




©Husam Suwad
2018

iii



Dedication
To my Father and my Mother

To my Wife and my kids Sama, Laya and Issa
To my Brother and my Sisters

To my homeland Halhul
For the spirit of Martyrs

iv



ACKNOWLEDGMENTS

All praise is due to ALLAH, the lord and sustainer of the worlds, for his

countless favour and seeing me this far in life. I appreciate the support and prayers

of my parents all through my life and specially in this work. To my family and

relatives, I say thank you all for being there for me.

My profound gratitude goes to my academic father Dr. Farag Azzedin for

his constructive criticism, guidance, and the assistance he offered me throughout

my thesis journey. I thank all my committee members Prof. Shokri Z. Selim,

Dr. Mohammad Alshayeb, Dr. Moataz Ahmed, and Dr. Marwan Abu-

Amara for their comments and support. Finally, I appreciate the help and efforts

of Mr. Turki Al-hazmi.

My special thanks go to my dear wife, and our children Sama Suwad,

Laya Suwad, and Issa Suwad, for their love, care, understating, patience, and

thoughts throughout the entire Phd program.

To my special friend Mr. Ahmad Azzedin, my friends, and all Shami

Community in KFUPM, I wish you all the best. I would like to Acknowledge

KFUPM for giving me this opportunity.

v



TABLE OF CONTENTS

ACKNOWLEDGEMENT v

LIST OF TABLES xi

LIST OF FIGURES xiii

ABSTRACT (ENGLISH) xv

ABSTRACT (ARABIC) xvi

CHAPTER 1 INTRODUCTION 1

1.1 Attacks Economy Impact . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Need for Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Adaptive Security Life Cycle . . . . . . . . . . . . . . . . . . . . . 7

1.4 Motivation and Research Problem . . . . . . . . . . . . . . . . . . 10

1.5 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 15

CHAPTER 2 SECURITY SPACES 17

2.1 Threats, Vulnerabilities, and Assets . . . . . . . . . . . . . . . . . 17

2.2 Security Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Physical Security Space . . . . . . . . . . . . . . . . . . . 19

2.2.2 Information and Communication Technology Security Space 20

2.2.3 Information Security Space . . . . . . . . . . . . . . . . . . 22

vi



2.2.4 Cyber Security Space . . . . . . . . . . . . . . . . . . . . . 23

2.3 Security Requirements . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Confidentiality . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.3 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.4 Access Control . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.5 Non-Repudiation . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.6 Accountability . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.7 Anonymity . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Security Spaces and Requirements . . . . . . . . . . . . . . . . . . 30

2.5 Security Requirements Classification . . . . . . . . . . . . . . . . 34

2.6 Observations and Remarks . . . . . . . . . . . . . . . . . . . . . . 35

CHAPTER 3 LITERATURE REVIEW 37

3.1 Existing Security Taxonomies . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Requirements-Based Taxonomy . . . . . . . . . . . . . . . 38

3.1.2 Attack-Based Taxonomy . . . . . . . . . . . . . . . . . . . 40

3.1.3 Defense-Based Taxonomy . . . . . . . . . . . . . . . . . . 42

3.2 Recent Development . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Zero-Day Attacks . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Ransomware Attacks . . . . . . . . . . . . . . . . . . . . . 44

3.2.3 Moving Target Defense . . . . . . . . . . . . . . . . . . . . 47

CHAPTER 4 ASSET-BASED SECURITY SYSTEM 50

4.1 Comparing Security Taxonomies . . . . . . . . . . . . . . . . . . . 51

4.2 Asset-Based Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Proposed Security System . . . . . . . . . . . . . . . . . . . . . . 57

4.5.1 Information Collection Phase . . . . . . . . . . . . . . . . 58

4.5.2 Monitoring Phase . . . . . . . . . . . . . . . . . . . . . . . 66

vii



4.5.3 Decision Phase . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.4 Feedback Phase . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Security System Flow Chart . . . . . . . . . . . . . . . . . . . . . 70

CHAPTER 5 ASSET-BASED SECURITY SYSTEM DESIGN 72

5.1 Overall System Architecture . . . . . . . . . . . . . . . . . . . . . 73

5.2 Functional Architecture . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Operational Architecture . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 System Design Validation . . . . . . . . . . . . . . . . . . . . . . 78

CHAPTER 6 EVALUATION ENVIRONMENT 80

6.1 System Specification . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Virtualization Environment . . . . . . . . . . . . . . . . . . . . . 81

6.2.1 QEMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.2 Xen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Binary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3.1 DECAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.2 DRAKVUF . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Selected Environment . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4.1 QEMU and DECAF . . . . . . . . . . . . . . . . . . . . . 85

6.4.2 Xen and DRAKVUF . . . . . . . . . . . . . . . . . . . . . 86

6.5 Evaluation Environment Setup . . . . . . . . . . . . . . . . . . . . 87

6.6 Application Startup Timer . . . . . . . . . . . . . . . . . . . . . . 89

CHAPTER 7 PERFORMANCE EVALUATION 91

7.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 QEMU and DECAF Experiments . . . . . . . . . . . . . . . . . . 93

7.3 DRAKVUF Integration . . . . . . . . . . . . . . . . . . . . . . . . 95

7.4 System Calls Mapping . . . . . . . . . . . . . . . . . . . . . . . . 98

7.4.1 Open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.4.2 View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

viii



7.4.3 Delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.4.4 Rename . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4.5 Write and Save . . . . . . . . . . . . . . . . . . . . . . . . 103

7.4.6 Append . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.4.7 Selected System Calls . . . . . . . . . . . . . . . . . . . . . 107

7.5 Verification and Validation . . . . . . . . . . . . . . . . . . . . . . 107

7.6 Generating Reachability Graph . . . . . . . . . . . . . . . . . . . 112

7.6.1 Direct reachability graph . . . . . . . . . . . . . . . . . . . 112

7.6.2 Indirect reachability graph . . . . . . . . . . . . . . . . . . 113

7.7 Agility of the Security System . . . . . . . . . . . . . . . . . . . . 115

7.8 Agility Against Real-World Ransomware . . . . . . . . . . . . . . 119

7.8.1 Anti Virus Guard . . . . . . . . . . . . . . . . . . . . . . . 119

7.8.2 Asset-Based Security System . . . . . . . . . . . . . . . . . 123

7.8.3 AVG versus Our Security System . . . . . . . . . . . . . . 124

7.9 Security System Overhead . . . . . . . . . . . . . . . . . . . . . . 125

7.9.1 Generated System Calls . . . . . . . . . . . . . . . . . . . 126

7.9.2 System Call Filtering . . . . . . . . . . . . . . . . . . . . . 129

7.9.3 System Security Response Time . . . . . . . . . . . . . . . 130

7.10 Performance Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.11 On the Scalability of the Security System . . . . . . . . . . . . . . 139

7.12 Performance Remarks . . . . . . . . . . . . . . . . . . . . . . . . 141

CHAPTER 8 CONCLUSION AND FUTURE DIRECTION 144

8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.2 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.3 Asset-Based Security System Assumptions . . . . . . . . . . . . . 149

8.4 Asset-Based Security System Limitations . . . . . . . . . . . . . . 150

8.5 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . 152

REFERENCES 153

ix



APPENDIX A INSTALLATION GUIDE 176

APPENDIX B DRAKVUF VERSION 0.4 178

VITAE 181

x



LIST OF TABLES

1.1 Mapping protective measures to the adaptive security life cycle. . 10

2.1 Physical security space. . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 ICT security space. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Information security space. . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Cyber security space. . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Security spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Mapping security requirements to security spaces. . . . . . . . . . 31

2.7 Classification of security requirements. . . . . . . . . . . . . . . . 35

4.1 Comparison of security taxonomies. . . . . . . . . . . . . . . . . . 52

4.2 Integrity: validating the scope of control. . . . . . . . . . . . . . . 64

4.3 Confidentiality: validating the scope of control. . . . . . . . . . . 65

4.4 Availability: validating the scope of control. . . . . . . . . . . . . 66

7.1 Mapping open statement to system calls: without double click. . . 100

7.2 Mapping open statement to system calls: with double click. . . . . 100

7.3 Mapping view statement to system calls. . . . . . . . . . . . . . . 101

7.4 Mapping delete statement to system calls. . . . . . . . . . . . . . 102

7.5 Mapping rename statement to system calls. . . . . . . . . . . . . . 103

7.6 Mapping write and save statements to system calls. . . . . . . . . 105

7.7 Mapping append statement to system calls. . . . . . . . . . . . . 106

7.8 Meaning of system calls. . . . . . . . . . . . . . . . . . . . . . . . 108

7.9 System calls initiated by ransomware.exe for issa.txt. . . . . . . . 111

xi



7.10 Number of NT system calls: monitoring phase. . . . . . . . . . . . 126

7.11 Number of specific NT system calls: monitoring phase. . . . . . . 129

7.12 Response time without file access. . . . . . . . . . . . . . . . . . . 133

7.13 Response time with non-critical file access. . . . . . . . . . . . . . 134

7.14 Response time with critical file access. . . . . . . . . . . . . . . . 136

7.15 Performance ratio for the 6 specific system calls. . . . . . . . . . . 137

7.16 Performance ratio for the NT system calls. . . . . . . . . . . . . . 137

8.1 Comparing Asset-Based and Non-Asset-Based Security Systems. . 148

B.1 Response time Without File Access. . . . . . . . . . . . . . . . . . 179

B.2 Response time when noncritical file accessed. . . . . . . . . . . . . 179

B.3 Response time when critical file accessed. . . . . . . . . . . . . . . 180

xii



LIST OF FIGURES

1.1 Stages of an adaptive security architecture. Adapted from [1]. . . 7

4.1 Asset-based taxonomy. . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Security life cycle: (A) current cycle, (B) proposed cycle. . . . . . 54

4.3 Asset Relationship Example. . . . . . . . . . . . . . . . . . . . . . 55

4.4 The life cycle of system calls. Adapted from [2]. . . . . . . . . . . 58

4.5 Asset based model. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Integrity: indirect assets added to the scope of control. . . . . . . 64

4.7 Confidentiality: indirect assets added to the scope of control. . . . 65

4.8 Availability: indirect assets added to the scope of control. . . . . . 66

4.9 Snapshot from raw system calls. . . . . . . . . . . . . . . . . . . . 68

4.10 Work flow flowchart: after deployment. . . . . . . . . . . . . . . . 71

5.1 Overview of the system architecture. . . . . . . . . . . . . . . . . 73

5.2 Functional architecture design of the proposed security system. . . 75

5.3 Operational architecture before system deployment. . . . . . . . . 77

5.4 Operational architecture after system deployment. . . . . . . . . . 78

6.1 QEMU and DECAF evaluation environment. . . . . . . . . . . . . 86

6.2 Xen and DRAKVUF evaluation environment. . . . . . . . . . . . 87

7.1 Definition of response time. Adapted from [3] . . . . . . . . . . . . 93

7.2 Hooking NtCreateFile. . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3 Monitoring notepad.exe. . . . . . . . . . . . . . . . . . . . . . . . 94

7.4 OBJECT_ATTRIBUTES class. . . . . . . . . . . . . . . . . . . . 95

xiii



7.5 NtCreateFile parameters. . . . . . . . . . . . . . . . . . . . . . . . 96

7.6 Example of standard library. Adapted from [2]. . . . . . . . . . . 99

7.7 Process list generated within and outside the virtual machine. . . 109

7.8 Reading a text file by Notepad. . . . . . . . . . . . . . . . . . . . 113

7.9 Direct reachability graph for reading a text file by Notepad. . . . 113

7.10 Accessing a file by Notepad, WordPad, and MS Paint. . . . . . . . 114

7.11 Direct reachability graph for accessing a file. . . . . . . . . . . . . 115

7.12 File abc.txt is defended against any access from any process. . . . 117

7.13 No process can access the critical asset abc.txt . . . . . . . . . . . 118

7.14 Protection modes in AVG. . . . . . . . . . . . . . . . . . . . . . . 119

7.15 Default protected folders in AVG. . . . . . . . . . . . . . . . . . . 120

7.16 Files customization in AVG. . . . . . . . . . . . . . . . . . . . . . 120

7.17 Blocked/ Non-Blocking in AVG. . . . . . . . . . . . . . . . . . . . 121

7.18 AVG pop-up menu. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.19 AVG anti virus response. . . . . . . . . . . . . . . . . . . . . . . . 122

7.20 Windows response. . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.21 AVG ransomware protection response. . . . . . . . . . . . . . . . 123

7.22 Crypto-ransomware encrypting all but the two critical files. . . . . 125

7.23 Sample of generated system calls. . . . . . . . . . . . . . . . . . . 127

7.24 System calls generated by an application in different scenarios. . . 128

7.25 Selected system calls grouped by system call. . . . . . . . . . . . . 130

7.26 Selected system calls grouped by application. . . . . . . . . . . . . 131

7.27 Sample of AppTimer generated log file. . . . . . . . . . . . . . . . 131

7.28 Performance ratio for the NT system calls. . . . . . . . . . . . . . 138

7.29 Performance ratio for the 6 specific system calls. . . . . . . . . . . 139

7.30 Linux Dom0 and the 4 Windows VMs. . . . . . . . . . . . . . . . 140

7.31 Running Multiple VMs. . . . . . . . . . . . . . . . . . . . . . . . 140

7.32 Utilization of guests CPUs. . . . . . . . . . . . . . . . . . . . . . . 141

xiv



THESIS ABSTRACT

NAME: HUSAM ISSA MOHAMMAD SUWAD

TITLE OF STUDY: BREAKING THE SECURITY VICIOUS CYCLE: AN

ASSET-BASED APPROACH

MAJOR FIELD: COMPUTER SCIENCE AND ENGINEERING

DATE OF DEGREE: May, 2018

This thesis argues that the trend of constantly chasing and changing attack vectors
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 يتصدرون والمدافعون يتعلمونالمهاجمون ية الحلقة المفرغة التي يقودها المهاجمون. استمرار الذي ساهم في

 هذا النموذج يحتاج الى التغيير. تقترح هذه الرسالة نظام امن قائم على الاصول حيث يقوم خبراء ,منهم
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انفسنا في بناء الانظمة بدون الحاجة لمعرفة اي معلومة من المهاجم. بهذه الطريقة سيكون المدافعون هم 
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ف من حدة فيالتي تم الحصول عليها واعدة وتشير إلى أن نموذجنا الأولي سوف يحقق هدفه المتمثل في التخ

 الهجمات على أساس المعلومات المقدمة من المدافع فقط.

 

 



CHAPTER 1

INTRODUCTION

Valuable information and data need security solutions to stay out of reach of

attackers. In spite of continuous security solutions, attackers are still capable

of penetrating security systems causing damage to valuable data and affecting

economy impact [4] [5] [6] [7]. Each time security systems are penetrated, a patch

is needed to be placed to prevent the attackers from reaching valuable data [5].

This cycle cannot continue and a solution with new approach must be presented

to break this cycle.

The first step in building a security solution is to decide what needs to be

protected, which we will refer to as an asset. Assets can be any valuable resource

to the asset owner and can span over employee data, intellectual property, bank

accounts, and so forth. It is then up to the asset owner to decide on the security

requirements that need to be protected by the security system. As such, security

solutions are necessary to meet organization needs. Organizations basically need

to protect their assets. This is not enough for the organization as it needs to
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determine the value or the importance of these assets. The organization should

consider scenarios in which these assets are lost, stolen, compromised or corrupted.

As such, what is needed is to place a value in terms of time and money on each

category identified as valuable.

We start this chapter by section 1.1. Here, we highlight security attacks and

their economy impact, while section 1.2 elaborates on the continuous need for se-

curity systems. Section 1.3 identifies in details security stages. In section 1.4, we

explain the research problem and what motivated us to write this thesis. Objec-

tives of the thesis are outlined in section 1.5 while section 1.6 discusses the thesis

contributions. We present the organization of the thesis in section 1.7.

1.1 Attacks Economy Impact

During the first half of 2012, Hotmail, Azure, SkyDrive, MSN, Office 365, and

Twitter experienced an outage for few hours [8] and during the second half of 2012,

attacks targeted GoGrid [8], Dropbox [9] and Saudi Aramco [9]. Furthermore, a

virus, identified later as Stuxnet, sabotaged centrifuges for uranium enrichment

plant located in Iran. The attackers first infected five companies by targeting their

computers. These companies are believed to be connected to the Iranian nuclear

site. The Iranian attack is believed to spread through USB flashes [10] [11] [12],

exploiting four zero-day vulnerabilities. Sony's PlayStation network, Epsilon, as

well as Stratfor [8] were hit by a data breach attack in 2011. Year 2009 was no

exception, Bit Bucket's server (which belongs to Amazon EC2 Cloud) went down

2



for 19 hours [8].

Two of the top ten attacks for 2014 listed in [13] compromised Gmail where

five million passwords were exposed. An attack also hit eBay compromising 145

million user accounts. Educational institutions are also targets for security attacks

[14]. Attacks hit Harvard University and Penn State University causing leakage

of students and faculty information [15]. In 2016, Kaspersky lab was also one

victim hit by Duqu 2.0 attack [15]. Cellebrite, a company that helped the FBI to

break the protection on a terrorist’s locked iPhone [16], was also hacked and its

products were publicly distributed. At the end of 2016, Shamoon 2 attack [17]

came back with new features since its appearance in 2012. This time, it achieved

its maximum damage to the oil sector in the Gulf area by overwriting the master

boot records and wiping entire hard disks.

Most of the damages come from zero-day attacks and ransomware malware.

A zero-day attack is an undisclosed vulnerability that hackers can exploit to ad-

versely affect computer programs [18]. A typical zero-day attack can last 10

months on average and can infect huge number of nodes. In a zero-day attack, at-

tackers target one or more security requirements of one or more assets. Attackers

change their attack vector in order to hide their behavior and avoid systematic

antivirus software [19]. Saudi Aramco was a victim of a zero-day attack in 2012.

These attacks stole usernames and passwords to access users accounts and infect

more than 30,000 Aramco workstations [9] [20]. Ransom malware is a type of

malicious software that blocks access to data or threatens to publish it unless a
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ransom is paid [21]. CryptoLocker, CryptoWall, WannaCry, Jigsaw, TeslaCrypt,

Bad Rabbit, and Petya are examples of famous and recent ransom malware [4].

A study done by Ponemon Institute [17] shows that business loss due to zero-

day attacks continues to climb by 19% and shows the average annual loss to

companies worldwide exceed 7.7 million dollars per company [22]. The average

data breach costs U.S. organizations approximately 6.5 million dollars [23]. An-

other study conducted in 2013 and is based on a sample of 252 organizations in

seven countries, concluded that 87% of small companies and 93% of large com-

panies reported some zero-day breaches [24]. Furthermore, the UK Government

estimated zero-day attacks will cost 27 billion Pounds per year.

One of the most famous and recent computer zero-day ransomware is Cryp-

toLocker [25] which costed 30 million dollars in 100 days with 500,000 victims,

with speculation that at least 0.4% of CryptoLocker victims end up paying the

ransom [26]. Another damaging incident is WannaCry [27] spreading in at least

150 countries costing an estimated losses that could reach 4 billion dollars [28].

1.2 Need for Security

As we move forward towards the ever increasing importance and continuous use

of data-age technology, security projects are becoming the primary focus for many

practitioners and research groups. A focus research group in Oxford University

[29] directs their research to find security solutions to insider threats initiated

directly from employees. Products [30] such as TRITON APX, TRITON AP-
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EMAIL, TRITON AP-WEB, TRITON AP-DATA and TRITON AP-ENDPOIN

are available to end users as content management solutions.

One of the lead companies in security and anti-virus solutions [31] conducts

a yearly cyber security competition to nurture the interest of talented people

and to raise users’ awareness for cyber security. Security solutions, such as the

ones offered by Optilab [32] designed to handle eavesdroppers and other security

threats, identify legitimate users by applying screen protection using cameras. If

the user is not identified, then the screen becomes blurry to protect the information

and the intruder photo is captured.

The United States Department of Homeland Security (DHS) [33], targeting to

achieve it’s core mission, is employing more than 240, 000 individuals in security

related sectors such as border and aviation security, emergency response, chemical

facility inspection, and cyber-security analysis. With securing cyberspace, DHS

funds a wide variety of cyber-security projects aiming at improving security in

federal and global networks. Some of these cyber-security projects are anony-

mous networks & currencies, critical infrastructure design and adaptive resilient

systems, and cyber-security forensics.

Helping victims of ransomware attacks to retrieve their original data by de-

crypting the files without paying the ransom to cyber criminals, was the main

idea behind establishing a website called www.nomoreransom.org. This is an ini-

tiative by the national high technology crime unit of the Netherlands’ police,

Europol’s European cybercrime centers, Kaspersky, and McAfee [34]. The es-
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tablished websites offer decryption tools to decrypt victim files hit by any ran-

somware listed on the websites, which are updated each time a new ransomware

is discovered. The list of ransomware include LAMBDALOCKER, NEMUCO-

DAES, MACRANSOM, JAFF, ENCRYPTILE, AMNESIA, AMNESIA2, MOLE,

BTCWARE, CRY128, CRY9, and CRYPTON. If a victim was hit by an unknown

ransomware, the victim needs to only upload a sample of the encrypted files to

the website where these infected files will be scanned to classify the type of ran-

somware. Once the ransomware is identified, a solution is provided.

Academics and researchers [19] [35] [36] are working to establish more secure

environments and reduce the big losses resulting from such attacks. Researchers

and academics started by surveying the existing attacks and collecting informa-

tion to know the power of these attacks and what damage they can cause [35].

Others studied the attack stages [37] to establish patterns of behavior in order

to match them to avoid and capture future attacks. As such, models can be

established to recognize and predict normal patterns or behavior and therefore

capture abnormalities. In [36] and [19] current attack solutions offered by com-

panies were assessed and innovative strategies were introduced to countermeasure

such attacks.

There is no doubt that security-related incidents are increasing. Specifically,

securing systems against attacks are surely needed and therefore a security solution

must be put in place to ensure that such attacks are prevented and countermea-

sured [37].
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1.3 Adaptive Security Life Cycle

Adaptive security architectures were recently proposed by [1] [38] [39] to illus-

trate the four stages in any adaptive security architecture as illustrated in Figure

1.1. Benefits of an adaptive approach to security include reducing the overhead

in terms of time and resources as well as empowering security teams and en-

gaging them in worthwhile activities that will limit serious damage and protect

against advanced threats. Adaptive security architectures suggest four stages to

the adaptive security life cycle:

Figure 1.1: Stages of an adaptive security architecture. Adapted from [1].

• Prevent: In this stage, known attacks are blocked before they create damage.

• Defect: In this stage, detection tools will reduce the impact of attacks,

propagated from the “Prevent” stage, by limiting the time these attacks

have to act on a system.
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• Respond: This stage investigates any security issues that are discovered in

the previous two stages. This will help avoid a recurrence of the same attack.

• Predict: In this stage, technology will be used to anticipate potential threats.

Protective measures may involve one or a combination of deterrence, avoid-

ance, prevention, detection, recovery, and correction that should form part of the

enterprise's security approach [40]. In addition, the term security has been defined

by many researchers. In [40], security is defined as “A condition that results from

the establishment and maintenance of protective measures that enable an enter-

prise to perform its mission or critical functions despite risks posed by threats to

its use of information systems”. Security is defined also as “A discipline concerned

with protecting networks and computer systems against threats such as hacking

exploits, malware, data leakage, spam and Denial of Service (DoS) attacks, as well

as ensuring trusted access through mechanisms such as IPsec or SSL” [41]. Fur-

thermore, resiliency is the ability to quickly adapt and recover from any known or

unknown changes to the environment through holistic implementation of risk man-

agement, contingency, and continuity planning. Similar definition for resiliency

states that it is stated in the ability to continue to: (a) operate under adverse

conditions or stress, even if in a degraded or debilitated state, while maintain-

ing essential operational capabilities; and (b) recover to an effective operational

posture in a time frame consistent with mission needs.

From the definitions of security and resiliency, we notice that there are threats,

assets, and protection systems. Threats can cause possible harm and therefore
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they are dangerous if they can penetrate to our assets through exploiting a vul-

nerability. The role of the protection system is either deterrence, avoidance, pre-

vention, detection, recovery, or correction. These terms are defined in [40] [42] as

follows:

• Deterrence is reducing an intelligent threat by discouraging action, such as

by fear or doubt.

• Avoidance is reducing a risk by either reducing the value of the potential

loss or reducing the probability that the loss will occur.

• Prevention is impeding or thwarting a potential security violation by de-

ploying a countermeasure.

• Detection is determining that a security violation is impending, is in

progress, or has recently occurred, and thus make it possible to reduce the

potential loss.

• Recovery is restoring a normal state of system operation by compensating

for a security violation, possibly by eliminating or repairing its effects.

• Correction is changing a security architecture to eliminate or reduce the

risk of re-occurrence of a security violation or threat consequence, such as

by eliminating a vulnerability.

From the above definitions, we notice that resiliency deals with recovery and

correction. That is, resiliency comes into existence after detecting an attack [40]
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[42]. Resiliency is launched after a security breach is detected. Some sub-areas

of resiliency include positive network control, threat mitigation and incident han-

dling and forensics [43]. In [44], authors classify some resilience techniques as

proactive and reactive. Some of proactive techniques are segmentation, isolation,

randomness, and distribution. While reactive techniques include deception, dy-

namic reconfiguration and dynamic composition [44].

As a summary of the subsection, we leave the reader with a summary as

illustrated in Table 1.1. This Table maps protective measures to the adaptive

security life cycle.

Table 1.1: Mapping protective measures to the adaptive security life cycle.

Security Adaptive Security Life Cycle Stages
Protective Prevent Defect Respond Predict
Measure

Deterrence
Avoidance
Prevention
Detection
Recovery
Correction

1.4 Motivation and Research Problem

Undoubtedly, the growing rate of security incidents and cost show that current

security solutions cannot stop the sophistication and complexity of attacks [18]

[37]. This is evident by the fact that virus scan programs always need to be

updated. Widely used devices can be a source of complex and sophisticated

attacks. For example, mobile devices can be used as an attack source, an attack
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target or part of an attack [45]. Furthermore, there is a vicious cycle between

attackers and defenders, which is evident by the fact that virus scan programs

always need to be current. This security phobia is the drive behind the efforts put

forwards by academics and researchers to deal with security attacks to achieve

more secure environments, and indirectly reduce big losses resulting from such

attacks [46] [1] [38] [39].

Traditional security solutions are detection-oriented and rely on information

coming from the attacker. Traditional prevention and detection methodologies,

like deploying antivirus software, IDS/IPS and firewalls, have become less effec-

tive. These detection systems rely on history to catch attacks, but the more

history an organization has enabled, the more performance degradation. Further-

more, detection systems are seen as offering a temporary solution [19] because we

cannot defend against all attacks. That is, if a new attack comes, history-matching

will fail and behavior monitoring success will depend on how close the new at-

tack’s behavior is to the old attacks’ behavior. As a result, the giant Symantec

Corporation has announced that anti-virus is dead [19].

In order to stay ahead of attacks, organizations must keep away from predictive

and reactive approaches. Attack-based taxonomies classify existing attacks to

inform us of possible attacks one can expect. On the other hand, defense-based

taxonomies determine suitable defense solutions for specific attacks. What is

needed is a passive and proactive approach that provides protection against known

and unknown attacks without the need for constant patches.
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In attack-centric taxonomies, the analysis is done based on the attacker per-

spective. For instance, those taxonomies use the attack vector which considers

the goal of the attack. If the attacker targets file integrity, which is not achieved

but the attacker managed to harm the availability of the system, this is not con-

sidered from the attacker point of view [18]. To countermeasure such an attack, a

defender does not really know which security requirements nor which assets were

the target of the attacker.

All of the above motivated us to study security from an asset perspective

resulting in defense mechanisms with the following characteristics (a) asset owner

view point, (b) proactive approach, and (c) defending assets.

Furthermore, an asset-based approach will clearly draw the boundaries be-

tween the various security spaces. As it is, security is spread across a spectrum

of security prefixes coining security terms that include “physical security”, “infor-

mation security”, “data security”, “cyber security”, and other additional terms of

security. Currently, there are various definitions and interpretations to these terms

that are either used interchangeably, overlapping, conflicting, or vague. Cyber se-

curity is defined in [40] as “Measures taken to protect a computer or computer sys-

tem (as on the Internet) against unauthorized access or attack”, while information

security is defined in [29] [40] as “The protection of information and information

systems from unauthorized access, use, disclosure, disruption, modification, or

destruction in order to provide confidentiality, integrity, and availability”. These

two definitions are similar and as a result authors use information security and cy-
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ber security interchangeably. Cyber security is defined in [41] as “The protection

of cyberspace itself, the electronic information, the information communication

technology (ICT) that support cyberspace, and the users of cyberspace in their

personal, societal and national capacity, including any of their interests, either

tangible or intangible, that are vulnerable to attacks originating in cyberspace”.

Furthermore, terms such as “data security” and “information security” are used

almost interchangeably. Data security is defined in [29] [40] as “Protection of data

from unauthorized (accidental or intentional) modification, destruction, or disclo-

sure”. This definition is very similar to information security making the whole

security spectrum vague in definition with no clear boundaries.

In this thesis, we argue that the failure of current security solutions is the result

of the attacker leading the security game. Defenders are followers and defense

systems are built by defenders based on solicited input from the attacker. After

the defender collects the input and builds its defense system, the attacker changes

its attack vector and new defense system needs to be rebuilt and the vicious cycle

continues. As such, current security solutions have several drawbacks: (a) provide

solutions incapable of detecting unknown attacks, and (b) provide solutions that

use predictive or reactive strategies.

This thesis proposes to change the security game such that the game will be

led by defenders. This is the natural way to play such a game because the defender

knows exactly its assets, knows exactly its security requirements, and what are

the consequences of violating these security requirements. Therefore, the defender
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can build a defense system based on information it owns not solicited nor given

by the attacker.

1.5 Thesis Objectives

The goal of this thesis is to design and implement an asset-based security system.

Specific thesis objectives are:

1. To study and classify the current security systems.

2. To study the relationship between critical assets, security requirements and

security spaces.

3. To investigate and identify the strength and weakness of existing security

taxonomies.

4. To design a taxonomy based on defending assets rather than defending

against attacks.

5. To design and implement an asset-based security system.

1.6 Thesis Contributions

Our proposed security system has the following characteristics (a) relies only on

information from the defender, (b) defending assets rather than defending against

attacks, (c) proactive and (d) passive. The proposed security system relies on
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information supplied by the assets’ owner. Therefore, our system discovers at-

tacks based on information solicited by the defender. As such, the monitoring

is not done to discover nor prevent attacks based on attack vectors nor attack

behaviors. Since the proposed approach defends assets, it is generic and is not

tailored to a set of attacks. Furthermore, the proposed approach is proactive that

involves anticipating violations in advance of their actual occurrence and making

appropriate organizational shifts in its response. Finally, our approach is passive

since it works at the hypervisor-level. More importantly, it is transparent to the

guest operating systems making it difficult for running processes to detect if they

are being monitored.

We envision that our proposed asset-based approach will have the following

contributions:

1. Draws clear boundaries between the various security spaces.

2. Enables asset defense solutions.

3. Enables proactive defense solutions.

4. Enables passive defense solutions.

1.7 Thesis Organization

There is no doubt that security issues are on the rise and defense mechanisms

are becoming one of the leading subjects for academic and industry experts. In

this thesis, we focus on the security domain and suggest a new way of looking at
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the security life cycle. We also discuss the problem statement and our motivation

to solve the problem. The remainder of this thesis is organized as follows. For

clarity and completeness purposes, chapter 2 outlines the existing definitions of

various security spaces as well as security requirements. The literature review is

outlined in chapter 3. In chapter 3, we survey the existing security requirements

taxonomies, security attack taxonomies as well as security defense taxonomies.

Chapters 2 and 3 lay down the ground for the proposed work in this thesis. We

propose an asset-based taxonomy in chapter 4 and a methodology to achieve our

goals of this thesis. Chapter 5 presents the proposed asset-based security model,

while chapter 6 describes the evaluation environment needed to do the perfor-

mance evaluation, and chapter 7 outlines in details the performance evaluations.

Finally, chapter 8 concludes the thesis and envisions future directions.
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CHAPTER 2

SECURITY SPACES

In any security domain there exists assets, security requirements, attackers and

defenders. Attackers exploit vulnerabilities and target one or more security re-

quirements of one or more assets. These attacks are mitigated by safeguards and

defenses [47]. We start this chapter by defining threats, vulnerabilities, and assets.

We follow up with few sub-sections looking at the various security spaces, security

requirements. We also link security requirements to security spaces. We conclude

this chapter by drawing our observations and remarks.

2.1 Threats, Vulnerabilities, and Assets

External or internal malicious actions usually target a quality or state that is ex-

posed. The nature of being exposed renders a system state to be defendless. Ma-

licious actions’ goal is to harm assets and this is achieved by penetrating through

system weaknesses. In this section we shed some light on these three important

components of any security system, namely targets or assets, aggressive actions
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or threats against the target, and weaknesses or vulnerabilities.

Assets are defined in [42] as “A system resource that is (a) required to be pro-

tected by an information system's security policy, (b) intended to be protected

by a countermeasure, or (c) required for a system’s mission”. In the content

of information security, computer security and network security, an asset is de-

fined as “any data, device, or other component of the environment that supports

information-related activities. Assets generally include hardware (e.g. servers and

switches), software (e.g. mission critical applications and support systems) and

confidential information” [48]. Assets should be protected from illicit access, use,

disclosure, alteration, destruction, and/or theft, resulting in loss to the organi-

zation. Therefore, assets are necessary for systems to achieve their functionality

and there must be a security system to protect these assets.

Vulnerabilities on the other hand, are defined as “the intersection of a system

susceptibility or flaw, attacker access to the flaw, and attacker capability to exploit

the flaw” [48]. To exploit a vulnerability, an attacker must use applicable tool or

technique that can utilize a system weakness. Therefore, vulnerabilities are also

known as the attack surface. In [42] authors define vulnerability as “A flaw or

weakness in a system’s design, implementation, or operation and management

that could be exploited to violate the system’s security policy”. The vulnerability

in a system can be in design, specification, in implementation, or in operation and

management [42].

Finally, threats are defined as “any circumstance or event with the potential to
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adversely impact organizational operations (including mission, functions, image,

or reputation), organizational assets, or individuals through an information sys-

tem via unauthorized access, destruction, disclosure, modification of information,

and/or denial of service. Also, the potential for a threat-source to successfully

exploit a particular information system vulnerability” [49].

2.2 Security Spaces

2.2.1 Physical Security Space

One of the most essential and prominent security spaces is physical security space.

Physical security is defined in [50] as “The protection of personnel, hardware, pro-

grams, networks, and data from physical circumstances and events that could

cause serious losses or damage to an enterprise, agency, or institution. This

includes protection from fire, natural disasters, burglary, theft, vandalism, and

terrorism”. Also, physical security is defined in [51] as “The protection afforded

to an automated information system in order to attain the applicable objectives

of preserving the integrity, availability, and confidentiality of information system

resources (includes hardware, software, firmware, information, data, and telecom-

munications)”. Another definition of physical security [52] is “That part of secu-

rity concerned with physical measures designed to safeguard personnel; to prevent

unauthorized access to equipment, installations, material, and documents; and to

safeguard against espionage, sabotage, damage, and theft”.
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From these definitions, we notice that despite what is the target, if there is

a physical contact then the whole attack fits in the physical security space. An

example is given in [32] where a program called “Private Eye” was designed to

handle eavesdroppers and physical security threats by applying screen protection

to identify legitimate users. If the user is not identified, then the monitor gets

blurry to protect data and the intruder photo is captured. Other examples repre-

senting physical attacks [51] are the cases of losing laptops and the other physical

devices.

Table 2.1 shows the threats, vulnerabilities, and assets involved in the phys-

ical space. Threats are various and can be cutting network cables or stealing a

laptop. Vulnerabilities must be physical. Examples of such vulnerabilities are

malfunctioning monitoring system or bypassing security guards. Finally, the goal

of a physical attack is to target a physical entity that can be a human, building,

or a device.

Table 2.1: Physical security space.

Security Component
space Threats Vulnerabilities Assets

Physical Various Physical circumstances Physical entity

2.2.2 Information and Communication Technology Security

Space

Before defining information and communication technology security space, we

have to differentiate between information and information technology. In [53] in-
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formation is defined as “information can take on many forms. It can be printed or

written on paper, stored electronically, transmitted by post or electronic means,

shown on films, conveyed in conversation, and so forth”. It seems that there

are two parts of information namely, electronic and non-electronic. We will re-

fer to electronic information as e-information, and t-information to refer to non-

electronic information or traditional information.

E-information must be stored, transmitted, and processed by technology, this

is called information communication technology (e-ICT) as defined in [53]. On

the other hand, storing or transmitting t-information, traditional technology or

non-electronic technology must be used, which will refer to as t-information com-

munication technology (t-ICT). So whenever we use ICT security space we mean

the space in general and when we need to distinguish between them we will use

either e-ICT or t-ICT.

ICT is defined as “all aspects relating to defining, achieving and maintaining

the confidentiality, integrity, availability, non-repudiation, accountability, authen-

ticity, and reliability of information resources” [53]. It should be noted that the

protection of information can be extended to the underlying information resources

which is ICT, and that information security depends mostly on ICT security. An

example of ICT security space attack is given in [9] [20], when a virus sabotaged

30,000 workstations and destroyed hard disks. Another example of ICT security

space attack is when an attacker gains access to a system because of insufficient

authentication, insufficient validation, or insufficient password strength. The at-
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tacker here can take control of the system or initiate another attack vector.

Table 2.2 shows both e-ICT and t-ICT security spaces and draws the difference

between these two security spaces using threats, vulnerabilities and assets. Assets

are the targets need to be protected from various threats exploiting vulnerabilities.

Table 2.2: ICT security space.

Security Component
space Threats Vulnerabilities Assets
t-ICT Various t-ICT t-ICT
e-ICT Various e-ICT e-ICT

2.2.3 Information Security Space

Information is composed of two parts e-information and t-information with their

own vulnerabilities. E-information vulnerability come from e-ICT, and similarly

t-information vulnerability comes from t-ICT. Table 2.3 shows the threats, vul-

nerabilities, and assets of the information security space.

Table 2.3: Information security space.

Security Component
space Threats Vulnerabilities Assets

Information Various t-ICT, e-ICT Information

Information security space is ensuring safety and protection of information

from illegal access. Authors in [53] defined information security as “the protection

of information and its critical elements, including the systems and hardware that

use, store, and transmit that information”. It is obvious that systems and infras-

tructures play an important role in the information security process. According
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to [8], May 13th 2011 is the date of the 2nd largest online data breach in the

US. This breach is an information security space attack where attackers exploited

computer systems through vulnerabilities such as misconfiguration, kernel flaws,

design flaws or buffer overflow [8] [54] [55].

2.2.4 Cyber Security Space

As we mentioned previously users misuse the term of cyber security and use it

interchangeably with information security. In [53] cyber security is defined as “the

protection of cyberspace itself, the electronic information, the ICTs that support

cyberspace, and the users of cyberspace in their personal, societal and national

capacity, including any of their interests, either tangible or intangible, that are

vulnerable to attacks originating in cyberspace”. Another definition of cyber se-

curityis stated in [56] as “prevention of damage to, protection of, and restoration

of computers, electronic communications systems, electronic communication ser-

vices, wire communication, and electronic communication, including information

contained therein, to ensure its availability, integrity, authentication, confidential-

ity, and nonrepudiation”.

Examples of cyber security attacks [8] include hacking Dropbox facility in

July 2012. Usernames and passwords were stolen and used to access the Dropbox

accounts. As a result, attackers start bullying Dropbox users causing what is

known as cyber terrorism, cybercrime, or cyber espionage [57]. Cyber security

space is considered a complex space because it intersects with many other security
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spaces such as ICT and information. Table 2.4 shows components of a cyber

security attack.

Table 2.4: Cyber security space.

Security Component
space Threats Vulnerabilities Assets
Cyber Various e-information, e-ICT Human

After we clarify the boundaries of the different security spaces, we can see

that penetrating the physical security space can lead to all other security spaces

enabling the attacker to skip some countermeasures in other security spaces. The

attacker later can start a new attack vector in new security space. As such, the

first step always comes from physical or ICT security spaces.

In Table 2.5, we summarize the security spaces. From the Table, assets and

their vulnerabilities must be considered in order to fit an attack to a security space.

Assets alone or vulnerabilities alone cannot correctly classify attacks according to

their security space. This shows us that classifying attacks from defenders point-

view is impossible since vulnerabilities are not known to defenders. As such,

defense systems are seriously hindered by the lack of information about attacks

[58]. This also shows us the importance of assets in mitigating attacks.

Table 2.5: Security spaces.

Space Threats Vulnerabilities Assets
Physical Security Various Physical circumstances Physical entity
e-ICT Security Various e-ICT e-ICT
t-ICT Security Various t-ICT t-ICT
Information Security Various e-ICT, t-ICT Information
Cyber Security Various e-ICT, e-information Humans
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2.3 Security Requirements

Security policies and priorities have become complicated, often ambiguous, and

even inconsistent; not because of immediate threats but rather the unpredictable,

uncertain, and blurring requirements of the security arena [59]. Furthermore, it

is becoming an intricate puzzle for security engineers and architects to develop

meaningful and realistic secure environments. Many taxonomies are introduced

to deal with a single attack, and most of them fail to handle blended attacks [60].

A taxonomy proposed [54], known as AVOIDIT, managed to classify blended

attacks. In [59], a holistic security requirement taxonomy was proposed were

authors surveyed many security requirement papers and classified them in basic

categories.

2.3.1 Confidentiality

Confidentiality is defined in information security as “is the property, that infor-

mation is not made available or disclosed to unauthorized individuals, entities,

or processes”. [61]. Confidentiality might seem similar to “privacy” but in fact

the two terms are different. Rather, confidentially is a component of privacy that

implements to protect our data from unauthorized viewers. Examples of confiden-

tiality of electronic data being compromised include laptop theft, password theft,

or sensitive emails being sent to the incorrect individuals [62].

Therefore, confidentiality is basically a set of rules that limits access to infor-

mation. Formally, [63] defines confidentiality as “the prevention of unauthorized
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disclosure of information”. Another definition is given in [64] “the assurance that

information is not disclosed to unauthorized persons, processes or device”.

2.3.2 Integrity

Integrity is defined in [63] as “the prevention of unauthorized modification of

information”. In [64], authors define integrity as “the quality of an information

system reflecting logical correctness and reliability of an operating system; the

logical completeness of the hardware and software implementing the protection

mechanisms; and the consistency of the data structures and occurrence of the

stored data”. Another definition of integrity [65] states “quality of an information

system reflecting the logical correctness and reliability of the operating system, the

logical completeness of the hardware and software implementing the protection

mechanisms, and the consistency of the data structures and occurrence of the

stored data”. Yet another definition to data integrity is “the state that exists when

computerized data is the same as that in the source documents and has not been

exposed to accidental or malicious alteration or destruction. The property that

data has not been exposed to accidental or malicious alteration or destruction”

[65].

2.3.3 Availability

Availability means expecting to find the entity when the user needs it. In [42], it

is defined as “the property of a system or a system resource being accessible, or
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usable or operational upon demand, by an authorized system entity, according to

performance specifications for the system; i.e., a system is available if it provides

services according to the system design whenever users request them, sure this

property is a different than reliability”. Another definition of availability is given

in [63] is “the prevention of unauthorized withholding of information”. Yet another

definition to availability [64] is “the timely, reliable access to data and information

services for authorized user”.

2.3.4 Access Control

Access control is a vital step in forcing security. In [42], it is defined as “pro-

tection of system resources against unauthorized access”. The same paper gave

another definition to access control as “a process by which use of system resources

is regulated according to a security policy and is permitted only by authorized

entities (users, programs, processes, or other systems) according to that policy”.

A third definition provided in [59] as “limitations on interactions between subjects

and objects in an information system”. Authors in [59] divided access control into

identification, authentication, and authorization.

Other researchers [42] define authentication as composing of two steps namely

identification and verification. Authentication is defined as “the process of ver-

ifying a claim that a system entity or system resource has a certain attribute

value” [42]. Another definition [64] to authentication is “security service designed

to establish the validity of a transmission, message, or originator, or a means of
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verifying an individual's authorizations to receive specific categories of informa-

tion”.

Identification means to recognize a user by the system. In [42], identification

is defined as “an act or process that presents an identifier to a system so that the

system can recognize a system entity and distinguish it from other entities”.

Verification as stated in [42] as “the process of examining information to es-

tablish the truth of a claimed fact or value”. Also in [42], verification is defined

as “the process of comparing two levels of system specification for proper corre-

spondence, such as comparing a security model with a top-level specification, a

top-level specification with source code, or source code with object code”. As

such, verification is presenting authentication information that acts as evidence.

This evidence proves the binding between the attribute and that for which it is

claimed. Authorization is giving permission or privilege to users after being au-

thenticated. Basically, authorization is an approval granted to an entity to access

resource.

2.3.5 Non-Repudiation

In [42], non-repudiation is defined as “a security service that provide protection

against false denial of involvement in an association (especially a communication

association that transfers data)”. For example, two separate types of denial are

possible. An entity can deny that it sent a data object, or it can deny that it

received a data object. Therefore, two separate types of non-repudiation service
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are possible. Non-repudiation is also defined in [64] as “the assurance the sender

of the data is provided with proof of delivery and the recipient is provided with

proof of the sender's identity, so neither can later deny having processed the data”.

Other researchers [66] define non-repudiation as “prevention of attacks done by

one of the two parties in the communication, the sender or the receiver, one of

them later may deny that he has sent or received the message. Like when a bank

customer asking his bank to send some money to a third party but later denying

he has made such request”.

2.3.6 Accountability

Accountability means the responsibility of one’s actions. Formally [65] defines ac-

countability as “assignment of a document control number, including copy number,

which is used to establish individual responsibility for the document and permits

traceability and disposition of the document”. Accountability is also defined in

[42] as “the property of a system or system resource that ensures that the actions

of system entity may be traced uniquely to that entity, which can then be held

responsible for its actions”. Therefore, to offer accountability, a system should

positively associate users’ identities with the method and time access. That way,

detection and subsequent security investigation can be done. Users are held ac-

countable for their actions after being notified of their behavior for abusing the

system. Proper consequences should be associated (with such abuse) and enforced.
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2.3.7 Anonymity

The term “anonymous message” typically means the sender and/or the receiver

of the message are not revealed. In many countries, anonymous messages are

protected by law and must be delivered as regular messages. Being unknown is

the goal when achieving anonymity. Anonymity is defined in [42] as “the condition

of an identity being unknown or concealed”. To achieve this definition and to

maintain the service at the same time, a third party must hide user information.

2.4 Security Spaces and Requirements

This section studies the relationships between the security requirements and the

security spaces. Table 2.6 answers the following question: In which security spaces

a certain security requirement is achievable. The answer to this question tells us

which security spaces we should consider to provide a holistic security solution.

For example, if our security system needs to provide a holistic availability solution

for a certain asset, in which security spaces should availability be provided. In

Table 2.6, if the security requirement is achievable in the corresponding security

space, the table entry is marked Y. Otherwise, the table entry is marked N.

To elaborate on Table 2.6, we provide an explanation for each row in the table

by picking each security requirement and illustrate its mapping to the different

security spaces.

Access Control: In the physical security space, access control security re-

quirement is achievable by physical barriers such as doors, walls, or security gates.
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Table 2.6: Mapping security requirements to security spaces.

Spaces
Security Physical Information e-ICT t-ICT sec

requirements security security security security
Access Control Y Y Y Y
Availability Y Y Y Y
Integrity N Y Y Y

Confidentiality N Y N N
Anonymity N Y N N

Non-Repudiation N N Y Y
Accountability N N Y Y

In [67], security gates are used to achieve physical access control. Furthermore,

in the information security space, passwords are used on the file level (i.e., in-

formation level) and this will achieve information access control as done in [68].

Users can also easily set passwords on their web pages and these web pages are

considered files. Considering e-ICT security space, access control can be achieved

on different e-ICT resources such as wireless networks, PCs, and Servers. Again,

this e-ICT access control can be achieved simply through using passwords. In

[69], e-ICT access control is applied to computers or networks. Finally, t-ICT

controls access to information using traditional techniques such as single-factor

authentication by using secure keywords.

Availability: Availability in physical security space is applicable. To achieve

availability in physical space, we can apply a solution to insure physical availability

for physical entities such as network cables for instance. In [67], video surveillance

systems are introduced to maintain availability. This can be considered as a

combination of both e-ICT and physical security spaces. Physical security guards,

instead of cameras, can be used to achieve availability at the physical security
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space. We can also achieve availability by performing backups and redundancy

as done in [70]. In [70], authors introduced high availability systems for steam

processing. Top companies also provide products such as “IBM DB2 HADR” (High

Availability Disaster Recovery), “Oracle Data Guard” and “Microsoft SQL Server

2005 Database Mirroring”. Replication is also used to achieve availability as in

[71] where HADOOP is introduced to achieve high availability through metadata

replication. E-ICT availability solutions can be achieved by: (a) producing reliable

e-ICT to persist attacks and maintain availability, (b) having reliable servers, or

(c) constructing reliable networks immune to disturbances from attacks [72]. For

t-ICT security space, availability is achievable by manufacturing and designing

technology which can maintain availability for stored information. This technology

can be, for example, producing papers which can survive and maintain information

for long periods of time.

Integrity: Integrity is achievable in information, e-ICT, and t-ICT security

spaces, but not in physical security spaces. In information security space, we can

have this by creating backups on information level [70], hashing algorithms as done

in [73] [74] such as MD5, HMAC, or SHA1 to calculate hashes to verify integrity.

For e-ICT security space, integrity can be achieved by fault tolerance algorithms

either hardware or software [75]. An approach was introduced in [75] to tolerate

various malicious code modifications and transient-faults during run time of a

computing application system. Furthermore a security solution for data integrity

in wireless bio sensor networks was introduced in [76]. For t-ICT security space,
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handwriting analysis and recognition techniques can be used to achieve integrity.

Confidentiality: There is no solution to apply confidentiality at the e-ICT,

nor the t-ICT, nor the physical security spaces. Confidentiality is achievable in the

information security space and techniques such as steganography and encryption

can be used to achieve confidentiality at the information security space. Steganog-

raphy as mentioned in [77] is used to conceal the fact that a secret is sent inside

a message. Traditional methods like using invisible ink in communication [66]

is another way to achieve confidentiality. Finally, encryption also can achieve

confidentiality by protecting message contents.

Anonymity: To have a holistic anonymity security requirement solution, we

can have it on information security space in [78] they propose an anonymous

routing protocol to wireless network, this is similar to onion routing concept used

in wired networks, also VPN can have solution to anonymity security requirement.

Another solution is to have third party for exchanging information [66], aliasing

also can achieve this solution by using identified number instead of name, like

in [42] a financial institution may assign account numbers, so transactions can

remain relatively anonymous with the transactions accepted as legitimate. There

is no solution to apply anonymity security requirement at the e-ICT, t-ICT, and

physical security spaces.

Non-Repudiation: to have information non-repudiation security solution in

t-ICT security space registered mail used as solution [79], this technology evolved

to become digital signature in e-ICT security space, experts found that even digital
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signature is not enough so they invent capturing unique biometric information and

other data about the sender [79], another solution as in [80] they introduce a fair

non-repudiation protocol that requires a trusted third party. There is no solution

to apply non-repudiation security requirement at the information security space

nor at physical security space.

Accountability: to have a holistic accountability security requirement so-

lution in e-ICT security space, specifying transactions for which you want more

than one approval, and authorize different levels of account access as in [81] they

achieve accountability in their online business, for t-ICT security space, it can be

done by feeding users with different contradicting information to reveal the spoke

man. There is no solution to apply accountability security requirement at the

physical security space nor at information security space.

2.5 Security Requirements Classification

Now, let us classify the security requirements based on attack type and attack

target as shown in Table 2.7. Authors in [66] classified attack types to either

active or passive. They described an active attack as an attack that may change

the data or harm the system as such attacks threatening integrity or availability

as active attacks. They also mentioned that in passive attacks, the attacker’s goal

is just to obtain information and therefore, the attacker does not modify data

or harm the system. The system continues its normal operation. However, the

attack may harm the sender or the receiver.
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From this classification done by [66], we added the attack target. For example,

if the assets are the target, then the attackers need to use the assets to achieve

their goal. That is, active attacks such as “Availability” target assets as we say that

this is an attack on the availability of an asset. On the other hand, passive attacks

such as “Anonymity” target either the sender or the receiver and not the asset. For

example, “anonymity” is applied to either the sender or the receiver. Unlinkability

of sender and receiver also is a way of implementing “Anonymity” which means

that though the sender and receiver can each be identified as participating in some

communication, they cannot be identified as communicating with each other.

Table 2.7: Classification of security requirements.

Security Attack Attributes
requirements Type Target
Access control Active Asset
Availability Active Asset
Integrity Active Asset

Confidentiality Passive Asset
Anonymity Passive Sender/Receiver

Non-repudiation Passive Sender/Receiver
Accountability Passive Sender/Receiver

2.6 Observations and Remarks

Damage can be done by either internal or external events and these events are ba-

sically threats. Threats exploit weakness to perform unauthorized actions within

a system. Threats target to damage assets and the damage intensity is correlated

with how critical is the asset. These three components (threats, vulnerabilities,

assets) are played by different actors in different security spaces as explained in
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this chapter. Observing this, we can draw the following remarks:

• To classify attacks, one needs to consider assets and vulnerabilities. This

consideration is impossible since vulnerabilities are not known to the de-

fender. Therefore, defenders always have incomplete information to estab-

lish a defense system.

• For threats and vulnerabilities, attackers have the upper hand since they

themselves decide on the attack vector and on the vulnerability to gain

access to the system in order to deliver a malicious outcome (i.e., damaging

the asset).

• The goal of the attack is to inflict harm or compromise the security require-

ments of the targeted asset. As such, the attacker needs to learn the critical

assets. But since the defender owns these assets, the defender controls this

learning phase. That is why zero-day ransomware attacks encrypt all files

hoping that a subset of these encrypted files are important for the owner.

If zero-day ransomware attacks know the critical files, they will not waste

time and effort on other non-critical files.

• Focusing on assets will prevent an attacker from achieving the attack goal.

This is evident from Table 2.7. Protecting assets will render attacks useless

since this will prevent all attacks violating the CIA triad of confidentiality,

integrity, and availability known as the heart of information security.
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CHAPTER 3

LITERATURE REVIEW

Researches started introducing requirements-based taxonomies [82] [83] [84] [64]

[85] [63] [86] [87] [88] [60] [59] to gain knowledge of the needs to achieve secure

systems and continued to understand and analyze the existing attacks [89] [58]

[55] [54] [90] [91] to gain knowledge of the behavior and the damage caused by

such attacks. Finally, researchers shifted to defense-based taxonomies [58] [92]

[91] [93] [94] [95] [18] to countermeasure a specific attack with an effective defense

mechanism.

The attack-based taxonomies are widely researched whereas the defense-based

taxonomies are hindered by several serious facts [58], lack of detailed information

about attack information, lack of benchmarks, and difficulty of large-scale testing

in defense systems [58].

In a nutshell, attack-based taxonomies illustrate the process of classifying at-

tacks and enables administrators to gain common security knowledge to become

alert in defending when attacks are detected [54]. On the other hand, defense-
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based taxonomies help in determining the suitable defense mechanism.

3.1 Existing Security Taxonomies

3.1.1 Requirements-Based Taxonomy

One of the well-known requirements-based taxonomies is mentioned in [82] [83] and

is referred to as Confidentiality-Integrity-Availability (CIA) triad model. CIA is

referred to as at the heart of information security. Later, other taxonomies added

more security requirements to CIA, arguing that CIA is not sufficient.

In [84], authors reintroduced a model known as “Parkerian hexad” which was

introduced in 2002 by Donn B. Parker. This model is a set of 6 information

security requirements. Adding possession, authenticity and utility to the CIA

triad model.

In [85], authors introduced Access Control, Authentication, and Accounting

(AAA) triad model. AAA is the cornerstone of any systematic discipline of se-

curity [85]. Other researchers in [96] [97] introduced security requirements for

software systems representing the basic security policy needed in order to protect

software system. It has 8 security requirements namely, fair exchange, freshness,

secure information flow, guarded access, role base access control, authenticity,

secrecy and integrity, and non-repudiation [96] [97].

A detailed quality model for safety, security, and survivability engineering

was introduced in [86]. This model describes relationships between concepts that
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contribute to systemic qualities and decomposed some of the security requirements

such as access control to (identification, authentication, authorization), integrity

to (data integrity, hardware integrity, personnel integrity, software integrity), and

privacy to (anonymity, confidentiality).

An Accelerated Requirements Method (ARM) [87] groups security require-

ments and utilizes a structured categorization technique to group and name secu-

rity requirements. In this paper, authors defined six groups, each contains one to

four security requirements. namely they are confidentiality, access control, data

integrity, manageability, usability, and authentication.

A taxonomy of software security requirements [88] proposed two levels of secu-

rity requirements. The first level includes integrity, availability, confidentiality and

non-repudiation. The second level redefines each of the first level security require-

ments into more specific terms. For example, availability is refined as (response

time requirements, expiration requirements, and resource allocation requirements)

[88].

A taxonomy proposed in [60] classifying security requirements as confidential-

ity, integrity, availability, accountability, and conformance. Each of these require-

ments branches into sub-categories [60]. A holistic taxonomy of security require-

ments proposed in [59]. Authors examined similarities and differences between

all previously published security requirements classifying them all into two levels,

namely basic and cofactor levels. In this paper, security requirements were classi-

fied into 13 basic requirements. Each one of these basic 13 security requirements
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has from 1 to 8 cofactors. For example, privacy is one of the basic requirements

and it has 8 cofactors listed as trace, cardinality, content and notification, attri-

bution, aggregation, encryption, confidentiality and anonymity [59].

3.1.2 Attack-Based Taxonomy

Continuing the efforts of classifying and defining security requirements, research

efforts are also channeled towards classifying and understanding attacks. Re-

searchers in [89] provided an incident taxonomy based on the attack classification

by events. These attacks are analyzed to have the following steps: target, vulner-

ability, action, tools and unauthorized result. These steps basically determine the

attacks directed at a specific target of the attacker. In order for the attacker to

reach the target, a specific vulnerability must be utilized resulting in a changed

state. This gives a whole picture of all the steps involved in an attack and how

an attack grows [89].

A comprehensive taxonomy of attacks targeting availability was introduced

in [58]. The aim was to classify attack strategies and list attributes of attack

strategies that are essential in developing countermeasures classified by possibility

of characterization, attack rate dynamics, degree of automation, source address

validity, exploited weakness, victim type, persistent agent set, and impact on

victim. A list of attacks were mapped to specific countermeasure and security

requirement [55].

A group of academics at Memphis University [54] introduced “AVOIDIT”, a
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cyber-attack taxonomy describing the nature of an attack using 5 major classi-

fication: attack vector, defense, operational impact, informational impact, and

attack target. Classification by the defense mechanism to provide information

to the system administrator concerning attack remediation or mitigation poli-

cies. Mitigation includes action such as removing from network, whitelisting, or

referencing advertisements. Remediation includes system patching and code cor-

rection. Attack targets might be the OS, the network, a process, or data. This

taxonomy lacks defense strategies and cannot deal with physical attacks such as

the ones initiated by USB drives [54]. AVOIDIT is able to efficiently categorize

mixed attacks.

According to [90], an extensive taxonomy for computer network attacks was

explored. This taxonomy introduced 4 hierarchical levels and succeeded to in-

clude attackers and defenders. A taxonomy for security threats in emergency

management was discussed in [91]. Authors classified attacks by three types:

network type, function affected, and attack factor. They examined SMS flooding

attacks cellular network, public safety mobile network issue, GPS spoofing attacks

in satellite systems, and cyber threats in wired networks. Authors also examined

five affected functions, which are: detection of emergencies, planning of operation,

transportation, medical service and communication with the public. From the at-

tack vector point of view, authors examined at network misuse (vulnerability of

nodes, masquerading, flooding), and software misuse (executed remotely and lo-

cally). In [98], researchers introduced attack countermeasures used for security
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analysis. These attack countermeasures become a vital factor when analyzing the

system from the security perspective.

3.1.3 Defense-Based Taxonomy

In [58], a defense taxonomy of mechanisms for Distributed Denial of Services

(DDoS) was introduced. Three attributes were taken into consideration to classify

defense strategies. These attributes are cooperation degree (autonomous, cooper-

ative or interdependent), activity level (preventive or reactive), and deployment

location (victim network, intermediate network or source network).

A defense-centric taxonomy was introduced by [92]. This taxonomy is based

on attack manifestations. The manifestations depend on comprising sequences of

system calls. This sequence is generated from the activity or presence of an attack.

Four classes were introduced in the taxonomy: manifestation by foreign symbol,

manifestation by minimal foreign sequence, manifestation by dormant sequences

and manifestation by being anomalous [92].

A security threats taxonomy was introduced in [91]. This classification con-

tains three categories: defense type, degree of distribution and organizational

element. Organizational element is further branched to system, process and hu-

man, while by defense type is divided to preventive (authentication, resilience and

self-awareness) and reactive (detection and response).

A reliable defense framework was proposed in [93]. In this framework, authors

used countermeasures as well as attacks to recommend an efficient and reliable
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defense mechanism. Authors assess multi-step attack damages to identify corre-

sponding defense countermeasures in order to mitigate service downtime.

Exploring intrusion detection systems to reduce infiltration done by attackers

[94], researchers introduced a taxonomy for intrusion response system and intru-

sion detection system classifying defenses by: response cost, level of automation,

response time, adjustment ability. The same group of researchers [95] introduced

a security risk assessment taxonomy adding to their previous work risk assessment

as a defense classification attribute.

Authors in [18] explored a defense-centric attack metric, neglecting the effect

of ambiguous vulnerability and uncovered attacks, to evaluate the damage done

to critical assets by ranking intrusion detection system (IDS) alerts in an auto-

matic manner. This evaluation process depends on a graph connecting assets to

consequences for each of the system requirements.

3.2 Recent Development

3.2.1 Zero-Day Attacks

Authors in [99] employ several data mining techniques to detect and classify zero-

day malware based on the frequency of windows API calls using supervised learn-

ing algorithms. Various classifiers were trained through analyzing the behavior of

large database with and without malicious codes. This system depends mostly on

features extracted from previous attacks.
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A behavior-based scheme was proposed in [100] to spot zero-day android mal-

ware. Before releasing android applications into the public domain, the work done

in [100] automatically monitors dangerous behaviors of such applications to warn

the users of zero-day attacks such as launching roots exploit or sending background

SMS messages.

In [101], a machine learning framework is proposed to detect known and newly

emerging network attacks using layer three and four data flow characteristics. The

framework depends on a supervised classification in detecting known classes and

adapts the unsupervised learning phase to detect new classes.

A survey to classify zero-day polymorphic worm detection techniques is done

in [35]. Detection techniques survey three signatures detection techniques, namely

content-based, semantic-based, and vulnerability-driven. In addition to the sig-

natures detection techniques, authors use statistical-based and behavior-based

detection techniques.

Researchers in [102] introduce a metric to rank safety from zero-day attacks by

counting how many such vulnerabilities would be required before compromising

network assets. The algorithm used assumes insider attackers and gives the same

weight to all zero-day vulnerabilities.

3.2.2 Ransomware Attacks

The recent zero-day ransomware attacks also earned the attention of the research

arena. Authors in [103] introduced R-Locker to countermeasure zero-day ran-
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somware attacks. A honeyfile is created and acts as a trap to elude and minimize

the damage done to real assets. Various links are added to the honeyfile to divert

the malware and learn its tools, tactics, and motives. Countermeasures will then

be initiated to eradicate the damage, if any, done by the ransomware.

The zero-day ransomware anomaly detection approach introduced in [104] was

highlighted by [105] where I/O operations are analyzed and a sequence of I/O

requests is obtained. If the obtained sequence matches a known ransomware

sequence, then an alarm is raised. A known ransomware sequence looks like (a)

read the file, (b) encrypt the file, and (c) replace the original data by the encrypted

data. The authors went even further and compared screen shots to detect screen

locker ransomware and also extracted some words from the screen shots to be

analyzed and examined.

A survey is conducted in [105] to pinpoint ransomware success factors. This

survey found that reasons behind the spreading of ransomware attacks and their

success are not the techniques used by the ransomware itself or unknown-nature

of zero-day ransomware attacks. Rather the available technology and applications

played a vital role in enabling the adversary to hide their payment transaction

with the ability to reach as many victims as possible in short time. Due to in-

efficiency and the static-nature of antivirus programs, authors in [106] developed

a behavior-based compromise system. This system detects data breach using

machine learning techniques by analyzing network traffic to identify zero-day ran-

somware. Authors targeted WannaCry ransomware in particular.
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Android ransomware attacks were the focus in [107]. A large-scale of 2,721

Android ransomware samples were collected and characterized to insure the ma-

jority of existing Android malware are covered and reflected in the sample. The

paper proposed RansomProber, a real-time behavoir-based ransomware detection

system. Evaluation experiments were conducted to compare the overall detection

accuracy analysis tools, anti-virus solutions, and RansomProber. RansomProber

outperformed two state-of-the-art malware analysis tools and a number of com-

mercial solutions with a detection accuracy of 99%.

In [107], authors focus in specific kind of ransomware which is related to An-

droid ransomware they collect 2,721 samples of them, they notice that existing

anti-virus are useless, so they propose RansomProber which is real-time detec-

tion system. They study and analyze the ransomware according to some feature

which are :(1) lock screen (2) encrypt file (3) permission uses (4) payment method

(5) threatening message. They focus on encrypting ransomware with assumption

that ransomware does not elevate privileges, also it is easy to defeat any real-

time protection system, and due to malware scanners can detect root exploits,

ransomware authors avoid retrieving root privileges which is easy to be done by

some root-kit tools. Finally, they assume that the early alarm can reduce the

number of encrypted file. RansomProber can detect if the users initiate the file

encryption operations by analyzing if there is encryption done to any file, then

they check whether the encryption is normal or abnormal operation by doing

foreground analysis, then they check user interface widgets which doesn’t exist in
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ransomware sample like: (1) file list to be encrypted which is selected and partial

in benign application while in ransomware case it is random and full (2) hint text

must shown when you deal with sensitive behavior as encryption, this hint text

doesn’t exist in ransomware case (3) button which enable the user to interact with

encryption process in benign application and it is not used in ransomware case.

From all mentioned RansomProber considered to be behavioral based. Ransom-

Prober shown to have high accuracy and acceptable runtime performance when

detecting encryption done by ransomware through experimental results.

3.2.3 Moving Target Defense

A group of academics [36] [108] introduce a moving target defense (MTD). The

MTD is the concept of morphing the target, making it unfamiliar to the attacker

[109] [110] [111] [112]. Therefore, the attacker is forced to learn the target repeat-

edly. Consequently, this will (a) reduce the attacker’s window of success and (b)

increase the costs of their probing and efforts of their attack.

Since declaring MTD, many researchers adopt it in so many fields in [111] MTD

to tuned to deal with stealthy botnets, MTD is needed due to information gained

by stealthy botnets by knowing the target network’s topology then discovering the

location of detectors and avoiding them by selecting path free detectors. An MTD

approach proposed in [111] with periodically changing the placement of detectors,

making it harder for attacker to compromise hosts and used it as proxies. Experi-

ments done to show that the new approach can effectively reduce the stealthiness
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of botnets. by comparing traffic flow from MTD points containing data exfiltra-

tion by botnets with benign users to detect suspicious flows. Deploying MTD

costs the defender, some increase in overhead, this overhead can be controlled by

configuring MTD. For example the higher frequency of reconfiguration resulting

in increased cost with better security.

Another deployment of MTD comes in smart grids, when hidden MTD ap-

proach in [112] was proposed to avoid being detected by the attackers while main-

tain power flows of the grid.

Due to that passive defense approach usually let the attacker has more knowl-

edge about the defender a solution using MTD [109] placed in protecting a critical

resource in a network, so that the information asymmetry is reversed, by propos-

ing “Bayesian Stackelberg” to model this game between the leader who is the de-

fender and the follower who is the attacker. The defender adopts a MTD scheme

to thwart attacker strategy. The strategic attacker can watch the defender’s move-

ments and then act in a rational way. In addition to attacker and defender there

is a critical resource and a fully connected network. The two-player game begins

between defender and attacker with the attacker goal is to maximize its payoff

by reaching the resource, while the defender goal is to protect the resource with

minimal cost.

IT systems using clouds also has it share from MTD as in [110], by applying

MTD to cloud-Based IT knowing that MTD core idea is to make a proactive

defending system to eliminate the asymmetric advantage of attacker time. The
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challenge was to adapt MTD to as system with complexity and number of de-

pendencies within components in IT system without impacting the system per-

formance severely or breaking it.
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CHAPTER 4

ASSET-BASED SECURITY

SYSTEM

The realization of assets importance in security systems is gaining popularity. In

one of the largest cyber security summits and particularly during the European In-

formation Security Summit 2016 [113], Will Brandon, Chief Information Security

Officer (CISO) at the Bank of England, stressed on the identification of critical

processes and the understanding of assets. The CISO stated that organizations

should know their critical assets and critical processes. Furthermore, the CISO

stressed that organizations should have a way of understanding their assets and

score them against the financial impact, against the reputational and operational

impact [113] [114].

This chapter proposes an asset-based security system starting with a compar-

ison of security taxonomies in 4.1. Section 4.2 proposes an asset-based taxonomy

and finally section 4.5 outlines our proposed asset-based security system.
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4.1 Comparing Security Taxonomies

Table 4.1 differentiates between security taxonomies based on some attributes.

Attack-based taxonomies are generated from attackers view point. The strategy

behind building attack-based taxonomies is to predict the attack behavior in or-

der to detect the attack and become more familiar with it. As such, the goal

for attack-based security taxonomies is to classify attacks. Defense-based tax-

onomies are used to defend against attacks and therefore they react to attacks

in order to identify attacks and deal with them. The goal of defense-based tax-

onomies is to guide security practitioners of how to defend against specific attacks.

Requirements-based taxonomies are used by security experts as knowledge base.

They are established by security experts and their goal is to establish standards

and spread security knowledge. This knowledge is used by security experts to pro-

vide security solutions or to establish new security taxonomies. What is missing

is a security taxonomy that is built based on owner or stakeholder of the attack

target (i.e., the asset).

Our vision of an asset-based taxonomy is centered on the asset owner. A

security solution is established and its goal is to defend asset and not defend

against attacks. Therefore, the defense strategy is being proactive as opposed to

predict or wait and react.
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Table 4.1: Comparison of security taxonomies.

Security View Point Strategy Goal
Taxonomy
Based On
Attacks Attacker Predictive Classify

Attacks
Defenses Defender Reactive Defend

Against
Attacks

Requirements Security None Knowledge
Expert Base

Assets Owner Proactive Defends
Assets

4.2 Asset-Based Taxonomy

Our proposed asset-based taxonomy builds a comprehensive organization system

for asset-based security solutions. After analyzing the assets in each system and

the security requirements for it, we will introduce a taxonomy depend on both,

this taxonomy can be viewed in Figure 4.1.

In this taxonomy the asset will be classified to categories, the asset will be

classified under each category by choice/s. This classification clarifies the asset

owner needs, later will be help in making the defense holistic and complete. the

categories are (1) Type of the asset which can be hardware containing valuable

containment, a t-information revealing secrets communicated or stored using tra-

ditional ways ,an e-information contained in a file or any electronic form [36],

human with their interests. (2) Security Space: the asset can be reached through

one of the spaces, or it may intersect with that space. For example if it is in

physical security space so countermeasures in that space should be looked for, it

is the same case when it is ICT, information or cyber security space. (3) Security
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Requirement: classify the asset regarding its security requirement which lead to

better secure environment and better performance, so the security requirement

can be one of the CIA (Confidentiality, Integrity, and Availability), or one of the

other non CIA security requirement like anonymity, access control, accountability,

etc. (4) Rank of the asset: which can be primary asset which is the asset itself

or secondary asset which leads directly to the primary asset. (5) Target: the as-

set as target can be Stationary Target Defense (STD) or Moving Target Defense

(MTD). If the asset could be shifted to be MTD that would improve the security

but affect the performance as in [109], else it is considered STD.
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Figure 4.1: Asset-based taxonomy.

4.3 Methodology

The goal of our proposed security system, shown in Figure 4.2, is to develop de-

fense mechanisms based on complete information. Currently, defense mechanisms

are built based on incomplete information, which is dictated by attackers. In a

sense, we are changing the game from an attacker-led to a defender-led game.

Current antivirus programs achieve their goal, which is detecting viruses, by
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Figure 4.2: Security life cycle: (A) current cycle, (B) proposed cycle.

scanning files. The common way to do this is to use on-access scanning. When you

try to open a program, the antivirus software checks the program first, comparing

it to known viruses, worms, and other types of malware. The antivirus software

relies on virus definitions or signatures to achieve its goal.

What we are proposing here is an approach that reaches the same goal as

antivirus programs goal but not relying on a third-party information (i.e. third-

party virus definitions or signatures). As shown in Figure 4.2 (A), attacks are

classified based on attack vectors including attack type, exploited weakness, and

victim impact. These attack vectors are established by defenders to come up with

suitable defenses. As such, these defenses are defending against attacks. Figure

4.2 (B) uses an asset taxonomy to build an asset-based knowledge which contains

information owned by the asset owner as compared to the attack-based knowledge

containing information dictated by attackers.
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First, we start by identifying the assets and the security requirements needed

to protect the asset. For each of the security requirements, for example integrity,

we construct a graph as shown in Figure 4.3, where assets are represented as nodes.

These assets might be files, sockets, or processes. The flows between the nodes are

reflected in the creation or update of edges between nodes that model the respec-

tively involved nodes. All relevant communication directly or indirectly, imply a

data flow between two nodes. During the information identification phase, files F1

and F3 are identified as critical assets with integrity as the security requirement

for both files. The reachability graph is generated capturing all processes that can

modify these two files. The reachability graph as illustrated in Figure 4.3 shows

direct dependency as: (a) P1 can modify F1 (b) P2 and P3 can modify F3, and

the indirect dependency as: (a) P1 can modify P2 and P2 modify F3 (b) P4 can

modify P2 and P2 modify F3 (c) P4 can modify P3 and P3 modify F3. All of this

can be generated during the monitoring phase. Now, later on if P5 tries to access

F1, then this is considered a violation and a flag is passed to the decision phase.

❋✶

❋✷

❋✸

��

��

��

��

��

Figure 4.3: Asset Relationship Example.

Weights on these edges can be obtained by accumulating the data flows of the
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between nodes. It should be noted that weights can be assigned to the edges of the

reachability graph. These weights can represent the access frequency, access time,

access period, along with other parameters. Using the assigned weights, we can

determine the probability of violating the integrity to F3 if P2 is compromised.

4.4 System Calls

The data flow or the relationship between files or processes mentioned previously

can be caught by monitoring system calls. In [2] the cycle of systems is explained

and shown in Figure 4.4. The steps are shown from the system call initiation to

its completeness. Let us consider that I/O request is initiated by a user process

to read some data. The following are the steps needed to execute the I/O request.

• The system call code is executed in the kernel to check the parameters

correctness if the block of the data needed to be read is available in the

buffer cache.

• If the data is ready the block will be returned to the process and that I/O

considered to be completed.

• If the block is not available then a physical I/O request must be sent to the

device driver mostly by in-kernel message or subroutine call.

• The device controller receive the data in kernel buffer space, by sending

command to the device controller.
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• The device controller writes into the device control register, then the device

controller will transfer the data by operate the device hardware.

• The driver will check for transfer completion by polling the data status or

by receiving an interrupt from Direct Memory Access (DMA) controller if

the driver has assigned a DMA transfer by kernel memory

• The device driver signaled by the interrupt handler.

• The device driver signal the kernel I/O with a request has been completed

to proceed on with that I/O request.

• The kernel transfer data from its memory space to the user processor space.

• The second step can be executed and the I/O is completed.

4.5 Proposed Security System

As shown in Figure 4.5, our approach consists of 4 phases, namely information

collection, monitoring, decision, and feedback. In the information collection phase,

we identify critical assets and their security requirements, while the monitoring

phase captures system calls that need to be investigated by the decision phase. The

decision phase assures that critical assets security requirements are not violated.

If there is an attempt of violation, a decision is needed to deal with this attempt

and alert the security system. Finally, the need for feedback phase comes into play

to strength and improve the security system. For example, a prevention decision,
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Figure 4.4: The life cycle of system calls. Adapted from [2].

it means that there are unusual events and therefore our security system takes

these events into consideration.

4.5.1 Information Collection Phase

This phase involves collecting information about the guest operating system, the

critical assets, and the security requirements of these critical assets. Critical assets

are assumed to be objects (e.g., files, processes, sockets) that are created and
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Figure 4.5: Asset based model.

managed by the guest virtual machine. Therefore, the paths of these objects are

collected along with their security requirements. In addition, information related

to the guest operating system is also collected such as operating system type,

system calls and how these system calls map to security requirements. It should

be noted that critical assets are always associated with security requirements.

4.5.1.1 Critical Assets Identification

The objective here is to identify critical assets along with their security require-

ments. The asset owner provides this information to the security practitioner.

After the critical assets are identified, the security requirement for each asset must

be also specified by the asset owner. For example, in a University environment,

the Registrar database might be identified as the critical asset. This identifica-

tion is done by the University Board. The University Board might require only
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“integrity” of the Registrar database because as long as “integrity” is preserved,

the University still can issue transcripts and degree certificates. To the University

Board, “availability” and “confidentiality” might not be as important as “integrity”

for the University Registrar database. The security practitioner needs to identify

the system files representing the University Registrar database which is referred

as r. In addition, the application(s) used to access the critical asset, let us say it

is process p1, needs also to be identified by the security practitioner. This means

that the Registrar database identified as a critical asset can be accessed only by

p1. Hence, p1 is the only authorized process to modify the Registrar database.

Therefore, the Information Collection Phase will generate critical assets that

can be provided as a simple list, a prioritized list, or a more complex represen-

tation. For the purpose of simplicity and clarity, the critical assets might be

represented by C which is a set of 2-tuple elements containing critical asset and

policy. Each critical asset has a policy composing of the critical asset’s secu-

rity requirement and the set of processes authorized to access the critical asset.

Equations 4.1 and 4.2 represent C and pr respectively.

C = {(r, Pr)} (4.1)

Pr = {integrity, {p1}} (4.2)

As shown in Equation 4.1, C has one direct critical asset r while Equation 4.2

defines the policy of r (Pr) as only process p1 is authorized to modify r.
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4.5.1.2 Reachability Graph

Automatically capturing the low-level details, during which the interactions be-

tween files and processes are tracked in order to identify direct or indirect de-

pendencies among all the system assets. For instance, in a database server, the

administrator only needs to list the sensitive database files, and our security sys-

tem later marks the process “mysqld” as critical because it is in charge of reading

and modifying the databases. Such a design greatly reduces the resources and

time spent by administrators in deploying our security system.

The reachability graph captures the low-level interrelationships between the

critical assets identified by the user and any other objects in the system. In a

nutshell, the reachability graph tells us which processes and files are used to reach

the critical assets identified in the Assets Identification step. This is established by

intercepting system calls at the hypervisor-level. Particularly, we will identify all

low-level objects that cause data dependencies with the critical assets identified in

the previous phase. For example, the reachability graph found that process p1 gets

the information from process p2 which reads from file f . All processes and files

involved in this cycle (i.e., p1, p2, and f) are added as critical assets. It should

be noted that all low-level critical assets will have “integrity” as their security

requirement because any unauthorized modification to the low-level critical assets

can violate the security requirement of the critical assets identified by the user.

For example if f is modified by unauthorized user, the “integrity” of r is violated.
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C = {(p1, Pp1), (p2, Pp2), (f, Pf )} (4.3)

Pp1 = Pp2 = Pf = {integrity, {}} (4.4)

As shown in Equation 4.3, C has three new critical assets namely, p1, p2, and

f . Equation 4.4 equates the policies of p1, p2, and f as no process is authorized

to modify their respective critical assets. Here, the policy for each critical asset

is a set of processes authorized to access the critical asset without violating its

security requirement. Policies can be more complicated. For example, we can use

one-time passcode as well as time, date, or frequency of access to the critical asset.

The low-level critical assets identified by the reachability graph will be added

to the high-level critical assets identified by the assets owner as shown in Equations

4.5 and 4.6.

C = {(r, Pr), (p1, Pp1), (p2, Pp2), (f, Pf )} (4.5)

Pr = {integrity, {p1}}, Pp1 = Pp2 = Pf = {integrity, {}} (4.6)

4.5.1.3 Scope of Control

The security requirements need to be mapped to system calls. Knowing the

guest operating system type, system calls, as well as the security requirement,

the mapper will map system calls that must be prevented to preserve the se-
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curity requirement. For example, the following system calls, namely NtWriteFile

and NtSetInformationFile must be prevented to preserve “integrity”. NtDeleteFile

and NtSetInformationFile system calls must be prevented to preserve “availabil-

ity”. Likewise, NtReadFile, NtOpenFile, NtCreateFile, and NtSetInformationFile

system calls must be prevented to preserve “confidentiality”.

To catch the indirect relationships to the critical assets, we can consider the

data flow direction [18]. For confidentiality, the data flows outwards starting from

the critical asset. For the integrity on the other hand, data flows towards the

critical asset. Finally, availability data flows in and out of the critical asset. The

data flow is going from process to file for a write system call. For example, if the

relationship between process p1 and file f1 is write, then the corresponding system

call will be (NtWriteFile, p1, f1) and the data flow will be from p1 to f1. But

if the relationship between p1 and f1 is read, then the corresponding system call

will be (NtReadFile, p1, f1) and the data flow will be from f1 to p1. By tracing

the data flow we can identify the indirect critical assets all along the reachability

path.

It should be noted that all objects included in the scope of control should

have integrity as the security requirement. In addition, all objects in the scope of

control should inherit the security requirement of the critical asset identified by

the asset’s owner.
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Integrity Example

We assume a scope of control is shown in Figure 4.6 and the security requirement

for r is integrity. The data flow is indicated by the dashed arrows. Therefore, all

objects along these dashed arrows will be included as critical assets. For further

illustration and clarification, Table 4.2 outlines some cases and whether these cases

should be included in the scope of control. All objects included in the scope of

control should have integrity as the security requirement.

❋✶ ✁�✁✂ r
�����

✁☎
������

������ ������

Figure 4.6: Integrity: indirect assets added to the scope of control.

Table 4.2: Integrity: validating the scope of control.

Scenario Scope of Control
Will be included Will not be included

if pz is reading from r
if pz is writing to r

if pa is reading from p1
if pa is writing to p1

if pb is reading from p2
if pb is writing to p2

if pn is reading from p9
if pn is writing to p9
if py is reading from f
if py is writing to f

Confidentiality Example

We assume a scope of control is shown in Figure 4.7 and the security requirement

for r is confidentiality. The data flow is indicated by the dashed arrows. Therefore,

all objects along these dashed arrows will be included as critical assets. For further
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illustration and clarification, Table 4.3 outlines some cases and whether these cases

should be included in the scope of control. All objects included in the scope of

control should have integrity as well as confidentiality as the security requirements.

❋✶ ✁�✁✂ r
�����

�����

✁☎
����� ������

Figure 4.7: Confidentiality: indirect assets added to the scope of control.

Table 4.3: Confidentiality: validating the scope of control.

Scenario Scope of Control
Will be included Will not be included

if pz is reading from r
if pz is writing to r

if pa is reading from p1
if pa is writing to p1

if pb is reading from p2
if pb is writing to p2

if pn is reading from p9
if pn is writing to p9
if py is reading from f
if py is writing to f

Availability Example

We assume a scope of control is shown in Figure 4.8 and the security requirement

for r is availability. The data flow is indicated by the dashed arrows. Therefore,

all objects along these dashed arrows will be included as critical assets. We notice

that the direction of data flow is not considered when the security requirement

is availability. So regardless of the direction, if there is a data flow between an

object and the critical asset, then this object should be added to the scope of

control. For further illustration and clarification, Table 4.4 outlines some cases
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and whether these cases should be included in the scope of control. All objects

included in the scope of control should have integrity as well as availability as the

security requirements.

❋✶ ✁�✁✂ r
�����

✁☎
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❋✷ ✁✆✁✄ r
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Figure 4.8: Availability: indirect assets added to the scope of control.

Table 4.4: Availability: validating the scope of control.

Scenario Scope of Control
Will be included Will not be included

if pz is reading from r
if pz is writing to r

if pa is reading from p1
if pa is writing to p1

if pb is reading from p2
if pb is writing to p2

if pn is reading from p9
if pn is writing to p9
if py is reading from f
if py is writing to f

4.5.2 Monitoring Phase

This is the phase responsible for virtual machine introspection by collecting system

calls generated by the virtual machine without its knowledge since system calls

are intercepted and logged at the hypervisor-level. As shown in Algorithm 1, this

phase starts by initializing S, the set of intercepted system calls. This phase can

monitor only data flows to the critical assets or monitor all system calls. In the
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case of “before deployment”, we need to monitor and log all system calls to a file

to be processed to generate the reachability graph. While in the case of “after

deployment”, we need to know if the captured system call s is trying to access

any critical asset c ∈ C. Then, we have to decide if s needs further inspection. If

s is trying to access c ∈ C, then add s to S and pass s to the Decision Phase for

further investigation.

Algorithm 1: Monitoring Phase.
1 S = {}; //initializing the set of intercepted system calls
2 if Before Deployment then
3 intercepted system calls = All;
4 else
5 intercepted system calls = Specified;
6 end
7 foreach intercepted system call do
8 Parse s //get c and any other relevant information;
9 S = S + s //for possible post-mortem analysis;

10 if After Deployment then
11 if ( c ∈ C ) then
12 Decision Phase(C, s) //call Decision Phase ;
13 end
14 end
15 end

Figure 4.9 shows a sample of intercepted system calls generated by processes

running in the virtual machine. These processes are being monitored by our secu-

rity system at the hypervisor-level. Suppose that the file abc.txt (which appears

in the second system call) is in C, then only the second system call will be added

to S.

It should be noted that our system does asset-based monitoring. In our system,

system calls are treated independently and no conclusion is inferred regarding the
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Figure 4.9: Snapshot from raw system calls.

behavior of theses system calls. In other approaches, monitoring is done in order

to learn behavior or match signatures.

4.5.3 Decision Phase

The goal of this phase is to catch any attempts to violate the security requirements

of critical assets. This is done by assuring that s obeys the critical asset’s policy.

Algorithm 2 outlines the steps of this phase. The algorithm starts by accepting

the input data passed from the Monitoring Phase namely, C and s. We start by

initializing the “decision” to “allow”. Then, we test if the asset c specified in s

matches any critical assets specified in C. Next, we check if the process p and the

system call name n specified in s is among the allowed processes in the policy of

the critical asset. If p is trying to access c ∈ C and this process is not allowed,

then the “decision” is set to “prevent”.
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Algorithm 2: Decision Phase.
Data:
The critical asset set C
The intercepted system call s
Result: Either prevent or allow

1 decision ← “allow”; //initialize decision to allow
2 if (s contains c ∈ C) then
3 if (s violates Pc) then
4 decision ← “prevent”;
5 Feedback Phase(C, s) //call Feedback Phase ;
6 end
7 end
8 return “decision”;

4.5.4 Feedback Phase

This phase is triggered if certain events are met such as a prevention decision, a

controlled modification, or uncontrolled modification. The information taken from

the “decision phase” must be fed back to the security system. Prevented decisions

coming from the “decision phase” must be inspected. This inspection can be done

by the security practitioner. Here, we can employ different strategies to harden

accessibility to our critical assets. What we can do here is to make the attack

surface dynamic using techniques such as bio-inspired MTD, cloud-based MTD,

and dynamic network configuration. It should be noted that this dynamicity is

done without observing attack behavior. Controlled modification happens when

a critical asset, critical process, or security requirement needs to be added or

modified. Those changes must be reflected into the security system. Uncontrolled

modification happens when an MTD approach is applied to dynamically change

some attributes of the critical assets such as a name of a process that is allowed

to access one of the critical files.
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4.6 Security System Flow Chart

After our security system is deployed, the flow of our security system is shown in

Figure 4.10. In our system, the work flow starts with catching every system call.

In some operating system such as Windows 7, there is about 700 set of routines.

Those 700 routines can be accessed by system call. In user mode applications,

system calls must be called to access these set of routines, while in kernel mode

they can be called directly. There are two types of these routines [115] namely,

NT group and ZW group. NT group can be called from user space when there is

no trust while ZW group can be called from the kernel space when there is trust.

Then, a file name will be extracted (if any) from the in the system call param-

eters. There are more than 4 categories of these system calls. These categories

have different number of parameters spanning from one to four parameters. If a

file name is found, the file name will be extracted from the system call and stored

in a string for later processing.

The stored file name will be matched with the critical file names. If the file

name is found in that list, then more processing is needed. Processing done and

we fetch information related to that file name such as the security requirement

and the process name. Finally, comparison and decision will be taken to either

prevent or allow the system calls. Our security system will prevent the system

call from continuity by nulling it’s parameters if the the decision is to prevent the

system call, the decision is to allow the system calls, then our security system will

allow the execution to proceed as normal.
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Figure 4.10: Work flow flowchart: after deployment.
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CHAPTER 5

ASSET-BASED SECURITY

SYSTEM DESIGN

In this chapter, we present the design of our asset-based security system. In

our design, we decompose our system into subsystems in order to have a layered

architecture. In each of these layers, we state what functions are needed to be

performed. As such, we present a systematic approach of defining all system

components to satisfy the needs and requirements in order to design a coherent

and well-running system. Both the functional and the operational architectures of

our proposed security system are presented to illustrate the working order of the

various system components as well as information flow between these components.

In general, this is a trade off between the comprehensiveness of the monitoring and

the performance. However, the system we propose does not require comprehensive

monitoring of the guest OS, in fact, it just requires monitoring system calls. Which

is available in almost all hypervisor-level monitoring solutions.
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5.1 Overall System Architecture

Figure 5.1 shows the overall asset-based security system architecture. Above the

hardware subsystem and as shown in Figure 5.1, the hypervisor is composed of

two subsystems, namely the Virtual Machine Manager (VMM) and the Virtual

Machine Introspection (VMI) subsystems.

���������	�

�� ��


������	���������	�

✁✂✄☎�✝✞✆✠� ✡☎✝☎✡

✁☞�✌✍☞�☎ ✡☎✝☎✡

Figure 5.1: Overview of the system architecture.

VMM is a software program that sets the virtualization environment and

this basically will enable Virtual Machines (VMs) bootstrapping and governance.

VMM manages this operation on top of the hardware layer. VMM provides the

virtualization functionality. Once it is installed, VMM facilitates VMs creation

with separate operating systems and applications running in each VM. VMM sup-

ports the backend operation of allocated VMs by assigning adequate computing

power, main memory, secondary storage, as well as other I/O resources. VMM

also creates a unified interface for managing the entire virtualization environment.

VMI is basically inspecting the contents of VM in real-time without the agree-
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ment nor the knowledge of the guest operating system. In our design, we chose

VMI because of this specific property. This contrasts with classic monitoring

software on physical systems where the monitoring process runs on the physi-

cal system itself. As such, the monitoring system is reachable and indeed other

processes running in the guest operating system can know that they are being

monitored. What is more, when a virus or malware penetrates a given physical

machine, its first task is to deactivate any monitoring process and prevent in-

stallation of such processes. This way, the malware can keep on controlling the

physical machine.

With our design, it is impossible for processes running on the guest operating

system to deactivate or even know of the existence of a monitoring tool. That is

why the concept of the VMI is the choice in our design.

5.2 Functional Architecture

As shown in Figure 5.2, the functional architecture is presented and the aim is to

show the segregation of functionalities across the different layers of the architec-

ture. On top of the hardware layer, the hardware abstraction and the creation

and management of multiple computing environment instances are the functions

of the virtualization layer. The hypervisor at this layer enables an agentless binary

analysis system to be built on top of it. This layer, the introspection layer, sets

the stage for tools and utilities to establish the core Asset-based functionalities of

our system. As depicted in the Figure, there are 6 core components in our secu-
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rity system. Critical assets identification along with their security requirements

and the low-level interrelationships between the critical assets are done by the

Identifier and the Generator components, respectively. The Mapper translates

the security requirements to corresponding system calls needed to be processed.

The monitoring functionality is carried out by the Monitor while the Decision

Maker component will inspect the system call after it has been captured by the

Monitor. Finally, a decision needs to be made by the Decision Maker to either

prevent or allow the execution of the system call. The Decision Maker also alerts

the security system, through the Tuner, of potential violation attempts targeting

the critical assets.
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Figure 5.2: Functional architecture design of the proposed security system.

5.3 Operational Architecture

In this section, we describe how operations are employed to accomplish func-

tions. The primary objective is to show the derivation of operational profile from

functional profile. In the operational profile, we include details such as tasks, op-

erational elements, and information flows required to accomplish or support the
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functionalities of our security system. We show the operational architecture be-

fore and after the security system deployment. Figure 5.3 shows the operational

architecture before deployment where tasks and information are depicted as they

flow between the “Information Collection” and the “Monitoring” phases. Assets

owners are responsible for providing the name(s) of the asset(s) needed to be pro-

tected. Also, the security requirements for these assets need to be provided by the

asset owner. The name(s) of the asset(s) as well as the security requirement(s)

are given in high level names.

After consulting the security mapping and the security requirements, the map-

per translates the security requirements to corresponding system calls. For ex-

ample NtReadFile, NtOpenFile, NtCreateFile, and NtSetInformationFile system

calls must be prevented to preserve “confidentiality” when using windows 7 as the

operating system.

After collecting input from the assets owners as well as system call input from

the operating system with corresponding system calls coming from mapper, the

generator will be ready for processing. Critical assets (high and low) with their

security policy, system calls, security requirements translated to system calls will

be fed in and given to the generator. In turn, the generator creates the critical

asset scope of control. Now, the critical assets scope of control will be used as a

reference in the security system after deployment.

If the generator is given only the critical assets and the system calls, then the

generator will not be able to generate the scope of control but it will generate the
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reachability graph.
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Figure 5.3: Operational architecture before system deployment.

After deploying the security system as in Figure 5.4, the “Monitoring” and “De-

cision” phases begin. The monitor starts collecting system calls by the “Collector”.

The collection here will be done to system calls, which will lead to catching ev-

ery critical operation. The parses then processes collected system calls extracting

needed information such as process name, system call name, and file name. The

decision maker starts checking user processes that initiate system calls and con-

sulting with the reference model (i.e. the critical assets scope of control). The

decision maker reports any system call in violation of the reference model. Conse-

quently, the system call execution will be interrupted and stopped from execution.

If a violation is detected, a warning message is send by the decision maker to the

tuner in our security system. The tuner can employ different strategies to harden
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accessibility to our critical assets. What we can do here is to make the attack

surface dynamic using techniques such as bio-inspired MTD, cloud-based MTD,

and dynamic network configuration. It should be noted that this dynamicity is

done without observing attack behavior.
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Figure 5.4: Operational architecture after system deployment.

5.4 System Design Validation

In this section, we discuss how the contributions of our security system are

achieved by our design choices. One of the main objectives of our security system

is to build an asset-based security solution. As such, our design falls under the

information security arena not under the physical nor the e-ICT security spaces.

Furthermore, our security system defends these assets and hence our next objec-

tive is to build a defense-based security solution. This is achieved in our design by

having all system components independent of the attack vector. System compo-

nents start by collecting information regarding the critical assets to be protected
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and then build other components to defend the identified assets irregardless of at-

tack vectors or surfaces as shown in Figure 5.4. This makes our design proactive

since the assets and their security requirements are set before the system goes

online and without considering any attack vector. The passive objective means

that the attacker will not notice the existence of our system. This is achieved

because our system does VMI and operates at the hypervisor level as depicted

in Figures 5.1, 6.1, and 6.2. VMI is basically inspecting the contents of VM in

real-time without the agreement nor the knowledge of the guest operating system.

In our design, we chose VMI because of this specific property. This contrasts with

classic monitoring software on physical systems where the monitoring process runs

on the physical system itself. As such, the monitoring system is reachable and

indeed other processes running in the guest operating system can know that they

are being monitored. What is more, when a virus or malware penetrates a given

physical machine, its first task is to deactivate any monitoring process and prevent

installation of such processes. This way, the malware can keep on controlling the

physical machine.

With our design, it is impossible for processes running on the guest operating

system to deactivate or even know of the existence of a monitoring tool. That is

why the concept of the VMI is the choice in our design.
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CHAPTER 6

EVALUATION ENVIRONMENT

The evaluation environment is setup as shown in Figure 5.1. We followed the

overall architecture and hence the layered design presented in chapter 5. In this

chapter, we first discuss the system specification used in the evaluation environ-

ment. Then, we discuss in details our virtualized environment and the tools used

to achieve VMI. We finally present the benchmarking tool used for time measure-

ment and how the evaluation environment is setup.

6.1 System Specification

We list here the system specification including hardware, system software, and

application software used to perform the evaluation experiments:

• Host machine

– Type: Alien PC

– Processor: Intel Core I7 Quad Core 4700MQ @ 2.4GHz
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– RAM: 24 GB

– HDD: 1TB @ 5400RPM

– Host OS: Ubuntu 16.10 64Bit

• Guest virtual machine

– OS: Windows 7 64Bit

– CPU: 1 Core

– RAM: 3000MB

– HDD: 20GB

• Software

– Hypervisor tool: QEMU, Xen

– Binary analysis tool: DECAF, DRAKVUF

– Benchmarking Application Startup Timer: AppTimer

6.2 Virtualization Environment

To set up the virtualization environment, a software layer is needed to virtualize

all of the resources of a physical machine (host machine). This software layer is

known in the literature as hypervisor or VMM. The hypervisor also defines and

supports multiple VMs execution [116]. In our evaluation environment, we used

two hypervisors, namely Quick Emulator (QEMU) and Xen.
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6.2.1 QEMU

QEMU is a CPU powerful emulator that can emulate a group of processor types.

In 2005, QEMU [117] was presented as a fast machine emulator using an original

portable dynamic translator. It emulates several CPUs on several hosts like (x86,

PowerPC, ARM, SPARC) in addition to Alpha and MIPS. QEMU has the ability

to support full system emulation in which a complete and unmodified operating

system is run in a virtual machine. QEMU is an open source hosted hypervisor

that executes hardware virtualization. As such, QEMU can act as a hypervisor

and its strength and popularity come from being an emulator. QEMU is consid-

ered Type-II hypervisor that runs as other computer applications do, at the top

of an OS.

6.2.2 Xen

Xen was first released in 2003 [118] with the Para Virtualization (PV) approach.

The Xen Project is an open source bare-metal hypervisor making it possible to

run many instances of a single operating system or different operating systems in

parallel on a single physical machine. It is the only available open source as bare-

metal hypervisor . It is used as the basis for a number of different commercial and

open source applications, such as security applications, Infrastructure as a Service

(IaaS), desktop or server virtualization, embedded and hardware appliances [119]

[120]. The Xen Project is the leading virtualization platform that powers some of

the largest Clouds giants such as Amazon Web Services and Verizon Cloud. It is
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also integrated into multiple Cloud orchestration projects such as OpenStack and

CloudStack [121].

In Xen PV, hardware virtualization is not needed so guest kernels are modified

to avoid binary translation. This way, the guest os can run on Xen hypervisor

and detect hypercalls [122]. On the other hand, Xen supports Fully Virtualization

(FV) with the Hardware-assisted Virtualization (HVM) option. This option needs

CPU with Virtualization technology such as Intel-VT. Therefore, there is no need

to modify guest kernels which will not be able to detect virtualization. Due to

this, PV would be faster than FV and FV-HVM [123]. In HVM, when critical

instructions are caught, traps are put in place so the hypervisor can emulate it in

software [122].

Xen comes in different modes or virtualization types. It should be noted that

all hypervisors (either Type-II/hosted or Type-I/bare-metal) need an underly-

ing OS. As such, bare metal also has an operating system on top of which the

hypervisor runs [123].

6.3 Binary Analysis

After setting the virtualization environment, a binary analysis tool is needed to

manipulate the guest OS behavior. Binary analysis can be achieved using various

techniques [124] such as the Dynamic Executable Code Analysis Framework (DE-

CAF) and DRAKVUF. These two possible valid binary analysis tools are used in

our model. DECAF is built on the top of QEMU with TEMU as a sub-component.
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TEMU, Vine, and Rudder are the three main components for BitBlaze [125] [126].

The common technique used among them is capturing persistent changes to sys-

tem state which done by emulating all code in software.

Injecting breakpoints rather than just logging system calls, is another tech-

nique applied to achieve binary analysis. This technique is used by DRAKVUF.

In this technique, context switches or system calls are caught and a breakpoint is

injected to control the behavior of the execution thread [124].

6.3.1 DECAF

DECAF [127] is a dynamic binary analysis platform based on QEMU [128]. It

is virtual machine based, multi-target, whole system dynamic binary analysis

framework able to do introspection as Just-In-Time VM. Authors in [128] provided

DECAF plugins such as Instruction Tracer, Keylogger Detector, and API Tracer.

Those plugins can be modified or updated as needed. DECAF was implemented

using C and C++ with approximately 20 thousands lines in code, and evaluated

using CPU2006 SPEC benchmarks showing average overhead of 12% for VMI. To

show the flexibility and scalability of DECAF, DroidScope, a dynamic Android

malware analysis platform, was developed as an extension to DECAF [129], for

Android mobile devices.
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6.3.2 DRAKVUF

6.4 Selected Environment

6.4.1 QEMU and DECAF

In our environment as shown in Figure 6.1, we assume having DECAF which is

integrated with QEMU. The approach works by first loading a plugin to QEMU

at runtime. This plugin works by applying a system hook for a specified system

call for each newly created process in the system. We will have a callback function

that is triggered whenever the system call is fired in the CPU. This is done by first

checking the value of the EIP register and comparing it with the target system

call address. If it is true we trigger a callback function that retrieves the return

address and parameters in a struct. We can use that struct to retrieve useful

information about the generated system call.

The approach we used take the advantage of using DECAF which provides

a JIT VMI; allowing for run time adjustments for guest operating system. We

can load the plugin at any time and get the required results. Also, our approach

provides malware analyzers with good information about the specified system call

by enquiring the system call parameters for further analysis. Additionally, the

technique we used allow for system wide API hooking by tracking all newly created

processes. More importantly, it is transparent to the guest operating systems

making it difficult for running processes to detect if they are being monitored.
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Figure 6.1: QEMU and DECAF evaluation environment.

6.4.2 Xen and DRAKVUF

We used the Xen [120] hypervisor to host the virtual machines and DRAKVUF

[130] to provide agentless VMI. With privileges gained from Xen. DRAKVUF

can create full VM clones by Copy-on-Write (CoW) memory interface and Copy-

on-Write disk capability from Linux LVM. LibVMI library enables DRAKVUF to

make use of DMA. LibVMI is “a C library with Python bindings that makes it

easy to monitor the low-level details of a running virtual machine by viewing its

memory, trapping on hardware events, and accessing the vCPU registers. This is

called virtual machine introspection” [131].

At selected code locations, breakpoints are written into the VMs memory.

When these breakpoints are reached, DRAKVUF triggers transfer of control to

XEN. To achieve stealth, DRAKVUF hijacks an arbitrary process within the VM

by using active VMI through breakpoint injection. Rekall is a memory analysis

framework [132]. Rekall comes in place to parse the debug data to establish a

map of internal kernel functions instead of using the brute force methods (i.e

signature based scans) in order for DRAKVUF to automatically locate the kernel
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in memory. Creating and then reverting analysis container is faster than imaging

then reverting physical machines [130]. DRAKVUF is the doing the former while

DECAF is doing the latter. That is why DRAKVUF has better performance than

DECAF.

Our evaluation environment using Xen and DRAKVUF is shown in Figure 6.2.

As shown in the Figure DRAKVUF reside on Domain zero (Dom0). With some

privileges DRAKVUF can make clones from the VM to be accessed later, using

LibVMI with DMA to monitor context switching and system calls. With Rekall

and its predefined kernel profile for specific OS, DRAKVUF can easily trapped

specific system calls.
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Figure 6.2: Xen and DRAKVUF evaluation environment.

6.5 Evaluation Environment Setup

We setup our evaluation environment using the latest version of Ubuntu 16.04

LTS, Xen 4.9, and DRAKVUF 0.9. We installed Ubuntu 16.04 as the host OS
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and then installed Xen. Few technical steps are done to merge Xen with Ubuntu

before preparing the environment for DRAKVUF installation. We start installing

LibVMI and Rekall and then DRAKVUF to complete the VMI process. Now, our

virtualization environment is ready and we can finally install a guest OS in a VM.

We used Windows 7 as the guest OS and now we can monitor the guest OS from

the hypervisor level using DRAKVUF through VNC software.

Full details for the installation guide can be found in Appendix A. For com-

pleteness and clarity purposes, these detailed and sequenced steps are summarized

as follows:

1. Install the latest version of Ubuntu 16.04 LTS as the host OS.

2. Prepare the environment for virtualization by installing some needed pack-

ages such as gcc, python-dev, libc6-dev-i386, libvncserver-dev, and libjson-

c-dev.

3. Install a version of Xen that includes a built-in XSM policy required for

DRAKVUF.

4. Dedicate some resources specifically for Demo0. In our setup, we dedicated

24 GB of RAM with 4 CPU cores for Demo0.

5. Reboot the and select the following option: “Ubuntu GNU/Linux, with

Xen hypervisor”. This option guarantees that Demo0 is working with Xen

support.
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6. Setup LVM Volume Group to hold your VMs disks. Then, create a volume.

We created a 20 GB volume for the guest OS.

7. Install Windows 7 from ISO. Enter the LibVMI folder in the DRAKVUF

folder and build it.

8. Build and install LibVMI and ReKall [133] [134].

9. Create the Rekall profile for the Windows domain.

10. Test if LibVMI is working by running vmi-process-list.

11. Install DRAKVUF. Trace the execution of the system by picking which

DRAKVUF plugins to run. Doing this step will prevent all mentioned plu-

gins from running.

12. DRAKVUF now can run with the selected plugins that point to the vir-

tual machine with the following characteristics: domain name “windows7-

sp1”, Rekall profile name “windows7-sp1.rekall.json”. It should be mentioned

that these names contain necessary information about the VM kernel, and

therefore we can now all of the guest OS behavior can be monitored by

DRAKVUF.

6.6 Application Startup Timer

The Application Startup Timer (AppTimer) is a benchmark utility that will mea-

sure how long an application has been running. AppTimer is capable of running
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an application multiple times and calculating how long it takes for the application

to reach a state where user input is being accepted before exiting the application.

After each run of the application, AppTimer will attempt to close the application

in an automated fashion while logging the startup time measurements to a log file.

It’s main use is in benchmarking an application’s startup time. This can be useful

when comparing the performance of different applications on different platforms.
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CHAPTER 7

PERFORMANCE EVALUATION

This chapter contains two parts of our system evaluation. The first one considers

verification and validation of the security system and the second one considers the

performance of the security system.

We conducted several experiments to test the effectiveness, the agility, and the

performance of our security model. We started our performance evaluation process

in QEMU and DECAF environment and then switched to Xen and DRAKVUF

environment. This is explained in sections 7.2 and 7.3, respectively. System call

mapping experiments are conducted in section 7.4. We verified and validated our

security system in section 7.5. Our security system is evaluated for agility and

overhead in sections 7.7 to 7.9.

7.1 Performance Metrics

We conducted a series of evaluation studies to examine the overhead of our security

system. The performance measures used in these studies are:
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• Response Time. This metric computes the time from when the user submits

the request to the time the system completes the response and is calculated

as follows:

R = Tres − Treq (7.1)

where Treq is the time the user finishes the request and Tres is time the

system completes the response.

• Generated System Call. This metric measures the number of times a certain

user application asks the kernel to execute a privileged I/O instruction.

• Performance Ratio. This metric is calculated as the quotient of the divided

Ron by Roff and is calculated as follows:

Performance ratio =
Ron

Roff

(7.2)

where Ron is the response time when our security system is activated and Roff

is the response time when our security system is not activated. This performance

metric measures our security system overhead or slowdown in terms of response

time.

Figure 7.1 shows two possible implication of “Response Time”. It is either the

time between the user finishing a request and the time when the system starts or

completes the response. In our evaluation experiments, we adopted the second

definition as outlined above because we want to measure the delay incurred by

our security system until the system call is completely executed.
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Figure 7.1: Definition of response time. Adapted from [3] .

We also examine the number of system calls generated by applications. We do

this for two reasons. We want to calculate the number of system calls captured

by the monitoring phase and then calculate the number of system calls needed for

the analysis phase.

7.2 QEMU and DECAF Experiments

We did the experiments using windows XP as the guest OS, Linux Ubuntu 12.04

as host OS, QEMU version 2.3, and DECAF. We use NtCreateFile system call

as an example for the system call. To test our results, we create our own process

that only calls the NtCreateFile system call.

We see from Figure 7.2 that we are installing the hook upon knowing the

address space of the NtCreateFile system call. This enables us to create a virtual

memory to store the hook structs and call stack of the function call.

At this stage, we are ready to test the code. We tested our code against

notepad.exe and we got the following results. In Figure 7.3, we see that process
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Figure 7.2: Hooking NtCreateFile.

id, the process name and the filename. The process name can be retrieved by

examining the CR3 register to check the page table range then find the corre-

sponding process address space. The filename retrieval is system dependent and

highly relies on the file system in the guest operating system. In our example, we

have the following signature of the NtCreateFile system call from MSDN.

Figure 7.3: Monitoring notepad.exe.

We modify some plugins in DECAF, namely we use API_TRACER and

HOOKAPITESTS, with some modification through the code we generate a list of

all system calls called by certain process using the first plugins API_TRACER,
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using the second plugins we were able to catch all the process used to call a cer-

tain system call, from both plugins we can generate the reachability graph, which

could used in later.

The call stack contains the addresses of all of these parameters. The third

attribute (OBJECT_ATTRIBUTES) is a structure that contains an ObjectName

struct, as shown in Figure 7.4. We can then use the ObjectName struct to retrieve

the full path of the file.

Figure 7.4: OBJECT_ATTRIBUTES class.

We conclude from that we have to do an extra work to retrieve extra informa-

tion about the hook system call. This will be highly system dependent and relies

directly on the signature of the system call and the data structures and data types

used to store parameters.

7.3 DRAKVUF Integration

Instead of developing our security system from scratch, we utilized DRAKVUF

and developed our security system around it. As explained earlier, DRAKVUF

provides a suitable environment for malware analysis. This is established by
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Figure 7.5: NtCreateFile parameters.

capturing system calls. Therefore, the idea behind developing DRAKVUF was

behavior-analysis and the captured system calls ignored anything to do with as-

sets. In order for us to utilize DRAKVUF in our security system, we need to get

asset information when capturing system calls. We started modifying DRAKVUF

to include filename as a parameter in the system calls. searching for the file name

in the parameter of the system calls requires a lot of sting comparisons as the

name of the file stored randomly regarding the system call, so it could be the

second parameter or the last one, one the other hand it requires tracing efforts,

as it could be a pointer rather than a String.

In the 30th of June 2017, a new version of DRAKVUF was released

(DRAKVUF 0.5), that includes the filename as a parameter in the system call.

Furthermore, the new release of AVG Internet Security - Unlimited [135] and

Bitdefender 2017 [136], contains an option to protect some folders from ransom

attacks, by preventing the untrusted application to access these folders, and for

sure the user himself can customize the trusted application list and the protected
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folders. This was a motivation for us as the assets importance is gain attention

from the research community.

Modifying DRAKVUF

To develop our security system, we have to do the following changes to

DRAKVUF: It should be noted that all these changes are included in Appendix

A.

1. Asset Identification Plugin: We added this plugin to have the Critical

Assets Identification capability.

2. Reachability Graph Plugin: We did this by utilizing some existing

DRAKVUF Python plugins to generate the reachability graph.

3. Monitoring Plugin: We took advantage of DRAKVUF breakpoints to

selectively modify call functions in the SYSCALLS plugin.

4. Decision Plugin: We added this plugin to DRAKVUF to enable the pre-

vention as well as the feedback capabilities of our security system.

In a nutshell, we modified the SYSCALLS plugin within the DRAKVUF sys-

tem and injected breakpoints only to selected system calls that could breach files

security requirements instead of injecting breakpoints to all NT system calls. The

reason of this modification is enhancing DRAKVUF performance. Furthermore,

we modified the callback functions within the SYSCALLS plugin and corrupted
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the system call arguments. This measure was taken if the system call is in viola-

tion of as asset’s security requirement. We modified arguments in four registers,

namely RCX, RDX, R8, and R9. This ensures that the system call will never

access the asset.

7.4 System Calls Mapping

Our security system can analyze all or a subset of the captured system calls. To

improve performance in [6], monitored system calls were minimized to 29. Au-

thors in [6] monitored system calls related to malware behavior . They started

monitoring NtOpenFile and NtCreateFile. These two system calls affect file re-

naming and copying. Later, they added other network related system calls for a

total of 29 system calls.

In our experiments, we want to determine the system calls associated with “in-

tegrity”, “availability”, and “confidentiality”. As such, “writing, appending” state-

ments are associated with “integrity”. Similarly, “reading, opening” and “deleting,

renaming” are associated with “confidentiality” and availability, respectively.

In Figure 7.6 adopted from [2], the C user code invokes printf() statement.

This statement is intercepted by the C library, which interacts with the kernel

on behalf of the user program. Eventually, the printf() statement is mapped as

write() system call in kernel mode. Once the kernel executes the write() system

call, the returned value is passed to the user program.

In our evaluation, the user program invokes a statement that needs to executed
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Figure 7.6: Example of standard library. Adapted from [2].

by the kernel on behalf of the user program. Such statements are referred to as

privileged statements [2]. At user space these statements call an interface library.

The interface library does mode switching and give the command to the kernel

which executes the system call. In order for our security system to capture the

system calls, we need first to know which system calls correspond to the privileged

statements (i.e. I/O privileged statements) invoked at user space.

As such, we need to map I/O privileged statements at the user space to the

system call at the kernel space. We conducted several experiments and examined

I/O privileged statements, namely open, view, delete, rename, write, read, and

append. It should be noted that in all of these experiments, our security system

is running. The following subsections outline our findings.

99



7.4.1 Open

To get the system calls invoked when we open a file, we conducted the follow-

ing experiment: While hovering over a file, right-click and open the file with

“Notepad”. Examining the system call log file, we notice the following: (1) The

name of the file appeared in the log 11 times, (2) The system calls are invoked by

two processes namely, “explorer.exe” and “notepad.exe”. (3) The system calls are

NtQueryAttributesFile, NtQueryDirectoryFile, NtCreateFile, NtQueryVolumeIn-

formationFile, NtQueryInformationFile, NtCreateSection. The results of this ex-

periment are summarized in Table 7.1.

Table 7.1: Mapping open statement to system calls: without double click.

System Call Repetition Process Name
NtQueryAttributesFile 2 explorer.exe
NtQueryDirectoryFile 3
NtQueryDirectoryFile 2 notepad.exe

NtCreateFile 1
NtQueryVolumeInformationFile 1

NtQueryInformationFile 1
NtCreateSection 1

Table 7.2: Mapping open statement to system calls: with double click.

System Call Repetition Process Name
NtQueryAttributesFile 2 explorer.exe
NtQueryDirectoryFile 3

NtCreateFile 1
NtQueryVolumeInformationFile 2

NtQueryInformationFile 1
NtFsControlFile 1

NtQueryDirectoryFile 2 notepad.exe
NtCreateFile 1

NtQueryVolumeInformationFile 1
NtQueryInformationFile 1

NtCreateSection 1
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7.4.2 View

In MS Windows, we can view the content of a file without opening it. This is

doable by opening the folder containing the file in Windows Explorer then select-

ing the file. The file content will appear in the preview pane. Doing this, we

notice the following: (1) The name of the file appeared in the log 34 times. (2)

The system calls invoked are NtOpenFile, NtQueryAttributesFile, NtCreateFile,

NtFsControlFile, NtReadFile, and NtSetInformationFile. (3) All of them are gen-

erated by “explorer.exe”. The results of this experiment are summarized in Table

7.3.

Table 7.3: Mapping view statement to system calls.

System Call Repetition Process Name
NtOpenFile 12 explorer.exe

NtQueryAttributesFile 14
NtCreateFile 4

NtFsControlFile 1
NtReadFile 2

NtSetInformationFile 1

7.4.3 Delete

Here, we want to capture the system calls generated when file is indirectly deleted

(i.e., sent to the recycle bin) or directly deleted (i.e., press the shift key with

the delete key). Pressing the delete key on the keyboard will send the file to

the recycle bin. On the other hand, pressing the shift key with the delete key

will delete the file immediately without sending it to the recycle bin. Doing this

experiment, we notice the following: (1) The name of the file appeared in the log
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11 times, (2) There are 5 system calls appeared to interact with the file. These

system calls are NtCreateFile, NtQueryDirectoryFile, NtQueryInformationFile,

NtSetInformationFile, and NtOpenFile. (3) All of the system calls are generated

by “explorer.exe”. The results of this experiment are summarized in Table 7.4.

Table 7.4: Mapping delete statement to system calls.

System Call Repetition Process Name
NtCreateFile 2 explorer.exe

NtQueryDirectoryFile 2
NtQueryInformationFile 2
NtSetInformationFile 3

NtOpenFile 2

7.4.4 Rename

Renaming a file is done by hovering over the file, right-click, and then choosing

rename from the pop-up menu. Doing this experiment, we notice the following

for the original file: (1) The name of the original file appeared in the log 8 times.

(2) These system calls are NtQueryDirectoryFile, NtOpenFile, NtQueryInforma-

tionFile, NtSetInformationFile, and NtCreateFile. (3) All of the system calls

generated by “explorer.exe”.

For the new file, we notice the following: (1) The name of the file appeared

in the log 28 times. (2) The name of the file repeated 8 times were called by “ex-

ploror.exe” and 20 times by “SearchProtocol”. (3) The system calls generated gen-

erated by “explorer.exe” were NtQueryDirectoryFile, NtOpenFile, and NtQuery-

AttributesFile. (4) The system calls generated by “SearchProtocol” are NtCreate-

File, NtFsControlFile, NtQueryInformationFile, NtOpenFile, NtSetInformation-
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File, and NtReadFile.

The results of this experiment are summarized in Table 7.5. The Table shows

both of the results, namely results concerning the original file and results concern-

ing the new file.

Table 7.5: Mapping rename statement to system calls.

File Type System Call Repetition Process Name
Original NtQueryDirectoryFile 3 explorer.exe

NtOpenFile 1
NtQueryInformationFile 1
NtSetInformationFile 1

NtCreateFile 2
New NtQueryDirectoryFile 3 explorer.exe

NtOpenFile 3
NtQueryAttributesFile 2

NtCreateFile 4 SearchProtocol
NtFsControlFile 4

NtQueryInformationFile 6
NtOpenFile 2

NtSetInformationFile 2
NtReadFile 2

7.4.5 Write and Save

This experiment is done in three steps:

• Step #1: Opening a file and modifying its content then check the log.

• Step #2: Opening a file, modifying its content, and then clicking the save

button. Then, check the log.

• Step #3: Opening a file, modifying its content, the click the exit button. A

dialogue box pop will ask the user to save the file. We press the save option

and check the log.
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For step #1, we notice the following: (1) The name of the file appeared in the

log 26 times. (2) The system calls are generated by “explorer.exe”, “notepad.exe”,

and “SearchProtocol”.

For step #2: we notice the same behavior as in step #1. In addition, we notice

the following: (1) The name of the file appeared 38 times in the log in total and

12 of them as new entry. (2) The system calls are generated by “explorer.exe”,

“notepad.exe”, and “SearchProtocol”.

As of step #3, the behavior was exactly as the one discussed in step #2. This

can be explained by the fact that the actions taken by the user process towards

the asset (i.e., the file) are the same. In step #3, we only delay the saving of the

file by closing it abnormally, which affect the sequence of the system calls.

The results of this experiment are summarized in Table 7.6. The Table shows

the three results, namely results concerning step #1, step #2, and step #3. Since

step #2 and step #3 have the same results, they are combined in the same row

of Table 7.6.

7.4.6 Append

The objective of this experiment is to explore the different between appending

rather than writing to a file. In this experiment, we develop a C program “ap-

pendtotext.c” to append to an existing file and to a non-existing file. When the

file was not there, the system creates the file then append to it. For the case

where the file exits, the system directly append to the file.
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Table 7.6: Mapping write and save statements to system calls.

File Type System Call Repetition Process Name
Step #1 NtQueryAttributesFile 2 explorer.exe

NtQueryDirectoryFile 3
NtCreateFile 1

NtQueryVolumeInformationFile 2
NtQueryInformationFile 1

NtFsControlFile 1
NtQueryDirectoryFile 2 notepad.exe

NtCreateFile 1
NtQueryVolumeInformationFile 1

NtQueryInformationFile 1
NtCreateSection 1
NtCreateFile 2 SearchProtocol

NtFsControlFile 2
NtQueryInformationFile 3

NtOpenFile 1
NtSetInformationFile 1

NtReadFile 1
Step #2 NtQueryAttributesFile 4 explorer.exe

and NtQueryDirectoryFile 4
Step #3 NtCreateFile 1

NtQueryVolumeInformationFile 2
NtQueryInformationFile 1

NtFsControlFile 1
NtOpenFile 3

NtQueryDirectoryFile 3 notepad.exe
NtCreateFile 2

NtQueryVolumeInformationFile 1
NtQueryInformationFile 2

NtCreateSection 1
NtWriteFile 1

NtSetInformationFile 2
NtCreateFile 2 SearchProtocol

NtFsControlFile 2
NtQueryInformationFile 3

NtOpenFile 1
NtSetInformationFile 1

NtReadFile 1

In the case of the existing file, we notice the following: (1) The name of

the file appeared in the log 21 times. (2) These system calls are NtCreateFile,
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NtQueryVolumeInformationFile, NtQueryInformationFile,NtSetInformationFile,

NtWriteFile, NtFsControlFile, NtOpenFile, NtReadFile, NtQueryDirectoryFile,

and NtQueryAttributesFile. (3) The processes “appendtotxt.exe”, “SearchProto-

col”, and “explorer.exe” are responsible for generating the system calls. The results

of this experiment are summarized in Table 7.7. The Table shows the two results,

namely results concerning existing files and results concerning non-existing files.

Table 7.7: Mapping append statement to system calls.

File Status System Call Repetition Process Name
Existing NtCreateFile 1 appendtotext.exe

NtQueryVolumeInformationFile 1
NtQueryInformationFile 1
NtSetInformationFile 1

NtWriteFile 1
NtCreateFile 2 SearchProtocol

NtFsControlFile 2
NtQueryInformationFile 3

NtOpenFile 1
NtSetInformationFile 1

NtReadFile 1
NtQueryDirectoryFile 1 explorer.exe

NtOpenFile 3
NtQueryAttributesFile 2

Non-Existing NtCreateFile 1 appendtotext.exe
NtQueryDirectoryFile 1

NtQueryVolumeInformationFile 1
NtQueryInformationFile 1
NtSetInformationFile 1

NtWriteFile 1
NtCreateFile 2 SearchProtocol

NtFsControlFile 2
NtQueryInformationFile 3

NtOpenFile 1
NtSetInformationFile 1

NtReadFile 1
NtQueryDirectoryFile 2 explorer.exe

NtOpenFile 3
NtQueryAttributesFile 2
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7.4.7 Selected System Calls

The security requirements need to be mapped to system calls. This mapping is

done by the security practitioner. Knowing the guest operating system type, sys-

tem calls, as well as the security requirement, the security practitioner will identify

system calls that must be prevented to preserve the security requirement. For ex-

ample, the following system calls, namely NtWriteFile and NtSetInformationFile

must be prevented to preserve “integrity”. NtDeleteFile and NtSetInformationFile

system calls must be prevented to preserve “availability”. Likewise, NtReadFile,

NtOpenFile, NtCreateFile, and NtSetInformationFile system calls must be pre-

vented to preserve “confidentiality”. The meaning of these system calls are shown

in Table 7.8.

7.5 Verification and Validation

We conducted an experiment to verify and validate our prototype by running

the Task Manager within the virtual machine to provide the list of the running

processes. Our “Monitor” system calls plugin should provide the same list of

running processes assuming that all these processes are generating system calls.

Indeed and as illustrated in Figure 7.7, the running processes captured by the task

manager within the virtual machine are also captured by our security system.

In our next experiment, we exposed our prototype to an academic crypto-

ransomware identical to the famous jigsaw crypto-ransomware of which new vari-

ants just appeared in January 2018 [137]. A crypto-ransomware traverses interest-
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Table 7.8: Meaning of system calls.

System Call Meaning
NtCreateFile Creates a new file or directory, or opens an existing

file, device, directory, or volume.
NtCreateSection The ZwCreateSection routine creates a section object.
NtDeleteFile The ZwDeleteFile routine deletes the specified file.
NtFsControlFile The ZwFsControlFile routine sends a control code

directly to a specified file system or file system
filter driver, causing the corresponding driver to
perform the specified action.

NtOpenFile Opens an existing file, device, directory, or volume,
and returns a handle for the file object.

NtQueryAttributesFile Retrieves basic attributes for the specified file object.
NtQueryDirectoryFile The ZwQueryDirectoryFile routine returns various kinds

of information about files in the directory specified
by a given file handle.

NtQueryFullAttributesFile The ZwQueryFullAttributesFile routine supplies
network open information for the specified file.

NtQueryInformationFile The ZwQueryInformationFile routine returns various
kinds of information about a file object.

NtQueryVolumeInformationFile The ZwQueryVolumeInformationFile routine retrieves
information about the volume associated with a given file,
directory, storage device, or volume.

NtReadFile The ZwReadFile routine reads data from an open file.
NtSetInformationFile The ZwSetInformationFile routine changes various

kinds of information about a file object.
NtWriteFile The ZwWriteFile routine writes data to an open file.

ing directories and encrypts all files that match certain file extensions. The ran-

somware contains 3 files, namely Server.exe, ransomware.exe, and Unlocker.exe.

The Server.exe file emulates a connection between the victim machine and money

seeker. The server is used to store the victim’s information and the unique encryp-

tion key. The ransomware.exe file encrypts the files inside the victim’s machine

using AES-256-CTR and generates a list of the encrypted files and instruction for

decrypting them. After following the instructions and the payment is confirmed,

the encryption key and the Unlocker.exe can be used by the victim to decrypt the
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Figure 7.7: Process list generated within and outside the virtual machine.

files. According to [137] and the analysis done by [4] [138] [139], the Ransomware

process works in stages as follows:

1. Query the original file to be encrypted.

2. Create/Open temporary output file.

3. Read the content from the original file, encrypt it, and send the encrypted

content to the temporary file.

4. Close the original and the temporary files.

5. Move the contents of the temporary file to the original file.

6. Close both files and wait for all other original files to be. encrypted
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7. Rename the original file.

(a) Create a file with base64 equivalent filename.

(b) Move the encrypted content from the original file to the file with the

base64 equivalent filename.

(c) Delete the original file.

To further verify and validate our security system in capturing system calls,

we monitored the Ransomware process and captured any system call generated by

the process name “ransomware.exe” for file “issa.txt”. Once our security system

captures the system calls, the analysis of these system calls should follow the stages

outlined above. To relate the captured system calls to the number of stages, we

consulted [140] for the meaning of the system calls and we show our findings in

Table 7.8.

Table 7.9 shows the captured system calls, the file path accessed by ran-

somware.exe is accessing, and the corresponding stage number according to our

analysis. As shown in Table 7.9, the file to be encrypted “issa.txt” is queried so

that “ransomware.exe” can collect relevant information and then a temporary file

is created and opened. Stage 3 then starts by opening and reading from “isaa.txt”

and writing to the temporary file. Stage 4 then closes the original and the tem-

porary files. During the final stage (i.e. stage 7), “ransomware.exe” creates a file

with base64 equivalent filename and move the encrypted content from the original

file to the file with the base64 equivalent filename and finally deletes “issa.txt”.

This shows that our security system captured all system calls generated by ran-
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somware.exe and in the correct sequence.

Table 7.9: System calls initiated by ransomware.exe for issa.txt.

Captured System Call File Path Stage
#

NtQueryFullAttributesFile \Users\hs\Desktop\issa.txt 1
NtCreateFile \Users\hs\AppData\Local\Temp\issa.txt 2
NtCreateFile \Users\hs\Desktop\issa.txt 3
NtWriteFile \Users\hs\AppData\Local\Temp\issa.txt 3
NtReadFile \Users\hs\Desktop\issa.txt 3
NtWriteFile \Users\hs\AppData\Local\Temp\issa.txt 3
NtReadFile \Users\hs\Desktop\issa.txt 3
NtClose \Users\hs\AppData\Local\Temp\issa.txt 4
NtClose \Users\hs\Desktop\issa.txt 4
NtCreateFile \Users\hs\Desktop\issa.txt 5
NtSetInformationFile \Users\hs\Desktop\issa.txt 5
NtCreateFile \Users\hs\AppData\Local\Temp\issa.txt 5
NtReadFile \Users\hs\AppData\Local\Temp\issa.txt 5
NtWriteFile \Users\hs\Desktop\issa.txt 5
NtReadFile \Users\hs\AppData\Local\Temp\issa.txt 5
NtClose \Users\hs\Desktop\issa.txt 6
NtClose \Users\hs\AppData\Local\Temp\issa.txt 6
NtCreateFile \Users\hs\Desktop\issa.txt 7
NtCreateFile \Users\hs\Desktop\aXNzYS50eHQ=.encrypted 7
NtReadFile \Users\hs\Desktop\issa.txt 7
NtWriteFile \Users\hs\Desktop\aXNzYS50eHQ=.encrypted 7
NtReadFile \Users\hs\Desktop\issa.txt 7
NtClose \Users\hs\Desktop\aXNzYS50eHQ=.encrypted 7
NtOpenFile \Users\hs\Desktop\issa.txt 7
NtQueryInformationFile \Users\hs\Desktop\issa.txt 7
NtSetInformationFile \Users\hs\Desktop\issa.txt 7

Finally, we conducted an experiment to verify that “ransomware.exe” is work-

ing properly in our environment. Therefore, we did not identify any critical files

on the virtual machine and ran “ransomware.exe” on the virtual machine while

our security system is running on the hypervisor-level. The ransomware process

was able to encrypt all files. This is expected since there are no critical files

and therefore our security system has nothing to defend and the ransomware was
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allowed to encrypt all files.

7.6 Generating Reachability Graph

7.6.1 Direct reachability graph

We run the system in a secure environment. This environment is considered to

be safe and with no ongoing attacks. The reachability graph will capture low-

level critical assets and does not require deep-knowledge expertise about the IT

infrastructure. The goal here is to free the system administrator from providing

low-level details about the organization because this is done automatically by the

reachability graph. The generating of the reachability graph is as follows:

• We start the system that contains the critical assets.

• We start our security system.

• The monitored system calls are written to a log file.

• Our analysis phase parses the log file and organizes the monitored system

calls as shown in Figure 7.8.

• The reachability graph will be generated as shown in Figure 7.9.

As shown in 7.9, the critical file is accessed by two processes “notepad.exe”

and “explorer.exe”. If one of these processes is modified by an unauthorized user,

the security requirements of our critical file can be violated. Therefore, there is a

need to include the indirect reachability to the critical assets.
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Figure 7.8: Reading a text file by Notepad.

Figure 7.9: Direct reachability graph for reading a text file by Notepad.

7.6.2 Indirect reachability graph

Authors in [18] constructed what is known as “dependency graph” to simulate

the interactions between system objects to estimate the probability that a critical

assets is compromised if an attacked penetrated through some safe data paths. In

our approach, we need to catch the indirect reachability to our critical assets.

The analysis phase get more complex in order to include the indirect low-level

critical assets to the reachability graph. The log file is parsed starting the critical

asset identified by the asset owner. The direct reachability graph already captured
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all the processes having direct access to the critical file. We explore further and

find out the dependency of other system objects (processes or files) that have

interactions with these processes. Any found object will be added as a critical

asset to the reachability graph.

Figure 7.10: Accessing a file by Notepad, WordPad, and MS Paint.
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Figure 7.11: Direct reachability graph for accessing a file.

7.7 Agility of the Security System

Furthermore, we run yet another experiment to defend a critical asset identified

as abc.txt. We started this experiment by setting the security requirements for
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abc.txt according to Equations 1 to 3 explained in Section 4.5.1.2 as follows:

C = {(abc.txt, Pabc)}

Pabc = {(confidentiality, {}), (integrity, {}), (availability, {})}

This means that confidentiality, integrity, and availability for abc.txt is defended

against any process in the system. While our security system was running, we

tried to access abc.txt within the virtual machine using various processes as shown

in Figure 7.12 and indeed our security system enforced the security requirements

for file abc.txt by not allowing any process to access abc.txt.

We conducted another experiment, where we identified three critical assets

as abc.txt, abd.txt, and abe.txt. The security requirements were also identified

for each file. The security requirement for abc.txt is confidentiality, integrity, and

availability. Similarly, the security requirements for abd.txt are integrity and avail-

ability whereas only availability is required for abe.txt. Therefore and according

to Equations 1 to 3 explained in Section 4.5.1.2, we have the followings:

C = {(abc.txt, Pabc), (abd.txt, Pabd), (abe.txt, Pabe)} (7.3)

Pabc = {(confidentiality, {Notepad}), (availability, {Notepad})} (7.4)

Pabd = {(integrity, {Notepad}), (availability, {Notepad})} (7.5)

Pabe = {(availability, {Notepad})} (7.6)
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(a) Could not modify abc.txt. (b) Could not open abc.txt.

(c) Could not delete abc.txt. (d) Could not rename abc.txt.

(e) Could not copy abc.txt.
(f) Could not open abc.txt By WordPad
from open menu.

Figure 7.12: File abc.txt is defended against any access from any process.

While our security system was running, we tried to access abc.txt within the

virtual machine using various processes as shown in Figure 7.13 and indeed our

security system enforced the security requirement for file abc.txt by not allowing

any process to access abc.txt. We were successful in reading abc.txt using Notepad

but we could not modify the file using Notepad as depicted in Figure 7.12(a).
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Other processes could not modify, rename, copy, or delete abc.txt. If the process

is not Notepad, our security system blocks all system calls containing abc.txt as a

file parameter. We also applied our security system to defend abd.txt and abe.txt

and similar results were obtained as the results shown in Figures 7.13 and 7.12.

(a) Notepad Could not open abc.txt. (b) WordPad could not Open abc.txt.

(c) MS Paint could not Open abc.png (d) WordPad could not Open abc.txt.

(e) Could not open abc.txt. (f) WordPad could not Open abc.txt.

Figure 7.13: No process can access the critical asset abc.txt
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7.8 Agility Against Real-World Ransomware

7.8.1 Anti Virus Guard

Environment Setup: We install Anti Virus Guard (AVG) on the guest machine

[135] and activate ransomware protection option which is part of AVG to test the

effect of real-world ransomware. After activation of ransomware protection, three

main menus appeared to set the needed parameters for ransomware protection as

in Figures 7.14, 7.15, and 7.17.

In Figure 7.14, you can choose between smart mode or strict mode. In smart

mode, any untrusted application will require your permission to change or to delete

any file inside your protected folders, while in strict mode all of the applications

will ask for your permission.

Figure 7.14: Protection modes in AVG.

In Figure 7.15, you can specify the folders to be protected. By default, AVG

will set these folders as appeared in Figure 7.15. It is easy to add more or adjust
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the type of files to be secured inside the protected folder as shown in Figure 7.16.

In Figure 7.17, you can specify the blocked or the allowed application so the

allowed application will not any more wait for permission to access the files inside

the selected folders while the blocked application will be blocked directly without

notification.

Figure 7.15: Default protected folders in AVG.

Figure 7.16: Files customization in AVG.
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Figure 7.17: Blocked/ Non-Blocking in AVG.

Running Crypto-ransomware: We used the same crypto-ransomware [137]

to test AVG ransomware protection environment. When we run ransomware.exe,

a pop-up menu appears asking the user to either grant or deny permission for

ransomware.exe to run. In the first experiment, we grant permission to ran-

somware.exe so it becomes one of the trusted applications. Therefore, all the files

will be encrypted by ransomware.exe whether they are in protected or unpro-

tected folder. In the second experiment, we deny permission to ransomware.exe

and therefore AVG blocked ransomware.exe and a report is generated by AVG

anti virus, as shown in Figures 7.18, 7.19, and 7.20.

In Figures 7.18 and 7.19, AVG anti virus generates a message detailing the

possible malicious action of encryption generated by ransomware.exe. AVG anti

virus also specifies the particular part of malicious action, which results in putting

ransomware.exe in the quarantine.

Later on when we try to download other files similar to ransomware.exe,

AVG anti virus will instantly quarantined these files. By double clicking on ran-

somware.exe a dialogue box is shown as in Figure 7.20. This dialogue box is
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Figure 7.18: AVG pop-up menu.

Figure 7.19: AVG anti virus response.

generated by Windows assuring that ransomware.exe has been blocked and hav-

ing no permission to run any more.

In the third experiment, we disable AVG anti virus, which is working as signa-

ture based, but not the ransomware protection option. By doing this, we ensure

that the ransomware.exe will not be deleted nor quarantined. After that, we run

ransomware.exe and a dialogue box pops up asking the user to block or allow the
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Figure 7.20: Windows response.

ransomware.exe as in Figure 7.21. When we choose allow application, all the files

will be encrypted whether they are in protected or unprotected folder. On the

other hand, choosing block will allow ransomware.exe to encrypt all files expect

those files in the protected folder. This is the desired and expected action of the

ransomware protection part in AVG.

Figure 7.21: AVG ransomware protection response.

7.8.2 Asset-Based Security System

We exposed our prototype to crypto-ransomware [137] to test the agility of our

security system in defending assets against a real-world ransomware attack. We

created two critical files “abd.txt” and “abe.txt” with their security requirements

as explained in Equations 4, 6, and 7. The crypto-ransomware was able to encrypt
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all files, as shown in Figure 7.22, except the two identified critical files namely,

“abd.txt” and “abe.txt”. We investigated the system calls that were blocked from

accessing “abd.txt” and we found out that our security system blocked NtWrite-

File, NtSetInformationFile, and NtDeleteFile. These are exactly the system calls

mapped to integrity and availability as explained in Section 4.5.1.2. Similarly, the

systems calls blocked from accessing “abe.txt” are exactly the ones correspond-

ing to NtReadFile and NtSetInformationFile. These are exactly the system calls

mapped to availability as also explained in Section 4.5.1.2. This shows that our

security system defends identified critical assets by insuring that their security

requirements are not violated. Our security system does not require the signa-

ture nor the behavior of the ransomware and it does not depend on information

provided by the ransomware. As such, our security system is purely asset-based.

7.8.3 AVG versus Our Security System

Our security system and AVG ransomware protection offer the protection to crit-

ical assets with some differences:

More Control: In our security system, we handle CIA which means if a

process wants to read a critical file, then this will be denied by our security system

but not by AVG as AVG protects against only modification and deletion.

More Safe: Compared with AVG, our security system works at the hypervisor

level having all the VMI advantages. An attacker can know and can bypass

AVG as shown in Figure 7.21. Furthermore, AVG information collection phase is
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Figure 7.22: Crypto-ransomware encrypting all but the two critical files.

vulnerable to attacks as compared to our offline information collection phase as

explained in section 4.5.1.

7.9 Security System Overhead

The performance penalty that comes with any new security approach is a cru-

cial measure of the viability of that approach. If the security approach hinders

performance to a degree where the system becomes unusable, then it’s nonviable.

Therefore, we dedicate this section to the overhead measurement of our security

system.
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7.9.1 Generated System Calls

We conducted these sets of experiments to measure how many system calls will be

captured by the monitoring phase. Subsequently, these system calls will be passed

to the analysis phase for further processing. We monitored four applications,

namely Notepad, WordPad, WinWord, and MS Paint. We count the system calls

generated by these four applications using two different scenarios.

In the first scenario, we configure AppTimer to open the application and close

the application. Then, a count of the system calls generated by the application

will be provided to us by our monitoring phase as shown in Figure 7.23. Table

7.10 shows the number of system calls generated from this scenario under the “No

Asset” column. This column is found under two categories: “Application Only”

and “System Related”. “Application Only” means the system calls generated from

the application itself (i.e., the system call contains the application name). “System

Related” means the system calls generated from the application itself as well as

other system calls generated because of other system applications. For example,

in Figure 7.23 there are two system calls generated by “explorer.exe” as a result

of executing “Notepad.exe” or system applications.

Table 7.10: Number of NT system calls: monitoring phase.

Application
System Calls

Application Only System Related
No Asset With Asset No Asset With Asset

Notepad 1419 2069 3349 4855
WordPad 10226 13470 12306 17104
WinWord 24096 31929 31094 51276
MS Paint 11043 14993 18152 19420
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Figure 7.23: Sample of generated system calls.

In the second scenario, we configure AppTimer to open the application, open

a file within the application, and then close the application. The count of system

calls generated by the application in this scenario will be provided to us by our

monitoring phase similar to the ones provided in Figure 7.23.

We calculated the numbers shown in Table 7.10 by eliminating all system calls

before the first system call generated by the application and also eliminating all

system calls appeared after the last system call generated by the application. We

then count the system calls in between. It should be also noted that each number

shown in Table 7.10 is the average of 5 runs. Examining Figure 7.24, we observe

the following:

• The number of system calls vary according to the application. For exam-

ple, “Notepad” generated the least number of system calls since it is a basic
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text editor meant for basic plain text entry [141]. The article [141] verifies

our findings in Table 7.10. The article states that WordPad is more ad-

vanced than Notepad and is meant for formatting and printing documents

like WinWord, but not quite as advanced as WinWord.

• The number of system calls needed to only open the application is less than

the system calls generated when the application used to open a file. This

increase is due to extra privileged file-related I/O operations.

• Our monitoring phase is not only affected by the system calls generated by

the monitored application but also by the system calls generated by other

application during the monitoring period.
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Figure 7.24: System calls generated by an application in different scenarios.
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7.9.2 System Call Filtering

This section deals with filtering and passing only the needed systems calls to our

analysis phase to insure the protection of assets. In Table 7.11, we count the num-

ber of system calls generated by specific application for specific NT system call.

As shown in the table’s first row, 11 NtCreateFile, 25 NtOpenFile, 2 NtReadFile,

and 54 NtSetInformationFile system calls were generated by Notepad for a total

of 92 system calls. These specific NT system calls are the ones that our analysis

phase will process. That is, for the case of “Notepad”, our analysis phase will

process only 92 system calls out of 4855 systems calls generated by “Notepad”.

Similarly, the same explanation can be applied to the rest of the applications.

Table 7.11: Number of specific NT system calls: monitoring phase.

Application System Calls
NtCreateFile NtOpenFile NtReadFile NtSetInformationFile

Notepad 11 25 2 54
WordPad 67 138 34 116
WinWord 208 244 156 306
MS Paint 49 100 37 151

In Figure 7.25, we capture the number of selected system calls for certain

application. We filter these captured system more and more to dig for certain

system calls. We find that the number of these system calls related to the ap-

plication itself, this result is expected as is, but a noticeable issue regarding the

number of system calls in WordPad and MS Paint where they look like already the

same in number when NtReadFile called but different when NtSetInformationFile

generated. It is obvious from Figure 7.25 that MS Paint has more number of
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calls of type NtSetInformationFile rather than WordPad, while NtOpenFile and

NtCreateFile generated more in WordPad compared to MS Paint.
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Figure 7.25: Selected system calls grouped by system call.

In Figure 7.26, we grouped the number of system calls by the application and

not as in Figure 7.25 which grouped by system call. We can notice from Figure

7.26 that application WordPad looks differently than other applications when the

number of NtSetInformationFile is not the most called system call.

7.9.3 System Security Response Time

In these set of experiments, we configure AppTimer to open and close an appli-

cation. AppTimer will then generate a log file containing the response time as

shown in Figure7.27
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Figure 7.26: Selected system calls grouped by application.

Figure 7.27: Sample of AppTimer generated log file.

We measured the response time as shown in Table 7.12. The response time

is the average of 20 runs and is measured in seconds. The table also shows the

time measured when there is no asset accessed at all whether critical or non-

critical. Table 7.12 contains the response time measured by “AppTimer” when

specific application is opened. There are 5 columns, where all of them show

the response time using the corresponding application without opening a file.

Reference to Figure 4.10, the response time measured in Table 7.12 branches to
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“Normal Operation” after step #2. The experiments shown in Table 7.12 are

conducted as follows:

• Start AppTimer.

• Instruct AppTimer to open the application and record the start time.

• Once the application window opens, instruct AppTimer to record the end

time.

• The difference between these two recorded times is the response time.

The first column shows the response time when there is no VMI (i.e., the

monitoring phase is off). The second column contains the response time when

the monitoring phase is active and the monitoring is done to the 6 specific sys-

tem calls namely, NtWriteFile, NtReadFile, NtDeleteFile, NtSetInformationFile,

NtOpenFile, and NtCreateFile. The third column measures the response time

when all the NT system calls are monitored, while the fourth column shows the

response time when the monitoring and analysis phases are active and done to

the 6 specific system calls. The fifth column is taken when all the NT system calls

are monitored and analyzed.

We measured the response time as shown in Table 7.13. The response time

is the average of 20 runs and it is measured in seconds. The table also shows

the response time measured when there is non-critical asset accessed. Table 7.13

contains the response time measured by “AppTimer” when specific application

used to open non-critical asset. There are 5 columns, where all of them show
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Table 7.12: Response time without file access.

Application
No Asset

VMI VMI With Analysis
No Specific System NT System Specific System NT System
VMI Calls Calls Calls Calls

Notepad 0.0447 0.0611 0.1380 0.0620 0.1624

WordPad 0.0461 0.0770 0.1851 0.0616 0.2326

WinWord 0.0622 0.1233 0.6527 0.1232 0.6527

MS Paint 0.0696 0.1236 0.5437 0.1244 0.6769

the response time using the corresponding application opening a file. Reference

to Figure 4.10, the response time measured in Table 7.13 branches to “Normal

Operation” after step #4. The experiments shown in Table 7.13 are conducted as

follows:

• Start AppTimer.

• Instruct AppTimer to open the non-critical file using the application and

record the start time.

• Once the non-critical file is opened, instruct AppTimer to record the end

time.

• The difference between these two recorded times is the response time.

The first column shows the response time when there is no VMI (i.e., the

monitoring phase is off). The second column contains the response time when

the monitoring phase is active and the monitoring is done to the 6 specific sys-

tem calls namely, NtWriteFile, NtReadFile, NtDeleteFile, NtSetInformationFile,

NtOpenFile, and NtCreateFile. The third column measures the response time
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when all the NT system calls are monitored, while the fourth column shows the

response time when the monitoring and analysis phases are active and done to

the 6 specific system calls. The fifth column is taken when all the NT system calls

are monitored and analyzed.

Table 7.13: Response time with non-critical file access.

Application
Non-Critical Asset

VMI VMI With Analysis
No Specific System NT System Specific System NT System
VMI Calls Calls Calls Calls

Notepad 0.0462 0.0595 0.1378 0.0626 0.1930

WordPad 0.0462 0.0770 0.2013 0.0777 0.2483

WinWord 0.0622 0.1234 0.6682 0.1216 0.6298

MS Paint 0.0774 0.1238 0.5516 0.1244 0.7162

We measured the response time as shown in Table 7.14. The response time

is the average of 20 runs and it is measured in seconds. The table also shows

the response time measured when there is critical asset. Table 7.14 contains the

response time measured by “AppTimer” when specific application wants to open

the critical asset. There are 4 columns, where all of them show the response time

using the corresponding application trying to open the critical file. Reference to

Figure 4.10, the response time measured in Table 7.14 either branches to “Normal

Operation” or “Prevent system calls from continuity” after step #6. We will

branch to “Normal Operation” when the access to the critical file is not prevented

as shown in Table 7.14 column 3 and 4. If the access to the critical file is prevented,

then the response time is shown in columns 1 and 2. The experiments shown in

Table 7.14 are conducted as follows:

• Start AppTimer.
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• Instruct AppTimer to open the critical file using the application and record

the start time.

• The application may or may not open the file

– if the application is allowed to open the critical file, then Once the

critical file is opened, instruct AppTimer to record the end time.

– if the application is not allowed to open the critical file, then Once the

dialogue box, as shown Figure 7.13(c) appears, instruct AppTimer to

record the end time.

• The difference between these two recorded times is the response time.

In Table 7.14, our security system (including the monitoring phase, analysis

phase, and the decision phase) is active. The first column shows the response time

when the monitoring is done to the 6 specific system calls namely, NtWriteFile,

NtReadFile, NtDeleteFile, NtSetInformationFile, NtOpenFile, and NtCreateFile.

The second column measures the response time when all the NT system calls are

monitored. It should be noted that the response time shown in columns 1 and 2

is taken when access to the file is prevented.

The third column shows the response time when the monitoring is done to the

6 specific system calls while the fourth column is taken when all the NT system

calls are monitored. It should be noted that the response time shown in columns

3 and 4 is taken when access to the file is allowed.
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Table 7.14: Response time with critical file access.

Application
Critical Asset

Prevented Not Prevented
Specific System NT System Specific System NT System

Calls Calls Calls Calls
Notepad 0.0613 0.1303 0.0612 0.1370

WordPad 0.0768 0.1854 0.0770 0.2011

WinWord 0.1211 0.6215 0.1230 0.6287

MS Paint 0.1237 0.4972 0.1240 0.5285

7.10 Performance Ratio

Table 7.15 shows the performance ratio for the 6 specific system calls. It should

be noted that the performance ratio in:

• The first column is the result of dividing the corresponding entries from the

fourth column in Table 7.12 by the first column in the same Table.

• The second column is the result of dividing the corresponding entries from

the fourth column in Table 7.13 by the first column in the same Table.

• The third column is the result of dividing the corresponding entries from

the first column in Table 7.14 by the first column in Table 7.13.

• The fourth column is the result of dividing the corresponding entries from

the third column in Table 7.14 by the first column in Table 7.13.

Table 7.16 shows the performance ratio for NT system calls. It should be noted

that the performance ratio in:

• The first column is the result of dividing the corresponding entries from the

fifth column in Table 7.12 by the first column in the same Table.

136



• The second column is the result of dividing the corresponding entries from

the fifth column in Table 7.13 by the first column in the same Table.

• The third column is the result of dividing the corresponding entries from

the second column in Table 7.14 by the first column in Table 7.13.

• The fourth column is the result of dividing the corresponding entries from

the fourth column in Table 7.14 by the first column in Table 7.13.

Table 7.15: Performance ratio for the 6 specific system calls.

No Asset Non-Critical Prevented Not
Asset Prevented

Notepad 1.385 1.354 1.326 1.323
WordPad 1.336 1.681 1.662 1.665
WinWord 1.980 1.954 1.946 1.977
MS Paint 1.786 1.608 1.598 1.603

Table 7.16: Performance ratio for the NT system calls.

No Asset Non-Critical Prevented Not
Asset Prevented

Notepad 3.631 4.177 2.820 2.965
WordPad 5.044 5.373 4.012 4.351
WinWord 10.493 10.126 9.991 10.106
MS Paint 9.725 9.259 6.427 6.831

From Figure 7.28 we notice that the latency here is not more than 10X in

worst case and around 2X in best case.

From Figure 7.29 we notice that analyzing only specific system calls generates

latency not more than 2X in worst case and around 1.3X in best case, which is a

bigger improvement over the results shown in Figure 7.28.
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Figure 7.28: Performance ratio for the NT system calls.

We have to mention that our security system overhead using DRAKVUF 0.4

is approximately 38X in best case and up to 62X in worst case. This is very

costly and further details of these results can be found in Appendix B. We are

thankful to DRAKVUF version 0.5 [142] released in 30th June 2017 and Xen 4.9

[143] released in 28th June 2017. The new release includes core modifications to

the in-depth execution tracing of arbitrary binaries as well as modifications to

DRAKVUF system call plugin. These modifications enable DRAKVUF to print

detailed arguments for Windows guest. As such, our security system is improved

significantly and this is shown by examining the results obtained using DRAKVUF

0.4 and comparing them to the results obtained using DRAKVUF 0.5.
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Figure 7.29: Performance ratio for the 6 specific system calls.

7.11 On the Scalability of the Security System

As previously mentioned that the tool used to conduct VMI is DRAKVUF. One

major reason behind using this binary analysis tool is scalability. DRAKVUF

achieves scalability as mentioned by [144] [130] and hence it is capable of analyzing

large corpus of data with minimum overhead [145] [130]. Furthermore, critical

assets are few can be counted on the fingers of one hand [18], so the analyzed data

is not large.

Therefore, the scalability of our security system is inherited from DRAKVUF.

In addition, we conducted an experiment where we run 4 different VMs on top

of our host machine as shown in Figures 7.30 and 7.31. The objective of this

set of experiments is to consider CPU utilization measurements for the proposed

system and how they vary with an increase in the number of VMs served, and

the number of attacks per VM. That is, we want to characterize how our security
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system scales with more VMs and more attacks per VM. Minimal consumption

of the CPU and memory usage of the 4 VMs is shown in 7.32. That is, the CPU

utilization when having 4 VMs is very similar to the CPU utilization when we

run only one VM. Since VMs are seen as user processes by the hypervisor, the

real scalability issue is at the hypervisor level and this has been proved by many

published papers [144] [130] [145] [18].

Figure 7.30: Linux Dom0 and the 4 Windows VMs.

Figure 7.31: Running Multiple VMs.
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Figure 7.32: Utilization of guests CPUs.

7.12 Performance Remarks

As outlined in [146], security systems follow an iterative process that can be

broken down into four phases: predict, prevent, detect, and respond. Prediction

assesses attack surface and prevention try to reduce such surface. Therefore,

both of prediction and prevention rely on attacks. In our security system, we

rely only on the defender side and therefore our security system does detection.

The detection process is done based on pre-determined rules obtained from the

reachability graph. This is very similar to file permission in any operating system.

As such, techniques such as precision and recall are unsuitable performance

measures for our security model. Precision and recall consider actual and predicted

instances. Since our security system does not consider the attacker side, we will

never know the actual instances. Furthermore, we will never know the predicted
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instances since our security system is proactive as outlined in table 4.1.

We also studied some datasets used in security analysis for intrusion detection

such as NSL-KDD, which contains datasets labeled as either normal or abnormal.

If the dataset is labelled abnormal, then it contains one of 24 different kinds of

attacks. These 24 attacks are grouped into 4 classes: Probe, DoS, R2L (Remote-

to-Local), and U2R (User-to-Root) attacks [147] [148].

None of these classes target our assets file or process as the following:

• Probing or information collection is done before our security system is de-

ployed. After that, our security system relies on capturing and monitoring

system calls based on the collected information. If an attacker probes a VM,

the collected information is safe since it is stored at the hypervisor level.

Therefore, probing attacks are outside the scope of our security system.

• Availability as defined in [59] has three attributes namely, response time,

expiration, and resource allocation. As long as the asset (a physical file in

our system) exists, a resource is allocated. If the physical file exists but

can not be accessed because the service (process) used to reach the file

is unavailable, then the response time is affected. In this case, only the

reachability to the file is affected.

Therefore, in our security system, the availability is limited to only physical

files. Our security system is not concerned with the availability of processes

or services (DoS attacks) because our focus is to protect physical files and

insure that these physical files are not detected and not available to unau-
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thorized users.

• Both of U2R and R2L are considered as gaining unauthorized access to

assets. Since our security system sits at the hypervisor level, it will not

be affected by gaining unauthorized access in the guest OS. Furthermore,

our security system starts defending from the system calls level which is

a step before gaining unauthorized access because every action done by

root/ordinary user generates a system call.
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CHAPTER 8

CONCLUSION AND FUTURE

DIRECTION

8.1 Overview

There is no doubt that there is a vicious battle between attackers and defend-

ers. Researchers as well as security practitioners have developed defense systems.

These defense systems are built to defend against certain attack(s). To design

such defense systems, attack vectors need to be examined. For example, if we

want to design a signature-based defense system, then we have to collect previous

attack vectors and develop signatures for these attacks. Similarly, behavior-based

security systems need to study the behavior of attack vectors to try and predict

future attacks.

As such, a vital input parameter to these defense systems is the attack vector.

The problem here is that the attack vector is designed by the attacker. If the
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attacker changes the attack vector, then the defense system becomes obsolete. In

our work we are proposing to design a defense system that has no input parameters

from attackers.

This led us to think differently by proposing an asset-based security system

which is not inheriting the weaknesses in previous defense systems. Our security

system depends only on the defender which leaves attackers in a learning phase

regarding our security system. Our security system reacts prior to an attack.

This thesis argues that the trend of constantly chasing changing attack vectors

is contributing to the continuity of attackers-led security vicious cycle. Attackers

are leading and defenders are learning. This paradigm needs to be shifted in a

way that defenders are leading and attackers are learning.

We started this thesis by studying the need for security in by collecting infor-

mation about the destructive effects of attacks through cyber space in addition to

the financial losses due to these attacks. Then, we surveyed the existing security

solutions for such attacks. We also explored the reasons behind the success of

these destructive attacks and the fail of the defense lines.

This thesis proposes an asset-based security system where security practition-

ers build their security systems based on information they own. The idea is to

completely rely of ourselves in building security systems and require nothing from

attackers. This way, attackers chase defenders which will not just level the security

playing field but will give advantage to defenders.

Our security system consists of 4 phases namely, information collection, moni-
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toring, decision, and feedback. Information collection phase prepares and collects

the information needed for the security system to start its functionality by taking

information from the asset owner about the critical assets and by building the

reachability graph to reach those assets. The monitoring phase includes collecting

system calls and parsing them to be processed in the decision phase which com-

pares pre-collected information from the information collection phase with ongoing

collected information from the monitoring phase to put the final decision for the

captured system calls to be either terminated or passed. Finally, the feedback

phase is important in applying and accommodating changes in the pre-collected

information.

In this thesis, we propose a proactive asset based defense scheme using policies

in a virtualized environment that can prevent illegal access to assets. Furthermore,

we implemented the proposed scheme using Xen as a hypervisor and DRAKVUF

as hypervisor level monitoring agent to monitor and prevent illegal access to assets

within a guest operating system running windows.

As a proof of concept, we evaluated our security model using ransomware real-

world attacks. The obtained results show that we achieved promising results with

acceptable degradation in performance. Finally, we evaluated the performance of

the solution and found it to be promising with some issues. As such, the response

time overhead of our security system and the design of our security system can

be accomplished as operating-system-independent.

We outlined the architecture of the proposed asset-based security system and

146



developed a prototype of our system. We also conducted extensive evaluation ex-

periments to evaluate the feasibility and performance of our prototype. Obtained

results are encouraging and show the agility of our prototype to ransomware at-

tacks.

8.2 Concluding Remarks

We started our security system prototype evaluation by a verification and valida-

tion step. In this step, we started by running the Task Manager within the virtual

machine to provide the list of the running processes. Indeed, our security system

prototype provided the same list of running processes. We also exposed our pro-

totype to a real-world ransomware virus. Again our prototype was successful in

protecting critical assets from the ransomware effect and encryption.

To measure our prototype overhead, we conducted a set of experiments to

count the number of system calls to estimate the efforts done by our prototype.

We also measured the time needed to open an application in different scenarios.

The overhead of our security system prototype was acceptable.

We leave the reader with a comparison conclusion as shown in Table 8.1. The

Table compares our security system to a non-asset-based security system. Our

security system’s strength comes from its asset-awareness property which enables

proactive prevention security measures.

General attacks hit as many as possible targets and these attacks will not

be effective when our proposed security system is deployed. This is because of
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Table 8.1: Comparing Asset-Based and Non-Asset-Based Security Systems.

Phase Security System
Non-Asset-Based Asset-Based

Collector Collects all Collects all

Parser System calls Sequence of System calls Subset
Content Content-unaware Content-aware

Decision Maker After the fact Before the fact
Generator Attack-Based Defender-Based
Tuner MTD-impossible MTD-possible

customization to every standalone system will make the same attack vector useless

against our system. For example, if the attack process is named “notepad.exe” and

we used that process name as an allowed process to access our critical asset files

in one system. The other systems can customize the name of the allowed process

to be for example “mynotepad56.exe”. Therefore, “notepad.exe” malicious code

process will not harm the critical assets. Moreover, if the attacker reconnaissance

phase is done on our security system to know the process name we used as an

allowed process, then the attacker will need to change his process name to the

discovered one and must do that for every standalone defense system to hit as

many targets as possible.

Also this mechanism can work in the same system. If we have 2 files using the

same program or used by 2 users, we can provide different name for every user

so we can make 2 processes such as renaming “notepad.exe” as “hisnotepad.exe”

and “yournotepad.exe”. Then, we assign each one of these processes to different

critical asset file. In this case, if the attacker succeeds in penetrating one of the

asset files, the attacker has to initiate a new attack vector with new tuning to get

the other file. this has to be done even if the 2 critical files are at the same system
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using the same program.

One main disadvantage of our security system is the following. If the attacker

knows the name of the asset file and the process name accessing that file, then the

attacker can utilize this information to bypass our system defense mechanism to

gain access to the asset file. But this penetration is still defender-based game not

attacker-based game even though that weakness can be waived by using MTD.

8.3 Asset-Based Security System Assumptions

We designed and implemented a prototype of our security system assuming the

following:

• Asset scope: As shown in Table 2.5, assets can be physical, t-ICT, e-ICT,

or e-information. Since our proposed asset-based security system is asset-

based, the scope of assets that our proposed system is based on needs to

be clearly defined. Assets span over a wide range of entities as defined in

[18] and [53]. Files, processes, sockets, physical entities can be considered as

assets. In this thesis, we are focusing on protecting information which is one

of the main five assets mentioned in Table 2.5. Specifically, we are concerned

with protecting files. Files can be protected by controlling the physical files

themselves and protecting reaching those files through processes. As such,

this thesis considers asset as file, and monitors the system calls to reach

those files through processes. So, the scope of our asset is mainly starts

from a file, then other processes and files could be added as assets through
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the reachability graph.

• Information Collection Phase Immunity: The information collection

phase as discussed in section 4.5.1 is assumed to be done when the system

is offline. That is, the information collection phase needs to be done before

system deployment. This is done and assumed also in [18]. Once the infor-

mation is collected, this information will be used to determine the critical

assets (including files and processes) that the user needs to protect. Since,

later security decisions will depend on the information collected, immunity

to this phase is necessary for validity of the system. Therefore, each time

information phase needs to be executed, it must be done offline.

• Virtualization Environment: Our security system monitors system calls

utilizing VMI, which enables our security system to be agentless and does

in-depth execution tracing of arbitrary binaries. Therefore, a virtualization

environment is assumed. As such, our system system will be able to catch

and analyze every system call generated by the guest OS by interacting with

the hypervisor.

8.4 Asset-Based Security System Limitations

• Availability scope: Availability as defined in [59] has three attributes

namely, response time, expiration, and resource allocation. As long as the

asset (a physical file in our system) exists, a resource is allocated. If the
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physical file exists but can not be accessed because the service (process)

used to reach the file is unavailable, then the response time is affected. In

this case, only the reachability to the file is affected.

Therefore, in our security system, the availability is limited to only physical

files. Our security system is not concerned with the availability of processes

(services) because our focus is to protect physical files and insure that these

physical files are not detected and not available to unauthorized users.

• Guest Operating System Compromise: If the attacker can compromise

the guest OS, the system calls table can also can compromised. Therefore,

an attacker can manipulate the system call table and then our system will

not be able to catch critical system calls related to critical assets. As we are

depending mainly on monitoring system calls in our system,then a compro-

mise to the guest OS will harm our proposed security system.

• Hypervisor Compromise: Although seldom and complicated, attacks

can reach hypervisors [149]. These attacks need sophisticated tools and

skills but attacks knows as hyperjacking [149] could be done by (a) adding

a rogue hypervisor on the top or beneath the original hypervisor and (b)

directly controlling the original hypervisor. As such, if an attacker can reach

the hypervisor by hyperjacking, then our system can be disabled making

critical asset vulnerable to threats. System call interception techniques can

not monitor the malicious drivers and rootkits which could be monitored

using DRAKVUF at hypervisor level [150].
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8.5 Directions for Future Work

Future directions for this work include, improving the performance, implementing

facilities for more fine grained access control policies with MTD, and expanding

this implementation to support Linux, Android or any other OS.

A fundamental paradigm shift is MTD systems where attack surfaces are al-

ways dynamically moving. MTD systems are only leveling the game between

defenders are attackers and still require information on the attack scenarios in

order to design proper adaptive and dynamic security systems. A key challenge

to MTD systems is how to control such a dynamic environment so that defenders

are not confused. As such, MTD systems need to impose this dynamic change

from the perspective of attackers and not defenders.

To enhance the performance ratio in our security system, the concept of read-

only file which used in Windows can be applied here to reduce the response time

overhead. That is, using access mask bits [151] supported by the Operating System

can relief the defender. Also if we customize our monitor system it can improve

the performance significantly as it consume most of the time.

To expand this implementation to support Linux, Android or any other OS.

For example in the case of Linux we need to install any Linux version as guest OS,

then we need to monitor the system calls were generated from it, analyze them

with their parameters. Also a definition for every system call is needed to be

familiar with them. Finally we can apply our operational architecture to Linux.
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APPENDIX A

INSTALLATION GUIDE

UPDATED 7/10/2017 DRAKVUF now requires Xen 4.9. Please pay attention to

the updated VM configuration specifying the altp2m option for a domain.

The following packages are normally required to build Xen and DRAKVUF

on Debian based Linux distros. The system has been mainly tested on Debian

Jessie and Ubuntu 14.04 LTS.

sudo apt-get install wget git bcc bin86 gawk bridge-utils iproute libcurl3

libcurl4-openssl-dev bzip2 pciutils-dev build-essential make gcc clang libc6-dev

libc6-dev-i386 linux-libc-dev zlib1g-dev python-dev python-pip libncurses5-dev

patch libvncserver-dev libssl-dev libsdl-dev iasl libbz2-dev e2fslibs-dev git-core

uuid-dev ocaml libx11-dev bison flex ocaml-findlib xz-utils gettext libyajl-dev

libpixman-1-dev libaio-dev libfdt-dev cabextract libglib2.0-dev autoconf automake

libtool check libjson-c-dev libfuse-dev checkpolicy liblzma-dev autoconf-archive

kpartx python-capstone

We will be installing a slightly modified version of Xen 4.8 that includes a
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built-in XSM policy required for DRAKVUF.

cd

git clone https://github.com/tklengyel/drakvuf

cd drakvuf

git submodule init

git submodule update

cd xen

./configure –enable-githttp

make -j4 dist-xen

make -j4 dist-tools
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APPENDIX B

DRAKVUF VERSION 0.4

Here we added the experiment result from the previous version of DRAKVUF ver-

sion 0.4 which is related to system security response time, unfortunately this result

are no more valid also we could not complete some of the table as DRAKVUF

version 0.4 is not working anymore.

Table B.1 time shown in seconds consumed in Guest OS when application

opened alone, shows time is seconds needed to run a specific program in different

situations and scenarios we run each one of them about 100 time, then we took

the average, we have three columns, all of them shows the time for all application

solo i.e. without opening a file using that application, the steps will be done

according to the approach figure are step one and step two, we are using a program

called APPTIMER to record the time, it works like the following procedure: Start

Apptimer. Instruct Apptimer to open the application and record the START time.

Once the application window opens, instruct Apptimer to record the END time.

The difference between these columns is that the time recorded in the first column
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is when there is no monitoring at all i.e. the plugins are off, the second column

contains the time when the monitoring done to specific system calls namely they

are NtWriteFile, NtReadFile, NtDeleteFile, NtSetInformationFile, NtOpenFile,

and NtCreateFile. The third column time is taken when all the NT system calls

are monitored.

Table B.1: Response time Without File Access.

Application Without File Access
Code off Specific System Call NT System Calls

Notepad 0.042 1.591 1.767
WordPad 0.045 2.134 2.306
MS Paint 0.070 3.220 3.884

In Table B.2 time is shown in seconds consumed in Guest OS when noncritical

file accessed by an application, there are three columns which record the time

needed to access a noncritical file by an application, the step done in this table

starts from step one to up to step four, following the next procedure: Start App-

timer. Instruct Apptimer to open the application and record the start time. Once

the application window opens the noncritical file, instruct Apptimer to record the

END time.

Table B.2: Response time when noncritical file accessed.

Application Without File Access
Code off Specific System Call NT System Calls

Notepad 0.040 1.669 1.693
WordPad 0.050 2.627 2.821
MS Paint 0.067 3.315 3.951

In Table B.3 time is shown in seconds consumed in Guest OS when critical

file accessed the time shown for critical files when prevented from access and
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when allowed, for prevented case there is no access to the file at all, to ensure

this criterion we need the seven steps from the first one to the last one with the

following procedure: Start Apptimer. Instruct Apptimer to open the application

and record the start time. Once the application window opens, the application

tries to access the critical file (i.e., open the critical file). Once a message is

displayed to indicate access denial, Apptimer records the END time, for level

three case where the process has given full access to the file, six steps is enough

to ensure the criteria with the following procedure: Start Apptimer. Instruct

Apptimer to open the application and record the start time. Once the application

window (if allowed) opens the critical file, instruct Apptimer to record the END

time.

Table B.3: Response time when critical file accessed.

App. Prevent No Prevent
Specific System NT System Specific System NT System

Calls Calls Calls Calls
Notepad 1.707 1.783 1.659 1.801
WordPad 2.751 4.054 2.595 2.888
MS Paint 3.389 4.192
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