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Sign language is the major mean of communication for the deaf community.

It uses body language and gestures such as hand shapes, lip patterns, and facial

expressions to convey a message. Sign language is geographically specific as it

differs from country to another. Arabic Sign language is used in all Arab countries.

A sign language recognition system acts as a translator of these gestures into a

form of spoken language such as text.

The availability of a comprehensive benchmarking database for Arabic sign

language is one of the challenges of the automatic recognition and translation

to a spoken language. This thesis introduces KArSL database for Arabic sign

language consisting of 500 signs of numbers, letters, and words related to different

domains such as health, religion, and common verbs. Signs in KArSL database
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are performed by four professional signers and each sign is repeated fifty times

by each signer. The database is recorded using state-of-art multi-modal Microsoft

Kinect V2. This database will be made freely available for interested researchers.

This thesis also propose different approaches for sign language recognition us-

ing this database and other databases. The proposed systems cover the stages of

sign language recognition pipeline. Including segmentation of video into still key

frames, hands trajectory processing, features representation techniques. Recogni-

tion accuracies of these systems indicate their suitability for such a large number

of Arabic signs.
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ABSTRACT ARABIC

المستخلص
الفلسفة في الدكتوراه درجة

صبر صديق اسماعيل الدين علاء الاسم
العربية الإشارة لغة على الآلي التعرف الرسالة عنوان

الحاسوب هندسة و علوم التخصص
2017 نوفمبر التخرج تأريخ

اشاراة مثل الجسد لغة فيها تستخدم . السمع ضعيفي و الصم بين للتخاطب الرئيسية الوسيلة هي الاشارة لغة
لأخرى. بقعة من تختلف بل ً عالميا موحدة ليست الإشارة لغة الوجه. تعابير تغيير و الشفاه، حركة الأيدي،
ترجمة على يعمل الإشارة لغة على الآلي التعرف العربية. الدول جميع في تستخدم الموحدة العربية الإشارة لغة

مثلاً. كالكتابة المنطوقة اللغة أشكال من شكل الى الإشارات
فاعدة توفر عدم هي العربية الإشارة لغة على الآلي التعرف مجال في الباحثين تواجه التي الصعاب إحدى
خمسمائة على تحتوي بيانات قاعدة تقدم الرسالة هذة عليها. الإعتماد يمكن آلية مترجمات لتصميم كافية بيانات
و اليومية الأفعال و الدين و كالصحة المجالات مختلف من وكلمات الهجائية، الحروف الأرفام، تشمل إشارة
جلسات على مرة خمسين إشارة كل كرر قد منهم كل أشخاص أربعة بواسطة الإشارات هذة تسجيل تم غيرها.
تسمى مايكروسفت شركة إنتاج من الوسائط متعددة متفدمة كاميرا باستخدام الإشارات تسجيل تم مختلفة.
العربية. الإشارة لغة على الآلي التعرف مجال في للباحثين ً مجانا متوفرة ستكون هذه البيانات قاعدة الـكينكت.
الذكر. آنفة البيانات قاعدة باستخدام العربية الإشارة لغة على الآلي للتعرف ً متنوعة ً طرقا تقدم الرسالة هذة
الى الفديو تقطيع فتشمل الإشارة. لغة على الآلي للتعرف نظام لبناء المختلفة المراحل تشمل المقترحة النمازج
تقنيات و الإشارة، عند الأيدي حركة مسارارت معالجة الصور، من قليل عدد في الفديو تختصر مفتاحية صور

xviii



العدد هذا على للتعرف مناسبتها تعكس الأنظمة لهذه العالية الدقة بعضها. عن للإشارات مميزات لإستخراج
العربية. الإشارات من الـكبير
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CHAPTER 1

INTRODUCTION

Communicating thoughts and feelings is an essential need for human beings. Hear-

ing disabilities hinder the natural speech based communication. To communicate

with each other and with speaking people, deaf has invented nonverbal languages

that use descriptive gestures to convey their thoughts. These languages are de-

veloped by the deaf communities in different regions of the world.

Unfortunately, speaking people find it hard to learn these languages and many

of the deaf population are not able to read and write spoken languages to use it

for communication with hearing people. These problems increase the isolation of

deaf people from the society. To communicate with deaf, speaking people need

skilled professional translators that knows the spoken and signed languages. These

skilled translators are few and can‘t be available all times.

Sign language recognition systems tries to fill this gap by exploiting the ad-

vanced technologies to automatically translate signed language to a form of spo-

ken language such as text or speech. These systems are equivalent to speech-
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recognition systems used by speaking people. A sign language recognition system

acquires the signs and converts them into other forms of language such as text or

speech. Speech recognition automation has now advanced and became commer-

cially available, while the automation of sign language recognition and especially

Arabic Sign Language (ArSL) is still in its early stages of maturity. Also, there

is no publicly available database ArSL, which makes it hard to compare different

proposed recognition systems . The aim of this thesis is to contribute to the re-

search in Arabic sign language recognition by providing a benchmark dataset and

developing techniques to recognize signs.

1.1 Sign Language Recognition

Sign languages are full featured languages with their own vocabularies and gram-

mar. They make use of hands-motion, fingers-configurations, facial-expressions,

and body lane in parallel to express different terms. Sign language has thousands

of words that form the language vocabulary and it uses a dedicated sign for each

word. Facial expressions such as eye gaze direction, eye blinks, eyebrows, mouth,

and tongue are used in sign language to express the emotions and feeling such as

anger, happiness...etc [4]. For example, moving the hand opened and facing the

ground down may have different meanings. If the signer is looking down, it means

a child but, if the signer is looking front, it means relax. Fingers configurations are

used to spell names or out of language vocabulary words. To effectively translate

a signed language all its components need to be considered.
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Sign language differs from one country to another and sometimes within the

same country that has a unique spoken language. In the Arab countries, several

localized sign language dialects exist like Saudi, Yemeni, Jordanian, Egyptian [5].

To unify them, an effort has been made by the Arab League Educational, Cultural

and Scientific Organization (ALECSO) in 1999 to standardize the Arabic Sign

language (ArSL) which resulted in a dictionary consisting of about 3200 words

published in two parts [6].

1.1.1 Challenges in Sign Language Recognition

Sign language is a complete language with its own grammar and syntax. There

are several challenges in the research of sign language recognition. Some of these

challenges are imposed by the language characteristics while others are imposed

by technologies’ limitations, lack of resources, etc.

When signs are performed in a continuous sentence, hand needs to move from

the end location of one sign to the start location of the next sign, this includes

change of hand shape and orientations. This transient sign is not part of either

of the signs which adds complexity to the segmentation of signs for recognition.

During the performance a sign, the hand may take different orientation with

respect to the body of the signer. Hence, researchers can’t assume fixed orientation

for the hand. In addition, different motion patterns are used, some signs involves

circular movement, while others involve local movement like wrist twisting. Hence,

no fixed field of view can be assumed. Another challenge comes from the occlusion,

3



where in some signs hands occlude each other or occlude the face.

Language grammar, some times, changes the sign. When the subject of a

verb is pronoun, the gesture will vary depending on this pronoun, that by mixing

the sign of the verb and the sign of the subject (I, You Him ...). This leads to

different forms of one verb. Adverbs also change the sign, for example, to say ”run

quickly” the speed of hand when performing the sign will be faster. Non-manual

signs are important parts of the sign language. These includes facial expressions

and body poses, which are used to modify the meaning of signs. Eye , eyebrows

and mouth are used for example to change the verb into question or to show

wonder or surprise.

All these mentioned challenges adds complexities to the recognition of sign

languages.

1.1.2 Online vs Offline recognition

There are two categories of sign recognition, viz: online and offline recognition.

These categories are based on the nature of the data processing. In online recog-

nition, signs are collected and recognized in real time, i.e. at the same time it is

produced. Online recognition provides real time response. There are few works

in the literature that addressed it, Shanableh’s work in [3] is an example.

In off-line recognition signs are performed and video of the signs is recorded

and then a computer vision algorithm is applied to it later, or data is collected

by sensors and stored for later processing. Off-line recognition make it easier to

4



experiment and test many algorithms.

1.1.3 Levels of Sign Language Recognition

Alphabet signs are used to spell names letter by letter. Systems used to recognize

alphabets are relatively simple and limited in vocabulary size, a lot of work is

done in this area and many approaches are tried, Mohandes in [7] listed about 12

of them.

Isolated words sign recognition is more practical than alphabet but more com-

plex as it deals with sequence of images. This additional time component is

important in the analysis of this sequence. Signer performs signs in isolation

starting and ending in static position. The vocabulary size can be very large. For

Arabic sign language, more investigation is needed to determine the practical size

of vocabulary.

Continuous sign language recognition systems are more practical than Al-

phabets and isolated word recognition systems. The main challenge here is the

determination of the words boundaries. If this was successfully automated, then

the isolated words recognition systems can be used to recognize each word of the

sentence. This requires identification and removal of transient signs. Different

approaches are used to locate the transient signs. For example, an assumption is

made on the hand movement acceleration to be high in the transient sign than

in word sign. Many other approaches are listed in [8]. Research in continuous

Arabic sign recognition is still limited compared to alphabet and isolated words.
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Although continuous sign recognition is more desirable in practical application, it

depends on the isolated word recognition system for recognition. This increases

the importance of accurate isolated word sign recognition.

1.1.4 Signer independence

The ideal sign recognition system would give high recognition accuracy for new

signers that it has not seen during training. Different signers may have different

signing styles. Similar to speech, different person may pronounce the same word

differently or may speak in different speeds, signs can be performed differently by

signers. To design a signer independent recognition system, the number of signers

in the training database should be large enough to capture these differences. Some

works in signer independent Arabic sign language recognition is present in the

literature [9, 10, 11, 12], the highest number of signers used for training and

testing, to our knowledge, is 18 in AL-Rousan in [9].

1.2 Motivation

The deaf population is increasing and many of them can’t read and write spoken

languages, and few non deaf people learn sign language. These problems lead to

isolation of deaf people from the society. Thus building a sign language recognition

system helps in addressing this need.

The advancement in automation of speech recognition make it now mature

enough to be adopted by different applications to serve the speaking people. In

6



contrast, these applications can’t be used by deaf due to weakness in automation

of sign language recognition. Currently, sign language translation is expensive

because it requires a professional human translator.

In addition, no publicly available data set for Arabic sign language which

delays the advancement in building recognition systems. Due to the absence of

mature recognition systems, most public services are not translated into sign [13].

Considering the above mentioned facts, there remains a lot to do in the recog-

nition of Arabic sign language. The aim of this dissertation is to contribute in

elimination of these limitations , improve the state of the art in the Arabic sign

language recognition, and build a database for Arabic sign recognition.

1.3 Model of Sign Language Recognition System

Generally sign language recognition and translation system follows the pipeline

pictured in figure 1.1. This thesis implements the sign recognition part while the

other translation part is being addressed by my colleague Hamzah Luqman in his

PhD thesis work. Here, we introduce each stage briefly.

1.3.1 Sign Acquisition

The first stage is signs acquisition. Signs acquisition techniques can be broadly

classified into two categories: vision based and sensor based. In vision based,

cameras are used to capture the sign while in sensor based other sensors are

used to acquire the features that represent the sign. The sensor-based approach

7



employs a glove of electronic sensors to be worn by the signer. The sensors track

and detect hands and fingers‘ motion. The drawback of this approach is that

the signer may be uncomfortable and can’t naturally perform the sign as he does

without wearing it.

In vision based acquisition typically cameras are used to capture the signs

and store them as sequence of images for processing. Most of the reviewed works

uses single video camera. Some researchers has employed more than one camera

to capture different views of the sign. This is helps in dealing with difficulties

imposed by the environment, but also adds computational overhead to process

the stereo images.

In this thesis, we use an acquisition device that combine the best features of

both vision and sensor based while freeing the signer from wearing any instrument.

We use Kinect-2 for recording signs which provides color images, depth images

and skeletal joints‘ locations of the signer body. We developed a recording tool

that synchronously records the color, depth and skeletal joints locations. A sample

frame from each channel is shown in figure 1.2.

1.3.2 Preprocessing

The raw acquired data may need some preprocessing before being suitable for the

recognition system. Depending on the recognition system, this stage may be used

to segment the video of the sign into a sequence of still images, locate the position

of some key components of the sign such as the hands and head, or smooth the

8
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Figure 1.2: The recorded output of Kinect (a) Color image, (b) Depth image (c)
Skeleton joints.
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trajectory of hands motion during the sign.

Videos are usually recorded at 30 frames per second which results in many

images if all frames are extracted. To segment the video into still images, some

redundant images may be removed and only key frames should be extracted. The

localization of key frames is a research problem that needs some techniques to

solve. Similarly, the raw trajectory of hands‘ motion may include some wiggles

that needs to be smoothed and filtered out. In this thesis, we propose an algo-

rithm for smoothing the trajectories and locate the key frames of video as will be

discussed in section 4.2. Some other recognition systems may require the localiza-

tion of some parts of the signer‘s body while signing. This requirement is mostly

needed by vision based systems. Different image processing techniques are usually

used in the preprocessing stage to locate the required parts in the image. In this

thesis, we propose an algorithm to locate the hands using optical flow as will be

discussed in section 6.4. Figure 1.3 shows a sample preprocessing that locates the

hands of the signer.

1.3.3 Features extraction and Classification

After preprocessing, the data is ready for features extraction. For vision based

recognition, features are extracted from images or regions of the images. The

features extraction methods can be classified into global and local features. In

global features, the features vector represents the whole image, while in local

feature, it represents patches of the images. Different global and local features
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Figure 1.3: Sample preprocessing that locates the moving parts of the signer like
the hands and head.

are used in this thesis as will be discussed in chapter 5. As an example the Harris

local features extraction technique is pictured in figure 1.4. We also propose

some features representation technique for the hands motion trajectories as will

be discussed in section 4.3.

The extracted features are used to train a classifier when building a recognizer

and test it to evaluate the accuracy of the recognizer. Different classification

schemes are used in this thesis, including single stage , multistage, and ensemble

of classifiers.

In deep learning, a deep convolutional neural network is used for both features

extraction and classification. In this thesis we use deep learning for sign language

recognition as will be discussed in section 7.1.
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Figure 1.4: Example of a features extraction technique used in this thesis. The
Harris features detector is used for extracting features around the signer‘s body.

The output of the classification stage is a sort of spoken language word. This

can be vocal output or text. In this thesis, the output is a text. As shown in

figure 1.5 the word ”thalathon” which means 30 is shown on the top of an image

that shows the hand configuration for this sign.

1.4 Outcomes of this Thesis

The following summarizes the outcomes of this thesis.
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Figure 1.5: Sample output of the recognition system as text. The sign name
’thalathon’ shown on the image.

1.4.1 KArSL database in cooperation with my colleague

Hamza

• A recording tool for synchronized recording of color, depth and skeleton

joints locations of the signer using Microsoft Kinect for Windows V2.

• Recording a database of 500 signs that includes alphabets, numbers, and

words by four signers with 50 repetitions for each sign by each signer.

1.4.2 Algorithms for preprocessing

• An algorithm for hands trajectory noise removal and compression.

• An algorithm for video segmentation into sequence of still key frames. The

algorithm also works if more than one sample are repeated in the same

video.
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• An algorithm for determining the key frames and locating hands of the

signer in a video. The algorithm finds bounding boxes around the hands.

• An algorithm for converting the sign video into a single grid image of key

frames.

1.4.3 Features Representations and Classification

• Two features representations of the hands motion trajectories.

• A feature representation that captures both the hand shape and motion

based on optical flow and histogram of oriented gradients.

• Transformation of sign language recognition task into image captioning task.

• Employment and tuning of single-stage, multi-stage, ensemble of classifiers.

In summary, it can be seen that this thesis provides valuable contributions to

the research in Arabic sign language recognition in all stages of the recognition

pipeline.

1.5 Organization of this Thesis

This thesis is organized as follows. In chapter 2 the related works in the litera-

ture are described. In chapter 3 we describe the collected database, it‘s formats,

organization, file naming, and statistics. Chapter 4 describes our proposed sensor

based recognition system. Followed by vision based recognition systems described

in chapter 5,6, and 7. Finally chapter 8 concludes this thesis.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, previous work on sign language recognition is presented. Focusing

on but not limited to Arabic sign language recognition. With the general model

for sign language recognition in mind, this chapter presents the techniques used

in each stage of the recognition pipeline (see figure 1.1).

2.1 introduction

Deaf and hard hearing people form 17 million in the Arab world and 70 mil-

lion worldwide1. In Arabic countries, there are several sign languages like Saudi,

Yemeni, Jordanian, Egyptian …etc. An effort has been made in 1999 to standard-

ize the ArSL which is initiated by the League of Arab States (LAS) and the Arab

League Educational, Cultural and Scientific Organization (ALECSO). This effort

resulted in a dictionary of 1600 words published in two parts [14][15]. Automatic

recognition of sign language systems are important for addressing the difficulties

1Deaf World Federation, http://www.wfdeaf.org/
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faced by persons with speaking disabilities. These systems are the equivalents to

speech-recognition systems used by people. A sign language recognition system

acquires the signs and converts them into other forms such as text or speech. Sign

language uses combination of hand shapes, orientation, and movement of head,

arms, body poses, facial expressions, and lib patterns to convey meaning. Each

of these components have special importance in modifying the meaning of signs.

For example, moving the hand opened and facing the ground down may have

different meanings. If the signer is looking down, it means a child, but, if the

signer is looking front, it means relax. To successfully translate a sign, all these

components need to be considered. Sign languages are not international and are

not completely dependent on the spoken language of the region they coexist in.

The research in sign language recognition has started around thirty years ago in

Japanese [16, 17], American [18], Chinese [19], German [20], Korean [21], and

others. Sign language consists of three main components:

1. Finger Spelling: used to spell words for telling names [22, 23, 24]

2. Word Signs: signs that correspond to the vocabulary of a language [25, 26,

27]

3. Non-manual Expressions: like eye blinks, eye gaze direction, eyebrows, nose,

tongue, mouth, and body position.

The deaf population is increasing, many of them can’t read and write spoken

languages and few non deaf people are provisional sign language users. This
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results in isolation of deaf people from the society. Thus building a sign language

recognition system helps in addressing this need.

ArSL is a full natural language that has its structure, word-order, and lexicon

that is different from Arabic text. This imposes another challenge, in the trans-

lation between the ArSL and Arabic text. This problem is a complete machine

translation problem since ArSL and Arabic languages are two different languages

with different structures and grammars. To our knowledge, there is no comprehen-

sive translation system that can recognize ArSL and translate it into meaningful

Arabic sentences and vice versa. Most surveyed techniques for ArSL target either

sign recognition or machine translation but not both. In addition, most of the

available Arabic translation systems for ArSL work at the word level. In this

type of translation, a direct mapping is made between the Arabic word and the

equivalent Arabic sign. This type of translation is not sufficient for translation

between languages since it ignores the structure and grammar of both languages

which results in losing the meaning of the sentence. Figure 1.1 shows a proposed

architecture of ArSL recognition and translation system. As shown in the figure,

the ArSL recognition system identifies the equivalent Arabic word of each ac-

quired sign. The recognition process starts by preprocessing the acquired signs to

make them convenient for feature extraction. In the training stage, the extracted

features are used in building the ArSL models that will be used for classifying the

new acquired signs. The recognized signs are mapped to their equivalent Arabic

words.
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In section 2.2 we explore Arabic sign language data sets. Then in section 2.3

we review the techniques used for acquiring signs performed by signers, then in

section 2.4 we address the techniques that are used to extract features from these

signs for classification. Different classification schemes are addressed in section

2.5. The deep learning approaches for sign language recognition are reviewed in

section 2.6. Finally, post processing techniques are shown in section 2.7.

2.2 Arabic Sign Language Data Sets

To our knowledge there is no comprehensive benchmarking database for Arabic

sign language recognition that is freely available to researchers. Thus, different

researchers use different data sets, and consequently the recognition accuracies of

the different techniques may not be comparable. Although Arabic alphabet con-

sists of only 28 letters, Arabic sign language uses 39 signs for alphabet. The 11

extra signs are combining two letters which are commonly used together. There-

fore, most published work on ArSLR uses these 39 signs. The unified Arabic Sign

Language Dictionary listed around 1600 isolated signs. However, most of the work

in the literature examined below 50 signs as most of these works exclude most

similar signs to ease the recognition task. Limited number of signs is acceptable

for building domain specific applications. However, it is not adequate for general

purpose applications.

Most researchers in the literature used datasets with low number of signs [28]

[9] [2] [29] [30]. Shanableh et al in [1] built an ArSL database for 23 selected
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signs, each sign was repeated 50 times by 3 different signers, then the videos are

segmented to keep each sign in an individual video. They reported that their

setup doesn’t restrict the background or the signer clothes. The database can be

obtained by contacting the author. This database is extended by Sidig et al [31] by

adding one more signer. This databases is used for some experiments here. Assaleh

collected a continuous signs database of 40 sentences. Each sentence is repeated 19

times by one signer [32]. Alfonse et al [33] presents a database consisting of 1216

signs. The signs are captured using ordinary HD camera, Microsoft Kinect 2, and

Leap motion tracking sensors. The database is performed by four signers in an

unrestricted environment. However, this database can not be used for recognition

systems using machine learning as each sign is repeated only thee times by two

signers. In addition, the database is not available online. SignsWorld Atlas is

another database for ArSL presented by Shohieb et al [34]. The database is

captured using regular video camera. They reported a total of 500 manual and

non manual sign elements were performed by different number of signers that

ranges from two (for hand shapes in isolation and in single signs) to ten (for

digits). Absence of signs repetition is a limitation of this database.

In contrast to ArSL, various databases are available for non-Arabic sign lan-

guages in different countries. RWTH-BOSTON-50, RWTH-BOSTON-104, and

RWTH-BOSTON-400 are American Sign Language (ASL) video-based databases

created by Boston University [35, 36, 37]. RWTH-BOSTON-400 is the largest

and consists of 843 sentences performed by five signers. SIGNUM is a German
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Sign Language database available online at a price of 1000 ER [38]. It consists

of 780 sentences (450 signs) performed by 25 signers. ECHO is a sign language

database available in three sign languages: Swedish (SSL), Dutch (NGT), and

British (BSL) [39]. It consists of five stories and some interviews with signers.

2.3 Signs Acquisition

Sign acquisition techniques can be broadly classified into two categories: vision

based and sensors based. In vision based, cameras are used to capture the signs

while in sensors based other sensors are used to acquire the features that represent

the signs.

2.3.1 Sensor Based

In the sensor-based approach, signers wear electronic sensor gloves like that in

figure 2.1. The sensors detect the fingers’ configurations and track the hands’ and

motion. The drawback of this approach is that the signer is not used to wear

them naturally [40]. These gloves provide information on the position, rotation,

movement, orientation of the hand, and more importantly, finger bending.

Ritchings et al. developed a computer-based system using Data Gloves for

teaching sign language [41]. Bend sensors and push button switches were utilized

to observe 17 measures. Two bend sensors are joined to every finger and thumb

junctions to monitor the finger movements. Two bend sensors on the inner and

on the outer side of the hand wrist to catch it’s up-down movement. In addition,

21



a bend sensor on the right side of the wrist to sense its yaw. The bend sensors

reports different measures when the bent is in one direction, which is suitable for

the fingers. Two sensors are mounted on opposite sides of the wrist to monitor

pitch up/down movements. Lastly, to identify finger abduction and adduction,

4 push-down switches are attached to the side of every finger beginning with

the thumb. The goal of the system was to evaluate the capability of learners in

reproducing signs done by a professional signer. The used database covered 65

signs performed by four professional signers. All the signs were selected to reflect

all the activities that could be done by a learner within the bounds of the 17 sensor

configuration. The learners were able to reproduce the signs with 93% accuracy.

They also reported that their system faced difficulties in recognizing some signs

made by a trainee with small hand.

Mohandes and Deriche [42] used the Dempster-Shafer (DS) Theory of Evi-

dence to combine decisions from the Cyber Glove with 22 sensors and the hand

tracking system. Each glove provides 22 signals and the tracking device provides 6

signals for each hand. The authors reported that the fusion of classifiers decision

outperformed the feature-based fusion. They tested using the glove-based and

the electromagnetic-based tracking systems independently. The tracking system

achieved a reported accuracy of 84.7% while the glove-based system achieved a re-

ported accuracy of 91.3%. The authors claimed that the traditional feature-based

combination provided an accuracy of 96.2% which was outperformed when using

decision level fusion to reach an accuracy of 98.1%. They built a database of 100
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signs performed by a volunteer from the deaf community.

Figure 2.1: Power Glove hand of sensors.

2.3.2 Vision Based

In vision based acquisition typically cameras are used to capture the signs and

store them as sequence of images for processing. Most of the reviewed works use

single video camera. Multi-camera systems may help in dealing with environmen-

tal difficulties. However, 3-D models add more computational overhead.

Tolba et al in [43] used 2 synchronized cameras positioned horizontally aligned

with 90 degrees view angle difference. Signer hands should be located in a specific

area with equal perpendicular distance from both cameras otherwise the sign

would not be captured. The cameras capture 19 consecutive pair of images each

pair is 5 degrees rotated from the previous pair. The ten odd ordered pairs

are chosen for training and the other 9 for testing. These images are fed to

Pulse-coupled Neural Networks (PCNN) to extract 2D signatures which are then

weighted and combined linearly to produce 3D features.

Other devices exist that use more than one camera, depth cameras and Infra-
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Red cameras. The Leap Motion Controller (LMC) [44] employs two infrared

cameras and three infrared Light Emitting Diodes (LEDs) to capture information

within its operating range. The device detects and tracks the hands’ motion,

fingers and finger-like objects positions, gestures, and motion. Figure 2.2 shows

a schematic view of the LMC. LCM have been used by researchers to recognize

Arabic signs in [45, 46] for alphabets recognition and in [47] for words recognition.

In [46], two LCMs are used to capture the hand to avoid the occlusion of fingers.

Figure 2.2: Schematic diagram of the Leap Motion Controller (LMC)

Microsoft’s Kinect consists of depth sensor, color camera, and multi-array

microphone running proprietary software. The Kinect sensor traces full-body

motion and distinguishes speakers. Kinect sensor has four kinds of output: colour

image, depth image, infrared image, and skeleton joints. The depth image is

produced by CMOS IR sensor. This image can be used to create a mask image to

remove the background by simple thresholding. Kinect can track skeletons with

25 joints (see Figure 2.4). Kinect has been used for recording signs by [48, 49, 31].
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Figure 2.3: Schematic diagram of the Kinect

Figure 2.4: Outputs from Kinect [2]

2.4 Features Extraction

After sign acquisition, features are extracted for use in training and testing the

system. In this section a review of the used features and their extraction tech-
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niques is presented.

Mohandes et al addressed isolated words using skin color model in chromatic

color space to detect the face [28]. Region growing is used to search for orange and

yellow gloves (worn by signer to ease the segmentation) to locate hands. These

are then used to collect the following features: Hands’ Centroids with respect to

face centroid, eccentericity of bounding ellipse of hands, angle of the first principal

components, and the area of hands. They extended the work in [50] for bigger data

set of 300 signs with 15 samples per sign. AL-Rousan et al in [9] converted images

from a segmented video into frequency domain using Discrete Cosine Transform

(DCT) and used zigzag zonal coding for descriptors encoding. For background

removal, the DCT of consecutive images are subtracted. Then 50 DCT descriptors

of these differences are used as features.

Shanableh et al in [3] built a database of 23 selected signs, each sign was re-

peated 50 times by 3 signers, then the videos are segmented to keep each sign

in an individual video. They reported that their setup doesn’t restrict the back-

ground or the signer cloth. They extracted temporal and spacial features. For

temporal features the motion is accumulated into one image that describes the ac-

tivity during the whole sign. This is done using forward accumulated difference of

successive frames as follows[3]: Let Ijg,i denotes image index j of the ith repetition

of sign g the forward prediction is:

Pg,i =
n−1∑
j=1

δ(Ijg,i − Ij+1
g,i ) (2.1)
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where n is the total number of images and δ is a binary threshold empirically

determined as the mean of non zero difference pixels. Then the resulting image is

filtered by median filter which removes the isolated prediction errors as they are

assumed to be noise. However these errors can be due to facial expressions but

this was out of their scope. They proposed two approaches for spacial features

extraction: the first uses 2D DCT transformation and zonal coding, while the

second applied Radon transform and then low pass filtering. In the first method

they applied 2D DCT transformation on the accumulated temporal differences

image, the Zigzag zonal coding is used and 50 descriptors are used as features. In

the second method, the temporal difference image is projected at a given angle

using Radon transform and then represented by 50 descriptors of 1D DCT and

then low-pass filtered. The 50 DCT cut-off was determined empirically by exam-

ining different cut-off points. In the goal of signer independence they argued in

[12] that different signs can have very similar accumulated difference. They pro-

posed a weighted directional accumulated difference by assigning higher weights

to the first half of the temporal sequence differences. They also accumulated two

difference images, positive and negative (AD+ and AD−) computed as given by

equations (2.2) and (2.3) , respectively.

A bounding box that encapsulates movement information in both ADs is de-

termined as a region of interest. This region is then transferred to the frequency

domain using DCT and the remaining parts are removed from the AD image. Af-

ter zonal coding the resultant DCT coefficients of the AD images are interleaved
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AD+(x, y) =

{
AD+ + wK if(f(x, y, tk)− f(x, y, tk−1)) ≥ Th(k,k−1)

AD+ otherwise .
(2.2)

AD−(x, y) =

{
AD− + wK if(f(x, y, tk)− f(x, y, tk−1)) ≤ −Th(k,k−1)

AD− otherwise .
(2.3)

where (x,y) are the pixel coordinates of the AD image and wk is the accumulation
weight at the kth image difference

to form feature vector. In this work they used two colored gloves to ease the seg-

mentation of hands. This work has been extended by Sidig et. al by employing

different transforms to the accumulated difference image. They tested Fourier

Transform , Log-Gabor Transform, and Hartley Transform applied on the whole

and slices of the accumulated image [51]. One limitation of this method is that it

requires the sign video to be segmented in key frames which was done manually.

Zaki et al proposed combination of three vision based features [30]: principal

component analysis (PCA), kurtosis position, and motion chain code (MCC).

PCA is used as a representation of the hand shape and orientation. To find the

place of articulation, Kurtosis position is used. MCC is used to represent the hand

movement. Skin color detection is used to locate the head and hands, followed by

connected components labelling to detect and track the dominant hand. PCA is

then applied on the detected hand. Position of the highest kurtosis in the hand

image is used as representation of the hand articulation. MCC is a sequence of

numbers from 1 to 4 and 0, to encode the hand movement direction (1: up, 2:

left, 3: down, 4: right, and 0: no motion). The chain code is built by subtracting

the centres of the hand in 2 neighbouring frames. They chose 30 words from

28



the American Sign Language database RWTHBOSTON-50 excluding signs with

occlusion of hand and face.

Chao Sun in [2] proposed discriminative exemplar coding for sign language

recognition using Kinect. They proposed two types of features: Histogram of

Gradients (HOG) features to describe the appearance, and Kinect features that

describe position, shape and motion of hands. For HOG features the image is

resized to 256x128 and then divided into 8x8 pixels cells, from which they compute

a 9 bin histogram of gradients orientations. This histogram is then normalized by

gradient energy in the neighbourhood around this cell. Kinect body pose features

are the combination of three parts.

1. 3D vectors: from elbows to the shoulders, from the wrists to the elbows,

from the hands to the wrists, and from the left hand to the right hand.

2. The angles at the shoulders, elbows, and wrists joints.

3. The distance between the right and the left hands, normalized by double

the shoulder width.

The hand shape feature is generated by computing HOG on 48x48 patches around

the hand position. For generating the hand motion feature optical flow is calcu-

lated on two patches from two successive images. Inclusion of temporal informa-

tion in features leads to improvement in the recognition rate as reported by Sun

in [2].

Tharwat et al in [52] used SIFT for extracting local features from gray level

images of Arabic sign language alphabets. After features are extracted they ap-
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plied Linear Discriminant Analysis (LDA) to reduce the dimensionality of feature

vector. Each image is represented by one feature vector. The described method

can’t handle dynamic signs which are present in some alphabets. Ahmed and Aly

in [53] proposed using Local Binary Pattern (LBP) to capture the appearance of

hands and head in a sign frame. Before applying LBP skin colour detection is

used to detect hands and head regions. Then frames are cropped to the boundary

of detected head and hands. In LBP each pixel gray level is compared to its 8

neighbours, if a pixel of the neighbourhood is greater than or equal to the current

pixel (center pixel), one is assigned to that pixel, otherwise 0 is assigned. After

this process each pixel will have a code of 8-bits, and these codes collectively form

a feature vector. To reduce the dimensionality they applied PCA and reported

that reduction to a vector of 30 results in an accuracy of 99%. In a similar ap-

proach Aly and Mohammed [54] used LBP to summarize the sign video into one

spatio-temporal LBP feature vector. They proposed LBP on three orthogonal

planes (LBP-TOP) in which LBP is performed in three planes: X-Y, X-T, and

Y-T. where X and Y are the width and height of image and T is the successive

images that form the sign video. They used uniform LBP codes in which the 8-bit

binary patterns with at most 2 transitions from 0 to 1 or from 1 to 0 are labeled

in 58 labels and other patterns that are not uniform are assigned a single label.

A histogram of labels is generated for a block of 12x12 pixels in each plane and

concatenated to form a feature vector. The method requires segmented images

sequence which was done manually. An experiment to reproduce the results of
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this method has shown that it is not scalable for large databases.

Summary of the used features and classifiers is shown in Table 2.1.

2.5 Classification

Features are used for training and testing of the classifiers. Most of the reviewed

work employed single classifier, however multi-classifiers are also used [2][55].

Mohandes et al. used HMM for isolated words’ recognition. The suitable num-

ber of states that gives the maximum accuracy are evaluated and found that 6

states gave the best accuracy [10]. They likewise examined the impact of the num-

ber of Gaussian mixtures in HMM and concluded that 3 gives the best accuracy.

Shanableh et al [3] examined linear classifiers like: linear discriminant function,

Fisher’s Linear Discriminant, Bayesian, K-NN, and HMM classifiers. They used

1-NN to determine the suitable cut-off for DCT, and the suitable value of thresh-

old when forming the temporal difference image. They used left-to-right HMM

with 2-4 states while preserving the temporal information of the image sequence

by keeping the absolute differences images without accumulation in a single im-

age. For signer independent recognition they used K-NN with correlation factor

as a similarity measure, and polynomial classifier [12]. They used combination of

signs performed by two signers for training and test by those performed by the

third. The reported accuracy is 87%.

Tolba treated each image as a posture which is classified by multi-layer per-

ceptron (MLP) neural network [43]. They represented the gesture as a sequence

31



of posture classes called Non-deterministic Finite Automation. The Best Match

algorithm is applied to decide the most probable match from a database of 50

signs. The accuracy drops dramatically when the object percentage is below 40%

of the frontal view. Zaki used three HMMs for each sign, one for each feature[30].

The average number of frames in each sign was used to determine the number of

states. For each of the three types of features (PCA, MCC, and Kurtosis posi-

tion) a separate HMM classifier is employed. Majority voting is used for the final

selection. The decision with the maximum log likelihood is used if all the three

HMMs gave different decisions.

The work done by Sun [2] is an example of multi-classification stages employed

for sign language recognition. The proposed technique can be described in three

steps. First, a quantity of class-specific candidate exemplars are learned from sign

language videos in each sign class looking for the most distinctive ones. Then,

each video of all signs is represented as a collection of similarities between images

within it and the candidate exemplars. The similarities are chosen by exemplar-

based classifiers via Multiple Instance Learning (MIL). Lastly, they embed the

choice of the most discriminative exemplars into a framework and concurrently

produce a sign classifier to recognize the sign. Tharwat et al in [52] tested three

classifiers to decide on SIFT features of 30 alphabets. Namely SVM, NN, and

KNN and reported that SVM gave the best accuracy. Ahmed and Aly in [53]

trained 23 left-to-right five-state HMMs. One HMM for each sign with single

Gaussian component is trained using sequence of LBP features of each frame.
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To test the spatio-temporal LBP-TOP, Aly and Mohammed [54] used SVM and

KNN classifiers and reported that SVM outperformed KNN. For SVM they se-

lected the kernel type experimentally and reported that linear kernel out performs

polynomial and radial basis function (RBF) nonlinear kernels. El-Bendary et al

used Nearest Neighbour classifier to decide on 30 alphabets[56]. Each sample is

described by a vector of 50 normalized distances between the hand contour and a

reference point that depend on the hand wrest location.

2.5.1 Phoneme Based

Inspired by speech recognition, in this approach signs are viewed as a collection

of sub-signs. The task of sign recognition is based on recognition of a collection

of sub-units of which the sign word is composed. This approach offers some

advantages:

1. It requires less number of samples for training compared to word level clas-

sification.

2. Can support large vocabulary

3. Generalizes well for signer independence

On the other hand, multi-level classification is needed to recognise the sign.

Different procedures were used by researchers to extract and classify phonemes.

Some used fixed number of phonemes [57, 58, 59, 43], others used data driven

approach to detect phonemes [60, 61, 62]. Tolba et al represented the sign as a
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sequence of postures, they found that there is a total of 158 postures of which 88

are single hand and 70 uses two hands[43]. They built a data set of postures and

trained multi layer perseptron to classify postures. Paulraj et al in [58] listed 44

phonemes of spoken English, and drove 11 signs which can be combined to form

the 44 phonemes. They listed 11 categories of phonemes and used two hands,

one to choose the phoneme’s category, and the other performs the gesture of that

phoneme. Neural network classifiers are used to classify the gestures performed by

each hand. The output of these networks is applied to another network to decide

on the phoneme. This work relies on spoken language to build a sign language

vocabulary which is not applicable for sign language recognition.

Cooper et al in [57] followed linguistic studies of sign language and focused on

4 phonemes based on the Dictionary of British Sign Language. The 4 phonemes

are HandShape, Location, Motion and Hand-Arrangement. They considered three

scenarios: the first is based on appearance only, the second is based on 2D tra-

jectories, and the third is based on 3D tracking. In the first scenario the Loca-

tion, Motion and Hand-Arrangement are classified using AdaBoost from a labeled

data set of phonemes. The main drawback in this scenario is the requirement of

phoneme level labeled data set. In all scenarios two sign-level classification meth-

ods were used to combine the phonemes into full sign word. In the first method, a

look up table of Markov chain, that are constructed for each sign, is used to find

the most probable sign chain. In the second method Sequential Patten Boosting

is used to select discriminative features that are found in the positive examples
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and not in the negative examples.

Li et al in [63] proposed a sensors based system for recognition of three sign

language phonemes. Namely hand shape, orientation and movement. They de-

signed custom accelerometers (ACC) and surface electromyographic (sEMG) sen-

sors that can be worn as arm- and wrist-bands. ACC is used to measure hand

orientations and movement trajectories, and sEMG capture the hand-shape. One

ACC is mounted on the wrist of each hand and four sEMG sensors on the fore-

arm. Measures from sEMGs are clustered for each arm to generate 8 hand-shape

classes for the right hand and 7 classes for the left. A linear discriminant classifier

is trained to detect different hand shapes. Features from ACC measures are used

to train another linear discriminant classifier to distinguish between 5 hand orien-

tations. Features from both ACC and sEMG sensors are jointly used to describe

the hand motion. These features are used to train a multistream Hidden Markov

model (MSHMM) to decide on the hand motion. To decide on a sign a two stage

classifier is built. The first stage combines the output likelihood of hand-shape

and hand-orientation classifiers as a weighted sum using Gaussian mixture model

(GMM). The second stage combines the GMM and MsHMM as a weighted sum of

the log likelihood. In testing for a single handed sign the maximum log likelihood

indicates the sign’s class. For two handed sign the class which maximizes the

sum of likelihood for left and right hand is chosen. They tested the system on a

database of 120 signs and 200 sentences and reported 96.5% and 86.7% accuracies

respectively. Flasinski et al. built a system to recognize hand postures of Polish
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sign language [64]. In their system the hand posture is encoded as indexed edge-

unambiguous (IE) graph which is then parsed by a syntactic graph language to

determine it’s class. Their system involves three phases namely image processing,

graph generation, and graph parsing. In image processing phase skin-colour is

used to binarize the image followed by morphological operations to fully extract

the hand’s contour. The contour is the approximated by a polygon. In the graph

generation phase the polygon is transformed into a graph with labelled and di-

rected edges and indexed nodes that preserves the image structure and is suitable

for the graph parsing language. Nodes are labelled based on the internal angle

made by edges that meet at it and indexed such that a breadth first spanning

tree BFS can be made on the graph starting from the centroid. Edges are di-

rected from the lower indexed node to the higher indexed node. These graphs

are assumed to represent a grammar of language and a parser is used to classify

postures[64].

Sutherland et al in [60] proposed data driven approach to detect phonemes.

Phonemes are modeled as a continuous hand action in time and space. It is ex-

tracted by jointly analyzing the hand motion speed and its trajectory, assuming

that the trajectory forms smooth curve in a phoneme. Speed discontinuity de-

tector compares the motion of hands in two successive frames with a threshold,

when exceeded a phoneme boundary point is marked. Similarly, when the bend-

ing angle of the hand trajectory curve exceeds a threshold, a candidate phoneme

boundary point is marked. The phoneme candidates are described by a vector of

36



features extracted from each frame and concatenated. These candidates are then

clustered using agglomerative algorithm with dynamic time warping (DTW) as

similarity distance to generate a code-book. The clusters’ centers are then used to

train weak classifiers which are combined to decide on the sign class by boosting.

Two techniques were used for weak classifiers, HMM based and DTW based. One

limitation of this work is that it ignores signs with local motion as the trajectory

and speed will not vary much.

2.5.2 Continuous sign recognition

The natural use of sign language is to continuously perform signs one after another

without pausing between signs. As in spoken language, speaker doesn’t pronounce

each word in isolation. The natural continuous signing suffers from the problem

of signs’ boundaries identification. When signing continuously, hand shape and

position at the starting and ending of a sign is influenced by the shape and position

of hand in the sequence of signs. It may be hard to identify the start and end

of a sign. To tackle this problem different techniques were used to segment a

continuously signed sentence into isolated words.

Yu et al in [65] proposed a technique to segment continuous signing video

into sign and non-sign regions. The non-sign region is the transient state of hand

when moving from one sign to the following sign. They assumed that in a word

sign, homogeneous hand shape variation and trajectory is found and that doesn’t

exist in non-sign region. They proposed two stage segmentation. First coarse
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segmentation based on the hand position, followed by fine segmentation based on

the hand shape. The coarse segmentation depends on dividing the signer’s body

into head, chest, and bottom regions. Segmentation occurs when the hand crosses

the boundary between two regions. The fine segmentation depends on finding

a large variation in hand shape which is assumed to characterise the non-sign.

The variability is measured by a distance function that finds the distance between

two successive hand-shape features vectors. Segmentation occurs if the variability

is grater than a threshold. Assuming that muscles activities can differentiate

between signs and motion epenthesis Li et al proposed to exploit measures of

muscles activities provided by sEMG sensors[63]. They used measures of 4 sEMG

sensors on the right arm to decide on the boundaries. The average energy of the

4 channels is calculated for consecutive chunks to form a time series. This time

series is compared to a threshold to find the starting and ending of a sign. The

staring boundary is the index in the time series for which the energy is grater than

the threshold and the 2 succeeding are below it. The ending boundary is where

the energy falls below the threshold provided that the two succeeding levels are

above it. A third condition is that the duration of sign is not less than 5 chunks

to avoid false segmentation. The threshold is calculated based on the background

noise level and the maximum muscle tension energy.

The first attempt for continuous Arabic sign language recognition, to our

knowledge, was by Assaleh et al [32]. However, they used a manually segmented

database. Tolba et al in [29] modeled the signs sequence as a directed graph for
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each word in the sentence.The graph nodes are the classes of the hand-postures.

To remove the transient frames they proposed two approaches. First calculates

an energy difference between two consecutive frames based on their pixels values.

If the energy is below a defined threshold the frame is discarded. In the second

approach, each frame is divided into four regions (two halves horizontally and

two halves vertically). Two successive frames are accepted to build the graph if

they meet either of two conditions. The first condition, both have the same hand-

posture but the hand in each one is in different region. The second condition, the

two frames are from different hand-posture classes and the hand is in the same

region in both frames.

2.6 Deep Learning Approaches For Sign Lan-

guage Recognition

Deep learning refers to type of neural networks with large number of hidden lay-

ers. In deep learning no isolation between the features extraction stage and the

classification stage. The network learns the appropriate features representation

directly from the input. Deep learning has shown surge in computer vision appli-

cations with high accuracy in objects recognition. It has been adapted to the sign

language recognition by many researchers such as [66, 67, 68, 69, 70, 71, 72]. The

main challenge in using deep learning for sign language recognition is the temporal

component of the dynamic signs. Researchers proposed different techniques for
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tackling this problem. Some used 3D convolution instead of 2D [67], Some used

recurrent neural networks [73, 74], other used two streams one for spatial and one

for temporal and fed the temporal one optical flow [75], others summarize the

video in one image that captures the motion [76, 77, 78].

Pigou et al in [66] proposed a convolutional neural network for recognition of

20 signs from Italian sign language. The network is composed of two streams: one

is fed by cropped upper body images, and the other is fed by cropped hand images.

Each stream is fed by depth and grayscale images. Each stream is 3 layers deep

composed of 3D/2D convolution and 3D pooling. The outputs of the two streams

are concatenated and fed to an artificial neural network with one hidden layer.

They reported a signer-independent accuracy of 91.7%. On a similar approach 3D

convolution is used with five streamed network[70]. The first four streams are fed

by cropped depth/intensity hand images of the right/left hand. The fifth is fed

by a representation of upper body skeletal joints. Each of the first four streams

is composed of three layers: Conv-Pool-Conv. The depth and intensity streams

of each hand are early fused right after the third layer. The resulting streams

are fed along with the skeleton features to MLP to generate the outputs. This

five-stream network is repeated 5 times by varying the number of skipped frames

to be 2,3,4, or 5 to capture the difference in signing speed. The output of these

five parallel networks are lately fused to generate the final output.

In [77] Wang et. al. summarized the depth video into single image using rank

pooling. Out of each depth video, six images are generated: two Dynamic Depth
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Images (DDIs), two Dynamic Depth Normal Images (DDNIs) and two Dynamic

Depth Motion Normal Images (DDMNIs) by applying forward and backward rank

pooling. Each of the resulting images is fed to convolutional neural network. The

resulting scores are element wise multiplied and the maximum score is used to

classify the sign. They reported a recognition rate of 55.57% on a database of 249

signs.

Simonyan in [79] used a two stream architecture for spacial and temporal

representation of the video. The spacial stream is fed by frames from the video

while the temporal is fed by a volume the optical flow computed from these frames.

The scores of the two streams are lately fused from the softmax layer by linear

SVM.

For finger spelling recognition Li et al in [71] used a sparse auto encoder with

CNN to learn features from RGB and depth images. The features learned are

fed to a multi-stage PCA for features reduction and selection. Then a softmax

classifier is used and reported an accuracy of 99.1% on 24 alphabets.

Non manual component of sign language also has been studied by deep learn-

ing to classify mouth shapes. Koller et al in [69] proposed a weakly supervised

framework for recognition of mouth shapes incorporating HMM and CNN using

Expectation Maximization algorithm. They reported an accuracy of 55.7% in

classification of 40 mouth shapes.
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2.7 Post Processing

After recognition of signs using sign recognition systems, some semantic errors

might exist. In post processing phase these errors may be detected and corrected.

Samir and Aboul-Ela in [80] proposed a natural language processing based

approach to detect and correct errors of the classification stage. The authors

claim that the proposed approach was able to boost the recognition accuracy of

Arabic sign language recognition by around 20%. To our knowledge this is the

only published work applying post processing for ArSLR.
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CHAPTER 3

KARSL : KFUPM ARABIC

SIGN LANGUAGE DATABASE

To successfully build a robust system for sign language recognition based on ma-

chine learning, a database is needed. The database plays a significant rule in the

success of such systems. Both the quantity and quality of the database effects

the robustness of the recognition system. A High quality database that helps to

build a robust recognition system should capture the variability in signing styles

and the variability in signing environments. The quantity of the database sam-

ples determines the range of machine learning algorithms that it can train. Some

machine learning algorithms requires a large number of samples to converge. This

Chapter describes the collection of KArSL sign language recognition database as

well as the formatting and naming styles.
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3.1 Background

Over the last years, a number of attempts have been made to develop recognition

systems for ArSL. However, one of the main challenges in automatic recognition

of ArSL is the lack of benchmarking database [31]. To our knowledge there is

no comprehensive benchmarking database for ArSL that is freely available for

researchers. Thus, different researchers use different data sets, and consequently

the recognition accuracy of the different techniques may not be comparable.

In this work, we are presenting ArSL database (KArSL) that was collected

using state-of-the-art depth sensor: Microsoft Kinect V2 . Kinect V2 traces full-

body motion and provides an accurate information about signers pose using 25

joints of the skeleton. In addition, it provides color image, depth map, infrared

image, and user mask. To streamline the acquisition process, we have developed

a recording software to capture the modalities provided by Kinect v2 sensor. The

database consists of 500 signs from the ArSL dictionary. Each sign is repeated

50 times by each of four professional signers. This makes the database useful for

machine learning.

Sign language corpora are scarce [81]. Even if there is enough video data

available online, this data is not annotated and the signs are not segmented which

makes it unsuitable for training sign language recognition (SLR) systems. For

ArSL, the availability of a comprehensive benchmarking database is one of the

challenges of ArSL recognition systems [82]. This is partially a result of the

difficulties associated with sign language data collection such as time and cost
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[83] in addition to the limited number of experts in the field of ArSL. As a result,

some researchers developed their own data that is usually limited or unavailable

for other researchers and consequently the recognition accuracies of the different

techniques may not be comparable. In addition, most of these datasets are camera-

based which do not provide any depth information.

3.2 KArSL database

In this section we present the KArSL database. KArSL (KFUPM Arabic Sign

Language) database consist of collected signs for ArSL using Microsoft Kinect

v2. The collected database consists of eleven chapters of ArSL dictionary. Each

sign of the database is performed by four professional signers and each signer

repeated each sign fifty times. This resulted in 200 samples of each sign. Table

3.1 shows statistics of the collected signs while Table A.1 in the appendix lists the

recorded signs. The database collection is part of the project number INF158001.

“Recognition of Arabic Sign Language and Two-Way Translation between Arabic

Text and Arabic Sign language using Natural Language Processing”. KFUPM

Internal Research Grand.

3.2.1 Setup and recording software

�All signs of KArSL are recorded in an unconstrained environment. We didn’t use

dedicated lights in the recording room as the room lights were adequate where no

shadow is shown in the records. We used fixed background (green) to facilitate
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SN Category Number of signs
1 Letters 39
2 Numbers 30
3 Health 89
4 Common verbs 32
5 Family 32
6 Characteristics 49
7 Directions and places 16
8 Social relationships 10
9 In house 57
10 Religion 103
11 Jobs and professions 44

Total 502

Table 3.1: Statistics of KArSL database

background removal for researchers who prefer using color video recording. In

addition, the signers were not restricted to wear specific clothes or remove eye

classes or watches. Each sign is recorded by each signer in two sessions where the

signer wearing different clothes in each session. This helps in adding variety to

the samples of each sign. To add more variety to the database, some signs, letters,

are performed alternately between the left and right hands of the signer.

The database is recorded using multi-modal device, namely, the Microsoft

Kinect V2. Microsoft Kinect was launched in 2010 and it consists of depth sensor,

color camera, and multi-array microphone running proprietary software. The

depth image is produced by CMOS IR sensor. This image can be used to create a

mask image to remove the background by simple thresholding. The Kinect sensor

traces full-body motion and provides an accurate information about signers pose.

It provides color and depth images along with 25 human skeleton joints locations.

For each sample, synchronized recording of color, depth, and skeleton joints is
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saved as shown in Figure 3.1. The color images are saved into MP4 video while

depth frames and skeleton joints are saved into binary files.

The database is recorded at a rate of 30 frames per second with 1920x1080

pixels color video resolution.

Figure 3.1: Output images of Kinect sensor. (a) color (b) depth (c) skeleton.

To facilitate the recording procedure, we have developed a data collection tool

for capturing all the modalities provided by Kinect V2 sensor. Figure 3.2 shows

the interface of the software for data collection. The software allows the user to

select the category of ArSL, like letter, digit, word, sentence...etc, and gives a

unique number for each signer. The signer unique number along with the sign
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serial number and category are used for sign file naming.

Figure 3.2: ArSL recording tool.

3.2.2 Structure of KArSL database

The hierarchical structure of KArSL database is shown in Figure 3.3. The signs

are categorized into three classes: numbers (01), letters (02), and words (03).

Each category folder contains a set of subfolders, one for each sign. Each sign is

given a unique number of four digits. Inside each sign folder, there are subfolders,

one for each signer. For each sign, there are 50 samples performed by each signer

that are saved in: MP4 file for color video, and two binary files for depth and
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skeleton joint points. Each sign sample is saved with the name format: Cate-

gory_Sign_Signer_ddddd_Type.ext. Where Category can be numbers, letters, or

word; Sign is four digits sign’ number; Signer is two digits signer number; ddddd

is unique sample name that includes the recording time-stamp of the sample; Type

is the type of Kinect output: color, depth, or Skeleton; and ext is the file type:

color video (.MP4), depth and skeleton (.mat).

The file named xxxx_d.mat is the recording from the Kinect depth channel.

It contains a matrix of 424 × 512 number of recorded frames. In some samples -

early recorded- the depth data is saved to mp4 video. This is done by normalizing

the depth data to the range [0 - 255] and replicating it in three channels to save

RGB video.

The file named xxxx_c_s.mat is a MATLAB struct recording the skeleton

joints data with the following fields:

• body.Position: The 3D position of each of the 25 joints listed in Table 3.2.

• body.Orientation The orientation of each of the 25 joints.

• body.TackingState: The tracking state of each of the 25 joints. 2: tracked,

1: inferred, 0: not tracked.

• body.LeftHandState: The left hand state: 2: opened, 3: closed, 4: lasso, 0:

unknown.

• body.RightHandState: The right hand state: opened, closed, lasso, unknown.

• body.Cpos2D: The 2D position of each of the 25 joints on the color frame.
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• body.Dpos2D: The 2D position of each of the 25 joints on the depth frame.

The joints locations are shown in Figure 3.4.

Figure 3.3: KArSL file structure.

Using this database several recognition systems are proposed and tested as

will be shown in the next chapters. The features of this data base include:

• Synchronized recording of color, depth, and skeleton.
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Table 3.2: List of the joints and their index in the body struct
Index Joint Name Description
1 SpineBase Base of the spine
2 SpineMid Middle of the spine
3 Neck Neck
4 Head Head
5 ShoulderLeft Left shoulder
6 ElbowLeft Left elbow
7 WristLeft Left wrist
8 HandLeft Left hand
9 ShoulderRight Right shoulder
10 ElbowRight Right elbow
11 WristRight Right wrist
12 HandRight Right hand
13 HipLeft Left hip
14 KneeLeft Left knee
15 AnkleLeft Left ankle
16 FootLeft Left foot
17 HipRight Right hip
18 KneeRight Right knee
19 AnkleRight Right ankle
20 FootRight Right foot
21 SpineShoulder Spine
22 HandTipLeft Tip of the left hand
23 ThumbLeft Left thumb
24 HandTipRight Tip of the right hand
25 ThumbRight Right thumb

• Large vocabulary of signs.

• Large number of samples for each sign.

• Suitable for sensor based and vision based recognition.
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Figure 3.4: The 25 Skeleton joints recorded in the body struct. Note the Z axis
is pointing towards the Kinect.
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CHAPTER 4

SENSORS BASED SIGN

LANGUAGE RECOGNITION

Sign language recognition systems can be broadly classified as vision-based or

sensors-based systems. The vision based systems employ cameras to capture

videos of the signs and then recognize signs based on these videos. On the other

hand, sensors based systems uses different sensors to record some measures that

can be used to recognize the signs. Different types of sensors has been used by

researchers to model the signs and recognize them. Some sensors are used to

measure the status of the fingers, and others to find the location of hands.

In this chapter, we propose an Arabic sign language recognition system based

on hands motion trajectory obtained by the hand joint locations from Kinect.
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4.1 Overview

In sensor based recognition, researchers tend to mount some sensors on a glove

and the signer wear that glove while signing. The use of gloves can be counted as

a limitation of these systems because natural signers are not used to wear them.

In contrast there exist other sensors that can provide measures without being

attached to the signer‘s body. Samples of these sensors are the Leap Motion Con-

troller and Kinect. The Leap Motion Controller is limited: in range of coverage,

and fails to track the hands on occlusion, and can only provide information about

the hands. The Kinect can provide measures of 3D location for 25 body joints.

These joints include the head, shoulders, elbows, wrists, hands, and others.

Sign languages are full featured languages with their own vocabularies

and grammar. They make use of hands-motion, fingers-configurations, facial-

expressions, and body lane in parallel to express different signs. To effectively

translate a signed language all its components need to be considered. Of these

components, the hands-motion is one of the most important modalities of signed

language.

This chapter discusses the usage of the 3D/2D trajectory of hands to recognize

signs.

Trajectory processing exists in a wide range of applications. Therefore a lot

of work is done on trajectory processing in on-line character recognition [84, 85],

action recognition [86, 87], gesture recognition [88] and more.

Lin and Hsieh in [89] proposed a kernel based trajectory representation using
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Kernel Principal Component Analysis (KPCA) and Nonparametric Discriminant

Analysis (NDA). In their method a 2D/3D trajectory is first min-max normalized

then projected to higher dimensional space using KPCA. The dimensionality is

reduced using NDA with the hope of maximizing the inter-class variability and

minimizing the within-class variability. The resulting representation is hoped to

be more discriminative and is classified using the nearest neighbor rule. The

approach is tested on a limited set of 38 words from the Australian sign language

and reported accuracy of 69% for 2D trajectory and 78% for 3D.

Naftel and Khalid in [90] encoded the 2D trajectory along x and y dimensions

by Discrete Fourier Transform (DFT) separately. Then the first 4 coefficients

are used as feature vector that represent the trajectory. The coefficients are then

clustered using Self Organized Map (SOM). They tested the approach on 24 words

from Australian sign language and reported an accuracy of 70.1%

Pu et al. [91] modeled the trajectory as a sequence of M sub-motions and

used HMM to model the transition between these sub-motions. For each point on

the sub-motion trajectory, they find the shape context as a histogram of relative

coordinates of other points on the sub-motion trajectory. Then a codebook is

generated from these shape contexts. The features vector of each sub motion

curve is composed as a weighted histogram of the code book centers. The weights

are found by soft clustering the shape context of each point. Finally, the sign

curve feature is a sequence of M sub-motion features. They tested the system on

a database of 100 signs from the Chinese sign language and reported an accuracy
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of 67.3% for signer dependent and 54.4% for signer independent.

Boulares in [92] extracted signatures from 3D hands trajectories and used

SVM to classify different signs. To extract trajectory signature, they use non

linear regression to fit the trajectory points to a conic section. The trajectory

signature along with hand shape and other features is used to train and test SVM

classifier. Curve fitting does not accurately represent complex trajectories that

include cycles.

Geng et al. in [93] used a combination of trajectory modeling and hand shape

representation as a feature to train an Extreme Learning Machine (ELM) classi-

fier. A combination of 3D trajectories of hand, wrist, and elbow are used. They

normalized the values of trajectory points to [0 , 1] range and smoothed the tra-

jectory by average convolution. To form a feature vector from the smoothed

trajectory, they subtracted the starting point of the trajectory from all follow-

ing points. The difference between the hand trajectory and wrist trajectory is

represented by spherical coordinates system and similarly for the hand-elbow tra-

jectory difference. The final features vector is concatenation of hand trajectory,

hand-wrist spherical difference, hand-elbow spherical difference, and hand shape

features from depth image. These features are used to train ELM and 82.8%

accuracy is reported on a limited database of 8 words from the Chinese sign lan-

guage. Normalization of trajectory points to the range of [0 , 1], results in loss of

information about where was the hand motion with respect to body when signing

the word.
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Wang et al. in [94] formed the trajectory of hands as a combination of hands

location and orientation. The hand location is defined as the hand location with

respect to the face centroid and with respect to the non dominant hand location.

Similarly, the orientation is defined as the direction between successive hand loca-

tions. For single handed signs the trajectory of non dominant hand is set to zeros.

All trajectories are normalized to have the same length. Similarities between tra-

jectories are measured by dynamic time wrapping (DTW). Based on the trajectory

matching the reported top 10 accuracy of the sign search results is about 74% and

improved to 78% when incorporating additional hand shape feature. They slightly

modified the trajectory feature in [95] by including the hand velocity and defining

separate feature for single handed signs doesn’t include the hand location with

respect to non dominant hand location. However the information of single or two

handed sign need to be given by the user.

Bhuyan et al. in [96] modeled the trajectory as a combination of shape and

motion features. The shape features include, the trajectory length, and the num-

ber of curves in the trajectory. The motion features include, the average speed,

standard deviation of the speed, and the number of minima in the velocity. The

classification of gestures is done in two stages. First candidate signs are included

based on the trajectory shape similarities using maximum boundary deviation as

similarity measure. In the second stage trajectories are aligned using DTW then

the trajectory features are classified based on the nearest candidate template.

Mohandes and Deriche proposed a system for Arabic sign language recogni-
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tion [42]. The trajectory is composed of 3D position and orientation with 12

dimensional vector for both hands. For each dimension the acquired readings are

partitioned into 5 equal partitions. From each partition the mean and standard

deviation is calculated. That results in 120 dimensional features vector. LDA is

used to reduce the dimensionality to 20. The nearest neighbor classifier is used to

find the class of a sign. They reported an accuracy of 84.7% on a dataset of 100

words.

4.2 Preprocessing

In this work, we used Kinect to record signs. We recorded synchronized color

image, depth image, and 25 body joints locations. We recorded the 3D locations

of joints and the 2D mapping to both color and depth images. For this work we

use the sequence of hands locations in 3D to recognize signs.

Trajectory preprocessing includes: Noise removal, and Compression. The

joints‘ locations obtained by Kinect are noisy and include some outliers. The

noise removal stage smooths out these outliers by using median filter. Since the

frame-rate for recording is at 30 frames per second, fine details of part of second

trajectory is not very useful and results in redundant information. Trajectory

compression stage compresses the trajectory into few key points. To find such key

points we treat the trajectory as a polygon formed by connecting the locations

of the hand while signing. The key points are obtained by reducing the number

of vertices of this polygon to a specific number. The reduction is done by re-
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cursively calculating the importance of each vertex based on angle and segment

length and then removing the least important. The process is repeated until the

desired number of vertices is reached. Figure 4.1 shows the calculation of vertex

importance. The algorithm for trajectory compression is shown in Algorithm 1 .

Figure 4.2 shows the effect of 3D trajectory preprocessing. The preprocessing of

a 2D trajectory is shown in figure 4.3.

V

Dvp

P

ADva

Θ

Figure 4.1: The importance calculation for vertex V is found by multiplying the
distances from v to adjacent vertices P (previous), A (after) and the angle Θ as
IMPv = Dvp ×Dva ×Θ.

Algorithm 1 TrajectoryCompression
1: procedure Compress(Traj,NumVertices)
2: TrajLength← Length(Traj)
3: for all points v in Traj do
4: IMP (v)← CalcImpotrance(Traj, v,NumV ertices)
5: end for
6: while TrajLength > NumV ertices do
7: I ← IndexOfMin(IMP )
8: Traj ← Traj − Traj(I) ▷ The - sign is set difference
9: IMP ← IMP − IMP (I)

10: TrajLength← TrajLength− 1
11: update IMP by recomputing the importance of the removed vertex’s

neighbors.
12: end while
13: function CalcImpotrance(Traj,v,NumVertices)
14: imp← Dvp ×Dva ×Θ
15: return imp
16: end function
17: end procedure

Some of the previous works include another stage in preprocessing called min-

60



Fi
gu

re
4.

2:
T

he
pr

ep
ro

ce
ss

in
g

st
ag

e
of

th
e

3D
tr

aj
ec

to
ry

.(a
)

ra
w

tr
aj

ec
to

ry
’A

’i
s

a
no

isy
po

in
t

sm
oo

th
ed

ou
t

by
th

e
m

ed
ia

n
fil

te
r.

(b
)

M
ed

ia
n

fil
te

re
d

’B
’i

s
a

le
ss

im
po

rt
an

t
po

in
t

re
m

ov
ed

by
co

m
pr

es
sio

n
st

ag
e.

(c
)

co
m

pr
es

se
d.

61



Fi
gu

re
4.

3:
T

he
pr

ep
ro

ce
ss

in
g

st
ag

e
of

a
2D

tr
aj

ec
to

ry
.

(a
)

R
aw

tr
aj

ec
to

ry
.

(b
)

T
he

m
ed

ia
n

fil
te

r
re

du
ce

th
e

no
ise

of
th

e
tr

aj
ec

to
ry

re
su

lti
ng

in
sm

oo
th

er
on

e.
(c

)T
he

co
m

pr
es

sio
n

st
ag

e
fin

ds
th

e
m

os
ti

m
po

rt
an

t8
po

in
ts

in
th

e
tr

aj
ec

to
ry

.T
he

ar
ro

w
s

in
di

ca
te

th
e

di
re

ct
io

n
of

m
ot

io
n.

62



max normalization. In this stage the trajectory is normalized to be in [0-1] range.

In this work, we exclude such stage arguing that it leads to loss of discriminative

information. Signs can have similar trajectory pattern but at different locations

and min-max normalization leads to loss of the localization features of the trajec-

tory. For example face sign and colic sign share the same circular trajectory, but

face is signed by circulating around the face and colic is signed by circulating at

the abdomen.

4.3 Features Representation

After noise removal and compression, features are extracted from each sign tra-

jectory. Here we describe two types of features.

4.3.1 Polygon-based Features

In this method the 3D hand trajectory of hand is represented as a polygon. The

description of this polygon is represented by: it‘s center of gravity and the dis-

tances from the perimetric points to the center of gravity point. The center of

gravity point is approximated by the mean of perimetric points calculated as

G = (x̄, ȳ, z̄) where r̄ = 1
N

∑N
i=1 ri and N is the number of perimetric points. The

distance from G to permetric points is calculated using the Euclidean distance

formula di = ||G− Pi||, i = 1, 2, 3, ..., N . Figure 4.4 illustrates the polygon-based

features extraction procedure.
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Then the polygonal features vector is formed by concatenating G and di as

F = [x̄, ȳ, z̄, d1, d2, d3, ..., dn]

This feature representation captures both of the trajectory shape and more impor-

tantly the position of hand motion. The position of hand motion is important as it

distinguishes between signs with similar trajectories but different body positions.

A

B

C

D

E

F

G

d6
d5

d4d3 d2

d1

Figure 4.4: The polygonal features are found by the center of gravity G and dis-
tances [d1, d2, d3, d4, d5, d6] form G to perimetric points [A,B,C,D,E,F] respectively

4.3.2 Positional Trajectory Features

In this feature representation only perimetric points of the trajectory polygon are

included. The feature vector is a concatenation of perimetric points formed as

F2 = [x1, y1, z1, x2, y2, z2, ..., xN , yN , zN ]

This feature representation although it is simple, but shown very good discrimi-

nation and generalization as will be shown in the experimental results section.

64



4.4 Classification techniques

After preprocessing and features extraction, in the classification stage features

are used to train and test classifiers. We tested several classifiers and found that

the best accuracy is obtained when using ensemble of classifiers. Specifically, the

best performing classifier is Ensemble Subspace KNN.The tested classification

algorithms are listed in Table 4.1. We use 5 folds cross validation.

Table 4.1: List of classifiers used in the experiments along with the accuracy
obtained by each.

Tree (90) Linear Discriminant (92) Ensemble Boosted Trees (86)
SVM Linear (97) SVM Quadratic (97) Ensemble Subspace Discriminant (96)
SVM Gaussian (97) KNN Euclidean (97) Ensemble Subspace KNN (99.5)
SVM Cubic (97) Quadratic Discriminant (97) Ensemble Bagged Trees (99)
KNN Cubic (97) KNN Cosine (96) Ensemble RUSBoosted Trees (30)

The basic random subspace algorithm uses these parameters:

• N is the number of learners in the ensemble.

• D is the number of dimensions in the features vector.

• M is the number of dimensions to sample in each learner.

In subspace ensemble algorithm, a set of N weak learners each is trained on a

randomly chosen partition of the features vector of M dimensions less than the D

dimensions of the original feature vector. On prediction, the average score from

weak learners is calculated and the class with the highest average score is chosen

as the true class [97]. In this work, we used KNN as a weak learner to build

the ensemble subspace classifier. It is clear that N,M and K (of the KNN) are

hyper parameters that need to be chosen for best performance of the classifier.

65



To find the best values for these parameters we use cross validation as shown by

Algorithm 2.

Algorithm 2 Fine Tune parameters of Ensemble Subspace KNN
1: function FineTune(Feats)
2: S ← NumberOfSamples
3: D ← NumberOfDimentions
4: KCanidates← set of 10 values between 1 and logS
5: for all k in KCanidates do
6: Loss(k)← XValidateKNN(Feats,KCanidates[k])
7: end for
8: BestK ← KCanidates[MinimalLoss] ▷ Find the best K
9: MCanidates← set of 10 values between 1 and D

10: N ← 100 ▷ Fixed Number of weak classifiers
11: for all m in MCanidates do
12: Loss(m)← XValEnsemKNN(Feats,MCanidates[m], BestK,N)
13: end for
14: BestM ←MCanidates[MinimalLoss] ▷ Find the best M
15: NCanidates← set of 100 values between 1 and 100
16: for all n in NCanidates do
17: Loss(m)← XValEnsemKNN(Feats, BestM,BestK,NCanidates[n])
18: end for
19: BestN ← NCanidates[MinimalLoss] ▷ Find the best N
20: return BestK,BestM,BestN
21: end function

The algorithm first run KNN with different values of K to find the best per-

forming one (BestK). Then fix the number of weak classifiers to 100 and K to

BestK and search for the best number of partitions BestM. With BestK and

BestM the algorithm then searches for best number of weak learners BestN.

4.5 Experimental Results

A set of experiments are carried out to evaluate each stage of the proposed system.

Starting by preprocessing stage to the classification stage to fine tune the hyper
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parameters and then test the sign language recognition. In these experiments,

portion of KArSL consisting of 100 signs starting from sign 0071 up to 0170

(Table A.1) recorded by 3 signers is used. For this work, only the hands joints

trajectories are employed to recognize signs.

4.5.1 Effect of Trajectory Compression

Here we investigate the effect of the number of vertices used to represent the

trajectory as a polygon on the accuracy. For this experiment, we use the trajec-

tories of all signs performed by one signer (signer 3) and apply the preprocessing

stage by varying the number of vertices from 4 to 18. We call this data-set the

validation set in this chapter. Figure 4.5 shows the classification error rates for

different representations of trajectory features. In this figure, F1 represents the

polygon description feature representation of trajectory (see section 4.3.1) while

F2 stands for the positional trajectory feature representation. The 1H and 2H en-

codes the usage of only one hand trajectory of both hands respectively in building

the feature vector. In 1H the features encode only the trajectory of the dominant

hand while in 2H a concatenation of features that encode both hands trajectories

is used. The 2D and 3D for which trajectory points representation being used,

X-Y or X-Y-Z respectively. From this figure, many properties can be inferred.

First, the best average accuracy can be obtained when using a polygon with 12

vertices. Using small number of vertices will not capture complex trajectories

well, and using very high number of vertices will include noisy details that mix
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up distinct classes. Second, the usage of 3D trajectory always performs better

than the 2D. This can be attributed to the fact that the Z dimension captures

front-back motion of hands, and there are some signs in the database with only

front-back motion pattern. Third, the inclusion of non-dominant hand in the fea-

ture representation increases it‘s discrimination power. The state of non-dominant

hand in sign language can either be static, mirrors the motion of dominant hand,

moving in different way than the dominant hand. In all cases of non-dominant

state, it‘s motion pattern helps in distinguishing similar signs that are of similar

dominant hand trajectory. Forth, as a comparison between the two features repre-

sentation the positional trajectory feature representation outperforms the polygon

description feature representation of the trajectory.

4.5.2 Fine tuning EnsembleSupspaceKNN classifier

We run Algorithm 2 on a the same validation set used in section 4.5.1 to find the

best parameters for each feature representation. Table 4.2 lists the best parameters

settings for each feature representation. In this table the best value for K is 1

for all features, the best value for M for feature F1 is roughly half D which is

similar to the findings in [97]. The values in BestN column are for the value of N

after which no significant drop in loss is seen. Based on this table, the parameters

settings for following experiments will be: K=1, N=40, M= BestM from the table.
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Table 4.2: Best parameters for EnsembleSupspaceKNN classifier
Feature D BestK BestM BestN
F1-1H-2D 14 1 8 40
F1-1H-3D 15 1 9 25
F1-2H-2D 28 1 13 40
F1-2H-3D 30 1 14 25
F2-1H-2D 24 1 6 40
F2-1H-3D 36 1 9 40
F2-2H-2D 48 1 6 40
F2-2H-3D 72 1 9 40

4.5.3 Evaluation of the Proposed Features

After choosing the best trajectory compression ratio and the best parameters

settings for the classifier, the system is tested on the 100 words database. Table

4.3 lists the recognition rates obtained when using each feature representation for

each signer in the database. The results reflects that the 3D trajectory is more

informative and discriminative than the 2D one. In addition, the inclusion of non

dominant hand status improves the accuracy for both types of trajectories. The

third signer shows better accuracies than the other two which can be attributed

to the less variability in his performance of signs, and the samples used for fine

tuning the hyper parameters (validation set) are performed by him. The fifth

column lists the accuracies when using mixed samples from all signers for both

training and testing. This shows the scalability of the system to larger number of

samples.

Although the number of signers is not big enough to evaluate the system for

signer independent recognition, we run experiments to get initial intuition about

the generalization of the system to unseen signer. Table 4.4 lists the accuracies of
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Table 4.3: Signer dependent classification recognition rate
Feature Signer1 Signer2 Signer3 All Signers Average
F1-1H-2D 89.80 88.80 91.50 84.40 88.63
F1-1H-3D 96.20 95.00 97.60 94.70 95.88
F1-2H-2D 97.60 96.80 97.90 96.40 97.18
F1-2H-3D 99.30 98.80 99.40 99.50 99.25
F2-1H-2D 97.70 96.00 98.20 95.60 96.88
F2-1H-3D 99.20 99.00 99.80 99.20 99.30
F2-2H-2D 99.50 98.90 99.70 99.10 99.30
F2-2H-3D 99.70 99.60 100.00 99.70 99.75
Average 97.38 96.61 98.01 96.08

the different type of features in signer independent mode. Each column is named

by the test signer when the training is done by samples performed by the other

two signers. The lower results of the second signer are due to the different signing

style, some signs are repeated more than once in the same sample. Overall average

performance is around 53% for all features 48%, and 57% for F1, and F2 features

respectively.

Table 4.4: Signer independent classification recognition rate
Feature Signer1 Signer2 Signer3 Average
F1-1H-2D 40.10 27.20 43.10 36.80
F1-1H-3D 44.60 30.70 50.90 42.07
F1-2H-2D 57.50 48.60 60.10 55.40
F1-2H-3D 60.00 51.00 64.80 58.60
F2-1H-2D 56.80 41.90 58.70 52.47
F2-1H-3D 60.20 43.20 65.70 56.37
F2-2H-2D 58.90 47.80 63.90 56.87
F2-2H-3D 61.30 49.70 64.40 58.47
Average 54.93 42.51 58.95

70



4.5.4 Comparison with published work

In this experiment we test the proposed features representation and classification

algorithm on a publicly available dataset and compare the results of our method

with published work on the same dataset. The used dataset is composed of 95

Australian sign language words. Each word is performed by 1 signer 27 times.

For each sample a vector of 22 measures is recorded per frame. These measures

include the 3D position of hands (X,Y,Z), the orientation of hands (Roll, Pitch,

Yaw), and the status of fingers. Some of the previous works used only the (x,y)

points to form 2D trajectory while others used 3D. In this work, we use the 2D/3D

trajectory as well as the hand orientation. We follow the same steps of trajectory

preprocessing, features representation, and classification. In this dataset, the

signer starts with his hands on the rest position and return them back to the

rest position after signing. This makes the center of gravity of some signs to

be the same. To avoid that, we run the compression stage twice. First with 14

vertices which includes the starting and ending rest position. Then we find the

12 vertices after excluding the first and last points which results in removing the

rest position from the calculation of the center of gravity. Table 4.5 shows the

accuracy reported by previous works along with our work ( the last 4 lines). The

first row shows the number of classes out of 95 used. In this table, F1 stands for

the polygonal description feature representation and F2 for the positional feature.

3D stands for the only use of 3D hand position to form the feature while 3DO for

inclusion of the hand orientation too.
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Table 4.5: Comparison with published work on AUSLAN.
Reference 2 Words 4 Words 8 Words 16 Words 29 Words 38 Words All Words
[89] 2D 98% 93% 86% 78% 72% 69% -
[90] 2D 98% 92% 88% 83% - - -
[89] 2D 98% 93% 86% 78% 72% 69% -
[89] 3D 99% 96% 92% 89% 82% 78% -
[98] - - - - - - 86.7%
F1-2D 100% 100% 95.4% 76.7% 63.7% 58.8% 46.8%
F1-3D 100% 100% 98.1% 90.4% 76.4% 70% 58.3%
F1-3DO 100% 100% 99.1% 95.4% 89.5% 86.5% 82.8%
F2-2D 100% 100% 96.3% 85.2% 74.3% 68.8% 61.7%
F2-3D 100% 100% 99.1% 94.8% 86.2% 79.7% 74.5%
F2-3DO 100% 100% 98.1% 95.9% 92.8% 88.7% 88.4%

Note that the work in [98] uses the 22 features while ours use only 3 ( in case

of 3D feature ) and only 6 ( in case of 3DO ) of them.

4.6 Conclusions

In this chapter, we proposed a system for Arabic sign language recognition based

on the trajectories of hands. We modeled the trajectory as a polygon and pro-

posed two polygonal description features. The system shown good performance

for both signer dependent and signer independent recognition. The accuracy of

the system reached 99% for signer dependent and 64% for signer independent

recognition. The proposed system is tested on two different datasets and was

compared with published works that use the same dataset and shown better per-

formance than most of them. The proposed system features simplicity, scalability,

and generalization to unseen signer.
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CHAPTER 5

VISION BASED

RECOGNITION USING BOF

AND BOP

Vision based sign language recognition systems are more natural than sensors

based ones as they do not require sensors to be worn by the signer. Generally, in

vision based recognition, the system pipeline starts by finding a suitable represen-

tations of signs, and then encoding this representation as set of features. These

features are then used to train a classifier.

In this chapter, we represent the sign as a sequence of body postures. This

representation accounts for both body lane and hands gesturing. To this end, the

body posture is described using bag of visual features (BoF).
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5.1 Introduction

In BoF, features are extracted from the training images of the different classes

which are clustered to generate a code book. Each class is characterized by a

histogram of the code book entries. These histograms are used to train a classifier

to model the classes. One drawback of BoF is that it doesn’t preserve the context.

The first step in BoF is features extraction in which the interest points are

detected and described by discriminative descriptors. Different techniques are

commonly employed to detect interest points. Interest points are localized in

scale space of an image which is generated by convolving the image with differ-

ent Gaussian kernels σ. Then a filter is applied to the scale and the extremal

responses are marked as interest points. Different filters localize different types of

interest points. The Difference of Gaussian (DoG) filter finds blob like shapes in

the image as interest points. DoG is used by Scale Invariant Features Transform

(SIFT) which is one of the most popular interest-points localization techniques.

Another filter that detects corners is Harris detector [99]. It searches for high gra-

dients in two perpendicular directions to locate corners. After detecting interest

points, they are described by a function of the neighboring pixels. The most used

descriptor in BoF is SIFT descriptor [100]. SIFT descriptor is a 128 dimensional

histogram of gradients’ orientations around the interest points. Another approach

for features extraction omits the interest points detection step and directly finds

descriptors at regular grid points. Dens SIFT (DSIFT) is an example of such

approach [101].
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The second step after features‘ extraction is the generation of the code book.

Clustering is used to group the features in k representatives based on the similarity

between them. This code book forms the vocabulary of the visual words found

in the dataset. Then, each image is represented by a histogram of visual words

(BoF), regardless of their order of occurrence. These BoFs is then used to train

and test a classifier based on the images‘ labels. In this work we use BoF to detect

the body posture in each frame of the sign video. Then bag of postures (BoP) is

used to describe the sign. In our approach, we argue that local features would lead

to better recognition rates than global features as it is more robust to occlusion

and geometrical transformation. Inspired by speech recognition techniques, in

which speech is assumed to be composed of primitive phonemes, we reflect that

on sign language to be composed of primitive poses. Thus building a system that

employs robust local features to recognize primitive poses is expected to generalize

well for unseen signs. Keeping these goals in mind we utilize bag of features (BoF)

and Bag of Poses (BoP) in our system in a two stage implementation.

The system can be summarized as follows:

• Firstly, local features are extracted from the training frames of all postures.

We tested three techniques for local features extraction, namely SIFT detec-

tor and descriptor, Harris Laplace detector with SIFT descriptor, and Dense

Scale Invariant Features Transform (DSIFT). The first two techniques de-

tect and then describe interest points while the third describe points in a

grid of scale and space. The features, in all cases, are described using SIFT
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descriptor.

• Secondly, these local features are clustered into K visual words to generate

a code book using k-means algorithm.

• Third, an SVM is trained to classify each frame into one of 33 primitive

postures.

• Fourth, a signs table is constructed of histogram of primitive poses found in

each sign, called Bag of Poses (BoP). The BoP of the sign is then used as a

feature vector.

Figure 5.1 illustrates the stages of the features’ extraction employed in our ap-

proach.

Figure 5.1: BoF and BoP system

For comparison with published work on the same dataset, we reproduced the

work done in [3]. They extracted temporal and spacial features. For temporal

features the motion is accumulated into one image that describes the activity
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during the whole sign. This is done using forward accumulated difference of

successive frames as follows [3]:

Let Ijg,i denotes image index j of the ith repetition of sign g, the forward

prediction is given by equation (5.1)

Pg,i =
n−1∑
j=1

δ(Ijg,i − Ij+1
g,i ) (5.1)

where n is the total number of images and δ is a binary threshold empirically

determined as the mean of non zero difference pixels.

Then the resulting image is filtered by median filter which removes the isolated

prediction errors as they are assumed to be noise. However this can be due to

facial expression but this was out of their scope.

For spacial features extraction they applied 2D DCT transformation on the

accumulated temporal differences image, the Zigzag zonal coding is used and 50

descriptors are used as feature. The 50 DCT cutoff was determined empirically

by examining different cutoff points. In the experimental results section we will

show the effect of the DCT cutoff on the recognition rate. Figure 5.2 shows the

accumulated difference image for a sample sign from the used dataset.

5.2 Classification

In the classification stage the extracted features are fed to a classifier. In our

approach a two-stage classifier is employed. In the first stage we extracted the
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Figure 5.2: Accumulated difference image [3]

BoF of the frames of the test sign. Then SVM is used to classify the posture in

each frame. In the second stage we extracted the BoP which are used to classify

the signs using K-nearest neighbours (K-NN) classifier. Several experiments were

carried out to tune the choice of the suitable number of clusters in generating bag

of features (BoF) and the bag of primitive poses (BoP) using the validation data.

5.3 Experimental Results

This section describes the experiments for evaluating the first vision-based recog-

nition system described in section 5.1. Experiments here are done on a data set

consisting of 23 signs from commonly used words collected from thee signers. Each

signer repeated each sign 50 times [1]. The list of words in this database is shown

int Table 5.1. Firstly the results of the accumulated difference method is shown
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Table 5.1: List of words in the database [1].
# Arabic word English meaning # Arabic word English meaning
1. صديق Friend 2. جار Neighbor
3. ضيف Guest 4. هدية Gift
5. عدو Enemy 6. عليكم السلام Peace upon you
7. وسهلا أهلا Welcome 8. شكرا Thank you
9. تفضل Come in 10. يشم Shame
11. بيت House 12. أنا I / me
13. يأكل To eat 14. ينام To sleep
15. يشرب To drink 16. يستيقظ To wake up
17. يسمع To listen 18. يسكت To stop talking
19. يشم To smell 20. يساعد To help
21. أمس Yesterday 22. يذهب To go
23. يأتي To come

followed by those of BoF and BoP.

5.3.1 Accumulated difference approach

To compare our results with the results of [3], the accumulated difference image

for each sign is produced using equation (5.1) and the image is filtered then trans-

formed using DCT as illustrated in Section 5.1. The 50 DCT feature vector for

70% of the signs are used as training features and the remaining 30% are used

as testing features. The most confused signs in the confusion matrix are 12 with

21 as shown in figure 5.3. In sign 12 the user points to his chest by rotating his

hand towards his body while in 21 the signer’s hand starts pointing to his chest

and then rotated outwards in the opposite direction of the motion in 12. As the

system accumulates the differences these two different motions are equivalent and

thus confusing. This can be true for any sign with the same motion trajectory and

80



opposite directions. The recognition accuracy is 98.8% for the first signer, 96.8%

for the second signer, and 99% for the third signer. These results are comparable

to those reported by [3] (2.14% error rate). Figure 5.4 shows the effect of the

DCT cutoff on the accuracy. Interestingly, this is found to be signer dependent

and cutoff at 50 is found to be at the peak for most of signers. However, a value

of 40 to 45 is suitable for all.

Figure 5.3: The most confusing two signs for DCT approach ; top sign (12) and
bottom sign (21).

Testing the DCT approach for signer-independence have shown very poor ac-

curacy 17.67% as the DCT is a global feature.This accuracy is obtained when

training using the first signer and testing using the third. It is clear that this

method is not suitable for signer independent recognition. In the goal of signer-

independent recognition this method is used with some modifications but signers

were asked to wear colored gloves [11].
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Figure 5.4: The effect of DCT cutoff on the recognition accuracy.

5.3.2 BoF and BoP approach

The second approach involves building a code book using bag of visual words

(BoF) and then the bag of poses (BoP) and finally recognize the sign . Firstly

local features are collected. In this stage we tested three techniques DSIFT, SIFT,

Harris Laplace detector with SIFT descriptor. The difference between interest

points detected by each technique is shown in figure 5.5. Interest points detected

by SIFT detector shown to be distributed on different locations of the image

and many of them are on the background. Harris detector tends to fit well on

the signer’s body but there are fewer points to catch the details of the body

parts. However, DSIFT is able to provide good details as it samples the image

on a uniform grid. These differences directly influence the classification accuracy.

Accuracies of 99.39%, 97.7%, and 91.5%, are obtained using DSIFT, Harris, and

SIFT, respectively.
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Figure 5.5: The interesting points by each detector top left DSIFT, top right
SIFT, bottom Harris.

Then clustering is applied to build a vocabulary of visual words. We exper-

imented with the number of clusters for the code book of visual words using

validation data, we tested 100, 200, ..., 2000 and finally settled on 900 visual

words which gave the best accuracy as shown in figure 5.6. K-means algorithm is

used for clustering using Elkan’s algorithm [102] to speed up the clustering pro-

cess. The code book is then used to describe each posture as a BoF. We trained

an SVM to classify 33 primitive postures that we identified in the data set using

clustering. These 33 postures are the distinctive postures from which the 23 signs

in the data set can be generated. The accuracy of this classifier is 94%. The most
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Figure 5.6: The effect of the number visual words on the postures classifier accu-
racy.

confusing postures are 4 and 6 which are highly similar with a difference of only

one hand shape as shown in figure 5.7.

Figure 5.7: The two most confusing postures, left is posture 4, right is posture 6.

The signs‘ table is built of Bag of postures (BoP). We experimented with three

types of features to describe the sign, namely, BoP, a concatenation of BoP for

each half of the sign sequence, and the normalized concatenation of BoP for each

half of the sign sequence. The first builds BoP of the sign which ignores the order

of postures. To preserve the order we split the sign sequence into two parts and

build BoP for each part, then concatenate these BoPs to form the second type of

features. Two parts are enough as most of the signs in the data set are composed

of 4 frames or less. We realized that the number of frames in each sample for
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the same signs is not fixed as it depends on how fast the sign was performed. To

form a consistent feature vector we normalized the BoP by the number of frames

in the sign sample. An accuracy of 90.47% was obtained when using non-split

and non-normalized BoPs. The most confusing signs are 23 and 21. The two

signs are composed of the same postures but in revers order. This is confusing

as the BoP of both sequences will be the same. Splitting the sign into two parts

and extracting the BoP of each part and concatenating the result resolved this

problem.

5.3.3 Signer-independent recognition

To test for signer independence several experiments were conducted. First: we

build the sign table using signs performed by the first signer and tested by the signs

performed by the second signer or vice versa while training the posture classifier

by both. In the second scenario we build the sign table using signs performed

by the first or second signer and tested using the third which was not used for

training of the posture classifier. For the first scenario high accuracy is obtained

91.3% when testing using the second signer ( the first is used in training) and when

testing using the first ( the second is used in training). KNN is used to classify

signs, we tested different distance measures: Cosine, Correlation and Euclidean

and the best results are obtained when using the Euclidean.

An interesting advantage of our approach over the reproduced one is that it

outperforms the accumulated difference when tested in user independent mode.
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An accuracy of 45.17% is obtained by our approach when testing the second

scenario compared to 17.67% by the accumulated difference. These results support

our generalization claim that we stated earlier.

We like to note that the valuable information about the signs is in the head and

arms. Hence, in additional experiments we used skin-colour thresholding to keep

only face and arms before extracting features. We transformed the RGB image

to YCbCr colour space and simple thresholding is applied on the values of Cb

and Cr images for each pixel. This affected both of the classification stages. The

posture classifier accuracy slightly improved to reach 94.98%. This improved the

results for signer independent case. The accuracy jumped to 66.96%. Table 5.2

summarizes the results of the reproduced work in the first row and the proposed

one in the second row. The %C and %E columns list the percentage of the correct

and error rates respectively.

Table 5.2: Summary of Results
Signer dependent Signer independent

Scenario 1 Scenario 2 Scenario 2 Skin
%C %E %C %E %C %E %C %E

Acc Diff 98.84 1.16 17.67 82.33
BoF&BoP 99.39 0.61 91.3 8.7 45.17 54.83 66.96 33.04

Scalability of the system is tested by varying the number of signs included

from the database. As shown in figure 5.8 stable and steady accuracy is reported

for different vocabulary sizes. This reflects the stability and scalability of our

proposed system.
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Figure 5.8: Testing the scalability of the system with different vocabulary sizes.

To test the proposed system on a larger database, we downloaded a database of

112 ASL signs from National Center for Sign Language and Gesture Resources site

[103, 104]. This database was collected for continuous sign language and linguistic

research. We segmented the videos of signs into key still images. The 112 signs

were chosen such that each sign has at least 10 samples. This database includes

most frequently used hand postures in ASL. Table 5.3 lists the words used in this

database. Then we extracted 86 postures found in this database and applied the

BoF technique on it. The accuracy of postures classifier on this database is 93.0%.

5.4 Conclusions

In this work, we presented our proposed system for isolated words Arabic sign

language recognition. Seeking for features that can generalize well for large vo-
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Table 5.3: List of the 112 words in ASL database
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cabulary and signer independence, we proposed a two stage classification system

which firstly classify each frame into one of the primitive postures that accounts

for both hands-shapes and body-lane using BoF. Then in the second stage the

sequence of postures is classified into signs using BoP. For postures classifica-

tion BoF is used with three different local features extraction techniques, namely,

SIFT, Harris, and DSIFT. K-means is used for building the vocabulary, and SVM

for the classification of the primitive postures using BoF. The second stage encodes

the signs as BoP composed of primitive postures and use KNN classifier to classify

the signs. We reproduced the results obtained by Shanableh et. al. on a database

of 23 Arabic sign language words and proposed application of computer-vision

techniques.

The proposed system shows the strength of the local features compared to

the global features used in the reproduced work. Our results have shown better

accuracy for signer-dependent than the reproduced results. We also showed the

advantages of using BoP compared with using the whole sign. It has better

generalization towards signer-independence. The proposed approach have shown

excellent properties when tested on an ASL database almost 5 times bigger than

that of the Arabic database. First, the ratio of number of postures required

to generate signs to the number of signs is reduced (33 postures for 23 signs

reduced to 86 postures for 112 signs). This helps in simplifying the problem of

sign recognition and allow for large vocabulary to be recognized. Second, the

extension does not hurt the recognition accuracy.

89



CHAPTER 6

VISION BASED

RECOGNITION USING

HOG-HOF FEATURES

The previous chapter shown the strength of local features extraction techniques

over the global techniques. Here, we carry on using the local features and propose

a recognition system for Arabic sign language using four types of features, namely

Modified Fourier Transform, Local Binary Pattern, Histogram of Oriented Gradi-

ents, and combination of histogram of oriented gradients and Histogram of Optical

Flow. These features are evaluated using Hidden Markov Model on two databases.

In addition, we propose an algorithm for segmentation of video streams acquired

by Microsoft Kinect V2 into signs. We also propose an algorithm for hand de-

tection in video streams and its detection accuracy is evaluated by measuring the

overlap ratio between bounding box generated by the proposed algorithm and one
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based on the hand joint location obtained by Microsoft Kinect V2. The obtained

results show that our algorithm is efficient for hand detection in video streams

6.1 Overview

This technique works for both raw videos and segmented ones. The work being

described here is done in two stages. First stage on a segmented images database

[1] and it‘s extension [31] by another signer with raw videos. The second stage on

a pilot set of KArSL dataset.

The proposed system which consists of two phases: signs’ segmentation and

recognition. Signs’ segmentation is performed by monitoring the Optical flow

magnitude to mark the starting and ending frames of the sign in each video sample.

These videos are then segmented to still images that represent the signs’ samples.

For ArSL recognition, we propose using four types of features, namely MFT, LBP,

HOG, and HOG-HOF with HMM for classification. We propose combination of

motion and appearance modeling in one feature vector using HOF-HOG. This

feature encodes both appearance and motion components of the sign without the

need to explicitly track the hands.

We used Hidden Markov Model (HMM) for classfication. We evaluated our

system on a database consisting of 23 signs and the obtained results show that the

MFT and HOG have the highest recognition rates. To test the scalability of our

system on larger database, we run experiments on a pilot set from ArSLR. In ad-

dition, we propose two algorithms one for segmentation of video streams acquired
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by Microsoft Kinect V2 into signs and the second for hands’ detection in video

streams. The detection accurancy of this algorithm is evaluated by measuring the

overlap ratio between bounding boxes generated by the proposed algorithm and

the hand joint location obtained by Kinect. The obtained results show that our

algorithm is efficient for hand detection in video streams.

6.2 Video segmentation

This Stage is needed for the extension of [1] done in [31]. We developed an

application for recording color, depth, and skeleton joints using Microsoft‘s Kinect

V2. For video segmentation, only color images are employed. The signer repeated

each sign 50 times (15 samples per video). These videos are then segmented to still

images that represent the signs’ samples. The signer makes a sign starting from

neutral pose and then returns his hands to the same neutral position before doing

another sample. The segmentation algorithm exploits the pauses between the

samples to segment them. This is done by monitoring the Optical flow magnitude

to mark the starting and ending frames of each video sample. The pseudo code of

the segmentation algorithm is shown in Algorithm 3. The first step finds the sum

of the significant optical flow magnitudes ignoring small motions in the frame.

This sum quantifies how much motion is found in this frame. Based on this

quantity, a frame can be either a motion frame or a pause frame. The second and

third steps are used to smooth the motion trajectory throughout the video and

make it suitable for segmentation using a single threshold value. The forth step
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calculates this threshold to mark a frame as motion by setting a mask at its index

to one or as pause by setting the mask to zero. The transition of mask value from

zero to one indicates the starting point of the sign, and from one to zero marks

the end of the sign. Figure 6.1 illustrates the segmentation algorithm. In this

figure, the x axis is the frame number. The solid curve represents the raw sum

of maximal optical flow magnitudes. It is clear that it strongly swings within the

single sign. In contrast, the smoothed one (the dashed curve) is more stable and

suitable for single thresholding.

Algorithm 3 VideoSegmentation
1: procedure VidSeg(vid)
2: for all frames in vid do
3: a. Extract the quartile of pixels with high Optical flow magnitude
4: b. Trajectory is the sum of the magnitudes of pixels of (a)
5: end for
6: Convolve the ”sum trajectory” with smoothing filter of length 5
7: Remove outliers from the smoothed sum of magnitudes by excluding values

greater than the 95th percentile
8: The Threshold (T) is equal to the mean of smoothed sums
9: Threshold the trajectory (TrajectoryT),

10: if Trajectory(i) > T then TrajectoryT(i) = 1
11: elseTrajectoryT(i) = 0; where i = 1 to N-frames
12: end if
13: for all frame in vid do
14: if TrajectoryT (i) = 0&TrajectoryT (i + 1) = 1 then Mark the next

frame as a starting frame;
15: end if
16: if TrajectoryT (i) = 1 then Save the frame to the sample‘s folder
17: end if
18: end for
19: end procedure
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6.3 Arabic Sign Language recognition

The segmented signs are fed into the feature extraction phase where MFT, LBP,

HOG, and HOG-HOF features are extracted.

6.3.1 Modified Fourier transform

The Modified Fourier transform (MFT) was first introduced by Mahmoud [105],

in motion analysis. It was proved to be more efficient in terms of speed than

using the amplitude of the Fourier spectrum. MFT descriptors are computed

from the real and imaginary components of the Fourier spectrum by subtracting

the imaginary component from the real component (F ∗(k) = Fr(k)−Fi(k)). MFT

is used to extract 63 descriptors of each image that the sign is composed of. The

sequence of these vectors is used as a feature vector.

6.3.2 Local Binary Pattern

The Local Binary Pattern (LBP) operator, introduced in 1995 by Ojala et al.

[106], is a powerful feature for texture classification. Each pixel in the image is

assigned a binary number with LBP operator by thresholding the 3x3 neighbour-

hood of that pixel with the center value. Then a histogram of the labels (binary

numbers) is used as a texture description. In our experiments, each image is seg-

mented into 100 blocks (of 24 * 32 pixels) and LBP is applied on each block and

then concatenated to form a feature vector of size 5900.
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6.3.3 Histogram of Oriented Gradients

The histogram of oriented gradients (HOG) technique counts occurrences of gra-

dient orientation in connected regions of an image. To compute HOG descriptor,

the image is divided into cells, and for the pixels within each cell, a histogram

of gradient directions is built. The descriptor is the concatenation of the image

cells’ histograms. To extract the HOG features, the sign image is divided into 100

cells and a 9 bin histogram of the gradients’ orientations in each cell is computed.

This histogram is normalized by the intensity of a block of 4 X 4 cells. This nor-

malization results in better invariance to changes in illumination and shadowing.

The concatenation of these histograms forms a feature vector of 2946.

6.3.4 Histogram of Optical Flow

Histogram of optical flow (HOF) features are more stable than using raw optical

flow magnitudes as features. The raw magnitude is sensitive to the distance

between the moving object and the camera. HOF encodes the motion as function

of optical flow magnitude and orientation. This is done by accumulating the

magnitudes into binned orientation. The histogram is then normalized to make it

scale invariant. HOF was successfully applied in human actions recognition [107],

but it is not suitable for sign language recognition. That is because hand motion

patterns can be common between different signs. This was confirmed by empirical

experiments that the most confused signs (15 and 17) share the same motion but

with different hand shapes. This is why we use it in addition to other feature.
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For each of the features extraction techniques, the sequence of feature vectors

extracted from frames that form the sign are used to train HMM classifier. We

use HMM implementation of Gesture Recognition Toolkit (GRT) [108] with three

states left to right HMM. We tested with more number of states but three-states

was enough. GRT provides discrete HMM that expects the features to be of

one dimensional and integer valued. So quantization using K-means is applied to

shrink the dimensionality to 1. In other words, each frame is having a label. We

experimented using different number of clusters and found that 64 clusters works

well for both accuracy and training time.

Signs can be viewed as combination of hand-shapes and hand-motion. In

another feature (HOG-HOF), we generate a vector that encode both. The hand-

motion is represented by a vector of 72 bins weighted histogram of optical flow

orientations (−π/2 ∽ π/2). This captures the general motion direction of hands.

The Optical flow velocity is used to weight the 72 directional bins. This histogram

is then normalized to sum to 1. For hand-shape we compute HOG in a bounding

box around the hand. As the hands’ pixels are the most moving parts of the image,

we select the region where the velocity is greater than the 95th quantile to be the

location of a hand. These regions are variable in size according to the locations

of hands. To generate a fixed length feature vector, this region is divided into 4

cells and a 9 bin histogram of the gradients’ orientations in each cell is computed.

Figure 6.2 shows the region selected when two consecutive frames with two hands

moving horizontally towards each other. Computing HOG only in a bounding box
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Figure 6.2: Bounding box around the hand: top two consecutive frames, bottom
the selected region for HOG features.

around the hands, captures the shape of hands and ignores other parts that are

having low contribution to the sign. The concatenation of these two histograms

forms a vector of 396 used as a feature with the same HMM settings.

6.4 Experimental Evaluation

In this section we evaluate the proposed vision based recognition system. In which

features are extracted from each frame and then HMM is used to classify different

signs. Firstly, we evaluate the proposed features extraction techniques on the

extended database of [1], follwed by evaluation on a pilot set from KArSL .
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6.4.1 Evaluation on Shanableh‘s database

The accuracy of different features is tabulated in Table 6.1. The best performance

Table 6.1: Accuracies for each signer and used features, K is the number of clusters
MFT MFT LBP HOG HOG-HOF

K = 33 K = 64 K = 64 K = 64 K = 64
Signer 1 97.0 99.1 98.5 100 98.5
Signer 2 90.1 99.1 99.1 99.1 96.5
Signer 3 95.9 100 100 100 97.4
Signer 4 95.1 98.25 94.75 95 97.7
Average 94.53 99.11 98.09 98.53 97.53

obtained on a dataset consisting of 23 signs performed by 4 signers is with MFT

features. One reason for the high accuracy of MFT may be attributed to its lowest

dimensionality which is more suitable for clustering than higher dimensionality.

The second best technique is HOG which has been indicated as a good feature

descriptor for humans’ detection. This indicates that the system is encoding each

sign as a sequence of human postures.

As it is clear from the table that the number of clusters (K) chosen to quantize

the features is a key parameter that affects the overall accuracy. These values were

chosen based on our previous research analysis of section 5.3.2 - the BoP approach

consists of 33 postures- to provide baseline for tuning the value of K and found

that 64 clusters works well in terms of accuracy and training time. Small value

of K results in combining discriminative features in one cluster while they should

appear in different clusters to help the classification of different signs. A large

value of K results in a larger training time for the classifier to merge the over
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clustered features. The lower accuracy obtained by HOG-HOF can be attributed

to 1) the high dimensionality of the vector which requires more training data, 2)

the errors resulting in finding the bounding box due to noise that results in higher

velocity in regions that does not include the hand. The value of K=33 is reported

in Table 6.1 as an example of the tested values of K with the best performing

features extraction method (MFT).

6.4.2 Evaluation on KArSL Database

Using another database, we run the proposed system on a subset of 50 signs

from the health chapter of KArSL. This dataset is used to test the scalability of

the system with larger vocabulary and to evaluate the proposed hand detection

algorithm. Algorithm 4 is used to extract the proposed features. The input to

this algorithm is a sign video, which means that there is no need to extract key

frames from the video as it was needed for the previously used dataset. The

algorithm does the extraction of key frames automatically. The algorithm iterates

over all frames of the input video and calculates the optical flow on that frame.

If the magnitude of optical flow velocity at a pixel exceeds a threshold Tm, the

pixel of the binary image at this location is set to one. Otherwise, it is set to

zero. The best value for Tm is found empirically to be 4. From this binary image,

the algorithm calculates the areas of connected components, and finds the pixels

included in an area greater than a threshold Ta if any. The best value of Ta is 3000

pixels. The largest two areas are the locations of hands. Figure 6.3 shows these

100



intermediate images. A frame that pass this test is a key frame and features are

extracted from it. The HOG, LBP, and MFT features are extracted as discussed

earlier. For HOG-HOF feature two versions are evaluated here. Namely, split

(HOG-HOF-S) and merged (HOG-HOF-M). The split one extract the features

from two bounding boxes and concatenate to form a features vector. The merge

one extracts the features from one bounding box that covers the two hands. If

there is only one moving hand and hence one bounding box, the split features

are extracted after splitting the bounding box along the longer direction either

horizontally or vertically. Since the hands locations are available by Kinect, a

HOG-HOF-S feature is extracted from the bounding boxes around the two hands

based on this information.

Algorithm 4 Process video and extract features
1: function E(x)tactFeatures(InputVideo)
2: for all frames in InputVideo do
3: Run optical flow
4:

BImage =

{
1 if opflowMag > Tm

0, otherwise

5: Find areas of connected components in BImage
6: if exist area > Ta then
7: Find Bbox of the largest 2 areas
8: Extract LBP, MFT, HOG from this frame
9: Extract HOG-HOF from Bbox

10: Extract HOG-HOF from Kinect Bbox
11: end if
12: end for
13: end function

This algorithm is run for each sample in the dataset and the extracted features

are used to train and test HMM classifier with the previous settings. Table 6.2 lists
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Figure 6.3: The images resulting from different stages of the hand localization
algorithm. left binary image of optical flow > Tm, middle image of areas > Ta,
right the bounding boxes: cyan for Kinect bbox, yellow bboxes by the algorithm,
red the merged bbox.

the recognition rates for different features extracted by this algorithm. Several

important conclusions can be inferred from this table.

First, MFT feature failed to stay on the top of performance. The reason behind

that can be detected by checking the most confused signs when using this feature

viz signs with ID 119 and 120. In these two signs, the hand shape is the same

throughout the sign with only difference in the motion trajectory of the hand. In

addition, the place of motion is close to each other. Since MFT is a global feature

that cover the whole image, these fine differences cannot be captured by MFT.

One solution is to extract MFT features from blocks as described on LBP feature

extraction in section 6.3.

Secondly, HOG feature preserve its performance however, PCA is used to

reduce the dimensionality by keeping 95% of the variance. In this dataset, the

frame size is bigger - which results in longer features vector - and the number of

signs is more than the previous dataset. These two factors lead to larger memory
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Table 6.2: Accuracies of sign recognition of different features on KArSL database
Signer 1 Signer 2 Signer 3 Average

MFT 93.10% 97.10% 98.20% 96.13%
HOG 99.30% 99.20% 99.50% 99.33%
LBP 93.00% 96.60% 98.20% 95.93%
HOG-HOF-M 98.30% 99.10% 99.60% 99.00%
HOG-HOF-K 95.60% 96.50% 99.80% 97.30%
HOG-HOF-S 95.80% 98.20% 99.60% 97.87%

requirement for the quantization step. Applying PCA on HOG features reduced

the dimensionality from 2916 to 165.

A third observation from this table is that the performance of the split HOG-

HOF-S and the Kinect based HOG-HOF-K is relatively similar. This tells that the

algorithm is implicitly locating the hands. The slight performance boost obtained

by HOG-HOF-S over HOG-HOF-K does not indicate a better hands detection

performed by the algorithm than Kinect. Figure 6.4 shows the bounding boxes

generated by the algorithm and based on Kinect joints in two frames of a sample

video. In this sign, the signer moves his hand towards his hart and leans his

head to the right. The number shown on the bounding box is the overlap ratio

between the box generated by the algorithm and the box that is based on the

Kinect readings. Although the algorithm is not capturing the left hand (because

it is not moving), it is capturing a more discriminating features from the head.

Note that there is another sign in the database (hart sign) with identical hand

shape and motion but with static head.

A forth observation from Table 6.2, the second best performing feature is HOG-

HOF-M. In this feature, HOG-HOF features are extracted from a single bounding
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Figure 6.4: Two frames from the “Hart frailer” sign, cyan Kinect based bbox,
yellow bboxes by the algorithm, the number shows the overlap ratio with the
Kinect bbox, and red is the merged bbox.

box. If the algorithm results in two boxes, the union of these two boxes is used as

shown by the red box in Figure 6.4. The better performance of HOG-HOF-M is

due to the inclusion of more context when extracting the features, and the lower

dimensionality. To evaluate the hand detection performed by the algorithm we

exploit the hands’ joints locations provided by Kinect. Based on the hand joint

location a box of 200x200 pixels centered on the joint location roughly covers the

hand. The overlap ratio between this box and the one generated by the algorithm

is a good metric to measure the goodness of the hand detection algorithm. The

overlap ratio is defined as: -

ovr =
area(K ∩B)

min (area(K), area(B))

where K is the Kinect box, B is the box generated by the algorithm. The value

of this metric is a fraction between zero and one. The larger the value, the more

intersection between the two boxes. As shown in Figure 6.4, the overlap ratio
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between the two boxes around the right hand is 0.785 while it is 0 for the left

hand as the box generated by the algorithm is around the head. To evaluate the

hand detector, we find the overlap ratio from all sign samples in the database.

Table 6.3 shows the average overlap ratio for each sign and per signer. The

last row shows the average overlap ratio over all signs, it shows that the overlap

ratio is more than 80%. However, this is not a precise value because the Kinect

based box is not guaranteed to cover the hand and errors in Kinect measures was

observed when monitoring several samples. Besides, the precise localization of

hand is not necessary for recognition of signs. A live video (slowed down) of the

algorithm is publically available online 1 .

1https:www.youtube.com/watch?v=Au9hO4SuZeU&feature=youtu.be
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CHAPTER 7

DEEP LEARNING APPROACH

FOR ARSLR

In the previous chapters we’ve proposed different systems for ArSLR. In these

systems, several feature extraction techniques are proposed for representing the

signs. In this chapter, we use deep learning to recognize signs. In deep learning,

features are learned by the system rather than manually extracted and fed to the

system. Deep learning based systems automatically finds the best representation

of signs to discriminate different ones. Also, in the previous chapters only one

modality is used for recognition, while in this chapter we utilize the skeleton

joints and the color video modalities to recognize signs.

As stated in Chapter 2 the main challenge in adopting deep learning to the sign

language recognition is the way to handle the time component involved. Opposite

to Action recognition where the time component can be less informative than in

sign language due to the existence of other context that helps in distinguishing
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different actions. For example, the playground helps in distinguishing playing

tennis from cooking with out the need for temporal information. While in sign

language, two signs may have identical fingers configuration but only differ in the

motion trajectory. Thus, the temporal information is needed. In this chapter, the

proposed system encodes the temporal information of the entire video in a single

image that includes the hand shape information and the hand motion information.

This compact representation of video makes it easy to adopt the state of the art

in deep learning based image classification to sign language recognition.

7.1 Deep Learning approach for ArSLR

In this section we propose machine learning systems to recognize signs using the

collected KArSL database. The design goals of such systems includes:

1. A general system that can be used for both static gestures like finger spelling

and dynamic gestures that involve hands motion.

2. A system that makes use of the available measures provided by Kinect.

3. A scalable system in terms of vocabulary size and difference of signing styles.

A general pipeline of the proposed systems includes: Preprocessing, Features Ex-

traction, and Classification. One of the most important modalities of sign lan-

guage is the hand motion pattern. We utilize this feature in the preprocessing

stage for all proposed recognitions systems. In the next section we describe the

preprocessing stage followed by the proposed recognition systems.
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7.1.1 Preprocessing

The database videos were recorded at the rate of 30 frames per second. For a

system that processes frames of sign videos to recognize signs, this frame rate

results in a large number of frames. This large number of frames need to be

reduced to minimize the recognition time. In addition, most of these frames are

redundant. For these reasons, the preprocessing stage extracts only key frames

from the sign video and discards the remaining frames. To find key frames, we

use the hand trajectory recorded by tracking the hand joint of the skeleton data

obtained by Kinect. Two steps are used: noise removal followed by key frames’

extraction. In noise removal, the noisy measures of hand location is smoothed

using median filter to remove outliers. In the second step we treat the hand

trajectory as a polygon, and apply a polygonal approximation algorithm to reduce

the number of vertices, keeping the most important ones N . The importance of

a vertex is quantized by the product of the lengths and angle between the edges

at this vertex. This process starts by removing the least important vertix and

iteratively recompute the importance of all remaining vertices until N vertices

remain. More details are in section 4.2. Since the color, depth, and skeleton

frames are recorded in sync, the important N vertices corresponds to the N key

frames of the color and depth videos.
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7.1.2 Modeling the signs as a sequence of body postures

A sign can be viewed as a sequence of human body postures. Modeling the

transition between different postures can be used to recognize different signs. In

this technique, we utilize the joints locations of the head, shoulders, elbows, and

hands obtained from Kinect to describe the human postures. To obtain the key

postures, we follow the same steps as in the preprocessing stage. Then a features

vector is built by stretching the X-Y positions of these joints for each key posture

as Fp = {xj, yj} for j = head, sholder, elbow, hand (both right and left). A

sequence of N feature vectors is then used to train and test HMM classifier. In

another formulation, the features vector is formed by a sequence of hand-shape

extracted from the key frames of the color video. The hand shape is represented

by Histogram of Oriented Gradients (HOG) features extracted from a bounding

box centered at the hand joint location of the frame. Sample bounding boxes are

shown in figure 7.1. Then the features sequence is formed by Fsh = {HOGi}fori =

1, 2, 3...N and used to train and test HMM classifier. In a third formulation, the

features vector is composed by concatenating the postures’ features and the hand-

shape features as Fpsh = {Fpk, HOGk}fork = 1, 2, 3, ...N . These features arethen

used to train and test the HMM classifier.

7.1.3 Transforming SLR into Image Classification

Here we transform the video of the sign into a single image. By this transforma-

tion, the SLR can be viewed as an image classification problem. Then, advanced
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image classification techniques such as deep learning can be used for SLR. The

transformation is achieved by placing frames of the video into a grid as follows.

First, the key frames of the sign in hand are extracted as described in the pre-

processing stage. Second, a bounding box is centered at the dominant hand joint

location on each key frame. The bounding box is not tightly bounding the hand

rather, it loosely includes the hand along with some of the surrounding parts of the

frame. The extra parts provide useful context about the position of the hand with

respect to the signer‘s body. Third, the images inside these boxes are cropped

and placed in a grid that forms the final image. Figure 7.1 shows a sample image

generated using this procedure. After creating this image, it is labeled using the

sign label to be used for training the image classifier.

Figure 7.1: A sample Image composed from video of eat sign
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7.1.4 Transforming SLR into Image Captioning

In this modeling, the sign video is transformed into a single image following the

same procedure of section 7.1.3. The name of each sign is used as a caption for

this image. Then automatic captioning system can be used to translate the sign

language words. One advantage of this modeling is that a language model can be

built over the captioning to generate effective continuous translation system.

7.2 Experimental Work

The following experiments are done to evaluate the performance of the HMM

postures sequence. Then the transformation SLR into image classification using

deep learning. And then the transformation of SLR into image captioning.

7.2.1 Evaluating the postures sequence modeling of SLR

In this scenario, the sign is preprocessed to extract the key frames. Here we

extract 9 key frames from each sign and form the features vectors as described in

section 7.1.2. The features are divided into 70% for training and 30% for testing.

Using the training data we train an HMM classifier with 3 states left to right.

The recognition rate per signer dependent system is shown in table 7.1. From this

table,

• The performance of the posture only feature Fp is the worst, however, it

is faster to train and test due to its low dimensionality. The low accuracy
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can be attributed to the fact that some signs are of the same sequence of

postures but of different hand fingers configuration.

• The hand shape based features performed the best as it captures the change

of fingers‘ configuration along with semantics from the surrounding body

parts.

• Combining the two features into one improved the results of postures based

features slightly but still less than the hand shape based. This motivates us

to rely only on the hand shape and the context around the hand and ignore

the postures as the case in the following two systems.

Table 7.1: The recognition accuracies obtained using the postures sequence for-
mulation of SLR

Features Signer 1 Signer 2 Signer 3
Fp 85.4% 82.6% 85.0%
Fsh 89.2% 87.6% 87.4%
Fpsh 85.9% 83.8% 86.2%

7.2.2 Evaluating the Image classification modeling of SLR

Here, 9 key frames are extracted in the preprocessing stage then a bounding box

of 300x300 pixels around the hand joint is used to crop the hand and surrounding

context from each key frame. The cropped image is then resized to 75x75 pixels.

Then, the 9 cropped images are placed in a grid of 3x3 to form an image of 225x225

pixels as shown in figure 7.1. These images are composed of samples performed

by all three signers. We train from scratch a VGG-S network [109] using 80%
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of the images from all signers. The training schedule starts by 0.01 learning rate

multiplied by 0.1 every 10 training epochs and using batch size of 128 images. The

accuracy of this network reached 71.9%. We also fine tuned a VGG-19 pretrained

on ImageNet [110]. We fine tuned the network assigning higher learning rate to

the last fully connected layer, set global learning rate to 0.0001 for 10 epochs. The

recognition rate of this network is 76.1%.

At the time of this writing, only one signer has finished recording the full 502

signs of the KArSL. To get intuition about how good the grid image approach,

we run an experiment on the 502 signs using the grid image approach. Since the

number of samples per sign is not enough to train a deep network, we adopt a

Bag of Features approach. In this experiment, each video is converted into grid

image as described in the preprocessing stage. This resulted in 50 images per sign

class. Then dense SURF features are extracted from each image. The features

are extracted from points on the image separated by 8 pixels horizontally and

vertically. And from multi-scale boxes of 32,64,96,128 pixels size around each

extraction point. Then, features are clustered into 1000 visual words. Then each

class is encoded based on the visual words codebook. The resulting features are

then used to train a multiclass linear SVM classifier. 50% of the images are used

for training and the remaining are used for testing. The accuracy of this classifier

on the entire 502 signs is 98%. Figure 7.2 shows the confusion matrix of this

classifier. The least per class recognition rate is 50% for only two classes out of

the 502 classes.
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7.2.3 Evaluating the Image captioning modeling of SLR

Here the same images used for image classification modeling are used. The cap-

tions are the sign name in words. For example, digit 9 is pronounced as tise’ in

Arabic the caption for the grid image is tise. Some captions are composed of two

words like tise meiah (900). After preparing the captions, we train Show Attend

and Tell image captioning model [111]. We chose this captioning model because

it employs visual attention which is more suitable for the nature of our grid im-

ages. We adapted a Tensorflow [112] based implementation 1 to suite our dataset.

We use 70% of the dataset for training, 15% for validation, and 15% for testing.

Table 7.2 shows the evaluation of the captioning system. Since the captions are

maximally two words in length, the higher n-gram (Blue-3, and Blue-4) are not

included.

Table 7.2: Measures for evaluating the captioning
Metric Validation Test
Bule-1 0.80 0.80
Bule-2: 0.70 0.72
METEOR 0.41 0.40
ROUGE-L 0.82 0.81
CIDEr 3.28 3.73

Sample test images with attention visualized are shown in figure 7.3. The

signs shown are very similar with slight difference in hand shapes. The first sign

is thalath which is the digit 3 with three fingers in static sign. The second sign is

thalathon (30). It shares the finger configuration with the previous sign with only

1available on https://github.com/yunjey/show-attend-and-tell
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Figure 7.3: Attention sample for signs: three on the first row, thirty on the second,
three hundreds on the third.

the hand moves from vertical orientation to horizontal. This is captured by the

system as attention at the horizontal orientation. The third sign is thalth meiah

(300) which shares the fingers configuration with both of the previous signs with

only fingers being bent and released. This is also captured by attention on the

bending and releasing portions of the grid image. Also as shown in the figure, the

system is able to recognize the sign regardless if it is being performed by the right

hand or the left.

7.2.4 Signer independent Recognition

In the previous sections the training and testing signs are either performed by one

signer or by all signers. In this section, the training samples are performed by
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two signers and the test signs are performed by the third. Despite the number

of signers is not large enough to evaluate signer independent system, we run

this test to have intuition about the generalization of the systems. Table 7.3

shows the results of signer independent test. The columns are labeled by the test

signer and the other two are the training signers. The last column labeled Gn is

a generalization metric computed as Gn = Average accuracy of signer independent
Average accuracy of signer dependent

. The

value of Gn ranges from 0 to 1 with higher represents better generalization. It can

be observed from the table that the generalization of the deep learning approach

is better than the traditional HMM based system.

We also run our proposed system on a publicly available database (Chalearn

2011) [113]. The dataset consists of 20 Italian signs performed by 27 signers. We

use the training set for training and the validation set for testing. The signers

in the validation set never appeared in the training set. Figure 7.4 pictures the

application of the preprocessing stage on one video from this database. The

accuracies of the proposed systems on this database are shown in the last column

in table 7.3. It can be seen from this column how the deep learning approach

is able to generalize much better than hand-crafted features. It also shows the

effectiveness of the grid image approach although the network is only fine-tuned

on one modality (RGB).
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Table 7.3: Testing generalization of features for signer independence
Signer 1 Signer2 Signer 3 Gn on [113]

Fp 16.0% 08.0% 11.7% 0.14 04.3%
Fsh 19.0% 15.0% 17.7% 0.20 25.3%
Fpsh 15.6% 08.0% 11.6% 0.14 24.0%
VGG-19 28.0% 26.7% 22.2% 0.36 60.0%

Figure 7.4: Sample Shows the grid image (bottom right) generated from nine key
frames of perfetto sign

7.3 Conclusions

In This chapter, we’ve shown how to utilize the available measures provided by

the Kinect to model the ArSLR as a sequence of body-postures or a sequence

of hand-shapes and use HMM to recognize the sign. We also transform the sign

video into a single grid image and train a deep convolutional neural network to

classify the grid images and hence recognize the sign. Using the sign name as a

caption for the grid image and applying attention based captioning system has

shown good discrimination between similar signs. The usefulness of the proposed

grid image was shown by the high accuracy obtained on the whole 502 signs

in KArSL . We also show the generalization capability of the proposed systems

119



towards signer independent recognition. The proposed recognition systems are

general and database independent and can be used for other similar tasks like

action recognition and gesture recognition.
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CHAPTER 8

CONCLUSIONS AND FUTURE

WORK

In this chapter, conclusions are drawn on the results obtained in previous chapters.

Some future directions are outlined.

8.1 Conclusions

In this thesis we have conducted research on the recognition of Arabic sign lan-

guage. Arabic sign language recognition enables the automatic translation of

Arabic signs into a form of spoken language such as text or speech. The automa-

tion of the translation requires building a computerized system that is capable of

acquiring signs performed by a signer and then process these signs to produce the

corresponding spoken words. To build such system a database of signs and their

translation is needed to teach the computer system to translate.

In this thesis, a database of 500 signs is collected using Microsoft Kinect for
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Windows V2. The database consists of signs from eleven chapters of ArSL dic-

tionary: numbers, letters, and words from different domains. The database is

performed by four professional signers and each sign is repeated fifty times by

each signer. For each sample in the database, three channels are synchronously

recorded. The channels are color videos, depth map, and skeletal joints locations

in 3D and their projection on 2D for both color and depth. These different modal-

ities can be utilized to build recognition system while keeping the natural motion

freedom for the signer. The number of samples per sign available in the database

makes it suitable for most of computer vision and machine learning algorithms.

The raw recordings from the database requires some processing before being

suitable for machine learning algorithms. In this thesis, several preprocessing

techniques are proposed.

The first deals with the hand trajectory in 2D/3D smoothing , removes noise,

and compress it.

The second segments the video of a sign into a sequence of key frames.

The third locates the moving hands in a video and generates a bounding box

around them.

After preprocessing the sign some features are extracted. We model the hand

trajectory as a polygon and propose two polygonal description features. The

first finds distances from the center of gravity of the polygon to all points on it‘s

perimeter. The second uses the location of the points on the perimeter to build a

feature vector. These features are then used to train an ensemble classifier. The
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system shown good performance for both signer dependent and signer independent

recognition. The proposed system is tested on two different datasets and compared

with published works that use the same dataset and shown better performance

than most of them. The proposed system features simplicity, scalability, and

generalization to unseen signer.

In a vision based recognition system, we proposed a two stage classification

system which firstly classify each frame into one of the primitive postures that

accounts for both hands-shapes and body-lane using BoF. Then in the second

stage the sequence of postures is classified into signs using BoP. For postures

classification BoF is used with three different local features extraction techniques,

namely, SIFT, Harris, and DSIFT. K-means is used for building the vocabulary,

and SVM for the classification of the primitive postures using BoF. The second

stage encodes the signs as BoP composed of primitive postures and use KNN

classifier to classify the signs. We have shown the advantages of using local features

over global features by comparing the system with published work on the same

database. We also showed the advantages of using BoP compared with using the

whole sign. It has better generalization towards signer-independence.

Deep learning have made a surge in the recognition capabilities than traditional

computer vision algorithms. In this thesis deep learning techniques have been used

to recognize signs in two ways. First by converting the sign language recognition

task into image classification task. Second by transforming SLR problem into

image captioning problem. Both techniques are applied after converting the sign
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video into a grid image composed of key hand shape frames. We have shown

how to train a convolutional neural network from scratch as well as fine-tuning a

pretrained network.

The recognition techniques presented in this thesis are general and not lim-

ited to Arabic sign language recognition. They can be applied to any other lan-

guage and any other similar task such as Action Recognition, Gesture Recognition,

Robot Control, Human Computer Interaction, and more.

8.2 Future Research Directions

This thesis has proposed techniques for Arabic sign language recognition and

contributed to all stages of recognition pipeline. Still some other parts needs

more research to reach the satisfying level. These parts includes:

• Continuous Sentences Recognition: The continuous recognition is more

natural than recognizing words in isolation. The main challenge in contin-

uous recognition is the determination of the boundaries of each word in the

signed sentence. Also there is no comprehensive benchmark for continuous

Arabic sign language.

• Online recognition: Online recognition requires real time recognition of

words. It can be easier for isolated words recognition provided that the

boundaries of each word is determined by the user. It is more harder when

used for continuous signing as it inherits the segmentation difficulties.
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• Non Manual Features: These are used to modify the meaning of signs

and reflect the emotion of signer about the signed sentence. It includes

facial expressions like eye gaze, eyebrow rising, mouth deformation, tong

movements, air exhausting, and more. The difficulties here includes the lack

of annotated database with non-manual features. The number of classes in

each component is an open research question. Also, to capture these features

the camera needs to be focusing on the face to capture them clearly. Kinct

can capture facial landmarks when the face is close to the camera, however

the other parts of the body might not be captured. One solution can be to

use two Kinects with one focused on the face and the second capturing the

other body parts. This solution, requires more powerful machine capable

of capturing from two Kinects. Also the synchronization between the two

Kinects is challenging. Another solution may employ two machines one for

capturing the face landmarks and the other for capturing other body parts.

This also requires synchronization between the two machines.
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APPENDIX

LIST OF WORDS IN THE

KARSL DATABASE

This appendix lists all signs in KArSL database. In Table A.1, The column

labeled Arabic lists the Arabic words, the column labeled English contains the

transliteration and translation of the sign in English. The transliteration is based

on Habash‘s transliteration system [114].

Table A.1: List of signs in KArSL database: the column

labeled English contains transliteration and translation

of the Arabic word.

Domain SignID Arabic English

Numbers 0001 0 0

0002 1 1

Continued on next page
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Table A.1 – continued from previous page

Domain SignID Arabic English

0003 2 2

0004 3 3

0005 4 4

0006 5 5

0007 6 6

0008 7 7

0009 8 8

0010 9 9

0011 10 10

0012 20 20

0013 30 30

0014 40 40

0015 50 50

0016 60 60

0017 70 70

0018 80 80

0019 90 90

0020 100 100

0021 200 200

Continued on next page
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Table A.1 – continued from previous page

Domain SignID Arabic English

0022 300 300

0023 400 400

0024 500 500

0025 600 600

0026 700 700

0027 800 800

0028 900 900

0029 1000 1000

0030 100000 1000000

0031 1000000 10000000

Letters 0032 ا Alif

0033 ب Ba

0034 ت Taa

0035 ث Tha

0036 ج Jim

0037 ح Ha

0038 خ Kha

0039 د Dal

0040 ذ Dhal

Continued on next page
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Table A.1 – continued from previous page

Domain SignID Arabic English

0041 ر Ra

0042 ز Zayn

0043 س Sin

0044 ش Shin

0045 ص Sad

0046 ض Dad

0047 ط Ta

0048 ظ Za

0049 ع Ayn

0050 غ Ghayn

0051 ف Fa

0052 ق Qaf

0053 ك Kaf

0054 ل Lam

0055 م Mim

0056 ن Nun

0057 ه Ha

0058 و Waw

0059 ي Ya

Continued on next page
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Table A.1 – continued from previous page

Domain SignID Arabic English

0060 ة Taa marbutah

0061 أ Alif with hamza

0062 ؤ Waw with hamza

0063 ئ Alif maqsurah with hamza

0064 ئـ Hamza on line

0065 ء Hamza

0066 إ Alif with hamza

0067 آ Alif maddah

0068 ى Alif maqsurah

0069 لا Lam alif

0070 ال Al

Health 0071 هيكل عظمي hykl EZmy Skeleton

0072 جمجمة jumjumah Skull

0073 فقري عمود Emwd fqry Back bone

0074 صدري قفص qfS Sdry Chest

0075 تنفسي جهاز jhAz tnfsy Respiratory system

0076 هوائية قصبة qSbp hwA}yp Trachea

0077 رئتان r}tAn Lungs

Continued on next page
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Table A.1 – continued from previous page

Domain SignID Arabic English

0078 شهيق زفير $hyq zfyr Inhalation and exhala-

tion
0079 هضمي جهاز jhAz hDmy system Digestive

0080 وجه wjh Face

0081 بلعوم blEwm Pharynx

0082 كبد kbd Liver

0083 ياس البنكر AlbnkryAs Pancreas

0084 الدقيقة الأمعاء Al>mEA’ Aldqyqp Small intestine

0085 الغليظة الأمعاء Al>mEA’ AlglyZp Large intestine

0086 الدودية الزائدة AlzA}dp Aldwdyp Appendix

0087 عصبي جهاز jhAz ESby Nervous system

0088 قلب qlb Heart

0089 خمس حواس HwAs xms Five senses

0090 عضلة EDlp Muscle

0091 أنسجة >nsjp Tissue

0092 مستشفى mst$fY Hospital

0093 أولية إسعافات <sEAfAt >wlyp First aid

0094 نازف جرح jrH nAzf Wound

0095 حروق Hrwq Burns

Continued on next page

131



Table A.1 – continued from previous page

Domain SignID Arabic English

0096 بنج / مخدر mxdr / bnj Anaesthetic

0097 جراحية عملية Emlyp jrAHyp Surgery

0098 ضمادة / شاش $A$ / DmAdp Bandage

0099 لاصق شريط $ryT lASq Plaster

0100 صيدلية Sydlyp Pharmacy

0101 دم تحليل tHlyl dm Blood test

0102 سريري فحص fHS sryry Clinical examination

0103 النظر فحص fHS AlnZr Sight examination

0104 حرارة ميزان myzAn HrArp Thermometer

0105 أذن سماعة smAEp >*n Stethoscope

0106 الضغط قياس جهاز jhAz qyAs AlDgT Sphygmo-

manometer
0107 القلب نبض nbD Alqlb Heart pulse

0108 طبي تحليل tHlyl Tby Medical analysis

0109 التحاليل معمل / مختبر mEml AltHAlyl / mxtbr Labora-

tory

0110 اشعة صورة Swrp A$Ep Ray image

0111 التهاب AlthAb Inflammation

0112 تورم twrm Swelling

0113 زكام zkAm Cold

Continued on next page
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Table A.1 – continued from previous page

Domain SignID Arabic English

0114 عدوى EdwY Infection

0115 صداع SdAE Headache

0116 ألم >lm Pain

0117 حمى HmY Fever

0118 إسهال <shAl Diarrhea

0119 إمساك <msAk Constipation

0120 مغص mgS Colic

0121 سكري / سكر مرض mrD Alskr / skry Diabetes

0122 قلبية أزمة >zmp qlbyp Heart attack

0123 سرطان srTAn Cancer

0124 الإيدز Al<ydz AIDS

0125 الشعر تساقط tsAqT Al$Er Hair loss

0126 قلبية سكتة sktp qlbyp Heart failure

0127 نصفي شلل $ll nSfy Hemiplegia

0128 دماغي شلل $ll dmAgy Brain paralysis

0129 الدم ضغط DgT Aldm Blood pressure

0130 حساسية HsAsyp Allergy

0131 حكة / هرش Hkp / hr$ Itch

0132 دواء dwA’ Medicine

Continued on next page
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Table A.1 – continued from previous page

Domain SignID Arabic English

0133 ية شهر دورة dwrp $hryp Menstrual period

0134 مريض / مرض mryD / mrD Patient / Disease

0135 كبسولة kbswlp Capsule

0136 شراب دواء dwA’ $rAb Liquid medicine

0137 مرهم mrhm Ointment

0138 قطارة qTArp Dropper

0139 برة إ أخذ >x* <brp Take a needle

0140 تلقيح tlqyH Vaccination

0141 تطعيم tTEym Inoculation

0142 ليزر أشعة >$Ep lyzr X-ray

0143 مخدرات mxdrAt Drugs

0144 إدمان <dmAn Addiction

10045 توحد twHd Autism

0146 منغولي mngwly Down’s syndrome

0147 يا بكتر bktryA Bacteria

0148 جرثومة jrvwmp Germ

0149 فيروس fyrws Virus

0150 إنتشار <nt$Ar Spread

0151 إعاقة <EAqp Disability

Continued on next page
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Table A.1 – continued from previous page

Domain SignID Arabic English

0152 ذهنية إعاقة <EAqp *hnyp Intellectual disabil-

ity

0153 جسدية اعاقة AEAqp jsdyp Physical disability

0154 بصرية اعاقة AEAqp bSryp Visual impairment

0155 سمعية إعاقة <EAqp smEyp Hearing impair-

ment
0156 وباء wbA’ Epidemic

0157 مناعة mnAEp Immunity

0158 عصب ESb Nerve

0159 معافى mEAfY Healthy
Common

verbs
0160 يأكل y>kl Eat

0161 يشرب y$rb Drink

0162 ينام ynAm Sleep

0163 يستيقظ ystyqZ Wake up

0164 يسمع ysmE Hear

0165 يسكت yskt Silence

0166 يشم y$m Smell

0167 يصعد ySEd Go up

0168 ينزل ynzl Go down

Continued on next page
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Table A.1 – continued from previous page

Domain SignID Arabic English

0169 يفتح yftH Open

0170 يغلق yglq Close

0171 يبني ybny Build

0172 يكسر yksr Break

0173 يمشي ym$y Walk

0174 يحب yHb Love

0175 يكره ykrh Hate

0176 يشوي y$wy Grill

0177 يحرث yHrv Plow

0178 يزرع yzrE Plant

0179 يسقي ysqy Irrigate

0180 يحصد yHSd Harvest

0181 يفكر yfkr Think

0182 يساعد ysAEd Help

0183 يدخن ydxn Smoke

0184 يدعم ydEm Support

0185 يختار yxtAr Choose

0186 ينادي ynAdy Call

0187 يتنامى ytnAmY Grow

Continued on next page
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Table A.1 – continued from previous page

Domain SignID Arabic English

0188 يصبغ ySbg Dye

0189 يقف yqf Stop

0190 يستحم ystHm Takes a shower

0191 يدخل ydxl Enter

0192 أسرة >srp family

Family 0193 جدة jdp Grandmother

0194 جد jd Grandfather

0195 أب >b Father

0196 أم >m Mother

0197 أخت >xt Sister

0198 أخ >x Brother

0199 بنت bnt Girl

0200 رضيع rDyE Baby

0201 توأم tw>m Twin

0202 رجل rjl Man

0203 شاب $Ab Young man

0204 شابة $Abp Young woman

0205 حفيد Hfyd Grandchild

0206 زواج zwAj Wedding

Continued on next page
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Table A.1 – continued from previous page

Domain SignID Arabic English

0207 حمل Hml Pregnant

0208 ولادة wlAdp Childbirth

0209 عم Em Uncle

0210 عمة Emp Aunt

0211 خال xAl Maternal uncle

0212 خالة xAlp Maternal aunt

0213 الأخ ابن Abn Al>x Nephew

0214 الأخت ابن Abn Al>xt Nephew

0215 العم ابن Abn AlEm Cousin

0216 ابن Abn Son

0217 ابنة Abnp Daughter

0218 ناس nAs People

0219 طلاق TlAq Divorce

0220 خطوبة xTwbp Engagement

0221 حفلة Hflp Party

0222 وفاة wfAp Death

0223 طفل Tfl Child

Characteristics 0224 جميل jmyl Beautiful

0225 قبيح qbyH Ugly

Continued on next page
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Table A.1 – continued from previous page

Domain SignID Arabic English

0226 يل طو Twyl Long

0227 قصير qSyr Short

0228 نحيف nHyf Thin

0229 سمين smyn Fat

0230 غني gny Rich

0231 فقير fqyr Poor

0232 محبط mHbT Offended

0233 مشمئز m$m}z Disgusted

0234 مرتبك mrtbk Confused

0235 قلق qlq Worried

0236 مشوش m$w$ Deranged

0237 خائف xA}f Afraid

0238 سعيد sEyd Happy

0239 حزين Hzyn Sad

0240 شجاع $jAE Courageous

0241 جبان jbAn Coward

0242 طموح TmwH Ambitious

0243 معجب mEjb Admirable

0244 من غائر gA}r mn To be jealous of

Continued on next page
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Table A.1 – continued from previous page

Domain SignID Arabic English

0245 على غائر gA}r ElY To protect jealously

0246 ودود wdwd Affectionate

0247 كريم krym Generous

0248 بخيل bxyl Miserly

0249 طماع TmAE Greedy

0250 كذاب k*Ab Liar

0251 أناني >nAny Selfish

0252 متكبر mtkbr Proud

0253 متواضع mtwADE Humble

0254 شعور $Ewr Feeling

0255 تعب tEb Tired

0256 بكاء bkA’ Crying

0257 احتقار AHtqAr Contempt

0258 الذات على إعتماد AEtmAd ElY Al*At Self depen-

dence
0259 خفيف xfyf Light

0260 ثقيل vqyl Heavy

0261 قديم qdym Old

0262 حسد Hsd Envy

Continued on next page
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Table A.1 – continued from previous page

Domain SignID Arabic English

0263 صدق Sdq Believe

0264 غدر gdr Betrayal

0265 صبر Sbr Patient

0266 لوم lwm Blame

0267 الحق AlHq Truth

0268 خيانة xyAnp Treason

0269 يثار إ <yvAr Preference

0270 تضحية tDHyp Self sacrifice

0271 شفقة $fqp Pity

0272 ذكي *ky Intelligent

Directions 0273 أمام >mAm In front of

0274 بجانب bjAnb Side

0275 بعيد bEyd Far

0276 بين byn Between

0277 تحت tHt Under

0278 حول Hwl Around

0279 خارج xArj Outside

0280 خلف xlf Back

0281 داخل dAxl Inside

Continued on next page
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Table A.1 – continued from previous page

Domain SignID Arabic English

0282 فوق fwq Up

0283 قريب qryb Near

0284 خلال من mn xlAl Through

0285 هنا hnA Here

0286 هناك hnAk There

0287 يسار ysAr Left

0288 يمين ymyn Right
Social

relationships
0289 ً وسهلا أهلا >hlA wshlA Welcome

0290 عليكم السلام AlslAm Elykm Greeting

0291 تفضل tfDl Here you are

0292 جار jAr Neighbor

0293 ً شكرا $krA Thanks

0294 صديق Sdyq Friend

0295 ضيف Dyf Guest

0296 عدو Edw Enemy

0297 عيب Eyb Fault

0298 هدية hdyp Gift

Home 0299 بيت byt House

0300 جدار jdAr Wall

Continued on next page
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Table A.1 – continued from previous page

Domain SignID Arabic English

0301 سقف sqf Roof

0302 باب bAb Door

0303 شباك $bAk Window

0304 غرفة grfp Room

0305 نوم غرفة grfp nwm Bedroom

0306 سرير sryr Bed

0307 سرير مرتبة mrtbp sryr Mattress

0308 شرشف $r$f Bedsheet

0309 وسادة wsAdp Pillow

0310 شماعة $mAEp Clothes rail

0311 ملابس خزانة xzAnp mlAbs Wardrobe

0312 مطبخ mTbx Kitchen

0313 غازي فرن frn gAzy Gas Oven

0314 بوتاغاز bwtAgAz Cooker

0315 طبق Tbq Dish

0316 سكين skyn Knife

0317 شوكة $wkp Fork

0318 ملعقة mlEqp Spoon

0319 فنجان fnjAn Cupful

Continued on next page
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Table A.1 – continued from previous page

Domain SignID Arabic English

0320 مجمد mjmd Freezer

0321 كأس k>s Cup

0322 ترمس trms Thermos

0323 طعام غرفة grfp TEAm Food room

0324 يق بر إ <bryq Pitcher

0325 طاولة TAwlp Table

0326 دلة dlp Dalah

0327 حمام HmAm Bathroom

0328 كرسي krsy Chair

0329 غسالة gsAlp Washing machine

0330 منشفة mn$fp Towel

0331 سجادة sjAdp Carpet

0332 موكيت mwkyt Moquette

0333 يا ثر vryA Chandelier

0334 مسجل msjl Cassette

0335 كاست شريط $ryT kAst Cassette tape

0336 يون تلفز tlfzywn Television

0337 دش d$ Satellite

0338 فيديو شريط $ryT fydyw Video tape

Continued on next page
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Table A.1 – continued from previous page

Domain SignID Arabic English

0339 فيديو كاميرا kAmyrA fydyw Video camera

0340 فوتوغرافية كاميرا kAmyrA fwtwgrAfyp Photo cam-

era
0341 تلفون tlfwn Telephone

0342 ضيوف غرفة grfp Dywf Guests room

0343 فيديو fydyw Video

0344 مبخرة mbxrp Censer

0345 مدفأة mdf>p Heater

0346 مفتاح mftAH Key

0347 مروحة mrwHp Fan

0348 ية مركز تدفئة tdf}p mrkzyp Central heater

0349 كهرباء khrbA’ Electrics

0350 مكيف mkyf Air conditioner

0351 كهربائي سلك slk khrbA}y Wire

0352 فيش fy$ Plug

0353 سفر حقيبة Hqybp sfr Bag

0354 مكواة mkwAp Iron

0355 جوي حرارة ميزان myzAn HrArp jwy Thermometer

Religion 0356 تعالى اللهّٰ Allh tEAlY God

Continued on next page
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Table A.1 – continued from previous page

Domain SignID Arabic English

0357 اللهّٰ رسول محمد mHmd rswl Allh Prophet Mo-

hammed
0358 المسيح عيسى EysY AlmsyH Jesus christ

0359 الـكريم القرآن Alqr|n Alkrym The holy Quran

0360 الراشدون الخلفاء AlxlfA’ AlrA$dwn The caliphs

0361 ية النبو السنة Alsnp Alnbwyp Sunnah

0362 الإسلام أركان >rkAn Al<slAm Pillars of Islam

0363 الإيمان أركان >rkAn Al<ymAn Pillars of faith

0364 الشهادتين Al$hAdtyn Two declarations of

faith
0365 الصلاة AlSlAp prayer

0366 الزكاة AlzkAp Alms

0367 الصوم AlSwm Fasting

0368 العمرة AlEmrp Umrah

0369 الحج AlHj Pilgrimage

0370 ملائكة mlA}kp Angels

0371 رسول rswl Prophet

0372 القيامة يوم ywm AlqyAmp Doomsday

0373 والقدر القضاء AlqDA’ wAlqdr Fate and destiny

Continued on next page
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Domain SignID Arabic English

0374 الصلاة أركان >rkAn AlSlAp The pillars of

prayer

0375 خير xyr Good

0376 النية Alnyp Intention

0377 شر $r Evil

0378 طهارة ThArp Purity

0379 الصلاة مبطلات mbTlAt AlSlAp Nullifications of

prayer

0380 تيمم tymm Tayammum

0381 يتوضأ / وضوء ytwD> / wDw’ Ablution

0382 يؤذن y&*n Call to prayer

0383 الخفين على مسح msH ElY Alxfyn Wiping over

shoes
0384 الفجر صلاة SlAp Alfjr Al-fajr prayer

0385 الظهر صلاة SlAp AlZhr Dhuher prayer

0386 العصر صلاة SlAp AlESr Asr prayer

0387 المغرب صلاة SlAp Almgrb Maghreb prayer

0388 العشاء صلاة SlAp AlE$A’ Isha prayer

0389 خطبة xTbp sermon

0390 الجمعة خطبة xTbp AljmEp Friday sermon

Continued on next page
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Domain SignID Arabic English

0391 خطيب xTyb Fiance

0392 العيد خطبة xTbp AlEyd Eid sermon

0393 مسجد msjd Mosque

0394 سورة swrp Quran chapter

0395 إمام <mAm Leader

0396 الفاتحة سورة swrp AlfAtHp Al-Fatihahsurah

0397 آية |yp Verse

0398 القدر ليلة lylp Alqdr Alqadir night

0399 عيد Eyd Feast

0400 الفطر عيد Eyd AlfTr Eid Al Fitr

0401 الأضحى عيد Eyd Al>DHY Eid al-Adha

0402 إحرام <HrAm Ihram

0403 مكة mkp Makkah

0404 الـكعبة AlkEbp Kaaba

0405 المنورة المدينة Almdynp Almnwrp Al-madina Al-

monawara
0406 منى mnY Mona

0407 عرفات جبل jbl ErfAt Arafat Mountain

0408 والمروة الصفا AlSfA wAlmrwp Safa and Marwa

Continued on next page
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Domain SignID Arabic English

0409 مزدلفة mzdlfp Muzdalifah

0410 الجمرات رمي rmy AljmrAt Throwing pebbles

0411 طواف TwAf Circling

0412 زمزم ماء mA’ zmzm Zamzam water

0413 الأضحية Al>DHyp Sacrifice

0414 الإحرام فك fk Al<HrAm Removing Ihraam

0415 الوداع طواف TwAf AlwdAE Leaving circling

0416 الأقصى المسجد Almsjd Al>qSY Al-Aqsa Mosque

0417 يسبح ysbH Glorifies

0418 للهّٰ الحمد AlHmd llh Praise be to Allaah

0419 اللهّٰ سبحان sbHAn Allh Glory be to Allah

0420 يمان إ <ymAn Faith

0421 باللهّٰ الشرك Al$rk bAllh Polytheism

0422 باللهّٰ أعوذ >Ew* bAllh I seek refuge in God

0423 شيطان $yTAn Demon

0424 جن jn Demons

0425 الضالون AlDAlwn The lost

0426 عليهم المغضوب AlmgDwb Elyhm Angry at them

0427 صنم Snm Fetish

Continued on next page

149



Table A.1 – continued from previous page

Domain SignID Arabic English

0428 زنى znY Adultery

0429 الجنة Aljnp Paradise

0430 النار AlnAr Fire

0431 روح rwH Soul

0432 حقوق Hqwq Rights

0433 واجبات wAjbAt Duties

0434 حسنات HsnAt Good deads

0435 سيئات sy}At Sins

0436 حلال HlAl Permitted

0437 حرام HrAm Forbidden

0438 مغفرة mgfrp Forgiveness

0439 دين dyn Religion

0440 مسيحي msyHy Christian

0441 يهودي yhwdy Jewish

0442 كنيسة knysp Church

0443 ومعراج إسراء <srA’ wmErAj Isra and Maraj

0444 حواء HwA’ Eve

0445 آدم |dm Adam

0446 صدقة Sdqp Charity

Continued on next page
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0447 نبي nby Prophet

0448 هداية hdAyp Guidance

0449 أمانة >mAnp Honesty

0450 شهيد $hyd Martyr

0451 الوالدين حقوق Hqwq AlwAldyn Parental rights

0452 الوالدين عقوق Eqwq AlwAldyn Disobedience to

parents

0453 مسلم mslm Muslim

0454 رحمة rHmp Mercy

0455 السنة رأس عيد Eyd r>s Alsnp New Year’s Holiday

0456 فروض frwD Assignments

0457 الصخرة قبة qbp AlSxrp Dome of the Rock

0458 خلق xlq Create

Jobs 0459 مهندس mhnds Engineer

0460 فوتوغرافي مصور mSwr fwtwgrAfy Photographer

0461 جزار jzAr Meat man

0462 سائق sA}q Driver

0463 صائغ SA}g Jeweler

0464 خادم xAdm Servant

Continued on next page
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0465 قسم رئيس r}ys qsm Chairman

0466 حداد HdAd Blacksmith

0467 كهربائي لحام lHAm khrbA}y Welding

0468 الإشارة لغة مترجم mtrjm lgp Al<$Arp Sings lan-

guage translator

0469 مذيع m*yE Announcer

0470 لغات مترجم mtrjm lgAt Translator

0471 مدير mdyr Manager

0472 سفير sfyr Ambassador

0473 وزير wzyr Minister

0474 ملك / سلطان mlk / slTAn King

0475 ية الجمهور رئيس r}ys Aljmhwryp Premier minister

0476 شيخ $yx Sheikh

0477 محافظ mHAfZ Governor

0478 وزارة وكيل / عهد ولي wly Ehd / wkyl wzArp Under sec-

retary of state

0479 النواب مجلس رئيس r}ys mjls AlnwAb Speaker

0480 عام أمين >myn EAm General secretary

0481 صحفي SHfy Journalist

Continued on next page
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0482 رسام rsAm Draftsman

0483 خياط xyAT Tailor

0484 ضابط DAbT Policeman

0485 طيار TyAr Pilot

0486 جندي jndy Soldier

0487 حلاق HlAq Barber

0488 صباغ SbAg Dyer

0489 إطفاء رجل rjl <TfA’ Fireman

0490 نجار njAr Carpenter

0491 معلم mElm / mdrs Teacher

0492 طباخ TbAx Chef

0493 فلاح flAH Farmer

0494 موظف mwZf Agent

0495 صندوق أمين >myn Sndwq Treasurer

0496 صيدلي Sydly Pharmacist

0497 طبيب Tbyb Doctor

0498 ممرضة mmrDp Nurse

0499 ممرض mmrD Orderly

0500 محام mHAm Lawyer

Continued on next page
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0501 انتقال AntqAl Traveling

0502 تعيين tEyyn Appointment
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