promising research direction. To develop such 

method, we may employ char2vec [152

When evaluating performance of context-based analysis system, we could not show all 

experiment results since there is a huge data. Thus, we selected some case studies to 

show efficacy of the proposed system. It would be of interest to evaluate more case 

studies in future work. Several extensions may be achieved as well for improving

performance of using non-English micro-blogs (such as Arabic) with our proposed 

context-based targeted analysis system. Checking efficiency of more POS taggers may 

improve the performance. It is important to check performance of converting slang words 

to standard Arabic words [

] embeddings instead of word2vec embeddings 

for finding all unseen words.

153] since some slang words may include important meanings.

Developing a sophisticated POS tagger that deals with both slang and standard Arabic 

words is expected to be a promising research direction.
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Appendix I  

EXPERIMENT RESULTS: SUPERVISED LEARNING FOR 

TARGET-DEPENDENT SENTIMENT ANALYSIS 

This appendix includes all details of experiment results that are illustrated in Chapter 7 

for target dependent sentiment analysis. 

Table  I.1: Regularized linear model with different settings. 

Loss Penalty Accuracy Macro-F1 
hinge None 63.6 62.4 
hinge None 66.3 64.3 
hinge None 67.5 63.5 
hinge None 61.6 61.5 
hinge None 67.5 65.9 
hinge None 66.2 64.2 
hinge None 66.3 62.1 
hinge None 63.4 62.0 
hinge None 64.2 62.7 
hinge None 64.2 62.3 
hinge None 65.5 61.9 
hinge None 60.7 59.4 

MAX 67.5 65.9 
MIN 60.7 59.4 

AVERAGE 64.8 62.7 
CI HIGH 66.4 63.9 
CI LOW 63.3 61.5 
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Table  I.2: Results of applying passive aggressive classifier. 

Classifying Training Data Classifying Testing Data  C Accuracy F1-score Accuracy F1-score 
54.6 35.2 54.5 36.2 10-5 
62.7 53.7 61.3 52.9 3×10-5 
64.9 58.3 64.9 59.0 5×10-5 
64.8 57.7 64.2 57.4 7×10-5 
66.7 61.0 65.3 59.7 9×10-5 
68.3 64.4 67.2 63.7 0.0001 
71.3 69.9 68.1 66.6 0.0003 
70.6 66.0 66.3 60.8 0.0005 
73.3 71.4 69.7 67.3 0.0007 
74.2 72.8 68.2 66.8 0.0009 
74.1 71.2 68.2 64.5 0.001 
58.1 59.1 53.0 53.3 0.003 
67.3 60.0 64.2 56.5 0.005 
54.6 53.8 50.1 49.6 0.007 
68.2 60.5 64.3 55.8 0.009 
62.5 54.9 56.9 50.4 0.01 
75.1 73.5 66.9 64.9 0.03 
44.0 42.4 42.9 42.3 0.05 
63.4 63.8 54.2 54.5 0.07 
53.8 54.7 49.4 50.3 0.09 
71.4 66.8 64.9 59.3 0.1 
74.3 71.6 65.6 61.9 0.3 
72.5 71.2 65.2 64.0 0.5 
70.4 64.4 67.1 59.7 0.7 
71.5 69.8 63.4 60.9 0.9 
71.1 67.5 65.9 63.6 1.0 
69.0 69.1 62.0 62.1 3.0 
51.2 51.7 46.0 45.9 5.0 
65.1 65.2 56.9 56.9 7.0 
53.9 54.9 49.1 49.5 9.0 
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Table  I.3: Linear SVC with OvR multiclass strategy. 

Classifying Training Data Classifying Testing Data  C Accuracy F1-score Accuracy F1-score 
54.1 33.6 53.9 34.6 10-5 
61.5 50.9 60.7 50.8 3×10-5 
64.8 57.4 63.6 56.4 5×10-5 
66.1 60.0 65.0 59.1 7×10-5 
67.2 61.8 65.9 60.5 9×10-5 
67.5 62.4 66.8 61.7 0.0001 
71.0 67.7 69.4 65.8 0.0003 
72.5 69.6 69.7 66.6 0.0005 
73.6 70.9 70.4 67.7 0.0007 
74.2 71.7 69.8 67.0 0.0009 
74.6 72.1 69.9 67.1 0.001 
78.0 76.1 70.5 68.1 0.003 
79.8 78.2 69.7 67.2 0.005 
80.8 79.3 69.4 67.0 0.007 
81.5 80.0 68.9 66.5 0.009 
81.9 80.5 68.6 66.3 0.01 
86.1 85.3 67.3 65.3 0.03 
87.9 87.3 66.3 64.2 0.05 
89.2 88.7 65.3 63.1 0.07 
90.0 89.6 64.7 62.5 0.09 
90.3 89.9 64.7 62.6 0.1 
93.9 93.7 62.0 59.7 0.3 
95.1 94.9 61.0 58.9 0.5 
95.4 95.3 60.8 58.4 0.7 
95.8 95.7 61.1 58.9 0.9 
95.4 95.3 61.0 58.8 1.0 
91.4 91.0 61.3 57.8 3.0 
95.9 95.8 60.3 58.1 5.0 
91.8 91.5 60.4 57.1 7.0 
96.0 95.9 59.4 57.7 9.0 
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Table  I.4: Linear SVC with OvO multiclass strategy. 

Classifying Training Data Classifying Testing Data  C Accuracy F1-score Accuracy F1-score 
52.9 30.1 52.0 29.9 10-5 
59.8 47.2 59.5 48.2 3×10-5 
63.1 54.4 62.3 54.3 5×10-5 
65.1 58.2 64.0 57.4 7×10-5 
66.4 60.4 64.7 59.0 9×10-5 
66.8 61.1 64.7 59.1 0.0001 
70.7 67.1 68.2 64.3 0.0003 
72.6 69.7 70.2 67.1 0.0005 
73.6 71.0 69.9 67.0 0.0007 
74.5 72.1 70.7 67.9 0.0009 
74.7 72.3 70.5 67.7 0.001 
77.8 75.9 70.2 68.1 0.003 
80.1 78.5 69.5 67.3 0.005 
81.6 80.2 69.1 66.9 0.007 
82.6 81.3 68.8 66.6 0.009 
83.0 81.7 68.9 66.8 0.01 
87.4 86.7 66.2 64.1 0.03 
90.0 89.6 66.3 64.4 0.05 
91.8 91.5 64.7 62.7 0.07 
92.9 92.6 64.0 62.0 0.09 
93.3 93.1 64.0 62.0 0.1 
97.1 97.1 61.7 59.7 0.3 
98.4 98.4 60.1 58.2 0.5 
98.9 98.9 60.4 58.7 0.7 
99.0 99.0 60.3 58.8 0.9 
98.6 98.6 60.5 58.3 1.0 
98.8 98.7 59.8 58.3 3.0 
99.3 99.3 61.7 59.9 5.0 
99.5 99.5 60.0 58.4 7.0 
99.1 99.1 60.4 58.0 9.0 
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Table  I.5: Unbalanced C-SVC linear kernel.  

Classifying Training Data Classifying Testing Data  C  Accuracy F1-score Accuracy F1-score 
50.0 22.2 50.0 22.2 10-5 
50.1 22.4 50.0 22.2 3×10-5 
51.5 26.3 50.1 24.6 5×10-5 
51.8 27.1 50.6 25.7 7×10-5 
52.5 29.1 51.7 28.4 9×10-5 
52.7 29.8 51.6 28.8 0.0001 
61.2 50.8 61.4 52.7 0.0003 
64.9 57.6 64.2 57.4 0.0005 
67.1 61.5 65.9 60.4 0.0007 
68.2 63.4 67.3 62.5 0.0009 
68.6 64.0 67.9 63.2 0.001 
72.9 70.0 69.5 65.9 0.003 
74.9 72.5 70.1 66.9 0.005 
76.3 74.2 70.2 67.3 0.007 
77.0 75.0 69.9 67.4 0.009 
77.4 75.4 70.2 67.7 0.01 
82.1 80.8 68.9 66.6 0.03 
83.9 82.9 67.6 65.8 0.05 
85.6 84.8 66.5 64.6 0.07 
86.5 85.8 65.9 64.1 0.09 
87.1 86.4 65.6 63.8 0.1 
92.2 92.0 63.3 61.5 0.3 
94.5 94.4 62.1 60.3 0.5 
95.7 95.6 60.7 58.9 0.7 
96.6 96.6 59.7 57.9 0.9 
96.9 96.9 59.2 57.5 1.0 
99.6 99.6 56.8 55.1 3.0 
99.9 99.9 57.2 55.4 5.0 
99.9 99.9 56.8 55.0 7.0 

100.0 100.0 56.8 55.1 9.0 
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Table  I.6: Balanced C-SVC linear kernel.  

Classifying Training Data Classifying Testing Data  C  Accuracy F1-score Accuracy F1-score 
50.0 22.2 50.0 22.2 10-5 
60.1 56.0 59.5 55.1 3×10-5 
60.7 58.6 59.5 57.0 5×10-5 
61.2 59.6 60.5 58.2 7×10-5 
62.3 60.9 62.9 60.9 9×10-5 
62.8 61.4 63.4 61.5 0.0001 
66.0 65.1 65.8 64.5 0.0003 
66.7 66.0 65.2 64.1 0.0005 
67.4 66.8 64.6 63.6 0.0007 
67.9 67.3 64.2 63.2 0.0009 
68.1 67.5 64.3 63.3 0.001 
70.9 70.5 65.5 64.8 0.003 
72.4 72.0 65.3 64.5 0.005 
73.9 73.5 66.0 65.2 0.007 
75.1 74.7 67.6 66.9 0.009 
75.5 75.2 67.5 66.8 0.01 
80.2 80.0 65.2 64.4 0.03 
82.6 82.4 64.2 63.2 0.05 
84.5 84.4 64.0 63.0 0.07 
85.6 85.5 63.2 62.1 0.09 
86.1 86.0 62.9 61.7 0.1 
91.1 91.2 62.0 61.0 0.3 
93.5 93.5 59.8 58.4 0.5 
94.9 95.0 59.8 58.2 0.7 
95.8 95.8 59.5 57.9 0.9 
96.2 96.2 59.0 57.3 1.0 
99.2 99.2 57.1 55.4 3.0 
99.8 99.8 57.7 56.0 5.0 
99.9 99.9 57.4 55.7 7.0 
99.9 99.9 57.1 55.4 9.0 

 

Table  I.7: Neural networks with the best achieved settings. 

Run # Accuracy macro-average F1-score 
1 69.8 67.2 
2 68.6 65.3 
3 69.4 65.8 
4 70.7 68.1 
5 70.7 68.6 
6 70.7 68.0 
7 69.5 67.0 
8 69.8 67.5 
9 69.5 66.7 
10 70.4 67.6 
11 68.5 66.0 
12 70.8 68.3 

MAX 70.8 68.6 
MIN 68.5 65.3 

AVRG 69.9 67.2 
CI High 70.4 67.9 
CI Low 69.4 66.5 
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Appendix II  

EXPERIMENT RESULTS: SEMI-SUPERVISED 

LEARNING FOR TARGET-DEPENDENT  

SENTIMENT ANALYSIS 

This appendix includes all details of experiment results that are illustrated in chapter 8 for 

target dependent sentiment analysis. 
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Table  II.1: Effect of changing labeling ratio when using label propagation with RBF kernel and 
Gamma=0.07. 

Ratio R1 R2 R3 R4 Max Average 
0.01 60.5 60.3 49.3 50.0 60.5 56.1 
0.03 60.1 59.7 48.1 49.7 60.1 55.5 
0.05 60.5 59.5 49.0 48.0 60.5 55.5 
0.07 60.8 59.2 47.8 47.5 60.8 55.3 
0.09 60.8 59.0 47.4 48.4 60.8 55.3 
0.11 60.8 59.5 46.0 46.0 60.8 54.6 
0.13 60.8 59.1 49.4 47.1 60.8 55.5 
0.15 60.5 58.7 48.3 47.0 60.5 55.0 
0.17 60.3 58.7 48.4 48.0 60.3 55.1 
0.19 59.5 59.1 46.1 48.4 59.5 54.5 
0.21 59.8 58.7 46.8 45.7 59.8 54.2 
0.23 60.0 58.8 47.1 49.1 60.0 55.0 
0.25 59.8 59.1 47.8 48.3 59.8 55.0 
0.27 60.3 59.1 46.2 47.0 60.3 54.6 
0.29 60.3 59.2 48.0 46.1 60.3 54.8 
0.31 60.4 59.2 49.0 46.8 60.4 55.2 
0.33 60.0 59.2 47.0 45.7 60.0 54.4 
0.35 60.1 59.2 49.4 50.9 60.1 56.0 
0.37 60.1 59.1 46.5 47.8 60.1 54.7 
0.39 59.7 59.1 46.2 48.4 59.7 54.6 
0.41 59.8 60.0 47.3 46.5 60.0 54.7 
0.43 59.4 59.7 47.3 46.1 59.7 54.4 
0.45 60.0 59.5 47.4 47.0 60.0 54.8 
0.47 60.3 59.2 46.0 46.2 60.3 54.4 
0.49 59.7 59.0 46.7 46.5 59.7 54.3 
0.51 59.8 59.0 44.5 47.3 59.8 54.1 
0.53 59.1 59.2 47.3 46.1 59.2 54.2 
0.55 59.4 59.2 42.5 45.7 59.4 53.2 
0.57 58.8 59.1 46.7 44.9 59.1 53.7 
0.59 58.5 59.1 48.1 45.2 59.1 54.0 
0.61 56.2 58.2 47.4 44.4 58.2 52.9 
0.63 55.9 58.5 48.6 49.3 58.5 54.2 
0.65 56.1 58.5 46.1 48.0 58.5 53.4 
0.67 54.8 58.1 44.7 46.2 58.1 52.4 
0.69 54.6 57.1 48.7 48.7 57.1 53.2 
0.71 55.5 56.6 45.4 46.2 56.6 52.1 
0.73 55.1 57.1 46.2 44.7 57.1 52.0 
0.75 54.2 56.5 48.1 46.4 56.5 52.3 
0.77 54.2 56.8 42.9 45.7 56.8 51.3 
0.79 54.5 56.9 45.4 49.4 56.9 52.6 
0.81 53.5 56.5 48.0 45.4 56.5 52.0 
0.83 53.6 56.2 46.0 48.0 56.2 52.0 
0.85 53.9 55.2 41.2 43.8 55.2 49.9 
0.87 53.3 55.8 42.9 43.1 55.8 50.2 
0.89 52.9 52.3 44.2 44.9 52.9 49.5 
0.91 52.5 53.6 45.4 43.2 53.6 49.7 
0.93 51.9 53.3 35.7 41.2 53.3 47.1 
0.95 48.7 50.3 45.2 40.8 50.3 47.1 
0.97 49.0 47.8 40.8 34.7 49.0 44.2 
0.99 45.8 44.4 36.1 38.9 45.8 42.2 
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Table  II.2: Effect of changing number of neighbors with label propagation model. 

Neighbors # Accuracy macro-average F1-score 
1 61.7 62.7 
3 56.4 51.2 
5 52.5 47.0 
7 53.4 46.0 
9 54.7 45.3 

11 54.6 44.9 
13 54.5 45.1 
15 55.0 44.3 
17 54.7 43.0 
19 54.4 42.2 
21 54.5 41.8 
23 54.2 40.9 
25 53.9 40.1 
27 53.9 40.1 
29 54.0 40.1 
31 53.8 39.8 
33 54.3 38.8 
35 54.1 38.3 
37 53.9 37.4 
39 53.0 35.3 
41 53.0 35.3 
43 53.0 35.3 
45 53.0 35.3 
47 53.0 35.3 
49 53.0 35.3 
51 52.9 35.0 
53 52.5 34.0 
55 52.5 34.0 
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Table  II.3: Effect of changing ratio of labeled data when applying label propagation with kNN kernel 
(k=21). 

Ratio R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 Max 
0.01 53.61 53.61 50.43 50.14 50.00 49.42 50.00 50.58 48.84 50.43 49.71 50.00 53.61 
0.03 53.76 53.61 48.84 51.01 48.99 48.41 50.43 48.12 48.27 49.71 50.00 50.14 53.76 
0.05 53.61 53.18 49.57 48.41 50.00 47.98 50.14 48.99 48.55 50.29 45.95 47.69 53.61 
0.07 53.76 53.76 49.42 48.27 50.00 50.00 47.98 46.53 49.71 49.42 47.83 50.00 53.76 
0.09 53.90 53.47 49.71 50.72 48.70 49.42 48.70 50.58 50.29 50.00 48.84 47.83 53.90 
0.11 53.90 53.47 50.29 50.58 49.57 49.57 49.28 50.00 48.70 49.86 49.71 49.28 53.90 
0.13 53.76 53.32 49.42 48.84 50.14 49.86 49.71 48.41 50.00 48.84 48.41 49.28 53.76 
0.15 53.90 53.76 50.29 50.00 48.55 48.70 48.55 47.40 50.29 48.27 50.00 50.00 53.90 
0.17 54.19 53.76 47.83 48.84 50.14 49.13 50.00 49.71 49.71 49.28 50.00 49.71 54.19 
0.19 54.19 54.19 48.27 47.54 50.43 47.25 49.13 48.84 49.71 49.57 48.99 47.98 54.19 
0.21 54.19 54.05 50.00 49.42 49.28 48.12 50.58 49.42 47.98 49.13 48.12 48.84 54.19 
0.23 53.90 54.19 50.00 50.14 49.86 49.71 49.13 48.70 49.42 51.16 50.87 48.55 54.19 
0.25 53.76 54.62 51.01 48.55 47.98 51.59 50.87 47.83 49.57 50.29 47.11 49.86 54.62 
0.27 54.62 53.90 48.99 50.00 49.42 48.84 49.57 47.54 48.27 48.84 48.99 49.57 54.62 
0.29 53.90 53.76 47.69 49.13 47.25 48.55 48.41 48.70 48.27 46.68 50.00 49.57 53.90 
0.31 53.90 54.34 49.71 48.84 48.99 48.99 47.69 47.11 49.42 50.14 49.86 50.29 54.34 
0.33 53.61 54.34 49.42 47.98 49.13 48.27 49.28 50.14 46.53 46.53 50.58 49.71 54.34 
0.35 53.61 54.34 50.14 47.83 50.00 49.86 50.58 49.13 50.72 49.13 50.43 48.70 54.34 
0.37 53.47 54.77 48.84 48.99 50.14 50.00 51.45 47.54 49.57 47.54 47.83 48.27 54.77 
0.39 52.89 54.48 47.83 46.24 49.57 48.12 48.41 47.98 50.43 48.84 49.13 49.71 54.48 
0.41 52.89 54.91 51.45 49.13 49.86 48.70 49.13 47.54 51.01 46.82 49.13 47.40 54.91 
0.43 53.47 54.62 49.13 50.00 48.12 46.53 48.84 51.01 46.68 47.69 47.11 51.16 54.62 
0.45 53.18 54.62 48.99 50.00 46.82 44.65 45.38 47.25 49.28 46.82 48.41 48.41 54.62 
0.47 53.03 53.90 47.98 46.82 45.66 50.14 48.12 50.00 45.66 48.99 48.84 47.11 53.90 
0.49 53.90 53.61 50.00 45.66 49.86 45.66 49.42 50.43 47.98 47.11 49.28 48.12 53.90 
0.51 53.90 53.76 47.98 46.39 47.25 48.12 47.40 50.14 46.53 50.58 46.82 46.68 53.90 
0.53 53.90 53.90 47.40 45.23 44.65 50.00 49.42 48.41 48.41 46.68 49.57 45.81 53.90 
0.55 53.90 54.19 48.84 48.84 47.40 47.40 48.99 47.40 48.55 49.71 50.72 47.54 54.19 
0.57 53.90 53.76 49.42 48.41 47.54 47.40 43.06 47.54 46.68 46.68 47.69 49.13 53.90 
0.59 53.90 54.05 47.69 49.57 45.81 48.70 47.40 47.40 46.82 47.69 47.54 44.94 54.05 
0.61 51.30 53.61 48.27 48.70 49.86 48.84 45.81 49.71 47.11 43.79 46.82 46.68 53.61 
0.63 51.01 53.32 48.99 44.51 47.83 50.58 49.13 48.99 48.99 46.97 46.82 47.40 53.32 
Max 54.62 54.91 51.45 51.01 50.43 51.59 51.45 51.01 51.01 51.16 50.87 51.16 54.91 
Ratio 0.27 0.41 0.41 0.03 0.19 0.25 0.37 0.43 0.41 0.23 0.23 0.43 0.41 
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Table  II.4: Effect of changing ratio of labeled data when applying label propagation with kNN kernel (k=1). 

Ratio R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 Max 
0.01 56.36 56.07 39.45 39.60 35.98 37.57 35.98 37.57 35.98 37.57 35.98 37.57 56.36 
0.03 55.64 55.64 36.85 34.83 35.69 37.72 35.69 37.72 35.69 37.72 35.69 37.72 55.64 
0.05 55.49 54.62 36.42 40.46 36.13 37.43 36.13 37.43 36.13 37.43 36.13 37.43 55.49 
0.07 55.49 53.90 36.71 35.98 39.74 40.03 39.74 40.03 39.74 40.03 39.74 40.03 55.49 
0.09 55.78 53.18 35.40 37.86 40.46 36.85 40.46 36.85 40.46 36.85 40.46 36.85 55.78 
0.11 55.64 51.88 34.83 33.96 37.72 36.27 37.72 36.27 37.72 36.27 37.72 36.27 55.64 
0.13 54.77 50.58 31.94 37.14 33.82 38.15 33.82 38.15 33.82 38.15 33.82 38.15 54.77 
0.15 53.76 50.29 37.28 36.99 38.44 35.69 38.44 35.69 38.44 35.69 38.44 35.69 53.76 
0.17 53.03 49.28 36.99 34.97 37.72 33.96 37.72 33.96 37.72 33.96 37.72 33.96 53.03 
0.19 52.89 48.99 36.42 35.40 34.54 34.97 34.54 34.97 34.54 34.97 34.54 34.97 52.89 
0.21 52.02 48.84 35.55 33.82 37.14 34.25 37.14 34.25 37.14 34.25 37.14 34.25 52.02 
0.23 51.88 48.12 31.65 35.55 34.97 32.51 34.97 32.51 34.97 32.51 34.97 32.51 51.88 
0.25 51.45 47.69 32.80 33.96 35.98 34.39 35.98 34.39 35.98 34.39 35.98 34.39 51.45 
0.27 50.87 46.97 33.53 34.97 33.53 34.68 33.53 34.68 33.53 34.68 33.53 34.68 50.87 
0.29 50.72 47.25 30.64 33.38 33.53 36.27 33.53 36.27 33.53 36.27 33.53 36.27 50.72 
0.31 50.14 46.82 31.94 32.51 33.53 34.68 33.53 34.68 33.53 34.68 33.53 34.68 50.14 
0.33 48.99 46.24 32.66 33.24 33.38 36.71 33.38 36.71 33.38 36.71 33.38 36.71 48.99 
0.35 47.98 45.81 35.40 31.94 29.62 32.95 29.62 32.95 29.62 32.95 29.62 32.95 47.98 
0.37 47.11 44.94 33.82 33.96 30.92 36.13 30.92 36.13 30.92 36.13 30.92 36.13 47.11 
0.39 46.39 44.51 31.36 31.79 31.79 36.42 31.79 36.42 31.79 36.42 31.79 36.42 46.39 
0.41 44.51 43.79 35.12 32.08 31.36 32.37 31.36 32.37 31.36 32.37 31.36 32.37 44.51 
0.43 43.35 42.92 33.96 31.65 31.07 33.82 31.07 33.82 31.07 33.82 31.07 33.82 43.35 
0.45 42.77 41.91 31.21 31.36 32.23 29.48 32.23 29.48 32.23 29.48 32.23 29.48 42.77 
0.47 41.47 41.47 31.79 31.07 29.91 29.48 29.91 29.48 29.91 29.48 29.91 29.48 41.47 
0.49 41.33 40.46 29.34 32.66 35.12 32.08 35.12 32.08 35.12 32.08 35.12 32.08 41.33 
0.51 41.04 40.17 28.61 30.64 30.64 28.61 30.64 28.61 30.64 28.61 30.64 28.61 41.04 
0.53 40.03 40.03 28.76 29.62 29.19 29.34 29.19 29.34 29.19 29.34 29.19 29.34 40.03 
0.55 39.60 38.73 31.36 29.62 31.36 32.37 31.36 32.37 31.36 32.37 31.36 32.37 39.60 
0.57 38.58 38.15 29.34 32.51 29.34 30.20 29.34 30.20 29.34 30.20 29.34 30.20 38.58 
0.59 37.72 36.99 31.07 27.02 31.79 31.50 31.79 31.50 31.79 31.50 31.79 31.50 37.72 
0.61 36.99 35.12 28.18 28.18 29.34 26.59 29.34 26.59 29.34 26.59 29.34 26.59 36.99 
0.63 36.56 34.39 29.62 31.07 30.78 29.91 30.78 29.91 30.78 29.91 30.78 29.91 36.56 
Max 56.36 56.07 39.45 40.46 40.46 40.03 40.46 40.03 40.46 40.03 40.46 40.03 56.36 
Ratio 0.01 0.01 0.01 0.05 0.09 0.07 0.09 0.07 0.09 0.07 0.09 0.07 0.01 
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Table  II.5: Effect of changing Gamma when applying label propagation with RBF kernel.  

Gam Accu F1 Gam Accu F1 Gam Accu F1 
0.01 50.1 22.6 0.85 58.2 55.4 1.69 57.8 54.8 
0.03 52.2 35.1 0.87 58.2 55.4 1.71 57.8 54.8 
0.05 56.1 46.6 0.89 58.2 55.4 1.73 57.8 54.8 
0.07 59.0 52.4 0.91 58.2 55.3 1.75 57.8 54.8 
0.09 59.0 53.5 0.93 58.1 55.2 1.77 57.8 54.8 
0.11 58.8 53.9 0.95 57.9 55.0 1.79 57.8 54.8 
0.13 59.0 54.2 0.97 57.9 55.0 1.81 57.8 54.8 
0.15 58.1 53.7 0.99 57.9 55.0 1.83 57.8 54.8 
0.17 57.8 53.6 1.01 57.9 55.0 1.85 57.8 54.8 
0.19 57.5 53.5 1.03 57.9 55.0 1.87 57.8 54.8 
0.21 57.4 53.5 1.05 57.9 55.0 1.89 57.8 54.8 
0.23 57.5 53.8 1.07 57.9 55.0 1.91 57.8 54.8 
0.25 57.7 53.9 1.09 57.9 55.0 1.93 57.8 54.8 
0.27 57.8 54.3 1.11 57.9 55.0 1.95 57.8 54.8 
0.29 57.5 54.1 1.13 57.9 55.0 1.97 57.8 54.8 
0.31 57.2 53.9 1.15 57.9 55.0 1.99 57.8 54.8 
0.33 57.7 54.4 1.17 57.9 55.0 2.01 57.8 54.8 
0.35 57.7 54.4 1.19 57.9 55.0 2.03 57.8 54.8 
0.37 57.9 54.9 1.21 57.9 55.0 2.05 57.8 54.8 
0.39 58.2 55.2 1.23 57.9 55.0 2.07 57.8 54.8 
0.41 58.2 55.2 1.25 57.9 55.0 2.09 57.8 54.8 
0.43 58.2 55.2 1.27 57.8 54.8 2.11 57.8 54.8 
0.45 58.1 55.1 1.29 57.9 55.0 2.13 57.8 54.8 
0.47 58.2 55.2 1.31 57.9 55.0 2.15 57.8 54.8 
0.49 58.4 55.4 1.33 57.9 55.0 2.17 57.8 54.8 
0.51 58.4 55.4 1.35 57.9 55.0 2.19 57.8 54.8 
0.53 58.4 55.4 1.37 57.9 55.0 2.21 57.8 54.8 
0.55 58.4 55.4 1.39 57.9 55.0 >=2.23 25.0 13.3 
0.57 58.4 55.4 1.41 57.9 55.0    
0.59 58.4 55.4 1.43 57.9 55.0    
0.61 58.2 55.3 1.45 57.9 55.0    
0.63 58.2 55.3 1.47 57.9 55.0    
0.65 58.2 55.3 1.49 57.9 55.0    
0.67 58.2 55.3 1.51 57.9 55.0    
0.69 58.1 55.2 1.53 57.9 55.0    
0.71 58.1 55.2 1.55 57.9 55.0    
0.73 58.1 55.2 1.57 57.9 55.0    
0.75 58.1 55.2 1.59 57.9 55.0    
0.77 58.1 55.2 1.61 57.9 55.0    
0.79 58.1 55.2 1.63 57.8 54.8    
0.81 57.9 55.1 1.65 57.8 54.8    
0.83 58.2 55.4 1.67 57.8 54.8    
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Table  II.6: Effect of changing ratio of labeled data when applying label propagation  
with RBF kernel (Gamma=0.07). 

Ratio R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 Max 
0.01 60.55 60.26 49.28 50.00 45.81 47.25 46.97 48.55 50.87 47.83 46.39 49.42 60.55 
0.03 60.12 59.68 48.12 49.71 47.98 45.38 47.83 47.69 47.40 50.58 45.52 48.70 60.12 
0.05 60.55 59.54 48.99 47.98 48.41 47.83 45.95 48.12 46.82 48.70 46.82 46.97 60.55 
0.07 60.84 59.25 47.83 47.54 45.66 47.98 46.39 45.81 46.24 49.57 46.97 48.84 60.84 
0.09 60.84 58.96 47.40 48.41 48.84 46.82 47.83 45.95 46.39 47.25 47.25 47.54 60.84 
0.11 60.84 59.54 45.95 45.95 48.84 48.27 47.54 46.10 47.83 47.40 48.84 47.25 60.84 
0.13 60.84 59.10 49.42 47.11 48.84 48.12 48.41 47.11 47.11 46.82 48.41 48.84 60.84 
0.15 60.55 58.67 48.27 46.97 46.10 47.83 48.55 46.24 48.27 46.82 47.54 48.84 60.55 
0.17 60.26 58.67 48.41 47.98 48.41 47.98 49.42 47.25 47.69 46.68 46.68 47.40 60.26 
0.19 59.54 59.10 46.10 48.41 48.41 50.58 47.11 49.42 50.00 45.66 49.13 48.41 59.54 
0.21 59.83 58.67 46.82 45.66 46.68 49.28 46.10 48.99 46.68 46.10 46.39 45.66 59.83 
0.23 59.97 58.82 47.11 49.13 47.69 46.97 48.84 49.13 47.69 47.54 48.55 45.95 59.97 
0.25 59.83 59.10 47.83 48.27 46.97 48.55 46.10 45.23 46.68 49.57 44.51 46.53 59.83 
0.27 60.26 59.10 46.24 46.97 47.83 44.51 47.98 49.13 47.11 47.69 49.13 46.10 60.26 
0.29 60.26 59.25 47.98 46.10 47.83 43.93 44.80 50.58 48.12 45.95 47.11 48.27 60.26 
0.31 60.40 59.25 48.99 46.82 48.27 47.25 47.54 48.27 46.68 48.41 47.54 46.68 60.40 
0.33 59.97 59.25 46.97 45.66 48.84 47.11 45.66 48.27 48.70 45.66 49.13 46.97 59.97 
0.35 60.12 59.25 49.42 50.87 47.11 48.12 45.66 47.54 45.81 49.13 46.53 46.82 60.12 
0.37 60.12 59.10 46.53 47.83 48.12 48.41 44.65 47.11 47.40 47.83 48.84 48.41 60.12 
0.39 59.68 59.10 46.24 48.41 46.82 48.84 48.41 47.69 48.55 47.40 48.84 48.70 59.68 
0.41 59.83 59.97 47.25 46.53 45.66 45.81 48.41 47.98 47.40 46.97 46.97 48.70 59.97 
0.43 59.39 59.68 47.25 46.10 49.86 45.52 47.69 45.81 49.71 48.84 46.82 46.10 59.68 
0.45 59.97 59.54 47.40 46.97 47.83 46.24 48.12 48.55 48.84 46.82 48.70 43.93 59.97 
0.47 60.26 59.25 45.95 46.24 48.27 47.69 46.10 48.12 47.54 47.11 46.39 50.14 60.26 
0.49 59.68 58.96 46.68 46.53 46.68 47.25 48.41 46.24 47.40 47.69 46.82 47.40 59.68 
0.51 59.83 58.96 44.51 47.25 45.66 47.40 46.53 47.40 46.39 48.70 46.82 44.94 59.83 
0.53 59.10 59.25 47.25 46.10 46.10 48.27 49.42 49.13 46.82 47.40 44.94 44.94 59.25 
0.55 59.39 59.25 42.49 45.66 48.84 46.97 44.65 47.40 43.35 45.81 48.99 43.93 59.39 
0.57 58.82 59.10 46.68 44.94 47.54 48.55 46.39 48.12 50.14 47.25 45.52 44.36 59.10 
0.59 58.53 59.10 48.12 45.23 45.23 45.66 45.38 46.10 45.23 45.09 48.70 44.94 59.10 
0.61 56.21 58.24 46.53 47.11 45.52 47.69 48.12 45.38 44.08 44.80 44.94 47.69 58.24 
0.63 55.92 58.53 45.66 46.53 48.55 44.65 43.50 46.97 44.80 47.54 44.51 46.10 58.53 
Max 60.84 60.26 49.42 50.87 49.86 50.58 49.42 50.58 50.87 50.58 49.13 50.14 60.84 
Ratio 0.07 0.01 0.13 0.35 0.43 0.19 0.17 0.29 0.01 0.03 0.19 0.47 0.07 
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Table  II.7: Effect of changing number of neighbors with label propagation model.  

Neighbors # Accuracy macro-average F1-score 
1 40.3 38.3 
3 53.8 49.6 
5 55.5 50.8 
7 58.1 53.1 
9 56.1 49.9 

11 57.4 51.4 
13 55.8 48.9 
15 56.6 49.1 
17 55.9 47.4 
19 56.1 47.2 
21 56.2 47.0 
23 56.2 46.7 
25 56.5 47.0 
27 55.8 45.5 
29 56.1 45.9 
31 55.6 45.0 
33 56.2 45.9 
35 56.1 45.7 
37 55.5 44.6 
39 55.2 44.1 
41 54.5 42.6 
43 54.2 42.1 
45 54.0 41.5 
47 53.9 41.1 
49 53.9 41.1 
51 53.9 41.1 
53 53.9 40.9 
55 54.0 41.0 
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Table  II.8: Effect of changing ratio of labeled data when applying label spreading  
with kNN kernel (k=7). 

Ratio R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 Max 
0.01 57.23 57.80 48.12 43.50 44.36 45.09 46.82 50.00 47.11 46.68 47.98 43.79 57.80 
0.03 57.95 57.08 47.98 45.52 45.95 49.42 47.54 44.80 44.94 46.68 47.69 45.09 57.95 
0.05 57.51 57.37 47.69 48.41 46.82 45.09 45.81 46.53 48.70 46.24 44.22 44.94 57.51 
0.07 57.66 57.23 47.25 45.23 49.57 47.25 47.25 45.38 43.06 50.00 45.23 47.98 57.66 
0.09 57.51 57.37 41.76 47.69 47.83 43.21 45.81 49.13 47.40 48.27 49.42 44.08 57.51 
0.11 58.09 57.51 49.71 48.70 44.94 45.81 46.53 43.35 45.66 46.97 48.27 47.40 58.09 
0.13 57.80 57.95 47.25 46.82 46.24 46.68 45.38 44.65 45.66 42.63 43.93 47.40 57.95 
0.15 57.95 58.38 48.84 45.81 42.20 44.36 45.95 45.81 44.22 45.38 47.83 45.52 58.38 
0.17 58.38 58.67 47.11 45.09 46.53 46.82 46.68 46.68 45.09 44.65 45.38 46.53 58.67 
0.19 59.10 58.53 43.64 48.99 45.66 45.81 45.38 47.98 44.80 46.24 45.38 46.39 59.10 
0.21 59.10 58.24 44.94 48.41 46.68 45.09 46.97 46.53 45.23 41.76 44.80 47.40 59.10 
0.23 59.25 58.09 42.34 45.81 45.52 45.23 44.51 44.65 46.53 46.97 46.24 48.12 59.25 
0.25 59.54 58.67 43.64 42.92 41.62 48.41 41.62 44.22 39.74 45.23 42.49 44.94 59.54 
0.27 59.83 58.38 45.23 44.08 41.62 44.80 48.99 45.95 47.25 43.93 45.23 43.35 59.83 
0.29 59.25 58.96 42.34 43.79 45.81 42.63 43.93 46.24 44.80 48.41 45.66 44.94 59.25 
0.31 59.10 58.38 44.22 43.35 45.52 44.51 44.22 45.81 46.39 42.34 38.15 44.22 59.10 
0.33 58.67 58.38 46.53 43.06 47.98 44.22 41.91 46.10 46.97 40.32 44.65 46.82 58.67 
0.35 58.24 58.38 48.70 45.38 44.80 45.23 40.32 47.54 44.80 44.80 46.68 42.77 58.38 
0.37 58.82 58.09 43.06 44.65 44.65 44.65 45.38 48.70 48.41 45.23 50.00 46.39 58.82 
0.39 57.95 57.51 42.92 40.90 45.95 44.51 42.34 46.24 45.52 46.82 47.83 45.23 57.95 
0.41 58.53 58.96 44.94 44.22 44.22 45.52 46.68 45.38 40.75 43.79 43.21 45.66 58.96 
0.43 58.96 58.67 43.79 42.77 43.93 46.82 42.34 40.17 41.62 45.23 44.80 43.35 58.96 
0.45 58.53 57.80 48.12 42.34 42.63 43.06 41.76 45.52 40.46 42.20 42.92 40.03 58.53 
0.47 58.09 59.10 47.83 44.51 42.34 42.34 39.74 40.90 39.16 41.33 41.18 43.64 59.10 
0.49 57.95 58.53 43.79 42.34 40.17 42.63 42.77 46.82 44.51 39.60 41.76 40.46 58.53 
0.51 57.80 58.09 46.24 46.10 40.46 45.23 44.94 45.09 45.38 41.33 43.21 39.88 58.09 
0.53 57.51 56.94 44.08 38.58 44.80 44.51 42.05 41.62 40.17 42.92 44.94 46.10 57.51 
0.55 57.80 57.66 43.64 43.93 44.65 41.33 40.32 40.46 39.02 44.22 43.21 40.32 57.80 
0.57 57.80 56.79 40.90 44.65 41.18 41.47 41.18 40.61 40.17 46.39 43.93 42.05 57.80 
0.59 57.08 56.94 41.76 43.79 42.63 43.93 42.49 43.93 44.94 42.77 38.58 43.06 57.08 
0.61 55.92 55.64 39.88 41.33 43.93 43.21 43.35 41.62 43.64 43.50 41.91 44.51 55.92 
0.63 55.35 56.94 39.16 43.93 44.36 40.32 40.17 43.93 42.05 42.92 41.18 42.63 56.94 
Max 59.83 59.10 49.71 48.99 49.57 49.42 48.99 50.00 48.70 50.00 50.00 48.12 59.83 
Ratio 0.27 0.47 0.11 0.19 0.07 0.03 0.27 0.01 0.05 0.07 0.37 0.23 0.27 
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Table  II.9: Effect of changing Gamma when applying label spreading with RBF kernel. 

Gam Acc F1 Gam Acc F1 Gam Acc F1 
0.01 50.1 22.6 0.99 56.5 53.4 1.97 55.6 52.7 
0.03 56.2 44.3 1.01 56.6 53.6 1.99 55.6 52.7 
0.05 56.5 47.6 1.03 56.6 53.6 2.01 55.6 52.7 
0.07 58.7 51.9 1.05 56.6 53.6 2.03 55.6 52.7 
0.09 58.1 51.8 1.07 56.9 54.0 2.05 55.6 52.7 
0.11 59.0 53.1 1.09 56.9 54.0 2.07 55.6 52.7 
0.13 58.8 53.6 1.11 56.8 53.9 2.09 55.5 52.5 
0.15 59.2 54.1 1.13 56.8 53.9 2.11 55.5 52.5 
0.17 59.2 54.4 1.15 56.8 53.9 2.13 55.5 52.5 
0.19 59.2 54.7 1.17 56.8 53.9 2.15 55.5 52.5 
0.21 59.2 54.7 1.19 56.8 53.9 2.17 55.5 52.5 
0.23 58.7 54.2 1.21 56.6 53.8 2.19 55.3 52.3 
0.25 57.9 53.5 1.23 56.6 53.8 2.21 55.3 52.3 
0.27 57.5 53.2 1.25 56.6 53.8 2.23 55.3 52.3 
0.29 57.8 53.7 1.27 56.4 53.5 2.25 55.3 52.3 
0.31 57.8 53.9 1.29 56.2 53.4 2.27 55.3 52.3 
0.33 57.9 54.3 1.31 56.2 53.4 2.29 55.3 52.3 
0.35 58.1 54.6 1.33 56.2 53.4 2.31 55.3 52.3 
0.37 57.9 54.5 1.35 56.2 53.4 2.33 55.3 52.3 
0.39 58.1 54.7 1.37 56.1 53.2 2.35 55.3 52.3 
0.41 57.8 54.4 1.39 56.1 53.2 2.37 55.3 52.3 
0.43 57.7 54.2 1.41 55.9 53.1 2.39 55.3 52.3 
0.45 57.2 53.8 1.43 55.9 53.1 2.41 55.3 52.3 
0.47 57.5 54.3 1.45 55.9 53.1 2.43 55.3 52.3 
0.49 57.5 54.3 1.47 55.9 53.1 2.45 55.3 52.3 
0.51 56.9 53.9 1.49 55.9 53.1 2.47 55.3 52.3 
0.53 56.9 53.8 1.51 55.9 53.1 2.49 55.3 52.3 
0.55 56.9 53.8 1.53 55.9 53.1 2.51 55.3 52.3 
0.57 56.8 53.7 1.55 56.1 53.2 2.53 55.3 52.3 
0.59 56.9 53.8 1.57 56.1 53.2 >=2.55 25.0 13.3 
0.61 56.9 53.8 1.59 55.9 53.0    
0.63 56.6 53.4 1.61 55.9 53.0    
0.65 56.6 53.4 1.63 55.8 52.8    
0.67 56.4 53.1 1.65 55.8 52.8    
0.69 56.4 53.1 1.67 55.9 52.9    
0.71 56.4 53.1 1.69 55.9 52.9    
0.73 56.4 53.1 1.71 55.9 52.9    
0.75 56.2 53.0 1.73 55.8 52.8    
0.77 56.2 53.0 1.75 55.8 52.8    
0.79 56.2 53.0 1.77 55.8 52.8    
0.81 56.2 53.0 1.79 55.8 52.8    
0.83 56.4 53.2 1.81 55.6 52.7    
0.85 56.4 53.2 1.83 55.6 52.7    
0.87 56.2 53.0 1.85 55.6 52.7    
0.89 56.2 53.0 1.87 55.6 52.7    
0.91 56.1 52.9 1.89 55.6 52.7    
0.93 56.1 52.9 1.91 55.6 52.7    
0.95 55.9 52.8 1.93 55.6 52.7    
0.97 56.2 53.1 1.95 55.6 52.7    

 



211 
 

Table  II.10: Effect of changing ratio of labeled data when applying label spreading  
with RBF kernel (Gamma=0.19). 

Ratio R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 Max 
0.01 59.97 60.69 47.25 43.06 44.65 45.23 42.77 46.24 45.23 47.11 44.51 42.63 60.69 
0.03 59.97 61.13 46.39 45.81 45.52 48.41 43.64 44.65 45.09 44.80 43.64 43.64 61.13 
0.05 59.83 61.42 45.95 44.94 46.97 44.08 46.53 42.34 44.36 43.21 43.93 41.62 61.42 
0.07 59.83 60.98 44.65 44.22 45.52 46.24 43.93 44.36 46.24 46.68 42.49 42.77 60.98 
0.09 60.55 60.84 42.34 47.69 45.52 42.92 44.08 45.09 45.81 42.63 42.49 45.52 60.84 
0.11 59.97 60.98 43.79 40.17 46.24 44.51 42.63 43.64 42.63 44.94 41.91 43.79 60.98 
0.13 58.67 60.55 42.92 41.47 45.38 46.24 41.91 40.46 42.34 42.34 44.36 41.62 60.55 
0.15 59.83 60.84 47.25 43.64 42.49 42.20 45.66 42.92 42.77 45.09 44.08 42.49 60.84 
0.17 60.55 60.26 43.64 40.03 45.09 43.50 43.93 42.63 43.06 43.50 43.50 39.45 60.55 
0.19 60.40 60.26 44.65 46.53 44.36 43.35 46.24 39.31 44.94 43.64 45.38 44.94 60.40 
0.21 60.98 60.84 42.34 45.95 42.49 43.35 43.21 44.65 45.38 42.05 42.05 42.20 60.98 
0.23 60.40 60.55 42.20 44.08 44.08 40.32 43.79 44.94 45.81 41.62 37.72 44.36 60.55 
0.25 60.40 60.26 47.98 43.06 43.64 43.93 46.10 42.34 41.76 44.94 41.33 44.36 60.40 
0.27 60.12 59.97 44.08 40.32 41.76 45.23 43.64 43.06 45.38 44.08 43.06 41.04 60.12 
0.29 60.84 59.68 43.35 44.08 43.64 44.36 39.88 41.04 41.04 43.79 43.21 44.22 60.84 
0.31 60.69 59.25 39.45 42.77 44.80 41.33 44.51 39.74 41.76 44.94 43.50 42.05 60.69 
0.33 60.69 59.10 41.76 40.46 41.33 42.77 42.05 41.04 45.52 43.21 38.73 38.58 60.69 
0.35 61.42 58.96 38.44 43.64 42.49 44.80 40.46 43.64 42.05 42.34 40.17 45.52 61.42 
0.37 61.42 58.82 44.80 42.05 42.05 42.20 41.76 42.77 44.36 43.35 42.05 43.64 61.42 
0.39 60.69 58.53 40.61 40.61 41.62 37.14 42.34 44.36 43.64 41.33 43.64 43.50 60.69 
0.41 61.13 57.95 45.66 39.02 41.76 45.23 42.63 39.45 41.47 39.74 43.06 39.45 61.13 
0.43 61.27 57.95 42.49 40.46 41.18 41.47 38.01 41.33 43.64 42.49 40.61 39.31 61.27 
0.45 60.84 58.53 39.31 42.20 42.20 39.74 42.49 43.79 41.18 44.36 41.04 39.31 60.84 
0.47 60.26 59.39 41.47 41.76 36.71 40.46 41.62 41.47 41.91 39.60 40.61 42.92 60.26 
0.49 59.68 59.25 40.75 42.49 40.17 41.33 43.21 37.72 42.92 41.62 42.20 37.14 59.68 
0.51 60.12 59.25 38.58 40.90 42.49 42.05 41.47 40.46 38.87 44.08 40.17 43.79 60.12 
0.53 59.39 58.82 40.61 42.63 39.16 38.29 43.21 41.47 42.05 40.61 40.75 42.05 59.39 
0.55 59.68 60.40 40.32 41.18 42.05 38.01 36.56 40.03 40.03 42.49 42.20 39.74 60.40 
0.57 59.25 60.26 40.61 40.90 44.51 41.33 43.93 43.93 40.61 40.03 43.64 41.62 60.26 
0.59 59.10 59.68 38.44 39.45 40.75 39.88 40.75 41.91 41.18 39.74 45.66 43.93 59.68 
0.61 56.65 59.10 42.20 43.50 40.17 41.33 36.99 40.17 36.42 38.87 41.91 36.99 59.10 
0.63 56.50 59.10 43.50 39.60 40.61 39.45 42.20 39.88 42.77 38.44 40.32 38.73 59.10 
Max 61.42 61.42 47.98 47.69 46.97 48.41 46.53 46.24 46.24 47.11 45.66 45.52 61.42 
Ratio 0.35 0.05 0.25 0.09 0.05 0.03 0.05 0.01 0.07 0.01 0.59 0.09 0.05 
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Table  II.11: Effect of changing ratio of labeled data when applying semi-supervised K-means. 

Ratio R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 Max 
0.01 26.88 29.62 29.34 45.66 32.23 44.22 44.08 38.58 42.20 40.90 41.91 28.32 45.66 
0.03 42.05 42.05 45.52 44.22 31.94 42.63 43.64 41.62 45.52 29.77 25.29 46.39 46.39 
0.05 41.91 43.64 41.62 40.17 40.61 41.91 41.47 43.64 43.93 44.08 46.39 43.79 46.39 
0.07 42.20 41.76 46.53 45.52 30.20 43.64 44.08 31.36 41.47 45.38 45.52 41.47 46.53 
0.09 41.91 41.76 38.87 41.91 46.53 43.64 45.23 46.24 41.47 41.91 46.68 41.91 46.68 
0.11 41.91 43.93 42.34 46.10 41.76 41.76 43.06 45.81 46.53 41.62 45.81 46.53 46.53 
0.13 41.62 43.79 41.91 42.05 41.91 43.50 43.79 46.53 46.68 45.23 45.81 46.53 46.68 
0.15 46.39 45.38 41.47 41.62 42.49 41.76 46.39 43.79 45.66 41.91 43.79 41.76 46.39 
0.17 41.62 45.38 40.46 46.39 45.66 46.24 45.95 46.39 41.91 45.66 46.10 41.62 46.39 
0.19 43.93 45.38 41.91 32.37 41.04 45.38 46.53 31.36 45.52 42.05 46.10 42.05 46.53 
0.21 46.24 45.38 37.72 45.38 46.68 45.81 46.24 41.76 43.50 41.76 41.91 46.68 46.68 
0.23 46.10 45.52 46.53 46.68 41.76 46.39 41.47 41.76 46.24 41.62 42.20 46.24 46.68 
0.25 46.10 45.38 46.39 43.50 41.62 43.93 46.39 46.24 43.93 41.62 41.62 45.66 46.39 
0.27 43.93 46.10 45.81 43.35 46.24 41.04 43.64 46.39 45.81 46.53 45.95 40.90 46.53 
0.29 43.79 45.38 41.76 45.52 41.62 45.95 41.62 46.10 46.24 46.53 45.95 45.81 46.53 
0.31 44.08 45.09 46.24 45.38 46.24 46.68 46.24 41.76 46.39 43.93 46.10 46.24 46.68 
0.33 44.08 45.52 41.47 41.76 46.24 45.81 46.68 41.62 41.62 41.76 45.23 45.23 46.68 
0.35 46.10 45.66 42.77 46.39 46.39 45.09 44.36 46.53 45.38 41.62 44.80 45.66 46.53 
0.37 46.24 45.81 41.18 46.39 46.53 41.47 45.38 45.52 45.66 46.24 46.53 46.82 46.82 
0.39 46.24 45.81 45.52 46.53 46.24 41.62 41.62 45.95 46.39 46.39 46.39 43.50 46.53 
0.41 46.10 45.81 46.24 42.20 41.47 45.81 44.94 41.33 46.82 45.52 45.95 44.80 46.82 
0.43 46.10 45.38 46.24 46.39 42.34 46.53 45.52 46.10 46.10 45.23 41.33 41.91 46.53 
0.45 46.53 45.81 45.38 46.39 45.81 41.62 45.95 45.81 46.53 45.95 43.64 41.18 46.53 
0.47 46.39 45.95 46.24 45.52 44.94 41.62 40.90 46.10 46.53 46.68 45.52 45.23 46.68 
0.49 46.39 45.52 41.47 41.76 45.09 46.39 41.76 44.36 41.91 45.52 45.38 46.39 46.39 
0.51 46.68 45.38 45.52 43.21 44.65 43.35 44.94 42.20 45.38 46.24 46.68 41.62 46.68 
0.53 46.68 45.23 43.79 45.38 45.81 41.62 42.20 46.39 41.47 45.09 45.66 45.81 46.68 
0.55 46.53 45.38 41.18 46.53 45.81 41.76 45.52 46.24 41.62 46.24 44.80 41.91 46.53 
0.57 46.82 44.94 46.24 46.68 46.39 45.95 45.95 45.38 46.10 46.24 44.94 43.35 46.82 
0.59 46.68 45.09 46.53 44.08 45.09 46.53 44.80 45.38 45.95 45.81 41.33 46.68 46.68 
0.61 46.68 42.34 45.52 45.81 45.38 44.08 45.66 45.52 41.18 45.38 41.76 46.24 46.68 
0.63 46.53 44.65 46.10 46.53 41.91 44.80 43.35 44.80 41.33 45.38 41.33 46.10 46.53 
Max 46.82 46.10 46.53 46.68 46.68 46.68 46.68 46.53 46.82 46.68 46.68 46.82 46.82 
Ratio 0.57 0.27 0.07 0.23 0.21 0.31 0.33 0.13 0.41 0.47 0.09 0.37 0.37 
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Table  II.12: Effect of changing threshold δ when applying self-training with distant confidence. 

δ Acc δ Acc Δ Acc 
0.01 69.8 0.34 70.1 0.67 70.1 
0.02 69.5 0.35 70.1 0.68 69.9 
0.03 69.7 0.36 70.1 0.69 69.9 
0.04 69.5 0.37 70.1 0.7 69.8 
0.05 69.5 0.38 70.1 0.71 69.9 
0.06 69.4 0.39 70.1 0.72 69.9 
0.07 69.2 0.4 70.1 0.73 69.9 
0.08 69.2 0.41 70.1 0.74 69.9 
0.09 69.4 0.42 70.1 0.75 69.9 
0.1 69.2 0.43 69.9 0.76 69.7 

0.11 69.1 0.44 69.9 0.77 69.7 
0.12 69.1 0.45 69.9 0.78 70.1 
0.13 69.8 0.46 69.9 0.79 70.1 
0.14 69.7 0.47 69.9 0.8 69.9 
0.15 69.5 0.48 69.9 0.81 70.2 
0.16 69.5 0.49 69.9 0.82 70.2 
0.17 69.7 0.5 69.9 0.83 70.2 
0.18 69.7 0.51 69.9 0.84 70.2 
0.19 69.7 0.52 69.9 0.85 70.2 
0.2 69.5 0.53 69.9 0.86 70.2 

0.21 69.7 0.54 69.9 0.87 70.2 
0.22 69.4 0.55 69.9 0.88 70.2 
0.23 69.5 0.56 69.9 0.89 70.2 
0.24 69.5 0.57 69.9 0.9 70.4 
0.25 69.4 0.58 70.1 0.91 70.2 
0.26 69.4 0.59 70.1 0.92 70.2 
0.27 69.5 0.6 70.1 0.93 70.2 
0.28 69.7 0.61 70.1 0.94 70.1 
0.29 69.9 0.62 69.9 0.95 70.1 
0.3 69.9 0.63 69.9 0.96 70.2 

0.31 69.9 0.64 69.9 0.97 70.2 
0.32 69.9 0.65 69.9 0.98 70.2 
0.33 70.1 0.66 69.9 0.99 70.2 
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Table  II.13: Effect of changing ratio of labeled data when applying logistic regression classifier. 

Ratio R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 Max 
0.01 46.53 51.01 52.60 51.30 52.02 51.59 52.89 50.14 55.35 52.89 52.89 51.01 55.35 
0.03 60.98 57.37 57.66 58.09 55.49 55.20 54.19 56.94 54.48 52.31 54.77 56.21 60.98 
0.05 63.15 57.37 60.12 61.42 59.10 61.85 58.24 59.54 58.96 61.99 60.12 59.97 63.15 
0.07 65.75 60.12 58.67 60.55 62.28 62.57 61.56 60.40 62.14 62.57 60.26 60.55 65.75 
0.09 66.47 62.14 61.99 58.24 63.01 63.01 63.29 63.44 63.87 64.31 64.16 64.16 66.47 
0.11 66.47 61.99 63.87 65.03 63.58 67.92 60.55 65.75 65.61 62.57 62.14 63.01 67.92 
0.13 66.76 63.29 66.18 63.29 62.86 64.88 63.73 63.01 66.62 63.44 64.74 63.44 66.76 
0.15 67.34 64.16 66.76 64.02 65.61 65.17 64.60 66.04 64.88 67.92 65.32 63.58 67.92 
0.17 67.77 64.02 65.32 68.06 67.92 65.61 65.46 64.45 66.47 66.62 66.62 65.03 68.06 
0.19 67.20 65.90 66.91 66.33 65.46 66.76 66.91 64.88 66.33 67.77 64.74 66.04 67.77 
0.21 66.91 65.46 66.33 64.16 64.88 66.33 66.33 64.88 67.05 66.04 66.76 66.04 67.05 
0.23 67.63 65.90 65.46 67.20 68.06 68.21 67.05 66.91 67.05 65.03 67.20 67.77 68.21 
0.25 67.77 65.90 67.34 65.46 66.76 67.77 68.21 67.63 66.62 67.63 66.76 65.61 68.21 
0.27 68.35 65.61 67.92 67.05 66.47 67.05 67.77 68.06 67.77 65.46 67.34 66.33 68.35 
0.29 68.21 66.04 66.18 66.33 67.77 67.77 66.62 67.34 66.18 66.62 68.06 67.77 68.21 
0.31 69.22 65.75 67.20 67.20 68.64 68.06 66.91 66.91 67.20 68.50 68.64 69.08 69.22 
0.33 69.22 66.47 67.49 68.79 67.20 68.64 65.46 68.93 68.79 66.33 68.06 68.35 69.22 
0.35 70.09 65.90 68.79 66.18 67.92 68.06 68.79 67.92 67.34 67.92 68.35 67.77 70.09 
0.37 69.51 66.47 67.49 68.06 68.79 68.50 66.33 68.35 68.35 67.77 67.63 69.36 69.51 
0.39 69.65 65.75 69.08 67.63 68.06 66.33 68.06 69.51 70.23 67.63 68.06 68.64 70.23 
0.41 70.23 66.76 68.35 68.50 68.06 68.06 68.93 68.35 66.62 68.21 67.63 67.34 70.23 
0.43 70.66 67.63 67.92 67.49 69.08 68.35 68.21 68.64 69.08 68.79 69.80 69.22 70.66 
0.45 71.97 67.63 67.49 67.63 69.65 70.52 68.06 67.77 67.63 70.52 68.06 68.79 71.97 
0.47 71.39 66.76 67.63 68.21 68.79 68.93 68.93 69.65 67.77 70.09 68.93 68.35 71.39 
0.49 71.24 67.05 68.93 67.20 70.09 69.51 68.50 68.50 69.80 68.21 70.52 69.65 71.24 
0.51 71.24 67.20 68.21 69.65 68.93 68.79 67.63 69.08 68.93 68.79 69.36 69.08 71.24 
0.53 71.10 67.20 68.50 69.51 70.52 68.21 68.64 68.93 69.94 69.94 69.36 67.92 71.10 
0.55 71.10 68.06 68.06 68.79 68.79 68.50 69.80 68.64 69.36 69.80 70.81 69.51 71.10 
0.57 70.66 67.92 68.93 68.93 69.51 69.08 68.35 69.80 69.51 69.65 69.36 67.92 70.66 
0.59 70.81 68.35 68.35 70.38 68.50 69.94 70.52 68.79 69.80 69.22 69.51 69.22 70.81 
0.61 70.52 69.08 69.08 70.23 67.63 69.22 69.22 68.50 68.79 69.80 69.22 69.51 70.52 
0.63 70.09 68.79 68.06 67.34 69.80 69.22 68.64 68.50 69.80 68.06 69.08 69.94 70.09 
Max 71.97 69.08 69.08 70.38 70.52 70.52 70.52 69.80 70.23 70.52 70.81 69.94 71.97 
Ratio 0.45 0.61 0.39 0.59 0.53 0.45 0.59 0.57 0.39 0.45 0.55 0.63 0.45 
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Table  II.14: Effect of changing ratio of labeled data when applying self-training with distant confidence 
(δ=0.81). 

Ratio R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 Max 
0.01 46.10 51.45 51.73 50.72 50.87 51.16 51.45 49.57 53.90 52.46 52.17 50.58 53.90 
0.03 59.68 57.08 57.08 58.24 53.76 53.61 52.17 55.06 53.03 51.59 53.76 55.64 59.68 
0.05 64.02 57.51 57.80 61.56 55.35 60.40 55.92 57.08 56.65 60.55 60.84 58.67 64.02 
0.07 64.74 59.39 57.95 60.84 61.56 59.68 59.39 59.83 60.55 59.97 58.38 59.10 64.74 
0.09 65.17 61.56 59.83 56.65 62.72 63.29 62.28 62.43 62.14 63.58 63.58 64.16 65.17 
0.11 65.17 61.56 62.43 63.44 62.72 67.77 60.55 65.61 65.46 59.25 60.84 63.87 67.77 
0.13 66.18 63.29 64.60 61.42 62.14 62.86 63.44 63.01 65.90 63.44 61.71 62.28 66.18 
0.15 65.03 63.29 65.75 62.72 65.46 61.99 64.16 65.61 63.87 65.90 64.60 62.86 65.90 
0.17 65.90 65.17 64.31 66.33 66.04 65.17 64.31 62.28 65.75 64.31 65.46 64.60 66.33 
0.19 65.90 65.90 67.63 64.88 66.18 67.05 65.75 64.16 66.04 66.47 63.58 64.60 67.63 
0.21 65.17 65.61 65.03 64.02 64.60 66.18 65.17 64.88 67.05 64.74 64.02 64.16 67.05 
0.23 65.75 65.75 66.47 67.05 67.34 66.62 65.61 68.21 67.05 65.03 67.49 65.46 68.21 
0.25 67.20 66.18 65.61 66.62 67.49 66.47 67.63 66.47 65.61 67.34 64.31 64.74 67.63 
0.27 66.18 65.75 65.46 66.04 66.18 66.76 66.04 66.33 68.50 65.90 66.62 65.32 68.50 
0.29 66.91 65.90 64.74 66.33 66.18 66.47 65.61 65.03 65.32 66.04 67.34 66.91 67.34 
0.31 67.92 65.32 67.77 67.20 67.20 66.04 66.18 67.20 67.49 68.79 67.49 68.35 68.79 
0.33 68.35 66.04 66.91 68.79 67.77 68.21 65.75 66.76 67.92 66.91 67.20 67.34 68.79 
0.35 67.63 66.18 68.50 67.20 67.77 66.33 68.35 67.20 65.90 66.47 67.05 67.49 68.50 
0.37 67.77 65.32 67.20 65.61 68.21 67.92 66.76 67.49 68.21 67.34 67.05 68.35 68.35 
0.39 67.34 66.18 69.22 67.20 66.76 65.61 67.05 68.06 67.20 67.05 67.77 68.21 69.22 
0.41 67.49 66.04 68.21 66.62 67.20 67.49 68.50 66.47 67.20 68.35 67.63 66.18 68.50 
0.43 68.21 66.76 67.77 67.92 68.21 66.47 66.62 68.50 66.62 68.35 67.92 69.22 69.22 
0.45 68.93 66.18 67.49 67.34 68.64 68.93 67.92 65.61 67.49 68.06 66.18 67.92 68.93 
0.47 69.08 67.05 67.05 68.06 68.35 68.21 68.21 68.50 68.35 69.08 70.09 67.05 70.09 
0.49 69.22 66.62 68.64 67.05 68.93 69.08 67.34 68.79 68.79 67.77 69.22 68.35 69.22 
0.51 69.65 66.62 68.35 69.51 67.49 68.06 67.05 68.64 69.51 68.64 69.51 67.63 69.65 
0.53 68.93 66.18 68.21 68.64 69.22 68.64 67.77 68.06 69.08 69.65 68.21 67.34 69.65 
0.55 69.36 67.34 67.34 69.36 68.50 69.08 69.08 67.92 69.65 68.06 70.38 68.93 70.38 
0.57 69.08 67.05 67.63 68.21 68.21 68.50 67.63 68.50 67.77 68.79 69.22 68.50 69.22 
0.59 69.94 67.20 69.51 68.21 67.63 70.81 69.65 69.08 69.08 70.09 68.21 68.93 70.66 
0.61 69.94 67.92 68.21 68.79 67.20 68.93 68.06 67.49 68.06 68.93 68.93 68.64 69.94 
0.63 69.65 67.63 68.06 68.06 69.51 68.35 68.93 68.79 69.65 68.06 68.06 68.35 69.65 
Max 69.94 67.92 69.51 69.51 69.51 70.81 69.65 69.08 69.65 70.09 70.38 69.22 70.81 
Ratio 0.59 0.61 0.59 0.51 0.63 0.59 0.59 0.59 0.55 0.59 0.55 0.43 0.59 
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Table  II.15: Effect of changing probabilistic threshold when applying self-training with probabilistic 
confidence. 

Prop Acc of Round 1  Acc of Round 2 Acc of Round 3 
0.01 68.9 68.9 68.9 
0.02 68.9 68.9 68.9 
0.03 68.9 68.9 68.9 
0.04 68.9 68.9 68.9 
0.05 68.9 68.9 68.9 
0.06 68.9 68.9 68.9 
0.07 68.9 68.9 68.9 
0.08 68.9 68.9 68.9 
0.09 68.9 68.9 68.9 
0.1 68.9 68.9 68.9 

0.11 68.9 68.9 68.9 
0.12 68.9 68.9 68.9 
0.13 68.9 68.9 68.9 
0.14 68.9 68.9 68.9 
0.15 68.9 68.9 68.9 
0.16 68.9 68.9 68.9 
0.17 68.9 68.9 68.9 
0.18 68.9 68.9 68.9 
0.19 68.9 68.9 68.9 
0.2 68.9 68.9 68.9 

0.21 68.9 68.9 68.9 
0.22 68.9 68.9 68.9 
0.23 68.9 68.9 68.9 
0.24 68.9 68.9 68.9 
0.25 68.9 68.9 68.9 
0.26 68.9 68.9 68.9 
0.27 68.9 68.9 68.9 
0.28 68.9 68.9 68.9 
0.29 68.9 68.9 68.9 
0.3 68.9 68.9 68.9 

0.31 68.9 68.9 68.9 
0.32 68.9 68.9 68.9 
0.33 68.9 68.9 68.9 
0.34 69.1 68.9 68.9 
0.35 68.8 68.9 68.9 
0.36 68.8 68.6 68.6 
0.37 68.9 68.6 68.6 
0.38 68.6 68.6 68.6 
0.39 68.5 68.6 68.6 
0.4 68.5 68.6 68.5 

0.41 68.6 68.5 68.6 
0.42 68.6 68.6 68.6 
0.43 68.6 68.6 68.6 
0.44 69.1 68.6 68.4 
0.45 69.2 68.6 68.6 
0.46 69.2 68.6 68.9 
0.47 69.1 68.8 68.6 
0.48 69.1 67.9 68.5 
0.49 69.5 68.5 68.5 
0.5 69.1 68.2 67.8 
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Prop Acc of Round 1  Acc of Round 2 Acc of Round 3 
0.51 69.4 68.5 68.1 
0.52 69.4 68.2 67.6 
0.53 69.1 68.2 67.8 
0.54 69.5 68.5 67.3 
0.55 69.8 68.5 67.9 
0.56 69.8 69.1 68.2 
0.57 69.7 69.4 68.8 
0.58 69.9 69.2 68.4 
0.59 70.7 68.9 68.5 
0.6 70.4 69.1 68.5 

0.61 70.5 68.5 68.2 
0.62 70.1 69.1 68.4 
0.63 70.1 69.1 68.5 
0.64 69.5 69.2 68.5 
0.65 70.2 69.8 68.2 
0.66 69.9 69.8 68.8 
0.67 70.1 69.7 68.8 
0.68 70.1 68.9 68.8 
0.69 69.9 69.2 68.9 
0.7 70.2 69.2 68.5 

0.71 71.1 69.1 68.6 
0.72 70.8 69.5 68.8 
0.73 71.2 69.7 68.9 
0.74 71.2 70.1 69.5 
0.75 71.1 70.2 69.9 
0.76 71.0 70.5 70.2 
0.77 71.4 71.0 70.4 
0.78 71.0 71.1 71.0 
0.79 71.2 71.1 70.8 
0.8 71.4 71.0 71.1 

0.81 71.4 71.4 70.7 
0.82 71.4 71.5 71.4 
0.83 71.7 71.7 71.5 
0.84 71.5 71.2 71.4 
0.85 71.7 71.5 71.5 
0.86 72.0 71.7 71.5 
0.87 72.0 72.0 71.8 
0.88 71.7 71.5 71.7 
0.89 72.1 72.0 72.0 
0.9 72.1 72.1 72.1 

0.91 72.0 72.0 72.0 
0.92 72.0 72.0 72.0 
0.93 72.0 72.0 72.0 
0.94 72.0 72.0 72.0 
0.95 72.0 72.0 72.0 
0.96 72.0 72.0 72.0 
0.97 72.0 72.0 72.0 
0.98 72.0 72.0 72.0 
0.99 72.0 72.0 72.0 
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Table  II.16: Effect of changing ratio of labeled data when applying self-training with probabilistic 
confidence (Prop=0.9). 

Ratio R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 Max 
0.01 46.53 51.01 50.43 51.01 55.20 48.55 53.32 51.88 49.13 49.28 52.17 51.01 55.20 
0.03 60.98 57.37 54.19 56.50 58.82 56.21 57.95 55.06 58.82 53.76 57.37 55.64 60.98 
0.05 63.15 57.37 59.39 59.25 60.69 61.27 57.23 61.56 61.99 61.56 61.56 59.39 63.15 
0.07 65.75 60.12 63.15 58.82 61.42 61.99 63.01 60.98 62.43 58.96 61.99 62.28 65.75 
0.09 66.47 61.71 62.86 65.03 64.74 62.86 62.86 64.02 62.72 64.16 63.87 60.55 66.47 
0.11 66.62 61.85 64.31 64.31 62.43 65.17 63.15 63.15 63.73 65.46 62.43 65.46 66.62 
0.13 66.91 63.44 65.03 64.60 65.32 62.86 66.04 65.61 64.60 66.18 63.87 62.86 66.91 
0.15 67.20 64.16 67.20 63.87 65.75 63.01 65.17 67.20 63.58 62.43 64.88 66.18 67.20 
0.17 67.77 64.02 63.73 66.91 66.47 64.88 65.03 65.46 64.74 64.31 65.03 64.60 67.77 
0.19 67.34 65.75 66.47 66.62 66.04 66.62 67.05 65.32 66.33 67.20 67.92 64.16 67.92 
0.21 66.91 65.32 67.05 65.90 65.17 65.32 66.33 65.03 65.61 66.18 66.33 66.18 67.05 
0.23 67.77 65.90 66.76 67.77 65.90 66.04 64.88 66.76 66.91 68.35 67.34 66.62 68.35 
0.25 67.77 65.90 67.20 66.47 68.50 65.90 68.06 67.05 66.76 67.20 68.50 67.92 68.50 
0.27 68.35 65.46 66.76 66.62 69.22 67.20 65.46 65.75 68.50 67.49 66.76 67.20 69.22 
0.29 68.21 66.04 66.91 67.63 67.49 66.91 66.91 68.79 66.33 68.79 66.33 65.90 68.79 
0.31 69.36 65.75 68.06 66.91 67.92 67.34 67.34 66.33 66.62 68.64 65.75 66.62 69.36 
0.33 69.08 66.47 69.36 68.06 67.92 68.06 68.35 67.34 68.93 69.08 65.46 69.22 69.36 
0.35 69.65 65.75 67.49 67.77 68.35 69.36 68.64 66.04 68.50 67.92 67.49 67.63 69.65 
0.37 69.36 66.47 68.79 68.06 67.77 67.05 66.76 67.34 68.79 67.34 68.50 67.77 69.36 
0.39 69.65 65.75 69.51 69.08 68.21 68.64 68.35 69.22 68.06 67.63 69.08 68.35 69.65 
0.41 70.23 66.76 68.93 69.36 67.49 69.80 68.21 69.22 67.20 69.51 67.77 67.77 70.23 
0.43 70.66 67.63 68.21 69.08 70.23 69.36 66.04 67.63 67.63 68.93 69.94 66.76 70.66 
0.45 72.11 67.63 68.64 68.35 66.62 68.06 68.79 68.79 68.93 69.36 68.06 69.94 72.11 
0.47 71.68 66.62 68.79 68.79 67.77 69.08 68.21 68.06 68.93 68.93 69.22 69.22 71.68 
0.49 71.10 67.34 67.05 70.09 68.21 68.64 67.05 69.36 68.35 70.95 70.09 68.50 71.10 
0.51 71.39 67.20 67.49 69.80 69.51 67.05 68.93 68.93 68.21 69.65 70.09 67.92 71.39 
0.53 71.24 67.20 69.51 69.51 68.93 68.50 69.22 68.79 69.51 67.34 68.93 68.50 71.24 
0.55 71.10 68.06 69.51 68.35 68.64 71.10 69.08 69.65 68.64 69.22 70.23 68.93 71.10 
0.57 70.66 67.92 69.94 69.51 69.51 68.50 68.64 68.79 68.50 69.22 67.92 69.36 70.66 
0.59 70.95 68.50 70.38 68.93 69.51 69.51 68.50 69.08 68.79 69.65 69.22 68.79 70.95 
0.61 70.23 69.08 68.64 69.94 68.35 68.93 69.65 69.94 69.51 69.65 69.51 68.50 70.23 
0.63 70.09 68.79 69.51 68.79 69.51 70.66 69.80 69.80 71.10 70.09 68.50 68.93 71.10 
Max 72.11 69.08 70.38 70.09 70.23 71.10 69.80 69.94 71.10 70.95 70.23 69.94 72.11 
Ratio 0.45 0.61 0.59 0.49 0.43 0.55 0.63 0.61 0.63 0.49 0.55 0.45 0.45 
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Table  II.17: Effect of changing both Lamda and LamdaU when applying QN-S3VM BFGS optimizer for 
semi-supervised SVM with OvR multiclass strategy. 

Lam Acc Lam Acc Lam Acc Lam Acc Lam Acc 
0.001 64.60 0.101 69.36 0.201 63.58 0.301 60.26 0.401 59.10 
0.005 69.08 0.105 69.51 0.205 64.02 0.305 60.98 0.405 58.96 
0.009 70.23 0.109 69.36 0.209 63.29 0.309 60.69 0.409 59.39 
0.013 70.52 0.113 69.08 0.213 63.15 0.313 59.68 0.413 59.83 
0.017 70.95 0.117 69.80 0.217 63.44 0.317 60.55 0.417 58.53 
0.021 70.52 0.121 69.22 0.221 63.15 0.321 61.13 0.421 58.67 
0.025 71.53 0.125 69.08 0.225 62.72 0.325 60.69 0.425 58.67 
0.029 70.38 0.129 68.50 0.229 62.86 0.329 59.97 0.429 58.96 
0.033 71.10 0.133 69.22 0.233 61.56 0.333 60.69 0.433 58.82 
0.037 70.52 0.137 69.08 0.237 61.27 0.337 59.83 0.437 58.38 
0.041 70.52 0.141 69.22 0.241 61.56 0.341 59.39 0.441 59.54 
0.045 70.38 0.145 68.06 0.245 62.43 0.345 59.25 0.445 59.68 
0.049 70.23 0.149 68.64 0.249 62.57 0.349 60.84 0.449 58.67 
0.053 70.95 0.153 68.21 0.253 61.42 0.353 59.83 0.453 59.97 
0.057 70.38 0.157 67.77 0.257 61.56 0.357 59.10 0.457 59.39 
0.061 70.81 0.161 68.50 0.261 61.99 0.361 60.69 0.461 60.40 
0.065 69.80 0.165 68.50 0.265 61.56 0.365 60.98 0.465 57.37 
0.069 70.23 0.169 69.08 0.269 61.42 0.369 60.69 0.469 57.66 
0.073 70.23 0.173 68.06 0.273 62.28 0.373 59.83 0.473 58.38 
0.077 68.79 0.177 68.06 0.277 61.85 0.377 59.10 0.477 59.54 
0.081 68.50 0.181 63.87 0.281 61.27 0.381 59.68 0.481 58.09 
0.085 69.08 0.185 67.77 0.285 61.42 0.385 59.83 0.485 58.96 
0.089 69.08 0.189 63.15 0.289 61.71 0.389 59.68 0.489 56.65 
0.093 68.64 0.193 63.29 0.293 61.42 0.393 58.82 0.493 58.09 
0.097 69.08 0.197 63.58 0.297 60.69 0.397 59.68 0.497 58.67 
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Table  II.18: Effect of changing LamdaU when applying QN-S3VM BFGS optimizer for semi-supervised 
SVM (Lamda=0.025) with OvR multiclass strategy. 

  LamdaU Acc 
0.001 70.81 
0.005 71.53 
0.009 71.53 
0.013 71.39 
0.017 71.24 
0.021 70.95 
0.025 71.53 
0.029 70.09 
0.033 70.66 
0.037 70.52 
0.041 71.10 
0.045 70.52 
0.049 69.94 
0.053 71.24 
0.057 70.95 
0.061 71.10 
0.065 70.23 
0.069 70.95 
0.073 70.09 
0.077 69.51 
0.081 70.23 
0.085 69.94 
0.089 70.09 
0.093 69.65 
0.097 70.09 
0.101 70.23 
0.105 70.95 
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Table  II.19: Effect of changing ratio of labeled data when applying QN-S3VM BFGS optimizer for semi-
supervised SVM (Lamda=0.025) with OvR multiclass strategy. 

Ratio R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 Max 
0.01 42.63 53.18 50.43 44.36 42.63 43.21 43.06 43.06 42.49 43.64 43.06 42.92 53.18 
0.03 57.23 54.19 54.34 57.23 58.24 57.95 58.24 58.53 58.53 58.24 58.09 59.10 59.10 
0.05 60.26 51.73 60.12 55.92 60.26 60.84 59.83 60.55 60.40 59.25 59.54 60.26 60.84 
0.07 61.42 57.37 58.24 55.78 61.71 61.27 61.56 61.27 60.98 60.84 60.55 60.84 61.71 
0.09 64.45 56.50 59.10 59.54 64.74 65.17 64.88 64.74 65.17 65.32 64.88 65.46 65.46 
0.11 63.87 58.82 61.56 59.39 64.02 64.02 63.73 63.15 63.73 63.15 63.44 64.31 64.31 
0.13 62.72 61.99 64.60 63.58 62.86 62.72 63.87 63.73 62.72 63.15 63.87 63.15 64.60 
0.15 65.03 61.99 62.14 63.58 64.74 65.03 65.90 65.61 65.75 65.03 65.75 64.74 65.90 
0.17 64.60 62.28 64.60 66.62 65.90 64.31 65.61 64.45 64.88 64.88 64.74 64.74 66.62 
0.19 67.92 61.85 63.44 63.29 67.34 67.92 68.21 67.49 67.49 66.76 67.92 67.34 68.21 
0.21 65.90 63.01 63.15 65.32 66.33 66.91 66.33 67.20 66.47 66.76 66.33 66.62 67.20 
0.23 66.04 64.02 63.29 64.02 66.18 66.76 66.33 66.18 66.18 66.62 66.47 66.33 66.76 
0.25 67.63 64.88 65.75 65.46 67.34 67.92 67.20 66.47 67.49 67.05 67.20 67.05 67.92 
0.27 66.04 63.15 64.88 66.18 67.49 66.62 66.76 67.20 67.34 67.63 67.77 67.63 67.77 
0.29 66.18 64.88 66.18 68.50 66.33 67.05 67.05 67.34 67.77 67.05 67.34 67.05 68.50 
0.31 66.76 64.31 64.74 66.04 66.76 67.49 67.92 67.20 66.91 66.91 67.34 67.63 67.92 
0.33 67.05 65.46 67.05 66.47 67.77 67.05 67.63 67.49 67.77 67.77 67.05 66.33 67.77 
0.35 68.64 65.32 67.63 67.34 68.35 68.50 69.65 68.50 68.64 69.22 67.92 69.51 69.65 
0.37 68.21 64.60 67.77 68.35 68.93 68.50 69.36 67.92 68.93 68.06 68.50 68.64 69.36 
0.39 68.21 65.17 67.92 67.34 67.77 68.93 68.79 68.79 68.35 68.50 68.50 68.79 68.93 
0.41 68.35 65.46 68.06 65.46 68.50 69.36 69.36 68.21 68.50 69.08 69.51 69.08 69.51 
0.43 69.65 66.47 65.90 67.05 69.22 69.51 68.64 70.38 69.08 68.50 68.79 69.22 70.38 
0.45 69.65 66.33 67.63 66.47 68.93 69.51 69.65 69.65 69.08 69.94 69.65 69.51 69.94 
0.47 69.65 65.90 65.75 67.05 69.80 70.09 69.51 69.65 69.65 68.79 69.36 69.65 70.09 
0.49 70.23 66.62 67.49 68.50 69.94 70.81 70.95 70.09 70.38 69.36 69.94 70.81 70.95 
0.51 70.52 67.05 68.50 66.91 70.81 70.23 71.53 71.10 70.09 71.53 70.23 70.38 71.53 
0.53 70.52 66.18 67.49 67.49 70.81 70.81 70.66 70.23 71.10 71.24 69.51 70.23 71.24 
0.55 70.38 67.77 65.46 67.77 70.66 70.38 69.51 69.22 70.95 70.23 70.09 70.23 70.95 
0.57 71.10 67.20 66.62 67.05 69.51 69.22 70.52 70.38 69.94 69.08 69.94 70.66 71.10 
0.59 69.80 65.75 68.50 69.80 70.09 70.52 70.09 69.65 69.08 70.95 70.23 70.09 70.95 
0.61 70.09 67.63 68.93 68.64 70.81 69.94 70.66 70.52 70.52 70.38 70.81 70.66 70.81 
0.63 70.23 66.91 69.94 68.50 71.82 70.23 70.52 70.66 71.39 70.81 71.39 70.52 71.82 
Max 71.10 67.77 69.94 69.80 71.82 70.81 71.53 71.10 71.39 71.53 71.39 70.81 71.82 
Ratio 0.57 0.55 0.63 0.59 0.63 0.49 0.51 0.51 0.63 0.51 0.63 0.49 0.63 
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Table  II.20: Effect of changing both Lamda and LamdaU when applying QN-S3VM BFGS optimizer for 
semi-supervised SVM with OvO multiclass strategy. 

Accuracy Lamda Accuracy Lamda 
64.7 0.001 67.1 0.157 
68.4 0.005 66.3 0.161 
68.5 0.009 65.9 0.165 
68.6 0.013 66.5 0.169 
69.4 0.017 65.6 0.173 
69.7 0.021 65.0 0.177 
69.7 0.025 65.6 0.181 
68.6 0.029 65.8 0.185 
69.4 0.033 65.9 0.189 
69.7 0.037 65.3 0.193 
69.4 0.041 66.0 0.197 
70.1 0.045 65.6 0.201 
69.2 0.049 65.3 0.205 
69.8 0.053 65.9 0.209 
69.4 0.057 65.0 0.213 
69.5 0.061 64.6 0.217 
68.9 0.065 64.6 0.221 
69.1 0.069 62.9 0.225 
69.8 0.073 63.6 0.229 
69.4 0.077 64.2 0.233 
69.2 0.081 62.7 0.237 
69.2 0.085 62.0 0.241 
68.6 0.089 63.2 0.245 
68.9 0.093 63.6 0.249 
68.4 0.097 64.2 0.253 
69.2 0.101 64.0 0.257 
68.6 0.105 64.0 0.261 
68.5 0.109   
68.8 0.113   
67.5 0.117   
68.1 0.121   
67.9 0.125   
67.9 0.129   
67.5 0.133   
67.9 0.137   
67.5 0.141   
66.3 0.145   
67.2 0.149   
66.3 0.153   
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Table  II.21: Effect of changing ratio of labeled data when applying QN-S3VM BFGS optimizer for semi-
supervised SVM (Lamda=0.045) with OvO multiclass strategy. 

Ratio R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 Max 
0.01 40.46 52.60 48.27 45.23 40.61 52.46 41.47 52.46 41.18 52.17 39.31 52.75 52.75 
0.03 57.80 53.90 58.82 49.86 58.96 54.05 57.51 55.06 58.53 53.61 58.53 54.34 58.96 
0.05 61.99 55.06 59.54 56.94 61.71 54.77 61.85 54.77 61.99 55.06 61.42 54.77 61.99 
0.07 62.57 58.53 60.40 60.55 62.57 58.96 63.58 58.09 63.58 58.96 61.85 58.09 63.58 
0.09 65.61 58.96 61.56 60.55 65.03 58.96 64.88 57.95 65.17 58.53 65.17 58.38 65.61 
0.11 64.31 60.84 64.74 63.58 65.03 60.84 63.87 60.55 64.45 61.99 64.16 60.69 65.03 
0.13 65.61 62.43 63.58 64.60 65.17 62.72 64.45 63.87 65.75 62.86 64.60 63.44 65.75 
0.15 64.60 63.58 61.71 65.46 64.60 61.99 64.74 62.43 64.60 61.42 64.74 63.15 65.46 
0.17 65.75 62.28 65.46 65.61 64.45 64.02 65.03 63.44 65.32 63.01 64.45 63.44 65.75 
0.19 64.45 63.44 65.17 65.75 66.04 64.02 65.46 63.29 64.88 63.87 65.32 63.87 66.04 
0.21 66.33 64.31 65.75 64.45 65.61 65.46 65.61 65.75 65.90 64.31 65.46 65.46 66.33 
0.23 65.03 64.60 65.61 64.74 65.75 65.17 65.46 65.32 65.75 65.61 66.18 65.32 66.18 
0.25 65.75 65.75 69.36 64.60 65.32 65.75 65.61 65.90 65.46 66.47 66.18 65.90 69.36 
0.27 66.18 65.32 65.32 65.03 65.90 65.46 66.18 65.75 66.62 66.18 67.05 66.04 67.05 
0.29 65.75 66.04 67.49 66.62 66.18 65.90 66.04 66.18 66.62 64.88 66.33 66.76 67.49 
0.31 66.33 65.75 68.35 67.34 66.47 66.33 65.75 66.33 66.47 65.75 66.47 64.88 68.35 
0.33 68.06 66.04 68.50 67.20 66.91 66.33 67.20 65.75 66.91 65.61 67.49 65.61 68.50 
0.35 69.36 66.18 66.33 66.33 68.21 65.03 67.49 66.04 68.79 66.04 68.21 66.62 69.36 
0.37 69.22 65.90 65.75 68.06 69.08 65.61 68.64 64.74 69.22 66.04 69.08 65.46 69.22 
0.39 68.35 66.91 68.35 66.76 69.51 66.33 68.64 66.62 68.21 66.04 69.80 65.46 69.80 
0.41 69.36 68.21 69.36 66.62 68.21 67.49 69.94 67.05 69.08 67.34 68.93 67.49 69.94 
0.43 68.93 66.76 69.51 67.05 69.80 66.04 68.93 67.20 69.22 66.62 69.36 66.62 69.80 
0.45 69.94 67.05 67.05 67.63 69.80 66.76 69.65 66.04 70.09 66.62 69.65 67.34 70.09 
0.47 69.51 67.05 68.64 67.92 68.79 66.76 69.51 66.62 68.93 66.76 68.93 67.34 69.51 
0.49 70.09 65.90 67.92 68.50 69.51 67.20 70.23 67.63 70.23 67.20 69.51 67.49 70.23 
0.51 69.22 66.33 67.77 67.77 69.22 66.62 69.22 66.62 69.51 67.05 69.51 66.91 69.51 
0.53 69.51 66.76 68.06 68.21 69.08 66.62 68.93 66.62 69.51 66.91 68.79 66.62 69.51 
0.55 68.79 67.05 67.05 68.35 68.93 66.76 68.93 66.76 69.65 65.75 68.79 66.47 69.65 
0.57 69.36 66.76 68.50 68.64 68.93 66.47 68.64 67.34 68.93 67.49 68.50 66.33 69.36 
0.59 69.36 66.76 67.63 67.77 69.51 67.34 69.94 67.05 68.93 67.34 68.64 66.47 69.94 
0.61 70.52 67.49 68.35 69.08 69.94 67.20 69.80 67.20 69.51 66.91 70.38 67.63 70.52 
0.63 69.51 67.20 68.21 69.08 69.94 67.34 70.52 66.62 70.23 66.62 69.94 67.63 70.52 
Max 70.52 68.21 69.51 69.08 69.94 67.49 70.52 67.63 70.23 67.49 70.38 67.63 70.52 
Ratio 0.61 0.41 0.43 0.61 0.61 0.41 0.63 0.49 0.49 0.57 0.61 0.61 0.61 

 

 

Table  II.22: Distribution of data points when clustering testing data by using Birch algorithm.   

Data points of class negative in cluster negative 146 
Data points of class neutral in cluster negative 312 
Data points of class positive in cluster negative 150 
Data points of class negative in cluster neutral 1 
Data points of class neutral in cluster neutral 0 
Data points of class positive in cluster neutral 0 
Data points of class negative in cluster positive 26 
Data points of class neutral in cluster positive 34 
Data points of class positive in cluster positive 23 
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Table  II.23: Distribution of data points when clustering training data by using Birch Algorithm. 

Data points of class negative in cluster negative 339 
Data points of class neutral in cluster negative 623 
Data points of class positive in cluster negative 348 
Data points of class negative in cluster neutral 191 
Data points of class neutral in cluster neutral 455 
Data points of class positive in cluster neutral 280 
Data points of class negative in cluster positive 1030 
Data points of class neutral in cluster positive 2049 
Data points of class positive in cluster positive 933 

 

Table  II.24: Distribution of data points when clustering testing data after clustering training data with 
Birch. 

Data points of class negative in cluster negative 34 
Data points of class neutral in cluster negative 74 
Data points of class positive in cluster negative 28 
Data points of class negative in cluster neutral 30 
Data points of class neutral in cluster neutral 42 
Data points of class positive in cluster neutral 25 
Data points of class negative in cluster positive 109 
Data points of class neutral in cluster positive 230 
Data points of class positive in cluster positive 120 

 

Table  II.25: Clustering testing data by using K-means algorithm while centroids initialized by using K-
means++. 

Run # Accuracy macro-average F1-score 
1 27.5 23.5 
2 27.6 23.6 
3 22.5 18.8 
4 27.7 23.8 
5 22.1 18.1 
6 22.4 18.6 
7 22.3 18.2 
8 22.5 18.8 
9 27.3 23.5 
10 27.9 23.8 
11 22.0 18.0 

MAX 27.9 23.8 
MIN 22.0 18.0 

AVRG 24.7 20.8 
CI High 26.6 22.6 
CI Low 22.8 18.9 
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Table  II.26: Distribution of data points when clustering testing data by using K-means while centroids 
initialized by using K-means++. 

Data points of class negative in cluster negative 54 
Data points of class neutral in cluster negative 87 
Data points of class positive in cluster negative 37 
Data points of class negative in cluster neutral 1 
Data points of class neutral in cluster neutral 0 
Data points of class positive in cluster neutral 0 
Data points of class negative in cluster positive 118 
Data points of class neutral in cluster positive 259 
Data points of class positive in cluster positive 136 

 

Table  II.27: Average distribution of data points when clustering testing data by using K-means while 
centroids initialized by using K-means++. 

Data points of class negative 
in cluster negative 98 75 74 97 74 75 74 98 75 97 

Data points of class neutral in 
cluster negative 226 124 120 224 120 121 120 225 122 223 

Data points of class positive 
in cluster negative 114 63 59 111 59 60 59 114 62 111 

Data points of class negative 
in cluster neutral 1 1 1 1 1 1 1 1 1 1 

Data points of class neutral in 
cluster neutral 0 0 0 0 0 0 0 0 0 0 

Data points of class positive 
in cluster neutral 0 0 0 0 0 0 0 0 0 0 

Data points of class negative 
in cluster positive 74 97 98 75 98 97 98 74 97 75 

Data points of class neutral in 
cluster positive 120 222 226 122 226 225 226 121 224 123 

Data points of class positive 
in cluster positive 59 110 114 62 114 113 114 59 111 62 
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Table  II.28: Clustering testing data by using K-means algorithm while centroids initialized randomly. 

Run # Accuracy macro-average F1-score 
1 42.8 27.8 
2 27.7 23.8 
3 29.9 22.8 
4 27.6 23.7 
5 32.5 24.9 
6 44.9 30.4 
7 42.9 27.5 
8 27.6 23.5 
9 32.8 25.0 
10 27.6 23.5 

MAX 44.9 30.4 
MIN 27.6 22.8 

AVRG 33.6 25.3 
CI High 38.7 27.1 
CI Low 28.5 23.5 

 

Table  II.29: Distribution of data points when clustering testing data by using K-means while centroids 
initialized randomly. 

Data points of class negative in cluster negative 1 
Data points of class neutral in cluster negative 0 
Data points of class positive in cluster negative 0 
Data points of class negative in cluster neutral 97 
Data points of class neutral in cluster neutral 222 
Data points of class positive in cluster neutral 110 
Data points of class negative in cluster positive 75 
Data points of class neutral in cluster positive 124 
Data points of class positive in cluster positive 63 

 

Table  II.30: Average distribution of data points when clustering testing data by using K-means while 
centroids initialized randomly. 

Data points of class negative 
in cluster negative 1 75 97 75 1 75 1 74 1 74 

Data points of class neutral in 
cluster negative 0 123 222 123 0 124 0 120 0 120 

Data points of class positive 
in cluster negative 0 63 110 62 0 63 0 59 0 59 

Data points of class negative 
in cluster neutral 97 1 75 1 75 97 98 1 75 1 

Data points of class neutral in 
cluster neutral 222 0 124 0 124 222 226 0 121 0 

Data points of class positive 
in cluster neutral 110 0 63 0 63 110 114 0 59 0 

Data points of class negative 
in cluster positive 75 97 1 97 97 1 74 98 97 98 

Data points of class neutral in 
cluster positive 124 223 0 223 222 0 120 226 225 226 

Data points of class positive 
in cluster positive 63 110 0 111 110 0 59 114 114 114 
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Table  II.31: Distribution of data points when clustering testing data randomly initialized from classes by 

using K-means. 

Data points of class negative in cluster negative  56 
Data points of class neutral in cluster negative 91 
Data points of class positive in cluster negative 40 
Data points of class negative in cluster neutral 116 
Data points of class neutral in cluster neutral 255 
Data points of class positive in cluster neutral 133 
Data points of class negative in cluster positive 1 
Data points of class neutral in cluster positive 0 
Data points of class positive in cluster positive 0 

 

Table  II.32: Average distribution of data points when clustering testing data initialized randomly from 
classes by using K-means.  

Data points of class negative 
in cluster negative 167 97 75 97 165 98 169 75 164 75 

Data points of class neutral in 
cluster negative 328 222 124 222 322 228 340 124 329 124 

Data points of class positive 
in cluster negative 160 110 63 110 154 115 169 63 166 63 

Data points of class negative 
in cluster neutral 1 1 1 75 1 74 1 97 1 1 

Data points of class neutral in 
cluster neutral 0 0 0 124 0 118 0 222 0 0 

Data points of class positive 
in cluster neutral 0 0 0 63 0 58 0 110 0 0 

Data points of class negative 
in cluster positive 5 75 97 1 7 1 3 1 8 97 

Data points of class neutral in 
cluster positive 18 124 222 0 24 0 6 0 17 222 

Data points of class positive 
in cluster positive 13 63 110 0 19 0 4 0 7 110 
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Table  II.33: Experiment results of initialize each centroid from its corresponding class by using K-means 
algorithm. 

Run # Accuracy macro-average 
F1-score Run # Accuracy macro-average 

F1-score 
1 44.9 30.4 20 26.6 16.2 
2 24.0 13.9 21 27.6 23.6 
3 42.8 27.8 22 29.8 22.7 
4 24.7 13.6 23 27.5 23.3 
5 32.5 24.9 24 42.3 27.1 
6 22.5 18.8 25 49.1 23.3 
7 24.9 14.5 26 49.3 23.2 
8 50.3 23.2 27 49.4 24.2 
9 45.1 30.2 28 49.9 24.6 
10 27.3 23.5 29 51.2 25.4 
11 25.6 15.2 30 29.9 22.8 
12 24.6 14.6 31 26.7 23.7 
13 50.4 25.4 32 50.7 24.2 
14 42.6 27.1 33 49.7 23.0 
15 26.0 17.6 MAX 51.2 30.4 
16 50.1 22.6 MIN 22.4 13.6 
17 48.7 23.2 AVRG 36.8 22.0 
18 22.4 18.2 CI High 40.8 23.7 
19 24.4 14.3 CI Low 32.8 20.3 

 

Table  II.34: Distribution of data points when clustering training data randomly initialized from classes by 
using K-means. 

Data points of class negative in cluster negative 191 
Data points of class neutral in cluster negative 454 
Data points of class positive in cluster negative 278 
Data points of class negative in cluster neutral 966 
Data points of class neutral in cluster neutral 1991 
Data points of class positive in cluster neutral 979 
Data points of class negative in cluster positive 403 
Data points of class neutral in cluster positive 682 
Data points of class positive in cluster positive 304 
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Table  II.35: Clustering training data when initializing each centroid randomly by using K-means algorithm. 

Run # Accuracy macro-average 
F1-score Run # Accuracy macro-average 

F1-score 
1 41.5 33.9 20 30.8 29.2 
2 30.5 29.0 21 28.7 27.6 
3 42.8 35.4 22 42.9 34.9 
4 29.4 28.5 23 28.1 27.9 
5 39.8 30.8 24 26.9 25.6 
6 30.9 29.0 25 27.6 26.1 
7 42.8 35.4 26 32.2 32.5 
8 32.7 30.7 27 36.9 30.6 
9 40.4 30.9 28 41.6 28.9 
10 29.8 27.0 29 31.9 30.5 
11 30.6 25.5 30 42.7 39.0 
12 30.8 29.2 31 29.6 27.1 
13 40.3 30.9 32 31.2 25.4 
14 43.4 36.2 33 29.9 27.0 
15 29.6 27.1 MAX 43.9 39.3 
16 28.3 27.5 MIN 26.9 25.4 
17 43.9 39.3 AVRG 34.4 30.1 
18 27.2 25.5 CI High 36.5 31.5 
19 39.8 30.8 CI Low 32.3 28.8 

 
Table  II.36: Distribution of data points when clustering training data randomly initialized from classes by 

using K-means. 

Data points of class negative in cluster negative 445 
Data points of class neutral in cluster negative 790 
Data points of class positive in cluster negative 363 
Data points of class negative in cluster neutral 1058 
Data points of class neutral in cluster neutral 2288 
Data points of class positive in cluster neutral 1112 
Data points of class negative in cluster positive 57 
Data points of class neutral in cluster positive 49 
Data points of class positive in cluster positive 86 
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Table  II.37: Clustering training data when initializing each centroid randomly from its corresponding class 
by using K-means algorithm.  

Run # Accuracy macro-average 
F1-score Run # Accuracy macro-average 

F1-score 
1 44.4 38.6 20 37.1 32.7 
2 49.6 24.7 21 48.4 24.3 
3 33.9 32.8 22 45.8 33.3 
4 41.6 33.5 23 36.9 30.5 
5 47.5 31.9 24 44.8 36.2 
6 45.3 37.8 25 43.2 31.7 
7 41.3 28.7 26 36.9 30.6 
8 35.1 32.1 27 49.2 27.4 
9 51.7 27.3 28 45.1 32.8 
10 43.2 31.3 29 44.2 30.0 
11 45.1 32.8 30 42.8 39.3 
12 50.7 24.9 31 38.9 32.9 
13 44.5 31.1 32 45.1 32.8 
14 38.7 34.2 33 42.8 35.4 
15 43.1 33.0 MAX 51.7 39.3 
16 37.8 33.8 MIN 31.3 24.3 
17 45.3 37.3 AVRG 42.9 32.1 
18 31.3 28.7 CI High 44.6 33.4 
19 42.9 35.4 CI Low 41.1 30.8 

 

Table  II.38: Applying K-means firstly on training data (and initialize centroids from training data) 
 and then use the resulted centroids to classify testing data by assigning each sample 

to the closest centroid by using Braycurtis distance measure. 

Run # Accuracy macro-average 
F1-score Run # Accuracy macro-average 

F1-score 
1 32.9 31.8 20 33.5 26.3 
2 32.1 27.5 21 40.2 35.5 
3 31.4 30.2 22 23.7 15.2 
4 35.0 28.3 23 28.2 27.8 
5 42.9 35.8 24 41.2 36.4 
6 33.1 32.0 25 48.0 34.7 
7 49.3 25.7 26 37.9 37.3 
8 34.5 27.5 27 42.1 30.8 
9 30.1 29.0 28 46.2 23.0 
10 26.4 25.8 29 49.1 27.3 
11 38.4 30.5 30 43.5 26.2 
12 40.0 30.2 31 49.4 26.1 
13 44.2 35.4 32 36.8 30.0 
14 32.8 31.7 33 41.0 30.9 
15 40.9 31.0 MAX 49.4 40.5 
16 23.4 21.3 MIN 23.4 15.2 
17 26.0 18.0 AVRG 37.3 29.5 
18 34.1 33.2 CI High 40.0 31.4 
19 43.9 40.5 CI Low 34.7 27.6 
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Table  II.39: Applying K-means firstly on training data (and initialize centroids from training data) 
 and then use the resulted centroids to classify testing data by assigning each sample  

to the closest centroid  by using Canberra distance measure. 

Run # Accuracy macro-average 
F1-score Run # Accuracy macro-average 

F1-score 
1 50.1 25.1 20 34.8 32.3 
2 34.1 27.7 21 41.2 31.9 
3 33.1 25.7 22 27.6 17.9 
4 28.9 20.8 23 41.3 33.7 
5 28.5 27.1 24 32.9 30.6 
6 32.4 25.3 25 37.3 35.4 
7 37.7 34.7 26 41.6 32.6 
8 38.9 35.1 27 23.7 22.0 
9 39.6 36.1 28 40.3 30.4 

10 47.3 22.8 29 39.2 30.8 
11 40.9 30.0 30 40.8 33.7 
12 33.4 26.9 31 34.0 26.4 
13 49.6 24.5 32 25.3 23.3 
14 39.0 29.9 33 40.2 31.3 
15 27.3 25.6 MAX 50.1 36.1 
16 34.7 29.3 MIN 23.7 17.9 
17 41.0 31.3 AVRG 37.1 28.8 
18 40.0 36.0 CI High 39.4 30.5 
19 47.1 23.7 CI Low 34.7 27.1 

 

Table  II.40: Applying K-means firstly on training data (and initialize centroids from training data) 
 and then use the resulted centroids to classify testing data by assigning each sample 

to the closest centroid by using Chebyshev distance measure. 

Run # Accuracy macro-average 
F1-score Run # Accuracy macro-average 

F1-score 
1 35.0 33.6 20 32.5 29.7 
2 38.0 36.8 21 33.5 33.0 
3 47.7 35.4 22 32.1 27.5 
4 31.4 29.5 23 42.8 35.1 
5 49.7 31.5 24 49.1 26.6 
6 43.8 32.1 25 43.2 37.7 
7 34.1 32.2 26 38.3 31.2 
8 37.3 28.7 27 45.1 34.1 
9 42.6 35.0 28 47.0 29.5 
10 37.1 33.6 29 41.3 30.8 
11 30.6 30.4 30 41.9 29.4 
12 46.2 27.2 31 43.5 31.0 
13 42.1 27.7 32 44.9 24.9 
14 43.9 32.2 33 41.8 28.7 
15 40.6 32.9 MAX 49.7 37.7 
16 48.0 33.5 MIN 29.3 24.9 
17 41.0 30.8 AVRG 40.7 31.1 
18 48.8 25.7 CI High 42.8 32.2 
19 29.3 28.3 CI Low 38.7 30.0 



232 
 

Table  II.41: Applying K-means firstly on training data (and initialize centroids from training data) 
 and then use the resulted centroids to classify testing data by assigning each sample 

 to the closest centroid by using City Block (Manhattan) distance measure. 

Run # Accuracy macro-average 
F1-score Run # Accuracy macro-average 

F1-score 
1 45.2 33.8 20 38.2 34.6 
2 31.4 28.8 21 42.5 31.2 
3 28.5 21.2 22 46.8 28.1 
4 50.1 25.8 23 37.9 30.7 
5 32.4 31.3 24 48.8 33.0 
6 30.6 25.9 25 43.4 35.6 
7 30.1 26.0 26 40.9 28.2 
8 44.5 27.2 27 41.0 30.0 
9 29.0 28.4 28 47.3 30.1 
10 32.1 25.2 29 45.4 41.8 
11 37.6 30.5 30 49.3 28.0 
12 38.0 28.6 31 47.0 22.1 
13 41.9 34.8 32 40.5 32.8 
14 27.7 25.5 33 44.9 32.3 
15 25.7 24.0 MAX 50.1 41.8 
16 41.3 28.3 MIN 25.7 21.2 
17 41.5 34.8 AVRG 39.7 29.5 
18 47.8 26.5 CI High 42.2 31.0 
19 41.6 29.6 CI Low 37.2 28.0 

 

Table  II.42: Applying K-means firstly on training data (and initialize centroids from training data) 
 and then use the resulted centroids to classify testing data by assigning each sample 

 to the closest centroid by using Correlation distance measure. 

Run # Accuracy macro-average F1-
score Run # Accuracy macro-average 

F1-score 
1 40.6 28.9 20 47.5 30.7 
2 41.9 29.2 21 41.6 30.6 
3 28.0 25.3 22 48.0 28.2 
4 46.5 37.1 23 42.1 30.7 
5 48.8 27.0 24 42.9 32.6 
6 42.3 34.8 25 49.4 23.5 
7 30.1 24.2 26 40.8 32.8 
8 44.8 31.9 27 43.5 32.6 
9 29.5 28.5 28 48.6 31.5 
10 30.8 24.4 29 42.2 35.1 
11 24.7 22.7 30 46.0 35.3 
12 27.6 18.5 31 36.3 29.6 
13 45.1 33.1 32 33.4 27.3 
14 27.7 27.5 33 35.5 34.7 
15 36.1 29.4 MAX 49.4 37.1 
16 40.2 30.1 MIN 24.7 18.5 
17 42.5 29.4 AVRG 39.8 29.8 
18 43.6 32.7 CI High 42.3 31.3 
19 44.4 34.6 CI Low 37.3 28.3 



233 
 

Table  II.43: Applying K-means firstly on training data (and initialize centroids from training data) and then 
use the resulted centroids to classify testing data by assigning each sample to the closest centroid by using 

Cosine distance measure. 

Run # Accuracy macro-average F1-
score Run # Accuracy macro-average 

F1-score 
1 42.3 30.7 20 39.9 34.7 
2 36.3 29.5 21 50.7 24.7 
3 31.8 26.3 22 23.7 21.3 
4 44.2 31.9 23 28.2 24.0 
5 31.9 29.4 24 29.3 27.3 
6 45.1 36.6 25 44.4 30.8 
7 42.6 35.2 26 26.3 17.6 
8 43.5 38.5 27 48.3 25.8 
9 49.3 30.0 28 47.1 22.5 
10 39.6 28.6 29 41.8 34.5 
11 37.9 31.4 30 48.8 32.9 
12 34.7 32.2 31 40.2 35.0 
13 40.0 34.8 32 45.5 41.5 
14 43.1 34.4 33 44.9 32.1 
15 41.2 29.0 MAX 50.7 41.5 
16 35.4 34.6 MIN 23.7 17.6 
17 42.9 25.9 AVRG 39.7 30.4 
18 35.8 27.9 CI High 42.1 32.3 
19 33.1 32.7 CI Low 37.2 28.6 

 

Table  II.44: Applying K-means firstly on training data (and initialize centroids from training data) 
 and then use the resulted centroids to classify testing data by assigning each sample 

 to the closest centroid by using Euclidean distance measure. 

Run # Accuracy macro-average 
F1-score Run # Accuracy macro-average 

F1-score 
1 41.8 28.9 20 43.5 30.2 
2 30.1 24.2 21 38.3 27.3 
3 43.6 36.4 22 49.9 27.3 
4 41.2 33.5 23 39.6 32.4 
5 50.3 28.3 24 42.5 39.5 
6 31.1 26.9 25 44.8 32.4 
7 39.5 27.9 26 46.8 29.0 
8 30.8 29.5 27 48.1 31.9 
9 30.6 27.7 28 31.5 31.6 
10 44.9 32.5 29 48.8 25.0 
11 42.9 29.7 30 34.1 27.6 
12 46.1 39.2 31 32.8 27.2 
13 50.7 29.3 32 40.2 34.0 
14 40.0 27.7 33 41.6 30.1 
15 44.7 31.3 MAX 50.7 39.5 
16 49.6 29.3 MIN 30.1 23.9 
17 47.7 23.9 AVRG 41.7 30.1 
18 44.2 30.8 CI High 44.0 31.4 
19 44.5 31.3 CI Low 39.5 28.8 
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Table  II.45: Applying K-means firstly on training data (and initialize centroids from training data) 
 and then use the resulted centroids to classify testing data by assigning each sample 

 to the closest centroid by using Squared Euclidean distance measure. 

Run # Accuracy macro-average 
F1-score Run # Accuracy macro-average 

F1-score 
1 31.5 28.7 20 47.3 24.7 
2 36.8 31.8 21 42.1 30.1 
3 44.5 31.3 22 47.8 22.8 
4 50.1 24.1 23 30.3 23.7 
5 41.8 33.9 24 32.2 25.2 
6 41.6 30.1 25 42.5 29.1 
7 40.5 34.2 26 41.2 32.4 
8 42.9 29.7 27 44.7 32.4 
9 44.4 32.8 28 33.7 27.1 
10 37.0 29.6 29 49.9 26.7 
11 45.2 34.3 30 46.0 26.3 
12 41.5 28.7 31 40.0 27.7 
13 44.9 32.5 32 44.1 31.4 
14 40.2 34.1 33 45.1 32.8 
15 46.4 26.1 MAX 50.1 34.3 
16 32.7 31.9 MIN 30.3 22.8 
17 37.3 29.7 AVRG 41.2 29.6 
18 41.9 29.8 CI High 43.1 30.7 
19 31.8 30.1 CI Low 39.3 28.4 
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Table  II.46: Effect of changing ratio of labeled data when applying our proposed solution. 

Ratio R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 Max 
0.01 46.53 50.87 51.88 51.88 52.31 51.59 49.86 50.58 51.16 55.20 48.84 51.45 55.20 
0.03 60.84 57.23 56.36 55.92 57.51 58.24 56.07 56.50 56.94 56.79 60.26 58.24 60.84 
0.05 63.15 57.23 59.54 59.68 60.12 57.80 61.13 57.66 61.71 54.77 61.27 62.28 63.15 
0.07 65.75 59.97 60.84 61.13 62.43 63.01 61.99 62.72 61.13 62.57 62.28 63.29 65.75 
0.09 66.33 61.56 62.86 62.86 61.85 60.55 62.14 64.31 62.72 64.74 62.43 62.14 66.33 
0.11 66.62 61.71 64.74 61.13 65.46 65.46 63.29 63.01 64.45 63.44 64.31 63.44 66.62 
0.13 66.91 63.29 64.16 64.74 63.87 64.74 64.02 64.31 64.45 64.16 64.02 64.31 66.91 
0.15 67.05 64.16 64.60 65.75 63.44 65.90 63.87 65.90 63.87 65.46 66.18 65.17 67.05 
0.17 67.63 64.16 64.45 65.17 65.17 66.18 64.88 67.20 66.18 63.44 64.74 66.04 67.63 
0.19 67.34 66.04 65.32 66.47 65.32 66.76 63.15 65.90 66.18 65.61 66.47 65.61 67.34 
0.21 66.76 65.32 66.62 66.33 66.62 64.60 66.91 65.03 65.46 67.20 68.06 68.21 68.21 
0.23 67.49 66.04 66.47 65.61 66.33 66.62 67.77 65.90 66.91 66.47 65.32 66.18 67.77 
0.25 67.63 66.04 65.61 66.18 66.62 66.91 65.61 65.32 66.33 66.47 67.20 64.88 67.63 
0.27 68.21 65.61 66.33 67.05 67.63 68.64 68.64 67.49 66.91 67.63 66.18 66.91 68.64 
0.29 68.21 65.90 70.23 67.49 67.34 68.79 68.06 68.50 68.50 67.34 67.77 68.35 70.23 
0.31 69.08 65.61 68.35 67.20 67.63 67.63 68.35 68.93 66.62 67.20 68.06 66.33 69.08 
0.33 68.79 66.33 68.35 67.49 66.04 69.08 67.49 66.33 68.93 67.92 67.63 68.50 69.08 
0.35 69.36 65.75 67.34 68.06 68.50 67.20 68.35 67.49 66.33 68.64 67.77 69.94 69.94 
0.37 68.50 66.04 68.21 66.62 68.79 68.93 67.77 67.63 67.34 68.21 67.20 68.50 68.93 
0.39 69.08 65.46 68.06 67.92 68.06 68.21 68.64 69.36 67.05 66.04 70.81 69.36 70.81 
0.41 69.94 66.33 67.77 69.08 67.20 69.22 66.76 69.94 67.05 68.93 68.06 69.08 69.94 
0.43 70.38 67.49 69.08 68.79 68.79 67.63 68.64 67.20 69.94 67.49 67.77 68.79 70.38 
0.45 72.25 67.34 68.79 67.34 66.62 68.79 69.08 68.06 68.50 69.22 68.06 68.35 72.25 
0.47 71.39 66.47 67.63 66.76 68.35 67.77 68.35 69.22 68.35 68.50 67.77 67.77 71.39 
0.49 70.95 67.20 68.50 68.64 66.04 70.23 67.77 68.06 68.50 68.35 69.80 68.21 70.95 
0.51 71.53 67.05 68.06 69.36 67.92 68.06 66.91 69.08 68.79 69.51 69.08 68.06 71.53 
0.53 70.95 67.20 68.21 68.06 68.64 69.65 68.79 68.79 68.79 69.22 69.22 69.94 70.95 
0.55 70.66 67.92 69.94 70.23 69.08 69.65 68.79 69.22 68.79 66.62 68.21 69.36 70.66 
0.57 70.38 67.77 69.08 68.35 69.22 69.65 68.93 69.65 68.93 68.79 69.36 68.93 70.38 
0.59 70.66 68.35 69.22 69.94 68.79 68.35 69.51 69.36 69.94 68.64 68.79 67.77 70.66 
0.61 70.09 68.93 70.81 70.23 68.35 68.50 68.79 69.65 69.08 68.79 69.22 68.93 70.81 
0.63 69.80 68.64 69.08 70.09 70.09 68.64 69.65 67.92 69.65 68.79 69.80 68.21 70.09 
Max 72.25 68.93 70.81 70.23 70.09 70.23 69.65 69.94 69.94 69.51 70.81 69.94 72.25 
Ratio 0.45 0.61 0.61 0.55 0.63 0.49 0.63 0.41 0.43 0.51 0.39 0.35 0.45 
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Appendix III  

EXPERIMENT RESULTS: IMPACT OF DIMENSION 

REDUCTION WITH TARGET-DEPENDENT  

SENTIMENT ANALYSIS 

This appendix includes all details of experiment results that are illustrated in chapter 9 for 

target dependent sentiment analysis. 

Table  III.1: K-means with PCA (Cosine distance measure). 

  Dimensions # Run # Accuracy Macro-average F1-score 
50 1 50.1 22.6 

2 50.0 22.2 
3 46.8 30.3 
4 45.8 32.1 
5 45.4 32.3 
6 41.2 30.5 
7 39.3 34.5 
8 39.0 32.0 
9 38.9 31.2 
10 30.5 30.0 
11 30.3 26.4 
12 28.8 23.9 
13 28.3 26.8 
14 27.6 24.5 
15 26.0 20.9 
16 25.3 23.6 
17 25.1 13.7 
18 25.0 13.3 
19 24.9 13.3 
20 24.7 13.2 

MAX 50.1 34.5 
MIN 24.7 13.2 

AVRG 34.7 24.9 
CI High 39.0 28.2 
CI Low 30.3 21.6 
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 Dimensions # Run # Accuracy Macro-average F1-score 
100 1 25.1 13.7 

 2 25.0 13.3 
 3 24.9 13.3 
 4 35.4 30.5 
 5 50.1 22.6 
 6 21.7 18.5 
 7 28.3 28.3 
 8 50.0 22.2 
 9 44.9 28.9 
 10 41.5 31.6 
 11 26.7 20.2 
 12 29.2 25.8 
 13 27.5 22.3 
 14 27.6 27.1 
 15 23.6 19.4 
 16 31.5 30.9 
 17 32.9 28.4 
 18 24.7 13.2 
 19 37.7 32.3 
 20 46.1 28.9 
 21 44.7 26.9 
 22 39.6 31.6 
 MAX 50.1 32.3 
 MIN 21.7 13.2 
 AVRG 33.6 24.1 
 CI High 37.7 27.0 
 CI Low 29.5 21.2 
    

300 1 50.1 22.6 
 2 50.0 22.2 
 3 46.2 29.3 
 4 46.1 31.3 
 5 45.5 28.8 
 6 44.1 30.6 
 7 39.3 34.5 
 8 36.6 31.5 
 9 32.2 28.6 
 10 28.8 24.0 
 11 26.4 21.6 
 12 26.3 20.5 
 13 25.1 13.7 
 14 25.0 13.3 
 15 24.9 13.3 
 16 24.7 13.2 
 17 24.0 21.0 
 MAX 50.1 34.5 
 MIN 24.0 13.2 
 AVRG 35.0 23.5 
 CI High 40.2 27.2 
 CI Low 29.8 19.9 
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Table  III.2: Semi-supervised K-means with PCA. 

Dims # Ratio R1 R2 R3 R4 Max Average 
300 0.01 24.9 24.9 50.1 50.1 50.1 37.5 

0.03 24.9 24.9 50.0 24.9 50.0 31.1 
0.05 24.9 24.9 25.1 25.1 25.1 25.0 
0.07 50.0 24.9 50.1 24.9 50.1 37.5 
0.09 50.0 24.9 25.1 24.9 50.0 31.2 
0.11 50.1 24.9 24.9 37.0 50.1 34.2 
0.13 50.1 24.9 24.9 24.9 50.1 31.2 
0.15 24.9 24.9 50.1 24.9 50.1 31.2 
0.17 24.9 24.9 23.7 50.1 50.1 30.9 
0.19 24.9 24.9 50.1 24.9 50.1 31.2 
0.21 24.9 24.9 24.9 50.1 50.1 31.2 
0.23 24.9 24.9 24.9 23.7 24.9 24.6 
0.25 24.9 24.9 26.0 24.9 26.0 25.1 
0.27 24.9 50.1 50.1 24.9 50.1 37.5 
0.29 24.9 50.1 50.1 24.9 50.1 37.5 
0.31 24.9 50.1 25.1 24.9 50.1 31.3 
0.33 24.9 24.9 24.9 24.0 24.9 24.6 
0.35 24.9 24.9 24.9 24.9 24.9 24.9 
0.37 24.9 24.9 24.9 50.1 50.1 31.2 
0.39 24.9 24.9 24.9 24.9 24.9 24.9 
0.41 24.9 24.9 24.9 24.9 24.9 24.9 
0.43 24.9 24.9 24.9 50.1 50.1 31.2 
0.45 24.9 24.9 24.9 24.9 24.9 24.9 
0.47 24.9 24.9 26.7 24.9 26.7 25.3 
0.49 24.9 24.9 25.7 24.9 25.7 25.1 
0.51 22.8 24.9 24.9 24.9 24.9 24.4 
0.53 22.8 24.9 24.9 24.9 24.9 24.4 
0.55 22.8 24.9 24.4 24.9 24.9 24.2 
0.57 24.9 24.9 24.9 24.9 24.9 24.9 
0.59 24.9 24.9 24.9 23.7 24.9 24.6 
0.61 24.9 24.9 24.9 24.1 24.9 24.7 
0.63 24.9 24.9 24.9 24.9 24.9 24.9 
Max 50.1 50.1 50.1 50.1 50.1 37.5 
Ratio 0.11 0.27 0.01 0.01 0.01 0.01 
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Dims # Ratio R1 R2 R3 R4 Max Average 
600 0.01 24.9 24.9 50.0 24.9 50.0 31.1 

0.03 24.9 24.9 25.1 24.9 25.1 24.9 
0.05 24.9 24.9 24.9 25.1 25.1 24.9 
0.07 50.0 24.9 24.9 24.9 50.0 31.1 
0.09 50.0 24.9 24.9 24.9 50.0 31.1 
0.11 50.1 24.9 50.1 24.9 50.1 37.5 
0.13 50.1 24.9 24.9 25.1 50.1 31.3 
0.15 24.9 24.9 50.1 24.9 50.1 31.2 
0.17 24.9 24.9 50.1 50.1 50.1 37.5 
0.19 24.9 24.9 32.5 24.9 32.5 26.8 
0.21 24.9 24.9 24.9 50.1 50.1 31.2 
0.23 24.9 24.9 50.1 24.9 50.1 31.2 
0.25 24.9 24.9 24.9 23.7 24.9 24.6 
0.27 24.9 50.1 36.3 50.1 50.1 40.4 
0.29 24.9 50.1 24.9 24.9 50.1 31.2 
0.31 24.9 50.1 24.9 24.9 50.1 31.2 
0.33 24.9 24.9 24.9 24.9 24.9 24.9 
0.35 24.9 24.9 25.0 24.9 25.0 24.9 
0.37 24.9 24.9 24.9 24.9 24.9 24.9 
0.39 24.9 24.9 24.9 24.9 24.9 24.9 
0.41 24.9 24.9 24.9 24.9 24.9 24.9 
0.43 24.9 24.9 25.0 24.9 25.0 24.9 
0.45 24.9 24.9 24.9 24.9 24.9 24.9 
0.47 24.9 24.9 23.0 24.7 24.9 24.4 
0.49 24.9 24.9 50.1 25.1 50.1 31.3 
0.51 22.8 24.9 23.7 24.9 24.9 24.1 
0.53 22.8 24.9 24.9 24.9 24.9 24.4 
0.55 22.8 24.9 50.1 34.0 50.1 32.9 
0.57 24.9 24.9 23.8 50.1 50.1 30.9 
0.59 24.9 24.9 24.7 24.9 24.9 24.8 
0.61 24.9 24.9 23.8 24.1 24.9 24.4 
0.63 24.9 24.9 24.9 24.9 24.9 24.9 
Max 50.1 50.1 50.1 50.1 50.1 40.4 
Ratio 0.11 0.27 0.11 0.17 0.11 0.27 
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Table  III.3: Clustering and classifying training data when applying our proposed solution. 

Run Accuracy F1-Score Run Accuracy F1-Score 
1 91.2 90.9 37 91.2 90.9 
2 91.1 90.9 38 91.1 90.9 
3 91.2 90.9 39 91.2 90.9 
4 26.8 33.5 40 91.2 90.9 
5 4.3 4.0 41 91.1 90.9 
6 91.2 90.9 42 91.2 90.9 
7 91.1 90.9 43 91.2 90.9 
8 91.2 90.9 44 91.2 90.9 
9 91.2 90.9 45 91.2 90.9 
10 91.2 91.0 46 91.2 90.9 
11 91.2 90.9 47 91.2 90.9 
12 91.2 90.9 48 91.1 90.9 
13 91.2 90.9 49 91.1 90.9 
14 91.2 90.9 50 91.2 91.0 
15 91.2 90.9 51 91.1 90.9 
16 91.1 90.9 Max 91.2 91.0 
17 91.1 90.9 Min 4.3 4.0 
18 91.2 90.9 AVRG 88.2 88.1 
19 91.2 90.9 CI High 92.4 92.1 
20 91.1 90.9 CI Low 84.0 84.0 
21 91.2 90.9    
22 91.2 91.0    
23 91.2 90.9    
24 91.2 90.9    
25 91.1 90.9    
26 91.1 90.9    
27 91.1 90.9    
28 91.2 90.9    
29 91.2 90.9    
30 91.2 90.9    
31 91.1 90.9    
32 91.1 90.9    
33 91.1 90.9    
34 91.2 90.9    
35 91.1 90.9    
36 91.2 90.9    
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Table  III.4: Clustering and classifying testing data when applying our proposed solution. 

Run Accuracy F1-Score Run Accuracy F1-Score 
1 92.6 92.3 37 92.6 92.3 
2 92.6 92.3 38 92.6 92.3 
3 92.6 92.3 39 92.6 92.3 
4 92.6 92.3 40 92.6 92.3 
5 92.6 92.3 41 92.6 92.3 
6 92.6 92.3 42 92.6 92.3 
7 92.6 92.3 43 92.6 92.3 
8 92.6 92.3 44 92.6 92.3 
9 92.6 92.3 45 92.6 92.3 
10 92.6 92.3 46 92.6 92.3 
11 92.6 92.3 47 26.9 34.1 
12 92.6 92.3 48 92.6 92.3 
13 92.6 92.3 49 92.6 92.3 
14 92.6 92.3 50 92.6 92.3 
15 92.6 92.3 51 92.6 92.3 
16 92.6 92.3 Max 92.6 92.3 
17 92.6 92.3 Min 26.9 34.1 
18 92.6 92.3 AVRG 91.3 91.1 
19 92.6 92.3 CI High 93.9 93.4 
20 92.6 92.3 CI Low 88.8 88.8 
21 92.6 92.3    
22 92.6 92.3    
23 92.6 92.3    
24 92.6 92.3    
25 92.6 92.3    
26 92.6 92.3    
27 92.6 92.3    
28 92.6 92.3    
29 92.6 92.3    
30 92.6 92.3    
31 92.6 92.3    
32 92.6 92.3    
33 92.6 92.3    
34 92.6 92.3    
35 92.6 92.3    
36 92.6 92.3    
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Table  III.5: Clustering testing data and classifying training data when applying our proposed solution. 

Run Accuracy F1-Score Run Accuracy F1-Score 
1 90.8 90.4 37 90.8 90.4 
2 90.8 90.4 38 26.2 33.1 
3 90.8 90.4 39 90.8 90.4 
4 90.8 90.4 40 90.8 90.4 
5 90.8 90.4 41 90.8 90.4 
6 90.8 90.4 42 90.8 90.4 
7 90.8 90.4 43 90.8 90.4 
8 90.8 90.4 44 90.8 90.4 
9 90.8 90.4 45 90.8 90.4 
10 90.8 90.4 46 26.2 33.1 
11 90.8 90.4 47 90.8 90.4 
12 90.8 90.4 48 90.8 90.4 
13 90.8 90.4 49 90.8 90.4 
14 90.8 90.4 50 90.8 90.4 
15 90.8 90.4 51 90.8 90.4 
16 26.2 33.1 Max 90.8 90.4 
17 90.8 90.4 Min 6.5 6.3 
18 90.8 90.4 AVRG 85.3 85.3 
19 90.8 90.4 CI High 90.7 90.3 
20 6.5 6.3 CI Low 80.0 80.4 
21 90.8 90.4    
22 90.8 90.4    
23 90.8 90.4    
24 90.8 90.4    
25 90.8 90.4    
26 90.8 90.4    
27 90.8 90.4    
28 90.8 90.4    
29 90.8 90.4    
30 90.8 90.4    
31 90.8 90.4    
32 90.8 90.4    
33 90.8 90.4    
34 90.8 90.4    
35 90.8 90.4    
36 90.8 90.4    
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Table  III.6: Clustering training data and classifying testing data when applying our proposed solution. 

Run Accuracy F1-Score Run Accuracy F1-Score 
1 92.1 91.8 37 92.1 91.8 
2 92.1 91.8 38 92.1 91.8 
3 92.1 91.8 39 92.1 91.8 
4 92.1 91.8 40 92.1 91.8 
5 25.9 32.6 41 92.1 91.8 
6 92.1 91.8 42 92.1 91.8 
7 92.1 91.8 43 92.1 91.8 
8 92.1 91.8 44 92.1 91.8 
9 92.1 91.8 45 92.1 91.8 
10 92.1 91.8 46 92.1 91.8 
11 92.1 91.8 47 92.1 91.8 
12 92.1 91.8 48 92.1 91.8 
13 92.1 91.8 49 92.1 91.8 
14 92.1 91.8 50 92.1 91.8 
15 92.1 91.8 51 92.1 91.8 
16 92.1 91.8 52 92.1 91.8 
17 92.1 91.8 53 92.1 91.8 
18 92.1 91.8 54 92.1 91.8 
19 92.1 91.8 55 92.1 91.8 
20 92.1 91.8 56 92.1 91.8 
21 92.1 91.8 57 92.1 91.8 
22 92.1 91.8 58 92.1 91.8 
23 92.1 91.8 59 92.1 91.8 
24 92.1 91.8 60 92.1 91.8 
25 92.1 91.8 61 92.1 91.8 
26 92.1 91.8 62 27.5 34.6 
27 92.1 91.8 63 92.1 91.8 
28 92.1 91.8 64 92.1 91.8 
29 92.1 91.8 65 25.9 32.6 
30 92.1 91.8 66 92.1 91.8 
31 27.5 34.6 67-96 92.1 91.8 
32 92.1 91.8 Max 92.1 91.8 
33 92.1 91.8 Min 25.9 32.6 
34 92.1 91.8 AVRG 89.3 89.4 
35 92.1 91.8 CI High 92.0 91.8 
36 92.1 91.8 CI Low 86.7 87.0 
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Appendix IV  

EXPERIMENT RESULTS: 

OPEN DOMAIN TARGETED SENTIMENT ANALYSIS 

This appendix includes all details of experiment results that are illustrated in chapter 11 

for open domain targeted sentiment analysis. 

Table  IV.1: Semi-supervised learning with dynamic feature generation using English data when labeling 
ratio=25%. 

Fold Model Err C Obs 
# 

Pred 
# 

NER SA 
P R F1 P R F1 

1 Super 76.42 11 347 298 61.74 53.03 57.05 42.62 36.6 39.38 
Semi     347 315 61.59 55.91 58.61 43.81 39.77 41.69 

2 Super 75.94 11 324 259 64.86 51.85 57.63 44.02 35.19 39.11 
Semi     324 277 61.73 52.78 56.91 42.24 36.11 38.94 

3 Super 73.58 11 346 265 65.66 50.29 56.96 43.77 33.53 37.97 
Semi     346 263 65.02 49.42 56.16 44.87 34.1 38.75 

4 Super 76.42 1 318 174 64.37 35.22 45.53 49.43 27.04 34.96 
Semi     318 168 67.86 35.85 46.91 51.79 27.36 35.8 

5 Super 73.58 11 346 265 65.66 50.29 56.96 43.77 33.53 37.97 
Semi     346 263 65.02 49.42 56.16 44.87 34.1 38.75 

6 Super 75.47 11 319 249 62.25 48.59 54.58 42.17 32.92 36.97 
Semi     319 290 58.62 53.29 55.83 40.34 36.68 38.42 

7 Super 75.0 1 309 162 68.52 35.92 47.13 50.62 26.54 34.82 
Semi     309 173 70.52 39.48 50.62 50.29 28.16 36.1 

8 Super 72.64 11 320 262 67.94 55.63 61.17 51.53 42.19 46.39 
Semi     320 263 67.68 55.63 61.06 51.33 42.19 46.31 

9 Super 76.42 11 346 307 62.21 55.2 58.5 41.04 36.42 38.59 
Semi     346 312 63.14 56.94 59.88 43.59 39.31 41.34 

10 Super 75.94 11 319 255 64.31 51.41 57.14 46.67 37.3 41.46 
Semi     319 271 61.62 52.35 56.61 45.02 38.24 41.36 
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Table  IV.2: Semi-supervised learning with dynamic feature generation using English data when labeling 
ratio=50%. 

Fold Model Err C Obs 
# 

Pred 
# 

NER SA 
P R F1 P R F1 

1 Super 76.42 21 347 304 64.47 56.48 60.22 46.05 40.35 43.01 
Semi     347 311 65.92 59.08 62.31 47.91 42.94 45.29 

2 Super 74.06 21 324 274 68.25 57.72 62.54 46.72 39.51 42.81 
Semi     324 286 67.83 59.88 63.61 46.85 41.36 43.93 

3 Super 71.7 11 346 241 63.07 43.93 51.79 43.57 30.35 35.78 
Semi     346 259 63.71 47.69 54.55 47.1 35.26 40.33 

4 Super 73.58 11 318 249 65.06 50.94 57.14 49.8 38.99 43.74 
Semi     318 255 65.1 52.2 57.94 49.41 39.62 43.98 

5 Super 74.53 11 340 250 67.2 49.41 56.95 50.0 36.76 42.37 
Semi     340 263 66.16 51.18 57.71 49.43 38.24 43.12 

6 Super 70.28 11 319 247 67.61 52.35 59.01 50.2 38.87 43.82 
Semi     319 284 63.03 56.11 59.37 45.77 40.75 43.12 

7 Super 71.23 11 309 225 64.89 47.25 54.68 47.11 34.3 39.7 
Semi     309 218 67.43 47.57 55.79 49.54 34.95 40.99 

8 Super 73.11 11 320 235 72.34 53.12 61.26 57.45 42.19 48.65 
Semi     320 235 72.34 53.12 61.26 58.3 42.81 49.37 

9 Super 74.06 11 346 267 70.04 54.05 61.01 47.57 36.71 41.44 
Semi     346 258 70.54 52.6 60.26 48.45 36.13 41.39 

10 Super 73.11 41 319 279 61.65 53.92 57.53 40.14 35.11 37.46 
Semi     319 283 62.19 55.17 58.47 40.64 36.05 38.21 

 

Table  IV.3: Semi-supervised learning with dynamic feature generation using English data when labeling 
ratio=75%. 

Fold Model Err C Obs 
# 

Pred 
# 

NER SA 
P R F1 P R F1 

1 Super 71.7 31 347 300 68.67 59.37 63.68 48.0 41.5 44.51 
Semi     347 306 67.97 59.94 63.71 47.39 41.79 44.41 

2 Super 70.75 11 324 231 71.43 50.93 59.46 52.81 37.65 43.96 
Semi     324 251 70.92 54.94 61.91 54.18 41.98 47.3 

3 Super 69.34 31 346 250 66.0 47.69 55.37 49.6 35.84 41.61 
Semi     346 264 65.15 49.71 56.39 49.62 37.86 42.95 

4 Super 74.06 11 318 233 68.67 50.31 58.08 53.22 38.99 45.01 
Semi     318 228 70.18 50.31 58.61 53.51 38.36 44.69 

5 Super 71.7 21 340 253 66.4 49.41 56.66 50.59 37.65 43.17 
Semi     340 239 66.95 47.06 55.27 51.46 36.18 42.49 

6 Super 68.87 21 319 249 68.67 53.61 60.21 49.0 38.24 42.96 
Semi     319 243 68.72 52.35 59.43 51.44 39.18 44.48 

7 Super 69.34 21 309 230 65.65 48.87 56.03 49.13 36.57 41.93 
Semi     309 242 65.29 51.13 57.35 49.17 38.51 43.19 

8 Super 71.23 21 320 235 74.47 54.69 63.06 58.72 43.13 49.73 
Semi     320 270 69.63 58.75 63.73 56.3 47.5 51.53 

9 Super 70.75 11 346 254 71.26 52.31 60.33 47.64 34.97 40.33 
Semi     346 259 70.27 52.6 60.17 48.65 36.42 41.65 

10 Super 70.75 31 319 241 68.05 51.41 58.57 46.89 35.42 40.36 
Semi     319 258 67.05 54.23 59.97 46.9 37.93 41.94 
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Table  IV.4: Semi-supervised learning with dynamic feature generation using Spanish data when labeling 
ratio=25%. 

Fold Model Err C Obs 
# 

Pred 
# 

NER SA 
P R F1 P R F1 

1 Super 70.04 51 677 607 68.2 61.15 64.49 39.87 35.75 37.69 
Semi     677 661 65.66 64.11 64.87 38.58 37.67 38.12 

2 Super 69.98 31 656 566 71.02 61.28 65.79 41.34 35.67 38.3 
Semi     656 578 70.24 61.89 65.8 41.35 36.43 38.74 

3 Super 67.17 51 676 579 71.5 61.24 65.98 42.49 36.39 39.2 
Semi     676 574 71.6 60.8 65.76 42.68 36.24 39.2 

4 Super 70.04 21 641 555 70.27 60.84 65.22 41.62 36.04 38.63 
Semi     641 566 68.73 60.69 64.46 43.11 38.07 40.43 

5 Super 70.63 51 669 561 71.84 60.24 65.53 41.53 34.83 37.89 
Semi     669 589 70.63 62.18 66.14 40.24 35.43 37.68 

6 Super 67.67 71 663 647 61.98 60.48 61.22 36.63 35.75 36.18 
Semi     663 647 61.98 60.48 61.22 36.63 35.75 36.18 

7 Super 68.68 31 651 558 69.18 59.29 63.85 39.25 33.64 36.23 
Semi     651 614 66.78 62.98 64.82 39.25 37.02 38.1 

8 Super 68.97 71 681 673 63.45 62.7 63.07 37.0 36.56 36.78 
Semi     681 752 59.57 65.79 62.53 35.11 38.77 36.85 

9 Super 67.82 21 661 609 64.2 59.15 61.57 35.96 33.13 34.49 
Semi     661 670 62.54 63.39 62.96 35.52 36.01 35.76 

10 Super 68.32 41 675 618 70.06 64.15 66.98 41.26 37.78 39.44 
Semi     675 612 71.57 64.89 68.07 43.3 39.26 41.18 

 

Table  IV.5: Semi-supervised learning with dynamic feature generation using Spanish data when labeling 
ratio=50%. 

Fold Model Err C Obs 
# 

Pred 
# 

NER SA 
P R F1 P R F1 

1 Super 65.95 91 677 572 74.83 63.22 68.53 46.15 39.0 42.27 
Semi   677 611 73.81 66.62 70.03 43.37 39.14 41.15 

2 Super 66.95 71 656 552 74.64 62.8 68.21 42.39 35.67 38.74 
Semi   656 640 69.37 67.68 68.52 41.09 40.09 40.59 

3 Super 66.95 71 676 545 73.76 59.47 65.85 45.87 36.98 40.95 
Semi   676 495 77.98 57.1 65.93 47.88 35.06 40.48 

4 Super 67.24 21 641 507 74.16 58.66 65.51 48.13 38.07 42.51 
Semi   641 568 70.42 62.4 66.17 46.48 41.19 43.67 

5 Super 68.03 21 669 516 77.13 59.49 67.17 50.78 39.16 44.22 
Semi   669 575 74.61 64.13 68.97 48.87 42.0 45.18 

6 Super 65.95 51 663 555 71.89 60.18 65.52 44.14 36.95 40.23 
Semi   663 638 66.14 63.65 64.87 40.91 39.37 40.12 

7 Super 66.95 41 651 515 74.95 59.29 66.21 44.66 35.33 39.45 
Semi   651 523 75.14 60.37 66.95 45.7 36.71 40.72 

8 Super 67.67 101 681 612 70.75 63.58 66.98 42.65 38.33 40.37 
Semi   681 660 67.88 65.79 66.82 41.82 40.53 41.16 

9 Super 67.17 51 661 576 70.14 61.12 65.32 42.19 36.76 39.29 
Semi   661 680 65.0 66.87 65.92 38.97 40.09 39.52 

10 Super 67.03 51 675 576 75.0 64.0 69.06 47.22 40.3 43.49 
Semi   675 595 74.45 65.63 69.76 46.39 40.89 43.46 
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Table  IV.6: Semi-supervised learning with dynamic feature generation using Spanish data when labeling 
ratio=75%. 

Fold Model Err C Obs 
# 

Pred 
# 

NER SA 
P R F1 P R F1 

1 Super 65.95 111 677 578 75.78 64.7 69.8 47.23 40.32 43.51 
Semi     677 577 75.91 64.7 69.86 48.7 41.51 44.82 

2 Super 64.58 131 656 562 75.62 64.79 69.79 46.44 39.79 42.86 
Semi     656 625 72.48 69.05 70.73 44.16 42.07 43.09 

3 Super 64.36 91 676 532 76.32 60.06 67.22 49.44 38.91 43.54 
Semi     676 494 75.71 55.33 63.93 47.57 34.76 40.17 

4 Super 65.3 51 641 516 76.94 61.93 68.63 48.64 39.16 43.39 
Semi     641 562 73.67 64.59 68.83 47.51 41.65 44.39 

5 Super 66.74 91 669 538 76.95 61.88 68.6 48.51 39.01 43.25 
Semi     669 564 79.26 66.82 72.51 50.0 42.15 45.74 

6 Super 63.79 121 663 563 70.69 60.03 64.93 46.0 39.06 42.25 
Semi     663 562 69.93 59.28 64.16 45.55 38.61 41.8 

7 Super 66.31 81 651 538 73.42 60.68 66.44 45.35 37.48 41.04 
Semi     651 512 76.56 60.22 67.41 47.66 37.48 41.96 

8 Super 66.38 101 681 587 73.59 63.44 68.14 47.36 40.82 43.85 
Semi     681 654 69.72 66.96 68.31 45.11 43.32 44.19 

9 Super 63.93 141 661 591 71.24 63.69 67.25 42.13 37.67 39.78 
Semi     661 580 73.1 64.15 68.33 43.62 38.28 40.77 

10 Super 65.3 71 675 552 76.09 62.22 68.46 49.46 40.44 44.5 
Semi     675 546 76.74 62.07 68.63 49.45 40.0 44.23 
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