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THESIS ABSTRACT

NAME: Galal Munassar Abdullah Bin Makhashen

TITLE OF STUDY: Arabic Manuscript Layout Analysis and Classification

MAJOR FIELD: Computer Science and Engineering

DATE OF DEGREE: April, 2018

Vast number of historical Arabic manuscripts is available in digital form on-

line where automatic classification, indexing, and retrieval may be needed. Such

tasks depend heavily on the quality of the manuscript layout analysis and classi-

fication (MLAC) system. Usually, Optical Character Recognition (OCR) system

fails to address such tasks for historical manuscripts. Historical manuscripts suf-

fer from various degradations such as aging, touching-text, faint-text, ink-bleeding,

show-through, broken words, unorganized text spacing, and text skewing. Such

manuscripts’characteristics make OCR infeasible. Unlike OCR, the MLAC system

does not convert documents to text but uses image patches to classify and retrieve

documents that match these patches.

In this thesis, we propose a MLAC system for Arabic historical manuscripts that con-

sists of two main phases; document layout analysis, and document classification. We

xiii



propose a hybrid document layout analysis approach using anisotropic diffusion of

whitespace analysis (as a top-down strategy) and moving window approach powered

by connected component analysis (as a bottom-up strategy). The proposed approach

performs segmentation at regional levels where it aims at extracting manuscripts’

main-content. We also propose a learning-based keyword spotting system (KWS) us-

ing word-skeleton and Speeded-Up Robust Features (SURF). The word-skeleton adapts

to the nature of handwriting strokes and indicates important interest regions by intrin-

sic word structure. Moreover, we also propose a novel spotting thresholding method

that is objectively estimated by considering the recognition behavior of Support Vector

Machines (SVMs) in the training phase.

In addition, we present an Arabic Historical Handwritten Manuscript (AHHM)

database consisting of 108 manuscript pages collected from two main digital libraries.

The database consists of manuscripts dated between 10th to 18th centuries from the

Islamic heritage by scholars in Hadith, Islamic Doctrines, and Sufism. Moreover, the

manuscripts are segmented into main-content, side-notes and words. There are 2135

segmented words and 25 keyword classes. We evaluated our Manuscript Layout Anal-

ysis & Classification system (MLAC) on three datasets; Bukhari, HADARA80P, and

AHHM datasets ( AHHM is developed in this work). The performance of our layout

analysis system and document classification yield promising results with success rate

up to 98.83% PRImA metric, and 91.40% in terms of Fmeasure respectively.
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 ملخص الرسالة
ر عبدالله بن مُخاشِن    :الاسم  جلال مُنَصَّ

  يفها نالتاريخية وتصو تحليل هياكل المخطوطات العربية  عنوان الرسالة:
 علوم وهندسة الحاسب الآلي التخصص:

 2018 ابريل :تاريخ الدرجة العلمية

والتي التاريخية النادرة و من المخطوطات العربية  ا  كبير  ا  عددحول العالم  ت الرقميةابتكتحوي العديد من الم

عرض عادة  ماتُ  .التراث العربيدراسة في و  مهاثِ للعلماء والباحثين والمهمتين في ابح ا  مهم ا  ل مصدر تشك  

من   هااسترجاعو  اتعن المعلومعمليات البحث  يُعيقمما  ا  صيغة صور رقمية وليست نصوصبالمخطوطات 

ل   ،إسترجاع المعلومات وخاصة  التي تتعامل مع المخطوطات التاريخيةتقنيات ب ا  ضعفقبل الباحثين. وهذا يشك 

، ولمعالجة هذه المشكلة .بالشكل الأمثللم يُستَغل وبالتالي فإن ماتوفرة المكتبات الرقيمة من مخطوطات 

محتواها  لاستخراج (Layout Analysisلهيكلها ) يةتحليلمعالجة تحتاج هذه المخطوطات التاريخية إلى 

 .بناء  على ذلك المحتوى  فهرستهاالقيام بومن ثم  الرئيسي

. (MLAC) العربية التاريخيةمخطوطات لل تصنيفالللتحليل الالي و منظومة متكاملة  اقترحنافي هذه الدراسة 

 Document Layout) المخطوطات هياكل تحليلتقنية ن هما تيرئيسي تقنيتين من منظومة المقترحةتكون الت

Analysis) البحث عن الكلمات  طريقة باستخدامالمخطوطات  إسترجاعوتقنية ، النص الرئيسي لاستخراج

 .(Keyword Spotting)ذات العلاقة 

سلوب التحليل أو  (Top-down) التحليل التنازلي سلوبأ يضم (Hybrid) قمنا بتطوير نظام تحليل هجين

وبشكل في مرحلة التحليل التنازلي يعمل النظام  . لتحليل المخطوطات التاريخية (Bottom-Up)التصاعدي

 .النصوصلك لت الهندسية مميزاتالمجموعة من ستخلص ثم ي مبدئيا   لمخطوطةلحديد النص الرئيسي على ت آلي

تلك  باستخدام ةرصد وتتبع مسار النص الرئيسي للمخطوطعلى نظام التحليل التصاعدي  يعمل بعدهاو 

 إلى نص رئيسي وهوامش.بشكل نهائي المخطوطة لتقسيم  المميزات الهندسية



xvi 

 

. ةلتصنيف المخطوطات عن طريق نصوصها الرئيسي عن الكلمات ذات العلاقةالبحث كما اقترحنا طريقة 

من صور الكلمات   (Feature extractionمميزات )الالجديد في اقتراحنا لهذه الطريقة هو تحسين استخلاص 

لمعرفة ثناء التدريب ألي التعليم الآ سلوبأتحليل إلى  بالإضافة  (word-skeletonهيكل الكلمة ) باستخدام

المعلومات  جاعلاستر تلك العوامل  باستخدامحث الآلي االبيف يتكومن ثم  ،بهاقرار التصنيف عوامل اتخاذ 

 .بشكل ادق  

 التاريخيةوللمخطوطات العربية ( AHHMقمنا بتطوير قاعدة البيانات )داء المنظومة المقترحة، أولتقييم 

هذا وتحتوي . ومكتبة برلين دتجميعها من مكتبتين رقميتين هما مكتبة هارفرتم  صفحة 108والتي تتألف من 

كلمة رئيسية   25اختيار  م استخراجها من المخطوطات، كما تمتكلمة  2135ت في المجمل على اقاعدة البيان

 قاعدة البيانات هذه للباحثين مجاناً.تاحة إسيتم كما . اتطلمخطووالاسترجاع لف يلتصنللقيام بعملية امنها 

 

    

 



CHAPTER 1

INTRODUCTION

In this chapter, we present an introductory material on document layout analysis

and classification. Section 1.1 highlights the importance of document layout analysis

and classification for historical manuscripts. Moreover, it gives an introduction to

the proposed techniques for manuscript layout analysis and classification. Also, it

provides an overview of the Arabic Historical Handwritten (AHHM) database devel-

oped in this work. The motivation of this study is presented in Section 1.2. Section

1.3 states the problem statement of the dissertation. In Section 1.4, we highlight the

main contributions of this work.

1.1 Historical Manuscript Analysis and Classifica-

tion

Historical manuscripts are valuable documents that reflect the human heritage and

form an important source for historical studies. Often, digital libraries grant access
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to scanned copies of historical manuscripts and preserve original manuscripts in a

controlled environment. Searching for a piece of information within these scanned

manuscripts is time-consuming due to the absence of manuscript’s digitized tran-

scriptions.

There are two essential approaches that address scanned documents in general; opti-

cal character recognition (OCR), and Document Image Retrieval (DIR).

Optical Character Recognition is widely used to analyze and process scanned-

documents and produce their digitized versions. Therefore, OCR allows fast text-

searching for large-scale archives. However, the performance of OCR is degraded

severely on processing cursive handwritten documents [8]. Usually, it fails to analyze

handwritten documents due to several reasons such as unrecognized font types, irreg-

ular writing styles, touching-text, ink-bleeding, etc. [9].

Document Image Retrieval is considered an alternative approach to OCR, which can

perform image-based searching to retrieve documents [10, 11]. DIR can be imple-

mented globally by retrieving matches using overall document structure, or locally

by retrieving documents with similar keywords, signatures, or logos.

Unlike regular documents, historical manuscripts are, in most cases, composed of

complex layouts. They may contain text with irregular spacing, different font sizes,

multi-writer styles. In addition, historical manuscripts suffer from various degrada-

tions such as aging, faint text, show-through, touching-text, ink-bleeding, decoration-

text, marginal text etc. Such issues have made historical manuscript analysis chal-

lenging task.
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Several digital libraries are archiving large amount of historical manuscripts that lack

some searching facilities. For example, the Islamic Heritage Project (IHP) of Har-

vard library [12] offers 156,000 of ancient materials (e.g. manuscripts, maps etc.)

that lack searching service especially within historical manuscripts. In other words,

a visitor can only search for historical manuscripts using titles or subject categories,

but within historical manuscript books, a visitor needs to read through all pages to

find information.

Manuscript layout analysis and classification (MLAC) tries to fill this gap exploiting

the advances in computer technology to perform easy and fast information retrieval.

These systems are not equivalent to OCR that converts images to text for information

retrieval. In MLAC, historical manuscripts are analyzed to extract main contents,

text lines, and/or words. Then, manuscripts can be indexed by their keywords to

facilitate information retrieval. The analysis of historical manuscripts is still in its

early stages of maturity due to large number of analysis objectives. In other words,

there is no single solution that can address all issues of historical manuscripts at once.

Therefore, the aim of this dissertation is to contribute to the research in Arabic his-

torical manuscript analysis and classification by providing a benchmark dataset and

developing techniques to analyze and retrieve manuscripts.

1.1.1 Document Layout Analysis

Document Layout Analysis (DLA) consists of two general stages; physical and logical

analyses. The physical layout analysis determines structural regions of a document
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image. In other words, it performs document segmentation at various levels such as

blocks, regions, and zones. Then, these segmented components may be further ana-

lyzed into functional or logical entities (i.e., labeling). For instance, the segmented

blocks, or regions can be text columns, paragraphs, figures, tables, etc., but zones

usually refer to smaller entities such as words. Furthermore, the logical analysis may

determine the reading order and infer the relationships of document regions.

DLA algorithms are divided into three analysis strategies; bottom-up, top-down, and

hybrid. Bottom-up strategy starts document analysis at small document-element

levels such as pixels, or connected components. Then, it identifies and groups ho-

mogeneous elements to form larger zones such as words. It continues grouping zones

repeatedly until no more elements can be grouped. The layout analysis objective has

to be set beforehand.

On the contrary, top-down strategy performs the analysis at the document level first.

It identifies blocks at high level, which may contain several regions, and zones. For

example, Krishnamoorthy et. al [13] started by dividing a document into column

blocks using whitespace analysis. The analysis in top-down strategy continues divid-

ing large document elements into smaller elements until no further division can be

made, or a target analysis level has been reached. For example, whitespace analysis

as in [14] targeted column regions, and X-Y cuts algorithm was applied on detected

column-regions to extract text-lines as in [13].

Both essential strategies have their strengths and weaknesses. In one hand, a bottom-

up strategy is naturally slower to analyze documents in comparison to top-down. Be-
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Table 1.1: Strengths and weaknesses of DLA essential strategies

Metrics Bottom-Up Top-Down

Performance
Speed Slow-moderate Moderate-high

Accuracy Moderate-high Low-moderate
Parameterized – Often Rare

Layouts
Complex Yes NA
Regular Yes Yes

cause it processes large number of document elements at lower levels. On the other

hand, top-down strategy is less precise to define regions’ boundary cuts [15]. Table

1.1 lists the most crucial factors of top-down and bottom-up strategies.

Hybrid strategy is the third type of document analysis strategies that combines both

bottom-up and top-down methods [16, 17]. It may start the analysis using top-down,

or bottom-up based on the analysis objectives. Usually, it is used in analyzing more

complex document layouts and aiming to produce better segmentation results by

integrating the strengths of both strategies.

1.1.2 Document Classification

Document analysis can be considered as a preprocessing phase to document classifi-

cation. The document classification can be divided into two main types; global, and

local. In global classification, documents’ content is not important, only document

structure is used to classify documents [18]. In this case, the preprocessing does

not include segmentation task, rather it consists of image enhancement and noise

filtering. On the other hand, document classification can be approached locally. In

this scenario, documents are characterized by their content such as logos, signatures,

and words. In this work, we consider local document classification using keyword
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spotting techniques.

Keyword spotting (KWS) is a searching method that locates all instances of a

query word. This technique has emerged as an effective technique for large-scale

document retrieval and classification. In particular, it is used to retrieve degraded

and handwritten documents [19].

KWS is usually confused with word recognition approach. To distinguish between

both tasks, KWS approach retrieves all matched word-instances to a given keyword-

query image. On the other hand, word recognition task is meant to recognize the

semantic information of a given word image. In other words, it produces transcripts

of the recognized words using lexicon and language models [20]. In KWS, a user

formulates a word-query and the KWS computes similarity-scores to all possible

keyword templates. Then, it returns a ranked list of matched template keywords

that are most similar to the queried word. This process includes preprocessing,

feature extraction/representation, and matching tasks [11].

Generally, keyword spotting methods can be divided into three categories ac-

cording to algorithms common factors such as type of preprocessing, query, and

matching[11]. First, KWS can be either segmented or segmentation-free system. In

segmented-based KWS, the system segments and indexes all words or keywords that

characterize different documents’ content in off-line mode. Then, in on-line mode,

the system accepts queries and performs matching to retrieve ranked list of matches.

On the other hand, the segmentation-free KWS may accept keyword query and

perform spotting at a document image-level or at the level of text-lines[21].
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Secondly, KWS can be categorized based on the type of query into Query By Example

(QBE), Query By String (QBS), or hybrid KWS. In QBE, a user can initiate an

image-based word query, and the KWS spots similar words in document archives[22].

Secondly, a user can type-in string query. Then, the KWS may use recognizers

such as Hidden Markov Models(HMM) to search directly in documents and match

recognized words with the string query[23]. Alternatively, It may use string-to-image

synthesizing technique to generate image-based word query and perform spotting

as QBE[21]. Lastly, QBE and QBS can be supported simultaneously by the KWS

system. In this case, it is called hybrid query[20].

Finally, based on how matching is performed, the KWS can be categorized to either

learning-based or template-based spotting system. In learning-based KWS, the

system uses machine learning models to perform matching. This type of KWS is

characterized by low memory requirements, since it needs no further data at the

operation mode. In operation mode, the system uses a trained classifier to guess the

keyword class of the input query. On the other hand, template-based spotting has

no off-line mode, it carries out instant matching of input query with all template

words. Therefore, the template-based KWS requires both query and templates at

the matching stage [24]. Figure 1.1 illustrates general taxonomy of keyword spotting

methods.
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Figure 1.1: Keyword spotting taxonomy of methods

1.1.3 Manuscript Layout Analysis and Classification Frame-

work

In this section, we propose our Manuscript layout analysis and classification (MLAC)

framework. It consists of two main phases; document layout analysis and keyword

spotting. The DLA is responsible for preprocessing manuscripts. It performs bi-

narization and noise removal. Then, DLA carries out hybrid analysis, which starts

with top-down techniques to extract features from manuscripts’ main regions. Then,

it performs bottom-up analysis to segment manuscripts main content. The main

content is indexed using keywords and stored in Arabic Historical Handwritten

Manuscript(AHHM) database.

Secondly, the keyword spotting method has two main modes; configuration, and op-

eration. In configuration, the KWS extracts word features and use Bag of Visual

Words(BoVW) to compute their fixed representation. Then, a set of Support Vector

Machines (SVMs) are trained in a multi-class strategy to learn all predefined keyword

classes. During SVMs validation, MLAC models the SVMs matching behavior to esti-
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Figure 1.2: General overview of Arabic historical analysis and classification (MLAC)
system.

mate spotting thresholds. Finally, in operation mode, MLAC uses trained SVMs and

estimated thresholds to perform keyword spotting. Figure 1.1 illustrates an abstract

framework of the proposed MLAC system.
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1.1.4 Arabic Historical Handwritten Manuscript(AHHM)

database

Recently, an Arabic historical database has been published to benchmark keyword

spotting methods; HADARA80P [188]. Pages of HADARA80P database contain the

main-content text without side-notes. They are extracted from a single manuscript

written by single writer. This makes HADARA80P database suits keyword and classi-

fication algorithms while it does not suit regional analysis because each page contains

only uni-content text.

Unlike HADARA80P database, our Arabic Historical Handwritten Manuscript

(AHHM) database is designed to address document layout analysis and classifica-

tion. Therefore, it consists of various pages extracted from four manuscripts. These

pages contain two types of text; main-content and side-notes. The AHHM allows the

evaluation of analysis algorithms that perform regional analysis such as extraction

of main-content or side-notes. Moreover, it can be used to evaluate text-line and

complex word analysis.

The AHHM pages are characterized by sets of keywords that are extracted man-

ually. Therefore, keyword spotting and classification techniques can be evaluated

using AHHM database. An example of HADARA80P and AHHM is shown in Figure

1.3. Further details are given in Chapter 3.
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(a) AHHM Page Example

(b) HADARA80P Page Example

Figure 1.3: Comparison between AHHM and HADARA80P databases
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1.2 Motivation

Arabic heritage contains many valuable historical manuscripts that are informative

and content-rich in Islamic and historical information. Motivated by advances in com-

munication and information technology, digital libraries offer vast number of precious

Arabic historical manuscripts on-line. However, these historical manuscripts are only

available as images, hence textual search is not possible.

The well-established Optical Character Recognition (OCR) can be used to convert

scanned documents into textual form. However, it requires clean and regular doc-

uments to produce acceptable results. On the other hand, document classification

can form a promising solution to retrieve documents with minimum image-to-text

conversion. Most of the document classification algorithms have been tested using

non-Arabic documents. Moreover, the majority of previous researches were conducted

on contemporary documents due to the lack of Arabic historical manuscript bench-

marking data set.

Giving the above facts, there are several gaps that need to be addressed. The aim of

this dissertation is to fill some gaps, improve the state-of-the-art in Arabic historical

manuscript analysis and classification, and build a benchmarking Arabic historical

dataset.
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1.3 Problem Statement

Searching and retrieving Arabic historical manuscripts have been a limitation facing

digital libraries. By considering readers’ time, a search for a piece of information in

scanned historical manuscripts, in general, takes comparatively long time.

Several methods have been proposed to address this issue mostly for non-Arabic lan-

guages. However, layout analysis and document classification techniques are in most

cases language specific. Therefore, we can state the problem of this work as analyz-

ing Arabic historical manuscripts to extract main content and constructing suitable

representation for them. Then, characterize manuscripts using their words. Finally,

given a keyword, locate all its instances in the archive of manuscripts using that rep-

resentation. In addition, to facilitate this work an Arabic manuscript benchmarking

database is constructed.

1.4 Contributions of the Dissertation

The following summarizes the outcomes of this dissertation.

A. Extends the literature survey of document layout analysis, and updates the re-

search community with state-of-the-art analysis methodologies. we presented a

comprehensive survey of DLA algorithms guided by a proposed general frame-

work. It brings two major contributions to the research community:

– A comprehensive DLA survey that presents a critical study of DLA algo-

rithms on various analysis levels (i.e., regional, text line, etc.).
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– It discusses the complete pipeline of DLA framework that has been in-

cluded in typical DLA algorithms such as preprocessing, analysis strate-

gies, post-processing, and performance evaluation.

B. Hybrid document layout analysis approach for Arabic historical manuscripts.

– A fast whitespace analysis for handwritten documents using an anisotropic

diffusion filtering (ADF). Up to-our-knowledge whitespace analysis has not

been employed in analyzing handwritten document layouts [25].

– A hybrid technique that integrates global and local analysis to extract

manuscript main content.

C. A learning-based keyword spotting algorithm with the following novelties:

– A word-skeleton based keypoint sampling.

Analyzing keyword’s interior structure and locating keypoints using skele-

tonization. Unlike automatic detectors such as SIFT or SURF that may

detect keypoints off-writing zones, word-skeleton based keypoint sampling

selects keypoints on-writing zones.

– Proposing a novel approach to estimate spotting thresholds based on mod-

eling the SVMs matching, mismatching and rejection behavior.

– Investigating the integration of skeleton, SURF, and dense keypoint sam-

pling for keyword spotting and word recognition tasks.

D. Arabic Historical Handwritten Manuscript (AHHM) dataset. The AHHM ex-

tends existing datasets and add several required features as follows:

14



– AHHM dataset is collected from four manuscripts dated between 10th to

18th centuries.

– AHHM is multi-writer dataset: Manuscripts in AHHM dataset are written

by four writers, which makes the dataset more realistic for information

retrieval.

– Document layout analysis: Each page, in AHHM, has a main-content and

several side-notes. Moreover, it offers manuscripts with different text-

densities per page. Therefore, various document analysis algorithms can

be evaluated using the proposed AHHM.

– Information retrieval: AHHM pages are characterized by a list of 25 key-

words.

1.5 Dissertation Organization

The dissertation is organized as follows. In Chapter 2, a comprehensive literature

review on document layout analysis and classification techniques is presented. In

Chapter 3, we describe the AHHM database that includes, data sources, properties,

and formats. In Chapter 4, a learning-free hybrid document layout analysis algorithm

for Arabic historical manuscripts is outlined. Then, a novel document classification

using keyword spotting approach is discussed in Chapter 5. Experimental results and

discussions are given in Chapter 6. Finally, Chapter 7 concludes this dissertation.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, a comprehensive review of previous studies on document layout anal-

ysis and classification is presented. The review includes document preprocessing in

Section 2.1. In Section 2.2, document layout analysis strategies are discussed. Doc-

ument classification and retrieval methods are presented in Section 2.3. Standard

performance evaluation metrics for document layout analysis and classification are

given in Section 2.4. In Section 2.5, discussions and literature summaries are pre-

sented. Finally, Conclusions are presented in 2.6.

2.1 Document Preprocessing

Digitized documents may suffer from some degradations that negatively affects docu-

ment layout analysis (DLA). These degradations have two main sources; native, and

auxiliary [26]. The native degradations are permanent artifacts that are generated

naturally due to aging, ink usage, writing style, etc. It leads to several issues such

as text fading, ink bleeding, text show-through, touching components, irregular text-
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spacing or baseline fluctuation. Auxiliary degradations are due to external factors

such as scanning device malfunction, lighting conditions, and document alignment.

Some issues due to external noise are global document-skew, unbalanced document

illumination, text blurring, etc. Therefore, preprocessing is an essential step of DLA

algorithms. Although some studies did not discuss their preprocessing procedures in

details, they assumed preprocessed document-images.

In this section, we discuss the essential pre-processing tasks of DLA; namely bina-

rization and skew detection and correction.

2.1.1 Binarization methods for document images

In general, binarization converts grayscale images into binary images using pixel in-

tensity thresholds. The produced binary image may contain a value of one for the

background, and zero for the foreground (or vice versa). Most of the reviewed DLA

algorithms require binarized document image. It reduces the image processing di-

mensionality to a single layered image and emphasizes document-elements’ geometric

structures.

Binarization can be categorized based on threshold estimation into four types;

namely variance, entropy, contrast, and error-minimization thresholding. Ideal bi-

narization computes a binary image of a clean document image with clear fore-

ground/background content. In other words, it estimates the optimum grayscale

thresholds for separating the foreground and background where their intra-class vari-

ance is minimal. Otsu [27], Niblack [28], and Sauvola [29] are examples of variance
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based binarization. Similar assumption of the existence of two main classes (i.e. fore-

ground/background) is employed to compute the entropy-based threshold of the two

classes that maximizes its sum in [30]. Due to outliers (i.e., noise) in pixel intensities,

the performance of the variance or entropy based binarization methods may be de-

graded. Therefore, contrast-based binarization that finds midrange value between the

lowest and the highest pixel intensities is used to estimate a binarization threshold

[31]. Finally, error-minimization considers the binarization process as a classification

problem of two classes foreground/background, where the target is to find a threshold

that minimizes the classification error rate [32].

The application of binarization can be either global or local. The global binarization

estimates the grayscale threshold from the whole image such as [27]. On the other

hand, local binarization estimates a dynamic threshold that is changing according to

the characteristics of the current processing position. A naive application of local

binarization can be described as a process of dividing the image into blocks. Then,

it computes the grayscale threshold and performs the conversion on each block indi-

vidually. However, such application could fail especially if the blocks have different

contrast values that vary notably from one block to another. This issue has been

addressed using adaptive binarization [28, 29].

Adaptive binarization algorithms tend to estimate their thresholds for every pixel. Ex-

amples of adaptive binarization are [29, 33, 34, 35, 36]. Adaptive binarization may in-

troduce some artifacts if the original image contains severe degradations. For instance,

Gatos et. al in [36] observed that irregular illumination may lead to noisy artifacts in
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the binarized image. So, Gatos’s method equalizes and smooths a document-image

using image filtering to reduce illumination effects. Then, their algorithm estimates

foreground pixels using Niblack method [28]. Finally, it computes the binary image

using the following equation:

T (x, y) =


1, if B (x, y)− I (x, y) > d (B (x, y))

0, otherwise

where T (x, y) is the binary image, B(x, y) is the background image, I(x, y) is the

original image and d(.) is the computed threshold, defined by:

d (B (x, y)) = q × δ

 (1− P2)(
1 + exp

(
(−4×B(x,y))
b(1−P1)

+ 2×(1+P1)
1−P1

) ) + P2


where δ is the average distance between the foreground and the background, q, p1, and

p2 are free parameters that are set empirically to 0.6, 0.5 and 0.8 respectively; b(.) is

the average background value that is computed to boost foreground pixels separation.

The free parameters are critical thresholds of the Gatos’s method and require em-

pirical estimation. Moreover, the foreground estimation using Niblack may produce

mixed foreground/background mask due to dark foreground and background pixels.

Similarly, Singh et. al in [37] reduced illumination variations of each image-block by

image equalization before applying Otsu’s method [27].

Dark foreground pixels that cause issues to binarize transition-pixels are addressed

by Su et. al in [38]. Su’s method computes binarization thresholds locally. The
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algorithm normalizes each image block E(x, y) using Equation 2.1. Then, it com-

putes statistical threshold based on blocks’ transition-pixels, which is a combination

of mean and standard deviation of image-blocks as in Equation 2.2.

E (x, y) =
fmax (x, y)−fmin (x, y)

fmax (x, y) +fmin (x, y) +ε
(2.1)

where fmax(x, y) and fmin(x, y) are the maximum and minimum intensities of a block,

and ε is a positive small value to avoid division by zero.

R (x, y) =


1 Ne≥Nmin and f (x, y)≤(IEmean+IEstd)/2

0 Otherwise

(2.2)

where Ne refers to the number of transition pixels found in the working block, Nmin

is a predefined threshold of a minimum number of transition pixels, IEmean and IEstd

are the mean and standard deviation computed by considering all blocks.

Although Su’s method is robust in preserving text edges, it critically depends on two

empirical parameters; the neighborhood-window size, and the Nmin threshold.

In summary, binarization of a document image that suffers varying illumination and

noise is a challenging task [39]. Even a method that integrates multiple techniques

such as [36] or that performs image enhancement such as [38] may introduce noise

artifacts in the resulting binary image. Moreover, deformations in text shapes such as

fractures and merges can severely affect the threshold estimation. These challenging

issues have called for dedicated binarization research [40].
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2.1.2 Skew detection and correction

There are two main types of document skew, global and local. The global skew is

formed because of a scanning process, where a scanned document might be tilted and

thus the image will have a global skew angle. On the other hand, writing style may

cause local skew. Previous studies have proposed various skew detection/correction

techniques to address these two main types[41]. In general, Skew detection/correction

methods can be categorized into seven classes based on the core procedure; projection-

profile, Hough transform, nearest neighbor, cross-correlation, line fitting, frequency

domain, and gradient.

1. Projection-profile: It enjoys ease of implementation and speed in the de-

tection of text orientations [42]. Generally, it computes the sum of all pixel

values along the horizontal direction(i.e., assuming text is written horizontally)

to form a vertical profile histogram. Then, the histogram is analyzed to find

peaks and valleys (see Figure 2.1). In a typical situation, the peaks represent

text-lines, and valleys represent line-gaps. However, in real situations, dense

text, touching text, and/or fluctuating text can confound the projection-profile

Figure 2.1: Projection profile (vertical projection) on normal text lines
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histogram by some false peaks and valleys.

For global skew detection, the projection profile technique computes several

projections along multiple orientations in a range of [θs, θe] where θs = 0 and

θe = π. Then, a histogram of each projection is computed along horizontal

direction. Finally, the projection with orientation θi that constitutes maximum

variation indicates the skew angle of the document-image.

This method has been applied at the characters’ level as in[45], and the con-

nected components’ level as [46, 47, 48] . The Application at fine levels requires

high computational costs because it requires repetitive calculations of the pro-

jection. Although [49] has proposed a method to address this issue via reducing

image size before performing the projection profile, their method loses accuracy

in the trade-off computation cost.

In general, the projection profile skew detection/corrections methods may fail

to find the true skew angle when large portions of a document image are not

text [50]. This issue has been partially addressed by removing the non-text

regions using image filtering before skew detection/correction. For instance, a

wavelet transform has been used to remove non-text regions in [51].

Finally, to boost the projection profile approach against arbitrary layouts, some

researchers proposed two types of local projection-profile(LPP); static and dy-

namic analysis [43, 44, 52]. In local static LPP, the algorithm divides a docu-

ment image into fixed vertical stripes and applies the projection profile approach

on each of them [43, 52]. However, It results in a staircase effect (see Figure
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(a) Fixed stripes yields staircase effect
[43]

(b) Dynamic strips [44])

Figure 2.2: Static versus dynamic local projection profile analysis

2.2.(a)), which confuses the final detection/correction of the skew angle. This

issue has been addressed using dynamic striping LPP approach [44]. The stripes

are defined with overlaps. Figure 2.2.(b) shows dynamic LPP results that allow

tilted text-line analysis.

2. Hough transform: It was first introduced in [53]. The basic idea of Hough

transform is to perform angular scanning of image pixels and accumulate votes

of each scan in Hough space [54]. Then, a candidate line is detected by finding

the highest response in the Hough space. Hough transform is used in detecting

document skew for several years [55, 56, 57]

Hough-based methods require preprocessed images that have enhanced line seg-

ment structures of text. Examples of preprocessing, smearing text-lines to

improve their line structures [58], or reducing character components to sin-

gle points [2] (see Figure 2.3).

After image preprocessing, Hough space is generated by scanning a document

image. Then, the Hough space is analyzed to find angles (θ) of the highest
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Figure 2.3: Example of data reduction before applying Hough transform [2]

Hough responses. The average of these angles describes the global document

skew angle as in [56].

Other preprocessing examples to enhance line-structure of written text is ap-

plying Prewitt edge detection [54], reducing connected-components into their

centroids as in [2, 59, 60, 61]. Figure 2.3 illustrates the reduction of connected

components by their centroids. The text area shows continuous and regular dots

along the horionztal/vertical directions, while figure components have larger ver-

tical gaps. Although Hough-based techniques can detect skew angle accurately

with small error (see Table 2.1), they require high computations to prepro-

cess an image and to build the Hough space. Moreover, the line structure of

handwritten text may be very challenging to be enhanced.

3. Nearest neighbor approach: The distance relationships of connected com-

ponents can be utilized to detect and correct document skew angle. This tech-

nique divides a document image into small components, then finds all relative

neighbors along specific directions. Then, it accumulates the angles of these

24



components in an angular histogram where the peak value is the skew angle of

the document [62, 63]. Although the nearest neighbor approach is applicable to

various document layouts, the resultant skew angle estimation may lack preci-

sion [63]. Like Hough-based approaches, handwritten documents could be very

challenging. Therefore, most of the studies on nearest neighbor skew detec-

tion/correction are performed on printed documents such as [65, 66, 67, 68, 69].

4. Cross-correlation: cross-correlation method analyzes text lines to de-

tect/correct a skew angle of document images [70]. Yan et. al in[70], suggested

an algorithm that accumulates foreground pixels across pairs of inter-text line

spaces. The algorithm moves horizontally and then vertically with two different

fixed shifts dh, and dv respectively, to compute the cross-correlation as in the

following equation:

R (dv) =

(X−dh−1)∑
x=0

(Y−dv−1)∑
y=0

I (x+ dh, y + dv)× I(x, y)

where X − 1 and Y − 1 are the horizontal and vertical lengths of the image

respectively, and I(x, y) is the image at location x, y. The maximum of R(dv)

indicates an optimal dv value of an average vertical gaps. Thus, the skew angle is

computed by dividing the optimal vertical gap by the difference of two horizontal

shifts ∆dh:

Skew = tan−1
(
dv

∆dh

)
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Yan’s algorithm suits printed documents because it requires fixed inter-text line

spacing. An improvement of Yan’s algorithm that reduces the computational

cost and addresses fixed inter-text spacing was introduced in [71]. The main

idea is to apply the algorithm on selected equidistance vertical lines on the

document-image. Therefore, the algorithm considers less image pixels to pro-

cess. Generally, the cross-correlation methods are limited to document images

of ±15o skew angles (see Table 2.1).

5. Line fitting: Like Hough-based approaches, line-fitting methods by nature do

not need large data to describe a text line. For a line segment, only two points

can describe a line segment. An example of a line-fitting algorithm that divides

text into connected components and represents each connected component with

a single point called Eigen-point is described in ([72]). It estimates document

skew angle by a linear regression based on the coordinates of the Eigen points.

It uses equations 2.3 and 2.4 to compute a document skew angle.

b=

(
n
∑n

i=1 xiyi−
(∑n

j=1 xj

)
. (
∑n

k=1 yk)
)

(
n
∑n

j=1 x
2
j−
(∑n

j=1 xj

)2) (2.3)

where b is the line slope, x, y are the Eigen-Points coordinates. The skew angle

is computed using the following equation:

θ=tan−1b (2.4)

Although Eigen points are better than normal centroids to reduce non-convex
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shapes such as connected components, a single point representation of a con-

nected component is not enough due to text-line fluctuation, and components

descenders/ascenders variations. Therefore, Shivakumara et. al in [73] pro-

posed a line-fitting approach using two point representation; uppermost and

lowermost Eigen-points for better representation of the connected-components.

6. Frequency domain: Postl et. al [46] method is among the earliest algorithms

that applied Fourier transform (FT) to detect/correct document image skew.

A modified version of Postle’s algorithm was proposed by Peake et. al in [74].

Peake’s algorithm divides the document image into blocks and accumulates the

block angle results in an angular histogram to detect a document image skew

angle. Although Peake’s method enhances the computation cost, it loses ac-

curacy due to considering inconsistent FT responses from various blocks. This

issue is addressed by normalizing FT local responses [3]. Lowther et al. in [3]

analyzed the FT response using Radon transform. Figure 2.4 illustrates an ex-

ample of a document image FT and Radon transform skew angle detection. In

Figure 2.4.(c), the Radon transform shows several peaks due to minor responses

Figure 2.4: Skew detection in frequency domain analysis; a) original document image,
b) Fourier transform magnitude, c) Radon transform [3]
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Figure 2.5: Confusion of gradient performed on letter ”e” [4]

on Fourier transform. Th minor Fourier responses were caused by irregularities

in text, and drawings. This issue has been addressed by grouping similar con-

tents using K-nearest neighbor algorithm and computing the convex hull of the

grouped elements in [69]. So, Fourier transform was applied on the resultant

convex shapes that represent document’s blocks instead of applying it on the

image text to detect document skewness.

Radon transform has been employed to find a skew angle of document image

directly based on energy function in [75]. Radon transform is similar to projec-

tion profile approach which scans the document in multiple orientations. Conse-

quently, it inherits projection-profile’s limitations. For this reason, the method

in [75] divides the document image into blocks and then uses a bootstrap ag-

gregating (Bagging) to combine local skew angles found by Radon transform.

Another study [76] suggested to remove non-text components using wavelet

transform before applying Radon transform.

7. Gradient approach: Gradient methods require conversion of characters into

edges or lines before carrying out document skew detection as in [77, 78]. Usu-
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ally, text components have many edges and corners that represents writing

strokes. Therefore, gradient may produce responses with many directions that

could confuse document-images skew detection(see Figure 2.5). In Figure, 2.5,

the gradient magnitude and angles are shown as black arrows. Therefore, direct

application of gradient methods on full text may fail to determine the correct

skew angle. Consequently, it requires character-based preprocessing to avoid

false detection of skew angle.

Sauvola et. al [77] suggested to collapse character structures by reducing image

resolution by a factor of 1/5. Then, the algorithm determines the document

skew angle by finding the maximum peak of a histogram using the following

equation.

Awθ =
∑

(i,j)∈W

G (i, j) cos2 (θ − φij)

where A is the accumulator histogram that indicates the maximum skew angle,

θ is a rotational angle from 0 to 179, G(i, j) and φij are the magnitude and the

phase of the gradient at position (i, j) respectively. A similar algorithm that

fits a cubic polynomial over the angle histogram of the gradients is reported

in [78]. Another different gradient method that addresses angle confusion due

to direct application of gradient is described in [4]. Their method combined

gradient algorithm with focused nearest neighbor clustering of interest points

to estimate document skew.
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Summary

Table 2.1 summarizes the discussed skew detection/correction techniques in this sec-

tion. It shows the type, the language, and the number of documents used in the

experiments. A comparison of these approaches is difficult and biased because the

test documents are mostly different. However, the summary table gives an indication

of the ability and the type of documents that can match future study setting.

To sum up, the projection profile, and frequency domain techniques are capable of

detecting/correcting document skew at large angle correction range. However, they

may be severely affected by non-text contents. Hough transform, line-fitting, near-

est neighbor, and the gradient-based techniques have middle ranged angle correction

abilities up to 180o. However, they require clean document images. They can be eas-

ily miss-leaded by noisy artifacts. The cross-correlation techniques have the lowest

angle correction range up to ±15o.
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Table 2.1: Skew detection and correction: a summary

Method Ref.
Angle Document

Range Error Type Test Language. Layout

PP

[44],2009 ±45o 0.2 H 30 Multi MB
[50],2007 ≤25o 0.1 P 3 Multi MB
[51],2007 ±15o 0.2 P 500 Eng. MC
[43],2007 NA 0.12 H 720 Multi MB
[42],2005 ≤360o 0.1 P 270 Eng. MC
[52],2001 NA 0.3 H 100 Arb. MB
[45],1997 NA NA P 460 Eng. MB
[48],1990 ≤40o 0.1 MX 8 Multi MB
[49],1989 ±5o NA P NA Eng. MC
[47],1987 ±15o 0.05 P NA Eng. MB
[46],1986 ±45o 0.6 P NA Eng. MB

HT

[79],2011 ≤180o 0.3 P 500 Eng. MC
[54],2008 2o-20o 0.07 P 20 Eng. MB
[57],2008 2o-150o 0.05 P 300 Eng. MB
[61],2007 NA NA H 50 Eng. MB
[55],1996 ≤180o 0.1 P NA Eng. MB
[56],1996 ≤45o 0.84 P 100 Eng. MB
[60],1995 NA NA H NA Eng. MB
[59],1994 ±15o 0.167 P 250 Eng. MC
[58],1990 ±45o NA P 13 Eng. MC

NN

[69],2014 NA 0.05 P 175 Eng. MC
[68],2008 ≤40o 0.33 P 979 Eng. MC
[67],2005 ≤180o NA P 30 Multi MB
[66],2003 ±45o 0.2 P 280 Multi MC
[65],2001 ±45o -6 P 78 Eng. MB
[63],1993 ≤180o NA P NA Eng. MC
[62],1986 ±90o 1.66 P NA Eng. CX

CrsC
[71],1997 ±4o 0.068 P NA Eng. MC
[70],1993 ≤12.5o NA P 2 Eng. MC

LF
[73],2005 ≤30o 0.5 P 100 Eng. MB
[72],2003 4.2o,3.8o 0.029 P 200 Eng. MB

FD

[76],2013 1o -25o NA P 150 NA MB
[80],2007 ≤120o 2 P 100 Arb. MC
[3],2002 ±45o 0.25 P 94 Eng. MC
[74],1997 NA NA P 32 Multi MC

Grdnt
[4],2012 ≤180o 1.75 H 658 Eng. MB
[78],1997 ±90o NA P NA Eng. MC
[77],1995 ≤20o 0.1 P 11 Eng. MC

- PP: Projection Profile, HT: Hough Transform, NN: Nearest Neighbor, CrsC: Cross-Correlation,
LF: Line-Fitting, FD:Frequency Domain, Grdnt: Gradient-based.
- P: Printed, H:Handwritten, MX: mixed type documents, Eng: English, Arb: Arabic, MB:
Manhattan based, MC: Multi-column document, NA: Not Applicable.
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2.1.3 DLA Parameter Estimation

Most of the DLA algorithms, either bottom-up or top-down, need to set some param-

eters to guide the document analysis. There are two categories of a DLA parameter

estimation: dynamic, and static.

In general, these parameters are critical thresholds that should be set carefully to

perform robust DLA. The dynamic parameter estimation (i.e., data-driven) is com-

puted from a document image directly. This type of estimation is used whenever the

documents under analysis are heterogeneous. The parameters are dynamic because

they change from one document to another. Examples of such methodology can be

found in [81], [82], and [83]. On the other hand, static parameters can be determined

at the beginning of document analysis. They remain fixed throughout the processed

documents. Static parameters suit DLA algorithms that analyze constrained (i.e.,

structured) document layouts. Examples of static parameter estimation based on

structured documents for known text-block locations are given in [84], regular region

gaps [85], regular number of lines per region [86], and size of text components [6].

Figure 2.6 depicts two examples of regular, and irregular document layouts. Figure

2.6.(a) illustrates an example of possible static parameter estimation such as regu-

lar font size. Figure 2.6.(b) shows a situation where dynamic parameter estimation

should be used because of variable writing styles.
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(a) Regular spacing, and writing styles

(b) Variable spacing, and writing styles

Figure 2.6: Comparison between contemporary and historical documents character-
istics

33



2.2 Document Layout Analysis Strategies

In this section, three main DLA strategies are discussed, namely; bottom-up, top-

down, and hybrid strategies. The bottom-up and top-down strategies are divided

into five, and four classes respectively. Figure 2.7 shows a general taxonomy of the

DLA strategies.

Figure 2.7: Document layout analysis strategies: main techniques

2.2.1 Bottom-Up Strategy

Bottom-up strategy is a data-driven methodology that may derive its parameters

dynamically from the data. It estimates the parameters using statistics of pixel

distributions, properties of connected components, words, text lines or regions. In

general, bottom-up analysis starts at low levels of the image such as pixel, component,

or word. Then, the analysis grows up to form larger document regions to match the
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intended analysis objectives. In this subsection, we discuss the bottom-up strategy

based on five core categories; namely, connected component analysis, texture analysis,

learning-based analysis, Voronoi diagrams, and Delaunay triangulation.

1. Connected Component Analysis:

Connected component analysis allows flexible and robust layout analysis be-

cause it offers a wide range of shape properties. Docstrum algorithm is among

the earliest successful bottom-up algorithms that adopted connected compo-

nent analysis[63]. It groups connected components (CC) on a polar structure

(distance and angle) to derive final segmentation. Even though Docstrum can

cover a wide range of layouts, it was tested on printed documents. Similarly,

connected component analysis supports n-ary tree analysis [15]. This algorithm

assumes CC as vertices and the distances between them as weighted edges.

Then, it uses minimum-cost spanning tree algorithm of [87] to analyze the doc-

ument components.

Connected component analysis suites the extraction of degraded text lines as

in [88]. Their algorithm boosts the analysis by evolution maps of connected

components on grayscale and binary versions of a document image. Likewise,

historical manuscripts suffer several issues such as degraded text, dense text,

free writing style, aging, etc. The local features of connected components have

helped to address some of these issues as in [89, 90]. In these two studies, both

algorithms start by extracting sets of features from each CC. Then, part of these

sets is fed to train an automatic multilayer perceptron (autoMLP) classifier for
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document analysis [91].

Another iterative classification algorithm that uses CCs to differentiate four

classes of document’s components as figures, separators, text, and noise is re-

ported in [17]. In each iteration, the algorithm expels any found CC from a

block that is considered heterogeneous to its neighbors. The CC is heteroge-

neous if it is non-text. This process is repeated until all detected regions are

homogeneous and contain only text. For other non-text regions, the algorithm

uses the connected component geometric properties to detect figures, separators,

and noise.

2. Texture Analysis:

Texture analysis enjoys speedy detection of image components. Texture analysis

techniques can be categorized as bottom-up or top-down based on how it car-

ries out the document layout analysis? Consequently, if the answer is merging

smaller document elements to large regions, then it is bottom-up; the opposite

is top-down.

Bottom-up texture analysis starts by extracting texture features directly from

image pixels. Then, these features are used to cluster pixels to form homo-

geneous regions or blocks. Spatial autocorrelation approach is one example

of the bottom-up texture-based DLA [92]. This algorithm moves a window

over the document image and represents each pixel with 20 feature points in

a multi-resolution scale. It repetitively resizes the original document image

to produce different image scales. Finally, the autocorrelation is analyzed in
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(a) (b) (c)

Figure 2.8: Example of Rose of Directions[5],a) different images, b) autocorrelation
response, c) rose of direction response.

rose-of-directions diagram (see Figure 2.8). This algorithm is computationally

expensive due to the repetitive resizing of the complete document-image. This

issue has been addressed by resizing the analysis window instead of using the

complete image [93].

Text and graphic elements can be detected by analyzing rose-of-directions re-

sponses. In rose-of-directions diagram, line segments are highlighted by thin

line response as shown in Figure 2.8.(c) (first and second rows). On the other

hand, the response will be thicker in case of graphic element detection as shown

in Figure 2.8.(c) (last row). This behavior of rose-of-directions have been uti-

lized in document segmentation [5].

Due to it is successful application, the autocorrelation approach is compared

to other texture analysis techniques such as Gray level Co-occurrences Matrix

(GLCM), and Gabor filter bank in [94]. The study highlighted that Gabor filter

is suitable for textual regions if a distinct font was used in all documents, while
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the autocorrelation is better if the document has complex layout or written in

different fonts.

Texture analysis, which works on pixel level such as autocorrelation approach,

is computationally expensive. Mehr et. al in [95] suggested a DLA based on

superpixels. The superpixels is a group of pixels that shares similar spatial and

intensity information. Although the superpixeling step is leveraging the separa-

tion between foreground and background and boosts DLA, it increases overall

analysis time.

3. Learning-based Analysis:

Learning-based approach can be used directly at any analysis level. However,

the learning-based approach that labels small elements of a document-image

such as characters or words to form larger regions can be considered as bottom-

up.

The, learning-based DLA approaches can be divided into two levels; pixel, and

feature levels. Direct pixel values may not be a good choice to build a learning

model in comparison to feature-based. This is due to the imbalance distribution

of input data per class, and losing spatial information, etc. Often, textual pixels

are dominant in document images in comparison to decoration pixels. There-

fore, the trained model may be biased towards text-pixels more than decoration

pixels. Lastly, pixels of periphery or decoration classes could have similar in-

tensity values which confuse the learning process [96].

Several studies proposed feature-based learning techniques to improve machine-
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model training. For example, Baechler et. al in [97] used dynamic MLP to train

a learning model for DLA based on pixel values and context information. Sim-

ilarly, Fischer et. al in [98] proposed pixel intensity and context information

to generate a machine learning model for DLA. Both algorithms are compu-

tationally expensive as the algorithms perform model training at two different

resolutions of each document image. Moreover, the context features may not

be robust to identify the decoration-text class that appears within a text zone.

Fortunately, more descriptive features was developed to improve learning-based

analysis. For example, Gradient Shape Feature (GSF) which extracts geometric

information from document components is proposed in [99]. The GSF features

can describe different document components regardless of their context informa-

tion. Another orientation-based shape descriptor using Scale Invariant Feature

Transform (SIFT) is proposed in [5, 100, 101, 102]. These algorithms have re-

ported the robustness of SIFT features to identify text verses decorative-text.

Graz et. al in [102] found that SIFT interest points are scattered around text

regions. Therefore, Garz’s algorithm groups and validates interest points using

Density-Based Spatial Clustering Application with Noise (DBSCAN) [103] to

construct text lines based on their spatial information.

In summary, there are two important factors to build good trained model namely

the availability of enough training data, and feature extraction. By nature

document-images contain imbalance examples for each data-class. For exam-

ple, text class have large number of examples than figure class. Hence, model

39



training may be ended with bias convergence. The other factor depends on

designing robust feature extraction methods. Many researchers compete to de-

velop and design robust feature extraction methods for DLA. However, every

feature extraction method has strengths and weaknesses. Therefore, an inte-

gration of existing feature extraction methods may lead to better performance

such as [104, 105, 106].

4. Voronoi-based Analysis:

Segmentation of arbitrary document-layout is very challenging. Arbitrary lay-

out has no specific shape in general but can be surrounded with polygon shape.

Fortunately, the Voronoi diagram is one solution that can define boundary

points around arbitrary regions. It makes no assumptions about document

layout shape and can describe the border points of various layouts as Kise’s

algorithm [107]. In Kise’s algorithm, the Voronoi diagram is constructed based

on CCs properties. Then, the analysis is conducted based on the selection of

Voronoi edges that are characterized by two features; distance, and area ratio.

However, the drawback of Kise’s algorithm is defining Voronoi points based on

connected components’ centroids. This is because connected components are

non-convex in general, which makes a single point representation inappropri-

ate. This observation was addressed in [108, 109] by defining two points of each

connected component. Both algorithms derive a neighborhood graph from the

area Voronoi diagram, where each node indicates a document element. Finally,

similar elements are merged together to form a document region.
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In Voronoi analysis, every node may have large number of neighbors which can

be counted by Voronoi edges. In other words, the large number of neighbors

may lead to inaccurate region extraction. It appears vividly when a document

image contains multi-size text. Consequently, the DLA performance will be de-

graded because Voronoi analysis will not be able to accurately find the proper

segmentation cuts [109]. This issue has been addressed by integrating Doc-

strum algorithm and Voronoi diagram in [110]. Among the concerns of Voronoi

analysis is the construction time of its diagram. It takes considerable amount

of time to generate a Voronoi diagram. First, it reduces connected components

into dots. Then, it has two passes to generate Voronoi points of document dots;

1) Voronoi points definition, 2) deleting all self Voronoi edges of each Voronoi

point. These two passes of the Voronoi algorithm are computationally expensive

especially for high-resolution document images [111].

5. Delaunay Triangulation Analysis:

Unlike Voronoi diagram that defines large number of neighbors for each Voronoi

node, the Delaunay triangulation reduces the number of neighbors to three.

The Delaunay triangulation has been employed successfully to address text line

segmentation in DLA [112]. Delaunay edge points ease the document segmen-

tation rules as follows; 1) the smallest edge-points represent text components

on the same text line; 2) the largest edge-points represent text components

between contiguous text lines; 3) triangles that have sides larger than some

pre-computed thresholds represent text column regions or margin borders.
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6. There are some miscellaneous methods that addressed bottom-up DLA. As an

example, morphological analysis techniques are also called painting approaches.

They manipulate document image pixels using a set of basic morphological

operations such as dilation and erosion to group document components [113,

114]. Both studies targeted the extraction of text versus non-text regions. They

assume that the shape structure is totally different from texture measurements.

Therefore, their techniques compute statistical distribution of shapes as features

for DLA analysis.

2.2.2 Top Down Strategy

In this section, the discussion is covering four top-down category techniques; Texture-

based Analysis, Run Length Smearing Algorithm (RLSA), graph-based projection-

profile (GPP), and White space analysis.

1. Texture-based Analysis:

A direct example of a top-down texture analysis is highlighted in [81]. In this

method, texture masks are generated by using neural networks to differentiate

multiple document regions.

Textual regions can be analyzed by an energy map to extract text lines via

assuming that text regions are darker than background regions. In other words,

the energy procedure produces low values for pure foreground or background

areas while it is high at the border of both types (i.e., edges). Saabni et. al in

[115] proposed energy map algorithm that produces strong seam lines between
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(a) Original text

(b) Energy map response

(c) Seems detection(Red, Blue, and Green)

Figure 2.9: Energy map text line segmentation[6]

contiguous text-lines (see Figure 2.9). The drawback of Saabni’s algorithm

is the repetitive calculation of the energy map on the whole document-image

to estimate seam-lines. An improved version of Saabni’s algorithm (by the

same research group) that requires no global re-computation of the energy map

is proposed in [116]. This algorithm updates the energy map locally during

text line detection. A detailed description and comparison of both algorithms

are reported in [6]. Similar algorithm has analyzed the projection profiles of

the energy maps that enhances the overall text line segmentation of historical

manuscripts is reported in[117].

Image filtering can reveal strong document-image characteristics that can be

utilized in DLA. A work that suggested six anisotropic Laplacian of Gaussian
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(LoG) filters with one isotropic Gaussian, was suggested for document layout

analysis in [118]. The response space is analyzed to detect its maximas along

some orientations to find text regions. Moreover, K-nearest clustering algo-

rithm was used to extract text lines based on the orientation feature. Similarly,

another texture-based algorithm that coarsely locates main text regions of doc-

uments using Gabor filter is described in [1].

A multi-scale texture analysis is another dimension of top-down approaches. It

reveals useful information about the document layout at different scales. This

characteristic of multi-scale analysis can help in DLA of degraded documents.

For instance, multi-scale analysis may allow tracing of high responses at each

scale and map them back to original level to extract document regions as in

[119]. The regions with back-traces end up as degraded text lines. Similar

studies that analyze the behavior of multi-scale texture analysis are reported in

[1, 120]. In [1], document images were filtered using Gabor filter to located dif-

ferent regions. Then, a minimization energy function was used to extract these

regions. This technique is extended in [120] where Gabor filter was applied at

different angles spanning the interval [0, 180] to detect curvy regions that was

detected in [1].

2. Run Length Smearing Algorithm (RLSA):

It is an operation that converts background pixels to foreground pixels if the

number of background pixels between two consecutive foreground pixels is less

than a predefined threshold (i.e., smears foreground pixels). RLSA was intro-
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duced first by Wahl et. al in [84] to conduct text-line analysis from structure

of simple document layouts. A modification of the Wahl’s algorithm that car-

ried out smearing in two directions is described in [121]. The modified RLSA

carried out horizontal scans from left-to-right and vice versa, and for vertical

direction, it scans from top-to-bottom and vice versa. The RLSA performance

may be degraded severely if a document-image contains multi-sized or curvy

text [121, 25].

An adaptive RLSA that dynamically updates its thresholds based on local char-

acteristics is suggested to address the multi-sized text analysis [25]. This algo-

rithm performs two runs of RLSA on connected components; first, run is con-

ducted to remove noisy obstacles and the second run is performed to detect text

lines. Another RLSA algorithm that uses generalized adaptive local connectiv-

ity map (ALCM) to extract text lines is described in [122]. ALCM is highly

sensitive to the height threshold which may lead to false text line extraction if

it is improperly set.

The RLSA performance can be enhanced further by performing morphological

operation to boost text structures before the application of RLSA [123]. In

general, RLSA is a robust and simple to apply technique, but it requires careful

estimation of its thresholds. Direct application of RLSA on handwritten docu-

ments may result in low performance due to heterogeneous writing styles[124].

3. Graph-based Projection Profile (GPP):

It is a tree-structure based analysis that groups similar homogeneous content
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to form regions using splitting/merging operations. The X-Y cut algorithm

is a well-known recursive DLA algorithm that analyzes horizontal and vertical

projection profiles of a document image[85]. It converts every projection-profile

response into a binary string and applies grammar rules for splitting/merging

operations to find possible cuts. The X-Y cut algorithm suits structured doc-

ument layouts that have fixed text regions and line spacing. An extension to

X-Y cut algorithm that analyzed projection-profiles of connected components

is suggested in [125]. The algorithm considers the layout analysis as a cluster-

ing problem where its members share the same spatial relationships. Another

modification to the X-Y cut algorithm analyzes text regions using edit-cost eval-

uation metrics to enhance the segmentation results [126]. In general, the GPP

algorithms are heavily depending on clean document images to find possible

text region or line cuts [127].

4. Whitespace Analysis:

It is used to detect regions that can be isolated by spaces (i.e., background)

from all directions. It assumes that all foreground regions are separated from

each other by some whitespace. It can be formulated as a maximization op-

timization problem to detect maximal white rectangles in each direction [14].

The whitespace analysis suites the segmentation of regular document layouts

[128]. This algorithm detects globally column text regions and conducts coarse

analysis to extract column-text lines. Whitespace analysis is integrated with the

X-Y cut algorithm in [13]. It finds proper cuts of the whitespaces to form homo-
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geneous regions. In summary, the whitespace analysis methods suits structured

documents with clear whitespaces separation among their regions.

2.2.3 Hybrid Strategy

The hybrid strategy is the integration of both bottom-up and top-down strategies.

Even though the research in bottom-up and top-down algorithms are well-established

in DLA, there are still many challenging issues that neither bottom-up nor top-down

algorithms separately can address.

Usually, the design of DLA technique predefines analysis objectives such as regional,

text-lines, or words. These analysis objectives require some analysis parameters such

as font size, average text-line gaps, or average word gaps. These parameters can be

estimated using combination of both strategies. Moreover, each strategy has its own

strengths and weakness. For instance, top-down algorithm using whitespace analysis

can be considered fast technique in detecting document regions because the analysis

focuses on background data (i.e., spaces). However, its analysis may lack segmenta-

tion precision especially if document-regions have irregular layout structures. On the

other hand, connected component analysis is better at extracting region elements of

various layouts. However, connected component analysis may extract elements of dif-

ferent regions due to the text-touching issue. So, based on these highlighted positive

and negative aspects of whitespace and connected component analysis, a combination

of both algorithms may boost their behaviors and solve complex document layouts.

An example of this integration is suggested in [16]. The algorithm carries out slightly
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different whitespace analysis to approximate document regions. It computes weighted

whitespaces vertically and horizontally to determine candidate regions. After that,

each candidate region is analyzed using connected component analysis to determine

document elements. Finally, a post-processing step is introduced to perfectly extract

each region. Their post-processing involve human interaction for final segmentation.

Another hybrid technique that integrates learning-based analysis, RLSA, and whites-

pace analysis is described in [129]. First, the algorithm detects text and non-text

objects using neural networks. Then, it performs RLSA followed by whitespace anal-

ysis to determine regions’ boundaries and extract text elements.

Unlike other hybrid approaches, rule-based heuristics of connected components can

be considered a hybrid technique. The technique starts with a top-down view that

uses knowledge-based rules to determine text by detecting document elements within

minimum lengths [130]. Then, it analyzes connected components based on context

and geometric characteristics to group them into text lines. Similarly, [131] proposed

heuristic hybrid approach that detects text and non-text regions using minimum

homogeneity algorithm. Then, it used connected component analysis to extract text-

lines.

In general, hybrid techniques may provide robust analysis that can deal with arbi-

trary or complex document layouts. Even though studies such as [81, 129] claimed

generalization of their algorithms to cover any document layouts, their experiments

were conducted on a small population. Moreover, there are some algorithms that

combines techniques of the same strategy such as the integration of two bottom-up
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algorithms as in [110], or top-down algorithms as in [13]. To sum up, hybrid strat-

egy is rarely investigated in comparison to bottom-up or top-down strategies. The

integration of methods may reveal robust algorithms for complex document layout

analysis. Therefore, more efforts are needed to study hybrid techniques in the future.

Table 2.2: Document layout analysis algorithms: a summary

STGY Ref Techniques
Documents

Type Lang. Layout

BU

[95],2015 Texture analysis P French MB
[17],2015 CC Analysis P English CPX
[98],2014 Texture Analysis P English MC
[106],2014 Learning MX Lang+ MC
[105],2014 Learning MX Lang+ MC
[132],2013 Learning MX Lang+ MC
[97],2013 Learning P Lang+ MC
[94],2013 Texture analysis P French MB
[88],2013 CC Analysis H Hebrew CPX
[90],2012 CC Analysis H Arabic CPX
[102],2012 CC Analysis P German MC
[99],2011 Learning P English MB
[89],2010 CC Analysis P English MC
[100],2010 Learning P English MB
[93],2010 Texture Analysis P English MB
[133],2010 Voronoi, DOCSTRUM MX Lang+ MB
[110],2009 Voronoi++, DOCSTRUM MX Lang+ MB
[92],2008 Texture Analysis P English MC
[5],2005 Texture Analysis P French MC

[109],2004 Voronoi P English MC
[107],1998 Voronoi P Lang+ MC
[134],1997 Voronoi P Lang+ MC
[108],1995 Voronoi + CC P English MB
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STGY Ref Techniques
Documents

Type Lang. Layout

TD

[122],2015 RLSA H Lang+ MB
[119],2014 Texture Analysis MX Lang+ MC
[6],2014 Texture Analysis H Lang+ MC

[117],2014 Texture Analysis H Lang+ MB
[1],2014 Texture Analysis H Arabic CPX

[118],2013 Texture Analysis H Arabic CPX
[127],2011 Projection Profile P English MC
[115],2011 Texture analysis H Lang+ MB
[116],2011 Texture analysis H Lang+ MB
[123],2011 Texture analysis H Lang+ MB
[25],2010 RLSA P Lang+ MC
[135],2009 Texture analysis H Arabic MB
[124],2008 Whitespace analysis P English MC
[121],2004 RSLA H English CPX
[128],2003 Whitespace analysis P English MC
[81],1996 Texture Analysis P Lang+ MC
[125],1995 Projection Profile P English MC
[126],1995 Projection Profile P English MC
[85],1984 Projection Profile P English MB
[84],1982 RLSA P English MC

HY

[131],2016 Heuristics P English MC
[129],2014 CC, Learning, RLSA,

White-space
MX Lang+ MB

[130],2008 Heuristics H English MB
[130],2008 Heuristics H English MB
[16],2007 CC, White-space, and user P NA MB
[96],2004 CC, RLSA, Learning P Arabic MC

Other
[136],2009 Active contours H Lang+ MB
[113],1991 Morphological Analysis P English MB

- BU: Bottom-UP, TD: Top-Down, HY: Hybrid, P: Printed, H: Handwritten, MX: Mixed
Documents, Lang+: Different languages used, NA: Not Applicable, CPX: Complex, MC:
Multi-Column, MB: Manhattan-Based
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2.3 Document classification

Keyword spotting approach have several applications such as document classification,

categorization, and indexing. Keyword spotting (KWS) is a searching method that

locates all instances of a query word. This technique has emerged in the last decades

as an effective technique for large-scale document retrieval and classification. In par-

ticular, it is used to retrieve degraded and handwritten documents [19]. Therefore,

these methods are considered as alternative approach to OCR methods [137].

In general, the keyword spotting approach retrieves document images by matching a

user keyword query to some indexed template keywords in case of segmentation based

spotting, and to document images in case of segmentation-free spotting. Therefore,

in both cases, the keyword spotting approach does not convert document images into

an editable standard text, but it searches directly using images.

KWS has several interesting research point-of-views which are contributing in KWS

design as illustrated in Figure 2.10. Often, it is designed by considering four op-

tions; 1) Target documents, such as structured/unstructured printed documents

[138], or structured/unstructured handwritten documents [137]; 2)Type of query,

such as query-by-example (QBE) [139, 140], query-by-string (QBS) [141, 142], or hy-

brid query [20]; 3) Analyzed documents, such as segmentation-based approach [143],

or segmentation-free approach [144]; 4) Matching strategy, such as static matching

(i.e, fixed matching) [24] or dynamic matching [145]. Each of these main design op-

tions characterize the behavior of the spotting system.

KWS is usually confused with word recognition approach. To distinguish between
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Figure 2.10: Keyword spotting systems: main design options

both tasks, KWS approach retrieves all matched word-instances to a given keyword-

query image. On the other hand, word recognition task is meant to recognize the

semantic information of a given word image. In other words, it produces transcrip-

tion of recognized words using lexicon and language models [20].

Recently, two surveys have been published that cover the state-of-the-art in KWS

[146, 11]. The interest in research of keyword spotting has increased over the past

decade; from less than 15 proposed methods in 2007 to greater than 25 proposed

methods in 2015 [11]. This indicates the importance of keyword spotting to address

several applications such as document retrieval, on-line searching, automatic sorting

of handwritten mails, figures identification etc. [11]. In general, it is common con-

cern in all applications to develop robust feature extraction methods and improving
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keyword spotting performance. The state-of-art of feature extraction techniques can

be categorized into three main categories as in [146]:

� Geometric features: It captures global geometric information of word struc-

tures. Word-image profile is an example of geometric features that can be

matched using fixed metric such as Euclidean distance, or dynamic matching

using Dynamic Time Warping (DTW) approach[147].

� Shape features: This category can be divided into three groups; 1) Gradient,

structural and concavity (GSC), 2) Contour features, and 3) Shape coding.

GSC and Contour approaches compute word structural features as in [148, 149].

Then, word matching is carried out using the correlation between the keyword

and the template structures. On the other hand, shape-coding approach encodes

word strokes such as ascenders, descenders, diacritics etc. of both keyword query

and templates [138, 150]. Then, similarity scores are computed using DTW to

retrieve indexed documents [151].

� Bag-of-Features (BoF) : It is an active research area of keyword spotting

because of it is successful application [22]. This method borrows bag-of-words

model that is used in text document indexing to index images. In keyword

spotting, the method builds bag-of-visual-words(BoVW) representation. It rep-

resents each keyword or template-word by histogram of visual-word features.

Then, matching procedures can be used to compute similarity scores between

keyword-queries and templates.

In the following subsections, we present a brief review of KWS and guide the dis-
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cussion based on the types of queries. This is because query types are among the

state-of-art KWS design concerns [20, 152]. A summary of reviewed methods is given

in Table (2.3).

2.3.1 Query by example

In QBE, the KWS approach accepts a query image, then it finds matching word-

instances in the document-image archive to that given query-image. In general, this

approach requires no prior knowledge of a document’s language, or type. So, it can

be used to retrieve several document types. However, it is limited to in-vocabulary

search. A user has to find at least one occurrence of his desired keyword query man-

ually to initiate a keyword search and retrieve documents.

There are several examples of QBE in the literature, for instance, Quang et al. [139]

proposed QBE approach using word-shape invariants. The invariants are some proto-

types of clustered strokes that are determined by salient shape features. Even though

Quang’s method employed fast static matching, the method is language and writer

oriented because the construction of shape-invariants is relying on the writing style

and written language.

SIFT is used successfully in document retrieval applications [153]. In KWS, SIFT has

been employed with an optimal detection and matching scenarios. For instance, Sud-

holt et al. [140] proposed to construct BoF framework by performing pre-matching

of SIFT keypoints. First, their algorithm finds keypoints on a keyword-query image.

Then, it matches query keypoints to template keypoints. After that, the locations of
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fully matched keypoints are chosen to form visual vocabulary of the BoF.

The method of Konidaris et. al in [22] avoided document segmentation by spotting

possible keyword matches directly on the whole document. Their algorithm performs

matching of keyword-query interest points to detected interest points on the whole

document and determines possible candidate zones. Then, these document local zones

are extracted and compared to the given keyword image.

The direct application of SIFT for document retrieval is computationally expensive

due to processing large number of key points [154]. According to observations drawn

in [155], methods that are depending on gradient features have shown good perfor-

mance in trade off speed. The main reason behind this conclusion is the sensitivity

of SIFT approach to noise, which misleads SIFT to detect false interest points [7].

Historical documents usually incorporate large background noise that may result in

large number of false keypoints. Consequently, several studies have considered this

issue by introducing other feature detectors to find interest regions of text such as

blobs, lines, edges, and corners as in [155].

Various feature extraction methods have been introduced in the literature and com-

pared to the performance of SIFT. For instance, shape based descriptors such as

Fourier transform that was employed to describe keypoints detected by SIFT [155].

Examples of developing different feature extraction methods to describe detected in-

terest regions are reported in [141, 156]. In [141], a bio-inspired method is described

to detect interest zones. It uses Haar-like-features at different levels for word spot-

ting. Histogram of Gradients (HOG), Exemplar Support Vector Machines(SVM), and
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Fisher vector methods were integrated to produce better representation of the query

in an unsupervised way [156].

Shape and SIFT methods may have an issue of dynamic matching because of detecting

varying number of interest regions per keyword image. This issue impacts the perfor-

mance of a KWS system in terms of matching accuracy and speed. Usually, DWT and

dynamic matching algorithms are used to compute similarity scores between keywords

and templates in varying-feature representation. Varying-representation of features

is not desired in KWS because it requires additional KWS matching parameters. For

instance, consider a KWS system that extracts 200 to 500 keypoints from template-

images, and between 50 to 400 keypoints from keyword queries. Hence, the KWS

system may need to set thresholds for rejecting those keyword queries that have few

keypoints or may estimate a threshold for acceptance matching score.

Bag-of-features (BoF) has several advantages to the KWS systems, among the most

important ones; 1) it supports fixed-feature representation, 2) it allows fast matching

of a query image and template images, and 3) it avoids direct local keypoint match-

ing which is computationally expensive when dealing with large number of keypoints

and word instances[144]. In general, most of BoF techniques share four steps, sam-

pling, description, encoding and pooling. The sampling step is related to the size

and number of keyword snippets that are required to extract visual words. Then,

a description step is a feature extraction method to find better representations of

the current keyword-image regions. Once the method extracted features from each

keypoint, the BoF encodes them into visual words. Finally, the pooling step is a sig-
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nature of the bag which is generated by accumulating the weight vectors of encoded

visual words. These steps yield fixed length features for both keyword queries and

templates. Therefore, static and fast matching can be carried out to spot keywords.

Several studies have incorporated BoF framework using different feature extraction

methods. For instance, SIFT features are the default choice for BoF [144, 157].

Another study that models word-images by using combination of BoF and Hidden

Markov Model (HMM) in [23]. Their algorithm computes a histogram of quantized

local descriptors to feed the BoF-HMM and generate keywords’ models. However,

the algorithm requires to construct a model for each keyword query, which can be

considered as a drawback.

Recently, graph-based algorithms have emerged to address keyword spotting [11].

Wang et. al in [145] proposed a skeleton-based graphs with shape context as vertices.

In this method, graph construction from skeleton and shape context is time-consuming

step. Another method that suggested keypoint representation to construct tree graphs

and speedup spotting graph-matching is reported in [158]. For an individual keyword,

the algorithm constructs graph representation using key points as vertices and strokes

as edges. Then, it employs Graph Edit Distance (GED) for graph matching. More-

over, the algorithm has improved by changing GED with bipartite matching in [159].

Furthermore, as word images can be represented by a combination of local features,

a tree graph can be used to represent documents using word-images [160]. This al-

gorithm treats a document image as a container of words. It constructs a tree graph

for each document using local shape features that are extracted from the document
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words. Finally, matching is carried out using suffix trees to find matches.

2.3.2 Query by string

In QBS scenario, there are two types of query representation, pure-text query, or syn-

thesized query. In pure-text query, a user initiates string query, and the KWS uses

this string to spot matching zones on text-line images as in [21, 152, 161, 162]. On the

other hand, in synthesized query, a user initiates keyword queries by type-in text, or

choose from a list of predefined words. Then, a KWS system uses trained models for

font, writing-style, background, foreground, and noise to build possible word-image

instances of the typed-keyword [142, 163]. In fact, QBS in synthesized scenario is

similar to QBE. Although QBS with synthesized queries allows flexible searching, it

is challenging to generate keyword-query image instances in case of old documents

[139]. Moreover, both scenarios have issues with searching out-of-vocabulary [11].

It is noted that QBS may borrow several features from QBE methods, as it converts

the string query into an image prior to spotting process. In this sense, the keyword

spotting allows text queries as in [141]. Lee et. al [162] proposed QBS based KWS

for printed documents. They did not need to synthesize the keyword to convert text-

queries to images because font types and sizes are known.

Finally, graph-based methods are also employed in QBS-based spotting systems. In

graph-based QBS, text lines, paragraphs, and documents can be represented in cyclic

weighted directed Word-Graphs (WG). The WG encodes words along with their cor-

responding probabilistic and segmentation information. Often, the WG is built using
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handwritten text recognition (HTR) system and employing standard Viterbi decod-

ing as in [164]. An example of WG approach is described in [143].

In general, QBS has two scenarios; pure-text QBS and synthesized-based QBS. In

pure-text scenario, QBS approaches employ recognizers such as HMM. These algo-

rithms train a set of character HMMs using transcribed text-line images in off-line

mode. Then, in operation mode, these algorithms accept text-line image and string

query to produce matching scores [21]. Based on this score and pre-computed thresh-

old, KWS labels the text-line image as positive or negative match. In synthesized-

based scenario, the QBS algorithms add text-to-image synthesizing procedure. Then,

the spotting is carried out similar to QBE.

2.3.3 Hybrid query type

Recently, QBE and QBS are combined to produce new feature extraction method

called embedded features. The embedded features combine text attributes and image

features. Therefore, such KWS allows string and image based queries simultane-

ously. Examples of such integration can be found in [20, 161]. Aldvert et al. [161]

integrated textual and visual features for keyword spotting. The visual features are

represented by using bag-of-features framework powered by gradient features, and

textual features are formulated in terms of n-grams. Furthermore, Almazan et al.

[20] algorithm accepts both string and image keyword queries. Then, it extracts at-

tributes from the string-query and features from the image-query. After that, the

algorithm embeds them into d-dimensional binary space called Pyramidal Histogram
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Of Character (PHOC). PHOC is associated with a probabilistic model to indicate how

likely a word-image that contains specific character sequence may appear. Shape en-

coding can be categorized as hybrid approach. For instance, Lu et. al [138] proposed

a shape feature extraction that encodes a given image or string query using shape

characteristics. This method suites clean printed documents as it is sensitive to shape

deformations. Table 2.3 summarizes the reviewed keyword spotting techniques.

Table 2.3: Surveyed Keyword spotting methods

QTyp Ref.
Document Query

Lang
Typ Layout SEG. Qry Mtch Rslt

QBE

[155],2016 H UST Yes 8 Dyn mAP:77.18 Eng
[158],2016 H UST No 10 Dyn mAP:80.94 Eng
[22],2016 P ST No 100 Dyn mAP:83.6 Lang+
[165],2016 P ST No NA STx mAP:21.2 Eng
[24],2015 H ST Yes 9 STx mAP:70.41 Eng
[166],2015 H UST Yes 32 Dyn mAP:51.62 Eng
[139],2015 H ST/UST Yes 38 STx NA Lang+
[140],2015 H UST Yes NA STx mAP:56.93 Eng
[144],2015 both UST No NA STx mAP:90.38 Eng
[154],2015 H UST Yes NA STx NA Lang+
[167],2014 H UST Yes 30 Dyn mAP:62.02 Lang+
[23],2014 H UST No 100 STx mAP:30.1 Eng
[168],2014 H ST Yes NA STx mAP:63.34 Arb
[145],2014 H ST Yes NA Dyn mAP:17.5 Eng
[169],2013 H UST Yes 14 Dyn FS:96.04 Arb
[156],2012 H UST Yes NA STX mAP:58.5 Eng
[170],2012 H UST Yes NA STx mAP:84.00 Eng
[162],2012 H UST Yes NA Dyn Pr:71.5,<:46.9 Lang+
[171],2009 P UST Yes 10 Dyn mAP:81.5 Frn
[172],2009 H UST Yes NA Dyn mAP:79.14 Lang+
[160],2009 P ST No NA Dyn Pr:99.54 Eng
[173],2008 P ST Yes 10 Dyn mAP:71.7 Frn
[174],2008 both ST Yes NA STX Acc:77 Ltn
[9],2007 H UST Yes 298 Dyn Pr:74.2 Lang+

[175],2003 H UST Yes 15 Dyn mAP:71.56 Eng
- QTyp: Query type, SEG: Segmentation, Typ: Type, H: Handwritten, P: Printed, ST:
Structured Layout, UST: Unstructured Layout, Dyn: Dynamic, STX: Static, Pr: Precision,
<: Recall, FS: Fmeasure Rslt: Results, Qry.: Number of Queries, Mtch: Matching, Lang:
Language, Eng: English, Arb: Arabic, Bng: Bangla, Lang+: different languages
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QTyp Ref.
Document Query

Lang
Typ Layout SEG Qry Mtch Rslt

QBE
[147],2003 H UST Yes NA Dyn mAP:67.92 Eng
[137],1996 H UST Yes 1 Dyn NA Eng

QBS

[152],2017 H UST Yes NA Dyn mAP:73.12 Bng
[143],2015 H UST Yes NA STx mAP:71.15 Eng
[176],2015 H UST No NA Dyn mAP:76.5 Eng
[141],2015 H ST No NA Dyn Pr:77.5 Eng
[21],2012 H ST No NA STx mAP:88.15 Eng
[142],2007 H UST Yes 25 STX NA Ltn
[163],2006 P ST Yes NA Dyn Pr:100 Lang+

HYB

[150],2016 H UST Yes NA STx mAP:86.49 Eng
[20],2014 both UST Yes NA STx mAP:93.93 lang+
[161],2013 H ST Yes 1090 STx mAP:76.2 Eng
[138],2008 P ST Yes 137 STX FS:92.51 Eng

- QTyp: Query type, SEG: Segmentation, HYB: Hybrid, Typ: Type, H: Handwrit-
ten, P:Printed, ST:Structured Layout, UST:Unstructured Layout, Dyn: Dynamic,
STX:Static, Pr: Precision, FS: Fmeasure, Rslt: Results, Qry.: Number of Queries,
Mtch: Matching ,Lang: Language, Eng:English, Bng:Bangla, Ltn:Latin, lang+: differ-
ent languages

2.4 Performance Evaluation

In this section, we discuss the experimental settings and the evaluation metrics that

have been used to measure the performance of document layout analysis and spot-

ting algorithms. In general, the evaluation process of document layout analysis and

spotting algorithms consists of two aspects; used datasets and evaluation metrics.

2.4.1 Datasets

There are several datasets that can be used to evaluate document layout analysis

and spotting techniques. Table 2.4 lists benchmark datasets with their statistics. In

general, there are three types of document datasets based on document type; printed,

handwritten, and mixed (printed and handwritten) documents.
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Printed datasets are generally developed to test contemporary document analysis and

classification methods. An example of such dataset is developed by the University of

Washington (UW-3) [177]. It consists of 1600 skew corrected technical English arti-

cles. The ground-truth was manually defined by bounding box-coordinates for text,

and non-text zones. Each region is labeled by either text, math, table, or figure. The

dataset is suitable for page layout analysis of technical articles that targets text and

non-text objects. Another common dataset is published by Pattern Recognition &

Image Analysis (PRImA) Research Lab [178]. PRImA is considered a realistic gen-

eral document type dataset. The dataset was created essentially for the evaluation of

layout analysis methods that are targeting modern document styles of every day use

such as scanned memos, letters etc. It consists of 305 pages from various sources with

emphasis on technical publications and magazines. Recently, collaboration between

Boston University, Cairo University, and Electronics Research Institute developed

BCE-Arabic dataset [179]. The BCE-Arabic consists of 1833 printed pages collected

from 180 books. The ground-truth is generated manually using several tools such as

Pixlabeler [180], Groundtruthing Environment for Document Images (GEDI) [181],

and ”Document, Image, and Video Analysis, Document Image Analysis” (DIVADIA)

[182]. The dataset suites various analysis objectives such as text only analysis (1235

pages), text vs. images (383 pages), text vs. graphic elements (179 pages), text vs.

tables (24 pages), single or double column text vs. images (29 pages). Similarly, A

large dataset is developed under the project of IMProving ACcess to Text(IMPACT)

[183]. It contains 70,000 historical printed pages of 17th - 20th centuries. The data
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were collected from various books, newspapers, journals, and legal documents in 17

languages.

There are few handwritten-document datasets which are published for layout analy-

sis. For instance, The famous George Washington papers (GW20) dataset for key-

word spotting techniques consists of 20 pages segmented into text lines, words, and

word classes[184, 185]. Saint Gall [186] dataset consists of 60 pages from a medieval

manuscript written in Latin by single writer. Saint Gall dataset is divided into 20

pages for training, 30 pages for testing, and 10 are selected for validation. The Saint

Gall dataset is mainly used for keyword spotting and text line analysis. Parzival

dataset [186] consists of 47 pages written by three writers is developed for the same

purpose. The Parzival’s pages are written in German in the 13th century and con-

tains the epic poem Parzival by Wolfram Von Eschenbach. The dataset is divided

into 24 pages for training, 14 pages for testing, and two pages for validation. The

ground truth of both datasets (Saint Gall and Parzival) are extracted using DIVA-

DIA software. Another handwritten dataset called CENIP-UCCP was collected by

the Center of Image Processing Urdu Corpus Construction Project (CENIP-UCCP)

[187]. It contains 400 text pages written by 200 writers in Urdu. The ground-truth

is provided at the text-lines level to evaluate text-line analysis and segmentation-free

keyword spotting. Finally, a recent Arabic dataset (HADARA80P) is published for

keyword spotting[188]. It contains 80 pages extracted from a single book. The dataset

provides main content, text line, and word level ground truth.

Even though analyzing mixed documents of handwritten and printed content is sel-
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dom in the literature, a mixed dataset called LMP is designed for this purpose. The

LMP is developed by the laboratory for Language and Media Processing (LMP) [189].

It contains 203 pages; 109 in Arabic and 94 in English. It could be used for analyzing

complex document layouts to extract text, images, or signatures.

Several other subsets of datasets can be found within the ICDAR Page Segmentation

Competitions 2003-2011 that suites different analysis objectives [190].

Table 2.4: Document layout analysis and spotting datasets

DB Age
Data Statistics Ground Truth

Type Pub
Wrts Typ Doc. Lang. TL CC BB

BCE-Arabic-v1 CN NA P 1833 Arb. No No Yes LA [179],2016

HADARA80P HS 1 H 80 Arb Yes Yes Yes LA/SP [188],2014

UW-3 CN NA P 1600 Eng. Yes Yes Yes LA [177],2013

CENIP-UCCP CN 200 H 400 Urdu Yes No No LA [187],2012

LMP CN NA MX 203 Lang+ No No Yes LA [189],2010

PRImA CN NA P 305 Eng. Yes Yes Yes LA/SP [178],2009

Parzival HS 3 P 47 Gmn Yes No No LA/SP [186],2009

GW20 HS 1 H 20 Eng. Yes Yes Yes LA/SP [185],2007

Saint Gall HS 1 P 60 Latin Yes No No LA/SP [186],2006

IMPACT HS NA P 7K Lang+ No No Yes LA [183],2000

- CN: Contemporary, HS: Historical, P:Printed, H: Handwritten, LA: Layout Analysis, Sp: Spot-
ting NA: Not Applicable, Lang+: different languages, Pub: Publishing Year

2.4.2 Evaluation Metrics

Keyword spotting systems

In some cases, a formal evaluation metric called Fmeasure which is commonly used in

information retrieval (i.e., keyword spotting) is used in DLA to evaluate its perfor-

mance (see Table 2.5). The Fmeasure combines the precision and recall performance

values. It shows how precise is the retrieved results to recall correct elements out of
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all components. The Fmeasure is computed according to the following Equation:

Fmeasure = 2× Pr×<
Pr +<

(2.5)

where Pr is the precision of results, and it is computed as in Equation (2.6), and <

is the recall of results that is computed as in Equation (2.7).

Pr =
TP

TP + FP
(2.6)

where TP is the true positives that represent the correctly retrieved information, FP

is the false positives, which represents the incorrect retrieved information.

R =
TP

TP + FN
(2.7)

where FN is the false negatives that represent the incorrectly rejected information.

Document layout analysis

It is observed from the reviewed algorithms in Section 2.2 (especially the studies

published before 2000) that most of them are evaluated subjectively. This could be

attributed to the lack of benchmarking datasets [130] and unestablished segmenta-

tion evaluation metrics [81, 128]. A simple way to evaluate the performance of DLA

algorithm is via counting the ratio of correct segmented elements to all elements (i.e.,

accuracy rate). Element counting could be based on connected components as in

[135], words [109], or text-lines as in [102, 116, 124]. Similarly, the evaluation via
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counting correct segmented elements is named recognition rate as in [6, 89, 114].

There are efforts to standardize the DLA performance evaluation metrics by intro-

ducing DLA evaluation frameworks [191, 192, 195] . In this subsection, we describe

three DLA performance evaluation frameworks.

A. Framework 1:

In the competition of document layout segmentation [191], two-level evaluation

scenarios were considered; pixel or region levels. In the pixel level evaluation,

segmented pixels and ground-truth pixels are matched to compute the perfor-

mance score using the following equation:

MS (j) =
(T (Gj ∩Rj ∩ I))

(T ((Gj ∪Rj) ∩ I))
(2.8)

where MS is the matching score of a single element, T is a function to count

the matches of ground-truth region Gj to segmented region Rj and I is image

pixels.

On the second hand, region-based metric evaluates the segmentation results

based on the number of region matches. The performance is translated to an

Fmeasure using detection rate (DR) ≈ Pr and recognition rate (RR) ≈ R which

are computed using equations (2.9), and (2.10):

DR =
o2o

N
(2.9)

RR =
o2o

M
(2.10)
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where o2o is the number of one-to-one region matches, N is the count of ground

truth regions, and M is the count of the segmented regions. Then, the system

computes Fmeasure as in Equation (2.5).

B. Framework 2:

The performance of document layout analysis technique can be evaluated us-

ing weighted bipartite graph (i.e., pixel-correspondence graph) [192]. In this

method, each pixel either a segmented or a ground-truth element is considered

as a node. The edges are established only if there is an overlap between the

segmented and the ground-truth components over some pixels. Hence, a per-

fect matching is declared if the segmented pixels overlap the ground-truth, so

there is exactly one edge incident to each pixel. Using edge counts with their

significance, four types of matching errors can be identified:

– over-segmentation: more than one significant edge from ground-truth joins

segmented pixels.

– under-segmentation: more than one significant edge from segmented pixels

joins ground-truth.

– missed components: a number of ground-truth foreground pixels that

matches the background of segmented pixels.

– false alarms: a number of segmented foreground pixels that matches the

background or noise of ground-truth pixels.

These measurements are the metrics used to compare different DLA systems.
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C. Framework 3:

Combination between pixel and region based evaluation is commonly used in

the DLA evaluation [193, 194, 178]. Usually, there are two main issues in the

evaluation; correspondence, and type of comparison. In this framework, the

correspondence is based on segmented regions against ground-truth. Then, a

regional DLA score can be computed based on region foreground-pixels.

A segmentation result is considered successful if it completely overlaps only

one ground truth region. Therefore, errors are characterized based on PRImA

framework [195] to five types:

– Merge: A segmented region that overlaps more than one ground truth

region

– Split: A ground truth region is overlapped by more than one segmentation

region.

– Miss: A ground truth region that does not overlap any segmented region.

– Partial Miss (PMiss): A ground truth region that partially overlaps a

segmented region.

– False detection: A segmented region that overlaps no ground truth region.

In order to calculate the success rate of the segmentation SR, each error type

ER is first multiplied by the affected foreground pixels of the merged, missed,

partially missed, split, or falsely detected regions. Then, these error rates ER
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are used in calculating the success rate (Eq. 2.11) as described in [193]:

SR =

∑N
i=1 ωi∑N

i=1
ωi

1−ERi

(2.11)

where N is the number of error types, and ωi is the final weights that are

calculated of each error type as:

ωi =
(N − 1)ERi + 1

N
(2.12)

Pixel-based evaluation metric is an aggressive and rigid method to evaluate DLA

performance. In addition, it may not be suitable to evaluate large regions of historical

documents that requires error-tolerance of minor segmentation misses. In other words,

the segmentation of document images with severe degradation due to aging, writer-

style, lighting conditions, or ink-usage, should have some level of flexibility [196].

Table 2.5 lists examples of DLA quantitative results.
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Table 2.5: Examples of DLA evaluation metrics & results

Metric Ref Results (%)

Fmeasure

[131],2016 94.58
[95],2015 75.00
[17],2016 96.80
[6],2014 98.00

[117],2014 99.97
[1],2014 98.84

[119],2014 99.69
[118],2013 92.95
[94],2013 74.00
[197],2012 95.20
[93],2010 96.80
[25],2010 84.80
[136],2009 96.30

Recognition Rate

[95],2015 96.00
[98],2014 96.80
[105],2014 97.90
[88],2013 88.23
[97],2013 96.3
[132],2013 97.47
[102],2012 98.65
[116],2011 98.00
[115],2011 98.90
[123],2011 76.00
[99],2011 63.00
[114],2011 99.35
[89],2010 95.72
[100],2010 91.35
[135],2009 99.50
[124],2008 98.40
[92],2008 87.50
[96],2004 98.43
[109],2004 99.05
[121],2004 93.00
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Metric Ref Results(%)

Subjective

[130],2008 NA
[128],2003 NA
[107],1998 NA
[134],1997 NA
[81],1996 NA
[108],1995 NA
[126],1995 NA
[113],1991 NA
[85],1984 NA
[84],1982 NA

Other

[122],2015 98.66
[106],2014 5.49
[129],2014 57.80
[127],2011 7.50
[133],2010 70.78
[110],2009 78.30
[123],2011 98.00
[16],2007 86.30
[5],2005 95.00

[125],1995 0.37
-
Other: such as Recognition Error Rates, Detection Rate, Pre-

cision, Recall, Jaccard index.
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2.5 Discussions

2.5.1 Document layout analysis

Bottom-up techniques are dominant in the literature according to the reviewed meth-

ods (see Figure 2.12.(a)). Regardless of the required space and time complexity of

bottom-up strategy, its positive characteristics have attracted researchers to develop

more bottom-up methods. Its most important characteristic is the dynamic behavior.

Around 53% of the techniques according to our literature survey are bottom-up.

In general, the basic building block of bottom-up techniques is the connected com-

ponents. Many studies have proposed their techniques using connected components

instead of pixels because they are a group of related pixels with defined connectivity.

They are presented in almost all bottom-up techniques such as learning-based [90],

texture-based [88], SIFT [102], Voronoi [133] and Delaunay [199]. Figure 2.11 illus-

trates the relationship between these techniques.

The top-down strategy may work on less amount of data in comparison to bottom-up

strategy. For instance, the white space analysis locates spaces surrounding regions

while bottom-up technique may require components of text, non-text etc. Usually,

the top-down strategy works perfectly on Manhattan layouts, however requires clean

and skew corrected document images as in [14, 13, 124]. Yet, top-down strategy tech-

niques are important for DLA because most of the contemporary documents layouts

are Manhattan-based. The hybrid strategy has not been studied enough, based on

our reviewed literature (see Figure 2.12) around 8% of the population are hybrid

techniques. This reflects a need for studying hybrid analysis to address complex doc-
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ument layouts.

In general, there are three main observations on DLA literature; universal DLA, pre-

processing phase and document languages. Some studies claim that their techniques

are applicable to all types of document layouts, a claim that was not proved. Since

most of these studies were conducted on printed/typed document images which did

not include all ranges of document layouts. Therefore, a one-fits-all DLA solution is

not developed yet.

Secondly, the importance of the preprocessing phase including binarization, noise

removal, and de-skewing is not negligible. Several studies did not detail their prepro-

cessing phase and assumed input document images are preprocessed. Around 45% of

reviewed algorithms require binarization and de-skewing of a document image before

DLA.

Thirdly, the analysis might be different from one language to another. For example,

Figure 2.11: Bottom-up techniques relationship set-view
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(a) Strategy based distribution (b) Document Type Distribution

(c) Language based Distribution (d) Document Layout Distribution

Figure 2.12: Document layout analysis techniques statistics

a printed/typed English document can be broken down into columns, paragraphs,

text lines, words, connected components, or characters, while Arabic can be broken

down to the level of part of an Arabic words (PAW) which is, in general, more than

one character. In Arabic language, it would be very challenging to analyze at the

level of characters due to several reasons; Arabic alphabet has up to four shapes for a

letter based on its position in the word (beginning, middle, last, isolated), the writing

is cursive in typed and handwritten, it could have irregular spacing among PAWs,

and may have letter elongation. Therefore, some languages may need to be treated

differently in DLA.

Table 2.2 summarizes the literature review on DLA. Most of the studies addressed

contemporary documents. This is reasonable because modern life requires computer-
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ized offices, libraries, etc. So, documents are often digitized and because of their huge

amount, retrieving them back would need software facilities such as keyword spotting.

In recent years, the studies of DLA on handwritten documents are limited due to the

degradations in writing style. Currently, most of the documents are not handwritten.

Examples of the remaining handwritten sources are personal letters, notebooks, and

bank cheques. It is good to note that the handwritten documents listed in Table 2.2

are either historical documents or mixed documents. Second observation, most of the

work were conducted on English language documents which may be attributed to the

availability of benchmark datasets and/or the easy access to repositories of scientific

journals which are mostly written in English. This explains further why most of the

research have conducted experiments to analyze either multi-column or Manhattan

layouts 57% and 35% respectively of the reviewed studies. Figure 2.12 summarizes

the statistics of the previous studies.

2.5.2 Document Classification: Keyword spotting System

Keyword spotting is grown research field because of its importance as an alternative

approach to OCR for retrieving documents from digital archives. We focused on

query types and feature extraction methods of KWS because they are forming the

characteristics of these KWS systems. KWS has three main phases, namely, input

phase, feature extraction phase, and matching phase. Researchers tend to design

KWS techniques that provide easy to form queries such as strings [143]. However,

it affects the overall performance of the KWS system due to introducing new issues
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such as out-of-vocabulary spotting.

According to our literature review sample, hybrid-based KWS approach that exploits

the text and image of the queries to generate keyword queries is forming around 9.5%

of the population of the reviewed KWS work. This type of KWS systems might wit-

ness an increase in interest of studying its effects on the performance.

In general, 71.42% of the previous research have focused on QBE because it is intu-

itive choice for researchers and part of QBS queries are converted to images before

carrying out spotting tasks. This means several issues of the current QBE system

should be studied and addressed before adding an auxiliary task such as query syn-

thesizing step.

KWS speed is another factor that researchers took care of. It is the product of feature

design and matching strategies. It has been reported in several previous studies that

word spotting algorithms used fixed-length features have carried out word spotting

faster than variable-length features [24, 11].

Other KWS design factors such as document types, layouts, and analysis also con-

tributed to the overall KWS system performance. Basically, KWS was introduced as

an alternative to OCR to deal with handwritten, and degraded documents because

OCR does not preform well in these situations. It is observed in our literature review

that 76.2% of the population focused on handwritten documents. Moreover, 61.9%

of the studies considered unstructured documents. These two statistical figures in-

dicate that keyword spotting is used for complex document-image retrieval. Finally,

the KWS algorithms addressed English language more than other languages, around
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68.42% of the reviewed studies used English documents. This could be attributed

to availability benchmark datasets in English. Figure 2.13 summarize the reviewed

KWS algorithms based on the discussed factors.

Figure 2.13: Summary of KWS literature
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2.6 Conclusions

In this Chapter, we presented a comprehensive review of document layout analysis

and classification methods. This review consists of two main parts Document layout

analysis (DLA), and keyword spotting (i.e., document classification).

First, the general DLA framework includes preprocessing, analysis, and evaluation

phases. The preprocessing phase consists of three main tasks; binarization, skew

detection/correction, and algorithmic parameter estimation. There are several bina-

rization techniques that have been developed in the past years. They are divided into

global and local (i.e. adaptive). The Global binarization is suitable for document

images that have been scanned in a controlled environment. The adaptive binariza-

tion is appropriate for degraded document images. Binarization is avoided in some

techniques due to three reasons; 1) utilize color information in the analysis, 2) avoid

new binarization leftover noise, and/or 3) reduce the preprocessing time. Still, the

color-based document analysis approach is not studied as much as binary document

images.

Skew angle detection/correction is a broad research area. Like binarization, the skew

angle can be detected at global or local levels. The global level skew angle is found

over the document image, while the local skew angle is detected and corrected at the

region levels. It can be observed from the literature that skew detection/correction

techniques have different range of angle-correction that starts by small range ±15o

as in the cross-correlation approach to large angle-correction range as in the Radon

transform approach. Finally, most DLA algorithms set analysis parameters at the
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preprocessing phase. These parameters are of two types; static or dynamic. The

static parameters are fixed thresholds, which are set by the algorithm’s designers

based on pre-knowledge of processed documents. DLA algorithms with static param-

eters are usually fast and used in top-down strategy. On the other hand, the dynamic

parameters are concluded from document images automatically. Dynamic parameters

are often found in bottom-up techniques.

Document analysis can be carried out based on three strategies namely bottom-up,

top-down and hybrid. Most of the reviewed algorithms use either bottom-up or top-

down strategy. A single strategy could be insufficient to carry out robust document

analysis for complex layouts. Therefore, hybrid strategy may be used to address such

situation. According to our review, hybrid strategy has been studied less than other

strategies(around 10% of reviewed population).

There are three types of evaluation frameworks; pixel-based, graph-based, and region-

pixel-based. The pixel based evaluation is aggressive, because it assumes that all

ground-truth pixels are matched to the segmented pixels to be counted as correct

segmentation. On the other hand, both region and graph frameworks provide degree

of tolerance in the evaluation. Therefore, they may suitable to evaluate the perfor-

mance of DLA algorithms that analyze complex document layouts.

Document classification can be addressed using keyword spotting techniques by re-

trieving documents that have instances of a query-keyword. In the literature, keyword

spotting approach has various design options related to processed documents, and

query representation. Essentially, keyword spotting is designed to avoid handwritten
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document transcription by spotting and retrieving documents using keyword images

(i.e., retrieve by example). Then, word spotting techniques have evolved by allowing

QBS scenario, where a user can search digital archives using text. Both techniques

have strengths and weaknesses. For example, QBE techniques are considered faster

than QBS, but the search is limited to the existing keyword examples. On the other

hand, QBS allows arbitrary word searching and suffers from out-of-vocabulary spot-

ting issue. Therefore, current state-of-the-art research direction could be formulated

towards studying combination of both type of queries such as PHOC technique.

For the future, we believe that DLA algorithms should relax assumptions on page

layouts and develop generic algorithms. To approach this objective, adaptive and

learnable DLAs may be used. A Texture-based analysis could be strong choice to

carry out feature extraction from document images to support learnable algorithms.

Moreover, layout features can be learned automatically using deep learning algo-

rithms. Therefore, it is expected that deep learning will find its way in DLA.
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CHAPTER 3

ARABIC HISTORICAL

HANDWRITTEN MANUSCRIPT

DATASET

Benchmark datasets are important for the research community. It enables researchers

to compare their algorithms, it saves researchers from building their own data set and

hence reduce the time of development. Most of the available benchmarking historical

document datasets are in non-Arabic language. Although analysis algorithms should

be generic, they are language specific in most cases. For example, in historical En-

glish manuscripts such as GW20 dataset [185], the writing may be divided into single

words. However, in Arabic manuscripts as HADARA80P dataset [188], the writing,

in most cases cannot be divided into single words. Arabic handwriting can be sep-

arated into Part of Arabic Words (PAW). Moreover, it could be hard to separate

Arabic writing into exact PAWs due to handwritten ligatures, and touching-words
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(see Figure 3.1). Such handwritten issues also existed in other languages, however

they have been addressed in language-specific manner. Therefore, document analysis

and classification can be carried out differently from one language to another.

There is a lack in available historical Arabic datasets which is noticed by sev-

eral research groups. A new historical Arabic dataset has been published (e.g.

HADARA80P dataset [188]). However, the characteristics and objectives of the

proposed dataset are different from others. It includes pages from different

manuscripts(i.e., multi-writer dataset), and each page consists of main-content and

side-notes(i.e., various levels of text density).

In this chapter, we present our proposed Arabic Historical Handwritten Manuscript

(AHHM) dataset. In Section 3.1, a brief introduction and AHHM framework are

presented. AHHM dataset sources are outlined in Section 3.2. In Section 3.3, AHHM

data format and properties are described. Manuscript pages of AHHM dataset are

characterized by a list of keywords that are presented in Section 3.4. Final remarks

are given in Section 3.5.
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3.1 Introduction

Arabic historical manuscript analysis and classification has not been addressed equally

in research as other languages; one important reason is the lack of benchmark his-

torical Arabic datasets. Most of the available Arabic benchmark datasets are either

contemporary or non-Arabic. Examples of these datasets are discussed in Chapter 2.

Although digital libraries allow access to large amount of valuable ancient Arabic

manuscripts online, they miss automatic searching tools to speedup information re-

trieval. Therefore, developing such tools requires representative datasets.

Recently, there are two Arabic Handwritten document datasets that have been pub-

lished BCE-Arabic-v1, HADARA80P (discussed in Chapter 2). The BCE-Arabi-v1 is

a large dataset of contemporary Arabic documents. Therefore, it targets office-based

document analysis and classification such as memos, magazines, articles etc. [179].

HADARA80P dataset has similar objectives to AHHM dataset. It was developed with

a focus on keyword spotting and information retrieval [188]. Therefore, all pages in

Figure 3.1: Arabic word segmentation variations
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HADARA80P dataset are almost clean with main-content and rare side-note texts.

The pages are written by a single writer. All pages extracted from one source book

that preserves the handwriting style of all keywords. Thus, HADARA80P dataset

has missed addressing multi-writer text, which is needed to allow researchers test

various handwriting styles, font types, and different levels of text-density per page.

In addition, the proposed AHHM dataset is created to address the following concerns:

� Historical manuscript layout analysis: Each page, in AHHM, has a main-content

and several side-note blocks. Moreover, it offers different text-density per page.

Therefore, different document analysis algorithms can be evaluated using the

proposed AHHM.

� Information retrieval: AHHM pages are characterized by a list of 25 keywords.

The dataset’s words are extracted manually from the main content of each page.

Then, the selection of keywords is carried out based on the number of examples

per word.

� Multiple writers dataset: Manuscripts in AHHM dataset are written by at least

four writers, which makes the dataset more realistic for information retrieval.

Page samples in AHHM are extracted from four source books. Moreover, side

notes are written by different writers. Therefore, at least four writing-styles can

be tested by analysis and retrieval algorithms.

Table 3.3 presents a summary of AHHM dataset word breakdown. There are 20 words

on average extracted from each manuscript page.
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3.1.1 AHHM framework

The framework of AHHM dataset includes four phases; identify data sources, page

selection, binaraization, and segmentation. In the data-sources phase, we visited sev-

eral digital libraries and archives to gather manuscript samples. There are several

digital libraries that provide historical manuscripts on-line, but few of them are uti-

lized with document surfing software. In data source phase, we were able to identify

two main digital libraries to collect manuscript pages as described in Section 3.2.

Then, to match our research aims, we set two main rules to select a manuscript page;

1) A manuscript page should contain mostly text. 2) It should have some marginal

comments. The rules are set to create different dataset and to extend the available

ones.

There are several DLA techniques that require binarized manuscripts such as [1, 193].

Therefore, manuscript pages of AHHM dataset are provided in two versions, colored

and binary. Finally, the main content and keywords are manually segmented to form

AHHM ground truth. Figure 3.2 illustrates the AHHM framework phases.

3.2 AHHM Data Sources

The AHHM data is collected from two main digital libraries; Harvard Library[12],

and the State Library of Berlin (SLB)[200].

First, within the Islamic Heritage Project (IHP) of Harvard library, 280 Arabic

manuscripts, 50 maps, and more than 275 books gathered from Harvard’s library

and museum collections. In total, Harvard offers 156,000 of ancient materials (e.g.
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Figure 3.2: AHHM framework phases

manuscripts, maps etc) dated from the 10th to the 20th centuries. Secondly, SLB

offers diversity of ancient materials including Arabic historical manuscripts. Approx-

imately, SLB has 8,000 manuscripts that include text, miniatures, illustrations, and

drawings.

Unlike other digital libraries, these libraries allow non-commercial usage of

manuscripts, and there is no watermarking on these manuscript pages. Moreover,

the libraries are utilized with a software that allows visitors to read, surf, search, and

download pages. However, the search facility is not working on historical manuscripts

due to unavailable text. Therefore, visitors need to search through reading manuscript

pages (i.e., manual search). Figures 3.3.(a) and (b) show front-page of these softwares.

The developed AHHM dataset is based on four books. So, at least four writers have
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(a) Harvard Library

Preview Panal

Main Pages 

Menu  items 

Quick Page Access 

Previous Page Next Page 

(b) State of Berlin Library

Figure 3.3: Example of digital libraries software interface
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written the main content of these books because ancient manuscript may be written

by several writers [188]. Table 3.1 outline page samples taken from each source book.

Transliterated titles and author names of these books are listed below:

� Book 1: title ” ” which is transliterated to ”Kitab al-Taarruf

li-madhhab ahl al-tasawwuf” written by Ahmad ibn al-Husayn. The book is

categorized as Sufism doctrines book.

� Book 2: title ” ” which is transliterated to ”Kitab Bahr al-

kalam fi ilm al-tawhid” written by Nasafi, Maymun ibn Muhammad. The book

discusses Islamic doctrines.

� Book 3: title ” ” which is transliterated to ”Bughyat

al-talib fi marifat al-mafrud wa-al-wajib ” written by Jafar ibn Khadir Janaji.

The book discusses Islamic doctrines.

� Book 4: title ” ” which is transliterated to ”Kitab Dalaeil al-Khairat

” written by Muhammad ibn-Sulaiman Jazuli. The book is categorized as Su-

fism.

Pages are selected from each book based on their layout characteristics. The desired

layout should have main-content and some side-note texts. The amount of side-note

text may vary from one page to another to allow testing different levels of document

layout analysis algorithms. Figure 3.4 shows one sample from each book.
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Table 3.1: AHHM dataset resources

Book Date Source Pages Subject
Book 1 10th Cen. Harvard Smaple1 - Sample9 Sufism doctrines
Book 2 Undated Harvard Sample10 - Sample39 Islam doctrines
Book 3 1247 Hj Harvard Sample40 - Sample51 Islam doctrines
Book 4 1729 Gn SLB Smaple52 - Sample108 Sufism

- Hj: Hijri, Gn: Gregorian, Cen:Century

3.3 Data Format and Properties

The AHHM dataset consists of 108 page-images extracted from four books. The pages

are mostly text. There are no drawings, figures, or decorations. The amount of text

on each page vary based on the writing style. Moreover, images’ sizes are different.

Manuscript pages that are extracted from SLB [200] have resolutions between 277 to

290 dots per pixel (DPI). There are 57 pages extracted from one book (Book 4). Book4

pages contains 11 text lines per page on average. SLB pages make 52.7% of AHHM

dataset that allow evaluation of moderate-to-hard document analysis algorithms. For

complex document layout analysis and classification algorithms, Harvard manuscript

samples can be used. They form 47.2 % of the AHHM pages with different writing

styles, quality conditions, and image sizes. Harvard manuscript samples have fixed

resolution at 300 DPI. The writing in these manuscripts is dense and may suffer from

text-touching (see Figure 3.1). Number of text lines per page vary from one book

to another (24 text lines on average). This makes these manuscripts challenging for

document analysis. Figure 3.4 shows a page example taken from each book.
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(a) Sample 03 [12] (b) Sample 24 [12]

(c) Sample 44 [12] (d) Sample 83 [200]

Figure 3.4: AHHM manuscript samples
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3.3.1 Ground truth methodology

To prepare the ground truth of AHHM, we used MATLAB software to select polygon

points manually around the desired text-objects. A user is asked to mark main content

and 20 words on each manuscript page. The segmentation of a block requires at least

four polygon points. Based on the manuscript layout conditions, more polygon points

may be selected to mark some text blocks. Similarly, words may require at least three

polygon points for segmentation. The word segmentation could be harder than larger

blocks because of dense-text and text-touching issues. Figure 3.5 shows an example

Figure 3.5: Examples of block and word segmentation; a) Block segmentation, b)
Word segmentation
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Figure 3.6: Two examples of keywords that have different writing fonts, and styles,
a) KW06, b)KW24

of defining ”Sample35” ground truth. In Figure 3.5.(a) main content is defined by

locating eight points(red dots around main content), and a word is segmented by

selecting six points in Figure 3.5.(b). The text of Harvard manuscript-pages are

denser than SLB manuscript-pages (see Figure 3.4.(b) and (d)). Therefore, word

segmentation could be error prone and requires careful segmentation. Examples of

segmented words are shown in Figure 3.6.

3.3.2 Ground Truth Format

Each page is associated with an eXtensible Markup Language (XML) [201] file that

contains its ground truth. The selection of XML file format to store dataset ground-

truth has two main benefits; 1) It allows both segmentation, and segmentation-free
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document retrieval, 2) Both binarized and colored AHHM dataset can use the same

ground truth XML file.

Each XML file is divided into three main tags; image, page, and zone. The image tag

represents the actual size of a manuscript page. It stores the X-Y coordinates of the

image associated with the file ID, and data-source. The Page tag is used to store the

text blocks coordinates. It gives each block an ID such as ”Sample35 P1” as shown

in Figure 3.7. Finally, a zone tag is used to store word coordinates in each block. A

sample content of an XML file is shown in Figure 3.7.

3.4 Keywords

Besides providing the ground truth, the AHHM dataset includes 25 selected keywords.

Table 3.2 shows a reference word of each keyword.

The keywords can be used to develop information retrieval systems such as keyword

spotting. Unlike other datasets that allow using every word as a query to evaluate

word spotting algorithms[184]. Usually, these datasets were not designed for key-

word spotting, instead they were built for word recognition. For example, GW20

dataset was used in [161] with 1090 keywords, [21] with 105 keywords. It is obvious

that using all dataset keywords is computationally not feasible as reported in [188].

Moreover, using different number of keywords does not support comparing different

algorithms. We selected 25 keywords to make AHHM comparable to HADARA80P

dataset. Moreover, it extends HADARA80P dataset by introducing further challeng-

ing issues such as multi-writer and different writing styles. Figure 3.6 shows two
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Figure 3.7: XML ground truth example

keyword examples that have instances in different writing styles.

In total, AHHM dataset has 2135 extracted words from 108 manuscript pages. There

are 1061 keyword instances extracted from all manuscripts. This is because some

extracted words have been rejected due to segmentation errors.

The extracted keyword samples are shown in Table 3.2 as rectangular images. Each

keyword-image’s background is filled with median of all pixel colors present in the

keyword zone. Moreover, shown keywords in Table 3.2 are resized and modified, be-
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Table 3.2: AHHM selected keyword samples

Code TRANS Keyword NS Code TRANS Keyword NS

KW01 Aaliah 51 KW02 Al-Janah 9

KW03 Ketab 100 KW04 Allah 165

KW05 Allahm 61 KW06 Al-Salaah 29

KW07 Asslam 35 KW08 Dekr 18

KW09 Al-Gaiamah 6 KW10 Ibrahim 25

KW11 Al-Imam 21 KW12 Msalah 37

KW13 Masjed 7 KW14 Mohammed 230

KW15 Al-Quraan 10 KW16 Radhi 6

KW17 Rasoul 26 KW18 Rewaih 5

KW19 Salaah 11 KW20 Sali 45

KW21 Slm 65 KW22 Al-Sourah 7

KW23 SsL 49 KW24 Ta-ala 33

KW25 Youm 9
- TRANS: Transliteration, NS: Number of instances

cause extracted words have different sizes due to writing-styles and fonts sizes. Table

3.3 summarizes the content of the dataset, and indicates the number of words per

manuscript sample page.
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Table 3.3: AHHM Dataset Summary

Page NW Keywords Other Page NW Keywords Other
Sample01 20 20 0 Sample41 20 8 12
Sample02 19 13 6 Sample42 19 19 0
Sample03 20 16 4 Sample43 20 7 13
Sample04 20 15 5 Sample44 20 0 20
Sample05 20 14 6 Sample45 20 9 11
Sample06 18 15 3 Sample46 19 12 7
Sample07 20 15 5 Sample47 20 12 8
Sample08 20 17 3 Sample48 20 16 4
Sample09 18 13 5 Sample49 20 6 14
Sample10 20 11 9 Sample50 19 7 12
Sample11 20 9 11 Sample51 16 10 6
Sample12 20 10 10 Sample52 20 15 5
Sample13 20 6 14 Sample53 20 7 13
Sample14 20 16 4 Sample54 20 7 13
Sample15 20 14 6 Sample55 20 13 7
Sample16 20 18 2 Sample56 20 17 3
Sample17 20 19 1 Sample57 20 16 4
Sample18 20 4 16 Sample58 18 10 8
Sample19 20 5 15 Sample59 20 8 12
Sample20 20 12 8 Sample60 20 10 10
Sample21 20 15 5 Sample61 20 18 2
Sample22 20 8 12 Sample62 20 18 2
Sample23 20 10 10 Sample63 20 15 5
Sample24 20 12 8 Sample64 20 20 0
Sample25 20 6 14 Sample65 20 16 4
Sample26 20 16 4 Sample66 20 14 6
Sample27 19 8 11 Sample67 18 6 12
Sample28 20 12 8 Sample68 20 14 6
Sample29 20 14 6 Sample69 20 3 17
Sample30 20 13 7 Sample70 20 2 18
Sample31 20 10 10 Sample71 20 3 17
Sample32 20 4 16 Sample72 20 2 18
Sample33 20 9 11 Sample73 20 5 15
Sample34 20 11 9 Sample74 20 5 15
Sample35 20 7 13 Sample75 20 2 18
Sample36 20 14 6 Sample76 20 11 9
Sample37 20 13 7 Sample77 20 5 15
Sample38 20 13 7 Sample78 20 7 13
Sample39 20 10 10 Sample79 20 6 14
Sample40 20 11 9 Sample80 20 7 13

- NW.: Total number of extracted words
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Page NW Keywords Other Page NW Keywords Other
Sample81 19 8 11 Sample95 19 17 2
Sample82 20 2 18 Sample96 20 10 10
Sample83 19 9 10 Sample97 20 10 10
Sample84 19 5 14 Sample98 20 05 15
Sample85 20 9 11 Sample99 20 6 14
Sample86 18 8 10 Sample100 19 4 15
Sample87 20 4 16 Sample101 18 1 17
Sample88 20 10 10 Sample102 20 7 13
Sample89 20 1 19 Sample103 20 0 20
Sample90 20 5 15 Sample104 20 2 18
Sample91 20 16 4 Sample105 20 6 14
Sample92 20 15 5 Sample106 20 6 14
Sample93 20 20 0 Sample107 20 14 6
Sample94 20 8 12 Sample108 20 7 13

- NW: Total number of extracted words

3.5 Conclusions

In this Chapter, we present an Arabic Historical Handwritten Manuscript (AHHM)

dataset. The dataset consists of 108 manuscript pages dated from 10th to 18th cen-

turies. AHHM manuscript pages are selected from different books to allow studying

the effects of multi-writer, writing-styles, and multi-font scenarios on document lay-

out analysis, classification, and retrieval techniques.

AHHM dataset offers two types of manuscripts; colored and binary. It can be used

in segmentation or segmentation-free document classification and retrieval scenarios.

Its ground truth is represented by XML files to allow algorithms free adaptation. Fi-

nally, AHHM dataset contains 108 extracted main, and side note blocks. In addition,

it includes 2135 extracted word instances from all pages, and 25 words are selected

as keywords.
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CHAPTER 4

A HYBRID LAYOUT ANALYSIS

FOR ARABIC HISTORICAL

MANUSCRIPTS

A vast number of historical manuscripts is available in digital archives that require

automatic categorization, indexing, and retrieval. Such applications depend heavily

on the quality of the layout analysis process. Naturally, historical manuscripts possess

complex and challenging layouts due to aging, free-writing style, marginal notes, or-

namentation, ink-bleeding, etc. Therefore, the quality of extracting the main content

from a manuscript page is of great importance for these applications.

In this chapter, a learning-free hybrid analysis approach is presented. It is designed

to address mostly-text historical manuscripts and locates main content region. To

achieve this target, the proposed algorithm integrates bottom-up and top-down anal-

yses.
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A general framework of the algorithm is presented in 4.1. The algorithm starts by pre-

processing manuscripts, which is described in Section 4.2. In Section 4.3, manuscript

characterization phase is outlined. The main aim of this step is to estimate initial

coordinates of main content region. In Section 4.4, we describe features and param-

eters extraction procedure. The hybrid analysis is presented in Section 4.5. Finally,

a summary and final remarks of the proposed approach is given in Section 4.6

4.1 Historical Manuscript Analysis Framework

Document layout analysis is an essential research field of document understanding

systems for decades [11], [202]. DLA methods (at early stages) were conducted on

simple and regular document layouts. Therefore, it was considered as a sub-task

of document understanding systems [84]. Eventually, researchers have encountered

more complex and diverse document layouts that require robust DLA algorithms.

Consequently, DLA has been recognized as a separate area of research [203].

Complex document layouts have many issues such as using multi-writing styles, qual-

ity degradation, lighting conditions, blocks organizations etc. In other words, a

complex layout is a structure that has arbitrary blocks. The handwritten histori-

cal manuscripts are often considered to have complex layouts [204]. Usually, these

documents are not following unique standard writing style, font type, or font size.

Moreover, these documents use irregular spacing among words, text-lines, or para-

graphs. In addition, they may contain marginal text (i.e., side-notes), and suffer from

aging, ink bleeding, text degradation, etc. These challenging factors have made the
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(a) AHHM dataaset Samples

(b) Bukhari et. al [197] dataset

Figure 4.1: Manuscript samples

analysis of historical manuscripts a hard task.

Our research objective is to analyze historical manuscripts that contain mostly text

content. It could be written by different writers, in free writing style, and with dense

text (some examples are shown in Figure 4.1). The proposed algorithm has two out-

comes; 1) Fast whitespace analysis for handwritten documents using an anisotropic

diffusion filtering (ADF) to initially locate main content. To-our-knowledge, white

space analysis has not been employed in analyzing handwritten document layouts [25];

2) A hybrid technique that integrates global and local analysis to extract manuscript
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Figure 4.2: General overview of the proposed algorithm.

main content. A general flowchart of the proposed hybrid algorithm is illustrated in

Figure 4.2.

4.2 Preprocessing

The preprocessing phase consists of two tasks; manuscript binarization, and noise

removal. These two steps are presented in the following subsections.
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(a) Part of manuscript page

(b) Binary result

Figure 4.3: Binarization example

4.2.1 Binarization

Although binarization may yield undesired artifacts on the binary image, it reduces

analysis time on subsequent phases. The document analysis on binary images will

work only on one layer of a manuscript image. In addition, it reduces computation

range of values from 256 grayscale intensities to two values [0 or 1]. Moreover, the bi-

narization may automatically address some issues such as show-through, unbalanced

illumination, and shadows that could disturb manuscript’s textual content. Figure

4.3 illustrates an example of binarization.

As discussed in Chapter 2, there are two main types of binarization methods; global

and local. Due to manuscript degradations, global binarization may produce noise or

affect the text regions because of the local background variations. Figure 4.4.(b) shows
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a global binrization result using Otsu method on part of the historical manuscript

page shown in 4.4.(a). It can be observed that the amount of binarization leftover

(i.e. noise) is larger in Figure 4.4.(b) than the noise produced by contrast-based local

binarization in Figure 4.4.(d). Although contrast-based local binarization produces

less noise (see Figures 4.4.(d)), it may affect the text content as shown in Figure

4.4.(c). This effect is due to computing dynamic thresholds from each image-block

that makes the binaization behaves differently on each block and produces unaccepted

results. In this case (Figure 4.4.(c)), the binarization removes parts of page’s text.

To solve this issue, dynamic binarization thresholds should be normalized to reduce

this effect as suggested by Sauvola and Pietikainen in [29]. Figure 4.4.(d) shows an

example of the Sauvola and Pietikainen binarization result.

(a) Part of a manuscript page

(b) Otsu Binarization (Global) [27]

(c) Adaptive Binarization (Local) [37]

(d) Sauvola & Pietikainen Binarization (Local) [29]

Figure 4.4: Global and Local Binarization Comparison
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In this work, we adopted Sauvola and Pietikainen binarization method [29]. Sauvola’s

algorithm performs the binarization locally based on image block statistics. There-

fore, each pixel is classified as foreground or background based on its neighborhood

characteristics. Sauvola’s method is a modified version of Niblack [28]. It normalizes

the standard deviation with its dynamic range and makes the local mean contribute

less in the binarization equation (4.1). Thus, local illuminations are treated adap-

tively.

B(x, y) = µ(x+ d, y + d)×
(

1 + k
(
σ(x+d,y+d)

DR
− 1
))

(4.1)

where µ and σ are the mean and standard deviation of the region (x, y), k is a small

constant value computed empirically, DR is the dynamic range of the standard devi-

ation.

4.2.2 Noise removal

The main aim of the noise removal step is to make sure that the subsequent analysis

will consider significant PAWs in the analysis. Therefore, small elements such as di-

acritics, dots, commas, and binarization’s leftover artifacts are considered as noise.

The noise removal is based on the geometric characteristics of the connected compo-

nents (CC). Let Ca, and Cavg be CC’s area and the average area respectively. The

average area is computed as:

Cavg =
1

n

n∑
i=1

Ci
a
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where n is number of significant CCs in a manuscript page. The cleaned image is

computed by removing all relevant small CCs that are less than the Cavg as:

Ic =


Ca ∈ Ic if Ca ≥ Cavg

Ca /∈ Ic Otherwise

where Ic is the cleaned manuscript image.

4.3 Manuscript characterization

Manuscript characterization involves fast detection of main-content region, and set-

ting initial analysis parameters. The main-content region detection utilizes an adap-

tive whitespace analysis based on ADF and static whitespace localization (SWL).

The algorithm generates two masks of the main-content region using ADF and SWL.

Then, an integration of the masks is carried out to define an initial main-content

region.

4.3.1 Adaptive main-content localization

Adaptive localization of main-content region is an initial step in estimating main-

content writing characteristics. It helps in exposing the difference between main-

content text and other text that could be found in a manuscript page. The adaptive

main-content localization utilizes whitespace analysis using two techniques ADF and

SWL.
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4.3.2 Whitespace localization using anisotropic diffusion

Traditional whitespace analysis is usually applied on type-written document layout

analysis such as [193, 205, 206, 207]. In traditional whitespace analysis, the segmen-

tation is realized by detecting maximal whitespace rectangles that are located be-

tween different layout blocks such as text-columns, figures etc. [208]. Unlike previous

studies, we utilize the whitespace analysis on handwritten historical manuscripts to

extract the main-content region. The major whitespaces that separates main content

are either long horizontally or vertically. By long we mean the major whitespace may

not be rectangular shaped.The whitespace should have width or height of at least one

third the length of the image Ic width or height respectively. These large whitespaces

are located at the transition area between the main-content and side-notes. There-

fore, small whitespaces that usually appear within the main-content or side-note areas

can be avoided. This is a challenging task because historical manuscripts are mostly

text with dense and unconstrained written text. Moreover, side-notes text may touch

the main-content text, i.e., text touching issue (see Figure 4.1). To overcome this

problem, an anisotropic diffusion filtering is applied on manuscript images to empha-

size foreground/background separation and boosts the segmentation process. Then,

to locate the major whitespace gaps between main-content and side-note regions, the

algorithm computes the second derivative of the ADF response.

The standard form of an oriented anisotropic Gaussian filter is written as:

g(u,v,σu,σv ,θ) =
1√

2πσu
e

(
− u2

2σ2u

)
∗ 1√

2πσv
e

(
− v2

2σ2v

)
(4.2)
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where ∗ is the convolution, σu and σv are the standard deviations of both frequency

components u and v that are representing the direction of the angle θ and the or-

thogonal to θ respectively. They are defined in the following equation:

 u

v

 =

 cos θ sin θ

− sin θ cos θ


 x

y


where the u-axis being in the direction of θ, and the v-axis being orthogonal to θ .

To make the application faster, a 2d-filter can be separated into two filters. In other

words, it can be rearranged into a filter along x-direction, followed by another along

a line t = x. cosϕ+ y. sinϕ.

g(x,y,σu,σv ,θ) =
1√

2πσx
e

(
− x2

2σ2x

)
∗ 1√

2πσϕ
e

(
− t2

2σ2ϕ

)
(4.3)

with the impulse response as:

g(x,y;σx,σy ,θ) = 1
2πσxσy

.e

− 1
2

( x−ytan θ )
2

σ2x
+

( y
sin θ )

2

σ2y



To yield the decomposition, Equation (4.2) can be written as:

g(x,y;σu,σv,θ) =

1
2πσuσv

.e

(
− 1

2

(
(x cos θ+y sin θ)2

σ2u
+ (−x sin θ+y cos θ)2

σ2v

)) (4.4)
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Expanding the quadratic terms in Equation (4.4) yields the following system of equa-

tions:

x2

y2
= x2

cos2 θ

σ2
u

+ x2
sin2 θ

σ2
v

(4.5)

y2

σ2
x tan2 θ

+
y2

σ2
y sin2 θ

= y2
cos2 θ

σ2
v

+ y2
sin2 θ

σ2
u

(4.6)

− 2xy

σ2
x tan θ

= 2xy cos θ sin θ

(
1

σ2
u

− 1

σ2
v

)
(4.7)

By solving equations (4.5, 4.6 and 4.7) it yields the decomposition of the filter along

x-axis with standard deviation:

σx =
σuσv√

σ2
v cos2 θ + σ2

u sin2 θ

and along the line t : y − x. tan θ = 0, with standard deviation:

σy =
1

sin θ

√
σ2
v cos2 θ + σ2

u sin2 θ

and intercept:

tan θ =
σ2
v cos2 θ + σ2

u sin2 θ

(σ2
u − σ2

v) cos θ sin θ

hence, the filter in Equation 4.2 can be separated into two 1-D Gaussian filters at

arbitrary orientation ϕ as in Equation 4.3. In other words, to perform ADF, a 1-d

Gaussian filter is convolved with an image on the x-direction followed by an applica-

tion of a 1-d Gaussian filter in the ϕ-direction [230].
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The ADF boosts the separation of foreground/background regions by steering the

filter locally against text-strokes in some specific directions. In this sense, the ADF

scale parameters should be set based on measurements of text strokes and gaps of a

manuscript. Therefore, widths and heights of main-content words, PAWs, or charac-

ters can be used to estimate the proper ADF scale parameters.

For the vertical direction of ADF, the scale can be computed based on the average

whitespace gaps of text lines. Hence, the Sx and Sy are computed as follow:

Sx = α× µHPAW + β × µLgaps (4.8)

where µHPAW is the average height of the main-content dominant PAWs, µLgaps is

the average gap height between text lines, and α, β are two weights to reduce the

variability effect of PAWs hight and vertical gaps,

Sy = α× µWPAW
+ β × µPAWgaps

where µWPAW
, and µPAWgaps are the average width of the main-content dominant

PAWs and gaps respectively.

The ADF is applied on a range of angles [10o ± π
2
] and [10o ± (π × 2)] for vertical

and horizontal directions respectively. The application of ADF at this range may

boost the vertical and horizontal whitespaces of main-content region against other

document regions.

Arabic language is written horizontally from right to left. In historical Arabic
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manuscripts, written text-notes appear on the margin space around the main-content.

In case of dense written notes, the main-content and side-notes may not be clearly

separated. Because some text components of side-notes and main-content might be

touching at the boundary region. Figure 4.1 shows manuscript pages with differ-

ent levels of dense text. First example of Figure 4.1.(b) represents a situation of a

manuscript that has its left-side of the main-content region touches the side-note.

Due to this issue, whitespace analysis may not be suitable for finding a separating

path between the main-content and side-notes. Hence, in this situation, ADF may

not be successful to find clear cut whitespace at the left-side of the main-content re-

gion. However, still some clues of main-content region left-boundary can be estimated

from its top and bottom boundaries. In general, left and right sides of main-content

region are more exposed to text-touching issue than top and bottom boundaries. This

could be attributed to the horizontal writing style of Arabic language, and writers’

behavior.

Since left and right boundaries of the main-content region are difficult to be detected,

we discuss ADF vertical response with some illustrative examples (see Figure 4.5,

first row). Moreover, the effects of ADF scale parameter Sx has been analyzed.

The white shapes in Figure 4.5 (first row) represent text entities in a binary image.

Figure 4.5 column (a) shows a long component (in white color) that represents very

dense handwriting of the main-content where the text line gaps are very small. On

one hand, the max response of the ADF using an estimated Sx from equation (4.8)

is showed in Figure 4.5.(a) second row. The ADF response(in magenta color), which
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appears on the left and right sides of the middle long-component, represents major

whitespace locations. However, this major-whitespace leaves wide black gap between

the long-component and the ADF response. These black gaps are safe zones that the

major-whitespace leaves to allow safe segmentation. The safe zone width is related

to the ADF scale Sx parameter. In this example, the safe zone is wide because the

estimated scale is large Sx ≈ 153 pixels.

The safe zone is important to define the main-content boundary that does not inter-

fere with other regions. The desired safe zone should be small enough to surround

the main-content region. Therefore, we fix Sx = 15 pixels in the second experiment

to investigate the effects of the scale on ADF response as shown in Figure 4.5.(a)

third row. The safe zones are shrunk and the ADF response appears very close to

Figure 4.5: ADF illustration on different simulated text situations; a) Touching text
lines, b) Normal text lines, c) Regular spaced, not aligned text lines, d) Irregular
aligned and spaced text lines, e) Scattered text components

111



the long-component.

As the first example may not be realistic that all text lines are touching each other(i.e.,

extreme example). The behavior of ADF is investigated further in other normal sit-

uations.

The ADF is applied on several simulated situations where vertical gaps are getting

larger as shown in Figure 4.5.(b), as well as white components may not be vertically

aligned as in Figures 4.5.(c) and 4.5.(d). The results of these illustrative experiments

show that ADF max responses can be preserved along the perpendicular direction

of the strong gradient between the edges of foreground and background. Moreover,

the estimated Sx based on white components and gaps resulted in better whitespace

localization (see Figure 4.5.(b),(c), and(d) second row). Hence, the ADF maximum

response can be used to indicate a whitespace separator between different regions in

such similar situations.

It is very challenging to find the main content in a situation where the main-content

and side-note texts are similar and scattered heterogeneously all over a manuscript

page. Figure 4.5.(e) shows the second extreme situation. The ADF filtering shows

no major response as in the previous examples. In this situation, the algorithm may

conclude that all text components are of one type. To explain this effect further,

larger white components are added to the same example to illustrate two types of

text situation as shown in Figure 4.6.(a). In this case, the ADF produces major

responses that can be used to separate these two types of text (see Figure 4.6.(b)

and (c)). Moreover, the results in Figure 4.6.(b) is more suitable for main content

112



Figure 4.6: An example of two types of white components, a) simulated input-text,
b) ADF response using estimated Sx, c) ADF response with Fixed scale Sx = 15.

separation due to estimating the scale objectively.

Figure 4.7 depicts the pipeline of the initial main-content detection using ADF. The

detection pipeline starts by computing vertical and horizontal ADF responses (see

Figure 4.7.(b) first row and second row respectively). In Figure 4.7.(c), these results

are thresholded to remove weak ADF responses. Then, an integration step is carried

out to combine both responses. In this step, the algorithm finds clues for estimating

the hight of the main-content region by locating the longest whitespace responses on

the top and bottom of the page. Similarly, it estimates the width of the main-content

region by locating the longest whitespace responses on the left and right sides of the

page. So, any top or bottom whitespaces that exceed the estimated width of main

content region are cleaned, and similarly for left and right whitespaces in relation to

the estimated hight of main content region. Formally, Let V mask,Hmask be the

ADF vertical and horizontal responses respectively. The integrated mask Cmask is
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Figure 4.7: ADF main-content detection pipeline. a) An input manuscript; b) Vertical
and horizontal responses; c) Removing weak response; d) Integrating vertical and
horizontal preprocessed responses; e) Adjust left and right responses based on top
and bottom clues and vice versa if needed; f) Generate ADF mask; g) Main-content
result
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generated as follows:

Cmask =



Hmaski ∈ Cmask if min(Wv) ≤ Hmaski ≤ max(Wv)

V maski ∈ Cmask if min(Wh) ≤ V maski ≤ max(Wh)

Hmaski, V maski /∈ Cmask Otherwise

where Wh is a major whitespace coordinates of ADF horizontal response, Wv is major

whitespace coordinates of ADF vertical response, min(.) and max(.) locate the coor-

dinates of the major whitespace responses. Figure 4.7.(e-f) show the final generated

ADF mask.

4.3.3 Static whitespace localization

The ADF whitespace analysis may fail to find the main-content boundary due to the

situation discussed in the previous section and shown in Figure 4.5.(e). Therefore,

our initial main-content boundary detection includes SWL. The SWL scans through

a manuscript page vertically and horizontally. It marks gaps that are greater than a

predefined threshold ωs as whitespace. The scans are on regular fixed intervals (s =

ωd). The aim of SWL scans are to generate whitespace masks that represent general

boundaries of the in-between regions horizontally and vertically. Figure 4.8 illustrates

an example of the generated SWL masks. The integration of SWL horizontal and

vertical masks is computed by multiplying the vertical and horizontal masks.
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Figure 4.8: Static whitespace mask generator; a) An input manuscript, b) SWL scans;
vertical (first row), and horizontal(second row), c) SWL outputs, d) Cleaned outputs,
e) Combined vertical and horizontal outputs.
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4.3.4 ADF and SWL integration

The resultant masks of both ADF and SWL are integrated to define the main-content

initial region. The integration process is considered only if the ADF fails to define the

main-content region due to the limitations discussed previously. The failure situation

is detected if the ADF responses have no maximum peaks.

Comparing the two techniques, we found that ADF technique is robust at detecting

horizontal whitespaces, while SWL is good at detecting vertical whitespaces. This

observation is exploited to combine both masks and generate a robust integrated

mask. Figure 4.9.(b) shows both vertical and horizontal responses of SWL and ADF

respectively. The SWL vertical response helps in defining the width of the mask while

the horizontal response of ADF is defining the hight of the mask.

4.4 Feature Extraction

Once the initial main-content region is identified, a set of essential handwriting charac-

teristics is extracted. The writing characteristics are mainly geometric measurements.

The algorithm randomly selects eight frames over the initial main-content region. A

frame wf has a square shape and its size is calculated so that at least two text lines

can fit inside it. The length of each side is computed as follows:

wf = (α×Wp) + (β ×Gl) (4.9)
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Figure 4.9: An integration mask using ADF and SWL

where α and β are two free parameters set to three and four respectively to create a

frame of 3 times the average PWA width Wp and 4 times the average vertical gaps

Gl between PAWs.

4.4.1 Geometric features

Eight geometric features are extracted from each frame as follows:

� Average height:

This feature measures vertical stroke style of the main-content text. In com-

parison to side-notes, the vertical strokes of the side-notes are smaller due to

restricted writing-space. Therefore, PAWs’ heights can help in distinguishing

118



main-content vertical strokes from side-notes.

� Average area:

Since, some side-notes text are written vertically, the height feature alone may

not be enough to distinguish main-content elements from side-notes. Therefore,

a width feature of these elements is as important as the hight. To handle this

confusion and increase the understanding of main-content characteristics, the

average area of PAWs is considered as a feature point.

� Foreground to background ratio:

This feature estimates how foreground pixels are distributed against background

pixels in the main-content region. The large writing style of main-content leaves

large gaps around, which minimizes the foreground to background ratio.

� Pixel density:

Computes how dense is the foreground pixels at a given frame. It simply counts

the number of foreground pixels located in a given frame. This feature and the

foreground to background ratio feature indicate the density of written text in

the main-content region.

� Average horizontal gaps:

This feature estimates the regular horizontal spacing among the main-content’s

PAWs. Although the text in the main-content is handwritten, still a writer can

maintain reasonable spacing between words. Usually, the main-content horizon-

tal spacing differs from side-note spacing due to writing conditions and style.
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In the main-content, a writer has the whole page to start writing comfortably,

while in side-notes a writer has a small area to write.

� Average text line gap:

The text-line gaps have some regularity in the main-content region than side-

notes. Therefore, the average vertical whitespace between text-lines is consid-

ered as a region feature.

� Distance transform(DT):

It computes a binary-to-gray value of each foreground pixel to its nearest neigh-

bor foreground pixel. So, for each foreground pixel FPi, the DT finds a linear

location of its closest foreground pixel FPj, and stores FPj location as a pixel

value in FPi [209]. In other words, it transforms a binary FPi value to a location

value ∈ R. This feature computes the transformed intensity of the main-content

text. Figure 4.10.a shows DT response of the main-content text in comparison

to DT response of side-notes text in Figure 4.10.a-b.

� Text orientation:

The estimation of the main-content text orientation is computed locally. For

each frame, all PAWs centroids are determined. Then, the algorithm finds the

right neighbors of each PAW. Let vnm a vector between two neighboring PAWs

n and m, and vh is a reference horizontal vector on the x-axis. The orientation
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Figure 4.10: Distance Transform response. a) A patch taken from Main-content
region; b) A patch taken from side-notes left part

is estimated by computing the angle between the two vectors as follows:

θ = cos−1
(

vh • vnm
‖vh‖ × ‖vnm‖

)

where • is the dot product of two vectors and ‖.‖ is the magnitude of the vectors.

4.5 Moving window analysis

The segmentation of the main-content text has two main phases; global analysis that

coarsely defines an initial main-content region, and local analysis using a moving-
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window approach. The moving window uses dynamic sizes that are estimated using

Equation 4.9. Algorithm (1) describes the moving window analysis main steps. The

moving window analysis is detailed in the following sub-sections.

4.5.1 Feature based main-content segmentation

The initial main-content detection is error prone, it may fail to find the left or right

boundaries due to an absence of enough whitespace gaps between the main-content

and side-note regions. In this case, neither SWL nor ADF can yield perfect mask of

the main-content region. However, the main-content characteristics can be extracted

from the estimated main-content region.

To address this issue, local analysis using moving windows is employed to define the

manuscript main content. Three windows centered at the initial main-content region

are moved towards left, right, up, and down directions of a manuscript page. The

algorithm stops the moving windows analysis at a particular direction if two of the

windows have met stop conditions.

There are four conditions to stop a moving-window analysis, namely; blank-zone,

off-boundary, transition-zone, or different-zone. Figure 4.11 shows an example of

each stopping condition. A blank-zone and off-boundary conditions are intuitive stop

conditions. Once a moving window steps on a large empty background, or reaches

borders of a manuscript page it must be stopped. In other words, the processed

manuscript page must contain only main-content text in that particular direction.

As features are extracted from the windows on each move, a score CSi is computed
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Figure 4.11: Moving Window stop conditions.

by matching these features of the current windows with the initial predefined features

of the main-content region using Euclidean distance. If the score CSi > th1, then,

the current moving window i is marked as a stop window because of a reasonable

change in its characteristics compared to the predefined characteristics of the main-

content region. Similarly, for the last stop condition, but it uses another pre-computed

threshold th2. Thresholds th1 and th2 are empirically computed in the initial step of

manuscript characterization.

Illustrative stop windows are shown in Figure 4.11. An example of moving window

analysis on a manuscript page is shown in Figure 4.12.(a). In this example, only the

right moving-window has stopped because of a blank-zone condition, and for other

directions, the moving windows are stopped because of the transition-zone condition.
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Figure 4.12: Main-content region boundary detection; a) Moving stops by different
conditions, b) Stop window correction

4.5.2 Local main-content/side-note analysis

Once moving windows reach stop conditions, the algorithm finds possible boundary

cuts that separates main content from side notes. The off-boundary, and blank-zone

stop conditions are corrected by moving the stop windows back and return coordi-

nates of boundary foreground-pixel locations. In other words, if the stop window is

located on the right direction, then, the algorithm returns the rightmost foreground-

pixel coordinates. Similar procedure is carried out for other directions.

In Figure 4.12.(a), left, upper, and lower stop windows are stopped because of
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Algorithm 1 Main-content boundary detection

Input: Feature vector Fini and manuscript Ic Output: Four stop windows

1: procedure Moving Wnidow Analysis
2: Loop for directions (Right, Left, Up and Down):
3: Loop while not(off-boundary)
4: Winfeati ←− getNextWindow(Ic, step)
5: score ←− Euclidean (Winfeat, Fini)
6: if ( score > th1 ) then
7: FlagTransition ←− True
8: return StopWin ←− Change in characteristics
9: else

10: if (score > th2) then
11: FlagDifferent ←− True
12: return StopWin ←− Different characteristics
13: else
14: if (score = φ) then
15: FlagBlank ←− True
16: return StopWin ←− Blank-zone

17: Loop while (until off-boundary)
18: Loop next direction

transition-zone condition. In transition-zone condition, it is more challenging to

define a boundary between the main-content and side-notes. The whitespace gaps

in these stops could be very tight. Therefore, the algorithm performs unsupervised

classification of the local connected component.

First, the algorithm extracts six geometric features per connected component. The

features are the hight, area, foreground/background ratio, pixel density, distance

transform, and orientation. Then, K-nearest neighbor algorithm is used to find two

classes of components; main-content or side-notes. Figure. 4.12.(b) shows the clus-

tering results on left, upper and bottom stop windows. After that, a boundary cut is
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defined on the mid distance between the clusters’ centers as follows:

Sd =
dist(Cni, Cnj)

2

where Cni and Cnj are the clusters’ centers of the main-content and side-notes, and

dist(.) is the Euclidean distance. Finally, the stop windows are corrected by moving

them back Sd pixels. Figure 4.12.b shows the three stop windows (in red color) have

been moved to their new coordinates(in blue color).

Main content segmentation

The algorithm converts corrected stop windows to boundary points. It selects fore-

ground pixels of PAWs along the boundary of the main-content region. Figure 4.13.(a)

shows an example of the selected boundary points. As the number of the selected

points is large, the algorithm reduces them and identifies the end-points using a con-

vex hull algorithm. Figure 4.13.(b) illustrates the convex hull points in red color.

After that, a convex mask of the main content is generated by tracing these points.

Finally, the manuscript’s main content is segmented using connected components.

Each connected component that have 80% of its foreground in the convex region is

labeled as main content, otherwise it is labeled as side-note. Figure 4.13.(e) shows an

example of the main content segmentation.
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Figure 4.13: Main-content segmentation
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4.6 Conclusions

In this Chapter, a learning-free hybrid DLA algorithm is presented. The hybrid

algorithm is designed to address Arabic historical manuscripts that are mostly text.

The main aim is to locate and extract the main contents of the manuscripts that can be

used in categorization and indexing applications. The algorithm has four main steps;

1) A preprocessing phase that computes a binary version of each manuscript and

cleans them from noise, 2) Manuscript characterization phase which detects the main

region initially to extract a set of features, 3) Feature extraction phase; geometric

features are extracted to describe the content and writing style of a manuscript’s main-

content, 4) Moving window analysis that extracts the manuscript main content.

The proposed method integrates whitespace analysis (top-down strategy) to define

initial region of interest and analysis parameters. The whitespace analysis is usually

adopted in printed and clean document layouts. However, by introducing anisotropic

diffusion in this work, the whitespace separation among regions are boosted, and

hence regions can be detected. The application of ADF can be extended further to

analyze contemporary documents and extract document blocks such as figures, text

paragraphs, text columns etc. which makes the proposed method scalable.

Finally, the detected main-region is verified and the segmentation is enhanced by

moving window analysis (bottom-up strategy). The moving window procedure utilizes

the automatic parameters that are computed in the previous phases to extract the

manuscript main content.
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CHAPTER 5

DOCUMENT CLASSIFICATION

BY KEYWORD SPOTTING

Information retrieval of scanned handwritten documents is becoming vital due to the

rapid increase in digitized documents. This process is challenging in the domain of

historical manuscripts retrieval due to document degradation that are preventing the

extraction of accurate transcripts. Keyword spotting systems are developed to search

for words within scanned documents usually without word-transcription. These sys-

tems can be either template matching or learning-based algorithms.

In this chapter, we present a learning-based keyword spotting technique using the

word-skeleton and Speeded-Up Robust Feature (SURF) descriptors. The proposed

method detects interest points of handwriting using the word-skeleton. Unlike SURF

detector that could locate interest points off-writing strokes due to ink-bleeding, back-

ground noise, or auxiliary diacritics etc. In word-skeleton, the interest points are

located by tracing the word skeleton and identifying important interest points lo-
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cally. Therefore, it selects interest points on main handwritten strokes. Then, these

selected interest points are described by Bag-of-Visual-Words (BoVW) powered with

SURF features. After that, a set of support vector machines (SVM) are trained and

validated using a set of keywords. Then, the behavior of these SVMs is modeled by

observing their responses on matching, mismatching, and rejection decisions. Finally,

the three models are analyzed to find the proper decision thresholds for keyword

spotting.

5.1 Introduction

Recently, the amount of digitized documents, which includes printed and handwrit-

ten documents, is tremendously increasing. Printed documents are structured and

easy to be indexed, retrieved and stored using standard tools such as OCR as they

are usually represented by their transcriptions [10]. On the other hand, handwritten

documents are hard to process because of the variations in writing and issues related

to their writing styles. These issues may impede transcription extraction methods.

Therefore, keyword spotting systems(KWS) are usually adopted to search and re-

trieve required documents based on queried information [210].

The KWS is a task that performs retrieval of all word instances of a particular key-

word query in a collection of documents. Hence, classifying those documents that

contain word matches to the queried keyword. Usually, this process is carried-out

without document transcription because of manuscript degradations that are caused

by aging, handwriting styles, unrecognized fonts, unstructured writings, etc.
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The proposed approach contains two main modes, namely, configuration, and op-

eration modes. In the configuration mode, the approach trains the support vector

machines (SVM) and models its decision behaviors. This modeling yields three dis-

tributions of matching, mismatching, and rejection SVM responses. Then, based on

Bayesian decision theory, the matching distribution is analyzed against mismatching

and rejection distributions to estimate three spotting thresholds. The modeling is

done off-line to reduce keyword spotting time in the operation mode. Figure 5.1 il-

lustrates a general overview of the proposed KWS framework.

The main contributions of this work includes:

A. Analyzing keyword’s interior structure and locating interest points using key-

words’ skeletons. Unlike automatic detectors such as SIFT or SURF, which are

designed originally to detect salient regions of natural scene objects. In other

words, detecting interest points using automatic detectors on handwritten ob-

jects may select undesired interest points. Figure 5.6 shows interest points

selected by the different approaches.

B. Proposing a novel approach to estimate spotting thresholds based on modeling

the SVMs matching, mismatching and rejection behaviors.

C. Investigating the integration of skeleton , SURF, and dense key-points sampling

for keyword spotting and word recognition tasks.

The rest of this chapter is organized as follows: Section 5.2 discusses related works.

The proposed KWS is outlined in Section 5.3. In Section 5.4 the conclusions and

closing remarks are presented.
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Figure 5.1: Overview of the proposed Keyword Spotting

5.2 Related Work

In general, there are two main types of features that are extracted from a word image

for KWS; global and local. The handwritten words are incorporating large variabili-

ties that make the design of global feature extraction, to address KWS, a hard task.

Due to that, most of the studies in the literature suggested local feature extraction

techniques. Scale Invariant Feature Transform (SIFT) [211], and Speeded-Up Robust

Features (SURF) [7] are among the well-known and frequently used features and in-

terest point detectors in computer vision.

SIFT is successfully used in computer vision applications such as image analysis,

categorization, retrieval, and recognition[212, 153]. Recently, computer vision based

features are borrowed into handwritten recognition and spotting tasks [11]. It has

two sub-tasks; feature detection and description.
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The detection in SIFT employs multi-level Laplacian of Gaussian (LoG), and is im-

plemented using Difference of Gaussian (DoG). To reduce the computations required

for calculating LoG, in some applications, dense key-point sampling is used instead.

In dense sampling, the image is divided into regular patches and the center of each

patch is treated as a key-point [213].

In feature extraction, SIFT descriptor computes weighted Histogram of Gradients

(HoG) by dividing each key-point patch into (4× 4) sub-regions and quantizing their

gradient orientations into eight bins. Then, the weighted gradients of each sub-region

are accumulated into a histogram of eight bins. So, SIFT feature vector will have

16(blocks)× 8(feature values) = 128 feature points in total.

The discriminant power of SIFT has attracted researchers to address KWS using

SIFT approach. For instance, a segmentation based KWS using SIFT detector and

descriptor is suggested in [212]. Their algorithm divided each word image vertically

and used SIFT to detect and describe interest points on these sub-images. Then,

Euclidean distance was used for interest point matching. Also, SIFT was used for

printed document retrieval in [214]. The later method may suffer from detecting dif-

ferent number of interest points in the template-images against queried word-images.

Therefore, simple matching may not be proper for keyword spotting.

In some cases, the SIFT detector is used alone with non-SIFT descriptors because of

its sensitivity towards noise (see Figure 5.2). In general, the detector locates salient

written zones on keyword image as in [215, 216]. These methods relied on SIFT

to pinpoint possible word-match zones on documents directly without segmentation.
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Hence, they avoided processing a document word by word. Even though this method

reduces KWS searching time via employing fast localization of possible word matches,

it may skip words that match the queried word. Thus, the spotting task, according

to definition, is not fulfilled. Another study that involved SIFT detector and used

a similar framework of [216] with document dependent local features is reported in

[213]. Due to writing variations, it is arguable that invariant properties of SIFT may

not be desired to describe local features. The authors in [216] have shown that doc-

ument dependent local features can outperform SIFT.

SIFT detector is one important part of the algorithm that automatically detects

salient image regions. However, this characteristic of SIFT detector may suite ob-

ject recognition more than handwritten recognition due to the dynamic variations

in handwriting [217]. Therefore, some methods have replaced the SIFT detector by

dense sampling as in [218, 219, 220].

In [218] local features such as Histogram of Oriented Gradients(HOG), SIFT and

Local Binary Patterns (LBP) were extracted from densely sampled key-points. Since

the number of key-points can vary depending on the size of the keyword image, the

authors suggested normalizing the image sizes and extract the same number of key-

points from each image. Then, their algorithm performed keyword matching using

two-directional Dynamic Time Warping (DTW). The study reported that the HOG

features had the highest mean average precision in comparison to others. In the same

direction, Gradient Local Binary Patterns (GLBP) was proposed for automatic key-

word spotting in handwritten documents [219]. The GLBP is a gradient feature that
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Figure 5.2: Comparison between SIFT and SURF responses [7]

computes the gradient information at the transitions of the Local Binary Pattern

(LBP) code.

Although SIFT approach is reported successful for many applications, researchers

are concerned about its speed in KWS. This issue involves two aspects, the number

of detected key-points and the descriptor space. A recent study reported in [217]

suggested reducing SIFT feature space to half-size via considering each symmetric

gradient orientation into one bin for example, −90o and +90o are placed in the same

bin. They reported that the handwritten recognition system using half SIFT features

space can perform at the same level of full SIFT features. Although this idea is sim-

ilar to unsigned gradient of HOG reported in [172], their observation is important to

study the modifications to local features adopted in handwritten applications such as

spotting.

Bag of Visual Words (BoVW) is another solution to the variation in the number of
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key-points detected in word images. The BoVW framework represents images by

frequencies of occurrences of their local features quantized into fixed number of code-

words. There are several examples of BoVW powered by SIFT for keyword spotting

such as [221, 222, 223].

The BoVW model has numerous important advantages such as increasing robustness

to occlusion, image deformations and provides invariance to changes due to using

local features. Moreover, the framework of BoVW model is simple and allows fast

keyword matching. Several studies reported good performance of BoVW in compar-

ison to other complex spotting algorithms [223, 144].

In this chapter, we propose keyword spotting for historical handwritten manuscripts

using BoVW framework powered by local robust features. The proposed framework

follows the Query By Example (QBE) paradigm. In feature extraction, related key-

points are sampled using word skeleton. The skeletonized word-image allows local-

ization of important word interest points that includes word joint-points, end-points,

and connected paths between them. These areas of a word image contain informative

writing behavior, and emphasize interior writing styles. Unlike the study in [220]

which extracts shape context features using word skeleton. Our proposed approach

locates skeletonized interest points to enhance local feature extraction. We investi-

gate skeletonized interest-points using SURF descriptor. Therefore, we compare the

proposed approach to SURF detector and dense sampling.

We adopt SURF descriptor as local feature extraction. The selection of SURF in this

work has two advantages; 1) It extracts half the size of SIFT features space, 2) It
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is less sensitive to shape deformations (see Figure 5.2). In addition, SURF is rarely

studied in the domain of keyword spotting. In the previous literature, we found few

studies that compared the performance of SURF to other techniques for keyword

spotting as in [155, 224].

5.3 Proposed word spotting system

The proposed KWS algorithm has two main modes; configuration, and operation.

Each mode consists of three main phases; 1) preprocessing, 2) feature extraction and

representation, 3) matching.

In the configuration mode, the preprocessing includes locating and segmenting main

content of each manuscript page(as described in Chapter 4), and selecting keywords

(as described in Chapter 3). The feature extraction phase is responsible for describing

salient image key-points using SURF descriptor. Then, BoVW is used to define fixed

length representation of SURF features. The BoVW framework has a key impact on

generating trained SVM models for better keyword matching [156]. The main steps

of the proposed KWS framework is illustrated in Figure 5.1.

5.3.1 Feature Extraction

In this subsection, detailed feature extraction and representation including interest

region selection are presented.
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Speeded-Up Robust Features

SURF is a computer vision algorithm designed to detect and describe salient image

regions in fast and robust sense [7]. Unlike SIFT, the SURF relies on image integrals

and Hessian matrix for computing salient points and Haar wavelet transform for

feature description. Both SURF detector and descriptor are discussed below.

A. SURF Detector

The integral images allow fast computation of box type convolution filters [225].

The entry of the integral image Iint(X) at a location X = (x, y)T represents the

sum of all pixels in the input image I within a rectangular region formed by the

origin and X,

Iint(X) =

i≤x∑
i=0

j≤y∑
j=0

I(i, j).

Figure 5.3 illustrates the calculation of the image integral and shows that it

can be reduced to a summation of four points for each image block. Given

a point px = (x, y) in an integral image Iint, the Hessian matrix is approx-

imated by computing the convolution of the Gaussian (with scale σ) second

order derivative in horizontal direction Dxx(px, σ), vertical direction Dyy(px, σ)

and diagonal directions Dxy(px, σ) = Dyx(px, σ) with an image Iint.

Dxx(px, σ) =
∂2

∂2x
g(σ) ∗ Iint(px),
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Figure 5.3: Integral image calculation

Dyy(px, σ) =
∂2

∂2y
g(σ) ∗ Iint(px),

Dxy(px, σ) =
∂2

∂2xy
g(σ) ∗ Iint(px)

This calculation is done using convolution of the source image with various

Gaussian-related box filters for fast calculation (as shown in Figure 5.4 ). A

Hessian matrix H is approximated as follows:

Happrox(px, σ) =


Dxx(px, σ) Dxy(px, σ)

Dxy(px, σ) Dyy(px, σ)


Basically, the Hessian determinant decides whether the current point at location

px of the image is a key-point if and only if the computed determinant by px
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shows a high peak in comparison to its neighborhood points. The Hessian

determinant by px is calculated by:

det(Happrox(px, σ)) = DxxDyy − (w ×Dxy)
2

where w is a relative weight to balance the expression of the Hessian’s determi-

nant.

To provide multi-scale analysis, SURF detector is computed at different scales

by scaling up the box filter, instead of down sampling the image. A description

of SURF detector is given in the following Algorithm.

B. Dense key-point sampling

Dense key-point sampling technique is adopted successfully in several applica-

tions such as [226, 227] including document retrieval [223]. It simply divides

the image into several sub-regions in size of (4× 4) or (8× 8) with or without

overlapping. The center of these sub-regions are used as key-points. Figure 5.6

Figure 5.4: Gaussian approximation (Box filter)
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Algorithm 2 SURF Detector [7]

procedure Detector
2: Calculate integral image I

Loop for each pixel px at octave i
4: Calculate Dxx, Dxy, Dyy using box filter

Normalize responses
6: Calculate determinant of Hessian matrix

if determinant > Threshold then return px as key-point

8: Loop next
Suppress non maximum key-points

10: Interpolate keypoints between octaves

shows example of dense key-point sampling. Usually, the number of key-points

is large which normally affects the algorithm speed. Moreover, some key-points

may lie outside the handwritten region, and they might be useful in some appli-

cations to recognize similar locations or behavior. In document analysis, these

off-writing keypoints might be informative to capture writing style and font

types [223].

C. SURF Descriptor

Unlike SIFT descriptor, SURF features describes the change of intensities

around each keypoint region in square neighborhood. It builds a feature space

using the first order Haar wavelet transform in x and y directions rather than

the Laplacian of Gaussian (LoG) used in SIFT. It exploits integral images for

speeding up the calculation of Haar responses, and produces only 64 dimensional

feature space which is half the size of SIFT feature space. Moreover, key-point

orientations in SURF are optional and application specific which means, some

applications may ignore them [7]. Hence, a reduced time for feature computa-

tion and matching.
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To extract SURF features, it constructs a square region centered around a

key-point with size of (20 × 20) pixels. Then, it splits the region regularly

into smaller sub-regions of (5 × 5). Finally, Haar wavelets is convolved with

each region and weighted by Guassian filter to produce its final responses Lx

and Ly [7]. After that, it sums up all these responses Lx, and Ly of each

sub-region to form the first two entries of the feature vector. Moreover, the

sum of the absolute values of these responses
∑
|Lx| and

∑
|Ly| are computed

and included in the feature vector as the third and fourth entries. The ab-

solute values of the responses are representing the polar change in the image

intensities. So, each sub-region is represented with a four-valued feature vector

v = [
∑
Lx,
∑
Ly,
∑
|Lx|,

∑
|Ly|]. Therefore, the total length of the SURF fea-

ture vector is 4(features)× 16(block) = 64 feature points.

It is important to note that SURF is similar in concept to SIFT in focusing

on the spatial distribution of the gradient information[7]. Nevertheless, SURF

integrates the gradient spatial information, whereas SIFT depends on the dis-

tribution of the gradient orientations. This makes SURF less sensitive to noise

which may help in handwritten recognition and spotting tasks. Figure 5.5 il-

lustrates the process of feature extraction using SURF descriptor.

5.3.2 Skeleton-based interest points

Skeletonization of a binary object is a reduction of the foreground part of that object

into a skeletal remnant that preserves the connectivity of the original object. This
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Figure 5.5: Overview of feature extraction using SURF

process is utilized in several spotting and recognition applications [220, 228]. There

are two categorizes of skeletonization [229]; iterative and non-iterative. The itera-

tive skeletonization performs two operations iteratively; examination and deletion of

contour pixels, while non-iterative produces object skeleton in one pass without ex-

amining individual pixels such as [231].

Detecting interest points in handwritten text could be different from detecting them

in natural scene objects. In the later case, the objects have less dynamic structures

that could be captured in different situations. Therefore, instances of the same scene-

object tend to preserve main geometric characteristics. Even though new instances

might be captured from different angles, which could occlude that object partially,

or the object being transformed, but still the main structure is preserved. On the

other hand, instances of a handwritten object are recreated (i.e., re-written) which

make their characteristics more dynamic. Therefore, using automatic detectors such

as SIFT or SURF may select different interest points on each instance of a handwrit-

ten word-image. On the other hand, word skeleton can be used to extract a fixed

number of interest points from a word locally.
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Figure 5.6: Handwritten key points sampling using different approaches

Skeleton-based key-point selection provides meaningful and word-related feature ex-

traction. In addition, it reduces the number of key points per image in comparison to

dense key-point sampling. Furthermore, while SURF detector may select off-writing

key points due to background noise, all skeleton-based key points are located on the

written object. Figure 5.6 depicts SURF, Dense, and skeleton-based key-point sam-

pling. As can be observed from Figure 5.6 the SURF key-points may be detected

off-writing areas because of background textures that could appear to be important.

On the other hand, dense-sampling divides a keyword image into a grid of regular

cells. Each cell is treated as key-point. Finally, skeleton-based method selects two

groups of key points essential, and auxiliary points. The essential key-points are lo-

cated on skeleton’s joints and ends, while the auxiliary points are located on the path

between skeleton end-points as shown in Figure 5.6.
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5.3.3 Feature Representation Using Bag of Visual Words

Often, the number of detected key-points varies from word-instance to another of the

same keyword query. This requires dynamic matching procedure. To address this

issue and enhance the matching procedure, BoVW framework is adopted to represent

features in a fixed size. The BoVW framework has two phases, namely, codebook

generation, and BoVW encoding. The codebook is constructed by clustering the

extracted features of each visual word in the training phase. Hence, the codebook is

a set of cluster centers that represents different visual words i.e., a codeword. On the

second phase, given a word image, a set of features are extracted from that image.

Then, each extracted feature is quantized (i.e., encoded) to the closest codeword in

the codebook. Figure 5.7 depicts the BoVW general framework.

Figure 5.7: Bag of Visual Words framework
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5.3.4 Support Vector Machines (SVM)

SVM is a hyperplane discriminative classifier. In this work, we use the algorithm in

[233] to solve the SVM optimization problem:

minimize

{
1

2
||w||2 + C

m∑
i=1

ξi

}

subject to

yi(w
Tφ(xi) + b) ≥ 1− ξi, ξi ≥ 0

where vector w and parameter C are controlling the decision boundary’s width be-

tween the two classes by trade off wide margin between the two classes and small

number of margin failures, yi ∈ {−1, 1}, i = 1, 2, . . . ,m, and ξi are slack variables

that are permitting a decision boundary failure, and φ(.) is a Gaussian kernel function

(i.e., Radial Basis Function (RBF)) that has the equation [234]:

K(xi, u) = e(−||xi−u||
2)

where the xi is the template sample and u is the testing sample.
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5.3.5 Recognition response analysis

In the configuration mode, the proposed algorithm trains multi-class SVMs to build

proper models and analyze their matching, mismatching, and rejection behaviors us-

ing the keyword images dataset.

First, to select trained SVM models for KWS, the keywords dataset is divided into

three sets training, validation, and testing sets. Then, using k-fold cross validation

training in word recognition mode, the best three performed SVMs are selected for a

spotting task. Figure 5.8 shows a set of SVM models that are fed with various BoVWs

with codeword sizes, and the best three performed SVMs are selected (highlighted in

bold paths in Figure 5.8).

The spotting approaches often depend on the selection of matching thresholds

[210, 223, 11]. Generally, there are two methods to define a spotting threshold;

brute-force, and/or objective. In brute-force, a priori rejection threshold is set and

Figure 5.8: Identify the best three trained SVMs for spotting task
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Figure 5.9: SVM recognition and classification behavior modeling

then investigate the classifier behavior on rejection and error rates. This process can

be repeated to tune the threshold and set a proper threshold. On the other hand,

the second method is objectively defining a threshold-independent measure of per-

formance that possibly leads to a balance between absolute rejection and matching.

One example of such threshold identification is based on an Equal Error Rate (EER).

The EER is an objective evaluation criterion that defines a point of separation be-

tween correctly matching versus rejection scores. It is usually employed in biometric

recognition and identification [235].

To learn the matching/rejection thresholds, the response of each wining SVM model

are accumulated to form three normal distributions; Matching, Mismatching, and

Rejection. Figure 5.9 illustrates the procedure of building these distributions.

The Matching distribution represents the responses that an SVM model produced

correct matches of a given word with a template keyword, while Mismatching dis-

tribution is representing SVM responses of incorrect matching a word to a template

keyword, and the Rejection distribution corresponds to SVM responses of rejected

matches. Given these three distributions, three thresholds are computed t1, t2 and t3
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Figure 5.10: An example of SVMs response distributions

to perform keyword spotting. Thresholds t1 and t2 are the intersection points located

between Mismatching/Matching, and Rejection/Matching distributions respectively.

Threshold t3 is the average value of the Matching distribution. Figure 5.11 shows the

visualization of thresholds t1, t2 and t3.

The Matching/Mismatching threshold is more important than Matching/Rejection

because in the later, their distributions do not have large overlap. Figures 5.10 and

5.11 show the Matching, Mismatching, and Rejection distributions construction and

estimated thresholds. The threshold t1 is responsible for distinguishing keywords from

sub-string words such as HKW04 and HKW19 as they have a common sub-string (see

Table 6.1). This confusion is captured by t1 and it is strictly rejected by t3 thresh-

old. On the other hand, t2 can be utilized to conduct sub-string keyword spotting. It

shows more tolerance to accept sub-string matches, however, it may incorporate more
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Figure 5.11: Spotting thresholds, t1 estimated between matching/mismatching, t2
computed between matching/rejection, t3 is the matching mean

matching errors. Experiments and performance evaluation of the proposed keyword

spotting are discussed in Chapter 6.

5.4 Conclusions

In this chapter, we propose a learning-based keyword spotting system(KWS) for Ara-

bic historical manuscripts. The proposed approach follows the segmentation-based

query-by-example (QBE) paradigm. In other words, it accepts a word query image

as an input to retrieve word matches.

The proposed KWS has three main tasks; preprocessing, feature extraction and rep-

resentation, and matching. In feature extraction, SURF descriptor is used to extract

features from interest points that were selected using three methods; namely SURF,

skeleton-based, and dense sampling. Each of these interest region selection meth-

150



ods has its strengths and weaknesses. For instance, SURF has the fastest selection

procedure, but may select interest points that lie off-writing regions. The skeleton-

based sampling selects interest points on writing, but requires additional preprocess-

ing steps. Finally, dense sampling selects interest points on and off-writing, and hence

results in the longest processing time.

The selection of interest points may vary from one word-image to another. There-

fore, different lengths of feature-vectors may be produced. Therefore, BoVW has

been adopted for feature representation. The BoVW encodes the extracted features

of the three methods into a fixed-length histogram of visual words.

The matching has two main phases, recognition and spotting. In the recognition

phase, a set of SVMs are trained, and validated on different instances of the possible

keywords. During testing, the matching, rejection, and mismatching behaviors of the

SVM classifiers are modeled to estimate possible spotting thresholds t1, t2, and t3.

Finally, these three thresholds are used to configure the spotting system at different

modes. Threshold t1 represents a decision boundary between rejection/matching dis-

tributions. It has large acceptance range, which means all keywords may be spotted

by the system. However, its false positives are expected to be high due to accept-

ing matches with moderate to low similarity. Threshold t3 is expected to have an

opposite behavior compared to t1, because it is defined as the estimated mean of

the match distribution. Lastly, threshold t2 represents a decision boundary between

match/mismatch distributions. Therefore, it is expected to balance between classi-

fier’s rejections and acceptances.
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CHAPTER 6

EXPERIMENTAL RESULTS

In this chapter, we discuss experimental results of the proposed algorithms for docu-

ment layout analysis and classification. It has two experimental setups for document

analysis and keyword spotting approaches. The experimental setups are given in Sec-

tion 6.1. The setup discusses adopted datasets and performance evaluation metrics.

Performance results of the proposed DLA algorithm is presented in Section 6.2. In

Section 6.3, the performance of the keyword spotting algorithm is presented. Further

discussions and error-analysis of the algorithms’ performance are detailed in Section

6.4. Finally, conclusions and closing remarks are stated in Section 6.5.

6.1 Experimental setup

To evaluate the performance of the proposed algorithms, three datasets are used; two

public datasets, and the developed AHHM dataset. Secondly, standard metrics are

used to evaluate the proposed algorithms. Further details are given in the following

subsections.
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6.1.1 Datasets

Bukhari dataset contains 38 pages from seven Arabic manuscripts which were scanned

at a private library in the old city of Jerusalem [90]. These manuscripts are written by

several writers, and contain dense side-note text. Moreover, the manuscript images

are binarized. The ground truth of Bukhari dataset is provided in [1]. The ground

truth has two sets of images that contain either main-content text or side-notes.

Therefore, Bukhari dataset was used to evaluate the proposed DLA approach which

is described in Chapter 4. Moreover, the proposed DLA method is compared to [1]

because both algorithms are learning-free and evaluated using the same dataset.

The second publicly available historical dataset is called HADARA80P [188]. The

dataset has been developed by the Institute for Communications Technology, Technis-

che Universitt Braunschweig. It contains 80 scanned pages of Arabic historical hand-

written manuscript. The main source book of the dataset is ” ” that

can be transliterated as badlu ālmāūn f ī fadlu āltāūn, which can be trans-

lated to ”About the Advantage of the Pest”. The book was published in Jumada

al-khirah, 833 AH (Islamic calender), which corresponds to Feb. 1430 AD. It was

written by a single writer except for the last three pages of the book. The pages of

the book are colored and contains main-content blocks with few separated side notes

on some pages. The words in red color are used to structure the book’s content such

as chapter names. HADARA80P dataset is used to evaluate the proposed keyword

spotting technique that was described in Chapter 5. The HADARA80P dataset pro-

vides 25 keywords that are selected to evaluate document retrieval. Table 6.1 shows
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Table 6.1: Samples of HADARA80P dataset’s keywords

Code TRANS Keyword NS Code TRANS Keyword NS

HKW01 Allah 349 HKW02 Mohammad 41

HKW03 Ahmed 46 HKW04 Muslum 25

HKW05 Rasuol 45 HKW06 Osama 25

HKW07 Ziad 47 HKW08 Intaha 24

HKW09 A-la-gah 26 HKW10 Ketab 29

HKW11 Rwaiah 50 HKW12 Akhrajh 64

HKW13 Tarieq 34 HKW14 Radhi 48

HKW15 Hadieth 79 HKW16 Dhekr 58

HKW17 Ba-ian 26 HKW18 Shahada 23

HKW19 Slm 90 HKW20 Ta-ala 45

HKW21 Tauun 5 HKW22 At-Tauun 147

HKW23 Aadaakum 24 HKW24 Al-Jen 65

HKW25 Israil 22
- TRANS: Transliteration, NS: Number of Samples

examples of each keyword.

Thirdly, the AHHM dataset contains 108 manuscript pages collected from different

sources. Each page has main content and some side-notes. The complete description

of the AHHM dataset is presented in Chapter 3. Figure 6.1 shows some examples of

manuscript pages of these datasets.
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(a) HADARA80P dataset

(b) Bukhari dataset

(c) AHHM dataset

Figure 6.1: Two page examples from each dataset
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6.1.2 Evaluation metrics

DLA evaluation

In document layout analysis algorithm performance evaluation, there are two main

issues; correspondence, and type of comparison. Since the objective is to segment

the main content from handwritten historical manuscript pages, the correspondence

becomes simple. That is the main-content region of a manuscript page is used for

evaluating the results. Secondly, we adopted evaluation framework 3 that was de-

scribed in Chapter 2, Section 2.4.

In framework 3, a segmentation result is considered successful if it completely overlaps

only one ground truth region. Therefore, errors are characterized based on PRImA

framework [195] to five types (see Figure 6.2):

� Merge: A segmented region that overlaps more than one template region

� Split: A template region is overlapped by more than one segmentation region.

� Miss: A template region that does not overlap any segmented region.

� Partial Miss (PMiss): A template region that does not completely overlap a

segmented region.

� False detection: A segmented region that overlaps no template region.

Since the page segmentation has binary classes (main-content or side-notes), the errors

are relatively computed to both regions. Let D1 be a segmentation result, and G1

and G2 are two template regions. A segmented region D1 is considered a merge error
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Figure 6.2: PRImA Framework errors

if it overlaps G1 completely and at least 60% of G2. A split error occurs when a

segmented region D1 is divided to D11 and D12 that both correspond to G1. A miss

error is encountered when a segmented region D1 overlaps at most 60% of G1. It is

a partial-miss (PMiss) if a segmented region D1 overlaps at most 90% of G1. Finally,

the false detection occurs when D1 does not overlap any template region.

In order to calculate the success rate of the segmentation SR, each error is first

multiplied by the affected foreground pixels of the merged, missed, partially missed,

split, or falsely detected regions. Then, these error rates ER are used to calculate

the success rate [193]:

SR =

∑N
i=1 ωi∑N

i=1
ωi

1−ERi

(6.1)

where N is the number of error types, and ωi are the final weights that are calculated

of each error type as:

ωi =
(N − 1)ERi + 1

N
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In order to compare the segmentation results of the proposed algorithm to the

method described in [1], we also adopted their evaluation metrics. Therefore,

Precision, Recall, and Fmeasure metrics have been used to evaluate the performance

of the DLA method. The Precision (P ) and Recall (R) are estimated per equations

(6.2) and (6.3). True-Positive (TP ) is the rate of main-content PAWs labeled as main

text, False-Positive (FP ) is defined as the rate of side-note PAWs labeled as main

text, and False-Negative (FN) is the rate of main-content components classified as

side-notes.

P =
TP

TP + FP
(6.2)

R =
TP

TP + FN
(6.3)

The Fmeasure is a single value that combines both the precision and recall. It shows

how precise is the segmentation result to recall correct elements out of all segmented

components. The Fmeasure is computed according to the following equation:

Fmeasure = 2×
(
P ×R
P +R

)
(6.4)

Keyword spotting evaluation

The experiments on KWS includes two main phases; keyword training and keyword

spotting. The used datasets are divided into two parts; 1) set of keywords, 2) set

of all words. In the training mode, the main purpose is to train a set of SVMs to

recognize keywords. Therefore, a set of keywords is used in this mode. Moreover,
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the recognition behavior of these SVMs are analyzed to define spotting thresholds.

The performance of the word recognition, in the training phase, is reported using the

recognition-rate as follows:

RR =
TP + TN

TP + TN + FP + FN

where TP is true positive; a word wi is correctly recognized as keyword KWi, TN is

true negative; a word wi is correctly not-matched with keyword KWj, FP is a false

positive; a word wj is falsely recognized as keyword KWi, and FN is a false negative

where a keyword wi is falsely recognized as word KWj.

On the second experiments, we adopted Average Precision (Pavg) metric which is a

standard evaluation metric for information retrieval performance evaluation. For each

keyword, Precision metric reflects the percentage of true positives as compared to the

total number of retrieved image words by KWS algorithm. Then, Pavg is the average

value of all precisions. It provides a single value measure of precision for all spotted

keyword images and computed as:

Pavg =
1

K

K∑
i=1

Pw
i

where K is the total number of queries, Pw
i is computed precision per query.

Moreover, to have a complete overview of the retrieval results, Average Recall (Ravg)
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can be utilized. The Ravg is computed as follows:

Ravg =
1

K

K∑
i=1

Rw
i (6.5)

where Rw
i is computed recall per query. Finally, these two evaluation metrics are

combined to indicate the overall spotting system performance using an F-measure as:

Fmeasureavg = 2×
(
Pavg ∗Ravg

Pavg +Ravg

)

6.2 Document Layout Analysis Results

The proposed algorithm is compared to [1] because of three reasons; 1) both methods

are learning-free approaches, 2) Exact datasets are used in the experiments, 3) the

analysis code of [1] is publicly available in [236].

First, we reproduced the segmentation results of [1] using their provided Matlab code

[236]. Then, we evaluated the results of both methods, using [1] evaluation metrics,

and using PRImA framework. Table 6.2 tabulates the performance evaluation using

Fmeasure metric (Equation (6.4)), and Table 6.3 shows the performance in terms of

segmentation success rate (PRImA framework).

The results in Table 6.2 shows the superiority of the proposed method in terms of

Fmeasure using Bukhari dataset. It has high segmentation recall 98.55% at 96.93%

segmentation precision. Moreover, the proposed method shows promising results in

comparison to other method in terms of quality of main-content segmentation in gen-
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Table 6.2: Performance evaluation using [1] metric

Data Method P R Fmeasure

Bukhari
[1] 97.94 84.30 90.11
Proposed 96.93 98.55 97.70

AHHM
[1] 98.67 95.27 96.78
Proposed 97.49 97.14 97.08

Table 6.3: Segmentation accuracy based on success rate

Data Method SR(%)

Bukhari
[1] 70.41
Proposed 98.83

AHHM
[1] 92.97
Proposed 98.23

eral as indicated in Table 6.3 (98.83% and 98.23% SR). In addition, we can notice

from Table 6.3 that the computed success rate of [1] on Bukhari dataset is penalized

because of its Merge and Miss errors. Also, the same performance degradation is

captured by the difference between Precision and Recall of method [1] on Bukhari

dataset that is shown in Table 6.2. Figures 6.3 and 6.4 show examples of the seg-

mentation results on both datasets. On the other hand, our method is slower than

the other method. It requires 159.5 seconds on the average for the analysis per page,

while the other method requires 73 seconds on the average per page. Comparing both

techniques, our layout analysis needs more time to perform moving-window analysis

while the other method uses fast energy minimization cuts to extract main content

[64].
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Figure 6.3: Sample results on Bukhari dataset. a) Segmentation results of [1], b) The
proposed method results
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Figure 6.4: Sample results on AHHM dataset. a) Segmentation results of [1], b) The
proposed method results
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6.2.1 Discussions

Two reasons have affected the performance of [1]. One reason is that Gabor filter

may produce similar responses to the main-content and side-notes. Thus, the energy

minimization step of [1] does not produce correct segmentation results (see Figure

6.4 middle example ). On the other hand, the proposed method addresses the main-

content segmentation by analyzing the whitespace and connected components on the

boundary regions. It considers the analysis locally to address touching components

and unclear whitespaces. Moreover, it shows good analysis for several examples of

manuscript layouts, writing styles, fonts, or writers.

Sometimes, it is difficult for the proposed method to detect a separation boundary

between main-body and side-notes as discussed in Chapter 4. This issue is reflected

in the results shown in Figure 6.3.

In the second experiment, the methods are evaluated on AHHM. The proposed

method has slightly degraded performance due to the Recall factor. On contrast,

method [1] have enhanced performance in the second experiment due to the response

of Gabor filter on different text. Further error analysis discussion is presented in

Section 6.4.

6.3 Document Classification Results

To evaluate the proposed keyword spotting method, we used a set of keywords pro-

vided by HADARA80P dataset (25 keywords) and AHHM dataset (25 keywords). A

sample of each keyword is shown in Tables 6.1, and 3.2 respectively.
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To prepare SVM classifiers for spotting, we collected all keyword instances from

HADARAH80P and AHHM datasets. The number of keyword instances from

HADARA80P dataset are 1432 word images, while 1062 word instances are in AHHM

dataset. These datasets of keywords are used in separate experiments to prepare the

SVM classifiers for keyword spotting tasks.

Each dataset of keywords is divided into three sets for training, validation and test-

ing. The training and validation sets are used to build SVM models using BoVW of

SURF features. These features are extracted from different image locations based on

three methods; dense, SURF, and word-skeleton key-point sampling. The best val-

idated SVM models are selected to estimate keyword-spotting thresholds t1, t2, and

t3 as discussed in chapter 5. Finally, keyword spotting is carried-out on the complete

datasets.

6.3.1 Training Results

Since the training consists of word recognition, we report in this subsection the recog-

nition performance of SVMs on both datasets. Table 6.4 presents the recognition rates

of the three methods and their integrated system. The integration of the proposed

methods is carried-out using weighted majority voting. The weights are set automati-

cally using the recognition rates of the SVM models on the validation sets. Therefore,

each method is assigned a weight ωj using the following equation:

ωj =
RRvj∑i<3
i=1RRvi

(6.6)
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where RRv is the recognition-rate on the validation set. To explain how the inte-

gration is carried out; suppose we have a keyword set of four words{K1, K2, K3, K4},

and three expert systems S1, S2, and S3 with recognition validations 95%, 80%, and

85% respectively. The weights of the expert systems are computed as equation (6.6)

which yields weights as ω1 = 0.365, ω2 = 0.307 and ω3 = 0.326 respectively.

Individual decisions of expert systems is given as :



S1 S2 S3

K1 K2 K2

K3 K1 K1

K4 K2 K3

K1 K1 K3


The integration decisions are computed as:



K1 K2 K3 K4 decision

0.365 0.633 0 0 : K2

0.633 0 0.365 0 : K1

0 0.307 0.326 0.365 : K4

0.672 0 0.326 0 : K1


Therefore, we hope by the integration to capture more correct word recognition.

The results in Table 6.4 indicate that the skeleton-based keypoint sampling results
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Table 6.4: Recognition results using HADARAH80P dataset

Codebook size
Average Recognition Rate (%)

Skeleton SURF Dense Integration
128 87.60 84.03 61.36 87.33
256 90.19 85.13 80.16 89.50
512 92.37 90.44 85.07 90.31
1024 94.14 93.73 88.79 90.99
2048 95.51 94.28 90.48 91.95

have better recognition rates in comparison to the other methods. It is also observed

that by increasing the size of the codebook the recognition rate becomes better.

This behavior seems to be a consequence of strengthening BoVW representation by

having better resolution and more features of each keyword. This extension of BoVW

codebook supports the SVM classifiers to distinguish between keywords and their sub-

strings or similar words. On the other hand, SURF-based method runs faster than the

other methods. It performs the recognition of a keyword in (≈ 4) seconds on average,

while (≈ 20) seconds are needed for the skeleton-based method. This is because the

skeleton-based method requires additional preprocessing steps. Dense-based method

suffers from long computation time with (≈ 200) seconds per keyword on the average.

Hence, the integration performance of the three methods is affected by this drawback.

Figure 6.5 shows the recognition time in relation to the codebook sizes. The SURF

and word-skeleton have small increase in running-time by increasing the codebook

sizes, while dense-based SURF recognition time increases linearly by increasing the

codebook size. The integration performance could be affected by the performance of

dense-based method. This is reflected in the reported performance of the integration

approach in Table 6.4. Comparing, the results of the integration approach using
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Figure 6.5: Average recognition time of each method

different codebooks in Table 6.4, we notice that by increasing the codebook size,

the performance of the integration increases slowly. It could be due to the similar

recognition performance of the three systems. Therefore, their classification decisions

may be the same.

The results of the methods on AHHM dataset are tabulated in Table 6.5. The AHHM

dataset has been written by several writers using different font types. This causes

variations on the keyword instances that impacted the results. Sample instances of

two keywords are shown in Figure 6.6.

By studying the results in Table 6.5, the BoVW codebook size has a positive impact

Table 6.5: Recognition results using AHHM dataset

Codebook size
Average Recognition Rate (%)

Skeleton SURF Dense Integration
128 38.96 25.79 8.39 41.55
256 54.85 46.41 32.11 60.98
512 61.37 57.12 55.58 69.30
1024 76.19 66.17 75.07 82.03
2048 81.44 69.83 78.38 84.75
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on the performance of the methods. By increasing the size of the BoVW codebook,

better results have been achieved. Starting by 128 codebook-size, the methods were

not performing comparable to using 2048 codebook size. This could be due to low

resolution of extracted keywords from AHHM dataset. So, 128 visual words were not

enough to capture differences between keyword image. This issue is evident in the case

of dense sampling. It achieved 8.39% recognition rate at 128 codebook size, but 78.38

% recognition rate at 2048 codebook size. The Skeleton-based method outperformed

SURF and dense sampling. It could be attributed to the localized features on the

handwriting word-skeleton. This means the word-skeleton is less affected by the low

image-resolution in comparison to other methods.

The performance of all methods have improved by increasing the codebook size. It

is observed in Table (6.5) that the performance is linearly enhanced. However, at

1024 codebook size, the enhancement has started to slow down. To reflect on this

observation from both experiments, the integration may produce higher performance

results than individual methods if the size of a codebook was not enough to capture

discriminant features. Otherwise, the integration performance may have some minor

improvements.

6.3.2 Spotting Results

Based on the performance of each SVM in the training phase, three best performing

SVM models are selected to carry-out the spotting task on the complete datasets. In

spotting, the case of sub-string and similar word instance matching becomes a chal-
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Figure 6.6: Two keyword examples and their corresponding word instances

lenge. According to the handwriting in HADARA80P dataset, completely different

words may become similar if their diacritics are removed as shown in Figure 6.7. In

that example, Keyword KW14 which can be translated as ”To satisfy” is compared

to another word that can be translated as ”To advise”.

By analyzing the SVMs response distributions, we found that t1 is approximately

ranged in [−0.037,−0.025], and t2 is in the range of [−0.048,−0.036] , and t3 ≈

−0.021,±0.002. These parameters have different impacts on the proposed KWS. Ta-

bles 6.6 and 6.7 show the performance results of keyword spotting on HADARA80P,

and AHHM datasets respectively.

Table 6.6 is divided into three parts corresponding to the used threshold. Thresh-

old t2 has a balanced impact on the skeleton-based and SURF systems as indicated

by their Pavg and Ravg results. Their selected interest points are mostly located on
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the writing in comparison to dense-based sampling that have interest points located

off-writing. This performance behavior is noticed in the training phase as well (see

Tables 6.4 and 6.5 ). The negative impact of dense-based method in the performance

of the integration is indicated in Table 6.6 using t2 and t3 thresholds.

As indicated in Table 6.6 (First part), the performance of all KWS using the com-

puted threshold t1 has low precision because threshold t1 allows more false positives

due to sub-string and similar word instances. This issue is clearly noted by studying

the systems’ Recall results. In other words, these systems have accepted most of the

similar word instances compared to a given keyword query. Consequently, the num-

ber of retrieved true instances per keyword query is nearly perfect with large false

retrievals. In general, the Fmeasureavg indicates that skeleton-based method performed

better spotting than other methods.

The integrated KWS in spotting using threshold t1 performed better than skeleton

method. By investigating the performance behavior of the integrated method in train-

Figure 6.7: Confusion due to similar shape structures; a) Comparison between key-
word HKW14 (Radhi) and another word ”To advise”, b) Comparison after removing
written diacritics from keyword HKW14 (Radhi)
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Table 6.6: Keyword spotting performance on HADARA80P dataset

Methods
Spotting Using t1

Pavg Ravg Fmeasureavg
Dense 25.73 83.43 39.33
SURF 25.49 95.00 40.20

Skeleton 40.98 97.79 57.75
Integration 44.82 96.27 61.17

Spotting Using t2
Pavg Ravg Fmeasureavg

Dense 34.19 80.57 48.01
SURF 83.77 78.36 80.98

Skeleton 82.19 85.09 83.61
Integration 97.24 70.58 81.79

Spotting Using t3
Pavg Ravg Fmeasureavg

Dense 90.17 52.99 66.75
SURF 95.54 58.74 72.75

Skeleton 93.65 64.73 76.55
Integration 99.69 50.93 67.42

ing and spotting phases, we can conclude that the integration tend to perform better

when individual methods have low performance. In other words, the majority voting

integration may suite combing weak classifiers.

Finally, an aggressive spotting using t3 is performed in the last experiment. The sys-

tem in this case rejects mostly all false similar instances of a keyword query. Therefore,

the false positives are low in the performance of these systems. However, these sys-

tems have increased their rejection behavior at the same rate. This issue affects the

Recall measure and results in lower Fmeasureavg value in comparison to t2.
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Table 6.7: Keyword spotting performance on AHHM dataset

Methods
Spotting Using t1

Pavg Ravg Fmeasureavg
Dense 63.3 96.04 76.31
SURF 63.21 93.61 75.46

Skeleton 55.04 96.93 70.21
Integration 75.45 94.24 83.80

Spotting Using t2
Pavg Ravg Fmeasureavg

Dense 96.95 86.03 91.11
SURF 97.79 84.86 90.87

Skeleton 92.21 90.60 91.40
Integration 97.87 85.83 91.46

Spotting Using t3
Pavg Ravg Fmeasureavg

Dense 80.32 61.71 70.87
SURF 84.00 56.16 67.31

Skeleton 99.74 73.64 84.73
Integration 86.30 59.16 70.20

6.4 Error Analysis

6.4.1 Document Layout analysis

The error rates breakdown, in Figures (6.8, and 6.9), show that most of the seg-

mentation errors of the proposed method, on both datasets, are due to Partial-Miss

error type. Figures 6.8 and 6.9.(a) show all segmentation error rates of the proposed

method on both datasets. On the other hand, method [1] suffers from high Merge

error on both datasets. This error reflects the weakness of Gabor filter in differentiat-

ing main-content elements from side-notes elements. Figures 6.8 and 6.9.(b) illustrate

the error-rates breakdown for method [1] on Bukhari and AHHM respectively.

Although the experiments show that the proposed algorithm performs well to ex-

tract main content from historical Arabic manuscripts, a number of limitations have
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been identified. This method computes initial main-content characteristics that could

be falsely extracted from the transition zones which could be mixed with side-notes

components. In other words, a manuscript with dense text on both main-content

and side-notes may lead to incorrect characterization of main-region. Secondly, the

proposed method uses K-means clustering to define a local separation path between

main-content and side-note elements of the transition regions which is the main rea-

son for segmentation Partial-Misses errors. To overcome this issue, one solution could

be including context information while clustering to avoid blind separation.

6.4.2 Document Classification

In the proposed KWS system, the objective thresholding is heavily depending on the

trained SVM classifier behavior. Since the data is highly unbalanced; the number of

word instances per keyword is totally different from one class to another. For example,

in HADARA80P dataset, keyword HKW01 has 349 instances while HKW25 has only

22 instances which makes the classifier training difficult to generalize. Therefore,

k-fold cross validation were used to ensure stability and effectiveness of the SVM

training. The trained SVMs are used to compute the spotting threshold. In this

work, we tested three thresholds t1, t2, and t3, which may yield three different spotting

configurations.

For threshold t1, the errors are most likely drawn from false positives because the

behavior of t1 in spotting tends to accept the matching of similar words. Figure

6.10 shows some examples of correct and false matches of HKW01 and HKW09. The
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(a) Error rates of the proposed method

(b) Error rates of [1] method

Figure 6.8: Analysis of the error rates breakdown using Bukhari dataset
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(a) Error rates of the proposed method

(b) Error rates of [1] method

Figure 6.9: Analysis of the error rates breakdown using AHHM dataset
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(a) Keyword HKW01

(b) keyword HKW09

Figure 6.10: Examples of retrieved word errors

limitation of the skeleton-based keypoint sampling is ignoring keywords’ diacritics. So,

by extracting features from the main strokes only, the skeleton-based KWS method

loses part of its accuracy. This issue can be observed from the sample results shown in

Figure 6.10. Removing diacritics of some words make them look like another keyword

query (e.g. HKW09). The same errors are observed from the performance of KWS

using thresholds t3, but with increased number of false negatives per keyword query.

This indicates that t2 is a proper objective threshold which balances the rejection and

matching behavior of KWS.
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6.5 Conclusions

In this chapter, the performance evaluation of document layout analysis and classi-

fication algorithms is discussed. For document layout analysis, the performance is

evaluated on two datasets (viz. Bukhari and AHHM). The first dataset is used to

compare the performance of the proposed algorithm against a state-of-the-art method

that have used the same dataset. The second experiment is conducted on our devel-

oped AHHM dataset to benchmark its analysis results.

The analysis results shows that our method outperformed the other algorithm in both

experiments. By investigating the results, we observed that our method has two levels

of local analysis, while the other method has only one level of local analysis.

Based on the success rate metric, the quality of the segmentation results can be

computed by considering the segmentation errors. The proposed DLA method has

achieved 98.83%, and 98.23% success rate using both datasets respectively. The seg-

mentation errors are mostly caused by Partial-Miss errors. This issue is due to the

limitation in correcting the final stop windows using K-means clustering.

Secondly, a learning-based keyword spotting algorithm is proposed to address infor-

mation retrieval. The proposed algorithm has two phases; training, and spotting. In

training, the algorithm estimates the spotting thresholds based on the behavior of

SVM in training phase. Three thresholds are estimated t1, t2 and t3. Each of these

thresholds can configure the spotting system at different operation level. Threshold

t1 can be used to spot all keywords with their similar words. In other words, it has

wide acceptance range. On the other hand, threshold t3 tends to reject matches that
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have weak results. Threshold t2 has a balance behavior among the three operating

thresholds.

Finally, comparing the performance of the KWS using different keypoint sampling

methods indicates that the skeleton-based keypoint sampling is suitable for hand-

writing. The features extracted from word-skeleton keypoints have good impact on

the KWS system performance. Furthermore, increasing the BoVW codebook size has

enhanced the overall KWS performance. However, this improvement is not linear, it

slows at some points.
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CHAPTER 7

CONCLUSIONS AND FUTURE

DIRECTIONS

In this chapter, we summarize our contributions and highlight the limitations to

pinpoint some directions for future research.

7.1 Concluding Remarks

Due to the lack of benchmark Arabic database and challenging issues in Arabic

historical manuscripts, few studies have been proposed to address Arabic histori-

cal manuscript layout analysis and classification. In comparison to other languages,

the research on Arabic documents forms 16% per our reviewed research population

and most of them are conducted on contemporary documents. Consequently, large

number of research on word spotting is dedicated to non-Arabic document classifica-

tion.

In this thesis, we have conducted research on document layout analysis and clas-
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sification of Arabic historical manuscripts. Motivated by the strengths of hybrid

analysis techniques for complex layout analysis, we developed a novel DLA approach

that boosts the whitespace separation between main-content and side-notes regions,

and eases its final segmentation. Furthermore, we developed a novel learning-based

keyword spotting approach that models the behavior of the learning classifier and

improves the performance of word spotting. In general, our contribution includes

developing successful manuscript layout analysis and classification system for Arabic

historical manuscripts. The following are the contributions of this thesis:

� Comprehensive Literature Survey

When we reviewed the literature, we did not find any survey since the last

decade. In 2017 and after we wrote our survey paper two new literature surveys

are published [232, 11]. Our comprehensive literature survey is presented in

Chapter 2. It addresses the preprocessing, analysis strategies, databases and

evaluation metrics, with emphasizes on Arabic manuscripts.

� AHHM database

The second contribution is the development of an Arabic historical handwrit-

ten manuscript database that is presented in Chapter 3. AHHM database is

designed to support segmentation and segmentation-free document retrieval.

The database consists of 108 historical manuscript pages. Using this database,

we segmented 2135 words from which we selected 25 keywords. The database

was used in our research and experiments, and will be made freely available to

researchers.
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� Document layout Analysis

The third contribution is achieved by designing and developing a novel learning-

free hybrid document layout analysis approach. The approach is outlined in

Chapter 4. The proposed approach has three novel outcomes; 1) A fast localiza-

tion of the main-content region of historical manuscripts by using an anisotropic

diffusion filtering (ADF) that allows automatic document characterization; 2)

developing whitespace analysis for handwritten documents. To-our-knowledge,

whitespace analysis is used in printed document analysis only; 3) A hybrid

technique that integrates global and local analysis to identify the main-content

boundary. Experiments of the proposed approach using Bukhari and AHHM

databases have yielded promising results achieving precision rate of 96.93% at

98.55% recall, and precision rate of 97.49% at recall 97.14% respectively. Fur-

thermore, the performance is analyzed using PRImA evaluation metric that re-

veals the approach’s segmentation quality. The proposed method have achieved

98.83% and 98.23% PRImA success rate using Bukhari and AHHM databases

respectively.

� Document Classification

The fourth contribution is the design and implementation of a learning-based

keyword spotting system (KWS) for Arabic historical manuscripts. The method

is outlined in Chapter 5. In this contribution, we suggested three novel out-

comes; 1) Skeleton-based interest region sampling. Unlike automatic detectors

that may select keypoints off-writing regions of a word-image. By using word-
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skeleton method, we guaranteed feature extraction from writing regions of a

word-image. 2) The proposed KWS estimates an operational threshold objec-

tively by modeling the classifier’s matching behavior. 3) A configurable keyword

spotting system. By analyzing and modeling the behavior of the SVM classi-

fiers in the training mode, the spotting task can be configured into three types,

soft, balanced and aggressive. The experiments of the proposed KWS approach

was applied using two databases; HADARA80P and AHHM. HADARA80P

database includes 80 manuscript pages with 16945 segmented words whereas

AHHM database includes 108 manuscript pages and 2135 segmented words.

The proposed approach yields good results using both datasets. Our proposed

KWS system using threshold t2, which is computed between the rejection and

matching SVM-responses distributions, was able to achieve 83.61% Fmeasure on

HADARA80P database, and 91.40% Fmeasure on AHHM.

7.2 Future Research Directions

Even though the research has several contributions and achieved its aim, we identified

some limitations. First, the proposed document layout analysis have adopted K-

NN clustering to find the separation boundary between main-content components

and side-notes. We found that K-means clustering may lack context information.

Therefore, the segmentation in the main-content against side-notes at the transition

condition was not optimum.

Secondly, the ADF main-content estimation may fail to find the main content region
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due to the impact of scale estimation of the filter when manuscript pages have low

resolution. In this case, the approach estimates the characteristics using integration

method of SWL and ADF that may allow extracting features from side-note regions.

Third, skeleton-based keypoint selection has been designed to extract features from

the main component of a given word. This design may have issues in matching

different words that have similar structures as dissected in Chapter 6.

A number of improvements that researchers of Arabic historical manuscript analysis

and classification need to address. It would be interesting to study the performance

of the proposed analysis technique on colored manuscripts. Consequently, a set of

texture feature may be required to characterize manuscripts main content region

instead of the geometric features used in this research. Moreover, by applying ADF

filtering on manuscripts, whitespaces are boosted and hence simplifies regional-based

analysis. Thus, finer level analysis can be conducted to extract text lines or smaller

regions using ADF filtering. Furthermore, the proposed method showed segmentation

errors due to Partial-Miss that indicates that local window separation using K-means

clustering was not successful for some cases. Therefore, an improvement is required to

address this limitation in the future. Usually, Arabic historical manuscript layouts are

complex and include several issues such as text-touching, variation in writing-style

and fonts, page degradation etc. that are required to be addressed. One possible

generic solution may be using deep learning to differentiate between the document

elements at the pixel level.

In the proposed keyword spotting, the integration of the three methods was not
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successful in some cases. This could be due to high variations in the integrated

systems. In other words, the three methods integration may not be the optimum

solution to improve the performance of the spotting system. Therefore, it would be

interesting to investigate the performance using other combinations of these three

KWS approaches. Finally, word-skeleton keypoint selection may be improved by

including spatial features.
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[29] J. Sauvola and M. Pietikäinen, “Adaptive document image binarization,” Pat-

tern Recognition, vol. 33, no. 2, pp. 225–236, 2000.

[30] J. Kapur, P. Sahoo, and A. Wong, “A new method for gray-level picture thresh-

olding using the entropy of the histogram,” Computer Vision, Graphics, and

Image Processing, vol. 29, no. 3, pp. 273–285, 1985.

[31] J. Bernsen, “Dynamic thresholding of gray level images,” in International Con-

ference on Pattern Recognition, pp. 1251 –1255, 1986.

[32] J. Kittler and J. Illingworth, “Minimum error thresholding,” Pattern Recogni-

tion, vol. 19, no. 1, pp. 41–47, 1986.

[33] M. a. Ramı́rez-Ortegón, L. L. Ramı́rez-Ramı́rez, I. B. Messaoud, V. Märgner,

E. Cuevas, and R. Rojas, “A model for the gray-intensity distribution of histor-

190



ical handwritten documents and its application for binarization,” International

Journal on Document Analysis and Recognition, vol. 17, no. 2, pp. 139–160,

2014.

[34] K. M. Amin, M. Abd Elfattah, A. E. Hassanien, and G. Schaefer, “A bina-

rization algorithm for historical Arabic manuscript images using a neutrosophic

approach,” in the 9th International Conference on Computer Engineering &

Systems, Cairo, Egypt. IEEE, pp. 266–270, 2014.

[35] M.-L. Feng and Y.-P. Tan, “Contrast Adaptive Binarization of Low Quality

Document Images,” IEICE Electronics Express, vol. 1, no. 16, pp. 501–506,

2004.

[36] B. Gatos, P. Ioannis, and S. J. Perantonis., “An Adaptive Binarization Tech-

nique for Low Quality Historical Documents,” in Document Analysis Systems

VI, Springer Berlin Heidelberg, pp. 102–113, 2004.

[37] B. M. Singh, R. Sharma, D. Ghosh, and A. Mittal, “Adaptive binarization

of severely degraded and non-uniformly illuminated documents,” International

Journal on Document Analysis and Recognition, vol. 17, no. 4, pp. 393–412,

2014.

[38] S. Bolan, L. Shijian, and T. Chew Lim, “Binarization of historical document

images using the local maximum and minimum,” in the 8th International Work-

shop on Document Analysis Systems. ACM Press, pp. 159–166, 2010.

191



[39] N. Chaki, S. H. Shaikh, and K. Saeed, “A comprehensive survey on image

binarization techniques.” Springer India, pp. 5–15, 2014.

[40] K. Ntirogiannis, B. Gatos, and I. Pratikakis, “ICFHR2014 Competition on

Handwritten Document Image Binarization,” in International Conference on

Frontiers in Handwriting Recognition,Heraklion, Greece. IEEE, pp. 809–813,

2014.

[41] M. Shafii and M. Sid-Ahmed, “Skew Detection and Correction Based on an

Axes-parallel Bounding Box,” International Journal on Document Analysis and

Recognition, vol. 18, no. 1, pp. 59–71, 2015.
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