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Performance enhancement techniques for the improvement of chemometrics that are 

employed for quantitative analysis of LIBS spectra have been comprehensively studied in 

this work using spectral from different matrices which include solid samples such as 

standard bronze samples, semi-fluid samples such as grapes and biocompatible samples 

such as fish. Three novel techniques for performance enhancement are proposed and 

developed for hybrid support vector regression (SVR) based chemometrics as well as 

hybrid extreme learning machine (ELM) based chemometrics which are used for 

quantitative analysis of LIBS spectra. Specifically, the proposed techniques are internal 

reference preprocessing (IRP), homogenous hybridization and hybrid fusion. Prior to the 

implementation of the proposed techniques, sufficiency of single emission line for 

quantitative analysis of LIBS spectra using the developed chemometrics was investigated 

by comparing the elemental concentrations obtained from the developed sensitivity based 

linear learning method (SBLLM) based chemometrics using single, double and three 

emission lines. Experimental validation of the proposed techniques was carried out using 

seven standard bronze samples and excellent results are obtained. In addition, hybrid 
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support vector regression and hybrid extreme learning machine chemometrics are also 

developed and implemented for quantitative analysis of crayfish and grape samples. The 

obtained results from the two chemometric models were verified and compared with the 

result obtained from standard analytical technique such as inductively coupled plasma 

mass spectrometry (ICP-MS).  Implementation of the developed performance 

enhancement techniques for the investigated chemometrics tools employed for 

quantitative analysis of LIBS spectra would definitely enhance the precision of 

quantitative analysis of LIBS spectra, especially for in situ applications, and ultimately 

widen the applicability of the technique   
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عنوان الرسالة: مطياف التكسير المستحث بالليزر الخالي من المعايرة باستخدام مقاييس كيميائية هجينة متعددة 
 المتغيرات: منهج للتحليل الكمي الدقيق للعناصر الكيميائية في العينات الصلبة

 
 

 التخصص: : فيزياء
 

 8102: مايو لدرجة العلميةتاريخ ا
 

 

هذف هذا العول لذراست وتحسين اداء الطزق الوستخذهت في التحليل الكوي لطيف التكسيز الوستحج بالليشر بىاسطت 

طيف هن الوصفىفاث الوختلفت والتي تشول عيناث صلبت هخل العيناث البزونشيت المياسيت وعيناث شبه السىائل هخل 

تن التزاح وتطىيز حلاث تمنياث جذيذة لتحسين اداء الطزق الوستخذهت  .ا هخل السوكالعنب وعيناث هتىافمت حيىي

للتحليل الكوي لطيف التكسيز الوستحج بالليشر. التحمك التجزيبي للتمنياث الومتزحت أظهز نتائج هوتاسة   لوجوىعت 

الصلبت بىاسطت هطياف التكسيز  هن العيناث الوختلفت. سيادة دلت التحليل الكوي للعناصز الكيويائيت في العيناث

 الوستحج بالليشر سىف يسهل استخذام الوطياف للعول الويذاني ولابليت تطبيمه في نطاق أوسع
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1 CHAPTER 1 

INTRODUCTION 

2 Laser induced breakdown spectroscopy (LIBS) is an analytical technique that uses 

laser pulse of high energy for material ablation [1]. The ablation generates laser 

induced plasma when the focused laser beam results into optical breakdown of the 

test samples [2]. Among the merits of this technique, as compared to other 

spectroscopic techniques include its rapid and real time analysis as well as small 

sample requirement [3]–[7].  In principle, any physical state of matter can be 

analyzed qualitatively and quantitatively using LIBS technique. The qualitative 

analysis premises on the emitted characteristic frequency of the plasma constituents 

when excited to high temperature while the quantitative analysis of the LIBS spectra 

can be carried out through calibration curve and calibration free approaches [8] [1], 

[9]–[12] [1], [2], [13]–[17]. Chemometric tools are techniques which relate the 

features (also called descriptors) to the desired quantity (also called output or target) 

in a given data set [18]. These techniques have gained a significant interest because 

of their simplicity and ability to effectively model non-linear interactions taking place 

in the laser induced plasma [8]–[11], [13], [15], [16], [19]. Chemometric technique 

that have been extensively employed in spectroscopic analysis include principal 

component analysis, parallel factor analysis, linear discriminate analysis, window 

factor analysis, orthogonal projection analysis  and support vector regression [12], 
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[18], [20]–[22]. This present work develops extreme learning machine (ELM) based 

chemometric for quantitative analysis of LIBS spectra for the first time. The proposed 

chemometrics show good generalization performance as measured on the basis of 

root mean square error, mean absolute error and correlation coefficient  when 

implemented on standard bronze samples.  The performance of the proposed 

chemometrics is enhanced using internal reference preprocessing method (which 

minimizes self-absorption of the emission spectra), homogenous hybridization and 

hybrid fusion. The inherent ability of extreme learning machine to approximate non-

linear function to a linear one distinguishes it from other computational intelligence 

based chemometrics [23]. ELM trains single-hidden layer feed-forward neural 

networks using a novel learning algorithm different from the popular gradient-based 

learning algorithms such as Levenberg-Marquardt and back-propagation which are 

known to be slow and sometimes converge to local minimum [24], [25]. ELM 

algorithm randomly selects input weights and hidden biases and determines the 

output weights analytically with the aid of Moore-Penrose generalized inverse matrix. 

The input weights relate the input layer to the hidden layer while the output weights 

link the hidden layer to output layer. The learning scheme adopted by ELM results 

into a fast learning rate, excellent generalization performance and non-convergence to 

local minimum. In order to fully capture the non-linear interactions in laser induced 

plasma, two ELM algorithms are hybridized thereby forming homogeneously 

hybridized extreme learning machine (HELM). This proposed HELM has many 

merits as compared with ordinary ELM as it allows utilization of multiple activation 

functions as well as generalization of error bound.  Since ELM determines the input 
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weights as well as hidden biases in a random manner, hybridization of ELM 

optimization algorithm would definitely enhance the performance of the technique. In 

this work, ELM is hybridized with gravitational search algorithm (GSA) for number 

of hidden neuron optimization. GSA is a novel search algorithm that is based on 

Newtonian mechanics and mass interaction [26]. It treats the number of hidden 

neurons to be optimized as masses in gravitational pull in which heavy mass attracts 

lighter ones and move slowly until convergence to global minimum is attained. The 

performances of the resulted hybrid models were further improved using internal 

reference preprocessing method in which emission line intensities are normalized 

using the emission intensity which is characterized with highest upper level excitation 

energy and lowest transition probability. The effect of self-absorption on the emission 

intensity is minimized and more accurate quantitative results are obtained. 

3 The plasma generated due to laser ablation is often optically thick and results into 

self-absorption since the plasma is spatially inhomogeneous and its evolution is 

temporal [8]. An optically thick plasma results into uneven plasma cooling in which 

one part of the plasma cools faster than the remaining part. Consequently, the photons 

emitted from the cooler part are reabsorbed by atoms of the same species in the hotter 

part of the plasma and ultimately leads to emission of reduced intensity. The emitted 

species with least transition probability (which is the probability per unit time of an 

atom in upper energy level making a transition to lower energy level) would have 

lowest possibility of being reabsorbed since the transition to the lowest energy state 

might be slower than the cooling time lag between different parts of the cooling 

plasma.  Hence, normalization of the spectra intensity with the intensity that is rarely 
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affected by self-absorption reduces the effect of self-absorption in the entire spectra 

[13], [27]. The proposed methods of performance enhancement are also implemented 

on support vector regression chemometrics and improved performance was obtained. 

The results of the present modeling and simulations show the proposed chemometrics 

and performance enhancement methods are efficient and can ensure precise 

quantitative analysis of LIBS spectra.  

1.1 Description of LIBS instrumentation 

Laser induced breakdown spectroscopy (LIBS) is an atomic emission spectroscopic 

method that has been extensively utilized for elemental compositional analysis of a wide 

varieties of samples across the states of mater such as solid, liquid and gas [28]. Among 

the uniqueness of LIBS which dichotomizes it from other established spectroscopic 

techniques includes presence of little of no sample treatment or preparation before 

spectroscopic analysis, ability to detect both neutral and ion spectral features of all 

species present in the sample in a single measurement, quasi-nondestructive nature of the 

measurement as well as easy accessibility of potable and compact LIBS system [29]–

[34].  As a result of the aforementioned unique features of LIBS, practical application and 

implementation of the technique has enjoyed a wider utilization, therefore various 

experimental configurations have been developed and designed to meet the requirements 

of the desired and specific applications. The operational measurement in LIBS involves 

focusing a short laser pulse onto the sample to be analyzed while high electron density 

and temperature plasma is formed due to the transference of a fraction of the impinging 

energy to the irradiated portion of the sample. This phenomenon is known as breakdown. 
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The ignition process of LIBS plasma can be influenced by the physical characteristics of 

the excitation pulse (this includes duration, wavelength, repetition among others) as well 

as the chemico-physical characteristics of the irradiated material.   Plasma is formed 

when the vaporized portion of the material expands at supersonic velocity in a direction 

normal to the surface of the target. The electromagnetic radiation is emitted by the 

plasma and can be detected as well as analyzed spectrally, purposely to retrieve the 

elemental constituents of the target. Analyzing the elemental composition of the plasma 

in lieu of the target sample is only possible for stoichiometric ablation.  The temporal 

delay to record the emitted spectrum is of significance since broad emission lines which 

can be attributed to stark effect superimposed on intense background (continuous) 

characterize the initial stage of spectrum acquisition [32], [35], [36]. The observed 

continuous background can be attributed to both free to bound electron recombination as 

well as  free-free electron transitions known as Bremsstrahlung emission. The intensity of 

the continuous background decays rapidly after few hundreds of nanoseconds when ions 

capture the free electrons and the emission lines emanated from bound to bound 

electronic transitions become weaker and narrower. Meanwhile, the atomic lines suffer a 

slow decay as emission lines appear coming from molecules. For thermodynamic 

equilibrium condition which is bedrock for any quantitative analysis, the acquisition 

period should constitute a small fraction of the whole plasma emission time. Typically, 

LIBS apparatus contains the following basic components.  

 A laser source through which light pulses are generated for plasma ignition 

 Optical system that directs and focuses the laser pulse on the target. 
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 Light collection system employed in collection and transportation of the 

emitted light (from the plasma) to the detection system. 

 A spectrometer for analyzing the spectral emitted from the plasma 

  Detector for collection and recoding of the spectrum 

 Electronic device as well as computer for controlling the experimental 

apparatus. 

 

1.1.1 Laser source 

For the purpose of plasma generation from any kind of sample involved in LIBS 

experiment, pulsed lasers of high energy are frequently used [37].  Varieties of coherent 

sources with such high energy are available in the market with different technical 

specifications. Physical parameters of laser pulse such as wavelength, pulse energy, pulse 

duration and beam quality among others, control the radiation to matter interaction and 

consequently influence the plasma formation as well as the quality of LIBS measurement. 

Therefore, the nature of the task to be performed determines the selection of the laser 

source suitable for the job accomplishment. The main features of a laser source include 

intensity, directionality, coherence and monochromaticity.  Laser intensity is the ratio of 

the peak power of the laser and cross section of the output beam. The laser intensity is 

also called power density or simply irradiance [38]. Very large intensities around trillion 

of watts can be achieved per unit area since a short duration of order of femtoseconds and 

nanoseconds pulses can be generated. However, power per unit area impinging on the 

sample under investigation is mostly significant in LIBS experiment and this also 

depends on the optical systems for delivering the beam onto the target.  The divergence 

angle of laser describes its directionality. The directionality property of laser beam allows 
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deliverance of high irradiance to the target since radiation can be easily focused to a very 

small spot size [39].  Spatial coherence enhances high irradiance in laser beam since is 

related to low divergence of the beam. Similarly, laser monochromaticity is of lesser 

significance since plasma formation as well as behavior depends strongly on laser 

intensity and weakly influenced by the frequency spread of the incident radiation.  The 

beam quality factor measures the deviation of the energy density distribution in laser 

beam from the ideal Gaussian distribution. In LIBS experiment, the beam quality factor 

of most frequently used sources ranges from 2 to 10 where the ideal Gaussian distribution 

is assigned beam quality factor of 1. Despite the existence of wide varieties of laser 

sources in LIBS experiment, Nd:YAG solid state laser source with active Q-switching 

has enjoyed a wider utilization. Q-switching is an optical technique through which an 

intense and narrow laser pulses could be obtained. Implementation of Q-switching 

involves positioning of variable attenuator inside the optical resonator. This arrangement 

allows accumulation and increase in the stored energy in the active medium while 

depletion of upper energy level is prevented. Hence, intense and short pulse of light is 

released [40].  

Similarly, high power pulsed fiber lasers has enjoyed a lot of applications in industries 

where LIBS plays a crucial role.  Fiber laser is a class of standard solid state laser in 

which the usually used rod is replaced with optical fiber and results into longer 

interaction length and consequently improves the photon conversion efficiency. The 

structure of a typical dual-core fiber laser consists of un-doped outer core for pump light 

collection as well as guiding the light along the fiber while the generation of stimulated 

emission takes place in the inner doped core. Fiber laser are usually pumped by diode 
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lasers or other fiber lasers and both side and end mechanisms of pumping are used. The 

main difference the two mechanisms of pumping is that side pumping allows light to be 

coupled onto the outer core using fiber coupler while end pumping configuration directly 

fires light from pump laser into the end of fiber [41]. Similarly, mode-locking and Q-

switching techniques are used in fiber laser for obtaining very narrow and short pulses. A 

very short pulse of like 50 femtosecond can be attained using mode-locking method 

while pulse duration obtained using Q-switch is in a range of nanosecond to microsecond.  

Decisively, the interest in fiber laser has increased significantly nowadays due to its 

uniqueness as compared to other available laser source which include excellent energy 

per pulse, compactness as well as beam quality factor which is very close to one.  

1.1.2 Impact of laser source wavelength on laser mater interaction 

during LIBS experiment  

The amount of energy that a laser photon is carrying (which is related to laser 

wavelength) has a significant influence on the plasma formation during LIBS experiment 

[42]. Of course, wavelength of the radiation causing excitement influences the two basic 

mechanisms (multi-photon absorption and collision-induced ionization) through which 

electrons are generated. Generally, multi-photon absorption dominates in electron 

generation when short wavelength laser causes excitement while collision-induced 

ionization takes preference in a case long wavelength laser source is used. Collision-

induced ionization occurs when laser radiation electric field accelerates the free electrons 

present in the ablated materials which bring about interaction between the accelerated 

electrons and neutral atoms of the material and consequently leads to increase in electron 

energy. This phenomenon is called inverse-bremsstrahlung.  Energy gained by electrons 
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causes further ionization of atoms and leads to exponential growth of electron density 

[43]. Other mechanism of electron generation, that is, multi-photon absorption occurs 

when an atom of molecule absorbs a certain number photons simultaneously and leads to 

atomic ionization. The density of electrons due to this ionization increases linearly with 

time. Hence, this mechanism has insignificant contribution to electron growth. However, 

multi-photon absorption at least, generates initial electrons before further ionization by 

other mechanism. As previously mentioned that laser wavelength has serious effect on 

the energy coupling between the laser and the material to be ablated, different research 

studies have attributed high ablation efficiency, lower background emission (continuum) 

and higher reproducibility to UV lasers. Particularly, reflectivity coefficient (R ) of 

metallic surfaces reduces from 0.976 to 0.336 as the wavelength of laser decreases from 

1064nm to 266nm.  Since the impinging energy (1-R) is a fraction of reflectivity 

coefficient, UV laser has demonstrated a high impinging energy using metallic surfaces 

as the target [44]. High spatial resolution characterizes LIBS measurement where UV 

lasers are used since focusing the laser down to a lower spot diameter is not an issue on a 

sample surface. The influence of laser pulse duration on plasma formation cannot be left 

out. The full width at half maximum of pulse profile measures the pulse duration and 

determines the observed spectroscopic quantities. During laser-mater interaction, the 

initial impingement of   laser beam on sample causes evaporation of part of target 

material while subsequent impingement leads to heat and ionization which ultimately 

enhances plasma formation.   For picosecond laser source, thermal diffusion causes pulse 

energy lost more significantly as compared to nanosecond laser source and additionally, 

lower matter to radiation interaction time and higher delivered irradiation are observed in 
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picosecond laser as compared to nano-second pulsed laser. Decrease in plasma shielding 

effect as well as the duration of pulse laser contributes to high ablation rate often 

observed. In a case of femtosecond exciting laser, multi-photon ionization dominates 

plasma formation processes since pulse duration small compared to matter thermal 

coupling time constant. In summary, femtosecond coherent laser sources have higher 

irradiance than nanosecond laser sources because energy is delivered to the matter in a 

very short period of time [45]. Therefore, femtosecond lasers have higher efficiency, 

lower plasma temperature and precise removal of material.  
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2 CHAPTER 2 

LITERATURE REVIEW 

This section reviews the summary of the methods adopted so far for quantitative analysis 

of LIBS spectra. It presents the problems that affect the accuracy of quantitative analysis 

in LIBS measurements and the approaches employed in the literature to improve the 

accuracy of quantitative analysis. Furthermore, the backgrounds of hybrid chemometrics 

proposed in this research work are introduced. The proposed methods of enhancing the 

accuracy of the proposed chemometrics are also presented.  

2.1 General introduction to the challenges of quantitative analysis of 

LIBS spectra, existing solutions and their limitations 

 Laser induced breakdown spectroscopy (LIBS) is an atomic spectroscopic technique in 

which a highly focused laser, fired at a sample creates plasma plume consisting of excited 

ions and atoms. Cooling down of atoms in the plume (a process called plasma cooling) 

results into emission of characteristic wavelength of light (which are the fingerprints of 

the elemental constituents of the sample) that is collected and dispersed using 

spectrometer. The characteristic emission spectrum of each of the elements present in the 

sample and the intensity of the characteristic peaks is directly proportional to the number 

of emitting atoms of the respective elements.  Thus, elemental identification and 

quantification of samples can be conducted using LIBS technique.  Quantitative analysis 

of its spectra has been a major challenge due to self-absorption of the emitted radiation 

during plasma cooling and inadequate description of non-linear complex interactions 
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taking place in the laser induced plasma. Matrix effect also remains a significant problem 

to elemental quantification of LIBS spectra. Matrix effect strongly reduces the accuracy 

of the quantitative analysis of LIBS spectra. It measures the influence of emission line 

intensities of other elements present in the sample on the element of interest.  Samples of 

different matrix result into different electron plasma density consequent upon different 

laser plasma interaction. As a result, different ionization levels and excitation of plasma 

species are achieved [46]. Conventional calibration curves often suffer from matrix effect 

problem [47]. Among the reasons for the occurrence of matrix effect in LIBS 

measurement include spectral matrix, different chemical composition as well as physical 

feature difference.  Spectral matrix effect happens when there is interference between the 

strong lines of matrix element and analyte element. This kind of matrix effect can be 

circumvented or overcome by either peak fitting or careful peak selection. The most 

challenging matrix effects correction are the one due to difference in physical properties 

of the samples or as a result of difference in chemical composition. Matrix effect is 

described as physical matrix effect if the physical properties of samples change the 

ablation parameters during LIBS measurement and ultimately alter the emission 

intensities of element of interest present in two or more samples of the same composition. 

When difference in chemical compositions of two or more samples result into different 

emission line intensities of element of interest of the same concentration in these samples, 

the matrix effect in this case is called chemical matrix effect [48]. Physical properties 

include thermal conductivity, heat of vaporization, water content and absorption 

coefficient. This constitutes a significant problem since it impedes the transport of 

ablated mass into plasma.  Although calibration curves can be easily applied to matrix 
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matched samples, practical limitations for in-situ applications where unknown samples of 

complex matrices are to be measured using LIBS, is still a big challenge [49]. Each 

sample needs its own calibration  and it is extremely difficult to achieve  a universal 

calibration curve [50]. In fact merely doping samples of similar matrix with different 

elements result into chemical matrix effect that might not be accurately handled using 

calibration curve drawn from one sample [47], [51]. Finding matrix-matched standard for 

eliminating matrix effect problem for in –situ application in LIBS remains a challenge 

[46], [49], [52]. Multivariate chemometrics have been proposed as a viable means of 

circumventing self-absorption and matrix effect and ultimately lead to accurate means of 

quantitative analysis of LIBS spectra.  

Chemometrics tools that effectively handle non-linear features of spectra have recently 

gained wider applicability especially for quantitative analysis. Chemometric technique 

that have been extensively employed in spectroscopic analysis include multivariate 

calibration method, principal component analysis, parallel factor analysis, linear 

discriminate analysis and window factor analysis orthogonal projection analysis [18].  

Recently, support vector regression has received special  interest due to its unique 

features such as non-convergence to local minimal, generalization of error bounds and 

utilization of kernel trick [53] . Bilal Malik et.al quantified near-infrared spectra of a 

mixture (urea, triacetin and glucose) with the aid of support vector regression based 

chemometrics and reasonable accuracy was achieved [20]. Among other areas where 

support vector regression based chemometrics has been applied include the quantification 

of animal fat biodiesel in soybean biodiesel [54] , blood glucose [55], herbal medicine 

[21] and  rock samples [5], [11].  Based on our knowledge, the hybrid technique has not 
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been applied for quantification of LIBS spectra.  This work proposes hybrid advanced 

chemometrics for quantification of LIBS spectra for the first time. The mathematical 

formulations of the conventional CF-LIBS as well as the hybrid techniques to be 

developed and implemented in this work are described in subsequent sections of this 

chapter. 

2.2 Fundamental principles of CF-LIBS for analysis of measured 

LIBS spectra  

The hypothetical background of calibration free algorithm as proposed by A. Ciucci  and 

his group rely heavily on the plasma conditions as well as the experimental method of 

operation [56] .  Apart from the assumption that the composition of the plasma truly 

represents that of the material to be ablated prior to the ablation, the plasma should also 

be in a condition of local thermodynamic equilibrium. The optical thinness of the 

radiation source is also significant and should be maintained for successful execution of 

the algorithm. Generally, normal LIBS operating conditions uphold optically thin plasma 

condition for trace element while self-absorption correction needs to be incorporated in 

the calibration free algorithm to enhance minor element quantification.  Consider an 

atomic species  ( s  ) (neutral or singly ionized species), the transition between two energy 

levels iE  and jE  which gives raise to the observed integral line intensity 
ijI   (measured 

in photon/s cm
3
) is defined by equation (2.1). 

exp
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 Where :  
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 = transition wavelength 

ig = degeneracy of the ith  level 

sN = emitting atomic number density (particle/cm
3
) for each species 

ijA = transition probability of the given line intensity 

( )sU T = partition function of s species at plasma temperature T  

BK =Boltzmann constant 

T = plasma temperature 

 In the actual experimental set-up, the efficiency of the collecting system is factored as a 

scaling parameter for the measured intensity. Equation (2.1) can be modified as presented 

in equation (2.2). 

*
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s
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g

K T
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U T


 
 
     (2.2) 

Where
*ijI , F  and  sC  respectively represent the measured integral intensity, the 

experimental parameter (it accounts for plasma volume, density and the optical collection 

efficiency of the data acquisition system) and the emitting atomic species concentration.  

It should be noted that changing in experimental conditions such as laser energy focusing 

and so on can affect the parameter F and care should be taken while collecting signal for 

several shots of laser or while repeating the experiment.  
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For the algorithm implementation, the parameters ig , ijA  and iE  are to be extracted from 

NIST data base while  F T  and sC  are to be obtained from the experimental data.  From 

the logarithm of equation (22.), a straight line equation presented in equation (2.3) can be 

obtained. 

y mx Q     (2.3) 

Where  
*ij

ij i

I
y In

A g

 ,   ix E , 
1

B

m
K T

   and    
( )

s
s

s

C F
Q In

U T
    

A two dimensional space that defined in equation (2.3) is called Boltzmann plane and 

each species in the plasma has a specific Boltzmann plane. Therefore, each LIBS line can 

be well represented in Boltzmann plane. The concentration of each of the species can be 

easily determined from the Boltzmann plot intercept after which the plasma temperature 

has been determined. In order to avert uncertainty in the measurement and further 

improve the accuracy of the algorithm, several lines can be used for determining the 

concentration of a particular species while experimental parameter F is factored in this 

case.   Equation (2.4) and (2.5) respectively details how the experimental factor and the 

concentration of atomic species are determined. 

1
( )exp( )s s s

s s

C U T Q
F

     (2.4) 

( )exp( )s s
s

U T Q
C

F
      (2.5) 

The total concentration of a given element in the plasma is presented in equation (6) 
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element

tot I IIC C C     (2.6) 

Where IC  and IIC  are the concentrations of singly ionized and neutral species, 

respectively. 

Another method of determining the concentration of one species of a given element after 

the concentration of the second species is known is to use Saha-Boltzmann equation 

presented in equation (2.7). Also, the electron density ( eN ) can be determined using the 

concentration of element with known species concentration.    

21( ) ( )
6 10 exp( )

( )

e c cII

c I

N N II E Ig
X

N I g T


      (2.7) 

Where  ( )cN II  and ( )cN I  represents the population of the ground state of the singly 

ionized and neutral species respectively while IIg  and Ig  respectively represent their 

degeneracy.  The ionization potential of the singly ionized species in the ground state and 

the plasma temperature are respectively represented in the equation as  ( )cE I  and T .  

2.3 Methods of improving the accuracy of calibration free laser 

induced breakdown spectroscopy 

The recently proposed calibration free laser induced breakdown spectroscopy aims at 

circumventing the challenges of quantitative analysis of LIBS spectra [56]. This approach 

is promising and has been applied to several samples [8], [16], [57]–[59]. However, the 

problem of self-absorption still remains an obstacle that makes the results of  calibration 

free laser induced breakdown spectroscopy far from the certified values [13], [27].  In an 

effort to correct self-absorption in classical calibration free laser induced breakdown 
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spectroscopy, Bulajic et al developed a software package (LIPS++) which minimizes the 

effect of self-absorption by computing curve of growth for all the emission lines [60]. 

Similarly, Sun et al. proposed a method of self-absorption correction through accurate 

determination of plasma temperature [27].  The accuracy of this method was further 

improved using genetic algorithm [13]. Another method of accurate plasma temperature 

determination for ensuring precise quantitative analysis in LIBS is an inverse method 

proposed lately  where set of equations in the classical calibration free algorithm are 

reversed [61]. Furthermore, the work of Pershin et al attributes the disproportionality 

between the spectral line intensities and the element stoichiometry for selective 

evaporation of elemental components which occur during heating-melting-evaporation 

stage of ablation and thereby developed a model which accounts for Prokhorov–Bunkin 

melt transparency wave [62]. On the other hand, De Giacomo et al [63] extended the 

classical calibration free algorithm to a wide range of experimental conditions by relaxing 

the condition of local thermodynamic equilibrium in the algorithm and assumed neutral 

species to be of significant abundance as compared to other species. The internal 

normalization of the computed species densities was achieved using a black-body model 

of the plasma continuum spectrum.  Aguilera et al [64] presents a calibration free 

approach in which Saha-Boltzmann plot was used for elemental relative number densities 

determination in addition to plasma temperature estimation from the plot. The density of 

ionic species was calculated using Saha equilibrium equation while the intercept of Saha-

Boltzmann plot was adopted in the calculation of neutral species densities. This method 

improves the accuracy of the classical calibration free algorithm since a regression of 

larger number of spectral data was used for intercept evaluation.  Also, the result of the 
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classical calibration free algorithm was corrected by Burakov et al [65] using known 

concentration of one of the components. The accuracy of CF-LIBS technique still 

remains a challenge. A comprehensive review on calibration free methods in LIBS has 

been presented in the work of Tognoni et al [8].   

2.4 General introduction to multivariate chemometrics tools 

The Multivariate regression constructs calibration model using spectra and compositional 

information to establish a correlation between the spectral intensity and the elemental 

composition. Practical implementation of multivariate regression involves utilization of 

spectra datasets of samples of known concentration for building the training dataset base. 

The determination of the concentration of unknown samples can be carried out using the 

acquired pattern in the developed model during the training phase. Multivariate 

calibration methods assume that both physical and chemical matrix effects are expressed 

in the intensities of the spectra and construct a statistical model that takes all these into 

account. While fulfillment of plasma conditions is the backbone of the conventional CF-

LIBS, multivariate regression models can construct calibration models without prior 

assumption of plasma conditions [47]. Guang yang et. al applied forest regression (FR) 

for determining the basicity of sintered ore in 2017. The emission characteristic lines of 

the major components of the ore obtained from LIB measurement are used for building 

the model while the model parameters such as the number of decision trees as well as the 

number of random variables are optimized using out-of-bag error estimation method [66]. 

The authors further compared the results of their model with that of partial least square 

regression chemometric model and forest regression and a better performance was 

obtained in terms of model generalization and future prediction. The standard sintered ore 



20 

 

samples utilized in the experiment was supplied by Shyang Jingcheng Equipment 

Development and manufacturing Co., Ltd. Regression forest is a chemometric tool 

developed by prof.Leo in 2001 and is capable of both regression and classification task.  

Qi Shi et.al present support vector regression based LIBS method of quantitative and 

qualitative analysis of sedimentary rock samples and the concentration of five main 

elements were quantified [11]. Spectral lines obtained from LIBS measurement are used 

as descriptors to their model. The outcomes of their developed SVR based model are 

compared with that of partial least square method and SVR model demonstrated a 

superior performance. Both developmental and validation stages of their models were 

carried out using certified samples presented in table 1 of their paper. Classification and 

quantitative analysis of slag samples were presented by Tianlong Zhang et. al in 2015 

using SVR based LIBS using characteristic emission lines of the elements as descriptors 

to the model [67]. A comparison between their SVR based chemometric and partial least 

square based chemometric was made and they showed that SVR based chemometrics 

performed better than its counterpart. The certified concentration used for building their 

models are presented in table 1 of their manuscript while the wavelengths of their 

descriptors are shown in table 2 of their published work[67] . Jiao Wei et. al presented 

wavelet neural network based LIBS for quantitative analysis of coal ash [68]. The inputs 

to their model are the spectra preprocessed using wavelet threshold de-noising and 

kalman filtering [68]. Similarly, their proposed model was developed using certified 

samples. Jianhong Yang et.al developed relevance vector machine regression based 

chemometric for quantitative analysis of 23 certified standard high alloy steel samples 

[69]. The training and testing of their developed models were carried out using the 
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intensities of the analytical lines obtained from LIBS measurement. The results of their 

proposed model demonstrated superior performance over the conventional partial least 

square regression. Narahara Chari et.al [70] incorporated support vector machines 

algorithm in LIBS toolbox for easy and precise quantification as well as classification of 

LIBS spectra. The robustness of their model was demonstrated by comparing the 

outcome of support vector machines chemometric with other conventional chemometrics 

using certified pharmaceutical samples [70]. Kernel based learning machine was 

introduced recently for quantitative analysis of sulfur content in coal samples using LIBS 

[71]. Their model was developed and validated using standard certified samples with 5-

fold cross validation. The performance of their model was compared with other 

chemometrics tools such as least square support vector regression, back propagation 

based neural network among others. Classification of blood samples for the purpose of 

lymphoma discrimination was presented by Xue Chen et al  [72] using classification 

coupled LIBS [72]. Another classification based chemometric model was presented by 

Gibaek Kim et. al for discriminating pesticide-contaminated samples using LIBS [73]. 

Comparative study between the performance of support vector regression chemometrics 

and partial least square model are presented in the work of Ye Tian et al using geological 

cutting samples. The intensities of the elemental constituents of the samples obtained 

after LIBS measurement were correlated and classified based on the developed models 

[74]. Leave out one cross validation approach was adopted for the model parameters 

optimization. Thomas F.B et al compares the performance of eight chemometrics for 

analysis of rock samples. The compared chemometrics include principal component 

regression , least absolute shrinkage and selection operator, linear support vector 
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regression, kernel principal component regression , polynomial kernel support vector 

regression , elastic net, partial least square and k-nearest neighbor regression [75]. The 

training and testing stages of each of the model were carried out using the emission line 

spectra obtained after LIBS measurement. Xiongwei et al [76]  improves the 

measurement accuracy of carbon content of coal using dominant factor based partial least 

square method coupled with LIBS system. Twenty-four bituminous samples were used 

for the modeling and simulations. The performance of their developed models was 

characterized using correlation coefficient, root mean square error and average relative 

error [76].  M. Darby Dyar et. al compares the prediction capacity as well as accuracy of 

models developed using the entire spectra information and those based on specific spectra 

region containing element of interest using univariate and multivariate coupled LIBS 

[77]. Their study was implemented on 1356 spectra coined from 452 geologically-diverse 

samples which represent the largest LIBS rock spectra ever assembled.  Other 

applications [78] of chemometrics to certified samples are detailed in [79]–[84]. 

2.5 Description of the hybrid chemometrics tools proposed in this 

work 

The hybrid chemometrics proposed in this work include hybridization of support vector 

regression with gravitational search algorithm (SVR-GSA), hybridization of extreme 

learning machine with gravitational search algorithm (ELM-GSA) and hybridization of 

sensitivity based linear learning method with gravitational search algorithm (SBLLM-

GSA). Performance enhancing methods proposed include homogenous hybridization of 

support vector regression (HSVR), homogenous hybridization of extreme learning 

machine (HELM), hybrid fusion of support vector regression and extreme learning 
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machine (SVR-ELM and Elm-SVR) and internal reference preprocessing method (IRP). 

The backgrounds of each of these methods are presented in this section. 

2.5.1 Background of support vector regression multivariate 

chemometric 

Support vector regression is a chemometric based technique that relates input descriptors 

to output data through pattern acquisitions. It generates a function ( )f x  that gives 

outputs with maximum deviations of epsilon ( ) for all training dataset

   1 1, ,........ ,s sx y x y Px    where P  stands for input pattern space.  Effectiveness of 

SVR algorithm is due to its unique ability for mapping input descriptors to a feature 

space of high dimensionality using suitable kernel function. The entire SVR algorithm 

can be divided into two while dealing with non-linear problems. The first stage is the 

preprocessing stage while all training input data is mapped  :K x   to feature space 

using kernel mapping function. The second stage involves the development of linear 

regression at the feature space.  The linear regression in the high dimensional space is 

described by equation (2.8).  

( ) , , ,f x x b w P b       (2.8) 

where .,.  represents the dot product in the input pattern space  P   

The algorithm determines   and b so that the maximum tolerable deviation of the 

estimated target from the experimental values does not exceed    . In determining , 

among the objectives of SVR algorithm is to ensure that the vector   is as small as 

possible. In other word, a flat function is desired. Flat function requirement enhances the 
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estimates to be less sensitive to fluctuations or perturbations in the descriptors. Hence, 

SVR based model would be less sensitive to experimental error or error due to descriptors 

measurement. Euclidean norm 
2

w minimization remains the key to flatness requirement 

and problem is transformed to convex optimization problem as depicted in equation (2.9) 

2

minimize   
2
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 (2.9) 

Equation (9) indicates the existence of a function sf  that relates descriptors with targets in 

such a way that the error emanated from the approximation does not exceed the 

threshold. Concisely, convex optimization problem is said to be feasible. However, some 

real life problems may impose infeasibility to the optimization problem and equation (9) 

does not hold. In order to extend the versatility and robustness of equation (9), non-zero 

variables called slack variables are introduced into the problem and the convex 

optimization problem is written as presented in equation(2.10). 
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    (2.10) 

Where C represents a penalty factor 

The penalty factor (also called regularization factor) trades-off the minimization of the 

Euclidean norm and maximum allowable deviation of the estimates from the targets. The 
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solution to the optimization problem presented in equation (2.10) could be easily 

obtained using Standard dual formalism. This formalism also enhances SVR algorithm to 

effectively solve non-linear functions using kernel trick. Dual set of variables are 

introduced in order to develop a Lagrange function using the objective function and the 

constraints. It should be noted that in SVR algorithm, the flatness and loss function are 

combined as a single objective. The formulated Lagrange function L is presented in 

equation (2.11) while the positivity constraint that must be satisfied by the function is 

shown in equation (2.12). 
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  (2.11) 

* *, 0s s     (2.12) 

Where * *, ,  and s s s s     are Lagrange multipliers 

The Lagrange function has a saddle point with respect to dual variables and the objective 

function at solution. The condition of the saddle point requires that the derivatives of the 

Lagrange function with respect to the variables  *, ,  and s sw b    contained objective 

function have to be zero. The derivatives go thus: 
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By substituting equations (2.13), (2.14) and (2.15) in equation (2.11), dual optimization 

problem to be maximized is obtained as presented in equation (2.16). 
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 Substituting  w  obtained from equation (2.16) into equation (2.9) gives equation (2.17).  
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The biasing parameter b is obtained through Karush-Kuhn-Tucker theorem which states 

that the product of the constraints and the dual variables becomes zero at the point of the 

solution. Computation of biasing parameter b  has been extensively treated elsewhere 

[85]–[87]  

2.5.2 Brief description of extreme learning machine based 

chemometrics 

Extreme learning machine (ELM) is a multivariate chemometric technique that is based 

on pattern acquisition and effectively relates input descriptors to the output layer [23], 

[88]. Consider a single-hidden layer feed-forward neural network which is to be trained 

with  Z  number of hidden neurons and  ( )f x   activation function using k   number of 
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test samples ( , )k kx t  in which  1  [ ,......., ]T z

k k k zx x x R  and  1  n[ ,......., ]T n

k k kt t t R  

(where n and z are the number of data-points for input and output layer, respectively) . 

ELM transforms non-linear system to a linear one using the transformation equation 

presented in equation (18). 

Hβ = T     (2.18) 

where    { }( 1,.....,  and 1,...., )klh k i l Z  H  

               ( . )kl l k lh f b w x , that is, lth  hidden neuron output with respect to kx  

            
 1  z[ ,......., ]T

l j jw ww =weight vector, it links lth  hidden neuron to input neurons 

            lb =bias of the lth  hidden neuron  

             1[ ,......., ]T

Z β , output weight matrix  

            1  [ ,......., ] ( 1,..., )T

l l j n l Z  β , weight vector linking lth  hidden neuron to the 

output neurons 

           1 Z[ ,......., ]Tt tT , matrix containing elemental concentration of test samples  

After the linearization of the system as described by equation (2.18), the elemental 

concentrations of standard bronze samples constituents are obtained through least-square 

with minimum norm given by equation (2.19).  

†
β̂ = H T    (2.19) 

where †
H = Moore-Penrose generalized inverse of matrix H  
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The proposed homogeneously hybridized extreme learning machine (HELM) based 

chemometric goes a further step beyond ordinary ELM. HELM further linearizes the 

function obtained from ordinary ELM and thereby results into more accurate model. In 

the implementation of HELM based chemometric, the input descriptors (in this case, they 

are emission line intensity of the desired element whose concentration is to be 

determined, its transition probability, degeneracy, upper level transition energy and 

transition wavelength of the emission line) are mapped to the output (elemental 

concentration of ablated test samples) through a function which is approximated using 

equation (18). The output of ordinary ELM is fed into another ELM algorithm which 

subsequently approximates the function until linear function with high degree of 

correlation coefficient is obtained. This kind of homogenous hybridization was first 

proposed and implemented using support vector regression based chemometric for fatty 

acid melting points estimation and enhanced performance was obtained [89]. This work 

extends it to extreme learning machine. 

2.5.3 Sensitivity based linear learning method chemometrics 

In one- layer neural network of N  number of neurons, equation (20) relates the input 

descriptors to the desired target. 

0

1,2..... , 1,2,......

R

nm n nr rm

r

y f w x

n N m M



 
  

 

 


 (2.20) 

Where  r  = number of input descriptors 

         m = number of data-point 
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       nf   = Activation function (non-linear) 

The estimates obtained using equation (20) can be easily compared with the experimental 

value of the target through computation of some weights 
nrw  that link the descriptors 

with the target. Therefore, the sum of the squared error ( E ) is minimized using equation 

(21) as described in [90], [91].   

2

1 1 0

M N R

nm n nr rm

m n r

E y f w x
  

  
   

  
   (2.21) 

Another approach of determining the cost function   
fC especially when invertible non-

linear activation functions are involved   is presented in equation (2.22) 

2

1

1 1 0

( )
M N R

f nr rm n nm

m n r

C w x f y

  

 
  

 
   (2.22) 

Equation (22) is minimized as presented in equations (2.23) and (2.24) 

1

1 0

2 ( ) 0, 1,2..... ,
M R

f
nr rm n nm km

m rnk

C
w x f y x k R m

w



 

  
     

  
    (2.23) 

 

1

1 0 1

( ) , 1,2..... ,
M R M

n nm km nr rm km

m r m

f y x w x x k R m

  

      (2.24) 

Sensitivities of 
fC  with respect input descriptors and output data are computed using 

equations (25) and (26). 
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, ,
( )
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rk rq k kq

rf

kq k kq

w x f y
C

q k
y f y





 
 

    



  (2.25) 

1

1 0

2 ( )  , ,
M R

f
mr rq m mq mk

m rkq

C
w x f y w p q

x



 

  
   

  
    (2.26) 

The obtained sensitivities relations presented in equations (2.25) and (2.26) can be 

extended to two-layer feedforward neural network of r number input, n  number of 

output and q  number of hidden unit. The cost functions of layer one and layer two are 

represented by  
1 ( )fC T  and 

2( )fC T respectively where T  represent the outputs of the 

intermediate layer which are assumed to be known. 

1 2( ) ( ) ( )f f fC T C T C T    (2.27) 

The cost function for the two-layer network is obtained in a similar manner as that 

presented in equation (22). Equation (28) presents the new cost function.  

1 1

22

(1) (1) (1) (2)

1 1 0 1 0

( ) ( ) ( )
Q QM R N

f qr rm q qm nq qm n nq

m q r n q

C T w x f T w x f y
 

    

   
           

      (2.28) 

Solutions obtained from equations (2.23) and (2.24) would be of immense significance 

while computing weights of the first ( (1)

qrw ) and second layer ( (2)

nqw ).  Rate of change of 

the cost function with respect to qmT  (sensitivities) is determined using equations (2.29) 

and (30) 

1 2

f f f

qm qm qm

C C C

T T T

  
 

  
    (2.29) 
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0 (2) (2) (2)
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2 ( )

2 ( )  
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rf

nq qn n nq nqq
n qqm q

w x f T
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w x f y w
T f





 

 
         

  


     (2.30) 

where 0 1, mmT    

The Taylor expansion of presented in equation (2.31) results into an increment depicted 

by equation (2.21) where   represents the relaxation factor.   

1 1

( )
C (T+ )=C (T)+ 0

Q M
f

f f qm

q m qm

C T
T T

T 


  


  (2.31) 

2

( )f
f

f

C T
T C

C
   


  (2.32) 

Procedures for SBLLM implementation are summarized as follow 

Step 1: Training data partitioning and threshold error specification:  the dataset is divided 

into input descriptors and the output target.  The thresholds for the expected error is 

specified as 
* and   while the value of the relaxation factor    that measures the step 

size is also specified. This means that there are four inputs for model training which 

include the descriptors, corresponding desired target, threshold errors for controlling the 

convergence and the relaxation factor while the outputs remain the weights of each of the  

two layer as  well as the sensitivities of the sum of the squared error with respect to input 

and output data sample.  
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Step 2:  Initialization. Outputs are assigned to the intermediate layer using some random 

weight 
(1) (0)w and error 

qm  (which is generated randomly).  The assigned intermediate 

output is defined by equation (2.33).  

(1) (1)

0

(0)
R

qm q qr rm qm

r

T f w x 


 
  

 
     (2.33) 

Other parameters to be initialized include: 

previous

fC  = previous cost function (a large value is assumes initially) 

 
previous = Previous mean sum of square error (a large value is assumes initially as well).   

  measures the means  of the sum of square error between the estimated output and the 

desired values.  

Step 3: weights and sensitivities computation. Systems of equation are solved while the 

weights  (1) (2) and w w  and the associated sensitivities are obtained. Equation (34) 

governs the computation. 

1

1 0 1

( ) , 1,2..... ,
M R M

n nm km nr rm km

m r m

f y x w x x k R m

  

     (2.34) 

Step 4: Evaluation of  . Means sum of square error ( ) is evaluated using equation 

(2.35). 

1 1

22

(1) (1) (1) (2)

1 1 0 1 0

( ) ( ) ( )
Q QM R N

f qr rm q qm nq qm n nq

m q r n q

C T w x f T w x f y
 

    

   
           

       (2.35) 
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Step 5: Convergence verification: 

* or   stop, return  weights and sensitivities

Otherwise, proceed to the next step

previous

f f previousC C        



 

Step 6:  Test for the improvement.  

,  set = , ,  and proceed to the next step
2

Otherwise, set , ,  and obtain the sensitivities using equ.(30)

previous previous

f f previous f f

previous

f f previous previous

C C T T C C

C C T T




 


  


   

 

Step 7: Intermediate output update.  The intermediate output is update using equation 

(2.35) and return to step 3. 

2

( )Q p
p p Q

Q
  


 

Step VI: Intermediate output update.  Update the intermediate output using 

2

( )f
f

f

C T
T T C

C
  


 and return to Step II. 

2.5.4 Physical description of gravitational search algorithm for hyper-

parameters selection 

Gravitational search algorithm (GSA) is a recently developed heuristic population based 

optimization technique that is principally governed by the Newtonian mechanics [26]. Its 

exploration and exploitation mechanisms are premised on the Newtonian gravitational 

attractive force between two objects in the same vicinity and Newton second law of 

motion. Virtually all the physical parameters that are employed in describing the motion 
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of objects under the influence of gravitational force are carried over to GSA 

terminologies except that the objects in Newtonian description are replaced by the term 

agents. The algorithm measures the performance of each of the agent using their masses 

and it is a known fact from gravitational influence that heavier masses move slowly as 

compared with lighter once. Therefore, the heaviest agent corresponds to the desired 

solution. Four parameters are used to characterize each of the agents involved in GSA 

[92]. The parameters include the inertial mass, position, active and passive gravitational 

mass. The solution of the optimization problems corresponds to the position of the agent 

whereas the inertial and gravitational masses are determined through a predefined fitness 

function and the algorithm is navigated by adjusting the inertial and gravitational masses 

after iteration [93]–[98].  In this implementation, number of hidden neurons is encoded in 

each agent of the population. The masses are updated subsequently until convergence is 

reached. The sequential steps involved in GSA implementation are summarized below.  

Step I: Initialization: Consider a search space of s   dimension and randomly initialized 

with 
pN  number of initial population of agents. The position of pth  agent in dth  

dimension is represented in equation 2.36) by
d

px .  

 1 ,......... ,....., , 1,2,....d s

p p p p pX x x x p N    (2.36) 

Step II: Fitness and inertial mass computation: With the aid of the predefined fitness 

function( RMSE between the estimated elemental concentration and the certified values) 

coupled with initialized position of the agents in step I,  the fitness of each of the agent is 

evaluated and the agents with best and worst fitness at jth  iteration are identified as  
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( )fitbest j  and ( )fitworst j  respectively. The inertial mass ( )pM j  of pth  agent which 

measures its reluctance to change in the state of motion due to gravitational pull is 

computed using equation (2.37) and (2.38). 

1

( )
( )

( )
p

p

p N

p

p

m j
M j

m j





                                (2.37) 

( ) ( )
( )

( ) ( )

p

p

fitn j fitworst j
m j

fitbest j fitworst j





       (2.38) 

 

where ( )pfitn j  represents the fitness of pth  agent   

Step III: Computation of the acceleration of the agents:  The acceleration at which each 

of the agents in the search space is computed using equations (2.39-2.44). The 

computations go thus: 

 0 exp ( )
j

G G
t

          (2.39) 

2
( ) ( ), ( )pq p qr j X j X j    (2.40) 

 
( ) ( )

( ) ( ) ( ) ( )
( )

p qd d d

pq p q

pq

M j M j
F j G j x j x j

r j 
 


        (2.41)  

,

( ) ( )
pN

d d

p p pq

q kbest p q

F j rand F j
 

       (2.42) 
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( )
( )

( )

d

pd

p

p

F j
a j

M j
    (2.43) 

               Where              ( )pqr j =Euclidian distance between p  and q  agent 

                                 ( )pM j =active gravitational mass of pth agent 

 =small constant value  

       ( )G j =gravitational constant 

                t =maximum number of iteration 

                                      
prand = random number spanning in  0,1  range  

Step IV: Velocity and position of the agents.  Velocity ( )d

pv j  and position ( )d

px j of each 

of the agent are determined using equation (11) and (12) respectively.  

( 1)  ( ) ( )d d d

p p p pv j rand x v j a j     (2.44) 

( 1) ( ) + ( 1)d d d

p p px j x j v j     (2.45) 

Step V: Repeat steps II to step IV until stopping criteria (that is, maximum iteration) is 

reached. 
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2.5.5 Homogeneously hybridized support vector regression 

chemometrics 

Support vector regression (SVR) is a computational intelligence based chemometric that 

relates the spectral features with the concentrations through pattern acquisitions. It 

generates a function ( )f x  that estimates the elemental concentration of the ablated 

samples with maximum deviations of epsilon ( ) for all training dataset

   1 1, ,........ ,s sx y x y Px  in which P and  stand for input pattern space and real 

number, respectively while sx  and sy  respectively represent the descriptors and target 

for s number of data-points . Effectiveness of SVR algorithm is due to its unique ability 

for mapping input descriptors to a feature space of high dimensionality using suitable 

kernel option. The entire SVR algorithm can be divided into two stages while dealing 

with non-linear problems [99].  The first stage is the preprocessing stage where all 

training input data is mapped  :K x   to feature space using kernel mapping function. 

The second stage involves the development of linear regression in the feature space.  The 

linear regression in the high dimensional space in it general form is described by equation 

(2.46).  

( ) , , ,f x x b w P b          (2.46) 

where .,.  represents the dot product in the input pattern space  P  and b  is the biasing 

factor.  

SVR has demonstrated good generalization and predictive performance for spectroscopic 

regression [20], [100]. However, the usual single kernel function contained in SVR 
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decision function is not capable of effectively mining the abundant information and 

patterns in the training dataset of LIBS spectral due to the complex nature of the laser 

induced plasma that governs LIBS quantitative analysis. Standard SVR performs poorly 

when used for complex non-linear spectroscopic regression containing both smooth and 

steep variations as standard SVR cannot simultaneously avoid the problem of both under-

fitting and over-fitting [101], [102].  To improve the performance of SVR for LIBS 

quantitative analysis, this work proposes homogeneously hybridized support vector 

regression (HSVR) which combines two standard SVR algorithms in which the output of 

the first SVR algorithm serves as the input to the second SVR algorithm. The advantages 

of the proposed method include (i) the use of multiple kernel function which circumvents 

the inability of the standard SVR to simultaneously avoid both under-fitting and over-

fitting and (ii) incorporation of multiple generalization of error bound which is achieved 

after multiple transformations of input data to high feature space until linear regression of 

high correlation coefficient is attained. Equation (2.47) and (2.48) respectively depicts the 

decision function for the first and second stage of the proposed hybrid model.  

 * *

1

( ) exp ,0 ,0
N

i

i i i i

i

x x
f x y C C   



 
        
 
 

   (2.47) 

 * *

1

( ) ( 1) ,0 ,0
N

d

j j i j j j

j

g y y y C C   


          (2.48) 

Where  i ,
*

i , j  and *

j  represent Langrage multipliers while  ,C  and d respectively 

stands for Gaussian kernel option, regularization factor and polynomial kernel option.  
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2.5.6 Homogeneously hybridized extreme learning chemometrics 

The proposed homogeneously hybridized extreme learning machine (HELM) based 

chemometric goes a further step beyond ordinary ELM. HELM further linearizes the 

function obtained from ordinary ELM and thereby results into more accurate model. In 

the implementation of HELM based chemometric, the input descriptors (in this case, they 

are emission line intensity of the desired element whose concentration is to be 

determined, its transition probability, degeneracy, upper level transition energy and 

transition wavelength of the emission line) are mapped to the output (elemental 

concentration of ablated test samples) through a function which is approximated using 

equation (1). The output of ordinary ELM is fed into another ELM algorithm which 

subsequently approximates the function until linear function with high degree of 

correlation coefficient is obtained. This kind of homogenous hybridization was first 

proposed and implemented using support vector regression based chemometric for fatty 

acid melting points estimation and enhanced performance was obtained [89]. This work 

extends it to extreme learning machine.  

2.5.7 Hybrid fusion of support vector regression and extreme learning 

machine chemometrics 

The significance of non-linear technique in chemometrics cannot be over-emphasized 

especially in LIBS where the chemical compositions of the materials are identified and 

quantified using mainly, emission line intensity [18]. The plasma generated due to laser 

ablation is often thick optically, which denotes complex interactions between the 

radiation and the constituent atoms/ions as well as the complexity due to further 

reabsorption of the emitted radiations. This complexity strengthens non-linearity in the 
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calibration function as the concentration progresses. Excluding this non-linearity and 

complexity of the plasma has profound effect on the quantitative analysis and the need 

for non-linear analytical modeling method becomes paramount for accuracy enhancement 

in LIBS spectra quantification. Extreme learning machine (ELM) is a non-linear 

chemometric method that is based on empirical risk minimization principle and has 

inherent characteristic of approximating many non-linear functions to linear ones [23]. 

ELM is a novel algorithm for training single hidden layer feedforward neural networks 

without iterative learning process. Its operating principle involves setting a number of 

nodes in the hidden layer prior to the training process and randomly assigns the input 

weights and hidden biases and determines the output weights analytically with the aid of 

Moore-Penrose generalized inverse matrix [24], [25], [88], [103], [104]. The input 

weights relate the input layer to the hidden layer while the output weights link the hidden 

layer to output layer. ELM uniquely generates optimal solution without iteration and 

translates to fast learning speed. Since the ELM obtains its optimal solution through 

computation of generalized inverse of the hidden output matrix, over-fitting sets in when 

the number of nodes in the hidden layer becomes large or high order hidden output 

matrix is obtained. Over-fitted ELM based model describes random error instead of the 

actual relationship governing the input and outputs. It interacts with minor fluctuation in 

the training data excessively and leads to poor performance of the model. Support vector 

regression (SVR) on the other hand, is a non-linear modeling tool that has attracted 

attention in chemometrics due to its characteristics which include generalization of error 

bound, high stability, convergence to global minimum and its sound mathematical 

foundation [20], [22], [54], [55], [101]. SVR algorithm does not fully capture the non-
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linear interactions in laser induced plasma. However, it effectively handles over-fitting 

problem especially when its hyper-parameters are well tuned. Hyper-parameter tuning of 

the proposed hybrid models was carried out using a novel gravitational search algorithm 

(GSA) recently proposed [26]. Therefore, hybrid fusion of the two algorithms results into 

robust model with excellent generalization performance. The novelties of the proposed 

hybrid fusion include (i) incorporation of structural risk minimization principle into 

empirical risk minimization principle and vice versa for over-fitting correction (ii) 

multiple minimization of generalized error bound as the output of ELM flows into SVR 

(and vice versa) (iii) improved generalization and predictive performance.   

2.5.8 Internal reference preprocessing method of enhancing the 

performance of chemometrics 

The plasma generated due to laser ablation in LIBS is often optically thick and results 

into self-absorption since the plasma is spatially inhomogeneous and its evolution is 

temporal [8]. An optically thick plasma results into uneven plasma cooling in which one 

part of the plasma cools faster than the remaining part. Consequently, the photons emitted 

from the cooler part are reabsorbed by atoms of the same species in the hotter part of the 

plasma and ultimately leads to emission of reduced intensity. The emitted species with 

least transition probability (which is the probability per unit time of an atom in upper 

energy level making a transition to lower energy level) would have lowest possibility of 

being reabsorbed since the transition to the lowest energy state might be slower than the 

cooling time lag between different parts of the cooling plasma.  Hence, normalization of 

the spectra intensity with the intensity that is rarely affected by self-absorption reduces 

the effect of self-absorption in the entire spectra [13], [27].  In order to apply this 



42 

 

principle to quantitative analysis of LIBS spectra, the emission line intensity with least 

transition probability is selected to normalize the remaining emission line intensities 

correspond to a particular element identified as the constituent of the test samples. This 

process was carried out for each of the elements present in each of the seven standard 

bronze samples used for the present modeling and simulation. 

2.5.9 Broadening for plasma diagnosis  

The electrons in the excited states in laser induced plasma frequently undergo relaxation 

which leads to the release (or emission) of radiation with a characteristic wavelength (or 

frequency) that signifies the presence of a particular element in the analyzed sample. 

Spectral lines characterized with finite widths are acquired and obtained after the atomic 

emission which may be attributed to different broadening mechanisms [105]. This leads 

to spectral distribution of photons around the central wavelength.  Different line 

broadening mechanisms result into different line profiles while the significance of any 

broadening mechanism is measured by the full width at half maximum [106].  Although,  

the information regarding the wing of the lines does not necessarily contained in full 

width at half maximum. The significance of spectral line profile cannot be 

overemphasized in quantitative analysis of LIBS spectral as the attainment of local 

thermodynamic equilibrium can be inferred from the stark spectral line profile. Two basic 

mechanisms are responsible for the observed finite spectral width and these include 

emission of photons with a range of frequencies from an energy level (since energy levels 

are not totally sharp) and the frequency difference between the observed photons and the 

emitted photons ( a phenomenon known as Doppler effect). Different broadening 

mechanisms observed in laser induced plasma and discussed in this research work 
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include natural broadening, Doppler (and thermal Doppler) broadening, pressure (or 

collisional) broadening and stark broadening.   

2.5.10  Natural broadening  

Supposing an excited state is of energy E above the ground state and electrons in an 

excited state stays for at the state for an average period of t before decaying to the 

ground state. The uncertainty principle relation between the uncertainty in the energy (

E  ) of a level and t can be written as presented in equation (2.49). 

2

h
E t


     (2.49) 

The width of the spectral line as obtained from equation (2.49) is presented in equation 

(2.50) using the relation ,E hf E h f    . 

1

2
f

t
 


 (2.50) 

The broadening resulted from this phenomenon is called natural broadening  

2.5.11  Doppler (and thermal Doppler) broadening  

The concept of the Doppler broadening experienced by spectral lines obtained from LIBS 

measurement is derived from the usual Doppler effect which measures a wavelength shift 

whenever there is a relative motion between a source and an observer. Generally, a blue 

shift (decrease in wavelength) is attained when a source moves towards an observer while 

a red shift is recorded when a source moves away from an observer [106]. The intensity 

distribution of a Doppler broadened spectral line is usually Gaussian profile while the 

Maxwell‘s law governs the statistical distribution of velocities if the motion is in thermal 
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equilibrium. The full width at half maximum of a Doppler broadened spectral line can be 

derived as follows 

The Doppler shift in frequency attributed to non-relativistic thermal velocities of particles 

is given by equation (2.51) 

0 1
v

c
 

 
  

 
     (2.51) 

 , 0  0c  and c  respectively represent the observed frequency, the rest frequency, the 

velocity of the emitter towards the observer and the speed of light 

Since the speed is distributed in both directions (towards and away from the observer) for 

a radiating body, the overall effect is the broadening of the observed spectral line.  

Assuming the fraction of particles with characteristic velocity component between 0c  

and 0 0c dc   along a line of sight is 
0 0 0( )cP c dc ,  the frequency distribution correspond to 

this is given by equation (2.52) 
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 
 represents the velocity towards the observer corresponds to the 

shift between 0  and  . Therefore, equation (2.52) becomes 
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The broadening can be expressed in term of wavelength using non-relativistic limit 
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In case of thermal Doppler broadening, Maxwell distribution governs the distribution of 

the velocity. Therefore, 
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
   (2.55) 

Where m , k and T  respectively represent the mass of the emitting particle, Boltzmann 

constant and temperature.  Equation (2.55) can be simplified further to equation (2.56) 
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This can be simplified as  equation (2.57)  
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This is a Gaussian profile with standard deviation of 02

kT

mc
   and full width at half 

maximum (FWHM) 02

8 2
FWHM

kTIn

mc
    
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2.5.12  Pressure (or collisional) broadening  

The emission process that occurs during the relaxation process in laser induced plasma 

might be interrupted by colliding particles which leads to a broadening called impact 

pressure or collisional broadening [106]. The uncertainty in the emitted energy rises 

when the characteristic time is shortened in accordance to uncertainty principle. In a 

dense plasma, plasma constituents collide frequently and ultimately reduces the lifetime 

of states to a value below the one stipulated by the quantum mechanical lifetime.  If the 

frequency of collision of plasma constituent is collisionf , the broadening due to this effect 

can be estimated as 
collision broadeningf f .  Since frequency of collision rises with density, it 

is expected that high density plasma (that is, plasma of high electron number density) is 

largely affected by collisional broadening.  In the case of laser plume at local 

thermodynamic equilibrium condition in which optically thin plasma is assumed, the 

effect of this broadening is inconsequential.  

2.5.13  Stark broadening and electron density determination 

Shapes of spectral lines are well established diagnostic measures for plasma 

characterization and in determining plasma electron number density [107], [108].  The 

shape of hydrogen spectral line was first implemented for plasma diagnostic applications 

[109]. However, the quest for further extension to non-hydrogenic line shapes became 

imperative since the possibility of hydrogen lines to be present in every plasma is not 

realistic, especially in the laser plume of laser induced breakdown spectroscopic 

technique which is aimed at enjoining wider applications to varieties of samples [107], 

[110]–[114]. As a result, large volumes of experimental and theoretical data have been 
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reposted in literature for non-hydrogenic line shapes.  Generally, two sets of theoretical 

data in conjunction with experimental results are often used while determining the 

electron plasma density from the shape of non-hydrogenic line. Both set of theoretical 

data, presented by Griem et al. (henceforth referred as Griem) and Dimitrijevic Sahal-

Brechot (henceforth referred as DSB) et al., are culled from semi-classical calculations 

[115], [116]. It worth mentioning that the results presented by both of the authors show 

differences as well as overlapping for the same plasma conditions. However, the 

observed differences can be traced to different approximations employed for data 

evaluation as well as the incorporation of improved set of energy level data by DSB 

which are not available during the period of Griem‘s calculation.  Additionally, lack of 

ion broadening parameters corresponding to electron impact width reported by DSB 

further widens the differences between the two sets of theoretical stark broadening data 

for neutral atomic lines [108]. The impact approximation used for both perturbing ions 

and electrons results into a line shape having symmetric Lorentz profile which is correct 

when plasma is of low electron density. This approximation is invalid for high electron 

density plasma such as the laser plume in LIBS measurement with asymmetric line shape 

such as the one presented for Mg I line in [108]. The equation that depicts the broadening 

of emission line (expressed in full width at half maximum) due to stark effect as 

presented by Griem [116] and extensively used in the literature [112], [117]–[122] for  

laser induced plasma diagnosis is presented in equation (2.58)  
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where  , en , A , B and  DN respectively represent the electron impact parameter, 

electron density, ion broadening parameter, a constant( which can be 1.2 or 0.75 for ionic 

and neutral line respectively)  and number of particles in Debye sphere  

The first term of equation (2.58) is the contribution of electrons to broadening while the 

second term is the contribution due to ions. For typical LIBS condition, the ionic 

contribution of the equation (2.58) is negligible [112], [121], [122]. Thus, equation (2.58) 

is reduced to equation (2.59).  
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        (2.59) 

Equation (2.59) is implemented for electron density calculation in this work since stark 

broadening is the only dominant broadening in typical laser induced plasma due to strong 

electric field generated by the electrons and ions in the plasma. 
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3 CHAPTER 3 

EXPERIMENTAL SETUP AND COMPUTATIONAL 

DETAILS 

3.1 Experimental set-up and computational methodology 

This chapter presents the description of the experimental set-up as well as the adopted 

computational methodology in modeling the hybrid chemometrics implemented on the 

samples. The standard bronze samples employed in this research work were purchased 

from metal online store (see the appendix for the details of the standard bronze 

samples)[123]. The proposed hybrid chemometrics are initially developed using single, 

double and three emission lines of elemental compositions of the standard samples 

purposely to ascertain the optimum number of emission lines needed for determining the 

elemental concentrations. After that, methods to enhance the performance of the 

chemometrics are implemented. The proposed hybrid chemometrics are also developed 

for quantitative analysis of real life food samples which include four crayfish samples 

and two different brands of grape (black and green grapes). The results of the developed 

hybrid chemometrics for both crayfish samples and grape samples are validated using 

ICP-OES analytical method. Prior to LIBS measurement conducted on all the 

investigated samples, optimum operating conditions of the LIBS system was ensured 

purposely to achieve best limit of detection as well as minimum possible signal to noise 
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ratio. This section presents the implemented operating conditions of the LIBS system and 

methods adopted for samples preparation for both LIBS system and ICP system used for 

results validation. Details of each of the components of the LIBS system are also 

presented.  

3.1.1 Experimental set-up of laser induced breakdown spectroscopy 

Figure 3.1 presents the main components of LIBS system which consists of a pulsed laser 

of high energy focused on a test sample. The light energy results into sample vaporization 

and ultimately induces the plasma. The spectrometer diffracts the collected light using 

inbuilt diffraction grating as an optical system in the spectrometer that acquires and 

diffracts light into different beams travelling in different directions. Subsequently, 

intensified charged coupled device (ICCD) detects, amplifies and resolves the light into 

different specific wavelengths that is a direct signature of the sample constituents. Other 

photon detective devices such as photodiode array (PDA) and photomultiplier tube 

(PMT) serve similar purposes. The LIBS spectral acquired is transmitted to a computer 

system for adequate spectroscopic analysis. Definitely, improving spectral emission lines 

as well as acquiring high quality spectral involves adequate time control mechanisms of 

LIBS measurement so as to avoid some plasma stage that might deteriorate the spectral 

quality. The components of LIBS system that need adequate monitoring and optimization 

include Nd:YAG pulsed laser, light focusing system which include lens and mirror, 

optical fiber for transmitting the radiation, target holder to enhance proper focusing of 

pulsed laser on the desired target, spectrometer for spectral detection and diffraction as 

well as the computer system for data collection. 
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Figure  3.1: Experimental set up for standard bronze sample spectrum acquisition 

 

3.1.2 Configuration of laser in LIBS system 

For the purpose of plasma generation from any kind of sample involved in LIBS 

experiment, pulsed lasers of high energy are frequently used [37].  Varieties of coherent 

sources with such high energy are available in the market with different technical 

specifications. Physical parameters of laser pulse such as wavelength, pulse energy, pulse 

duration and beam quality among others, control the radiation to matter interaction and 

consequently influence the plasma formation as well as the quality of LIBS measurement. 

Therefore, the nature of the task to be performed determines the selection of the laser 

source suitable for the job accomplishment. The main features of a laser source include 
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intensity, directionality, coherence and monochromaticity.  Laser intensity is the ratio of 

the peak power of the laser and cross section of the output beam. The laser intensity is 

also called power density or simply irradiance [38]. Very large intensities can be 

achieved per unit area in our LIBS system since a short duration of order of nanoseconds 

pulses can be generated. However, power per unit area impinging on the sample under 

investigation is mostly significant in LIBS experiment and this also depends on the 

optical systems for delivering the beam onto the target.  The divergence angle of laser 

describes its directionality. The directionality property of laser beam allows deliverance 

of high irradiance to the target since radiation can be easily focused to a very small spot 

size [39].  Spatial coherence enhances high irradiance in laser beam since is related to 

low divergence of the beam.  It worth mentioning that laser coherence is of limited 

significance in LIBS measurements in as much the irradiance is not altered. The plasma 

behavior remains unchanged for coherent and not coherent radiation of similar irradiance.  

Similarly, laser monochromaticity is of lesser significance since plasma formation as well 

as behavior depends strongly on laser intensity and weakly influenced by the frequency 

spread of the incident radiation [124]. Despite the existence of wide varieties of laser 

sources in LIBS experiment, Nd:YAG solid state laser source with active Q-switching 

has enjoyed a wider utilization. Q-switching is an optical technique through which an 

intense and narrow laser pulses could be obtained. Implementation of Q-switching 

involves positioning of variable attenuator inside the optical resonator. This arrangement 

allows accumulation and increase in the stored energy in the active medium while 

depletion of upper energy level is prevented. Hence, intense and short pulse of light is 
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released [40]. Nd:YAG solid state laser source is employed for all LIBS measurement 

conducted on all our test samples. 

3.1.3 The light collecting system 

The light collecting system refers to an optical device employed in LIBS measurement 

for collection and transmission of the emitted radiation from the plasma to spectral 

detection unit. For all the LIBS measurement conducted in this research work, the 

collection and transmission of plasma emitted radiation was carried out using optical 

fiber. In order to prevent unnecessary broadening of emission lines and ensure formation 

of high quality plasma, the optical plasma is positioned few millimeters (very close to the 

plasma plume) to the laser plume. The fiber supported with a small miniature lens (of 

30mm focal length) positioned at an angle 45
0
 for efficient collection of the created 

plasma spark on the surface of the test samples. The radiation collecting efficiency of the 

fiber is also enhanced by mounting it on 3-D translator for three movement along x,y and 

z-axis.  

3.1.4 LIBS spectrometer 

The spectral composition of the emitted plasma radiation in LIBS measurement is 

obtained using spectrometer. It identifies the wavelength fingerprint of each of the atomic 

species present in the test sample. There are requirements and prerequisites to be satisfied 

by an ideal spectrometer in LIBS measurement due to broad spectrum range capacity of 

the LIBS measurement ranging from vacuum ultraviolet to near infra-red. These basic 

requirements include: (i) Excellent capacity for spectral resolution( ability to resolve 

spectral lines that are very close to each other and see them as distinct lines) (ii) large 
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dynamic range and high quantum efficiency (iii) short data-acquisition and readout time. 

The spectrometer employed in this research work satisfies the aforementioned 

requirements. A 500mm spectrograph having a grating groove density of 1200 lines/mm 

was utilized in this study. It offers maximum resolution between 200nm to 900nm 

wavelength range. 

3.1.5 Optics for beam focusing 

Optical systems (which can be cylindrical or spherical lens) are very useful for delivering 

laser radiation of high fluence to the matter under investigation. It focuses the laser beam 

down to a very narrow spot and enhances plasma formation processes [125]. Assuming 

an ideal laser beam with Gaussian intensity profile, beam waist radius (    ) presented in 

equation (3.1) can be easily achieved using an aberration free lens. 

   
  

  
                                             (3.1) 

Where f ,   and D respectively represent the focal length of the lens, laser radiation 

wavelength and the diameter of unfocused beam impinged on the lens. 

From the equation, a shorter focal length coupled with large unfocused beam results into 

higher power densities (lower, beam waist radius). Highly localized sparks are also 

generated for spatially resolved measurements using lens of shorter focal length while 

lens of longer focal length are often used when the optical system cannot be brought 

close to the sample [126]. The consequence of longer focal length lens is that higher laser 

energy source would be required for plasma excitement since larger focal volume would 

be generated. It should be noted that the focusing configuration plays a big role in LIBS 

measurement since lens-to-surface distance (LTSD) remains a very critical parameter. It 
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has been noted that small change in beam waist radius leads to significant variations in 

the irradiance delivered to the sample [124].  Rayleigh range helps to control the 

measurement variation that is due to LTSD.  The distance between the beam waist and 

the position along propagation direction where cross section doubles (or beam waist 

radius raises by a factor of  √  )  is called the Rayleigh range. Rayleigh range is 

expressed in equation (3.2) 

  
   

 

 
                                             (3.2) 

3.1.6 Target holder 

Target holder constitutes a vital component of LIBS system because it holds the test 

sample at appropriate position where irradiance of the laser interacts with the sample. The 

sample holder for our LIBS measurement is a 2-dimensional holder that allows manual 

movement of the sample along x and y plane. Another important feature of the sample 

holder used for our LIBS measurement is the nature of the material (eye protective 

polymer) used to make the holder that provides a clear view of the sample. The advantage 

of the 2-dimentional rotational feature of the holder is that it prevents creation of crater 

on the test sample. Formation of crater significantly deteriorates the quality of the 

collected radiation as the optical fiber used for radiation collection might not effectively 

collect the signal from the laser plasma plume due to the presence of crater. Movement of 

the test sample during LIBS measurement becomes significant for ensuring collection of 

high quality radiation. Another merit of the two dimensional movement of the sample is 

that it always provide fresh surface for every shot of laser and ultimately improves the 

quality of the plasma formation. 
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3.1.7 Operating principle of inductively coupled plasma mass 

spectroscopy (ICP-MS) 

Inductively coupled plasma mass spectrometry (ICP-MS) is one of the famous analytical 

tools employed in determination of elemental compositions of various kinds of samples. 

The instrumental parts of ICP-MS include a nebulizer, spray chamber, plasma touch, 

interface and detector. The technique utilizes the spontaneous emission of photons from 

ions and atoms in radio frequency discharge. Analysis of the samples is carried out in 

liquid or gaseous phase while digestion or extraction processes using an acidic solution 

has to be carried out on solid samples before ICP-MS can be applied on the sample. The 

operational principle of the technique involves formation of aerosol and vaporization 

afterwards. Quick vaporization of aerosol is made possible due to the operating 

temperature of the technique which is around 10,000K. The inflow of argon gas at 

1L/min aids the conversion liquid sample pumped into nebulizer into fine aerosol from 

which fine droplet (of about 5 µm in diameter) is separated form large droplet of the 

sample. The injector directs the separated fine droplets into plasma torch from the spray 

chamber. The function of plasma touch is to generate charged ions (which are positively 

charged) and direct them to spectrometer through an interface with vacuum pressure of 

one to two torr. The ions then migrate to the main vacuum chamber and then to the ion 

optics from the interface region. The ion optics (also called electrostatic lenses) leads the 

ion beam toward mass separation device and prevents the photons, neutral species and 

particulates from entering the detector. The ions are then converted to electrical signal 

through ion detector while the data handling systems process the information into 

readable analyte concentrations. 
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3.2 Preparation of standard bronze samples in the LIBS set up details 

Seven different standard bronze samples purchased from online metal stores with trade 

names C510, C642, C655, C863, C954, C932 and C673 are cut into small disc shape 

sizes purposely to easy LIBS measurement and acquisition of LIBS spectra. The disc 

shaped samples were further polished using methanol and tissues and placed inside oven 

for 20 minutes while the oven temperature was maintained at 70 
0
C to remove and 

vaporize any debris and contaminants that might have accumulated on the samples. 

Fig.3.2 and Fig.3.3 respectively shows the standard bronze samples before being cut and 

after being cut and polished. Table 3.1 shows the certified elemental composition of each 

of the standard sample. It should be noted that the concentration of silver is considered 

negligible in sample C642. The LIBS spectra of each of the seven standard bronze 

samples were acquired using quadrupled Q-switch Nd:YAG (QUV-266-5 model with 

wavelength of 266 nm) laser source of repetition rate of 20 Hz, pulse generation of 8 ns 

and maximum energy output of 30 mJ/pulse.  The laser pulse emanated from the source 

was collimated with the aid of plane mirror and subsequently focused on the test samples 

using an ultraviolent convex lens of focal length 30mm. Throughout the experimental 

stage, the test samples were allowed to move along x and y plane using 2D sample 

holder. The two dimensional movement of the samples helps in preventing formation of 

craters on the samples. The laser induced plasma generated after laser ablation was 

collected using optical fibre positioned at about 45
0
 with respect to the normal to the 

samples,  purposely to ensure optimum acquisition of the plasma. The fibre was then 

coupled with 500mm spectrograph (Andor SR 500i-A) having grating groove density of 

1200lines/mm. Optimum delay time was maintained between the laser pulse and opening 
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of the shutter intensified charged coupled device (ICCD, model iStar 320T,690x255 

pixels) for minimizing the background. The emision spectrum captured by ICCD was 

integrated into computer using USB cable for acquisition. The procedures were repeated 

for seven different standard bronze samples and the emission line intensities of all the 

elements present in the samples were extracted.The experiment was repeated two times 

Fig.3.1 presents the stages of each of the aforementioned processes of LIBS spectra 

acquisition. 
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Figure 3.2: Standard bronze samples as bought 
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Figure   3.3 : Standard Bronze sample before and after LIBS measurement 
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Table  3.1  Elemental concentrations (in wt %) of each of the standard bronze samples as provided by the 

manufacturer 

Trade 

name 

Cu Pb Fe Sn Zn Al Mn Ni P Si Sb Co Others 

C510 94.9900 ---- --- 4.6600 --- --- --- --- --- --- --- --- 0.3500 

C642 90.8500 ---- 0.1800 0.0100 0.0400 6.8200 0.0200 0.1500 --- 1.78 --- 0.15 0.0000 

C655 60.3030 0.0133 0.0159 0.8145 38.8533 --- --- --- --- --- --- ---  

C863 62.9000 0.0100 2.4300 0.0200 26.4100 5.2100 2.9090 --- --- --- --- --- 0.1100 

C954 85.8150 ---- 3.4640 --- --- 10.433 0.2360 0.0520 --- --- --- --- 0.0000 

C932 81.2192 7.6680 0.1250 6.4670 3.780   0.4030 0.04

1 

--- 0.253 --- 0.0438 

C673 59.4 1.76 0.06 0.05 35.17  2.5 0.06 --- 0.97 --- --- 0.0300 

 

3.2.1 Preparation of crayfish samples for LIBS measurement 

Crayfish samples purchaced from four different markets in south west Nigeria (most 

populated countary in west africa)  were prepared purposely to identify and quantify the 

elemental compositions. Fig.3.4 shows the crayfish in its dried form. The dried crayfish 

samples were further air-dried to remove any moisture content in the samples. The 

samples were also pulverized into powder using blender in order to ensure homogeneity 

of the samples. One gram of each of the samples was weighed using analytical weighing 

balance of 5digits accuracy and pelleted using hydraulic pelleting machine for LIBS 

measurement. Fig.3.4 shows the preparation stages of the samples including the grinding 

machine (Fig.3.4b) and hydraulic press (Fig.3.4a) for making pellets. The experimental 

set up  through which LIBS spectral for pelleted crayfish samples were aqcuired  consists 

of  quadrupled Q-switch Nd:YAG (QUV-266-5 model with wavelength of 266 nm) laser 

source of 20Hz repeatition rate and 8ns pulses genreation.  The samples were allowed to 

move along x- y plane using 2D adjustable holder so as to prevent the occurrence of 
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craters on the samples. The laser beam emanated from the source was collimated with the 

aid of a plane mirror and further focused  on the crayfish samples using the ultraviolet 

convex focusing lens of 30mm focal length. The generated plasma plume after the 

ablation was collected using optical fibre. In order to ensure maximum signal collection, 

the fibre was positioned 45
0
 with respect to a normal to the samples. The fibre was then 

coupled with 500mm spectrograph (Andor SR 500i-A) having grating groove density of 

1200lines/mm. Optimum delay time was mantained between the laser pulse and opening 

of the shutter intensified charged coupled device (ICCD, model iStar 320T,690x255 

pixels) to minimize the emergence of continum spectrum.  The maximum resolution of 

the presented LIBS system ranges from 200nm to 800nm. The emision spectrum captured 

by ICCD was integrated into computer using USB cable for acquization. 20 number of 

accumulation was used during LIBS measurement. The delay time as well as laser energy 

were optimized and optimum values of 100ns and 30mJ were respectively used for the 

LIBS measurement.  
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Figure 3.4 :  Instrument employed for crayfish sample preparation; (a) hydraulic machine for making pellet (b) 

grinding machine and (c) the crayfish samples in different forms 

 

3.2.2 Preparation of grape samples for LIBS measurement 

Two brands of grape used for this experiment was purchased in Alkhobar (eastern part of 

Saudi Arabia) market. The grapes were sliced into pieces, dried continuously for four 

days using home heater (operated at a constant temperature of 40 
0
C ) before being air-

dried for additional two days and subsequently pulverized using grinding machine shown 
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in Fig.3.4b. The significance of pulverization is that it ensures homogenous sample and 

any part of the sample used for analysis is assumed to be the actual and true 

representative of the entire sample. 0.5g of each of the brands of grape was weighed 

using analytical weighing balance of 5digts accuracy and pelleted into disc like samples. 

The processing stages of the grape samples are shown in Fig. 3.5. The LIBS 

measurement was carried out on the samples using similar procedures described in 

section 3.2.2 for crayfish spectrum acquisition.  

   

Figure  3.5 : Processing stages of the two brands of grape 

3.2.3 Preparation of crayfish and grapes samples for ICP-OES measurement 

The grape and crayfish samples employed in this research work were air-dried to remove 

the moisture content and pulverized into powder to ensure homogeneity.  0.5g of each of 

the sample was mixed with 10ml of concentrated nitric acid (HNO3) inside sample 

vessels. The sample vessels were left inside the fume cupboard for 15minutes before 

being capped tightly, assembled and placed inside microwave digestion machine shown 
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in Fig.3.5. The essence of leaving the samples open for 15minutes is to prevent 

accumulation of pressure inside the vessel which can lead to a significant difficulty while 

opening the vessels after being removed from the digester. Then, a preset method for 

food digestion was selected from the instrument with temperature and pressure variations 

depicted in Fig.3.6. The microwave digester heats the samples from room temperature to 

200
0
C at 12

0
C/minute and holds the sample at 200 

0
C for additional 15minutes before the 

sample cools downs to room temperature. The pressure variation of the samples is also 

depicted in the figure. The samples were transferred from the microwave digester to fume 

cupboard where the sample lids were removed to prevent the release of toxic gas into 

laboratory.  The samples were then poured into 50ml plastic centrifuge bottle inside the 

fume cupboard and left for additional 15minutes before being capped for further analysis.  

The digested solution was filtered and made up to 50ml. The samples were diluted two 

times with deionized water and analyzed using optima 8300 ICP-OES (optical emission 

spectroscopy) spectrometer (by perkin elmer). All these aforementioned sample 

preparation procedures were conducted in Center of Integrative Petroleum Research, 

KFUPM. 
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Figure 3.6 :  Microwave digestion machine 

 

 

Figure 3.7 : Variation of temperature and pressure of microwave digestion machine with time while digesting 

grape and crayfish samples 
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3.3 Computational methodology on standard bronze samples  

LIBS measurement was conducted over standard bronze samples and the obtained spectra 

was quantitatively analyzed using three chemometric techniques coupled with internal 

reference preprocessing method (IRP) for self-absorption correction. The chemometrics 

techniques developed and implemented include sensitivity based linear learning 

chemometric method (SBLLM), support vector regression (SVR) and extreme learning 

machine (ELM) chemometric .In each of the chemometric technique, gravitational search 

algorithm (GSA) was used for hyper-parameters optimization.  The physical principle 

behind the internal reference preprocessing method can be well understood from the 

nature of  LIBS plasma which is often optically thick and results into self-absorption 

since the plasma is spatially inhomogeneous and its evolution is temporal [8]. An 

optically thick plasma results into uneven plasma cooling in which one part of the plasma 

cools faster than the remaining part. Consequently, the photons emitted from the cooler 

part are reabsorbed by atoms of the same species in the hotter part of the plasma and 

ultimately leads to emission of reduced intensity. The emitted species with least transition 

probability (which is the probability per unit time of an atom in upper energy level 

making a transition to lower energy level) would have lowest possibility of being 

reabsorbed since the transition to the lowest energy state might be slower than the cooling 

time lag between different parts of the cooling plasma.  Hence, normalization of the 

spectra intensity with the intensity that is rarely affected by self-absorption reduces the 

effect of self-absorption in the entire spectra [13], [27].  The robustness of the proposed 

performance enhancement methods was investigated by using three different methods of 

data extraction from the intensity wavelength spectrum obtained from our LIBS 
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instrument. The methods include (i) using line intensities of each of the elements at a 

wavelengths obtained from our spectrometer. Chemometrics developed using this data 

begin with a letter A as a nomenclature and (ii) using the integrated line intensity around 

the standard wavelength contained in the NIST data base. Chemometrics developed using 

this data begin with a letter I as a nomenclature. 

3.3.1 Computational development of the proposed hybrid SVR-GSA 

chemometric and implementation of internal reference preprocessing 

method (IRP) 

The proposed methods of enhancing the generalization and predictive capacity of SVR 

for LIBS spectra quantitative analysis are implemented within MATLAB computing 

environment. The data-points used for modeling are the elemental constituents of seven 

bronze standard samples purchased from online metal store [123]. The descriptors for the 

proposed SVR based chemometric include the emision line intensity obtained from LIBS 

measurement, transition probability, degeneracy, upper level transition energy and 

transition wavelength. The choice of other spectra variables such as transition probability, 

degeneracy, upper level transition energy and transition wavelength is due to their 

contributions in influencing the concentration of species in laser induced plasma as these 

variables are well captured by plasma Boltzmann distribution. Furthermore, incorporating 

these descriptors in the proposed model makes the models independent of the 

experimental conditions of spectra acquisition as the model can be a standalone 

chemometric model. The dataset was divided into seven different folds where elemental 

constituents of each of the standard bronze samples correspond to the data content of 

each fold. Therefore,  the experiment was performed M-times (where M=7, number of 
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folds, also number of standard bronze samples ) using M-1 data set for training and the 

remaining for testing in each experiment and computing the average root mean square 

error (RMSE) , mean absolute error (MAE) and correlation coefficients (CC) across all 

M-trials. This method of validation is called leave-one -out cross validation. The details 

of the computational procedures are illustrated as follow: 

Step I: Divide the data set into M number of folds. Each fold contains elemental 

constituents of each of the standard bronze samples. 

Step II: Train SVR algorithm with M-1 number of dataset and conduct the testing 

procedures using the remaining dataset which is not included in the training phase. The 

hyper-parameters of SVR are optimized using GSA. Compute the values of performance 

evaluation parameters which include RMSE, MAE and CC.   

Step III:  With optimum values of SVR hyper-parameters obtained from Step II, 

perform M-1 number of experiment (that is, training and testing SVR algorithm using the 

specified dataset) in which testing fold is replaced after each experiment until every fold 

is involved in testing stage of the simulation. Compute the values of performance 

evaluation parameters after each experiment and evaluate the average of these values. 

Also, compute the average of the model estimates over all the folds. The model that is 

trained and tested using normalized emission line intensities is referred to as SVR-GSA-

IRP model while the model which is trained and tested using un-normalized emission line 

intensities is called SVR-GSA-WIRP model.  

Step IV:  Train another SVR algorithm with GSA for hyper-parameters optimization 

using the outputs of Step III and validate the models using leave-one -out cross 
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validation method as described in Step III. The model that is trained and tested using the 

outputs of SVR-GSA-IRP is referred to as HSVR-GSA-IRP while the model which is 

trained and tested using the outputs of SVR-GSA-WIRP is called HSVR-GSA-WIRP 

model.  The computational flow chart of the proposed SVR-based chemometric is 

presented in Fig.3.2. 
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Figure  3.8:  Computational flow chart of the developed ELM and SVR chemometric 
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3.3.2 Procedures for computational development and implementation of  ELM-

GSA and HELM-GSA based chemometric 

Step I: Initialization: for a number of iteration 0j  , randomly initialize pN  number of 

agent within a search space bounded by [1,1000]. Each agent encodes the number of 

hidden neurons for a selected activation function. 

Step II: Inertial mass calculation: compute the inertial mass of each of the agents in the 

defined search space using their fitness. The fitness of each of the agent is determined 

using root mean square error (RMSE) between the certified and estimated elemental 

concentrations. The fitness is determined in the following ways:  (a) divide the data set 

into M-folds (seven different folds in this case where each fold contains the data set for a 

standard bronze sample),  (b) for a given mass of the agent; determine the input weights 

lw  and the hidden layer biases lb  randomly on uniform distribution function using the 

data set of M-1 folds while the remaining one  fold  is kept for validation purpose, (c) 

Select an activation function and set hidden nodes, (d) compute the hidden layer output 

matrix H , (e)  compute the output weights β̂ , (f) Determine the elemental concentration 

of the laser induced plasma constituents (since ablation is stoichiometric) using Moore-

Penrose generalized inverse matrix , (g) compare the estimated concentration with the 

certified values and compute the RMSE-tr for the training data set (that is, data set for M-

1 folds).  (i) For the chosen activation function, use the obtained weights during the 

training stage and number of hidden neuron to assess the generalization capacity of the 

trained model using the data set that was not included in the training phase.  (j) 
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Determine the RMSE-ts on the testing data set (that is, a fold that was not included in the 

training phase) and keep the minimum RMSE of the iteration.  

Step III: Gravitational pull and acceleration computation:  gravitational pull and mass 

of each of the agents in the search space computed using equation (9) and (10), 

respectively 

Step IV: Velocity and position: The velocity and position of each of the agents are 

updated in accordance to equation (11) and (12) respectively. 

Step V: Steps I to Step IV are repeated (while the minimum RMSE-ts of each iteration 

is saved) until the 100 iteration is reached or fifty consecutive iterations give equal 

RMSE 

Step VI: Using optimum value of number of hidden neurons and activation function, 

perform the experiment M-times using M-1 data set for training and the remaining for 

testing in each experiment and compute average RMSE, mean absolute error (MAE) and 

correlation coefficients (CC) across all M-trials. This method of validation is called 

leave-one -out cross validation.  

The aforementioned procedures (that is, Step I to Step VI) were repeated using data set 

containing normalized emission intensity (this gives rise to GSA-ELM-IRP model) as 

well as data set containing raw emission line intensity (this gives rise to GSA-ELM-

WIRP model).  Development of GSA-HELM based chemometrics has two stages. The 

first stage implements the developmental procedures for GSA-ELM based chemometrics 

while the second stage takes the output of the first stage as its input and repeat the 

procedures contain in Step I to Step VI described above. The first stage of GSA-HELM 
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based chemometrics can be viewed as feature extraction stage where all needed patterns, 

connections and intricacies contained in the previous descriptors are centralized and 

aggregated in a single parameter and ultimately translates to a better predictive and 

generalization ability [127], [128].  The adopted stopping criteria improve the stability of 

ELM algorithm since more than fifty iterations convergence to a single RMSE 

 

3.3.3 Procedures for computational development and implementation of hybrid 

fusion based chemometric 

In the fusion of SVR and ELM models, two hybrid models which include SVR-ELM and 

ELM-SVR were developed and the hyper-parameters of both models were optimized 

using GSA. The computational development of SVR-ELM model is similar to ordinary 

ELM model except that the input to SVR-ELM model is the final output of SVR model. 

Similarly, ELM-SVR and SVR models share the same computational details except the 

input to ELM-SVR model is the final output of ELM-based model. This proposed hybrid 

models translate to improved performance and excellent generalization capacity.  
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CHAPTER 4 

Results and discussion: Sufficiency of single persistent 

lines for chemometrics   

This chapter presents the results of the developed hybrid SBLLM-GSA and ELM-GSA 

chemometrics. Both SBLLM-GSA and ELM-GSA chemometrics are developed using 

one, two and three persistent lines of the standard bronze samples. In order to ascertain 

the minimum number of persistent emission lines needed for effective modeling of the 

relationship between spectral intensity and the elemental concentration, the results of 

both of the developed chemometrics are compared for single, double and three emission 

lines. The complexity of the chemometrics as the number of emission lines increase is 

also investigated and analyzed. Prior to the commencement of the modeling and 

simulation, the persistent emission lines of the standard bronze samples to be used for the 

modeling are identified using NIST database [129]. 

4.1   Identification of persistent emission lines of the elements recorded in 

our LIBS set-up in the standard bronze samples 

The standard bronze samples employed include C510, C655, C673, C863, C932, C954 

and C642 which are purchased from online metal store [123]. The elemental 

compositions of each of the standard bronze samples are presented in table 4.1. 
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Table  4.1:  Elemental certified compositions of the standard bronze samples as provided by the manufacturer  

Material  Elemental composition Concentration (wt%) 

C510 Cu 94.960 

 Sn 4.660 

 Other 0.380 

C655 Cu 60.303 

 Zn 38.853 

 other 0.844 

C673 Cu 59.400 

 Mn 2.500 

 Pb 1.760 

 Zn 35.170 

 other 1.170 

C863 Cu 62.900 

 Fe 2.430 

 Al 5.210 

 Mn 2.909 

 Zn 26.410 

 other 0.141 

C932 Cu 81.219 

 Sn 6.467 

 Zn 3.780 

 Pb 7.668 

 other 0.866 
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C954 Cu 85.815 

 Fe 3.464 

 Al 10.433 

 other 0.288 

C642 Al 6.820 

 Cu 90.830 

 other 2.350 

 

Fig.4.1 and Fig.4.2 show the elemental compositions of C510 standard samples for 

copper and tin, respectively. The three persistent emission lines of copper are identified at 

wavelengths of 510.55nm, 515.32nm and 521.82nm. Similarly, persistent lines used in 

modeling tin concentrations are identified at 270.65nm, 283.99nm and 286.33nm 

wavelengths. 
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Figure  4.1:  A typical LIBS spectrum recorded in 490-540nm region indicating copper persistent emission lines 

for C510 standard bronze sample 
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Figure 4.2 : A typical LIBS spectrum recorded in 260-310nm region indicating tin persistent emission lines for 

C510 standard bronze sample 
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For standard sample C655, the major elements include copper and zinc. The persistent 

emission lines for copper and zinc for this sample are respectively presented in Fig.4.3 

and Fig.4.4. In order not to bias the chemometrics, the persistent emission lines of copper 

are identified at wavelengths of 510.55nm, 515.32nm and 521.82nm similar to sample 

C510 while zinc lines are identified at 328.23nm, 330.29nm and 334.50nm wavelengths.  
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Figure 4.3: A typical LIBS spectrum recorded in 490-540nm region indicating persistent emission lines of copper 

for C655 standard bronze sample  
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Figure  4.4:  A typical LIBS spectrum recorded in 300-350nm region indicating persistent emission lines of zinc 

for C655 standard bronze sample 

For standard sample C670, copper (Cu) manganese (Mn) lead (Pb) and zinc (Zn) lines are 

identified.  Similar to other samples, copper and zinc emission lines are identified at 

510.55nm, 515.32nm, 521.82nm and 328.23nm, 330.29nm, 334.50nm wavelengths, 

respectively.  Manganese emission lines are identified at 403.08nm, 403.31 nm 404.14nm 

wavelengths in accordance to NIST database while lead lines are identified at 363.96nm, 

368.35nm and 373.99nm wavelengths. Fig.4.5, Fig.4.6, Fig.4.7 and Fig.4.8 respectively 

present the emission lines for copper, manganese, lead and zinc.  
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Figure  4.5 :  A typical LIBS spectrum recorded in 490-540nm region indicating persistent emission lines of 

copper for C670 standard bronze sample 
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Figure  4.6:  A typical LIBS spectrum recorded in 400-410nm region indicating persistent emission lines of 

manganese for C670 standard bronze sample 
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Figure 4.7:  A typical LIBS spectrum recorded in 340-390nm region indicating  persistent emission lines of lead 

for C670 standard bronze sample 

 



83 

 

Wavelength (nm)

300 310 320 330 340 350 360

L
IB

S
 s

ig
n

a
l 
in

te
n

s
it

y
 (

a
.u

)

2e+4

4e+4

6e+4

8e+4

1e+5

C670-Zn lines

Z
n

 I
 (

3
3

0
.2

9
 n

m
)

Z
n

 I
 (

3
2

8
.2

3
n

m
)

Z
n

 I
 (

3
3

4
.5

0
n

m
)

 

Figure 4.8:  A typical LIBS spectrum recorded in 300-360nm region indicating persistent emission lines of zinc 

for C670 standard bronze sample 

 

Persistent emission lines identified and implemented in chemometrics building for 

elemental compositions of sample C863 are shown in Fig. 4.9, Fig.4.10, Fig.4.11, 

Fig.4.12: and Fig.4.13  for aluminum, copper, iron and zinc . Aluminum lines at 

308.21nm 309.27nm and 394.40nm wavelengths while copper lines are identified at 

510.55nm, 515.32nm and 521.82nm. Iron and zinc lines are identified at 358.12nm, 

371.99nm, 373.71 nm and 328.23nm, 330.29nm , 334.50nm respectively.  
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Figure  4.9:  A typical LIBS spectrum recorded in 290-330nm region indicating persistent emission lines of 

aluminum for 863 standard bronze sample 
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Figure  4.10: A typical LIBS spectrum recorded in 370-420nm region indicating persistent emission lines of 

aluminum (only wavelength 394.40nm is used) for 863 standard bronze sample 
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Figure 4.11:  A typical LIBS spectrum recorded in 490-540nm region indicating   persistent emission lines of 

copper for 863 standard bronze sample 
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Figure 4.12: A typical LIBS spectrum recorded in 340-380nm region indicating persistent emission lines of iron 

for 863 standard bronze sample 
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Figure 4.13:  A typical LIBS spectrum recorded in 310-350nm region indicating   persistent emission lines of 

zinc for 863 standard bronze sample 
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Figure 4.14:  A typical LIBS spectrum recorded in 400-410nm region indicating persistent emission lines of 

manganese for 863 standard bronze sample 
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The elements identified in sample C932 include copper, tin and zinc. These elements are 

identified at the same wavelengths as aforementioned in other standard samples 
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Figure 4.15:  A typical LIBS spectrum recorded in 490-540nm region indicating persistent emission lines of 

copper for C932 standard bronze sample 
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Figure 4.16: A typical LIBS spectrum recorded in 260-310nm region indicating persistent emission lines of tin 

for C932 standard bronze sample 
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Figure 4.17: A typical LIBS spectrum recorded in 310-350nm region indicating persistent emission lines of zinc 

for C932 standard bronze sample 
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Figure  4.18:  A typical LIBS spectrum recorded in 340-390nm region indicating  persistent emission lines of 

lead for C932 standard bronze sample 
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Figure 4.19:  A typical LIBS spectrum recorded in 290-330nm region indicating persistent emission lines of 

aluminum for C954 standard bronze sample 
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Figure 4.20:  A typical LIBS spectrum recorded in 370-420nm region indicating persistent emission lines of 

aluminum (only line 394.40nm is used) for C954 standard bronze sample 
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Figure 4.21:  A typical LIBS spectrum recorded in 490-540nm region indicating persistent emission lines of 

copper for C954 standard bronze sample 
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Figure  4.22: A typical LIBS spectrum recorded in 340-380nm region indicating persistent emission lines of iron 

for C954 standard bronze sample 

Wavelength (nm)

290 300 310 320 330

L
IB

S
 s

ig
n

a
l 
in

te
n

s
it

y
 (

a
.u

)

5e+4

1e+5

2e+5

2e+5

C642-Al lines

A
l 
I 
(3

0
9

.2
7

 n
m

)
A

l 
I 
(3

0
8

.2
1

n
m

)

 

Figure 4.23: A typical LIBS spectrum recorded in 290-330nm region indicating persistent emission lines of 

aluminum for C642 standard bronze sample 
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Figure 4.24:  A typical LIBS spectrum recorded in 370-420nm region indicating persistent emission lines of 

aluminum (only line 394.40nm is used) for C642 standard bronze sample 
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Figure 4.25:  A typical LIBS spectrum recorded in 490-540nm region indicating persistent emission lines of 

copper for C642 standard bronze sample 
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4.2  Investigating the exploration and exploitation capacity of GSA to the 

number of agent 

In order to maintain a balance between the exploitation and exploration ability of 

gravitational search algorithm for optimizing model parameters such as the number of 

epoch and hidden neuron in the developed SBLLM chemometric algorithm, number 

hidden neuron in the developed ELM algorithm as well as the regularization factor, 

epsilon and kernel option in SVR chemometric, the number of initial population of agents 

are varied from ten to thirty using three persistent emission lines in SBLLM chemometric 

algorithm.  
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Figure 4.26:  A graph of RMSE against the number of iteration for sensitivity of ELM chemometric to the initial 

population of agents (Single emission line) 
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At a small number of agents (say N=10 in Fig.4.30), the exploration capacity of the 

model becomes poor as the search space will be insufficiently explored as can be 

observed in Fig.4.26. Similarly, when large number of agent are assessing a given search 

space (say N=30 in Fig.4.26), complexity might set in. The optimum number of agents 

that maintains excellent exploration and exploitation capacity with special consideration 

to computational time complexity is obtained in Fig.4:26 as twenty. Although, thirty also 

shows an optimum value but twenty numbers of agents was used in all the remaining 

modeling and simulation because of lower computational time. 

4.3 Convergence of SBLLM-GSA chemometric for single, double and three 

emission lines based model 

While setting the number of agents to twenty, single emission line of each of the element 

presented in section 4.1 are input to the developed SBLLM-GSA chemometric to obtain 

an estimated concentration of each of the element. Another two SBLLM-GSA models 

were developed using double and three persistent emission lines and the results are 

compared in Fig.4.27. Molar mass and the wavelength of each of the elements are 

included into modeling and simulation so as to enhance the accuracy of the model.  From 

Fig.4.27, SBLLM-GSA chemometric developed based on three emission lines has 

highest root mean square error (RMSE) followed the chemometric based double emission 

lines while the chemometric developed based on single emission line has the least value 

of RMSE. Since single emission line based chemometric is less computationally complex 

(this will be shown in next section), then single emission line is sufficient for effectively 

quantifying the elemental concentration using the developed SBLLM-GSA chemometric. 
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Figure 4.27:  A graph of RMSE against the number of iteration for comparison between the convergence of 

single, double and three emission lines SBLLM-GSA chemometrics 
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4.4  Convergence of  ELM-GSA chemometric for single, double and three 

emission lines based model 

The significance of non-linear technique in chemometrics cannot be over-emphasized 

especially in LIBS where the chemical compositions of the materials are identified and 

quantified using mainly, emission line intensity [18]. The plasma generated due to laser 

ablation is often thick optically, which denotes complex interactions between the 

radiation and the constituent atoms/ions. This complexity strengthens non-linearity in the 

calibration function as the concentration progresses. Excluding this non-linearity and 

complexity of the plasma has profound effect on the quantitative analysis and the need 

for non-linear analytical modeling method becomes paramount for accuracy enhancement 

in LIBS spectra quantification. Extreme learning machine (ELM) is a non-linear 

chemometric method that is based on empirical risk minimization principle and has 

inherent characteristic of approximating many non-linear functions to linear ones [23] 

and has been proposed in this study for relating the elemental intensities with the 

compositions.  
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Figure 4.28:  A graph of RMSE against the number of iteration for comparison between the convergence of 

single, double and three emission lines ELM-GSA chemometrics 

The comparison between the convergences of three models based on ELM-GSA is 

presented in Fig.4.28. ELM-GSA model developed using single persistent emission lines 

converges at lowest RMSE while ELM-GSA developed using double and three emission 

lines show similar convergence with values higher than that of single emission line based 

model.   

It can be easily deduced from the results of SBLLM-GSA and ELM-GSA chemometrics 

that single emission line is sufficient to build the developed chemometrics with 

reasonable degrees of accuracy. The computational complexity perspective of preferring 

single emission lines to multiple is detailed in next section of this chapter. 



98 

 

4.5 Performance comparison between SBLLM-GSA and ELM-GSA 

chemometrics 

Performance comparison between the developed hybrid SBLLM-GSA and ELM-GSA 

chemometrics is presented in Fig.4.29. The comparison shows that ELM-GSA 

chemometric outperform SBLLM-GSA chemometric with performance improvement of 

33.54%.  

 

Figure 4.29:  A graph of RMSE against the developed chemometric models for performance comparison 

between the developed chemometrics 

 

The inherent ability of extreme learning machine to approximate non-linear function to a 

linear one distinguishes it from other computational intelligence based chemometrics. 

Hence, only performance of ELM based chemometrics would be improved in the next 

chapter of this report. 
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4.6 Comparison of the computational complexity of the developed 

chemometrics with respect to the number of emission lines employed in 

model development 

The comparison between the computational complexities of the developed chemometrics 

as the number of input emission line increases is depicted in Fig.4.30. 

Number of persistent lines

one two three

C
o

m
p

u
ta

ti
o

n
a

l 
ti

m
e

 (
s

e
c

)

0.4

0.5

0.6

0.7

0.8

0.9

SBLLM-GSA chemo-metrics

ELM GSA chemo-metrics

 

Figure 4.30:  A graph of computational time against the number of persistent lines for comparison of the 

computational complexities of the developed chemometrics with respect to the number of input emission lines 

 

The simulation and modeling was conducted using Samsung personal computer with   

Processor: Intel(R) Core™ i5-2450M CPU @ 2.50 GHz and RAM of 8GB. Comparison 

between the SBLLM-GSA model that employs single emission line with double emission 

line and three emission lines shows that SBLLM-GSA chemometrics with single 

emission line is 2.79% and 31.41% , respectively faster. Similarly for ELM-GSA based 



100 

 

chemometrics, Single emission line based ELM-GSA chemometric is 6% and 40.17% 

faster than double and three emission lines based chemometrics, respectively. 

4.7  Comparison of the computational complexity of SBLM-GSA and ELM-

GSA chemometrics 

Fig.4.31 presents the comparison between the computational complexity of SBLLM-

GSA and ELM-GSA based chemometrics. ELM-GSA chemometric is 46.36% faster than 

SBLLM-GSA chemometric. This can be attributed to the fact that ELM-GSA 

chemometric  trains single-hidden layer feed-forward neural networks using a novel 

learning algorithm different from the popular gradient-based learning algorithms such as 

Levenberg-Marquardt and back-propagation which are known to be slow and sometimes 

converge to local minimum [24], [25]. ELM algorithm randomly selects input weights 

and hidden biases and determines the output weights analytically with the aid of Moore-

Penrose generalized inverse matrix. The input weights relate the input layer to the hidden 

layer while the output weights link the hidden layer to output layer. The learning scheme 

adopted by ELM results into a fast learning rate, excellent generalization performance 

and non-convergence to local minimum. 
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Figure 4.31:  A graph of computational time  against the developed chemometric models for comparison 

between the computational complexity of SBLLM-GSA and ELM-GSA chemometrics 

 

The results of the modeling and simulation presented in this chapter show that single 

emission line is sufficient for elemental quantification using the developed hybrid 

chemometrics. Chemometrics developed using single emission lines are faster than the 

chemometrics developed using multiple emission line while the accuracy is preserved in 

single emission line chemometrics. Furthermore, the developed ELM-GSA chemometrics 

are more accurate and faster than SBLLM-GSA chemometrics. 
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5 CHAPTER 5 

Results and discussion: standard bronze sample 

5.1 Results of the methods of enhancing the performance of the developed 

chemometrics 

This chapter presents the results of the proposed methods of enhancing the performance 

of the developed chemometrics and the comparison between the developed chemometrics 

(hybrid ELM-GSA) and the existing one (SVR). The proposed methods of performance 

enhancement include internal reference preprocessing method and homogenous 

hybridization. All the modeling and simulations presented in this chapter were carried out 

using single emission line since we have found from the results presented in chapter 4 

that single emission line is sufficient for the developed chemometrics tools in term of 

accuracy and computational complexity. Identification of emission lines obtained after 

LIBS measurement on all standard samples is presented here over a wide range of 

wavelength since the entire (indicated by the manufacturer) major and minor elements of 

each of the standard samples are quantified. Before applying the chemometric tools for 

quantitative analysis, the existence of plasma in local thermodynamic equilibrium was 

ascertained through satisfaction of McWhirter criterion as well as electron energy 

distribution function (EEDF). The significance of the proposed three novel methods of 

chemometric performance enhancement was demonstrated using SVR and ELM 
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chemometrics. Finally, the results of the chemometrics with inclusion of the proposed 

methods of performance enhancement were compared with chemometric tools in which 

the proposed methods were not implemented. 

5.2  Emission line identification of standard bronze samples  

The LIBS spectra obtained for the seven standard bronze samples are presented in this 

section. Emission lines of each of the elements indicated by the manufacturer are well 

identified. Similarly, spectrum that shows the emission line used for modeling 

(highlighted in blue) and normalization (highlighted in red) are also presented.  The 

spectrum of C640 standard bronze sample shown in Fig.5.1 presents the persistent 

emission lines of neutral copper (Cu) at wavelength of 510.63nm, 515.00nm and 

521.39nm while the emission line of neutral iron at (Fe) wavelength of 388.42nm and 

438.80nm are identified. Similarly emission lines of neutral nickel (Ni) are also identified 

at different specific wavelengths. The presence of neutral manganese is also identified at 

wavelength of 403.76nm. The spectral indicating the intensities used for modeling and 

normalization (while implementing IRP) for sample C640 is shown in Fig.5.2 
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Figure 5.1 A typical LIBS spectrum recorded  for C640 standard bronze indicating the intensity (highlighted in 

blue) used for chemometrics modeling and intensity (highlighted in red) used for IRP normalization 
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Figure  5.2:  A typical LIBS spectrum recorded for C863 standard bronze indicating the intensity (highlighted in 

blue) used for chemometrics modeling and intensity (highlighted in red) used for IRP normalization 
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Figure 5.3: A typical LIBS spectrum recorded for C954 standard bronze indicating the intensity (highlighted in 

blue) used for chemometrics modeling and intensity (highlighted in red) used for IRP normalization 
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Figure 5.4:  A typical LIBS spectrum recorded for C655 standard bronze indicating the intensity (highlighted in 

blue) used for chemometrics modeling and intensity (highlighted in red) used for IRP normalization 
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Figure 5.5: A typical LIBS spectrum recorded  for C673 standard bronze indicating the intensity (highlighted in 

blue) used for chemometrics modeling and intensity (highlighted in red) used for IRP normalization 
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Figure 5.6:  A typical LIBS spectrum recorded for C932 standard bronze indicating the intensity (highlighted in 

blue) used for chemometrics modeling and intensity (highlighted in red) used for IRP normalization 
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Figure 5.7:  A typical LIBS spectrum recorded for C510 standard bronze indicating the intensity (highlighted in 

blue) used for chemometrics modeling and intensity (highlighted in red) used for IRP normalization 
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Similarly, Fig.5.3 shows the results of LIBS measurement performed on C863 standard 

bronze sample. The finger print of elements identified include aluminum (Al), lead (Pb), 

zinc (Zn), iron (Fe) and copper (Cu).  Like Fig.5.1, the persistent emission lines of neutral 

copper (Cu) were identified at wavelength of 510.63nm, 515.00nm and 521.39nm while 

singly ionized aluminum emission lines are identified at 257.62nm, 298.1 nm and 466.85 

nm. Other elements identified in this sample include tin at a wavelength of 452.38nm and  

 neutral zinc at wavelengths of 328.2 nm and 330.70 nm. The spectral indicating the 

intensities used for modeling and normalization (while implementing IRP) for sample 

C863 is shown in Fig.5.4  .Fig.5.5 presents the spectrum of standard bronze sample with 

trade name of C954. Similarly, copper, iron and other elements specified by the 

manufacturer are identified at their unique wavelengths. The details of the elemental 

constituents of each of the standard bronze samples can be found in table 3.1. 

5.3  quantitative analysis results performed on the standard bronze sample 

Since the operational physical principles of LIBS include formation of high temperature 

plasma when laser pulse ablates the material of interest, emission of specific light during 

plasma cooling and dispersion of the emitted light in accordance to their wavelengths, the 

probability of transitions as well as the degeneracy of the states in which transitions occur 

influence the state population and concentrations of the constituent species in accordance 

to Boltzmann distribution. All these parameters together with the energy of transition are 

incorporated into the present model in order to enhance its robustness and precision.  It 

should be noted that the models developed in this work presume that the plasma is in 

local thermodynamic equilibrium and the ablation is stoichiometry (high power density 

on the target ensures this criteria) while the optical thinness is difficulty to be achieved in 
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real plasma especially for most intense lines such as resonance line. Therefore, before the 

implementation of the proposed models, local thermodynamic equilibrium was ensured 

through electron energy distribution function and McWhirter criterion fulfillment 

5.3.1 Validation of local thermodynamic equilibrium criteria for standard 

bronze sample plasma 

A situation where the distributions of all plasma components (atoms, electrons, radiation 

and ions) are characterized by distinct value of temperature is refereed as local 

thermodynamic equilibrium (LTE). Achieving LTE state is practically impossible since it 

requires full equilibrium state between the plasma components and the plasma must 

therefore by optically thin so as to prevent loss of photons [8]. However, with the 

assumption that the energy lost due to escaping photons is small compared to the total 

energy of the plasma, then attaining LTE is possible and the distribution of atoms, 

electrons and ions could be modeled using Saha-Boltzmann and Maxwell equations. 

Ensuring LTE is very significant in deriving the global population distribution of 

electronics levels of elemental species using the upper level population of the observed 

transitions [130], [131]. The outcome of calibration free approach of elemental 

quantification in LIBS becomes unreliable without quantitatively verifying the LTE 

conditions. The McWhirter criterion that for stationary and homogenous plasmas, the 

collision rate dominates radiative processes in LTE is often used in LIBS analysis [132]. 

Although, McWhirter LTE validity condition is necessary for laser-induced plasmas but 

rather insufficient since the plasmas are inhomogeneous and evolve in time [133]. 

Another condition that compliments McWhirter criterion for the validity of LTE is the 

assumption that the attainment of ionization –excitation equilibrium requires a large time 
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scale as compared to the rate of variation of thermodynamic parameters such as electron 

density and plasma temperature. In other word, thermodynamic parameters do not change 

towards the attainment of equilibrium state [8]. In this study, the LTE condition of the 

plasma was ensured and verified using electron energy distribution function (EEDF) and 

McWhirter criterion. EEDF holds when 16 310eN cm (where eN  is the electron density) 

and 5 Bk T eV   (where Bk  and T  respectively represent the Boltzmann constant and 

plasma temperature) while McWhirter criterion is contained in equation (5.1) as 

described in [132].  

1
12 32

( , ),  

( , ),  not in LTE

( , ) 1.6 10 ( )

e

e
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N F T E
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     (5.1) 

where E  represents energy difference between upper and lower levels for the transition 

Plasma temperature was determined from the slope of Boltzmann plot for Cu I at 

wavelengths of 324.75nm, 510.54nm, 515.32nm and 521.82nm while E  and other 

parameters were extracted from NIST database.  Boltzmann plot is a plot of  
ij

ij i

I
In
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against upper level energy ( iE ) as formulated from equation (5.2). 
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 Where  = transition wavelength, ig = degeneracy of the ith  level, sN = emitting atomic 

number density (particle/cm
3
) for each species,

ijA = transition probability of the Cu I line 

intensity, ( )sU T = partition function of s species at plasma temperature. 

Boltzmann plot through which the plasma temperature for standard sample C932 was 

determined are presented in Fig. 5.8, while Fig.5.9 shows the Boltzmann plot for sample 

C510.  Plasma temperature of standard bronze sample C863 was determined from the 

plot presented in Fig.5.10 while Fig. 5.11 shows the Boltzmann plot for sample C673.  

 

Figure 5.8:  Boltzmann plot of sample C932 for plasma temperature determination 
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Figure 5.9:  Boltzmann plot of sample C510 for plasma temperature determination 

 

Figure 5.10:  Boltzmann plot of sample C863 for plasma temperature determination 
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Figure 5.11:  Boltzmann plot of sample C673 for plasma temperature determination 

 

Figure 5.12:  Boltzmann plot of sample C954 for plasma temperature determination 
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Figure 5.13 Boltzmann plot of sample C655 for plasma temperature determination 

 

Figure 5.14 Boltzmann plot of sample C642 for plasma temperature determination 

Fig.5.12 presents the graph through which plasma temperature of the sample  C954 was 

determined while Fig.5.13 and Fig.5.14 show similar plots for standard bronze samples 

C655 and C642, respectively. Table 5.1 shows the values of the plasma temperature for 

each of the sample. Electron density for each of the samples was estimated from stark 

y = -0.3772x - 3.5395 

-8

-7

-6

-5

-4

-3

-2

-1

0

3 3.5 4 4.5 5 5.5 6 6.5

In
(I

/A
g)

 

EK (ev) 

y = -0.5528x - 2.4939 

-8

-7

-6

-5

-4

-3

-2

-1

0

3 4 5 6 7

In
(I

/A
g)

 

EK (ev) 



118 

 

broadened profile of Cu I at the value of wavelength of 510.55nm. Although, Doppler 

broadening (due to varying velocity of different atomic species and resulted into Doppler 

shift) as well as pressure broadening (emanating from frequency disturbance due to the 

interaction between the radiating atoms with their surrounding particles) are probable for 

major line broadening in LIBS spectrum, however, stark broadening ( splitting of energy 

level as a result of plasma induced electric field ) dominates [134].  The Lorentzian 

function that relates the wavelength ( 1
2

 ) for the full width at half maximum (FWHM) 

of the broadening profile with the electron density is presented in equation (5.3) while 

electron densities for Cu I emission line intensity are presented in table 1. 

1 16
2

2
10

eN
W     (5.3)  

where W  is the electron impact parameter in angstrom. The values of W  used for this 

work were obtained from [135] 

 

 

Table  5.1:  Plasma Parameter for LTE verification using Cu I line (at 510.55nm) in each of the sample 

Sample Slope of 

Boltzmann 

plot 

Plasma 

temperature 

(K) 

KBT(ev) F(T,E) 

cm
-3 

FWHM 

(nm) 

Ne cm
-3 

C932 -0.4225 27457 2.37 6.44E+14 0.39 4.47 E+16 

C510 -0.5791 20032 1.73 5.45E+14 0.39 4.47 E+16 

C673 -0.6497 17855 1.54 5.14E+14 0.39 4.48 E+16 
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C954 -0.5022 23100 1.99 5.85E+14 0.39 4.52 E+16 

C655 -0.3772 30755 2.65 6.75E+14 0.29 3.36 E+16 

C642 -0.5528 20986 1.81 5.58E+14 0.29 3.36 E+16 

C863 -0.5947 19507 1.68 5.38E+14 0.29 3.36 E+16 

 

From the results presented in table 5.1, it can be concluded that the plasma temperature of 

the plasmas generated when the standard samples were ablated are in LTE since each 

samples satisfy EEDF criteria and McWhirter criterion represented by equation (5.1). 

5.4   Analytic figures of merit for the standard bronze samples 

This section presents the measurement precision (that is, repeatability of the 

measurement) as the limit of detection for all the LIBS measurement performed on each 

of the standard samples.  

5.4.1 Measurement precision 

The closeness of the results of different measurements carried out on the same sample 

under similar experimental conditions is termed measurement precision or simply 

repeatability. Enhancement of LIBS measurement precision is of great significance in 

ensuring precise and accurate quantitative analysis of the ablated samples.  In order to 

ensure precise quantitative analysis of the samples, the measurement was repeated five 

times on each of the seven standard bronze samples under similar experimental 

conditions and the precision of the measurements was assessed using the percentage 

relative standard deviation (RSD) presented in equation (5.4)  
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Standard deviation of integrated spectral line intensity

Mean of integrated spectral line intensity
RSD         (5.4) 

The percentage relative standard deviation was calculated for the internal reference 

preprocessed (IRP) spectral line intensities as well as the spectral line intensities without 

internal reference preprocessing method (WIRP). The results of RSD for each of the 

samples are presented in table 5.2. The significance of the proposed IRP method which 

translates to precise quantitative analysis can be easily inferred from the table as the 

integrated spectral line intensities (using trapezoidal approximation) that are preprocessed 

suffer little fluctuation as compared with intensities that are not subjected to IRP method.  

It should be noted that the proposed hybrid SVR-GSA based chemometric has excellent 

measurement precision as it gives the same results when executed over the same data-set 

and the same operating conditions.   

Table  5.2:   Measurement precision (repeatability) of the acquired LIBS spectra on the basis of relative 

standard deviation (RSD) integrated spectra line intensity(using Cu I at 515.32nm and  Cu I at 510.55nm for 

spectral normalization) 

Standard bronze sample RSD of WIRP spectra RSD of IRP spectra 

C510 0.28 0.06 

C642 0.21 0.13 

C863 0.15 0.09 

C932 0.22 0.11 

C954 0.46 0.30 

C655 0.28 0.04 

C670 0.14 0.05 
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5.4.2 Limit of detection (LOD) 

The minimum concentration of the sample constituents that can be readily detected by the 

LIBS system is referred to as the limit of detection (LOD).  The limits of detection for all 

the elements present in the analyzed samples were estimated using equation (5.5) and the 

results are presented in table 5.3. 

3
LOD=

s


                       (5.5) 

where  and s  represent the standard deviation of the background of the averaged 

spectrum taken nearby the emission line  and the ratio of the line intensity to the certified 

concentration, respectively.  

Table  5.3:  Limit of detection (LOD) of each of the elements present in the standard bronze samples 

Element LOD (wt%) 

Cu 4.03  

Sn 0.01    

Al 0.69 

Fe 0.02 

Mn 0.002 

Ni 0.02 

Pb 0.003 



122 

 

Zn 0.77 

 

5.5  Results of chemometric based models for quantitative analysis of 

standard bronze LIBS spectra 

The results of the chemometric techniques developed using the exact intensities obtained 

from our LIBS instrument at different wavelengths very close to those contained in NIST 

data base are presented in this section. All the chemometric models presented in this 

section start with a letter A as a means of differentiating the models from other 

chemometrics developed using other set of data.  The performance enhancement 

capacities of the proposed internal reference preprocessing method (IRP) , homogenous 

hybridization and hybrid fusion are also presented for both hybrid SVR and ELM based 

chemometrics. 

5.5.1 Results of A-SVR based chemometrics for quantitative analysis of 

standard bronze spectra 

Two techniques for enhancing the performance of SVR model in quantitative analysis of 

LIBS spectra are presented in this section. The proposed methods include the 

homogeneous hybridization and internal reference preprocessing method. The third 

method of performance improvement (hybrid fusion) is presented in the subsequent 

section.  Four A-SVR based chemo-metrics are developed using these techniques and the 

results of these models are compared with one another. Before presenting the results of 

the model, the significance of the implemented optimization method (GSA) for hyper-

parameters optimization is presented.  
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5.5.2 Optimization of A-SVR model parameters using GSA 

The penalty factor, epsilon and kernel option of the selected kernel function are 

optimized using GSA. While implementing the gravitational search algorithm, the 

performance sensitivity of the number of initial population of the agents on the 

performance of the models was investigated.  Fig.5.15 presents the variation of the  

number of agents with the number of iteration.  The convergence of GSA-A-HSVR-IRP 

model is only presented to avoid repetition. Optimum value of the number of agents 

ensures a balance between the exploration and exploitation ability of the model. 
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Figure 5.15:  A graph of RMSE against the number of iteration for performance sensitivity of GSA-A- HSVR-

IRP to the number of agents 

In the graph presented in Fig.5.15, the model converges to local minimum when ten 

numbers of agents are involved in global minimum search.  A global solution is attained 
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when the number of agents in the search space increased to thirty. Similar solution is 

obtained when the number of agents increases to fifty. After this point, the exploitation 

ability of the model became weaken and the model consequently converges to local 

minimum.  The optimum number of agents in this case is thirty.  Similar investigation 

was conducted for GSA-A-SVR-WIRP, GSA-A-HSVR-WIRP and GSA-A-SVR-IRP 

model. Table 5.4 shows the values of the parameters at which the proposed models 

display their optimum performances. 

Table  5.4 : Optimum values of the A-SVR model parameters 

 GSA-A-SVR-

WIRP 

GSA-A-HSVR-

WIRP 

GSA-A-SVR-

IRP 

GSA-A-HSVR-

IRP 

Penalty factor 44.5813 161.0286 554.7362 489.6015 

Epsilon  0.8158 0.1942 0.9743 0.9983 

Kernel option 0.405 0.6781 0.9809 0.4964 

Kernel function Gaussian Polynomial Gaussian Polynomial 

Hyper-parameter lambda E-7 E-1 E-7 E-1 

Agent population 10 10 30 30 

 

5.5.3 Performance comparison of A-SVR based chemometric on the basis 

of root mean square error (RMSE), mean absolute error (MAE) and 

correlation coefficient (CC)  

The performance of the developed models was evaluated using CC between the estimated 

elemental concentrations and the certified values, RMSE and MAE. Fig.5.16 shows the 

performance comparison based on the value of RMSE, Fig.5.17 compares the models 
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using the value of MAE while Fig.5.18 compares the developed models on the basis of 

CC.  

 

 

 

 

Figure 5.16:  A graph of RMSE against the developed chemometric models for performance enhancement of A-

SVR chemometrics on the basis of RMSE  

 

0

10

20

30

40

R
M

SE
 (

w
t%

) 

Developed chemometrics 

GSA-A-SVR-WIRP

GSA-A-SVR-IRP

GSA-A-HSVR-WIRP

GSA-A-HSVR-IRP



126 

 

 

Figure 5.17: A graph of MAE against the developed chemometric models for performance enhancement of A-

SVR chemometrics on the basis of MAE 

 

Figure 5.18:  A graph of CC against the developed chemometric models for performance enhancement of A-

SVR chemometrics on the basis of CC 
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The results of the modeling and simulation illustrated in Fig.5.18 shows that GSA-A-

HSVR-WIRP model performs better than GSA-A-SVR-WIRP model with about 80.88% 

performance improvement.  Better performance of GSA-A-HSVR-WIRP model is due to 

the inherent ability of the model to map input data to high dimensional space more than 

once using multiple kernel functions and thereby constructing linear regression with high 

correlation coefficient in the space. GSA-A-HSVR-WIRP model further circumvents the 

problem of ordinary SVR algorithm while dealing with non-linear problem that shows 

over-fitting and under-fitting simultaneously [102]. On the basis of RMSE, GSA-A-

HSVR-WIRP performs better than GSA-SVR-WIRP model with 75.17% performance 

improvement and 65.40% performance improvement was attained on the basis of MAE 

as shown in Fig.5.17. However, the effect of self-absorption is not fully minimized in 

GSA-A-HSVR-WIRP model. Similarly, for the model with internal reference 

preprocessing, GSA-A-HSVR-IRP performs better than GSA-A-SVR-IRP with 

performance enhancement of about 50.53%, 95.41% and 94.92% on the basis of CC, 

RMSE and MAE, respectively. Because GSA-A-HSVR-IRP model constructs linear 

regression in high dimensional space after two successive transformations and minimizes 

self-absorption due to normalization of its emission line intensity with the intensity which 

is least affected by self-absorption, GSA-A-HSVR-IRP model generalizes better than 

other presented models.  The performance comparison between the models are tabulated 

and presented in table 5.5.    
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Table  5.5 : Evaluation of the predictive capacity of the developed A-SVR based chemometrics 

 GSA-SVR-WIRP GSA-HSVR-WIRP GSA-SVR-IRP GSA-HSVR-

IRP 

CC (%) 19.11 99.93 49.43 99.91 

RMSE (wt%) 31.73 7.88 28.75 1.32 

MAE (wt%) 23.9 8.27 21.44 1.09 

 

5.5.4 Comparison of the results of the developed A-SVR based 

chemometrics with the certified values 

Comparison between the results of the developed A-SVR chemometrics and the certified 

concentrations are presented in table 5.6 and table 5.7. GSA-A-HSVR-IRP performs 

better than other presented model for C510 sample especially for major element Cu.  

Also for  C642 test sample, GSA-A-HSVR-IRP model gives the most accurate result of 

7.43 wt%  for Al, 90.24 wt% for Cu, 0.46 wt% for Fe and 0.52 wt % for Ni while the 

result  of GSA-A-HSVR-WIRP  shows a better performance for only Mn.  Generally, 

GSA-A-SVR-WIRP model demonstrates lowest performance as compared to the results 

of other models while GSA-A-HSVR-IRP shows better performance in comparison to the 

results of all the presented models. The poor performance of GSA-A-SVR-WIRP model 

could be attributed to inability of the chemo-metric tool to fully linearize the function 

linking the descriptors and the target and does not cater for self-absorption. GSA-A-

HSVR-WIRP shows improved performance since it fully captures the non-linear 

relationship between the inputs and the output after successive transformation to high 
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dimensional space while is unable to minimize self-absorption. On the other hand, GSA-

A-SVR-IRP shows a better performance but still far higher than the certified value.  In 

other test samples presented in the table, the results of GSA-A-HSVR-IRP are closer to 

the certified values followed by that of GSA-A-HSVR-WIRP, then GSA-A-SVR-IRP 

and GSA-A-SVR-WIRP chemometrics. 

Table 5.6  : Comparison between the results of the developed GSA-A-SVR-WIRP and GSA-A-HSVR-WIRP 

chemometrics including their standard deviations from the certified values 

Sample Element Con. 

(wt%) 

GSA-A-SVR-

WIRP (wt%) 

Standard 

deviation 

(wt%) 

GSA-A-

HSVR-WIRP 

(wt%) 

Standard 

deviation 

(wt%) 

C510 Cu 94.99 51.18 30.98 74.61 14.41 

 Sn 4.66 6.69 1.43 5.40 0.52 

 Others 0.35 42.13 29.55 19.99 13.89 

C642 Al 6.82 8.59 1.25 8.35 1.08 

 Cu 90.85 51.20 28.04 74.64 11.46 

 Fe 0.18 2.89 1.92 0.50 0.23 

 Mn 0.02 2.76 1.94 0.72 0.49 

 Ni 0.15 2.87 1.92 0.54 0.28 

Others  1.98 31.70 21.01 15.25 9.38 
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C655 Cu 60.30 51.18 6.45 74.61 10.12 

 Fe 0.02 2.42 1.70 1.25 0.87 

 Pb 0.01 2.41 1.70 1.25 0.87 

 Zn 38.85 34.31 3.21 22.90 11.28 

Others  0.81 9.68 6.27 0.00 0.58 

C863 Cu 62.90 51.18 8.29 74.61 8.28 

 Sn 0.02 2.53 1.77 1.07 0.74 

 Pb 0.01 2.52 1.77 1.09 0.76 

 Zn 26.41 23.75 1.88 15.25 7.89 

 Fe 2.43 4.59 1.53 2.14 0.20 

 Al 5.21 6.98 1.25 5.85 0.45 

Others  3.02 8.45 3.84 0.00 2.14 

C954 Cu 85.82 51.18 24.49 74.61 7.92 

 Fe 3.46 5.47 1.42 3.50 0.03 

 Ni 0.05 2.55 1.76 1.05 0.70 

 Al 10.43 11.44 0.71 12.79 1.67 

others  0.24 29.36 20.60 8.05 5.52 
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C932 Ni 0.40 3.10 1.91 0.18 0.16 

 Sn 6.47 8.30 1.30 7.91 1.02 

 Zn 3.78 6.00 1.57 4.32 0.38 

 Cu 81.22 51.18 21.24 74.61 4.67 

Others  8.13 31.42 16.47 12.98 3.43 

C673 Cu 59.40 51.11 5.86 74.49 10.67 

 Fe 0.06 2.60 1.80 0.96 0.64 

 Pb 1.76 4.06 1.62 1.30 0.32 

 Mn 2.50 4.69 1.55 2.29 0.15 

 Ni 0.06 2.60 1.80 0.96 0.64 

 Zn 35.17 31.30 2.74 19.99 10.74 

Others  1.05 3.65 1.84 0.00 0.74 
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Table 5.7:  Comparison between the results of the developed GSA-A-SVR-IRP and GSA-A-HSVR-IRP 

chemometrics including their standard deviations from the certified values 

Sample Element Con. 

(wt%) 

GSA-A-

SVR-IRP 

(wt%) 

Standard 

deviation 

(wt%) 

GSA-A-

HSVR-IRP 

(wt%) 

Standard 

deviation 

(wt%) 

C510 Cu 94.99 83.08 8.42 94.00 0.70 

 Sn 4.66 7.59 2.07 5.99 0.94 

 Others 0.35 9.34 6.35 0.01 0.24 

C642 Al 6.82 8.76 1.37 7.43 0.43 

 Cu 90.85 79.84 7.78 90.24 0.43 

 Fe 0.18 1.87 1.20 0.46 0.20 

 Mn 0.02 1.34 0.93 0.90 0.62 

 Ni 0.15 1.80 1.16 0.52 0.26 

Others  1.98 6.39 3.12 0.44 1.09 

C655 Cu 60.30 53.45 4.85 59.49 0.58 

 Fe 0.02 0.97 0.68 1.21 0.84 

 Pb 0.01 3.44 2.42 1.23 0.86 

 Zn 38.85 34.33 3.20 37.22 1.16 
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Others  0.81 7.81 4.95 0.86 0.03 

C863 Cu 62.90 55.86 4.98 62.30 0.42 

 Sn 0.02 2.38 1.67 0.08 0.04 

 Pb 0.01 3.61 2.55 1.43 1.01 

 Zn 26.41 24.57 1.30 25.85 0.40 

 Fe 2.43 3.55 0.80 1.36 0.75 

 Al 5.21 8.07 2.02 6.62 1.00 

Others  3.02 1.95 0.76 2.35 0.48 

C954 Cu 85.82 75.29 7.44 84.94 0.62 

 Fe 3.46 3.58 0.08 1.39 1.46 

 Ni 0.05 3.44 2.40 1.23 0.83 

 Al 10.43 11.45 0.72 10.56 0.09 

others  0.24 6.24 4.25 1.88 1.16 

C932 Ni 0.40 0.61 0.14 1.51 0.78 

 Sn 6.47 8.17 1.21 6.75 0.20 

 Zn 3.78 7.85 2.88 6.37 1.83 

 Cu 81.22 71.71 6.72 80.77 0.32 
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Others  8.13 11.65 2.49 4.60 2.49 

C673 Cu 59.40 52.72 4.73 58.64 0.54 

 Fe 0.06 0.57 0.36 1.54 1.05 

 Pb 1.76 4.98 2.28 3.03 0.90 

 Mn 2.50 1.76 0.52 0.55 1.38 

 Ni 0.06 1.22 0.82 1.00 0.67 

 Zn 35.17 31.51 2.59 33.93 0.88 

Others  1.05 7.24 4.38 1.31 0.19 

 

The absolute percentage deviations of the results of each of the developed A-SVR based 

chemometrics from the certified values are presented in Fig.5.19. Chemometrics without 

the proposed internal reference preprocessing method have large number of elements 

with percentage deviation above 20% while model with internal reference preprocessing 

have large number of elements with percentage deviation below 5%.  
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Figure  5.19: A graph of absolute percentage deviation against the number of element for each of the developed 

A-SVR based chemometrics 

 

 

5.5.5 Results of A-ELM based chemometrics for quantitative analysis of 

standard bronze spectra 

This section presents the results of extreme learning machine (ELM) and its hybrid 

HELM (homogenously hybridized ELM), for the first time in modeling the complex 

interactions of laser induced plasma and quantification of LIBS spectra. The result of 

internal reference preprocessing (IRP) method for enhancing the performance of ELM 

based chemometrics is also presented.  Since the proposed chemo-metrics (ELM and 
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ELM and HELM are respectively hybridized with gravitational search algorithm (GSA) 

for optimization of the number of hidden neurons.  

5.5.6 Influence of the agent population on convergence of the A-ELM 

based chemometrics 

Influence of the agent population on convergence of the proposed chemo-metrics .The 

dependence of the performance GSA-A-ELM-WIRP chemo-metric on the initial 

population of agents is presented in Fig.5.20. The gravitational pull between the agents 

become significant when large number of agents is exploiting a small portion of a search 

space for a global solution. Similarly, exploration ability of the model is weakened when 

few agents explore a wide search space. In order to strike a balance between exploration 

and exploitation capacity of the gravitational search algorithm based chemo-metric, the 

initial population of the agents is varied until the model demonstrates its optimum 

performance. The tuning of GSA parameters is not as tedious as tuning the number of 

hidden neurons in a case where optimization search algorithm is not employed. Apart 

from the fact that GSA improves the stability of ELM, it also ensures global solution and 

save valuable time as well as other resources. As depicted in Fig.5.20, GSA-A-ELM-

WIRP converges to local minima when thirty, fifty and seventy number of agents was 

used for the simulation. Optimum performance was achieved when the number of agent 

reaches ninety and the exploitation ability of the model became weakened afterwards. 

Similar trend is obtained for GSA-A-HELM-WIRP based chemo-metric depicted in 

Fig.5.21.  The optimum value of agent in this case is obtained as thirty.  
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Figure 5.20:  A graph of RMSE against the number of iteration for performance sensitivity of GSA-A- ELM-

WIRP to the number of agents 
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Figure 5.21: A graph of RMSE against the number of iteration for performance sensitivity of GSA-A- HELM-

WIRP to the number of agents 
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Figure 5.22: A graph of RMSE against the number of iteration for performance sensitivity of GSA-A- ELM-IRP 

to the number of agents 
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The performance sensitivity of GSA-A-ELM-IRP chemo-metric to the initial population 

of the agents is illustrated in Fig.5.22. Only ten number of agent converges to local 

minimum while the model converges to global minimum when the number of agents 

exceeds ten.  The optimum number of agents was taken as thirty so as to reduce the 

computational complexity at high number of agent population 
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Figure 5.23: A graph of RMSE against the number of iteration for performance sensitivity of GSA-A- HELM-

IRP to the number of agents 

For the case of GSA-A-HELM-IRP chemo-metric depicted in Fig.5.23, the optimum 

value of agent population was obtained as fifty. Table 5.8 presents the activation 

function, number of hidden neurons and the number of agents that optimize the proposed 

extreme learning machine based chemo-metrics. 
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Table  5.8:  Optimum values of A-ELM based chemometrics parameters 

Extreme learning based 

chemo 

Activation 

function 

Number of hidden 

neurons 

Number of agent 

GSA-ELM-WIRP Sine function 51 90 

GSA-HELM-WIRP Sigmoid function 194 30 

GSA-ELM-IRP Sine function 766 30 

GSA-HELM-IRP Sigmoid function 183 10 

 

5.5.7 Performance comparison of A-ELM based chemometric on the basis 

of root mean square error (RMSE), mean absolute error (MAE) and 

correlation coefficient (CC)  

The performance of each of the developed A-ELM based chemo-metrics was evaluated 

using correlation coefficient (CC) between the results of the model and certified values, 

root mean square error (RMSE) and mean absolute error (MAE). These generalization 

performance evaluation parameters were averaged over the seven folds. This poor 

generalization performance demonstrated by GSA-A-ELM-WIRP also manifests in the 

value of its RMSE and MAE as illustrated in Fig.5.24 and Fig.5.25, respectively. In the 

case of RMSE and MAE,  the lower the value, the better the model.  
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Figure 5.24:  A graph of RMSE against the developed chemometric models for performance enhancement of A-

ELM chemometrics on the basis of RMSE 

GSA-A-HELM-WIRP shows a better performance as compared to GSA-A-ELM-WIP 

chemo-metric since the function approximated by GSA-ELM-WIP model was further 

approximated and linearized in GSA-A-HELM-WIP chemo-metric and ultimately results 

into more robust and accurate model. The deviations of the results of GSA-A-HELM-

WIP from the certified values only occur in atomic species that are affected by self-

absorption. Lower value of RMSE and MAE for GSA-A-HELM-WIP chemo-metric 

depicted by Fig. 5.24 and Fig.5.25, respectively further shows its better performance as 

compared to its counterpart.  
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Figure 5.25: A graph of MAE against the developed chemometric models for performance enhancement of A-

ELM chemometrics on the basis of MAE 

 

Figure 5.26:  graph of CC against the developed chemometric models for performance enhancement of A-ELM 

chemometrics on the basis of CC 

The performance comparison of GSA-A-ELM-IRP chemometric as compared to other 
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respectively. GSA-A-ELM-IRP performs better than GSA-A-ELM-WIRP and GSA-A-

HELM-WIRP due to its self-absorption minimization capacity.  The only inaccuracy 

attached to GSA-A-ELM-IRP model can be attributed to inability of the model to fully 

linearize the function linking the descriptors with the target. GSA-A-HELM-IRP shows a 

better generalization and predictive capacity due to its ability to linearize the acquired 

function more than once in addition to the reduction of self-absorption on some atomic 

species.  Fig.5.26 shows the performance comparison of the proposed chemo-metrics on 

the basis of correlation coefficient. It should be noted that the higher the value of CC, the 

better the model. GSA-A-ELM-WIRP shows the lowest value of CC. This can be 

attributed to the extent of self-absorption in the spectra used in developing the model as 

well as inability of ordinary ELM to fully capture the non-linear relationship between the 

descriptors and the elemental concentrations. Table 5.9 shows the values of 

generalization performance evaluation parameters for all the developed chemo-metrics 

Table 5.9:  Measure of generalization performance of the proposed A-ELM based chemo-metrics (averaged over 

all the seven folds) 

 GSA-ELM-

WIRP 

GSA-HELM-

WIRP 

GSA-ELM-

IRP 

GSA-HELM-

IRP 

CC (%) 47.97 86.45 93.47 99.81 

RMSE 

(wt%) 

31.45 13.8 11.43 1.4 

MAE (wt%) 24.76 9.01 8.09 0.99 
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5.5.8 Comparison of the results of the developed A-ELM based 

chemometrics with the certified values 

Comparison between the results of the developed models and the certified concentrations 

are presented in table 5.10 and table 5.11. For C640 test sample, GSA-A-HELM-IRP 

model gives the most accurate result of 7.02 wt% while other chemo-metrics give a value 

far above the certified values. GSA-A-ELM-WIRP model gives worst results 45.31 wt % 

for the copper which is the major element of the composition as shown in table 5.11. The 

poor performance of GSA-A-ELM-WIRP model could be attributed to inability of the 

chemo-metric tool to fully linearize the function linking the descriptors and the target 

without catering for self-absorption.  

Table 5.10 : Comparison between the results of the developed GSA-A-ELM-IRP and GSA-A-HELM-IRP 

chemometrics including their standard deviations from the certified values 

Element Sample Con 

(wt%) 

GSA-A-

ELM-

IRP(wt%) 

 Standard 

deviation 

(wt%) 

GSA-A-

HELM-IRP 

(wt%) 

Standard 

deviation 

(wt%) 

Al C642 6.82 8.40           1.12  7.02 0.14 

Cu  90.85 87.79           2.17  90.54 0.22 

Si  1.78 1.75           0.02  1.03 0.53 

others  0.55 2.06           1.07  1.42 0.61 

Cu C655 60.30 68.72           5.95  61.34 0.73 

Zn  38.85 21.88         12.00  36.15 1.91 
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others  0.84 9.39           6.04  2.51 1.18 

Cu C863 62.90 69.05           4.35  63.67 0.54 

Zn  26.41 23.15           2.31  26.00 0.29 

Al  5.21 5.35           0.10  5.22 0.01 

others  5.48 2.45           2.14  5.11 0.26 

Cu C954 85.82 71.91           9.83  83.73 1.48 

Fe  3.46 1.35           1.50  2.12 0.95 

Al  10.43 8.85           1.12  10.96 0.37 

Others  0.29 17.89         12.44  3.19 2.05 

Cu C510 95.00 97.57           1.82  95.21 0.15 

Sn  5.00 2.43           1.82  4.78 0.15 

Pb C932 7.67 4.32           2.37  7.25 0.30 

Sn  6.47 2.61           2.73  5.98 0.35 

Zn  3.78 17.50           9.70  5.50 1.21 

Cu  81.22 71.34           6.99  79.84 0.97 

Others  0.87 4.23           2.38  1.43 0.40 

Cu C673 59.40 68.61           6.51  60.56 0.82 
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Pb  1.76 0.99           0.54  0.88 0.62 

Mn  2.50 1.12           0.98  1.52 0.69 

Zn  35.17 21.42           9.72  33.93 0.88 

others  1.17 7.85           4.73  3.11 1.37 

 

GSA-A-HELM-WIRP shows improved performance since it fully captures the non-linear 

relationship between the inputs and the output while is unable to minimize self-

absorption. On the other hand, GSA-A-ELM-IRP shows a better performance but still far 

higher than the certified value.  For C510 test sample, the results of GSA-A-HELM-IRP 

and GSA-HELM-WIRP are very close to the certified values. This might due to the 

assumption that the test sample has no trace element and not seriously affected by self-

absorption.  In other test samples presented in the table, the results of GSA-A-HELM-

IRP are closer to the certified values followed by that of GSA-A-ELM-IRP, then GSA-

AHELM-WIRP and GSA-A-ELM-WIRP chemo-metrics. 

Table 5.11:  Comparison between the results of the developed GSA-A-ELM-WIRP and GSA-A-HELM-WIRP 

chemometrics including their standard deviations from the certified values 

Element  Sample Con 

(wt%) 

GSA-A-

ELM-WIRP 

(wt%) 

Standard 

deviation 

(wt%) 

GSA-A-HELM-

WIRP(wt%) 

Standard 

deviation 

(wt%) 

Al C642 6.82 27.14 14.37 8.88 1.46 

Cu  90.85 45.31 32.20 90.85 0.00 
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Si  1.78 27.55 18.22 0.27 1.07 

others  0.55 0.00 0.39 0.00 0.39 

Cu C655 60.30 28.58 22.43 66.54 4.41 

Zn  38.85 8.24 21.64 15.56 16.47 

others  0.84 28.58 19.62 17.89 12.05 

Cu C863 62.90 38.39 17.33 66.54 2.57 

Zn  26.41 11.62 10.46 26.41 0.00 

Al  5.21 19.61 10.19 5.21 0.00 

others  5.48 1.79 2.61 1.84 2.57 

Cu C954 85.82 28.58 40.47 66.54 13.63 

Fe  3.46 11.62 5.77 1.02 1.73 

Al  10.43 27.14 11.81 8.88 1.10 

Others  0.29 32.65 22.88 23.57 16.46 

Cu C510 95.00 55.65 27.83 95.00 0.00 

Sn  5.00 44.35 27.83 5.00 0.00 

Pb C932 7.67 26.38 13.23 4.75 2.06 

Sn  6.47 1.89 3.23 2.29 2.95 
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Zn  3.78 8.24 3.16 15.56 8.33 

Cu  81.22 28.58 37.22 66.54 10.38 

Others  0.87 34.90 24.06 10.85 7.06 

Cu C673 59.40 28.58 21.79 66.54 5.05 

Pb  1.76 10.96 6.50 0.59 0.83 

Mn  2.50 0.48 1.43 0.77 1.22 

Zn  35.17 8.24 19.04 15.56 13.86 

others  1.17 51.74 35.76 16.53 10.86 

 

Absolute percentage error analysis comparison between the developed A-ELM based 

models is presented in Fig.5.27.  GSA-A-ELM-WIRP chemo-metric that was developed 

without internal reference preprocessing (WIRP) shows worst performance in all the 

seven investigated test standard bronze samples. The performance of the models can be 

ranked in the following order ranging from worst to best; GSA-A-ELM-WIRP<GSA-A-

HELM-WIRP<GSA-A-ELM-IRP<GSA-A-HELM-IRP. Outstanding performance of 

GSA-A-HELM-IRP chemo-metric can be attributed to its ability to minimize the effect of 

self-absorption and multiple linearization of the acquired function relating the inputs to 

the output. 
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Figure 5.27:  A graph of absolute percentage deviation against the number of element for each of the developed 

A-ELM based chemometrics 

 

5.5.9 Results of hybrid fusion of SVR and ELM chemometrics for 

quantitative analysis of standard bronze spectra 

The result of hybrid fusion of extreme learning machine (ELM) and support vector 

regression (SVR) with IRP method is presented in this section. Extreme learning machine 

(ELM) is a non-linear chemo-metric method that has inherent capacity to approximate 

any non-linear relation describing the laser induced plasma. However,  ELM surfers from 

over-fitting which affects its accuracy for spectroscopic regression. On the other hand, 

SVR is a non-linear chemo-metric tool based on statistical learning theory and overcomes 

the problem of over-fitting by proper tuning of its hyper-parameters. The merits of both 

chemo-metrics are harnessed in this work and implemented for quantitative analysis of 

LIBS spectra of seven standard bronze samples.  
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5.6  Optimization of hybrid ELM-SVR hyper-parameters 

Optimization of the parameters of the developed hybrid fusion models was carried out 

using GSA. In order to maintain a balance between the exploration and exploitation 

capacity of the model, the initial population of the agents was varied between five and 

fifty as shown in Fig.5.28 for A-ELM-SVR based model.  
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Figure 5.28: A graph of RMSE against the number of iteration for performance sensitivity of GSA-A- ELM-

SVR to the number of agents 

The exploitation ability of the model is more favored as compared to the exploration 

capacity when the number of agents exploring a search space is large while otherwise in 

case of small number of agents assessing similar search space.  As can be deduced from 

Fig.5.28, when the number of initial population of agent is small (say five), the model 

converges to local minimum. The same premature convergence was also observed at high 

number of agent due to high complexity which reduces the model exploitation strength. 
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The optimum performance was observed when the initial population of agents was ten. 

The values of model hyper-parameters (which include the activation number and the 

number of hidden neuron for A-ELM and A-SVR-ELM models while the kernel option, 

penalty factor and epsilon are the model parameters for A-SVR and A-ELM-SVR based 

models) were recorded at optimum values of agent population. Table 5.12 shows the 

optimum values of the model parameters for all the developed models.  

Table 5.12 :  Optimum parameters for hybrid SVR and ELM model 

Parameters  A-SVR A-ELM A-SVR-ELM A-ELM-SVR 

Number of agent 30 30 20.0000 10 

Activation function ------- Sine Sigmoidal  ------- 

Hidden neuron ------- 766 15 ------- 

Penalty factor 554.7362 ------- ------- 604.2271 

Kernel function Gaussian ------- ------- Gaussian 

Kernel  option 0.9809 ------- ------- 0.5073 

Epsilon  0.9743 ------- ------- 0.2386 

Hyper-parameter 

lambda 

E-7 ------- ------- E-7 
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5.6.1  Comparison of the performance of hybrid fusion based 

chemometrics on the basis of RMSE, MAE and CC  

The performance comparison between the developed hybrid models and the individual 

models before hybridization is presented in Fig.5.36, Fig.5.37 and Fig.5.38 respectively 

on the basis of root mean square error (RMSE) , mean absolute error (MAE) and 

correlation coefficient (CC). Ordinary A-SVR model shows the least performance as 

indicated by the smallest value of CC in Fig.5.28 and highest value of RMSE in Fig.5.29 

as well as highest value of MAE in Fig.5.30. The weak performance of A-SVR model 

can be attributed to the inability of the model to fully capture the inherent non-linearity 

characterizing the laser induced plasma generated after the ablation. On the other hand A-

A-ELM model performs better than ordinary A-SVR since non-linear function can be 

approximated by A-ELM model with a reasonable degree of accuracy. While comparing 

the performance of A-SVR and A-ELM model on the basis of RMSE, MAE and CC, as 

depicted in Fig.5.29, Fig.5.30 and Fig.5.31 respectively, A-ELM performs better than A-

SVR with performance improvement of 60.24% , 62.28% and 89.06% on the basis of 

RMSE,MAE and CC, respectively.     
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Figure 5.29:  A graph of RMSE against the developed chemometric models for performance enhancement of 

hybrid fusion based chemometrics  

Similarly, hybrid fusion of A-SVR model in A-ELM model results into A-SVR-ELM 

model with a better performance than individual A-SVR and A-ELM. A-SVR-ELM 

model takes the output of A-SVR as its input and further approximate the spectroscopic 

regression constructed by A-SVR algorithm in high dimensional feature space after 

transformation using Gaussian function. A-SVR-ELM model performs better than A-

SVR model with performance improvement of 101.36%, 91.03% and 94.97% on the 

basis of CC, RMSE and MAE, respectively. In the same vein, A-SVR-ELM performs 

better than ordinary A-ELM with performance improvement of 77.43%, 86.65% and 

6.50% on the basis of RMSE, MAE and CC as respectively shown in Fig.5.29, Fig.5.30 

and Fig.5.31.  

 

0

5

10

15

20

25

30

R
o

o
t 

m
e

an
 s

q
u

ar
e

 e
rr

o
r 

(w
t%

) 

Chemmetrics based on hybrid fusion 

A-SVR

A-ELM

A-SVR-ELM

A-ELM-SVR



154 

 

 

Figure 5.30:  A graph of MAE against the developed chemometric models for performance enhancement of 

hybrid fusion based chemometrics 

 

Figure 5.31: A graph of CC against the developed chemometric models for performance enhancement of hybrid 

fusion based chemometrics 
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Hybrid A-ELM-SVR model has shown the overall better performance as compared with 

other models presented in Fig.5.30. A-ELM-SVR model takes the final output of A-ELM 

model as its input. The better performance demonstrated by A-ELM-SVR model can be 

attributed to transformation of the approximated non-linear function governing the laser 

induced plasma to high dimensional feature space by A-SVR algorithm where linear 

spectroscopic regression of high degree of correlation coefficient is constructed. Table 

5.13 shows the values of the parameters that measure the performance of each of the 

developed model. 

Table 5.13 :  comparison of the performance of the developed hybrid fusion based chemometrics 

 A-SVR A-ELM A-SVR-ELM A-ELM-SVR 

CC (%) 49.44 93.47 99.55 99.85 

RMSE (wt %) 28.75 11.43 2.58 1.22 

MAE (wt%) 21.45 8.09 1.08 1 

 

A-ELM-SVR model performs better than ordinary A-SVR with a performance 

improvement of 101.96%, 95.76% and 95.34% on the basis of CC, RMSE and MAE, 

respectively while it performs better than ordinary A-ELM with a performance 

improvement of 6.83%, 89.32% and 87.64%, respectively. A-ELM-SVR model also 

performs better than A-SVR-ELM model with a performance improvement of 0.3%, 

52.71% and 7.4% on the basis of CC, RMSE and MAE, respectively. The overall 
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performance of the developed hybrid fusion based chemometrics can be arranged as A-

ELM-SVR>A-SVR-ELM>A-ELM>A-SVR. 

5.6.2  Comparison of the results of the chemometrics based on hybrid 

fusion with certified values  

Table 5.14 and table 5.15 present the comparison between the results of the developed 

hybrid models and the certified concentration for seven standard bronze samples with 

inclusion of standard deviations. The results of the hybrid chemometrics are closer to the 

certified values for all the investigated standard samples.  

Table 5.14 : Comparison between the results of the developed A-SVR and A-ELM chemometrics including their 

standard deviations from the certified values 

Samples  Element Con.(wt%) A-SVR Standard 

deviation (wt%)  

A-ELM 

(wt%) 

Standard 

deviation 

(wt%) 

C510 Cu 94.99 83.08 8.42 91.75 2.29 

 Sn 4.66 7.59 2.07 2.43 1.58 

 others 0.35 9.34 6.35 5.82 3.87 

C642 Al 6.82 8.76 1.37 8.40 1.12 

 Co 0.15 3.77 2.56 0.59 0.31 

 Cu 90.85 69.58 15.04 68.48 15.82 

 Fe 0.18 1.87 1.20 0.94 0.54 
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 Mn 0.02 1.34 0.93 0.81 0.56 

 Ni 0.15 1.80 1.16 0.20 0.03 

 Si 1.78 5.17 2.40 1.75 0.02 

 Sn 0.01 3.64 2.57 1.80 1.27 

 Zn 0.04 4.07 2.85 17.03 12.02 

C655 Cu 60.30 53.45 4.85 68.72 5.95 

 Fe 0.02 0.97 0.68 0.92 0.64 

 Pb 0.01 3.44 2.42 3.36 2.37 

 Sn 0.81 2.92 1.49 1.90 0.77 

 Zn 38.85 34.33 3.20 21.88 12.00 

 others 0.00 4.89 3.46 3.21 2.27 

C863 Cu 62.90 55.86 4.98 63.99 0.77 

 Sn 0.02 2.38 1.67 1.81 1.26 

 Pb 0.01 3.61 2.55 0.78 0.54 

 Zn 26.41 24.57 1.30 23.15 2.31 

 Fe 2.43 3.55 0.80 1.22 0.86 

 Al 5.21 8.07 2.02 5.35 0.10 
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 Mn 2.91 1.95 0.68 3.72 0.57 

 others 0.11 0.00 0.08 0.00 0.08 

C954 Cu 85.82 75.29 7.44 71.91 9.83 

 Fe 3.46 3.58 0.08 1.35 1.50 

 Ni 0.05 3.44 2.40 0.74 0.49 

 Al 10.43 11.45 0.72 8.85 1.12 

 Mn 0.24 2.09 1.31 0.83 0.42 

 others 0.00 4.15 2.93 16.31 11.53 

C932 Fe 0.13 3.00 2.03 0.93 0.57 

 Pb 7.67 10.34 1.89 4.32 2.37 

 Ni 0.40 0.61 0.14 0.23 0.12 

 P 0.04 3.80 2.66 0.10 0.04 

 Sn 6.47 8.17 1.21 2.61 2.73 

 Zn 3.78 7.85 2.88 17.50 9.70 

 Sb 0.25 3.98 2.64 0.64 0.27 

 Cu 81.22 58.48 16.08 71.34 6.99 

 others 0.04 3.77 2.63 2.33 1.62 
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C673 Cu 59.40 52.72 4.73 68.61 6.51 

 Fe 0.06 0.57 0.36 0.92 0.61 

 Pb 1.76 4.98 2.28 0.99 0.54 

 Mn 2.50 1.76 0.52 1.12 0.98 

 Ni 0.06 1.22 0.82 0.19 0.09 

 Si 0.97 2.87 1.34 0.55 0.30 

 Sn 0.05 2.87 2.00 1.81 1.24 

 Zn 35.17 31.51 2.59 21.42 9.72 

 others 0.03 1.50 1.04 4.39 3.08 

 

The results of A-ELM-SVR model which uses the output of A-ELM as its input is 

compared to that of A-SVR-ELM model which takes the output of A-SVR as its input 

and presented in table 5.15. 

Table 5.15 : Comparison between the results of the developed A-SVR-ELM and A-ELM-SVR chemometrics 

including their standard deviations from the certified values 

Sample Element Con. 

(wt%) 

A-SVR-

ELM(wt%) 

Standard 

deviation (wt%) 

A-ELM-

SVR(wt%) 

Standard 

deviation (wt%) 

C510 Cu 94.99 94.06 0.66 94.76 0.16 

 Sn 4.66 4.81 0.10 5.24 0.41 



160 

 

 others 0.35 1.13 0.55 0.00 0.25 

C642 Al 6.82 6.27 0.39 7.06 0.17 

 Co 0.15 0.60 0.32 0.10 0.03 

 Cu 90.85 88.42 1.72 90.61 0.17 

 Fe 0.18 0.68 0.36 0.35 0.12 

 Mn 0.02 0.50 0.34 0.04 0.02 

 Ni 0.15 0.78 0.44 0.16 0.01 

 Si 1.78 1.58 0.14 1.31 0.33 

 Sn 0.01 0.65 0.46 0.08 0.05 

 Zn 0.04 0.51 0.33 0.28 0.17 

C655 Cu 60.30 60.03 0.19 60.06 0.17 

 Fe 0.02 0.25 0.16 0.25 0.17 

 Pb 0.01 0.70 0.49 0.25 0.17 

 Sn 0.81 0.47 0.24 0.58 0.17 

 Zn 38.85 38.55 0.21 38.61 0.17 

 others 0.00 0.00 0.00 0.24 0.17 

C863 Cu 62.90 63.09 0.13 62.66 0.17 
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 Sn 0.02 0.16 0.10 0.03 0.01 

 Pb 0.01 0.66 0.46 0.07 0.04 

 Zn 26.41 25.15 0.89 26.65 0.17 

 Fe 2.43 0.68 1.24 2.48 0.03 

 Al 5.21 5.33 0.09 5.45 0.17 

 Mn 2.91 3.25 0.24 2.67 0.17 

 others 0.11 1.68 1.11 0.00 0.08 

C954 Cu 85.82 86.33 0.37 85.58 0.17 

 Fe 3.46 0.67 1.97 3.23 0.17 

 Ni 0.05 0.70 0.46 0.07 0.01 

 Al 10.43 9.17 0.90 10.67 0.17 

 Mn 0.24 0.37 0.09 0.00 0.17 

 others 0.00 2.76 1.95 0.46 0.32 

C932 Fe 0.13 0.54 0.29 0.32 0.14 

 Pb 7.67 8.44 0.55 7.91 0.17 

 Ni 0.40 0.38 0.02 0.16 0.17 

 P 0.04 0.59 0.39 0.28 0.17 
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 Sn 6.47 5.46 0.71 6.23 0.17 

 Zn 3.78 5.08 0.92 4.02 0.17 

 Sb 0.25 0.53 0.19 0.03 0.16 

 Cu 81.22 78.38 2.01 80.98 0.17 

 others 0.04 0.60 0.40 0.07 0.02 

C673 Cu 59.40 59.11 0.20 56.98 1.71 

 Fe 0.06 0.17 0.08 0.28 0.15 

 Pb 1.76 1.25 0.36 0.68 0.77 

 Mn 2.50 0.81 1.19 1.62 0.62 

 Ni 0.06 0.20 0.10 0.17 0.08 

 Si 0.97 0.43 0.38 0.15 0.58 

 Sn 0.05 0.43 0.27 0.94 0.63 

 Zn 35.17 34.99 0.13 36.76 1.12 

 others 0.03 2.61 1.82 2.42 1.69 

 

 

The absolute percentage deviation of each of the elements present in all the standard 

bronze samples are compared for each of the chemometrics developed based on hybrid 
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fusion and presented in Fig.5.32. A-ELM-SVR chemometric has highest number of 

elements with less than 5% deviation while A-SVR chemometric has the lowest.   

 

Figure  5.32:  A graph of absolute percentage deviation against the number of element for each of the developed 

chemometrics developed based on hybrid fusion 

The figure shows the deviation of the results of each of the chemometrics based on 

hybrid fusion. It can be deduced from the figure that the proposed hybrid fusion method 

improves the performance of ordinary A-SVR and A-ELM chemometrics 

5.6.3 Results of I-SVR based chemometrics for quantitative analysis of 

standard bronze spectra 

This section presents the results of three novel techniques by which the performance 

of SVR chemometric has been improved for the quantitative analysis of LIBS spectra 

using integrated line intensity.  The hyper-parameters of the developed models are 

optimized using gravitational search algorithm (GSA).  
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5.6.4 Optimization of I-SVR based chemometrics parameters using GSA 

Fig.5.33 shows how number of agents affects the convergence of the I-SVR based 

chemometric.  The graph of RMSE against the number of iteration for I-SVR-GSA-IRP 

chemometric is only shown to avoid repetition.  
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Figure 5.33:  A graph of RMSE against the number of iteration for performance sensitivity of I-SVR-GSA-

WIRP to the number of agents 

In the graph presented in Fig.5.33, the model converges to local minimum when ten and 

twenty numbers of agents are involved in global minimum search.  The small number of 

agents converges faster than large number of agents; the optimum number of agents in 

the presented figure is five. Similar investigation was conducted for other I-SVR based 

chemometric. Table 5.16 presents the values of the optimum parameters for each of the 

chemometrics. 
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Table 5.16 : Optimum values of the model parameters 

 I-SVR-GSA-WIRP I-HSVR-GSA-WIRP 

Penalty factor 651.9521 41.9645 

Epsilon  0.1122 0.9486 

Kernel option 0.493 0.8458 

Kernel function Polynomial Gaussian 

Hyper-parameter lambda 10E-1 E-7 

Agent population 10 5 

  

5.6.5 Significance of the proposed homogenous hybridization to the 

performance of I-SVR chemometrics  

The performance enhancement of the proposed homogenous hybridization is presented in 

Fig.5.34, Fig.5.35 and Fig.5.36 for chemometrics developed without using internal 

reference preprocessing method. The comparison between the chemometrics was made 

using three criteria in line with usual practices in chemometrics [136]. On the basis of 

RMSE as presented in Fig. 5.34, I-HSVR-GSA-WIRP outperforms I-SVR-GSA-WIRP 

with performance improvement of 50.53% 
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Figure 5.34:  A graph of RMSE against the developed chemometric models for performance enhancement of 

SVR chemometrics without IRP on the basis of RMSE using homogenous hybridization 

 

 

Figure 5.35: A graph of RMSE against the developed chemometric models for performance enhancement of 

SVR chemometrics without IRP on the basis of MAE using homogenous hybridization 
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Figure 5.36:  A graph of RMSE against the developed chemometric models for performance enhancement of 

SVR chemometrics without IRP on the basis of correlation coefficient using homogenous hybridization 

 

Similarly, on the basis of MAE as presented in Fig.5.35, I-HSVR-GSA-WIRP 

outperforms I-SVR-GSA-WIRP with performance improvement of 59.61% while 

performance improvement of 11.06% was obtained when the models are compared on the 

basis of correlation coefficient as shown in Fig. 5.36. The performance comparison 

between the models are tabulated and presented in table 5.17.   

Table 5.17 : Evaluation of the predictive and generalization ability of the proposed SVR based chemometrics 

 GSA-SVR-WIRP GSA-HSVR-WIRP 

CC (%) 0.8715 0.9679 

RMSE (wt%) 16.5009 8.1620 

MAE (wt%) 11.5039 4.6470 
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5.6.6 Comparison of the results of the proposed I-SVR chemometrics with 

the certified values 

The outputs of the developed I-SVR based chemometrics are presented in table 5.18 with 

inclusion of standard deviation of each of the results from the certified concentration. I-

HSVR-GSA chemometric gives better results as its outputs are close to the certified 

concentration. The performance of I-HSVR-GSA over I-SVR-GSA chemometric can be 

attributed to the implementation of the proposed homogenous hybridization performance 

enhancement.  

Table 5.18:  Comparison between the results of the developed I-SVR based chemometric with certified values. 

The standard deviation of each of the point is also included 

Element Sample Certified 

value (wt%) 

I-SVR-GSA 

(wt%) 

Standard 

deviation 

(wt%) 

I-HSVR-

GSA 

(wt%) 

Standard 

deviation 

(wt%) 

Cu C510 94.99 58.76 25.62 85.17 6.95 

Sn  4.66 4.18 0.34 4.10 0.40 

Others  0.35 37.06 25.96 10.74 7.35 

Al C642 6.82 8.55 1.22 12.54 4.05 

Cu  90.85 61.44 20.80 84.09 4.78 

Fe  0.18 0.97 0.56 0.82 0.46 

Ni  0.15 0.21 0.04 1.11 0.68 
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Sn  0.01 0.27 0.19 0.80 0.56 

Others  1.99 28.56 18.79 0.62 0.97 

Cu C655 60.30 54.12 4.37 59.16 0.81 

Fe  0.02 1.06 0.74 0.78 0.54 

Sn  0.81 0.23 0.42 1.03 0.15 

Zn  38.85 26.33 8.86 37.92 0.66 

Others  0.01 18.27 12.91 1.11 0.77 

Cu C863 62.90 63.62 0.51 58.65 3.01 

Sn  0.02 1.01 0.70 0.81 0.56 

Pb  0.01 0.98 0.69 0.82 0.57 

Zn  26.41 2.02 17.24 1.46 17.64 

Fe  2.43 4.07 1.16 4.26 1.30 

Al  5.21 4.13 0.76 4.18 0.73 

Mn  2.91 4.79 1.33 3.33 0.30 

Others  0.11 19.37 13.62 26.48 18.64 

Cu C954 85.82 65.65 14.26 77.89 5.60 

Fe  3.46 5.00 1.08 4.48 0.72 
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Ni  0.05 1.11 0.75 0.75 0.49 

Al  10.43 12.62 1.54 14.55 2.91 

Mn  0.24 1.15 0.65 0.71 0.33 

Others  0.00 14.48 10.24 1.63 1.15 

Fe C932 0.13 1.63 1.06 0.83 0.50 

Pb  7.67 2.40 3.72 1.74 4.19 

Ni  0.40 1.25 0.60 0.66 0.18 

Sn  6.47 0.97 3.88 0.82 3.99 

Zn  3.78 4.61 0.59 3.14 0.45 

Al  0.00 1.71 1.21 0.93 0.65 

Cu  81.22 61.44 13.99 84.09 2.03 

Others  0.34 25.99 18.14 7.78 5.26 

Cu C673 59.40 53.86 3.92 58.52 0.62 

Fe  0.06 1.05 0.70 0.78 0.51 

Pb  1.76 2.91 0.82 1.51 0.18 

Mn  2.50 4.47 1.39 3.36 0.61 

Zn  35.17 37.20 1.44 35.33 0.11 
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Others  1.11 0.50 0.43 0.49 97.97 

 

5.6.7 Results of  I-ELM based chemometrics for quantitative analysis of 

standard bronze spectra 

The results of the quantitative analysis performed on the seven standard bronze samples 

using the developed I-ELM based chemometrics are presented and discussed in this 

section. The optimization of I-ELM chemometrics parameters is also presented. The 

exploration and exploitation capacity of the chemometrics as a function of the number of 

objects searching for global solution is investigated using varying number of objects and 

observe how the convergence of the models behave under different number of objects  

5.6.8 Influence of the agent population on the convergence of the proposed 

ELM based chemometrics 

The dependence of the performance ELM based chemometric on the initial population of 

agents is presented in Fig.5.37 for HELM-GSA-WIRP. The gravitational pull between 

the agents become significant when large number of agents is exploiting a small portion 

of a search space for a global solution. Similarly, exploration ability of the model is 

weakened when few agents explore a wide search space. In order to strike a balance 

between exploration and exploitation capacity of the gravitational search algorithm based 

chemometric, the initial population of the agents is varied until the model demonstrates 

its optimum performance. As depicted in Fig.5.37, GSA-I-HELM-WIRP converges to 

global minima when five numbers of agents was used for the simulation. Similar search 

was conducted for other I-ELM based chemometrics developed. 
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Figure 5.37 : A graph of RMSE against the number of iteration for performance sensitivity of HELM- GSA-

WIRP chemometric to the population of agent 

  

Table 5.19 shows the optimum values of hyper-parameters for the developed I-ELM 

based chemometrics. 

Table 5.19 : Optimum values of extreme learning machine based chemometrics parameters 

Extreme learning based 

chemo 

Activation 

function 

Number of hidden 

neurons 

Number of agent 

ELM- GSA-WIRP Sine function 53 10 

HELM- GSA-WIRP Sigmoid function 14 5 
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5.6.9 Performance sensitivity of I-ELM chemometrics to the proposed 

homogenous hybridization method  

The  performance enhancing effect of the proposed homogeonus hybridization method to 

I-ELM based chemometrics  is presented in Fig.5.38, Fig.5.39 and Fig.5.40 on the basis 

of RMSE, MAE and CC, respectively.  I-HELM-GSA-WIRP outperforms I-ELM-GSA-

WIRP  with performance improvement of 58.33%, 58.41% and 0.6183%  on the basis of 

RMSE, MAE and CC, respectively as presented in Fig.5.38, Fig.5.39 and Fig.5.40. It 

should be noted that the higher the value of CC, the better the model. GSA-I-ELM-WIRP 

shows the lowest value of CC. This can be attributed to the extent of self-absorption in 

the spectra used in developing the model as well as inability of ordinary ELM to fully 

capture the non-linear relationship between the descriptors and the elemental 

concentrations. This poor generalization performance demonstrated by GSA-I-ELM-

WIRP also manifests in the value of its RMSE and MAE as illustrated in Fig.5.39 and 

Fig.5.40, respectively. 
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Figure 5.38:  A graph of RMSE against the developed chemometric models for performance enhancement of 

ELM chemometrics without IRP on the basis of RMSE using homogenous hybridization 

 

 

Figure 5.39:  A graph of RMSE against the developed chemometric models for performance enhancement of 

ELM chemometrics without IRP on the basis of MAE using homogenous hybridization 

 

0

1

2

3

4

5

6

R
M

SE
(w

t%
) 

SVR-based chemo-netrcs with IRP 

SVR-GSA-IRP

HSVR-GSA-IRP

0

1

2

3

4

5

M
A

E(
w

t%
) 

SVR-based chemo-metrics with IRP  

SVR-GSA-IRP

HSVR-GSA-IRP



175 

 

 

 

Figure 5.40:  A graph of RMSE against the developed chemometric models for performance enhancement of 

ELM chemometrics without IRP on the basis of MAE using homogenous hybridization 

In the case of RMSE and MAE,  the lower the value, the better the model. GSA-HELM-

WIRP shows a better performance as compared to GSA-ELM-WIP chemometric since 

the function approximated by GSA-ELM-WIP model was further approximated and 

linearized in GSA-HELM-WIP chemometric and ultimately results into more robust and 

accurate model. The performance measuring parameters for I-ELM chemometrics are 

presented in table 5.20. 

Table 5.20 :  Measure of generalization performance of the proposed extreme learning machine based 

chemometrics (average over all the seven folds) 

 ELM-GSA-WIRP HELM-GSA-

WIRP 

RMSE (wt%) 5.8061 2.4196 

MAE (wt%) 4.3983 1.8292 

CC (wt%) 0.9911 0.9972 
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5.7 Comparison of the results of the developed I-ELM based chemometrics 

with the certified values 

Comparison between the results of the developed I-ELM based chemometrics and the 

certified concentrations are presented in table 5.21. For all samples, GSA-I-HELM 

chemometric gives a value closer the certified value and shows better performance as 

compared to GSA-I-ELM chemometric. GSA-I-HELM shows improved performance 

since it fully captures the non-linear relationship between the inputs and the output while 

and minimizes the effect of self-absorption.  

Table 5.21: Comparison of the results of the developed I-ELM based chemometrics with certified values. 

Standard deviation of each of the results is also included 

Samples Composition  Certified 

value 

(wt%) 

I-ELM-

GSA (wt%) 

Standard 

deviation 

(wt%) 

I-HELM-

GSA 

(wt%) 

Standard 

deviation 

(wt%) 

Cu C510 94.99 93.86 0.80 96.28 0.91 

Sn  4.66 4.66 0.00 3.30 0.96 

others  0.35 1.48 0.80 0.43 0.06 

Al C642 6.82 6.12 0.50 4.84 1.40 

Cu  90.85 78.59 8.67 87.00 2.72 

Fe  0.18 1.55 0.97 0.11 0.05 

Mn  0.02 2.24 1.57 0.21 0.13 
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Ni  0.15 1.10 0.67 0.35 0.14 

Sn  0.01 1.98 1.40 0.16 0.11 

Zn  0.04 7.13 5.01 3.61 2.52 

others  1.93 1.29 0.46 3.72 1.27 

Cu C655 60.30 52.67 5.40 58.98 0.94 

Fe  0.02 2.41 1.69 0.46 0.32 

Zn  38.85 37.14 1.21 39.27 0.29 

others  0.83 7.78 4.92 1.29 0.33 

Cu C863 62.90 58.79 2.91 66.89 2.82 

Sn  0.02 0.45 0.31 0.26 0.17 

Zn  26.41 23.98 1.72 26.47 0.04 

Al  5.21 6.16 0.67 4.82 0.28 

Mn  2.91 3.31 0.28 1.35 1.10 

others  2.55 7.31 3.37 0.22 1.65 

Cu C954 85.82 76.53 6.57 85.37 0.32 

Fe  3.46 7.97 3.18 2.32 0.81 

Ni  0.05 1.07 0.72 0.35 0.21 
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Al  10.43 12.46 1.43 10.34 0.07 

Mn  0.24 1.52 0.91 0.10 0.09 

others  0.00 0.46 0.32 1.53 1.08 

Fe C932 0.13 2.99 2.02 1.17 0.74 

Pb  7.67 6.62 0.74 4.37 2.33 

Ni  0.40 0.36 0.03 0.58 0.12 

Sn  6.47 5.72 0.53 4.87 1.13 

Zn  3.78 3.36 0.30 1.38 1.70 

Al  0.00 3.19 2.25 1.29 0.91 

Cu  81.22 73.07 5.76 82.40 0.84 

others  0.34 4.68 3.07 3.95 2.56 

Cu C673 59.40 51.97 5.25 58.06 0.95 

Fe  0.06 1.30 0.88 0.28 0.15 

Pb  1.76 8.56 4.81 1.75 0.00 

Si  0.97 1.32 0.25 0.26 0.50 

Sn  0.05 1.16 0.79 0.35 0.21 

Zn  35.17 33.24 1.37 34.68 0.35 
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others  2.59 2.45 0.10 4.61 97.84 
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CHAPTER 6 

Results of LIBS measurement on crayfish and grape samples  

This chapter presents the results obtained when the proposed chemo-metric based 

techniques are applied to crayfish and grape samples.  The significance of chemo-metrics 

based technique is investigated by comparing the obtained results with the results of 

quantitative analysis using the standard ICP-OES analytical method. The elemental 

compositions of each of the crayfish and grape samples are identified using finger print 

wavelengths of the element in accordance to NIST data base. Furthermore, local 

thermodynamic equilibrium condition of the plasma was investigated and ensured before 

quantitative analysis. The chemometric methods applied on these samples include SVR 

and ELM with the hyper-parameters of all the chemometrics optimized using GSA. 

6.1   Elemental identification of crayfish and grape constituents using LIBS      

The results of the LIBS measurement performed on crayfish and grape samples are 

presented in this section. The peaks observed in each of the spectrum was compared with 

the NIST data base, as a result, the finger print of all the elements present in the samples 

are identified. 
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Figure 6.1:  A typical LIBS spectrum recorded for crayfish (sample #1) at wavelength range of 350nm to 420nm 
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Figure 6.2:  A typical LIBS spectrum recorded for crayfish (sample #1) at wavelength range of 420 nm to 540 

nm 
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Fig. 6.1 shows a graph of LIBS intensity against wavelength for wavelength range of 

360nm to 420nm, Fig.6.2 presents the same spectrum over a wavelength range of 440nm 

to 540nm, Fig.6.3 shows the spectrum for wavelength range of 520nm to 660nm while 

Fig.6.4 depicts the spectrum for sample 1 over a wavelength range of 720nm to 820nm. 

Elements that are identified include chromium, titanium, manganese, calcium, potassium, 

lead and sodium aluminum. Neutral chromium emission lines are observed at wavelength 

of 363.66nm and 461.34 nm in sample #1. Calcium and manganese lines of sample #1 are 

shown in Fig.6.5. The neutral species chromium is identified in LIBS emission line 

spectrum obtained from sample #2 at 428.97nm as shown in Fig.6.6 and at 534.83 nm 

wavelength as shown in Fig.6.7. Calcium emission line of sample #2 is shown in Fig.6.8. 

Similarly, in sample #3 chromium emission line is identified at 534.83nm while the 

chromium finger print is identified in sample #4 at 392.10nm and 534.83nm.  In case of 

titanium, sample #1 contains titanium as identified in its spectrum presented at 365.35nm, 

395.36nm and 444.91nm wavelengths.  Similarly, titanium is present in other 

investigated crayfish samples. Neutral Titanium is identified in sample #2 at wavelengths 

of 428.6 nm, 586.82nm, and 595.32nm and 720.94, titanium appears in sample #3 

spectrum at wavelength of 375.36nm, 441.73nm, 444.91nm as shown in Fig.6.9, 

586.65nm as depicted in Fig.6.10 and  720.94nm as presented in Fig.6.11while the last 

sample (sample #4) spectrum shows titanium peak at 375.36nm as depicted  in Fig.6.12, 

441.73nm, 444.91 nm, 586.65nm as presented in Fig.6.13 and 720.94nm as shown in 

Fig.6.14.  Another element identified in all the four samples is manganese which is 

identified at wavelength of 404.14 nm, 407.92 nm and 441.49nm in sample #1, 

404.87nm, 408.36 nm and 428.11nm in sample #2. Sample #3 shows manganese peak at 
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404.87 nm and 408.36nm while sample #4 shows manganese peak at 404.87 nm and 

408.36nm. Presence of calcium in all the four samples is shown in the presented 

spectrum. Calcium lines are identified in sample #1 at 442.54 nm, 644.98nm and 

647.16nm while at 393.36 nm (singly ionized), 396.85nm (singly ionized), 443.02nm 

(neutral), 442.54nm (neutral), 443.39nm (neutral), 445.59nm (neutral), 610.27nm 

(neutral) and 714.81nm (neutral) for sample #2.  The emission lines of calcium identified 

in sample #3 include 393.36nm (singly ionized), 396.85nm (singly ionized), 442.54nm 

(neutral), 616.21nm (neutral), 646.26nm (neutral), 714.81nm (neutral) and 820.17nm 

(singly ionized).  In sample #4, calcium emission lines are identified at wavelength of 

442.54 nm (neutral), 616.21nm (neutral), 646.28nm (neutral), 714.81nm (singly ionized),  

and  820.17nm (singly ionized). Strong and persistence emission lines of potassium are 

also identified in all the four samples at wavelength of 766.49nm and 769.90nm. The 

details about the wavelength of the identified peaks can be observed from presented 

spectral. 
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Figure 6.3:  A typical LIBS spectrum recorded for crayfish (sample #1) at wavelength range of 540 nm to 660 

nm 
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Figure 6.4:  A typical LIBS spectrum recorded for crayfish (sample #1) at wavelength range of 720 nm to 820 

nm 
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Figure 6.5:  A typical LIBS spectrum recorded for crayfish (sample #2) at wavelength range of 380 nm to 420 

nm 
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Figure 6.6:  A typical LIBS spectrum recorded for crayfish (sample #2) at wavelength range of 425 nm to 450 

nm 
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Figure 6.7 : A typical LIBS spectrum recorded for crayfish (sample #2) at wavelength range of 540 nm to 640 

nm 
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Figure 6.8:  A typical LIBS spectrum recorded for crayfish (sample #2) at wavelength range of 700 nm to 820 

nm 
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Figure 6.9 : A typical LIBS spectrum recorded for crayfish (sample #3) at wavelength range of 350 nm to 450 

nm 
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Figure 6.10: A typical LIBS spectrum recorded for crayfish (sample #3) at wavelength range of 530 nm to 650 

nm 
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Figure 6.11:  A typical LIBS spectrum recorded for crayfish (sample #3) at wavelength range of 700 nm to 830 

nm 

 

Wavelength (nm)

360 380 400 420 440

S
ig

n
a

l 
in

te
n

s
it

y
(a

.u
)

10000

20000

30000

40000

50000

Sample #4

C
r 

I 
(3

9
2

.1
0

n
m

)

A
l 
I 
(3

9
6

.1
5

 n
m

)

M
n

 I
 (

4
0

8
.3

6
n

m
)

T
i 
I(

3
7

5
.2

9
n

m
)

M
n

 I
 (

4
0

4
.8

7
 n

m
)

T
i 
I(

3
7

1
.7

4
n

m
)

T
i 
I 
(4

4
4

.9
1

n
m

)
C

a
 I
 (

4
4

2
.5

4
 n

m
)

T
i 
I 
(4

4
1

.7
3

 n
m

)

 

Figure 6.12 :  A typical LIBS spectrum recorded for crayfish (sample #4) at wavelength range of 350 nm to 450 

nm 
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Figure 6.13:   A typical LIBS spectrum recorded for crayfish (sample #4) at wavelength range of 530 nm to 650 

nm 
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Figure 6.14 : A typical LIBS spectrum recorded for crayfish (sample #4) at wavelength range of 710 nm to 830 

nm 
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The constituents of green grape are presented in Fig. 6.15, Fig.6.16 and Fig.6.17. The 

elements present in the investigated green grape include manganese, iron, calcium, 

titanium, potassium as presented in Fig.6.15.  Sodium fingerprints are also identified in 

the spectrum presented in Fig.6.16 while strong lines of potassium are shown in Fig.6.17.  

 

 

Figure 6.15:  A typical LIBS spectrum recorded for green grape sample at wavelength range of 400 nm to 450 

nm 
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Figure 6.16:  A typical LIBS spectrum recorded for green grape  sample at wavelength range of 560 nm to 610 

nm 

 

 

Figure 6.17:  A typical LIBS spectrum recorded for green grape  sample at wavelength range of 740 nm to 800 

nm 
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Similarly, the constituents of the investigated black grape are presented in Fig.6.18 which 

includes manganese and titanium. Calcium, potassium, magnesium, titanium and 

manganese are shown in Fig. 6.19 as among the constituents of the black grape. Strong 

lines of sodium are identified and presented in Fg.6.20.  Also, strong lines of potassium 

are shown in the spectrum presented in Fig.6.21.  

 

Figure 6.18:  A typical LIBS spectrum recorded for black grape  sample at wavelength range of 380 nm to 410 

nm 
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Figure 6.19 : A typical LIBS spectrum recorded for black grape sample at wavelength range of 425 nm to 485 

nm 

 

 

Figure 6.20:  A typical LIBS spectrum recorded for black grape  sample at wavelength range of 560nm to 610nm 
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Figure 6.21:  A typical LIBS spectrum recorded for black grape  sample at wavelength range of 741 nm to 786 

nm 

 

6.1.1 Verification of thermodynamic equilibrium status of the plasma 

The Complex interactions which occur during the formation and evolution of laser 

induced plasma include photo-ionization, ionization through collisions, three-body 

recombination, radiative recombination, collisional excitation and de-excitation, photo-

excitation, radiative decay and Bremsstrahlung process.  Photo-ionization is a process 

whereby photons from the laser ionize atoms of the ablated material. Ionization by 

collisions is a term used to describe the process through which the ionized electrons result 

into subsequent ionization due to atomic collisions. When electron combine with ion and 

thereby losses its   energy and momentum to the electrons in the vicinity of the ion, the 

process is referred to as three-body recombination.  The kinematic of all these 

interactions and processes are to be incorporated while holistically describing the laser 



195 

 

induced plasma. The validity of the conventional calibration free LIBS relies heavily on 

assumption that the laser induced plasma is in local thermodynamic equilibrium and other 

assumptions which include stoichiometric ablation and optical thinness of the plasma 

[130], [131]. This implies that the scheme is only valid when the laser induced plasma is 

isothermal, static and homogenous. Truly speaking, laser induced plasma is neither static 

nor homogenous or isothermal; it is characterized with a temperature gradient that 

changes during plasma evolution. Although, McWhirter LTE validity condition is 

necessary for laser-induced plasma but rather insufficient since the plasmas are 

inhomogeneous and evolve in time [133]. Another condition that compliments 

McWhirter criterion for the validity of LTE is the assumption that the attainment of 

ionization –excitation equilibrium requires a large time scale as compared to the rate of 

variation of thermodynamic parameters such as electron density and plasma temperature.  

In order to estimate the plasma temperature, Boltzmann plot was constructed using 

calcium emission lines of sample #3 at wavelengths 442.54nm, 616.21nm and 646.26nm 

as shown in Fig.6:22. Other parameters used in constructing the Boltzmann plot are 

extracted from NIST database.  
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Figure 6.22:  Boltzmann plot using calcium emission lines 

The plasma temperature as determined form the slope of Fig.6.22 was obtained as 

13,354.4K. This is within the limit (10,000K to 18,000K) of plasma temperature that 

ensures local thermodynamic equilibrium [4], [130]–[132], [134]. 

6.2 Quantitative analysis   of the constituents of   crayfish and grape samples 

The chemometric tools developed and implemented for quantitative analysis of these 

samples include hybrid SVR and hybrid ELM chemometrics. These chemometric tools 

were developed using similar approach implemented for standard bronze samples but 

with test set cross validation in this case. The details of the chemometrics with inclusion 

of the results of GSA for optimizing the hyper-parameters of the models are presented in 

this section. The results of the chemometrics are also compared with that of ICP-OES 

while standard deviations as well as other error analysis are presented.  The elements 

quantified include calcium, potassium and sodium in each of the samples. 
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6.2.1 Convergence of chemometric models for crayfish and grape samples 

using GSA  

The convergence of the developed GSA-SVR hybrid chemometric for the quantitative 

analysis of crayfish and grape samples is presented in Fig.6.23. Similar graph for GSA-

ELM chemometric is presented in Fig. 6.24. The significance of gravitational search 

algorithm in hybrid GSA-SVR chemometric is to determine optimum values of model 

parameters which include the regularization factor, kernel option and epsilon while the 

parameters optimized in the case hybrid GSA-ELM chemometric include the number of 

hidden neurons of the selected activation function. 
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Figure 6.23 : A graph of RMSE against the number of iteration for performance sensitivity of GSA –SVR model 

to the number of agents 
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Figure 6.24:  A graph of RMSE against the number of iteration for performance sensitivity of GSA –ELM 

model to the number of agents 

The optimum values of the hyper-parameters for each of the hybrid chemometric models 

are presented in table 6.1. 

Table 6.1:  Optimum values of chemometrics parameters used for quantitative analysis of crayfish and grape 

samples 

Hyper-parameters GSA-SVR GSA-ELM 

Regularization factor 632.4383 Not applicable 

Epsilon  0.3695 Not applicable 

Kernel option  0.508 Not applicable 

Lambda 4*10^5e-7 Not applicable 

Kernel Function Poly Not applicable 

Hidden neuron  Not applicable 39 

Activation function Not applicable Sig 
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6.3  Comparison of the results of the developed hybrid chemometrics for 

quantitative analysis of   crayfish and grape samples with that of ICP 

results 

Table 6.2 compares the results of the developed hybrid chemometric models with ICP 

results for the investigated samples. The elements quantified in each of the samples as 

shown in the table includes calcium, sodium and potassium. The calcium concentrations 

obtained using chemometrics GSA-SVR and GSA-ELM for sample #1 are 5475ppm and 

5947ppm, respectively while the results of the ICP is 5474.88ppm. These concentrations 

are very close. Similarly, the results of the developed hybrid chemometrics for calcium 

concentration in sample #2, sample #3(Only GSA-SVR shows a closer value), sample #4 

and green grape are close to the results of ICP. Similar comparable results are obtained 

for other elements except few elements that show wider disparity such as sodium 

concentration of black grape for GSA-ELM chemometric.  

Table 6.2:  Comparison of the results of ICP with the hybrid GSA-SVR and GSA-ELM chemometrics 

Sample Sample constituent ICP (ppm) GSA-ELM (ppm) GSA-SVR (ppm) 

Sample #1 Ca 5475 ---- 5947 

 Na 898 1518 2556 

 K 12637 8863 10155 

Sample #2 Ca 7409 ----- 5993 

 Na 1001 1518 2536 

 K 9377 8863 10240 

Sample #3 Ca 10459 5997 9649 

 Na 3056 1518 2541 



200 

 

 K 9297 ------ 10259 

Sample #4 Ca 6697 5997 5937 

 Na 805 1518 2541 

 K 12123 9297 6898 

Black grape Ca 834 5997 5940 

 Na 593 9080 2491 

 K 10941 8863 9812 

Green grape Ca 1119 1518 2731 

 Na 876 8863 1743 

 K 10481 8863 5937 

 

6.4  Error analysis of the results of the developed hybrid chemometrics for 

crayfish and grape samples 

The difference between the results of the developed hybrid chemometrics and ICP results 

are analyzed using the frequently used performance measuring parameters in 

chemometrics model which include root mean square error (RMSE), mean absolute error 

(MAE), mean relative error (MRE) and  normalized root mean square error(NRMSE) [1], 

[47], [79]. Each of these parameters are formulated using the relations presented in 

Equation 6.1 to 6.4. The values of each of the performance measuring parameters for the 

investigated crayfish and grape samples are presented in table 6.1 

2

1

1 M

j

j

RMSE e
M 

     (6.1) 
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Where ICP chemometrice C C   
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Where  ICPC and estimatedC  are the elemental concentration obtained from ICP and the 

developed hybrid chemometrics, respectively.  

Table 6.3 :  Performance measuring parameters and their values of the developed hybrid chemometrics for 

crayfish and grape samples 

Performance measuring parameters GSA-ELM GSA-SVR 

MRE 189.06 107.15 

MAE 2299.86 1866.15 

NRMSE 0.45 1.66 

RMSE 3464.02 2379.63 
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CHAPTER 7 

Conclusions  

This research work proposes three methods of enhancing the performance of 

chemometric techniques. The proposed performance enhancement methods include 

internal reference preprocessing method (IRP), homogenous hybridization and hybrid 

fusion. These methods are implemented on support vector regression (SVR) and extreme 

learning machine (ELM) chemometrics, hybridized with gravitational search algorithm 

(GSA). While applying the proposed homogenous hybridization to support vector 

regression (SVR) chemometric, On the basis of RMSE, GSA-A-HSVR-WIRP performs 

better than GSA-SVR-WIRP model with 75.17% performance improvement and 65.40% 

performance improvement was obtained on the basis of MAE. Similarly, GSA-A-HSVR-

IRP performs better than GSA-A-SVR-IRP with performance enhancement of 50.53%, 

95.41% and 94.92% on the basis of CC, RMSE and MAE, respectively. Comparison of 

the proposed hybrid ELM chemometric with hybrid SVR shows that A-ELM performs 

better than A-SVR with performance improvement of 60.24%, 62.28% and 89.06% on 

the basis of RMSE, MAE and CC, respectively. For the proposed hybrid fusion method 

of performance enhancement, A-SVR-ELM model performs better than A-SVR model 

with performance improvement of 101.36%, 91.03% and 94.97% on the basis of CC, 

RMSE and MAE, respectively. In the same vein, A-SVR-ELM performs better than 

ordinary A-ELM with performance improvement of 77.43%, 86.65% and 6.50% on the 

basis of RMSE, MAE and CC as respectively. A-ELM-SVR model performs better than 
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ordinary A-SVR with a performance improvement of 101.96%, 95.76% and 95.34% on 

the basis of CC, RMSE and MAE, respectively while it performs better than ordinary A-

ELM with a performance improvement of 6.83%, 89.32% and 87.64%, respectively. A-

ELM-SVR model also performs better than A-SVR-ELM model with a performance 

improvement of 0.3%, 52.71% and 7.4% on the basis of CC, RMSE and MAE, 

respectively. For the hybrid chemometrics developed using integrated peak intensities, I-

HSVR-GSA-WIRP outperforms I-SVR-GSA-WIRP with performance improvement of 

50.53%. HELM-GSA-WIRP outperforms ELM-GSA-WIRP  with performance 

improvement of 58.33%, 58.41% and 0.6183%  on the basis of RMSE, MAE and CC, 

respectively. I-HSVR-GSA-WIRP outperforms I-SVR-GSA-WIRP with performance 

improvement of 59.61% while performance improvement of 11.06% was obtained when 

the models are compared on the basis of correlation coefficient. The results of the 

developed hybrid chemometrics for the investigated crayfish and grape samples are 

comparable with that of ICP results. The performance enhancement demonstrated by the 

proposed methods would definitely widen the applicability of chemometrics techniques 

and ultimately promote precise quantitative analysis of LIBS spectra.  
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Recommendations  

The following are the recommendations for future work  

 The proposed IRP might be implemented in other chemometrics for performance 

enhancement. 

 Fuzzy logic based chemometrics have not been developed and applied for 

quantitative analysis of LIBS spectra. This can be a future work 

 The proposed chemometrics in this work and methods of performance 

enhancement can be incorporated to LIBS tool box for easy assessment of the 

techniques. 
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Appendix 1 

Constituents of the standard bronze samples as supplied by the supplier 
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Appendix 2 

The developed hybrid chemometrics codes 

 

%%%this iteratively read data 4rm excel, train it with SVr and display the 

%%%result 

clear;clc; 

%load('SVRfuncData.xlsx');%.xlsx; 

C=160.8091;lambda=1e-7;epsilon=0.6653;kerneloption=0.3951;kernel='gaussian'; 

shtNo = {'C510','C673','C932','C954','C863','C642','C655'};%%samples sheet no in excel 

doc 

samplNo = length(shtNo); 

dataCon = cell(1,samplNo);%%create a container for the data 

%%%iterate to take all the samples 

for ss = 1 : samplNo 

dataCon{ss} = xlsread('D:/deta/Desktop/proposed PHD thesis/proposed PHD thesis/CF-

LIBS/chemometric manuscript/extreem learning 

machine/PhD_codes/AutSVRprog/SVRfuncData',shtNo{ss}); 

end 

 

idx = 1:samplNo;%%indx for each modelling 

 

for ss = 1 : samplNo 

    idxcnrt = idx; idxcnrt(ss)=[]; 

    dat.tr = [];%%initialize  data collection 

 

    %%extract training data 

    for sl = 1 : samplNo-1 

        idxn = idxcnrt(sl); 

        dat.tr =[dat.tr;dataCon{idxn}]; 

    end 

    dat.ts = dataCon{ss};%%extract testing data 

 

    %%divide data into output/input training/testing 

    dat.xtr = dat.tr (:,2:end);%%training input data 

    dat.ytr = dat.tr (:,1);%%training output data 

    dat.xts = dat.ts (:,2:end);%%testing input data 

    dat.yts = dat.ts (:,1);%%testing output data 

 

   [cc(ss),rmse(ss),predDat{ss},trgtDat{ss}]= 

SVRfunc(dat.xtr,dat.ytr,dat.xts,dat.yts,C,lambda,epsilon,kerneloption,kernel);%%obtain 

perf of SVR 

 

%    predDat{ss} = pred; 

%    TargDat{ss} = trgt; 

tro=predDat{1}; 
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tro.ts; 

end 

Undefined function 'svmreg' for input arguments of type 'double'. 

 

Error in SVRfunc (line 8) 

[xsup,ysup,w,w0] = svmreg(x,y,C,epsilon,kernel,kerneloption,lambda,verbose);%% this 

generate support vectors xsup, weights w, bias w0 

 

Error in mainProg (line 33) 

   [cc(ss),rmse(ss),predDat{ss},trgtDat{ss}]= 

SVRfunc(dat.xtr,dat.ytr,dat.xts,dat.yts,C,lambda,epsilon,kerneloption,kernel);%%obtain 

perf of SVR 

Published with MATLAB® R2015a 

 

function [cc,rmse,pred,trgt]= 

SVRfunc(x_tr,output_tr,x_ts,output_ts,C,lambda,epsilon,kerneloption,kernel) 

 

for runs = 1:1 

verbose=1;% display the output of the 

x=x_tr;y=output_tr; 

 

[xsup,ysup,w,w0] = svmreg(x,y,C,epsilon,kernel,kerneloption,lambda,verbose);%% this 

generate support vectors xsup, weights w, bias w0 

                                                                            %%xsup is 

used to generate redicted output for training data 

 

% to predict for the training set 

 

xtest=x_tr; %[xtest1;xtest2]'; 

 

% size(xsup),size(xtest),size(w),size(w0), 

y0 = svmval(xtest,xsup,w,w0,kernel,kerneloption);%%%predict the output for input training 

data 

 

y2 = output_tr; %yk';%%target of the training data/output training data 

[r] = corrcoef([y2,y0 ]);%%5 finding correlation between predicted training data and its 

target 

 

actual_tr=output_tr;pred_tr=y0;cc_tr=r(2); 

%x=depth_tr; 

target=actual_tr; 

ypred=pred_tr; 

pred.tr =pred_tr; 

trgt.tr = target; 

[cc.tr,rmse.tr,Er.tr,Ea.tr,Emin.tr,Emax.tr,SD.tr] = err_comp(target,ypred); 
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%%%%all the performance indicators for training data 

cc_tr(runs)=cc.tr; 

rmse_tr(runs)=rmse.tr; 

Ea_tr(runs)=Ea.tr; 

SD_tr(runs)=SD.tr; 

Error using SVRfunc (line 6) 

Not enough input arguments. 

testing 

xtest=x_ts; %[xtest1;xtest2]';%%tesing input data 

ys = svmval(xtest,xsup,w,w0,kernel,kerneloption);%%%validating xsup with testin input 

data 

 

actual_ts=output_ts;pred_ts=ys;cc_ts=r(2); 

%x=depth_ts; 

target=actual_ts;%%%%actual testing output data 

ypred=pred_ts;%%%predicted tesing output data 

pred.ts = pred_ts; 

trgt.ts = target; 

[cc.ts,rmse.ts,Er.ts,Ea.ts,Emin.ts,Emax.ts,SD.ts]=err_comp(target,ypred); 

 

cc_ts(runs)=cc.ts;rmse_ts(runs)=rmse.ts;Ea_ts(runs)=Ea.ts;SD_ts(runs)=SD.ts; 

end 

 

%%%%the .tr and .ts makes it possible to use jsut one variable for display of both tr&ts 

SD_rmse.tr=std(rmse_tr);SD_cc.tr=std(cc_tr); 

SD_rmse.ts=std(rmse_ts);SD_cc.ts=std(cc_ts); 

SD_Ea.tr=std(Ea_tr);SD_Ea.ts=std(Ea_ts); 

cc.ts=mean(cc_ts);%%%corr coef of testing 

cc.tr=mean(cc_tr);%%%corr coeff of trainin 

Ea.tr=mean(Ea_tr);%%%avg absolute error4 trainin 

Ea.ts=mean(Ea_ts);%%avg absolute err 4 testing 

rmse.tr=mean(rmse_tr);%%%% root mean square 

rmse.ts=mean(rmse_ts);%%%%root mean square testing 

 

 

disp('End of svm Networks') 

Published with MATLAB® R2015a 

function[cc2,rmse,Er,Ea,Emin,Emax,SD]=err_comp(yoriginal, ypredict) 

%cc is the correlation coefficient 

%rmse is the root mean square error 

%Er is the mean/average percent relative error 

%Ea is the mean/average absolute percent error 

%Emax is the 
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if size(ypredict,1)>size(ypredict,2)%%% ensuring the data is a column vector 

    ypredict=ypredict;%%leave if is column 

else ypredict=ypredict';%change if it is row 

end 

 

n_tr=length(ypredict); 

% varx=sum(ypredict.^2)/n_tr - (sum(ypredict)^2)/(n_tr^2); 

% vary=sum(yoriginal.^2)/n_tr - (sum(yoriginal)^2)/(n_tr^2); 

% covxy=sum(ypredict.*yoriginal)/n_tr  - (sum(ypredict)*sum(yoriginal))/(n_tr^2); 

% cc=covxy/(sqrt(varx * vary)); 

% 

 

 

cc=corrcoef(ypredict,yoriginal);%%corrcoeficient of predicted and actual trainin 

data(cpmes as 2by 2 matrix, auto on main diag&cross on the other) 

% size(ypredict),size(yoriginal), 

% pause, 

% 

 

cc2=cc(2); 

 

diff=yoriginal-ypredict; 

diff2=double(diff); 

diffsq=diff2.^2; 

%mse=mean(diffsq); 

%rmsed=mse^.5 

 

rmse=errperf(yoriginal,ypredict,'rmse');%matlab fucntion for calculatin various 

errors,cal rmse in this instance 

 

% size(yoriginal), size(ypredict), 

% pause, 

% 

% rmse2=sqrt(mse(yoriginal-ypredict)); 

%Er=errperf(yoriginal,ypredict,'mpre'); 

%Ea=errperf(yoriginal,ypredict,'mapre'); 

 

L=length(yoriginal); 

Eit=[]; %diff2=[],diff=0 

for x=1:L; 

    Ei=((yoriginal(x)-ypredict(x))/yoriginal(x))*100;%dif is Ei 

 

               %diff2=[diff2,diff]; 

    Eit=[Eit,Ei];%for computing average percent relative error 

end %%% Eit=((yoriginal-ypredict)./yoriginal)*100 

Er=(sum(Eit))/L;%%%average percent relative error/Eit=((yoriginal-

ypredict)./(L*yoriginal))*100 

diff=(Ei-Er).^2;%this is used for computing SD,standard deviation, square of the error 

variance 

sd=sum(diff);%%%standard deviation/std(Eit,L) 

Ea=(sum(abs(Eit)))/L;%%%%average absolute value of the error 

Emax=max(abs(Eit));%%max absolute value 

Emin=min(abs(Eit));%%min absolute value 
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diffav=sd/(L-1);%% 

SD=double(sqrt(diffav));%%diff implemenatation of sd 

Error using err_comp (line 7) 

Not enough input arguments. 
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development of ELM-GSA-WIRP model with optimum value of HN obtained from GSA ...................... 230 

run the best model ............................................................................................................................... 231 

development of ELM-GSA-WIRP model with optimum value of HN 

obtained from GSA 

clear all 

close all 

% disp(''); 

% disp('------This is the begining of ELM ------'); 

% disp(''); 

% disp('EXTREME LEARNING MACHINES'); 

% disp('======================='); 

% disp(''); 

% dat=xlsread('datagsa2_vali.xlsx',2); 

% datt=xlsread('datagsa2_vali.xlsx',3); 

% x_tr=[dat(:,2),dat(:,3),dat(:,4),dat(:,5),dat(:,6)]; 

% output_tr=dat(:,1); 

% x_ts=[datt(:,2),datt(:,3),datt(:,4),datt(:,5),datt(:,6)]; 

% output_ts=datt(:,1); 

% depth_tr=dat(:,1); 

% depth_ts=datt(:,1); 

dat=xlsread('datagsa2_vali.xlsx',2); 

datt=xlsread('datagsa2_vali.xlsx',3); 

x_tr=dat(:,2); 

output_tr=dat(:,1); 

x_ts=datt(:,2); 

output_ts=datt(:,1); 

depth_tr=dat(:,1); 

depth_ts=datt(:,1); 

% load('datat'); 

%  x_tr= [x_tr; x_ts]; 

%  output_tr =[output_tr; output_ts]; 

 

 

%fxn = {'sig','tansig','sin','tribas','radbas'};%'tansig'; 
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 nodes= 53; 

act_fxn = 'sin' ; 

%act_fxn = 'sig' ; 

%act_fxn = 'hardlim' ; 

 

%training 

 [InputWeight, BiasofHiddenNeurons, OutputWeight, y0_tr, TrainingTime] = 

new_elm_train(x_tr, output_tr, nodes, act_fxn); %'sig' 

 

%save('ElmNetede','InputWeight', 'BiasofHiddenNeurons', 'OutputWeight'); 

run the best model 

 %load('ElmNet4'); 

 %load ElmNetHWIRP1;  % 

 %load ElmNetHWIRP2a; % 

 %load ElmNetHWIRP3;%load ElmNetHWIRP4a 

  %load('ElmNet5');  %ElmNetHWIRP5aaa; %ElmNetHWIRP6aaa;%load ElmNetHWIRP7aa 

  %load ElmNetWIRP1;%load ElmNetIRP1;%load ElmNetIRP2a;%ElmNetIRP3aa;%load ElmNetIRP4 

  load ElmNetWIRP1a;%load ElmNetIRP5a;%load ElmNetIRP6;%load ElmNetIRP7 

 % load ElmNetWIRP2a 

 %load ElmNetIRP3aa 

 %load ElmNetWIRP3 

%load ElmNetWIRP4aaa 

%load ElmNetWIRP6 

%load ElmNetWIRP7b 

%load ElmNetWIRP5 

 

[trx_rmse,  ypredict_tr, reTrainingTime] = new_elm_predict(x_tr, output_tr, InputWeight, 

BiasofHiddenNeurons, OutputWeight,  act_fxn); 

 

[tsx_mse, ypredict_ts, TestingTime] = new_elm_predict(x_ts,output_ts,InputWeight, 

BiasofHiddenNeurons, OutputWeight, act_fxn); 

 

 [trcc,trrmse,Ertr,Eatr,Emaxtr,SDtr]=errors_compute(output_tr, ypredict_tr); 

 

fprintf('Correlation Coefficient-- (training data): = %f \n',trcc), 

%plotregression(output_tr,ypredict_tr) 

 fprintf('Root Mean Square Errors (training data): = %5.5f \n',trrmse),% 

[output_tr, ypredict_tr] 

% 

 [tscc,tsrmse,Er,Ea,Emax,SD]=errors_compute(output_ts,ypredict_ts); 

% 

%  fprintf('Correlation Coefficient-- (testing data): = %f \n',tscc), 

% 

  [output_ts,ypredict_ts] 

  errorr=tsrmse 

  errortr=trrmse 

%  figure(2); 

%  %plot(ypredict_ts,output_ts,'ob') 

%  plotregression(output_ts,ypredict_ts) 
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%  %xlim([0, 1.1*max(ypredict_ts)]),ylim([0 ,1.1*max(output_ts)]) 

%  fprintf('Root Mean Square Errors (testing data): = %5.5f \n',tsrmse),% 

% 

% 

Error using * 

Inner matrix dimensions must agree. 

 

Error in new_elm_predict (line 74) 

 tempH_test=InputWeight*TV.P; 

 

Error in RunMainELM2 (line 65) 

[trx_rmse,  ypredict_tr, reTrainingTime] = new_elm_predict(x_tr, output_tr, InputWeight, 

BiasofHiddenNeurons, OutputWeight,  act_fxn); 

Published with MATLAB® R2015a 

function [InputWeight, BiasofHiddenNeurons, OutputWeight, y0_tr, TrainingTime] = 

new_elm_train(TrainingData, TrainingTarget,  NumberofHiddenNeurons, ActivationFunction) 

Elm_Type=0; 

REGRESSION=0; 

CLASSIFIER=1; 

 

%%%%%%%%%%% Load training dataset 

%train_data=load(TrainingData_File); 

T=TrainingTarget'; 

P=TrainingData'; 

clear TrainingData;                                   %   Release raw training data array 

clear TrainingTarget; 

%%%%%%%%%%% Load testing dataset 

%test_data=load(TestingData); 

% TV.T=TestingData(:,end)'; 

% TV.P=TestingData(:,1:end-1)'; 

% clear TestingData;                                    %   Release raw testing data 

array 

 

NumberofTrainingData=size(P,2); 

%NumberofTestingData=size(TV.P,2); 

NumberofInputNeurons=size(P,1); 

 

if Elm_Type~=REGRESSION 

    %%%%%%%%%%%% Preprocessing the data of classification 

    sorted_target=sort(T,2); 

    label=zeros(1,1);                               %   Find and save in 'label' class 

label from training and testing data sets 

    label(1,1)=sorted_target(1,1); 

    j=1; 

    for i = 2:(NumberofTrainingData) 

        if sorted_target(1,i) ~= label(1,j) 

            j=j+1; 

            label(1,j) = sorted_target(1,i); 
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        end 

    end 

    number_class=j; 

    NumberofOutputNeurons=number_class; 

 

    %%%%%%%%%% Processing the targets of training 

    temp_T=zeros(NumberofOutputNeurons, NumberofTrainingData); 

    for i = 1:NumberofTrainingData 

        for j = 1:number_class 

            if label(1,j) == T(1,i) 

                break; 

            end 

        end 

        temp_T(j,i)=1; 

    end 

    T=temp_T*2-1; 

 

    %%%%%%%%%% Processing the targets of testing 

%     temp_TV_T=zeros(NumberofOutputNeurons, NumberofTestingData); 

%     for i = 1:NumberofTestingData 

%         for j = 1:number_class 

%             if label(1,j) == TV.T(1,i) 

%                 break; 

%             end 

%         end 

%         temp_TV_T(j,i)=1; 

%     end 

%     TV.T=temp_TV_T*2-1; 

 

end                                                 %   end if of Elm_Type 

 

%%%%%%%%%%% Calculate weights & biases 

start_time_train=cputime; 

 

%%%%%%%%%%% Random generate input weights InputWeight (w_i) and biases 

BiasofHiddenNeurons (b_i) of hidden neurons 

InputWeight=rand(NumberofHiddenNeurons,NumberofInputNeurons)*2-1; 

BiasofHiddenNeurons=rand(NumberofHiddenNeurons,1); 

tempH=InputWeight*P; 

clear P;                                            %   Release input of training data 

ind=ones(1,NumberofTrainingData); 

BiasMatrix=BiasofHiddenNeurons(:,ind);              %   Extend the bias matrix 

BiasofHiddenNeurons to match the demention of H 

tempH=tempH+BiasMatrix; 

 

%%%%%%%%%%% Calculate hidden neuron output matrix H 

switch lower(ActivationFunction) 

    case {'sig','sigmoid'} 

        %%%%%%%% Sigmoid 

        H = 1 ./ (1 + exp(-tempH)); 

    case {'tansig'} 

        H = tansig(tempH); 

    case {'sin','sine'} 
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        %%%%%%%% Sine 

        H = sin(tempH); 

    case {'hardlim'} 

        %%%%%%%% Hard Limit 

        H = double(hardlim(tempH)); 

    case {'tribas'} 

        %%%%%%%% Triangular basis function 

        H = tribas(tempH); 

    case {'radbas'} 

        %%%%%%%% Radial basis function 

        H = radbas(tempH); 

        %%%%%%%% More activation functions can be added here 

end 

 

clear tempH;                                        %   Release the temparary array for 

calculation of hidden neuron output matrix H 

 

%%%%%%%%%%% Calculate output weights OutputWeight (beta_i) 

OutputWeight=pinv(H') * T';                        % implementation without 

 

end_time_train=cputime; 

TrainingTime=end_time_train-start_time_train   ;     %   Calculate CPU time (seconds) 

spent for training ELM 

 

%%%%%%%%%%% Calculate the training accuracy 

Y=(H' * OutputWeight)'; 

y0_tr =Y'; 

%   Y: the actual output of the training data 

% if Elm_Type == REGRESSION 

%     TrainingAccuracy=sqrt(mse(T - Y))  ;             %   Calculate training accuracy 

(RMSE) for regression case 

% end 

% clear H; 

 

% %%%%%%%%%%% Calculate the output of testing input 

% start_time_test=cputime; 

% tempH_test=InputWeight*TV.P; 

% clear TV.P;             %   Release input of testing data 

% ind=ones(1,NumberofTestingData); 

% BiasMatrix=BiasofHiddenNeurons(:,ind);              %   Extend the bias matrix 

BiasofHiddenNeurons to match the demention of H 

% tempH_test=tempH_test + BiasMatrix; 

% switch lower(ActivationFunction) 

%     case {'sig','sigmoid'} 

%         %%%%%%%% Sigmoid 

%         H_test = 1 ./ (1 + exp(-tempH_test)); 

%     case {'sin','sine'} 

%         %%%%%%%% Sine 

%         H_test = sin(tempH_test); 

%     case {'hardlim'} 

%         %%%%%%%% Hard Limit 

%         H_test = hardlim(tempH_test); 

%     case {'tribas'} 
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%         %%%%%%%% Triangular basis function 

%         H_test = tribas(tempH_test); 

%     case {'radbas'} 

%         %%%%%%%% Radial basis function 

%         H_test = radbas(tempH_test); 

%         %%%%%%%% More activation functions can be added here 

% end 

% TY=(H_test' * OutputWeight)';                       %   TY: the actual output of the 

testing data 

% end_time_test=cputime; 

% TestingTime=end_time_test-start_time_test           %   Calculate CPU time (seconds) 

spent by ELM predicting the whole testing data 

% 

% if Elm_Type == REGRESSION 

%     TestingAccuracy=sqrt(mse(TV.T - TY))            %   Calculate testing accuracy 

(RMSE) for regression case 

% end 

 

Error using new_elm_train (line 8) 

Not enough input arguments. 
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function [TestingAccuracy, y0_ts, TestingTime] = new_elm_predict(TestingData, 

TestingTarget, InputWeight, BiasofHiddenNeurons, OutputWeight, ActivationFunction) 

 

%%%%%%%%%%% Macro definition 

Elm_Type=0; 

REGRESSION=0; 

CLASSIFIER=1; 

 

%%%%%%%%%%% Load testing dataset 

%test_data=load(TestingData_File); 

 

%Fatai 

%y_ts=test_data(:,1) % Actual Target 

y_ts=TestingTarget; % Actual Target 

[n_ts,p]=size(y_ts); 

%Fatai 

 

%TV.T=test_data(:,1)'; 

TV.T=y_ts'; 

%TV.P=test_data(:,2:size(test_data,2))'; 

TV.P=TestingData'; 

 

%clear test_data;                                    %   Release raw testing data array 
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NumberofTestingData=size(TV.P,2); 

 

%load elm_model.mat; 

 

if Elm_Type~=REGRESSION 

 

NumberofOutputNeurons = size(TV.P,1) ; 

 

    %%%%%%%%%% Processing the targets of testing 

    temp_TV_T=zeros(NumberofOutputNeurons, NumberofTestingData); 

    for i = 1:NumberofTestingData 

        for j = 1:size(label,2) 

            if label(1,j) == TV.T(1,i) 

                break; 

            end 

        end 

        temp_TV_T(j,i)=1; 

    end 

    TV.T=temp_TV_T*2-1; 

 

end                                                 %   end if of Elm_Type 

 

%%%%%%%%%%% Calculate the output of testing input 

start_time_test=cputime; 

 tempH_test=InputWeight*TV.P; 

clear TV.P;             %   Release input of testing data 

ind=ones(1,NumberofTestingData); 

BiasMatrix=BiasofHiddenNeurons(:,ind);              %   Extend the bias matrix 

BiasofHiddenNeurons to match the demention of H 

tempH_test=tempH_test + BiasMatrix; 

switch lower(ActivationFunction) 

    case {'sig','sigmoid'} 

        %%%%%%%% Sigmoid 

        H_test = 1 ./ (1 + exp(-tempH_test)); 

    case {'tansig'} 

        H_test = tansig(tempH_test); 

    case {'sin','sine'} 

        %%%%%%%% Sine 

        H_test = sin(tempH_test); 

    case {'hardlim'} 

        %%%%%%%% Hard Limit 

        H_test = hardlim(tempH_test); 

    case {'tribas'} 

        %%%%%%%% Triangular basis function 

        H_test = tribas(tempH_test); 

    case {'radbas'} 

        %%%%%%%% Radial basis function 

        H_test = radbas(tempH_test); 

        %%%%%%%% More activation functions can be added here 

end 

TY=(H_test' * OutputWeight)'                       %   TY: the actual output of the 

testing data 
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end_time_test=cputime; 

y0_ts = TY'; 

%save('H_shown','H_test') 

jj= H_test(:,1)'* OutputWeight; 

TestingTime=end_time_test-start_time_test   ;        %   Calculate CPU time (seconds) 

spent by ELM predicting the whole testing data 

 

if Elm_Type == REGRESSION 

    TestingAccuracy=sqrt(mse(TV.T - TY))  ;          %   Calculate testing accuracy 

(RMSE) for regression case 

end 

 

if Elm_Type == CLASSIFIER 

%%%%%%%%%% Calculate training & testing classification accuracy 

    MissClassificationRate_Training=0; 

    MissClassificationRate_Testing=0; 

 

    for i = 1 : size(T, 2) 

        [x, label_index_expected]=max(T(:,i)); 

        [x, label_index_actual]=max(Y(:,i)); 

        if label_index_actual~=label_index_expected 

            MissClassificationRate_Training=MissClassificationRate_Training+1; 

        end 

    end 

    TrainingAccuracy=1-MissClassificationRate_Training/size(T,2); 

    for i = 1 : size(TV.T, 2) 

        [x, label_index_expected]=max(TV.T(:,i)); 

        [x, label_index_actual]=max(TY(:,i)); 

        if label_index_actual~=label_index_expected 

            MissClassificationRate_Testing=MissClassificationRate_Testing+1; 

        end 

    end 

    TestingAccuracy=1-MissClassificationRate_Testing/size(TV.T,2)  ; 

end 

Error using new_elm_predict (line 13) 

Not enough input arguments. 
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