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 Big data is huge, unstructured, and rapidly generated. Handling big data requires a special 

type of database solution to deal with such characteristics. The Hadoop framework is the 

prominent solution to big data. In the default architecture of Hadoop (also known as native 

model), the storage and computing modules are colocated. This condition makes Hadoop 

rigid, inelastic, and inefficient in resource utilization. An elastic solution that can respond 

to different demands in real time is a prerequisite for any cloud service. In this work, we 

propose another architectural model in which storage and computing modules are 

decoupled. Such decoupling makes the proposed architecture flexible, elastic, and efficient 

in terms of resource utilization. To evaluate the performance of the proposed model, we 

compared it with the native model. Based on the evaluation experiments, the proposed 

model performed better for I/O- and CPU-bound workloads. In addition to the features 

gained, we also evaluated the overhead of the proposed model. 
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بأنها بيانات كبيرة جداً في الحجم ومخزنة بشكل غير منظم و يستمر حجمها   (Big Dataتوُصف البيانات الضخمة )

ً بالتزايد بشكل سريع جداً. يتطلب معالجة  ه ات والتي تستطيع من حلول قواعد البيان اً خاص ذا النوع من البيانات نوعا

التعامل مع الخصائص المُمَيزة لهذه البيانات. الحل الأشهر على الإطلاق لمعالجة البيانات الضخمة هو هادوب 

(Hadoop البنية الهيكلية لهذا الحل تقوم على فكرة دمج وحدتي التخزين والحوسبة معاً بحيث يرتبطان ويتواجدان  .)

ذه التركيبة يعُرف بنموذج هادوب الأساسي. لكن ما يعيب هذا النموذج هو أن في كل مكون من مكونات الحل، وهو به

الترابط بين وحدتي التخزين والحوسبة  يجعل هادوب حلاً جامداً وغير مرن وغير فعال في استخدام الموارد. نحن الآن 

في نفس الوقت، لذا فإننا في  في عصر الخدمات السحابية والتي تتطلب حلاً مرناً يستجيب للطلبات والأوامر المختلفة

هذا البحث نقترح نموذجًا بنيوياً مختلفاً لهادوب يتم فيه فصل الترابط بين وحدات التخزين والحوسبة. هذا الفصل يجعل 

النموذج المقترح مرناً وذو كفاءة أكبر في استخدام موارد التخزين والحوسبة. لتقييم أداء النموذج المقترح ، قمنا بمقارنته 

معالجة في  ، واستناداً إلى نتائج تجارب التقييم ، كان النموذج المقترح أفضل وبالأخص لهادوب  لنموذج الأساسيبا

 وبشكل مركز قراءة وكتابةعمليات  تتطلبتلك التي  أونوع التطبيقات التي تستنزف مورد وحدة المعالجة المركزية 

بني نموذج هادوب  المقترح ، قمنا أيضًا بتقييم الكُلفة العامة  في . بالإضافة إلى الميزات العديدة لتعلى وحدة التخزين

 أداء هادوب والتي يسببها تطبيق هذا النموذج.
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1  CHAPTER 1 

INTRODUCTION 

Simply defined, big data is massive data that is generated very quickly with an unstructured 

or semi-structured format. For such kinds of data, traditional database solutions like 

Relational Database Management Systems fail to work properly, as they mainly handle 

data that is structured, centralized, and limited in size [1]. In a traditional database solution, 

when data size exceeds a certain threshold, performance starts suffering. Such a situation 

requires adding further resources to recover system performance. The only way to add 

further resources to traditional database systems is to upgrade the existing system vertically 

(scaling up). However, this type of scaling is both limited and costly.  Therefore, there is a 

need for a solution that can handle massive and unstructured data in a smooth and cost-

effective way. Big data solutions, such as Hadoop, distributed search, in-memory, Spark 

[2], Storm [3], and NoSQL, have been developed to meet that need [4]. 

A big data solution can be deployed either in a bare-metal infrastructure or on the cloud. 

Deploying it as bare-metal requires expensive hardware and expert staff. However,  

deploying it on the cloud is feasible and is the most-common choice, as many interested 

parties cannot afford the expense of physical big data infrastructure [5].  Therefore,  the 

recent direction is to provide big data solutions as a cloud-based service [4]. Some 

companies have taken the lead in providing Hadoop as a service, such as Amazon EMR 

[6], IBM Info Sphere Big Insights [7], and Microsoft HDInsight [8]. 
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1.1 Cloud Computing 

Currently, the cloud has become an integral part of all business. The recent revolution in 

cloud computing technologies has attracted the attention of most companies due to its 

amazing impact on reducing costs and effort. Cloud computing has quickly transformed 

computing into a model of offering sophisticated services known as cloud-based services. 

The techniques that play the most important roles in cloud computing are Service Oriented 

Architecture (SOA) and virtualization [9]. SOA addresses flexibility, reusability, 

componentization, and extensibility. It was formally adopted in cloud computing in 2009 

when a model called Cloud Computing Open Architecture was proposed to bridge the 

power of virtualization with the power of SOA to form reusable and extensible cloud 

computing [9]. The other key technique, virtualization, efficiently manages the way 

operating systems and applications allocate shared physical resources. It is considered the 

core-computing layer that helps with a smooth configuration, deployment, scheduling, and 

efficient resource utilization. This can be implemented using either hypervisor solutions, 

which are dominant, or containers which are called lighter virtualization; in some situations 

outside of cloud solutions, they outperform hypervisors [10], which explains their recent 

popularity.  

The Hadoop distribution of Hortonworks Data Platform (HDP) that runs on Microsoft 

Hyper-V is an example of a cloud-based big data solution. MapReduce and HDFS are the 

core components of Hadoop1. The computation module is represented by MapReduce, 

while the storage module is represented by HDFS. However, in Hadoop2, the core 
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components are Yarn and HDFS, and MapReduce is an application of Yarn that works in 

the user-space but not at the core of Hadoop [11]. 

 

1.2 Current Hadoop Architecture 

In Hadoop’s default configuration, the computation and storage modules are coupled. This 

is called Native Hadoop, and if Hadoop is deployed on the cloud, as in our work, this model 

is called Cloud-Based Native Hadoop. For the rest of this thesis, we refer to this model as 

the Native Model. 

A key characteristic of the Native Model is data locality, which means that data is processed 

locally in each virtual machine and is not transferred into a centralized location to avoid 

network data transfer overhead. This was the core assumption for Hadoop in its early days. 

For the Native Model to be well-performing, elastic, and flexible, there are many 

challenges. One of these challenges is overcoming the tight coupling of the storage and 

computing modules. 

The coupling of storage and computing roles makes this model inflexible, so to scale out, 

we added a new VM with both layers, even if the running workloads were more I/O or 

more CPU-bound, i.e., when the computation-to-storage ratio is unknown or is subject to 

change. This led to the inefficient utilization of resources assigned to those VMs. Another 

limitation occurs when we need to highly securing stored data. In this model, and because 

the data is scattered through the whole cluster, we are forced to add the security layer on 

top of the whole VMs, which causes a lot of overhead. One more issue in the native model 
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is the necessity of removing both layers at once, even in cases where we only needed to 

remove computing or storage. 

 

1.3 Problem Statement and Motivation 

An essential requirement for any cloud service is having an elastic architecture, which can 

be achieved by tightly coupling storage and computation. However, this can be restricting 

in situations where the computation-to-storage ratio is not known in advance, or if that ratio 

changes over time. Thus, attention should be paid to tight coupling to overcome this 

limitation.  

Hadoop consumers pay more attention to its performance in terms of throughput and 

completion time. Hence, segregating HDFS from MapReduce may give system 

administrators and developers better chances to modify model configurations in a way that 

helps maximize cluster utilization and, consequently, performance. This practice could 

increase consumer’s satisfaction due to gained performance quality. Another gained 

capability when implementing the Hadoop Proposed Model is the elasticity of the 

computation module. Tightly coupling computing and storage will get relaxed so each layer 

can be shrunk or expanded independently. However, layer segregation brings extra 

overhead caused by data transferring between different nodes because of the lack of data 

locality. Depending on the Hadoop placement policy, this overhead might vary based on 

data node location: whether it is in a separate rack or within the rack itself where the 

computing node exists. Evaluating two comparable cloud-based Hadoop models—the 

Native Model and the Proposed Model—can provide a solid answer for the performance 
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of each model in terms of throughput and completion time. We can know the feasibility of 

implementing the Proposed Model when we know the paid cost in exchange for gaining all 

SOA capabilities, such as elasticity, security, and flexibility. 

Our proposed methodology was motivated by the work done on the Hadoop decoupled 

model. Specifically, our work is relevant to [12] because by shaping or configuring the 

Hadoop cluster as a Proposed Model, we gain most SOA features, such as flexibility, 

security, and elasticity. In addition, resources are utilized efficiently because scaling out in 

a Proposed Model is achieved by adding an optimally-configured and tuned virtual 

machine for computing or storage. In [12], the authors tested the performance of Hadoop 

1, which is rarely used and was replaced, in 2013, by Hadoop 2. Also, the performed 

experiments were done on one physical host with restricted resources and no consideration 

for physical networking overhead. Therefore, the results obtained by [12] cannot be 

generalized to Hadoop 2 or an environment with more than one physical host. Therefore, 

we propose our methodology to fill these gaps. 

 

1.4 Research Objectives and Contributions 

This work explores providing Hadoop storage and computing as independent services. This 

is achieved by the following objectives: 

1) Understand how current Hadoop architecture provides computation and storage 

services. 

2) Propose a new architecture for Hadoop to provides independent computation and 

storage services. 
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3) Evaluate the new proposed Hadoop architecture. 

Recently, the idea of providing Hadoop as a service is gaining ground [6][8][13]. Industrial 

organizations such as VMware [14] are channeling their efforts to support Hadoop storage 

and computing separation. Unfortunately, research is limited. To the best of our 

knowledge, Frankfurt Big Data Lab [15] attempted to evaluate the performance of two 

Hadoop models. However, that work [16] did not fully utilize the SOA features. Research 

that was done in [16] tested Hadoop native and decoupled Models, but only based on one 

physical host environment, which restricts the notion of SOA in terms of elasticity, 

security, and flexibility. In addition, this negates a Hadoop key feature: a massive data 

processing solution. Furthermore, the experiments in [16] were done on Hadoop 1 and 

HiBench1.0, which are considered obsolete frameworks. In our research, we complement 

the work done in [16] as follows: 

1) Propose a service-oriented Hadoop environment. 

2) Propose an elastic computation Hadoop environment. 

3) Provide a prototype of cloud-based Hadoop 2.0 clusters with various physical hosts 

and different Hadoop distribution namely, Hortonworks. 

4) Evaluate our prototype using a different hypervisor, Windows Hyper-V, and 

enhanced benchmarking suite, HiBench-6.0. 

5) Compile suitability recommendations for prototype usage. 
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2 CHAPTER 2 

RELATED WORK 

Research on the performance evaluation of Hadoop clusters can be classified into two 

categories. The first category compares different Hadoop clusters from a deployment 

perspective, i.e., in the same deployment environment or in a different deployment 

environment. In contrast, the second category compares different Hadoop SOA-based 

models for a single Hadoop cluster deployed on premise or on the cloud. 

 

2.1 Hadoop 

Hadoop is an open source framework that handles big data in a distributed and cost-

effective manner. It is a highly scalable cluster that comprises commodity machines [17]. 

It has become widely adopted in both industry and academia. In industry, it is used in 

various applications, such as web search, spam filtering, and social network 

recommendations. In academia, much academic research is built on Hadoop [18]. Hadoop 

is considered the most popular, cost-effective, and scalable distributed computational 

framework for big data; it is the dominant and de-facto standard. It integrates a storage 

module, a computation module, and other modules to form a powerful distributed 

processing and storage solution [1]. It is an ecosystem with many components. Figure 1 

illustrates two of the core components: Hadoop Distributed File System (HDFS), which is 

used for handling the storage module; and MapReduce, which is used as a computation 
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framework. These two components are built from work on Google GFS [19] and Google 

Bigtable [20], both published as white papers. Other Hadoop components are Pig, Hive, 

Storm, Mahout, Spark, Tez, Zookeeper, and Hbase [17]. Hadoop has two generations: 

Hadoop 1, which is a batch-oriented MapReduce model; and Hadoop 2, which is an 

interactive and specialized processing model with other capabilities that turn Hadoop 

upside down. The most important advances in Hadoop 2 are HDFS federation, YARN, and 

HDFS high-availability. HDFS federation gives a cluster the capability of scaling by 

adding more NameNodes, which are storage master processes that handle portions of the 

file system namespaces. YARN, in contrast, is a resource manager that was created by 

separating the processing engine and resource management capabilities of MapReduce. So, 

MapReduce became an application of YARN [11]. 

The most fundamental advantage of using YARN is to no longer be restricted to work only 

on I/O intensive and high latency MapReduce frameworks [1]. For example, in Hadoop 1, 

we had no option other than processing big data using a batch-oriented framework, 

MapReduce, which is I/O intensive. However, with YARN capability in Hadoop 2, things 

are more flexible in terms of choosing processing framework, i.e., in addition to batch-

processing, we could also choose interactive or real-time processing frameworks, such as 

Storm [3] and Spark [2], that are more in-memory rather than I/O operations.  

Outside the revolutionary change caused by adding YARN, opening-up the Hadoop 

framework is the most important development [11]. That is, we can now run multiple 

applications on a single Hadoop cluster, each of which has a different processing type. This 

enables Hadoop to efficiently share data among applications. The introduction of YARN 

caused significant changes to how MapReduce works. For example, scheduling is no 
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longer part of MapReduce. Instead, it became part of YARN’s jobs. YARN’s 

responsibilities are resource scheduling and monitoring. Monitoring is significant, as it 

ensures two functions, reallocating resources using freed-up capability and terminating 

containers that exceed the agreed-upon and allocated resources. The simplicity of YARN 

comes from not keeping the history of executed applications and for not knowing the type 

of the running application. YARN components are ResourceManager and NodeManagers. 

ResourceManager is the master process of YARN, while NodeManager is a slave process 

that runs on every node in a cluster. Its responsibilities are: creating monitoring and killing 

containers. For creating containers, it receives requests from the ResourceManager and 

Application Master. It also reports the container status to the ResourceManager. 

Application Master is the master process of a YARN application. It is the first container 

that is created by NodeManager on behalf of ResourceManager. 

Here, it is worth mentioning that we still need batch-processing, as there are situations 

where we only can use batch-processing, such as when a dataset cannot fit into a memory 

to be handled using real-time processing. Concerning Hadoop 2’s high-availability 

implementation, there are a couple of NameNodes in an active-standby configuration. So, 

in case of the failure of the active NameNode, the standby takes over its duties to continue 

servicing client requests without significant interruptions [1]. 
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Figure 1 Hadoop Core Components 

 

2.1.1 MapReduce 

Our work is based on Hadoop 2, to which YARN was introduced and MapReduce was re-

written as a YARN-based application called MapReduce2 that lacks scheduling [11]. In 

our work, we refer to MapReduce2 as MapReduce. MapReduce is a distributed computing 

component of Hadoop that works based on Mapping and Reducing algorithms. It is a 

programming model for batch processing, so it does not suit real-time analysis in which 

results are expected to be seen instantly. Instead, queries take minutes or even hours to be 

finished.  Despite the emergence of new processing frameworks, MapReduce is still needed 

because it is useful in understanding how batch processing works and how a dataset is 

divided into smaller pieces. Furthermore, in some situations, getting a real-time result is 

not required. 

MapReduce works by splitting the processing into maps, then reducing them. The output 

of the former is used as an input for the latter, as illustrated in Figure 1. The unit of work 
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to be processed is called a MapReduce job. This job runs in Hadoop by separating it into 

two different types of tasks: map tasks and reduce tasks. Using YARN, map tasks are 

scheduled to be run on cluster nodes, and in case a task fails, it will be rescheduled to run 

on another node.  The output of map tasks is written to the local disk, not the HDFS, 

because it is considered a temporal output that will be consumed by a reduce task to 

produce the final output. For a reduce task, input data comes to reduce task nodes across 

the network from different map tasks to be merged and then, for reliability, the output is 

saved in the HDFS. 

2.1.2 HDFS 

Hadoop is based on an abstract notion of filesystems. HDFS is just one implementation 

that is designed to work efficiently in conjunction with MapReduce. Other examples of file 

systems that Hadoop supports are Microsoft Azure and Amazon S3.  HDFS is a file system 

that is designed for storing huge files on clusters consisting of commodity hardware.  A 

Hadoop core component, HDFS, stands for Hadoop Distributed File System; it is the 

default distributed file system for Hadoop. However, Hadoop has a general-purpose file 

system abstraction that enables it to integrate with other DFS, such as Amazon S3, IBM 

GPFS [21], and Azure Blob [22]. 
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Figure 2 MapReduce DataFlow [23] 

 

HDFS is built around the idea that the most efficient data processing pattern which is write-

once and read many times. In the typical situation, a dataset is copied or generated from a 

source, then several analyses are done on that dataset. Each analysis includes a large 

amount of the dataset. Therefore, the time needed to read the complete dataset is more 

significant than the delay in reading the first record. However, there are areas where HDFS 

is not recommended, such as for low-latency data access, lots of small files, and numerous 

writers and random file changes. HDFS will not efficiently serve programs in which low-

latency access to data is essential. It is optimized for delivering a high throughput of data. 

However, this comes at the expense of latency. The limit to the number of files in a 

filesystem is determined by the amount of NameNode available memory, because the 

NameNode keeps file system metadata in memory. Files in HDFS are written by a single 

writer. Writes are made in an append way. Multiple writers are not supported [1]. 
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2.2 Comparing Different Hadoop Clusters 

2.2.1 Same Deployment Environment 

The authors in [24] compared two different Hadoop distributions: DataStax [25] and 

Cloudera [26]. The main purpose of their work was to investigate the workload types that 

better suit one Hadoop distribution or the other, taking into consideration data size. Three 

workload types were investigated: CPU-bound, I/O-bound, and mixed. Based on 

conducted experiments, they found that CPU-intensive workloads were almost linear in 

both Hadoop distributions. For I/O intensive, in read-intensive workloads, DataStax 

Distribution performed up to 32% slower than Cloudera. However, in write-intensive 

workloads, DataStax performed up to 81% faster than Cloudera. 

Another work that fits into this category was done by [27], which compared Hadoop 

enterprise distributions based on metrics such as Hadoop solution’s architectural and 

operational functionality, modeling, storage, and low latency. The researchers found 

leaders and strong performers in providing Hadoop solutions. Based on that, IBM [7], 

Amazon [6], Hortonworks [28], MapR [29], and Cloudera [26] are leading enterprises, 

while Datameter [30], DataStax [25], and Pentaho [31] are strong performers. 

 

The authors in [32] studied the impact of scaling out and scaling up on the performance of 

two Hadoop clusters. Scaling out means extending the cluster horizontally, while scaling 

up means extending the cluster vertically by adding more resources. The results showed 

that scaling up outperforms scaling out in CPU-bound operations, whereas scaling out 

outperforms scaling up in I/O-bound operations. The researchers noticed that other 
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components like network I/O, which were not investigated fully, affect the performance of 

the cluster. 

 

2.2.2 Different Deployment Environments 

The authors in [33] showed that a bare metal Hadoop cluster is 4% better than the simplest 

virtual Hadoop cluster, meaning that gaining all virtualization advantages with that small 

overhead cost is considered a very good achievement. The results also showed that running 

more than one virtual machine, up to a specific limit, brings better performance than 

corresponding physical machines. Another relevant work [34] compared an optimized 

separated Hadoop virtual cluster against separated physical Hadoop cluster and showed 

that virtualization overhead cost can be compensated by fine-tuning the configuration of 

the virtual environment. 

Other researchers have compared MapReduce computation speed in a virtualized 

environment against MapReduce in a physical environment, such as in [35], where the 

MapReduce service was deployed into a Hadoop virtual cluster to compare its performance 

with on-premise deployment. It was found that many virtualized Hadoop issues need to be 

addressed and optimizing the MapReduce virtualized service was a suggested solution to 

avoid such issues. A similar MapReduce performance evaluation was done in [36], which 

showed that increasing MapReduce relevant computation speed is possible under complete 

virtualization conditions. Similarly, other researchers [37] found that from a resource 

utilization perspective, partitioning a physical host into multiple VMs can result in a similar 

or even better performance than the physical platform with regards to MapReduce jobs. In 

contrast, the researchers in [38] found that the performance of the I/O-bound workload was 
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more sensitive to virtualization overhead than was the CPU-bound workload. Hence, for 

I/O-bound workloads, they recommended adding more VMs rather than adding more 

VCPUs to a VM. 

 

2.3 SOA-Based Hadoop Separated Models 

This category of literature work compares different models for a specific Hadoop cluster. 

Decoupling Hadoop’s computing layer from its storage layer within the same Hadoop 

distribution was discussed in [39] and [40] as a way to achieve elasticity in physical 

deployments. However, there is some work in industrial organizations comparing 

virtualized Hadoop clusters, but little work in academia. An industry-related work was 

done by VMware [14] explaining the Hadoop Native Model and the Proposed Model in 

terms of capability and the support given by the VMware hypervisor, while also showing 

how those models can be deployed when a relevant hypervisor solution named vSphere.  

The researchers in [16] conducted performance comparisons on two cloud-based Hadoop 

cluster models: the standard model and the  data-compute model. The results showed that 

CPU-bound workloads are suitable for the data-compute model. However, read-bound 

workloads are suitable for the standard model, and adding more data nodes in the data-

compute model improved read performance. They also showed that write I/O workloads 

are suitable for the data-computer model. However, a lower number of data nodes results 

in better write performance. 
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2.4 Literature Review Summary 

In this section, we elaborate on how our proposed model fills the gap of the existing related 

work. We first start by showing the limitations of the research papers we discussed in this 

chapter. Table 1 shows the limitations of the existing work. For example, only one technical 

report from VMware explains the Hadoop Native Model and Separated Model in terms of 

capability and the support given by the VMware hypervisor and shows how those models 

can be deployed when using their own hypervisor solution named vSphere. Also, one paper 

tested the performance of Hadoop 1, which is rarely used and was replaced in 2013 by 

Hadoop 2. Furthermore, the performed experiments were done in one physical host with 

restricted resources and no consideration for physical networking overhead. Therefore, the 

obtained results cannot be generalized to Hadoop 2 or environments with more than one 

physical host. 

To fill in these gaps, we developed a methodology to overcome the limitations summarized 

in Table 1: Limitations (1, 2) were addressed by comparing the performance of one model 

of Hadoop with another model (the Native Model vs. the Proposed Model). Limitation (3) 

was addressed by not supporting this academic research by a specific industrial 

organization. Limitation (4) was addressed by my thesis contributions (3-5). That is, we 

proposed a service-oriented and an elastic computation Hadoop environment. In addition, 

we provided a prototype of cloud-based Hadoop 2.0 clusters with various physical hosts 

and different Hadoop distribution, namely Hortonworks. Moreover, we evaluated our 

prototype using a different hypervisor, Windows Hyper-V, and enhanced benchmarking 

suite, HiBench-6.0. 
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Table 1 Summarized Limitations of Related Work 

Paper# Limitation Limitation# 

[24] [27] 

[32] 

- Comparing different Hadoop clusters (all have the same 

architectural model, Native) deployed on the same 

environment. That is, either both were deployed on the 

cloud or both were deployed in a bare-metal environment 

 

1 

[33] [34] 

[35] [36] 

[37] [38] 

- Comparing different Hadoop clusters (all have the same 

architectural model, Native) deployed on different 

environments. That is, one was in the cloud and the other 

in bare metal. 

2 

[14] Industry work (a technical report from VMware): 

- Explains the Hadoop Native Model and Separated Model 

in terms of capability and the support given by VMware’s 

hypervisor. 

- Shows how these models can be deployed when using the 

hypervisor solution named vSphere 

3 

[16] - The performed experiments were done on one physical 

host with restricted resources and no consideration for 

physical networking overhead. This negates Hadoop’s key 

feature of being a massive data processing solution 

- The obtained results cannot be generalized to Hadoop 2 or 

environments with more than one physical host. 

- The experiments in this paper were evaluated by 

benchmark suite HiBench1.0, which is considered an 

obsolete framework as it works only with Hadoop 1. 

- Tested the performance of Hadoop 1, which is rarely used 

and was replaced, in 2013, by Hadoop 2.  

 

4 
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3 CHAPTER 3 

CLOUD-BASED PROPOSED MODEL 

In this chapter, Section 3.1 explains the general architecture of the cloud-based big data 

solutions, while Section 3.2 discusses the gained capabilities that result from adopting the 

big data Proposed Model. 

 

Figure 3 Layered Architecture for Big Data Solutions 
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3.1 Layered Architecture for Big Data Solutions 

A typical architecture of a big data solution includes four key layers that are illustrated in 

Figure 3 and namely, physical layer, virtualization layer, core components layer, and 

application layer. The layers provide an approach for arranging components that belong to 

the same category. They are just a logical representation that doesn't indicate that they are 

working independently. 

3.1.1 Physical Layer 

Tangible resources such as physical servers, switches, network connectivity, and data 

center are the units that make up the physical layer. The physical layer is the basis for all 

above subsequent layers. Therefore, while we construct this layer, we need to consider the 

requirements of the remaining layers. Scalability is the most significant requirement that 

needs to be considered while building this layer. It is the foundation for a cloud-based big 

data solution. Hence, the potential of infrastructure continuous growth is very high.  

3.1.2 Visualization Layer 

Virtualization technologies are leveraged to hide the complexity of the physical resources, 

and to enable attractive capabilities such as sharing resources, dynamic provisioning of 

resources [41], flexibility and efficient utilization of the resources. Virtualization tools and 

technologies such as hypervisors are used for transforming the environment into a cloud-

based by enabling the capability of creating virtual entities such as machines and switches 

which are the component of this layer.   
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3.1.3 Core Components Layer 

Core components layer comprises storage module, resource allocation manager module, a 

computation module, and coordination module. Each has a specific role and perform set of 

related functions. These modules can be provisioned and managed manually or using 

dedicated big data management solutions such as Ambari [42] and Cloudera Manager [43] 

3.1.3.1 Storage Module 

Big data storage can be classified into two categories, file systems, and database 

technologies. A distributed file system is the base of the big data storage. For that, it highly 

attracted the attention of academy and industry. Recently, big data distributed file systems 

have become bit matured as a result of a long journey of large-scale commercial operation 

[18]. Researchers and leading providers have created their own solutions to meet distinct 

big data storage requirements. For example, Google File System GFS was designed and 

implemented as a scalable distributed file system for massive distributed data. HDFS [44]  

and Kosmosfs [45] emerged as derivatives of GFS. On the other hand, Facebook developed 

Haystack [46]  to store a huge amount of small-file photos, and  Amazon Simple Storage 

Service (S3) [6]was implemented to store and retrieve any volume of data from anywhere: 

business applications, IoT sensors, mobile applications, and websites. One more example 

is Windows Azure Binary Large Object (Blob) [47] storage which provides object-store 

functionalities. 

With regards to database technologies as the other category of big data storage, many 

database systems have been proposed for handling huge datasets as the traditional 

relational database systems fail in addressing the complexity and the massive size of big 

data.  NoSQL is positioned on top of the proposed solutions that emerged to cope with big 
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data problems. It is viewed as the standard due to its key characteristics such as schema-

free, replication support, having a simple API, and consistency and working smoothly with 

a huge amount of data. key-value stores, column-oriented databases, and document 

databases are the main three types of NoSQL databases from the data model point of view 

[18]. Examples of popular NoSQL products are MongoDB, HBase, Cassandra. 

The storage can support two types of processing, synchronous and asynchronous. In the 

former, data is processed in real-time or near real-time, so the storage should be enhanced 

for low latency. However, in the latter, data is captured, recorded and processed in batch 

and for that storage low latency is not required. 

3.1.3.2 Resource Manager 

Cluster resource manager is the architectural center of big data solution that allows multiple 

data processing engines such as real-time streaming and batch processing to handle data 

stored in a single platform which unlock an entirely innovative approach to analytics. This 

type of foundation modules is considered a new generation of resource management and is 

enabling organizations everywhere to realize a modern data architecture. The main goal of 

the cluster resource manager is to enable sharing the resources of a large cluster of 

machines between different computation frameworks due to the inefficiency of creating 

separate infrastructures to accommodate applications. The resource manager is a per-

cluster level Component and it has two main functionalities: Scheduling and application 

management. The resource manager scheduler is responsible to schedule required 

resources to applications and it does care about monitoring or tracking of those 

applications. On the other hand, application Master is a per-application level component 

which is responsible for interacting with both resource manager scheduler. Examples of 
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cluster resource managers are Moses [48], Kubernetes [49], and Yarn [17]. The Mesos and 

YARN cluster managers are superior to other managers because they consider the resource 

needs of other applications running on the cluster and impose a scheduling policy through 

all of them.   

3.1.3.3 Computation Module 

There are many big data computation frameworks, namely batch processing, real-time 

processing, and hybrid. In the real-time processing paradigm, data analysis is done as soon 

as possible to be able to gain instant insights. In this paradigm, data comes in a stream, and 

while it is arriving continuously, only a small portion of the stream is stored in limited 

memory [18]. Few passes over the stream are used in finding approximation results. The 

real-time processing paradigm is used for online applications at the level of second or 

millisecond. Representative open source big data real-time modules include Storm [3], 

Impala [50], Spark [2], and Tez [51].  

Batch Processing, on the other hand, is a paradigm where data is first stored and then 

processed.ma Popular examples are MapReduce [52], Hive [53], and Pig [54]. MapReduce 

is the dominant batch-processing model. It is a powerful programming model that adds the 

paralleling and distribution of massive computation applications on clusters of commodity 

machines [18]. The main idea of MapReduce is that data are initially separated into smaller 

portions. Then, these portions are processed in parallel in a distributed manner to generate 

intermediate results. The last result is derived by combining all the intermediate results. 

This model typically utilizes computation resources near to data location to avoid the 

network overhead of data transferring [18]. The MapReduce model is widely implemented 

in web mining and machine learning. 
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 Hybrid Processing is a combination of both batch and real-time processing needs. A key 

factor in providing performance for big data applications is the data locality in which the 

computation is moved into the location of data. This is the preferred option in typical high-

performance computing systems [55]. 

3.1.3.4 Coordination Module 

It is a centralized service for providing distributed synchronization, maintaining 

configuration information, and naming [56].For coordinating the actions of independent 

applications or computing entities that are involved in big data solution, a dedicated big 

data coordination module is needed to enable a highly reliable distributed coordination. It 

helps application developers to focus on the core business logic and rely completely on this 

dedicated module. Tasks such as naming service, distributed synchronization, such as locks 

and barriers, and configuration management can be accomplished by coordination 

dedicated module to avoid the potential bugs resulted from manual implementation by 

developers [57].  

3.1.4 Application Layer 

Big data cluster core components are reached through a specific cluster-API. A user can 

interact freely and directly with these core components by exploiting the interface provided 

by the programming models [18] to perform different data analysis functions, clustering, 

and classification. Another way for interaction with big data cluster is an indirect way 

through utilizing a broker, an intermediate tool that has the needed capabilities to facilitate 

the interaction between the user and the cluster core components. A benchmark suite is an 

example of an intermediate tool that is used for heavily testing the big data solution using 

synthetic or real-world workloads. 
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3.2 Hadoop Proposed Model 

To overcome the Native Model’s limitations, we explored providing Hadoop cloud-based 

computation or storage modules as independent services, as opposed to providing both 

Hadoop modules at once as one service. Therefore, decoupling the computation and storage 

modules was required. In doing this, we came up with a new model called the Cloud-Based 

Proposed Hadoop. For the rest of this thesis, we refer to this model as the Proposed Model. 

Scalability, elasticity, efficient resource utilization, and security are the fundamental 

advantages of the Proposed Model, which is based on the notion of SOA [4]. 

Scaling a Hadoop cluster in or out means extending that cluster horizontally by adding or 

removing nodes [58]. In contrast, the capability of Hadoop cluster to adapt to workload 

changes by allocating and reallocating resources in an autonomic way is called elasticity 

[59]. So, for Hadoop to scale out and scale in the storage and compute modules 

independently, these modules must be decoupled so each individual module can be handled 

separately [34].  

However, gaining elasticity can be achieved by the computing module, but not by the 

storage module. The elasticity of the computing module can be achieved seamlessly 

because it is easy to shrink or expand in real-time. This contrasts with the storage module, 

where adding a new storage node affects the whole cluster. That is because the rebalancing 

is a network-bandwidth intensive and time-consuming process [4]. In addition to the 

elasticity and scaling in and out that are gained by the decoupling of the computing and 

storage modules, the Proposed Model has further benefits, such as efficient resource 

utilization, inheriting all SOA capabilities, and others, as explained below [4]: 
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- Flexibility and Agility: scaling out by adding an optimally-configured and tuned VM 

for the computing or the storage module. So, we can modify the assigned resources at 

any time and scale in or out strictly and independently based on the workload 

requirement. For that, we can directly begin projects instead of spending a long time 

building infrastructure that meets the expected workload. In other words, we are not 

required to know the needed computing and storage capacities in advance. That frees 

us from having to guess the exact need for resources, which can result in either over- 

or under-provisioning. 

- Improve Data Protection and Security: When storage VMs are decoupled, we can put 

data-relevant security rules only on them, without disturbing the computing module 

with an avoidable security overhead [60].  

However, the Proposed Model does have a performance penalty as a result of the extra 

overhead caused by data transferring between VMs due to the loss of data locality [14] 

[16]. This model was previously considered infeasible and expensive to achieve because 

of the low speed of storage mediums and networking. In this work, due to the increased 

speed of networks, we could investigate the Proposed Model to gain all virtualization and 

SOA advantages, specifically: agility, cost effectivity, flexibility, and efficient resource 

utilization, all without sacrificing much performance. If we could overcome the networking 

overhead by utilizing very high-speed networking technologies, data-locality would no 

longer be needed. Thus, we could gain all benefits of the decoupled model with no penalty 

to cluster performance. 
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3.2.1 Big Data Solution 

In this thesis, we propose a big data solution model that is shown in Figure 4. In this model, 

we separated the computation module from the storage module which means that each 

individual worker VM will contain either a compute slave or a storage slave but not both. 

 

Figure 4 Cloud-Based Proposed Big Data Solution 

 

In the Native architecture of big data solution as shown in Figure 9,  and because of its 

coupling nature, there is no option but configuring it one way following the default settings 

in which the computation workers and the storage worker are hosted in one VM. So, each 

VM has one computation worker and one storage worker. However, for the Proposed 

Model and due to the decoupling of computation and storage module, we have the 

flexibility to come up with many different configurations. For example, in one 

configuration, we can distribute the computation workers and the storage workers equally. 

In another example, we can configure it to have the computation module bigger than the 
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storage module. Another way of configuring the Proposed Model is by having the 

computation module less than the storage module. The typical scenario for building a big 

data solution utilizing the Proposed Model is detailed in the following subsections: 

3.2.2 Virtual Machines Preparation 

A big data workload can be one of three common workload patterns. First workload pattern 

is the CPU-Intensive. In this pattern, the solution heavily consumes CPU cycles and 

memory. The second workload pattern is the I/O-Intensive. That is, solution spends much 

time on reading and writing operations. The last pattern is the balanced one. In the 

workload of balanced pattern, the solution consumes memory, CPU, and I/O all in a fair 

way. For leveraging the Proposed Model, the assumption is that the big data administer has 

an idea of the nature of the workload pattern that will be running on the solution. Given 

that, building a big data solution will be different based on the workloads pattern. For 

example, for CPU-Intensive application, following considerations should be taken into 

account: 

1) The vast majority of the cluster VMs will be configured to be part of the 

computation module. 

2) Those VMs will be assigned with more CPU cores, more memory, and less storage. 

However, for I/O-Intensive application: 

1) Most of the cluster VMs should be configured to be part of the storage module. 

2) Those VMs will be allocated more storage, medium memory space, and fewer CPU 

cores. 
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For the balanced workloads, all VMs should be provisioned with same resources. That is, 

each VM will be part of computation and storage module. Therefore, it will utilize all types 

of resources in a fair way. 

3.2.3 Mapping the big data solution workers into the Prepared VMs 

The process of deploying a big data solution utilizing the Proposed Model needs some 

attention to be paid for the mapping of the big data workers and the prepared VMs. The 

VMs that are prepared and provisioned with better CPU cores and better memory are 

supposed to be mapped into the big data computation workers. Similarly, the VMs that are 

prepared with more storage are supposed to be mapped in the storage workers. 

 

 

Figure 5  Cloud-Based Native Big Data Solution 
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4 CHAPTER 4 

PERFORMANCE EVALUATION 

We evaluate the performance of two comparable big data cloud-based architectures, the 

Native-Model and the Proposed Model. For that, we built a platform with a specific 

configuration that meets the requirement of the model under investigation. Then, we run a 

set of experiments, collect the results, and perform the analysis. Section 4.1 shows the 

details of building the experimental platform, while Section 4.2 shows the approach we 

followed while conducting the experiments in different experimental scenarios. Section 

4.3, explains the different experimental scenarios of the Native and the Proposed Models. 

Section 4.5 discusses and analyzes the results obtained from the experiments. 

 

4.1 Experimental Environment 

As shown in Figure 6, we setup the cloud-based environment that is required for running 

our experiments as follows: First, we prepared the physical components by providing hosts 

and switches with the required capabilities to handle datasets of hundreds of Gigabytes. 

Then, we moved on configuring the virtualization part of the environment. In each physical 

host, we installed Microsoft Windows Server 2012 R2 as a cloud operating system to help 

us in building a private cloud environment through enabling its virtualization capability by 

activating Hyper-V which is the hypervisor feature that is built-in Windows Server 2012 

R2. Hyper-V was utilized for creating several VMs and several virtual switches based on 
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the requirement of the intended cluster to be deployed. Next, Hadoop clusters were 

deployed. Some of them were configured as Native Models and others were configured as 

Proposed Models.  Finally, we installed HiBench as a benchmark suite that was utilized for 

evaluating the performance of the deployed clusters. By doing this, our platform is ready 

for running the experiments. The following sub-sections show the details of the 

components that were used for building the experimental platform. 

 

Figure 6 Experimental Platform Diagram 

 

4.1.1 Physical Components 

The physical components of our platform are two hosts, and one switch that connects the 

hosts to each other. The specifications of each physical host are shown in Table 2 with the 

following details: Two network adapters each with a maximum capacity of 1Gbps.The 

storage is eight SAS Hard-Disks, 300 GB each, that were merged into a RAID-0 native 

disk array and mounted as one logical volume coming up with a total of 2400 GB. The 

processors are two each has 6 Cores and 12 Logical processors. Physical memory is 14 
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chips, and each one has the capacity of eight GB, so the whole capacity is 112 GB in each 

individual physical host. 

 

Table 2 Physical Host Characteristics 

System Model Dell PowerEdge R620 

Physical Memory (RAM) 112 GB  

Processors 2x [ Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz, 2000 Mhz, 6 Core(s), 

12 Logical Processor(s)] 

Storage 2.4 TB 

Eight SAS (15K PM) each 280GB 

Network Adapters 2x Broadcom NetXtreme Gigabit Ethernet 

 

4.1.2 Virtualization Components 

In our environment, Microsoft  Windows Server 2012 R2 Datacenter was chosen as a host 

operating system due to its various key features [61] such as highly-virtualized private 

cloud environments, stability, supporting up to 1024 of active virtual machines, while other 

visualization solutions such as VMware supports only 512. In addition, there is another set 

of features that encouraged us on selecting Windows Server 2012 Datacenter as a host OS 

such as dynamic memory, distributed file system replication, and automatic virtual 

machine activation[62].Within this OS, we enabled the built-in hypervisor to create the 

virtual machines and virtual switches. 

4.1.2.1 Hypervisor 

Because of its appealing features, Hyper-V has been selected among many available 

hypervisors. For instance, it is a free hypervisor -licensing cost is included with the license 

cost of Windows Server- that offers an enterprise-grade virtualization, also it is considered 
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a type-1 hypervisor that outperforms another type of hypervisors, scale-in, and scale-

out can be done with much ease, and comprehensive support. In addition to that, it can be 

run in the private, public, or hybrid cloud. Hyper-V has a proven track record as the key 

websites of Microsoft, TechNet and MSDN, are hosted in a Hyper-V environment [63].  It 

is a Microsoft product that is offered in two forms, as embedded into Windows Server, or 

configured as a standalone server known as Hyper-V Server [64].  

4.1.2.2 Virtual Machines and Guest OS 

Utilizing the appealing functionalities of Hyper-V, we smoothly created and configured 

several VMs in each physical host. That converts each host into a virtual rack in which we 

assigned resources to VMs quickly and efficiently. Hence, the base of our work is the two 

virtualized racks which were used for building virtualized Hadoop clusters. In our work, 

the two investigated models were deployed into Linux OS as they are the typical operating 

systems that have a full compatibility with Hadoop and has a wide community of support. 

In our work, we created VMs with Ubuntu 14.04 OS. Linux-based OS is supported by the 

key players of Hadoop distributions such as Hortonworks Data Platform (HDP) and 

Cloudera Distribution including Apache Hadoop (CDH). 

4.1.2.3 Networking 

The physical switch and the two network adapters in each physical host were utilized in 

establishing virtual as well as physical connections among all machines in our environment 

as follows: In each physical host and using Hyper-V and the two-physical adapters, two 

virtual switches were created. The purpose of the former is to link all the virtual machines 

in each host to each other, and to the physical host itself using private IPs, while the purpose 

of the latter is to provide internet connection to the pool of virtual machines by assigning 
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IPs utilizing DHCP server. By linking the two physical hosts together utilizing the physical 

switch, we came up with one pool of virtual machines which is considered a prerequisite 

for deploying a Hadoop cluster. 

4.1.3 Deploying Hadoop Cluster Core Components 

Utilizing the hypervisor solution (Hyper-V), the two powerful physical hosts and physical 

switch, we ended up with one pool of virtual machines which are distributed in two 

independent virtual racks. Hence, the environment became ready to deploy a big data 

solution as a Native Model or as a Proposed Model. In our environment, the selected big 

data solution was Hadoop, and specifically the distribution of HDP 2.4.3 [65]. It is an 

enterprise-ready open source Apache Hadoop distribution based on YARN as a centralized 

architecture. 

In any cloud-based big data solution, including Hadoop, there are three types of Virtual 

Machines VMs namely, masters, workers, and clients. A master VM hosts a master process 

which is considered the key process. For that, it is usually assigned more resources and 

dedicated VM. The other type of VMs is called workers. They can be configured in two 

ways, Native Workers NW or Proposed Workers PW, based on the placement of the 

compute and the storage slaves. In the Native Worker, the compute and the storage slaves 

are installed in the same VM, and the relevant cluster is called Native Model, while in the 

Proposed Worker, a VM contains either a compute slave or a storage slave but not both, 

and the relevant cluster is called the Proposed Model. The last type of VMs are called 

clients in which we can install third-party applications.  
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As part of Hadoop cluster deployment, Hadoop core components were provisioned, 

managed, and monitored using Ambari 2.2.2.18 [42] which is a Hadoop cluster 

management tool. One of Hadoop core components is the storage module where the storage 

master is called NameNode and the storage slaves are called DataNodes. Other Hadoop 

core component is the resource allocation module. It is called Yet Another Resource 

Negotiator, YARN, and it consists of ResourceManager as a resource allocation master 

and NodeManagers as resource allocation slaves. The third core component of Hadoop is 

the compute module. It has many compute modules. However, in our work, we considered 

the MapReduce which is a batch processing module. It works in conjunction with the 

resource allocation module, Yarn. Last Hadoop core component is the coordination module 

that allows Hadoop distributed processes to get updated. It usually consists of an odd 

number of Zookeeper servers. 

The difference between Hadoop Proposed Model and Hadoop Native Model is the type of 

workers they are contained in the cluster. For example, to deploy Hadoop cluster as a 

Native Model, we use the native workers that are shown in Figure 8 as the building blocks. 

Similarly, if we want to deploy Hadoop cluster as a Proposed Model, we use the proposed 

workers that are shown in Figure 7 as the building blocks. 
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4.1.3.1 Deploying Hadoop as a Native Model  

In situations where we choose to run the experiments on the Native Model, as shown in 

Figure 9, we move on building a cloud-based Hadoop cluster using native workers, i.e., by 

assigning a NodeManager and a DataNode into each worker VM.  In this model, data 

locality is maintained as a key part of the architecture. 

 

Figure 8 Hadoop Native Worker Figure 7 Hadoop Proposed Workers 
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Figure 9 Hadoop Cloud-Based Native Model 

 

4.1.3.2 Deploying Hadoop as a Proposed Model 

If we choose to conduct the experiments on the Proposed Model, as shown in Figure 10, 

we build a cloud-based Hadoop cluster using proposed workers in which a VM has either 

a DataNode worker or NodeManager worker.  

Physical networking has a key effect on the performance of the decoupled model (Proposed 

Model). There are two types of networking overhead. One is representing in the Native 

model which is between the storage and computing within the same VM and this type has 

a minimal networking overhead as it a virtual networking. However, measuring the exact 

effect is not an easy job as Hadoop cluster depends on complicated algorithms that specify 

the location of the storage worker that has the replicated blocks that need to be transferred. 
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That is, the source of the transferred replicated blocks is changeable. 

 

 

Figure 10  Hadoop Cloud-Based Proposed Model 

 

 

4.1.4 Benchmark suite 

There are many Hadoop benchmarking suits that are invaluable in assessing cluster 

performance. We used Hibench-6.0 [66] as a benchmark suite to evaluate the performance 

of the Native Model as well as the Proposed Model. It is a comprehensive and very popular 

Hadoop benchmark tool that was developed by Intel to test Hadoop clusters. It consists of 

a set of Hadoop workloads that contain synthetic micro-benchmarks as well as real-world 

Hadoop applications [67]. It helps in evaluating the performance of Hadoop cluster by 

identifying the completion time, throughput, and resource utilization. 
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4.2  Experimental Methodology 

For a deployed model, native or proposed, we run a set of experiments that all follow the 

same series of phases. In this section, we show the approach we followed and used 

throughout all the conducted experiments to ensure their comparability.  Figure 11 shows 

the phases we were repeating while performing each individual experiment. When the 

platform is ready with an intended Hadoop cloud-based model, the phases of running 

experiments start by utilizing HiBench benchmark suite as follows: 

For each deployed Hadoop Model, we were supposed to select a workload type to start 

doing its relevant experiment. We were performing two sets of experiments. First set of 

experiments concerning the first workload type (WordCount) which is a CPU-Intensive 

workload, and the other set of experiments with regards to second workload type (DFSIOE) 

which is an I/O-Intensive workload. 

After selecting a workload type, we configure the experiment’s dataset input size parameter 

with the values of 100 GB, 200GB, or 400GB, consecutively. Then, dataset generation for 

a corresponding data size parameter starts immediately. 

We run the experiment relevant to the latest prepared workload, and then repeat it for three 

consecutive times to gain more confidence in the collected results. After that, we take the 

average value as a representative result. The next step could be one of the following three 

options: 

• Go back to the step of workload preparation to configure another dataset size and 

generate the corresponding synthetic dataset. Then, continue doing the subsequent 

steps. 
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• Go back to the first step to select another workload. We go with this option in case 

we finish repeating one experiment for three times. 

• Go to the phase of deploying another Hadoop Model to start conducting another set 

of experiments. This option is selected in the case where all experiments for the 

two different workloads are finished. 

After conducting each experiment, a basic analysis was done through comparing the latest 

result with the previous results to start accumulating the whole picture about the findings. 

On the other hand, at the end of running a set of experiments relevant to a specific 

workload, we were performing a comprehensive investigation and evaluation on collected 

results to be able to see the correlation of a workload results on different models. 

 

 Figure 11 Experimental Setup Approach 
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4.3 Resource Distribution 

Having comparable Hadoop clusters is a key to getting right results and valid conclusions. 

Therefore, we thought about the factors that should be taken into consideration to assure 

comparison validity. A total number of hardware resources and the number of running 

workers in each cluster are the factors that we considered while conducting experiments. 

We have three kinds of resources, namely RAM, CPU, and Storage. The allocated 

resources for master VMs and for the machine that hosts the hypervisor are the same in the 

Native and in the Proposed Models, i.e., they are considered a fixed parameter which will 

not be changing in all experimental scenarios. Therefore, the available resources are 

denoted by RAMT to denote the total number of available RAM. Similarly, CPUT and 

StorageT denote the total CPU and Storage available for the Hadoop environment. That 

means that worker VMs will be allocated all available resources as shown in Equation 1. 

Number of Worker VMs =  RAMT + CPUT + StorageT   Equation 1 

For the Native Model, we divided the number of available resources equally between the 

VMs. Hence, each VM will be allocated resources according to:  

Allocated_Resources =
Total_Resources

 VMs_Num
 Equation 2 

 

With regards to the Proposed Model, resources are distributed among worker VMs. A 

worker VM having Compute Slave is denoted by WVMC. Likewise, a worker VM having 

a Storage Slave is denoted by WVMS. Therefore, resources are distributed among these 

workers following: 
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(Allocated-Resources-WVMS) + (Allocated-Resources-WVMC) = Total-Resources Equation 3 

  

4.4 Hadoop Experimental Scenarios 

As depicted in Figure 12, we have four different experimental scenarios. The first one was 

configured based on the Native Model, and the remaining three were configured based on 

the Proposed Model. For the Native Model and because of its coupling nature, we had no 

option but to configure one experimental scenario with the default Hadoop settings in 

which the computation workers and the storage workers are the same. So, each virtual 

machine has one computation worker called NodeManager, and one storage worker called 

DataNode. As for the Proposed Model and due to the decoupling of computation and 

storage module, we had the flexibility to configure three different experimental scenarios.  

In the first experimental scenario, called Proposed1, we distributed the computation 

workers and the storage workers equally. So, we configured 8VMs with 8 NodeManagers, 

and 8 VMs with 8 DataNodes. That is, a single worker is mapped into one VM. In the 

second experimental scenario of the Proposed Model, we configured it to have the 

computation module bigger than the storage module. Therefore, we configured it with 12 

NodeMangers and 4 DataNodes, one in each VM. The last experimental scenario, the 

computation module is less than the storage module: 4 NodeManagers and 12 DataNodes. 
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Figure 12 Hadoop Cluster Experimental Scenarios 

A worker in Hadoop might be a DataNode or a NodeManager. DataNode is the storage 

worker, while NodeManager is a computing worker. Due to the decoupled nature of the 

Proposed Model, a VM contains only one worker. On the contrary, a VM in the Native 

Model contains two workers. Hence, if we intend to compare the performance of the two 

models taken into consideration the same name of workers, a VM in the Native Model 

should correspond to two VMs in the Proposed Model. The extra number of VMs in the 

Proposed Model are expected to cause more overhead on the hypervisor. Therefore, we 

configured the machine hosting the hypervisor with enough resources to minimize the 

impact of this overhead on the performance of the cluster. As shown in Table 3, the 

machine that hosts the hypervisor was allocated 24 GB RAM and 5 CPU cores with 250 

GB storage. Similarly, we allocated many resources to the master servers as the expected 

Hadoop Experimental Scenarios 

Considering Different Number of VMs

Native (8 VMs) Proposed (16 VMs)

Proposed1: Compute Workers == Storage Workers

(8 CWs, 8 SWs)

Proposed2: Compute Workers > Storage Workers

(12 CWs, 4 SWs)

Proposed3: Compute Workers < Storage Workers

(4 CWs, 12 SWs)
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overhead resulted from the communication between Masters and a bigger number of 

workers will be more. As shown in Table 4, each Master VM was allocated 24 RAM and 

5 CPU cores with 250 GB storage. 

Table 3 Allocated Resources for Hypervisor’ Host Machine 

 

Table 4 Allocated Resources for the Hadoop Master VMs 

 

Table 5 shows the details of the physical resource distribution for the workers that comprise 

each experimental scenario. For the experimental scenario of the Native Model. We used 

Equation 2  to distribute the resources between its worker VMs. Each VM was allocated 

16 GB RAM, 4 CPU cores, and 400 GB for storage. So, all VMs have the identical 

resources, and this is the typical distribution of the resources because the same VM 

participates in computing and storage, so it cannot be tuned differently. With respect to the 

Proposed Model, on the other hand, we have two groups of VMs. One group has a specific 

number of VMs dedicated for storage, and the other group has a specific number of VMs 

dedicated to computing. For that, a VM in one group can be allocated resources different 

than the allocated resources for a VM in the other group. Because of such flexibility, using 

the same resources used by the Native Model, we were able to shape the Proposed Model 

into three different forms or experimental scenarios:  

Hadoop Model Hypervisor Ram CPU Storage 

Native/Proposed Hyper-V 24 GB 5 cores 250 GB 

Hadoop Model Master Server VM Ram CPU Storage 

Native/Proposed Storage Master VM 

(NameNode) 

24 GB 5 cores 250 GB 

Native/Proposed Compute Master VM 

(ResourceManager) 

24 GB 5 cores 250 GB 
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A Proposed Model in which the number of NodeManager VMs same as the number of the 

DataNode VMs. Hence, the computation and storage capabilities are the same. This model 

will be referred to as Proposed1. 

A Proposed Model that has a larger number of NodeManager VMs than the number of the 

DataNode VMs. Hence, the computation capability is stronger than the storage capability. 

This model will be referred to as Proposed2. 

A Proposed Model that has a larger number of DataNode VMs than the number of the 

NodeManager VMs. Hence, the computation capability is weaker than the storage 

capability. This model will be referred to as Proposed3. 

We used Equation 3 to distribute the resources between the worker VMs of three forms of 

Proposed Model. For the Proposed1, a NodeManager VM was assigned 10 GB RAM, 3 

CPU Cores, and 100 GB storage. The total number of NodeManager VMs is 8. A 

DataNode, on the other hand, was assigned 6 GB RAM, 1 CPU Core, and 300 GB storage. 

The total number of DataNode VMs is 8.  For the Proposed2, a NodeManager VM was 

assigned 9 GB RAM, 3 CPU Cores, and 50 GB storage. The total number of NodeManager 

VMs is 12. A DataNode was assigned 5 GB RAM, 1 CPU Core, and 650 GB storage. The 

total number of DataNode VMs is 4. For the Proposed3, a NodeManager VM was assigned 

14 GB RAM, 5 CPU Cores, and 50 GB storage. The total number of NodeManager VMs 

is 4. A DataNode was assigned 6 GB RAM, 1 CPU Core, and 250 GB storage. The total 

number of DataNode VMs is 12. 
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In the Proposed Model experimental scenarios, due to the flexibility of resources 

distribution between NodeMangers and DataNodes, each experimental scenario is 

expected to fit more in a specific workload pattern. 

Table 5 Assigned Resources for Hadoop Workers in Different Experimental Scenario 

 

Hadoop 

Model 

 

Experimental 

Scenarios 
Worker Name 

 

Worker 

Type 

 

No. of 

VMs 

 

Worker VM Characteristics 

Ram CPU Storage 

Native 

Model 

Exp. Scen.#1 

(Native) 
Native-Workers 

Compute

/Storage 
8 16 GB 4 Cores 400 GB 

 

 

 

 

Proposed 

Model 

 

Exp. Scen.#2 

(Proposed1) 

Proposed-Workers 

(CWs==SWs) 

 

Compute

-Worker 
8 10 GB 3 Cores 100 GB 

Storage-

Worker 
8 6 GB 1 Core 300 GB 

Exp. Scen.#3 

(Proposed2) 

Proposed-Workers 

(CWs > SWs) 

Compute

-Worker 
12 9 GB 2 Cores 50 GB 

Storage-

Worker 
4 6 GB 2 Cores 650 GB 

Exp. Scen.#4 

(Proposed3) 

Proposed-Workers 

(CWs < SWs) 

Compute

-Worker 
4 14 GB 5 Cores 50 GB 

Storage-

Worker 
12 6 GB 1 Core 250 GB 

 

4.5 Results and Evaluation 

Our goal is to evaluate the performance of two comparable Hadoop models (the Native 

Model and the Proposed Model) using Hadoop MapReduce framework as a computation 

module. In our work, we aimed to test two different workload patterns, CPU-Intensive as 

well as I/O-Intensive workloads. For that, utilizing the benchmark tool (HiBench), we 

chose specific workloads that are relevant to our objectives. Those workloads are found 

under the micro-benchmark category and namely, the WordCount which is a CPU-

Intensive workload, and the Distributed File System Input Output Enhanced (DFSIOE) 

which is an I/O-Intensive workload. Table 6 describes the characteristics of these two 

workloads. 
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Table 6 Benchmark Selected Workload Characteristics 

Workload 

Name 
Data Type CPU Usage I/O Usage (Read) I/O Usage (Write) 

Workload 

Type 

WordCount 
Synthetic Big 

Data 
High Low Low MapReduce 

Enhanced 

DFSIO 

Synthetic Big 

Data 
Low High High MapReduce 

 

Both workloads are synthetic MapReduce representative applications. Synthetic workloads 

are preferable due to their portability and scaling comparing with big challenges in real-

world workloads [68].  

Section 4.5.1 explains the metrics used in evaluation experiments. Section 4.5.2 discusses 

and analyzes the results obtained from experiments relevant to CPU-Intensive workload 

(WordCount), while Section 4.5.3 discusses and analyzes the results obtained from 

experiments relevant to I/O-Intensive workload (DFSIOE).   

4.5.1 Performance Evaluation Metrics 

The metrics we used for evaluating the performance of the two models are: The completion 

time and cluster throughput as shown in Table 7. Completion time is the workload running 

time in seconds. The shorter time means better performance and respectively the longer time 

means worse performance. Throughput is the number of tasks completed per time unit, 

taking into consideration that workload composed of a set of tasks. For throughput, the 

higher means better performance and respectively the lower means worse performance. We 

chose those metrics because they are standard two metrics used by many related papers, 

such as the work done in  [16] and [69].  Also, we are interested in knowing which Hadoop 

model is faster in executing a batch-oriented application with a higher throughput. These 

are the most important metrics for measuring the speed and the productivity of Hadoop 
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model that process a batch-oriented application. Therefore, the best model should run the 

tested batch-oriented application in faster excution time and produce higher throughput.  

Table 7 Metrics Used in Evaluating the Performance of Hadoop Two Models 

Completion Time Workload Execution Duration Time in Seconds (Shorter is Better) 

Throughput Completed Tasks Per Minute Overall the Cluster (Longer is Better) 

 

4.5.2 Wordcount 

This workload counts the occurrence of each word in the input data. Data is generated using 

the Hadoop RandomTextWriter program that is contained in the Hadoop cluster [67]. It is 

considered a representative of another typical category of real-world MapReduce jobs that 

extracts a small amount of interesting data from large dataset [66]. 

Following our experimental methodology that is shown in Figure 11, the WordCount 

workload was executed with three different datasets (100GB, 200GB, 400GB) in a 

consecutive way in each experimental scenario that is described in Figure 12.The obtained 

results (completion time in seconds) are shown in Table 8. 

Table 8 WordCount Completion Time (Seconds) 

Data-Size (GB) 
Native 

(CWs == SWs) 

Proposed1 

(CWs == SWs) 

Proposed2 

(CWs > SWs) 

Proposed3 

(CWs < SWs) 

100 1141 1452 1360 1963 

200 2313 2944 2782 3922 

400 4588 5700 5420 7601 

 

For the sake of simplicity and readability, these obtained values were initially normalized 

and then used for calculating the difference between the values obtained from the Native 

Model (the baseline) and the corresponding values obtained from the Proposed Model 
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(Proposed1, Proposed2, and Proposed3). Below is the explanation of the used calculations 

in simplifying the completion time results related to Wordcount application (the same 

calculations were used and applied in the subsequent sections which are relevant to  

DFSIOE-Read & DFSIOE-Write) : 

With respect to values normalization, we selected the values of the Native Model 

experimental scenario as a baseline. Then, a value in an experimental scenario belongs to 

the Proposed Model (Proposed1, Proposed2, Proposed3) was being divided on the 

corresponding value of the baseline as shown in the below equation: 

Normalized Value =
 a Value in the Proposed Model

The Corresponding Value in the Native Model
 

Equation 4 

 

For that, the normalized values of Proposed1, as an example, were calculated as follows: 

(1452 / 1141), (2944 / 2313), (5700 / 4588), which resulted in 1.27, 1.27, and 1.24, 

respectively. The complete normalized values are shown in Table 9. 

Table 9 WordCount Normalized Completion Time  

Data-Size (GB) 
Native 

(CWs == SWs) 

Proposed1 

(CWs == SWs) 

Proposed2 

(CWs > SWs) 

Proposed3 

 (CWs < SWs) 

100 1 1.27 1.19 1.72 

200 1 1.27 1.20 1.70 

400 1 1.24 1.18 1.66 

 

Concerning the calculation of the difference between the corresponding values in the two 

models (based on the normalized values in Table 9), below is Equation 5 which was used 

for populating the normalized values comparison table (Table 10), which shows the time 
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difference in (%) between the completion time of the experimental scenario of the native 

model, as a baseline, and the experimental scenarios of the proposed model.  

The difference

= (
 a Value in  the Proposed Model –  the Corresponding Value in the Baseline 

The Value in the Proposed Model
) 𝑋 100 

Equation 5 

 

Table 10 Comparison of Normalized Completion Time for WordCount (%) 

 Data Size (GB)  Proposed1 (CWs == SWs) Proposed2 (CWs > SWs) Proposed3 (CWs < SWs) 

100 21.26 15.97 41.86 

200 21.26 16.67 41.18 

400 19.35 15.25 39.76 

 

We investigated the results obtained from the experiments relevant to WordCount 

workloads to check the correlations amongst Hadoop Model, data-size, and the number of 

storage/compute workers. Moreover, to see the experimental scenario that fits more with 

CPU-Intensive applications such as Wordcount. The obtained results were evaluated from 

two perspectives. In one perspective, we compared the experimental scenarios to each other 

in general (to check the correlation between the completion time and Hadoop Model on all 

experimental scenarios). In the other perspective, we compared the obtained results in 

different data size to see the impact of increasing data-size on the performance of the 

clusters (to check the correlation of data-size and completion time on all experimental 

scenarios of Hadoop Models). For the former perspective, we started with evaluating the 

performance of the experimental scenario related to the Native Model with the set of the 

experimental scenarios that belong to the Proposed Model. Then, we compared the 

experimental scenarios of the Proposed Model to each other. For the sake of the latter 
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perspective,  Figure 14 was added to clearly show the correlation between the data-size and 

the model type. 

 

Figure 13 Completion Time in Seconds related to WordCount Workloads 

 

As illustrated in Figure 13, the set of the experiments conducted on the Native Model 

perform better than the same set of the experiments when they were conducted on the 

experimental scenarios of the Proposed Model. However, the three experimental scenarios 

of the Proposed Model (Proposed1, Proposed2, Proposed3), each of which has a different 

performance than the other. That is, based on the values in Table 10 and taking Native 

Model results as the baseline, we observed the following: 

For the Proposed Model (Proposed1) where the computing workers and the storage 

workers are the same, the performance is lower than the baseline with an average of  20%, 

while Proposed Model (Proposed2) where the computing workers are more than the storage 
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workers, the performance is lower with an average of  15%. Proposed Model (Proposed3), 

on the other hand, performs slower with an average of 40%. That means that by comparing 

the experimental scenarios of the Proposed Model with each other, Proposed2 is the best, 

then the Proposed1 and after that the Proposed3. That makes sense as the investigated 

workload (Wordcount) is a CPU-Intensive that needs more computing resources, which is 

the case of (Proposed2) where the assigned compute workers are more than the 

corresponding ones on the other experimental scenarios (Proposed1, Proposed3). That 

means that the more computing workers, the better completion time. 

Concerning the impact of increasing input data size on the results, it is observed that results 

are scaling almost linearly with the increase of the data-size. For Example, based on Figure 

14 that was illustrated using the values in Table 11, it is shown that when an input data-

size of the (Native, Proposed1, Proposed2, or Proposed3) gets doubled, the completion 

time also gets almost doubled. The same impact happened when the input data size gets 

increased 400%, the completion time increased around 400%.  

Table 11 Completion Time Values When Scaling the Data-Size of the Workload (WordCount) 

Data-

Size 

Data-

Size 

Scale 

Native 

(CWs == SWs) 

Time-Scale  

Proposed1 

(CWs == SWs) 

Time-Scale 

Proposed2 

(CWs > SWs) 

Time-Scale 

Proposed3 

 (CWs < SWs) 

Time Scale 

100GB 100% 1140.83 100% 1452.13 100% 1360.40 100% 1962.88 100% 

200GB 200% 2312.78 202% 2943.62 203% 2782.32 182% 3922.15 200% 

400GB 400% 4588.25 402% 5699.95 393% 5419.64 389% 7601.38 387% 
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Figure 14 Impact of Scaling Data-Size on Completion Time (WordCount) 

 

With regards to another metric we investigated (the throughput), the higher value means 

better performance. Related results are collected and illustrated in Figure 15, which depicts 

the throughput in each different experimental scenario. It is obvious that there is a 

correlation between Hadoop cluster throughput and the completion time, i.e., the less 

completion time the more throughput. For example, amongst the experimental scenarios of 

the Proposed Model (Proposed1, Proposed2, Proposed3), Proposed2 have the lower 

completion time and the higher throughput. We can conclude that for WordCount 

workload, Native Model gives the best completion time, and then the Proposed Model 

(Proposed2), which complies with the conclusion reported in [12]. So, we can gain all the 

appealing features of the Proposed Model by utilizing the experimental scenario 

(Proposed2) with as an expense of 15% lower performance. 
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Figure 15  Throughput in MB Per Second Relevant to Wordcount Workloads 

 

4.5.3 Enhanced DFSIO 

Enhanced DFSIO tests the HDFS throughput of the Hadoop cluster by generating an 

enormous number of tasks doing writes and reads at once [66]. It is an extension of the 

TestDFSIO benchmark which was developed specifically for HiBench benchmark suite. 

The Enhanced DFSIO workload, which is part of HiBench, calculates the aggregated 

bandwidth by sampling the number of bytes read/written at fixed time intervals in each 

map task. As a result, when a map task is finished, a set of samples is brought [67]. During 

the reduce phase, the samples of each map task are linear included and re-sampled at a 

fixed plot rate. Then, we calculated the total of all the re-sampled points of all map tasks. 

The Enhanced DFSIO workload calculates the aggregated HDFS throughput by taking the 

average of the throughput value of each time slot in the steady period. In Enhanced DFSIO, 
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when the number of concurrent map tasks at a time slot is above a threshold, say 50%, of 

the total map task slots, the slot is considered in the steady period. It consists of two parts: 

DFSIOE-Write and DFSIOE-Read. 

 

4.5.3.1 DFSIOE Dataset Preparation 

The Enhanced DFSIO workload takes four input configuration parameters. The first two 

define the number of files to be read or written. The other two parameters define the size 

of each file. As shown in Equation 6, the generation of Enhanced DFSIOE data size is the 

product of multiplying two parameters (the file size) and  (the number of files to be read or 

written). Hence, to generate a dataset, there are two ways. In one way, we fix the first 

parameter (file size) and keep changing the number of files. In the other way, we can fix 

the parameter of (number of files) and keep changing the (file size). 

 

Enhanced DFSIOE Dataset-Size= (File-Size) X (Number of Files) Equation 6 

 

To choose the proper calculation way that fits the nature of our work, we run three sets of 

DFSIO-Read experiments utilizing the Proposed Model with the experimental scenario 

(Proposed3). In each set of experiments, we were generating the same data size but using 

a different combination of the parameters in Equation 6 . That is, in some of these 

experiments we fixed the file size. And in the others, we fixed the number of files. Table 

12 and Table 13 show the completion time in seconds for running experiments relevant to 

datasets 100GB, 200GB, 400GB when we fixed the number of files and kept changing the 
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file size. Table 14 on the other hand, shows the completion time in seconds when we fixed 

the file size and kept changing the number of files.  It is clearly shown that in case of fixing 

the number of files (Table 12, Table 13), there is no proportional difference in completion 

time when we move from 100GB to 200GB and 400GB. That is because of the way in 

which HDFS handles the process of reading a file [1]. For HDFS to read a file, it needs 

initially to open and locate the file controller block from the meta data of the storage master 

(NameNode). Then, read the blocks in parallel from DataNodes. After that, the file is 

closed. So, in case of having the same file but with bigger size, the difference in reading 

cost is only the cost of reading the extra blocks which is a matter of retrieval the blocks 

with a known location, i.e., the cost of opening, locating the block locations, and closing is 

the same for small or big file. Whenever the file is opened, and file block locations are 

known, the cost of reading extra blocks (bigger file size) is not considered big, especially 

because HDFS adopts a sequential block storing approach. For that, the more number of 

files, the more overhead on Hadoop cluster which is caused by more open, controller block 

locating, and closing for each file. Hence, for the rest of the work, we will be choosing the 

way of generating the dataset by fixing the number of file size and keep changing the 

number of files as this makes more sense for testing the overhead of I/O-Intensive 

workloads. This conclusion is verified by the work in [16], [24],[69] . 

Table 12 Completion Time of DFSIO-Read- Fixed number of files (512) & Variation of file-size  

Set of 

Exp. 
File-Size 

Fixed No. 

of Files 

Total Data-

Size 

Completion 

Time (Second) 

Scaling 

Exp#1 200MB 512 100GB 725 100% 

Exp#2 400MB 512 200GB 1000 137% 

Exp#3 800MB 512 400GB 1979 273% 
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Table 13 Completion Time of DFSIO-Read- Fixed number of files (1024) & Variation of file-size  

Set of 

Exp. 
File-Size 

Fixed No. 

of Files 

Total Data-

Size 

Completion 

Time (Second) 

Scaling 

Exp#1 100MB 1024 100GB 1246 100% 

Exp#2 200MB 1024 200GB 1459 117% 

Exp#3 400MB 1024 400GB 1962 157% 

 

Table 14 Completion Time of DFSIO-Read- Fixed file-sizes (400MB) & Variation of number of Files 

Set of 

Exp. 

Fixed File-

Size 

No. of 

Files 

Total Data-

Size 

Completion 

Time (Second) 

Scaling 

Exp#1 400MB 256 100GB 479 
100% 

Exp#2 400MB 512 200GB 924 193% 

Exp#3 400MB 1024 400GB 1961 410% 

 

4.5.3.2 DFSIOE-Read 

Following our experimental methodology that is shown in Figure 11, the DFSIOE-Read 

workload was executed with three different datasets (100GB, 200GB, 400GB) in a 

consecutive way in each experimental scenario that is described in Figure 12. The obtained 

results (completion time in seconds) are shown in Table 15, which demonstrates the 

DFSIOE-Read related results, which were obtained from the experiments conducted on the 

different experimental scenarios relevant to the Native and Proposed Models (Native, 

Proposed1, Proposed2, Proposed3). For the sake of simplicity, by utilizing Equation 4, we 

normalized those values by dividing each of which by the corresponding value of the 

baseline (Native) coming up with the values shown in 
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Table 16. In both tables, lower completion time value indicates experiment faster 

completion time. For that, a negative value means better performance, while a positive 

value means lower performance.  

Table 15 DFSIOE-Read Completion Time (Seconds)  

Data-Size (GB) 
Native 

(CWs == SWs) 

Proposed1 

(CWs == SWs) 

Proposed2 

(CWs > SWs) 

Proposed3 

 (CWs < SWs) 

100 406.812 453.1235 471 478.601 

200 760.386 872.975 907 923.757 

400 1687.376 1851.5065 1919 1961 

 

 

Table 16 DFSIOE-Read Normalized Completion Time (Seconds) 

Data-Size 
Native 

(CWs == SWs) 

Proposed1 

(CWs == SWs) 

Proposed2 

(CWs > SWs) 

Proposed3 

 (CWs < SWs) 

100 1.00 1.11 1.16 1.18 

200 1.00 1.15 1.19 1.21 

400 1.00 1.10 1.14 1.16 

 

By analyzing the values shown in Table 17 (populated utilizing Equation 5) and illustrated 

in Figure 16, it is noticed that the completion time correlates with Hadoop model type and 

the number of storage/computing workers. For example, taking the Native as a baseline, 

the experimental scenario (Proposed1) pays a completion time price of 11% (on average), 

while (Proposed2) & (Proposed3) pay the price of 14% and 15%, respectively. That means 

that Reading-Intensive workloads performs betters (faster completion time) when utilizing 

Hadoop Proposed Model with equal number of storage and computing workers because 

the reading process in Hadoop (HDFS) work in optimal way when utilizing the parallelism 

to the maximum, which is achieved by using the same number of storage workers 
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(DataNodes) and the computing workers (NodeManagers), so each computing worker can 

read block from the corresponding storage worker avoiding any delay caused by queuing. 

For the correlation between completion time and the data-size, as shown the values of  

Table 18 and illustrated in Figure 17, it is almost a linear correlation. The reason beyond 

that is, when we were changing the data size from 100GB to 200GB and to 400GB, we 

were doubling the number of files, which means that the overhead of opening the file, 

locating the controller block, and closing the file, is doubled. 

Table 17 Comparison of Normalized Completion Time for DFSIOE-Read (%) 

Data Size (GB)  

Time Difference in (%) Between the Experimental Scenario of the Native, as a 

Baseline, and the Experimental Scenarios of the Proposed Model 

Proposed1 (CWs == SWs) Proposed2 (CWs > SWs) Proposed3 (CWs < SWs) 

100 9.91 13.79 15.25 

200 13.04 15.97 17.36 

400  9.09 12.28 13.79 
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Figure 16 Completion Time in Seconds for DFSIOE-Read Workload 

 

Table 18 Completion Time Values When Scaling the Data-Size of the Workload (DFSIOE-Read) 

Data-Size 

(GB) 

Data-

Size 

Scale 

Native 

(CWs == SWs) 

Time-Scale  

Proposed1 

(CWs == SWs) 

Time-Scale 

Proposed2 

(CWs > SWs) 

Time-Scale 

Proposed3 

 (CWs < SWs) 

Time Scale 

100 100% 407 100% 453 100% 471 100% 479 100% 

200 200% 760 187% 873 193% 907 193% 924 193% 

400 400% 1687 415% 1852 409% 1919 407% 1961 410% 
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Figure 17 Impact of scaling data-size on completion time (DFSIOE-Read) 

 

In general, the completion time of Read-Intensive workloads gets improved by using more 

DataNodes as this avoid the potential of network conflict and overhead that happens when 

more than one NodeManager try to read simultaneously from one DataNode. However, 

based our experiments, it seems that the threshold is to have the same number of 

storage/compute workers. That is because adding more storage workers will not be utilized 

as no more corresponding computing worker will be reading from it. 

Figure 18 depicts the throughput relevant to each experimental scenario of Native and 

Proposed Model. The higher value the better performance. Based on that, we can see a 

simple and direct relationship between the completion time and throughput of every single 

experimental scenario, i.e., the lower completion time, the higher throughput value. That 

is consistent for all data-sizes and all experimental scenarios of Hadoop cluster Models. 
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Figure 18 Throughput for DFSIOE-Read Workload 

 

In brief, we can conclude that for Read-Intensive applications, it is recommended to 

utilize the Proposed Model (Proposed1) to get higher throughput and better completion 

time with a penalty price of 11%. 

4.5.3.3 DFSIOE-Write 

Following our experimental methodology that is shown in  Figure 11, the DFSIOE-Write 

workload was executed with three different datasets (100GB, 200GB, 400GB) in a 

consecutive way in each experimental scenario that is described is described in Figure 12. 

Table 19 shows the collected results of all DFSIOE-Write related experiments that were 

conducted on all experimental scenarios relevant to the Native and Proposed Models. For 

the sake of simplicity and utilizing Equation 4, we normalized these values by dividing all 

by the corresponding value for a selected experimental scenario (Native) as a baseline, 
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which results in the normalized values that are shown in Table 20. Lower completion time 

value indicates experiment faster completion time. Therefore, a negative value means 

better performance, while a positive value indicates less performance. 

 Table 19 DFSIOE-Write Completion Time (Seconds) 

Data-Size 
Native 

(CWs == SWs) 

Proposed1 

(CWs == SWs) 

Proposed2 

(CWs > SWs) 

Proposed3 

 (CWs < SWs) 

100 915.128 1221.9175 1144.7 1568 

200 1803.45 2409 2339.8 3429 

400 4217.12 5419.3545 4901 7419 

 

 

Table 20 DFSIOE-Write Normalized Completion Time 

Data-Size (GB) 
Proposed1 

(CWs == SWs) 

Proposed2 

(CWs  >  SWs) 

Proposed3 

 (CWs  <  SWs) 

100 
1.34 1.25 1.71 

200 
1.34 1.30 1.90 

400 
1.29 1.16 1.76 

 

By analyzing the values shown in Table 21 (populated utilizing Equation 5) and illustrated 

in Figure 19, we observed that the experimental scenario of the Native Model outperforms 

the experimental scenarios of the Proposed Model. However, the degree of difference in 

performance depends on the number of computing/storage workers in each experimental 

scenario of the Proposed Model. For example, in Proposed2 (CWs > SWs) the performance 

is better than Proposed1 (CWs == SWs), which is better than Proposed3 (CWs < SWs). 

The averages of their degraded performances are (18%,24%,45%), respectively. This 

observation explains that, for the workloads that are Write-Intensive, the more storage 

workers (DataNodes) the less completion time. For that, the experimental scenario 
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(Proposed2) is the best amongst the other experimental scenarios of the Proposed Model. 

Having that makes sense as for more DataNodes, the replication of the blocks will be on 

different DataNodes which causes more overhead. This overhead comes from the way the 

Hadoop handles the process of a block replication. As per the Hadoop placement policy 

[17], each DataNode takes care of block replication process into the subsequent DataNode 

in a pipelining way. Therefore, the more DataNodes cause more networking traffic between 

DataNodes. On the contrary, in case of fewer DataNodes, the process of replication will be 

done within the limited DataNodes avoiding further networking overhead. 

Table 21 Comparison of Normalized Completion Time for DFSIOE-Write (%) 

 Data Size(GB)  

 

Time Difference in (%) Between the Experimental Scenario of the Native, as a 

Baseline, and the Experimental Scenarios of the Proposed Model 

Proposed1 (CWs == SWs) Proposed2 (CWs > SWs) Proposed3 (CWs < SWs) 

100 25.37 20.00 41.52 

200 25.37 23.08 47.37 

400  22.48 13.79 43.18 
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Figure 19 Completion Time in Seconds for DFSIOE-Write Workload 

 

The values of  Table 22 and  illustrated in Figure 20 show the impact of increasing input 

data size on the results of DFSIOE-Write, it is observed that for Native, Proposed1, and 

Proposed2, results are scaling almost linearly with the increase of the data-size.  However, 

for the Proposed3, the degree of scaling is not same as the other. This can be explained by 

the extra overhead that caused by the increased number of DataNodes in this experimental 

scenario. By investigating Figure 21, we remarked that throughput of the write jobs is 

correlated to the completion time of the write jobs in a consistent manner. In each write-

intensive job, a high throughput relates to a lower completion time with the same ratio in 

all experimental scenarios belongs to the two investigated Hadoop Models.  
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Figure 20 Impact of Scaling Data-Size on Completion Time (DFSIOE-Write) 

 

Table 22 Completion Time Values When Scaling the Data-Size of the Workload (DFSIOE-Write) 

Data-

Size 

Data-

Size 

Scale 

Native 

(CWs == SWs) 

Time-Scale  

Proposed1 

(CWs == SWs) 

Time-Scale 

Proposed2 

(CWs > SWs) 

Time-Scale 

Proposed3 

 (CWs < SWs) 

Time Scale 

100GB 

(baseline) 
100% 

915 100% 1222 100% 1145 100% 1568 100% 

200GB 200% 1803 197% 2409 197% 2340 204% 3429 219% 

400GB 400% 4217 461% 5419 444% 4901 428% 7419 473% 
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Figure 21  Throughput for DFSIOE-Write Workload 

 

As shown in Table 23, the throughput of DFSIO-Write running in the Native and Proposed 

Models correlates with the data-size, the Hadoop Model, and the number of workers 

(various clusters of the Proposed Model). That is, if we take 100GB as a baseline, 

throughput is almost the same in 200GB for all Hadoop experimental scenarios except 

Proposed3 in which it is worse than the baseline by 9%. That gives us an insight that the 

number of storage worker causes a negative impact on the cluster performance and comes 

from the extra overhead of writing replicated blocks in distinct workers that are located in 

different physical hosts. For 400GB, on the other hand, the throughput of all Hadoop 

experimental scenarios (Native, Proposed1, Proposed2, Proposed3) is worse than the 

baseline by (13%, 9%,7%, 15%), respectively. Given that the replication factor of the 

stored blocks is three, having a dataset of 400GB means that there are another two replicas 
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each of which is 400GB, so the total is 1200GB. Handling such huge dataset with only four 

computing workers with limited computing resources makes the performance starts 

degrading when the cluster storage capacity exceeds 40% of the total storage. 

It is also noticed (as shown in Table 24)  that the experimental scenario (Proposed2) has 

the best throughput amongst the remaining experimental scenarios of the Proposed Model, 

i.e., Proposed1 and Proposed3. That gives us an insight that having Hadoop cluster with 

more computing workers and fewer storage workers positively affect the throughput of the 

workloads that are write-intensive. 

Table 23 Correlation of Native and Proposed Modes with Data-Size 

  Native  % Proposed1  %  Proposed2  % Proposed3  % 

100 GB 113 100 85 100  91 100 66 100 

200 GB 115 102 86 101  89 98 60 91 

400 GB 98 87 77 91  85 93 56 85 

 

We can conclude that by utilizing (Proposed2) as an experimental scenario in the Proposed 

Model, we can get all the Proposed Model benefits at the expense of 18% lower 

performance. 

Table 24 Correlation of Data-Size with Native and Proposed Models 

  100 GB   200 GB   400GB   

Native 113 100% 115 100% 98 100% 

Proposed1 85 75% 86 75% 77 78% 

Proposed2 91 80% 89 77% 85 86% 

proposed3 66 58% 60 53% 56 57% 
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4.6 Concluding Remark 

To obtain all the appealing SOA features that are integral to the Proposed Model, an 

acceptable performance price can be paid compared with the corresponding performance 

for the Native Model. For CPU-Intensive applications, the sacrificed performance is around 

15% by utilizing the Proposed Model (Proposed2), whereas for Read-Intensive 

applications, the Proposed Model (Proposed1) can outperform the Native Model with an 

average of 11%. The Write-Intensive applications, on the other hand, can utilize the 

Hadoop Proposed Model (Proposed2) at the expense of 20% lower performance. 

Table 25 Suitability Recommendations for Proposed Model Usage 

 Workload pattern Proposed Model Experimental Scenario Performance Penalty 

CPU-Bound Proposed 2 15% 

Read-Intensive Proposed 1 11% 

Write-Intensive Proposed 2 20% 

 

 

4.7 Proposed Model Limitations and Trade-offs 

Limitations of this work are as follows: No changes have been made for evaluation 

experiment to accommodate security. Another limitation, measuring network traffic 

overhead has not been considered. Moreover, this work is limited to the specifically used 

cloud technologies (such as Hyper-V), the used Hadoop Distribution (HDP), and limited 

to the experimental environment which consists of two physical servers and one physical 

switch. 
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In the approach of (Proposed Model), we gained flexibility and elasticity in exchange for 

acceptable performance penalty. Importance of flexibility appears in situations where the 

workload pattern is known. It is very common nowadays for workloads to be pre-defined. 

Therefore, if a workload is CPU-Intensive or Write-Intensive, then the Proposed Model 

(Proposed2), where computing module has more workers is the best option. However, in 

case of workload pattern is Read-Intensive, then the Proposed Model (Proposed1), where 

computing and storage modules have the same number of workers is the best choice. The 

importance of Proposed Model elasticity features appears in situations where the workloads 

running on top of the clusters need to continue running while scaling out the cluster. 
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5 CHAPTER 5  

CONCLUSION AND FUTURE WORK 

The research work that has been done on big data is very huge. However, with respect to 

the area of framework architecture that handles big data, it is still in its infancy compared 

with other matured big data research areas. This motivated us to explore the current big 

data solutions and specifically looking at the way the framework components interact with 

each other. We found that the most popular and the de facto standard solution is Hadoop. 

For that, we realized it is worthy to spend all our efforts on such common framework. 

Exploring Hadoop’s core components and how they interact with each other, we found that 

the core concept of Hadoop default architecture is data locality. It means that instead of 

moving the data into central computation entity, the computation is moved into the data 

entities in a distributed manner. Therefore, the data transfer networking overhead will be 

minimal. That was a valid consideration as the networking and storage mediums were the 

bottleneck of the performance. However, in the current days, due to the major advancement 

in networking and storage speed and efficiency, the data locality is not a bottleneck. We 

were motivated to challenge the default configuration of Hadoop by proposing a model 

that breaks the linkage of computing and storage to open the door for many enhancement 

features that can be gained consequently. 

Decoupling Hadoop computation and storage modules is opening opportunities for gaining 

all Service-Oriented-Architecture attracting features such as flexibility, resource utilization 

efficiency, and security. So, our research goal has been set to explore the notion of 
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providing Hadoop computing and storage as independent services. Below is a table that 

summarizes the difference between the Hadoop Native Model and the Hadoop Proposed 

Model. 

Table 26 The Native Model vs The Proposed Model 

 The Native Model The Proposed Model 

1 Rigid: we are forced to add or remove 

the computing and the storage workers 

at once. 

Flexible: we can add or remove a 

computing or a storage worker 

independently. 

2 inefficient in resource utilization  Utilize resources efficiently 

3 Adding specific security rules for 

storage workers will affect the 

performance of the whole cluster. 

Adding specific security rules for storage 

will affect only the machines that host the 

storage workers. 

4 No way for supporting storage nor 

computing elasticity. 

Support elasticity for computation. It 

can’t be for storage because of the 

overhead and time consuming of storage 

rebalancing process. 

5 Virtual environment is not utilized 

efficiently. 

Virtual environment is utilized. 

6 Mapping of workers and VMs is 

general. 

Mapping of workers and VMs is specific. 

 

 A big data solution can be deployed either in a bare-metal infrastructure or on the cloud. 

Deploying it as a bare-metal needs pretty expensive in terms of human and hardware 

requirements. On the contrary, deploying it on the cloud is cost-effective, most popular, 

and recent direction that is adopted by big corporations. Furthermore, many of the 

interested parties in Hadoop deployment cannot afford the expense of physical big data 

infrastructure. Consequently, we preferred deploying Hadoop cluster using cloud 
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technologies as the end goal of our work is to provide big data solutions as a cloud-based 

service. 

In this work, we explored the notion of providing cloud-based Hadoop computing or 

storage modules as independent services as opposed to the native Hadoop architecture in 

which computing and storage are coupled.  For that, we evaluated the performance of two 

cloud-based models namely, the Native Model and the Proposed Model. By this, we 

investigate the feasibility of adopting the Proposed Model.  

A large set of experiments were executed on four clusters (each cluster is a 2-host server 

with 18 virtual machines) containing the Hortonwork Distribution for Apache Hadoop 

running on MS Hyper-V. In addition, we built these four cloud-based Hadoop clusters with 

aim of looking for the correlations between HiBench selected workloads (Wordcount, 

DFSIOE), Data-Size (100,200,400), and Hadoop model type (Native, Proposed) so we can 

compile suitability recommendations for Proposed Model usage. Moreover, to see the 

expense of decoupling the compute and storage services.  Specific evaluation environment 

setup is as follows: 

1) Built a cloud-based Native Hadoop cluster (Prototype for Hadoop Native Model). 

2) Built cloud-based Proposed Hadoop clusters (Prototype for the Proposed Model): 

a. Proposed1 (Computation Module equal to the Storage Module) 

b. Proposed2 (Computation Module larger than the Storage Module) 

c.  Proposed3 (Computation Module smaller than the Storage Module) 

3) Run set of experiments on each cluster using synthetic big data workloads types: CPU-

bound and I/O-bound. 
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Evaluation of two comparable cloud-based Hadoop models namely, the Native Model and 

the Proposed Model gave us a solid answer for the performance of each model in terms of 

throughput and completion time. We knew the feasibility of implementing the Proposed 

Model because we knew the paid cost in exchange for gaining all SOA capabilities such as 

elasticity, security, and flexibility. The expected impact of decoupling was acceptable for 

all the experiments executed on various experimental scenarios of the Proposed Model 

(Proposed1, Proposed2, Proposed3).  

Using the approach of (Proposed Model), we gained flexibility and elasticity in exchange 

for acceptable performance penalty. Importance of flexibility appears in situations where 

the workload pattern is known. It is very common nowadays for workloads to be pre-

defined. Therefore, if a workload is CPU-Intensive or Write-Intensive, then the Proposed 

Model (Proposed2), where computing module has more workers is the best option. 

However, in case of workload pattern is Read-Intensive, then the Proposed Model 

(Proposed1), where computing and storage modules have the same number of workers is 

the best choice. The importance of Proposed Model elasticity features appears in situations 

where the workloads running on top of the clusters need to continue running while scaling 

out the cluster.   
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5.1 Conclusion 

In our exploratory journey of providing Hadoop as storage and computing services, we 

have found that the Proposed Model is opening the door for independent services. To obtain 

all the appealing SOA features that are integral to the Proposed Model, an acceptable 

performance price can be paid compared with the corresponding performance for the 

Native Model. For CPU-Intensive applications, the sacrificed performance is around 15% 

by utilizing the Proposed Model (Proposed2), whereas for Read-Intensive applications, the 

Proposed Model (Proposed1) can outperform the Native Model with an average of 11%. 

The Write-Intensive applications, on the other hand, can utilize the Hadoop Proposed 

Model (Proposed2) at the expense of 20% lower performance. 

Based on the analysis of the experiments on the Native and Proposed Models, the Proposed 

Model is a better option, specifically for workloads that are either I/O- or CPU-Intensive. 

It is obvious that in exchange for the appealing features that are gained by using the 

Proposed Model, the performance overhead is considered minor.  

 

5.2 Future Work 

In our future work, we plan to perform further experiments after building a prototype using 

state-of-the-art technologies and tools. Using the latest networking technologies such as 

Optical Fiber and Switch Network adapters that support a speed of 10 Gbps will minimize 

the networking overhead to the minimum. Consequently, the performance of the Proposed 

Model will increase. We also plan to repeat the performance evaluation work on another 
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cloud solution such as the OpenStack [70] framework. OpenStack is an open-source and 

free solution that is deployed as infrastructure-as-a-service (IaaS) and composed pools of 

networking, storage, and processing that are supported by provided by different vendors 

[71].  Another future work is performing a real-time processing for a real data generated 

by the Internet of Things (IoT) sources which are the trend (Big Data and IoT) by utilizing 

another processing modules (Spark) of Hadoop. To conduct such experiments, we need a 

larger environment such as two physical racks instead of the two physical servers that were 

used in this work.  Also, we intend to utilize another benchmark suite (Big Data Benchmark 

for BigBench) [72]. It is very popular big data benchmark that is supported and adopted by 

Transaction Processing Performance Council (TPC) as TPCx-BB [73]. Moreover, we 

intend to design experimental scenarios that consider (in addition to the total number of 

hardware resources) the number of VMs. Unlike the work we did, where a total number of 

hardware resources and the number of running workers in each cluster were the factors that 

we considered while conducting experiments.   

https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/Software_platform
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