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Wind energy has established itself as an invaluable renewable source and a re-

placement for fossil fuels. The objective of this research is to present a more

realistic aeroelastic model of wind turbine blade and the aerodynamic forces in

order to actively control the Wind Turbine edge-wise vibrations in a more effec-

tive way by utilizing smart materials. The challenge faced by research community

is to develop a realistic aeroelastic model as the control effectiveness depends on

how closely the proposed model emulates the real time forces and conditions. The

methodology adopted for the active control of Wind Turbines was mainly simula-

tion based and focused on adopting an aeroelastic model for a rotating wind turbine

blade. This proposed model is the modified aeroelastic model, initially known as

Peters-He Model, which includes structural-dynamic model, induced flow model
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along with the airloads model. The aerodynamics and airfoil effects are based on

a ONERA type model and the integration of structural-dynamics with airloads al-

low this model to include the past history of blade motions. The technique also

employed various approximate analytical methods such as FEM and Rayleigh-Ritz

method to obtain stiffness and mass matrix. The Euler-Bernoulli beam equation

was solved for the free and forced response after its conversion into State Space

Matrix form to obtain mode shape and natural frequencies. The uniform cantilever

beam was used as an initial point to validate MATLAB code for different analyt-

ical methods and the results from the MATLAB code were compared with those

given in the literature. The results for stiffness and mass matrix were found to

be comparable and the state space model was obtained which was used to develop

a reliable vibration control mechanism using LQR control. The state space model

was modified to account for piezoelectric patch attached to beam for vibration sup-

pression. The results show improvement in edgewise vibration of a wind turbine

model. The technique enhances the real control effectiveness and effectively in-

corporates forces and atmospheric conditions. The results depict improvement in

controlling the edgewise vibration of a wind turbine blade.

Keywords: edge-wise vibrations, Aeroelastic model, Wind Turbines, LQR Control
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 ملخص الرسالة

 

 حمزہ احمد میرطیب نیثاراحمدالاسم الكامل : 

 تحلیل المرونة الهوائیة للشفرات الذكیة لدوارات الرياح ذات التحكم النشطعنوان الرسالة : 

 هندسة الطیران والفضاء: التخصص

       ٢٠١ ٧دسمبر :تاريخ الدرجة العلمیة 

 

يقدر بثمن، وبديل للوقود الأحفوري. والهدف من أثبتت طاقة الرياح نفسها كمصدر متجدد لا 

هذاالبحث هو تقديم نموذج للمرونة الهوائیة لشفرات دوارات الرياح وقوى الحركیة الهوائیة 

علیهابحیث يكون أكثر واقعیة، وذلك من أجل التحكم بطريقة نشطة في الاهتزازات في اتجاہ 

 خدام المواد الذكیة. يتمثل التحدي الذي يواجههشفرة الدوار بطريقة أكثر كفاءة من خلال است حافة

 المجتمع البحثي في تطوير نموذج واقعي للمرونة الهوائیة، حیث تعتمد كفاءة التحكم على مدى

 اقتراب النموذج المقترح من تمثیل القوى والظروف في الوقت الفعلي.إن المنهجیة التي اتبعت

 سا على المحاكاة، وركزت على تبني نموذج مرونة للتحكم النشط في دوارات الرياح مبنیة أسا ً

 هوائیة لشفرة الدوار، هذا النموذج المقترح هو نموذج مرونة هوائیة معدل، معروف في البداية

 باسم نموذج بیترز هي، ويتضمن نموذ ً جا حركیا إنشائیاً، ونموذجاً للتدفق المستحث، مع نموذج

  ائیة وتأثیرات مقطع الشفرة على نموذج من نوع أونیراللأحمال الهوائیة. وتعتمد الحركیة الهو

 وعلى تكامل حركیات الهیكل مع أحمال الهواء بما يسمح لهذا النموذج بتضمین التاريخ السابق

 لحركات الشفرة، استخدم الأسلوب أيضاً طرقاً تحلیلیة تقريبیة مختلفة، مثل طريقة العناصر

-على مصفوفتي الجساءة والكتلة، وتم حل معادلة أويلرريتز للحصول -المحدودة، و طريقة رايلي

بیرنولي للعوارض لإيجاد الاستجابة الحرة والقسرية بعد تحويلها إلى شكل مصفوفة فضاء 

وذلك للحصول على أشكال الوضع والترددات الطبیعیة، كما تم استخدام عارضة منتظمة  الحالة،

ق تحلیلیة مختلفة، وتمت مقارنة النتائج من أولیة للتحقق من صحة برنامج ماتلاب لطر كنقطة



xx 
 

ماتلاب مع تلك الواردة في المواد المطبوعة، ووجد أن النتائج الخاصة بمصفوفتي الجساءة  برنامج

متقاربة، وتم الحصول على نموذج فضاء الحالة لاستخدامه في تطوير آلیة تحكم في  والكتلة

لتربیعي الخطي، وتم تعديل نموذج فضاء الحالة موثوق بها باستخدام التحكم بالمنظم ا الاهتزاز

الاعتبار الرقعة الكهروإجهادية الملتصقة بالعارضة لقمع الاهتزاز، وتظهر النتائج تحسناً  لیأخذ في

حیث يعزز هذا الأسلوب الفعالیة الحقیقیة للتحكم،  اهتزازات الحافة لنموذج دوارة الرياح، في

عال، وتوضح النتائج تحسناً في التحكم في الاهتزاز الحاد القوى والظروف الجوية بشكل ف ويدمج

 .دوارات الرياح شفرةل

 اهتزازات الحافة ، نموذج للمرونة الهوائیة ، دوارات الرياح ، التحكم بالمنظم :كلمات البحث

 التربیعي الخطي



CHAPTER 1

INTRODUCTION

1.1 Potential of Wind Turbines

Wind power has immense potential as a possible renewable energy source. The

power in the wind can be utilized as a non-polluting and renewable source of

energy to meet energy needs around the world. Renewable and comparatively

inexpensive energy sources have been the focus of modern world. The world is

becoming more inquisitive about the wind potential and its future as a possible

replacement to coal and oil in the energy sector [8]. According to an estimate

by Arab Union of Electricity, the total installed capacity of Saudi Arabia in 2016

was 74.709 GW which is expected to rise to about 100 GW in 2027 and about

74% is currently generated from thermal resources including gas, oil and diesel

[9]. According to vision 2030, an initial target for renewable energy generation

was set at about 9.5 GW and by 2040 the goal is to generate more than 50%

(about 72 GW) from renewable energy resources [10, 11]. The wind energy has

1



immense potential in Saudi Arabia as it is blessed with extensive wind corridors,

lengthy shores and relatively high wind speeds. According to an estimate by King

Abdullah City for Atomic and Renewable Energy, the mean wind speed in most of

Saudi Arabia is between 6.0 to 8.0 m/s [12]. In another study, the wind speed was

measured at a height of 40 m at five different locations namely Arar, Dhahran,

Dhulum, Gassim and Yanbu in Saudi Arabia and it was found that the average

wind speed varies between 4.3 to 5.7 m/s. [13]

After careful assessment of future energy needs, it was found that there is a

need to initiate major developments in both design and operation of wind turbines.

Moreover, the cost of energy production, using wind as a main resource, has been

dropping considerably since the last two decades. The cost reductions are mainly

due to introduction of newer technologies and higher production scales which are

consequently leading to larger, more efficient and more reliable wind turbines.

According to an estimate, the cost of energy from wind turbines tend to vary

from $3 - 6 per Watt for relatively small wind turbines to 15 - 20 Cents/kWh for

large turbines [14]. A recently published paper promised even more economical

per unit cost varying from 5.85 Cents/kWh in Dhahran to 12.81 Cents/kWh in

Riyadh while using the most feasible wind turbines for the region. [15]

1.2 Types of Wind Turbines

A wind turbine basically converts the kinetic energy of wind into mechanical

power of wind turbine, through rotation about some axis, which is subsequently

2



transformed into electricity by a generator connected with the main grid. Rotating

design can be further classified into two great classes of wind turbines, horizontal

and vertical axis wind turbines. Horizontal-axis wind turbines (HAWT) spin

about a horizontal axis while a vertical-axis wind turbine (VAWT) spins about a

vertical axis [16].

Horizontal Axis Wind Turbine

Horizontal Axis Wind Turbine (HAWT) uses lift as the main driving force and

have been found much more efficient than VAWT. The rotor of HAWT is usually

mounted on a hub and tower structure and responds to the changes in wind

direction and turbulence which have a negative effect on performance. The best

locations for HAWTs are open areas with smooth air flow and few obstacles. [6, 17]

Components of HAWT

The main components [17] of the wind turbines are as follows

• Rotor Blades

• Hub

• Gearbox

• Shafts

• Nacelle

• Tower

• Brakes

• Controller

• Yaw Mechanism

• Alternator

• Anemometer

3



1.3 Rotor Dynamics

Rotor:

A rotor is a body suspended by a set of cylindrical hinges or bearings that allow

it to rotate freely about an axis fixed in space.

Examples of Rotor:

Wind turbine bladed disks, Transmission Shafts, parts of reciprocating machines,

Space vehicles & celestial bodes, gas turbines, Steam turbines, pumps, compres-

sors, turbochargers, electric motors and generators, etc

Wind Turbine Rotors

The rotors can be divided into two major types depending upon the type of

motion. A wind turbine rotor undergoes periodic vibrational motion under aero-

dynamic loading. Moreover, It is a fixed rotor as it has fixed bearings with a

limit on angular velocity. The other type are isolated rotors which are mainly

governed by the laws of conservation of linear and angular momentum. If small

displacement and rotations could be assumed, both fixed and free rotors can be

treated similarly [18].

Wind turbine rotors are the main rotating part of wind turbines and are usu-

ally shaped like an aerodynamic body with an airfoil as its cross-section. The

airflow over the blades generates momentum and lift which consequently causes

them to rotate and vibrate. The blades on most modern wind turbines are made

from composites materials such as fiberglass reinforced plastics and wood/epoxy

laminates.
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The rotor blades are usually subjected to most stringent structural require-

ments as they are the most basic load bearing component in HAWT. In addition

to the primary requirements of stiffness, strength, and ease of manufacturing, tur-

bine blades must withstand severe fatigue loading under disparate environments.

Fatigue is the main factor that reduces the life span of wind turbine and can be

defined as the progressive and localized structural damage that occurs when a

material is subjected to cyclic loading or stresses. Therefore, possible causes of

failure (breakdown) of wind turbines have to be considered while designing wind

turbine blades. The turbine blades are made up of certain types of composite

materials in which low strain damage failure can occur when subjected to cyclic

loadings under gust conditions. To avoid this and other kind of failures, design

engineers have to incorporate some safety limits by employing various controller

mechanisms [6].

1.3.1 Rotor Coordinate System

The motion of a rotor system can be represented using fixed (inertial) Cartesian

coordinate system (x,y,z) on a beam as shown in Figure 1.1. The x-axis represents

the shaft’s axis and the y- and z-axes form a plane perpendicular to the shaft.

The origin, o, coincides with an arbitrarily defined reference position of the shaft

centerline. The lateral motion of the shaft is then defined by translations and ro-

tations (using the right-hand rule) in the (x, y)-plane. Small motion assumptions

are generally made so both the translational (u, v, w) and rotational components
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(α, β, θ, γ) of motion may be treated as vector quantities.

Figure 1.1: Rotor Coordinate System representing translations and rotations[4]

The displacement of a typical structural point on a rotating assembly includes

axial, lateral, and torsional components. The associated translation and rotations

are as follows:

• Axial Components: translation (w)

• Lateral Components: translation (u, v) and rotation (α, β)

• Torsional Components: superposition of rigid body rotational and torsional

deformation (θ + γ)

The torsional motion is usually represented as a superposition of a rigid body

rotation (θ) plus a torsional deformation (γ). In most rotor systems, the axial

components of motion, w, is actually negligible. In addition, the static and dy-

namic coupling between the torsional motion (γ) and lateral components of motion
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(u, v, α,β) are generally weak. Thus, most rotor system model treat the lateral

vibration and torsional vibration problems as separate and decoupled problems.

For the case of geared systems, however, there may be strong static and dy-

namic coupling between the torsional and lateral motions of the rotating assem-

blies [4].

1.4 Vibrations in Wind Turbines

Rotors with blades, as in HAWT, are prone to edgewise vibrations due to the

flexibility of the blades and the support. The current challenge is to significantly

reduce the cost of wind energy by increasing the expected lifetime of wind turbines

through implying mechanisms which reduce fatigue loads. The detrimental effects

of edgewise vibrations, with increase in the size of wind turbines blades, has been

the focus of various researchers as they significantly decrease the fatigue life of

wind turbine blades [19]. Most turbine blades have a design life of about 30 years,

however, this can be reduced to 10 years of service due to presence of high fatigue

loads [20]. The conventional way of reducing fatigue loads is by pitch regulation

of turbine blades as shown by Bossanyi in [21].

1.4.1 Modes of Vibrations

In order to model a wind turbine blade for vibration study, the nature of the

dynamic equation for the edge-wise and flap-wise vibration needs to be under-

stood. Wind turbines have two major modes of vibrations, namely edge-wise and
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flap-wise vibrations [5] as shown in Figure 1.2. The edge-wise vibrations, also

known as lead-lag, are oscillations in the plane of rotating axis of wind turbine.

The overall coordinate system and the direction of rotation is shown in Figure

1.7. Most researches use both active and passive vibrational control to increase

expected lifetime of turbine blades.

Figure 1.2: Edge-wise (Or lead-lag) and Flap-wise Vibrations in wind turbine
blade [5]

1.4.2 Whirling Motion

Whirling of a shaft is its motion in a direction transverse to the axis of rotation.

For a point mass in the rotor system, Whirling can be defined as a simple harmonic

motion which occur simultaneously in two perpendicular directions with common

frequency (ω) known as whirl frequency. This frequency is also equal to the

average precessional rate over a complete rotation. A synchronous whirl (circular

vibrational motion) is one in which the shaft rotates and spins about its axis and
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both rotational speeds are identical. There are two types of whirling motion based

on frequency:

• Free-vibration motion at a natural whirl frequency (Free whirling)

• Forced Vibrations at a specific excitation frequency

In elliptical vibrational motion, acceleration is always directed towards the cen-

ter of the elliptical orbit while the transverse acceleration component is negligible.

This motion reduces to circular motion in case of isotropic support properties [18].

The two special cases of elliptical vibration motion are forward circular whirl and

backward circular whirl. Forward circular whirl is the normal motion of a ro-

tor and it is the motion occurring in the same direction of the spin speed while

backward circular whirl occurs infrequently except for systems that have coupled

counter-rotating assemblies [4]. A forward motion is characterized by positive

whirl angular velocity ωw while a backward motion is characterized by a negative

value of ω. The natural frequency of the rotor or the whirl speed does not depend

on the rotational speed Ω [18].

1.5 Aerodynamics of Wind Turbine

There are numerous aerodynamic models for wind turbines and while most of

them are effective in providing an estimate of the overall performance, only few are

capable of determining aeroelastic behaviour. This is because the determination of

aeroelastic behaviour requires greater amount of accuracy along with consideration
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of dynamic effects such as dynamic stall and induced inflow. In this section, some

of the aerodynamic models are briefly reviewed along with some basic concepts

relating to these models.

1.5.1 Blade Element Momentum Theory

This theory is quite popular and require relatively less computation as it presents

set of linear equations that can be solved iteratively to get the performance param-

eters. It is a combination of momentum and blade element theory as summarized

in figure 1.3. It calculates the performance characteristics of an annular section

of an idealized rotor as shown in Figure 1.4. The result is than obtained by

integrating the values obtained for each annular section of the rotor.

Figure 1.3: Simplified Block Diagram for Blade Element Theory
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Figure 1.4: Annular Section formed by differential radius (dr) of the rotor [6]

1.6 Aeroelasticity

Aeroelasticity can be described as a study about the effect of aerodynamic loadings

on various elastic bodies such as wind turbine blades which deform significantly

under cyclic loading. The aeroelastic model should be able to predict forces on a

rotating isolated blade considering the fluid-structure interaction. In aeroelastic

problems such as that of a wind turbine blade, the response of the system under

external loadings is needed to be determined [22]. These loadings are of various

types including centrifugal, angular acceleration, aerodynamic and other external

forces. The centrifugal forces are caused by body inertia and is directed away

from the center of the rotor. The angular acceleration forces are mainly caused by

rate of change of angular velocity of wind turbine rotor. The aerodynamic forces

are primarily caused by airflow relative to the blade which include steady wind

conditions, gusts and turbulence such as Kelvin-Helmholtz instabilities [23]. In
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this research, the primary response to be controlled are the edgewise displacements

which are mainly caused due to combination of all these forces. These vibrations,

as described earlier in section 1.4, are caused due to varying wind conditions and

hence wind turbine blades can be better modelled as a dynamic response problem

accommodating aerodynamic, inertial, angular acceleration and other external

forces.

1.6.1 Static Aeroelasticity

The wind turbine blades has a typical airfoil section and its aeroelastic behaviour

largely depends on aerodynamic forces acting on blades. The aeroelasticity induce

changes in angle of attack (α) which subsequently results in change in forces. In

order to incorporate the aeroelastic effect, a typical blade cross-section can be

represented by a flat plat airfoil attached to a torsional spring as shown in Figure

1.5. Also, the forces on a typical wind turbine airfoil are shown in Figure 1.6

1.7 Control System

Control system analysis and design in general can take place in either time or

frequency domain. The physical variables that are directly observable and mea-

surable can be analyzed in time domain while in frequency domain these quantities

undergo some transformation before computation.
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Figure 1.5: Simplified aeroelastic model of an airfoil [7]

1.8 Smart Materials

Individual pitch control of blades is one method to minimize fatigue loads. Other

methods include the use of aerodynamic control surfaces such as trailing edge flap

and Microtabs which are not effective in controlling the displacements within the

plane of rotation. Researches presents various ways of active control methods for

HAWT and suggests that intelligent control systems using smart materials can

significantly reduce the in-plane vibrations [24].

Piezoelectric materials are specialized crystals with the ability to generate

an electrical charge when stimulated by an external stimuli like temperature,

force, electric and magnetic field or vice versa, hence, they can be used both as

sensors and actuators [25]. These Piezoelectric based actuator/sensor combination

is usually coupled along the span of the blade. The actuator apply localized

strains/displacements based on signal from sensor and control law [26, 24].
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Figure 1.6: Forces on airfoil

In order to model such system, we can either use electrical energy balance

equation or constitutive relations. Smart materials have coupling between the

electric and elastic fields which can be represented by linear constitutive equations

given below.

~De = ε0 ~Ef + σp~εe (1.1)

~σe = −σpT ε0 + Cevecεe (1.2)

Where ~De is the electric displacement vector, ~Ef is the electric field vector derived

from the negative gradient of the electric potential, ε0 is the dielectric permittivity

matrix evaluated at constant elastic strain, σp is the piezoelectric stress matrix,

εe is the elastic strain vector, σe is the elastic stress vector and Ce is the elastic

matrix (Hook’s law) at constant electric field. The moment (both elastic and
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piezoelectric) acting on the structure can be obtained in terms of input voltage

by integrating the first equation over the depth of typical actuator patch. The

deformation of the structure in terms of output voltage and the strain can be

obtained by integrating the second equation over the depth of a sensor patch

[27]. Researchers have suggested some active vibration control models [28] that

attempts to improve on the modelling with a better controller that works in a

more efficient way to enhance the lifetime of the wind turbine.

Figure 1.7: Overall Direction of Rotation, Coordinate axis, velocity direction for
HAWT (Not Drawn to Scale)

1.9 Problem Statement

The problem which is currently being faced is that in order to develop a re-

sponsive control based on smart materials, i.e. one that significantly reduces

edge-wise vibrations, a better and more realistic aerodynamic model should be

15



used. This would greatly improve the accuracy of forced response simulations and

would eventually help to formulate a control feedback technique that effectively

reduces vibrations. This could prove significant in increasing wind turbines life

and lowering the overall cost. Hence, the problems are two-folds, mainly, a realis-

tic aerodynamic modelling of wind turbine and formulating a viable control based

on that mathematical model.
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CHAPTER 2

LITERATURE REVIEW

The subject of aeroelastic beam modelling for vibration control is a diverse subject

and hence requires knowledge from various fields including aerodynamics, engi-

neering vibrations, elasticity and control. Hence, considering the diversity of the

topic and organization, the section of literature review is divided mainly into four

major sections.

1. Beam Vibrational Model

2. Aeroelastic Model

3. Simulation based Modelling

4. Control Techniques

2.1 Beam Vibrational Model

Khulief and Bazoune [29] developed a Finite Element (FE) model for vibration

analysis of a rotating tapered Timoshenko cantilever beam with variation in taper
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ratio and beam length. The method used reduced set of modal co-ordinates and

was formulated for isotropic, homogeneous material with a beam of rectangular

cross-section. Mathematical expressions for mass and stiffness matrices were ob-

tained while taking into account the centrifugal stiffness effects due to rotation

of beam. Vibrational modes for different boundary conditions were validated by

comparison with published numerical results. In [30], a reduced set of modal

co-ordinates were obtained for a rotating elastic beam using transformation from

nodal to the modal co-ordinates space. The concept of potential and kinetic en-

ergy from Lagrangian energy method was employed to obtain finite element mass

and stiffness matrices. This choice of realistic set of modal co-ordinates enhanced

the efficiency of the FEM and a comparison was made for the efficiency of the

optimal control with and without rotational effects.

Baillargeon [31] performed experimental and 2-D finite element vibration analysis

for a Aluminum sandwich cantilever beam using ABAQUS/Standard 6.3-1 and

implemented active feedback PID control through piezoelectric shear actuators.

The results were validated through comparison of natural frequencies (1st four)

of the experimental and finite element model and significant decrease in hybrid

cantilever beam vibrations was observed after implementation of PID controller.

Gunda et al. [32] implemented super-element FE technique to reduce the degree

of freedom for dynamic analysis of rotating tapered uniform cantilever beams us-

ing Fourier-p approach. In order to obtain natural frequencies, a combination

of polynomials and Fourier series were used as shape functions. This technique
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significantly decreases computational time and comparable non-dimensional nat-

ural frequencies results were obtained using a single super-element under different

rotational speeds. Research further suggested that the technique can be imple-

mented in FE modelling of rotating beam with airfoil cross-section. Wereley et

al. [1] develops and validates a uniform and non-uniform rectangular isotropic

cantilever beam model. A MATLAB code was formulated for isotropic uniform

beam and mode shapes were obtained using assumed modes, lumped parameter

and finite element method. The effect of piezoelectric patches were included for

the non-uniform case and the results showed that assumed mode method closely

matches with experimental results for both beam types.
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# Source Mathematical Model Material
Type

Methodology

1 Bazoune
& Khulief,
1992 [29]

Derived 4 DOF FEM for
vibration analysis of a ro-
tating rectangular tapered
Timoshenko cantilever
beam.

Isotropic,
homogeneous
material

Mass and Stiffness matrix
were developed including
centrifugal stiffness effects.
Free vibrational modes for
both fixed and hinged end
conditions were obtained.

2 Khulief Y
A., 2001
[30]

FEM model was developed
and reduced set of modal
co-ordinates were obtained
using transformation to the
modal co-ordinates space.

Uniform,
Isotropic and
homogeneous

Model was developed using
Lagrangian energy method.
Mass and Stiffness matrix
includes centrifugal stiffness
effects

3 Baillargeon,
2003 [31]

2-D finite element vibration
analysis

Aluminium
(Isotropic,
homogeneous
material)

Experimental analysis
and simulation using
ABAQUS/Standard 6.3-1
software

4 Gunda et
al., 2007
[32]

Reduced DOF using super-
element FE technique for
rotating tapered cantilever
beam using Fourier p ap-
proach

Uniform
Isotropic,
homogeneous
material

Polynomials and Fourier Se-
ries shape functions were
used

5 Wereley,
2011 [1]

Used Euler-Bernoulli beam
equations to develop a
model for non-rotating
cantilever beam

Uniform
(Isotropic,
homogeneous
material) and
non-uniform
with PZTs
effect

Assumed Modes, Lumped
parameter and FEM meth-
ods were used to obtain
mode shapes and natural
frequency

Table 2.1: Summary of the Beam Vibrational Models for Wind Turbines blades.
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2.2 Aeroelastic Model

Prediction of forced response requires an accurate estimate of aerodynamic forces

over the wind turbine blade. The flow around a turbine blade involve both changes

in position and rotation. Under dynamic conditions, flow tends to approach a sta-

ble flow pattern after an initial transient period. Fung in [22] obtained an analyt-

ical solution for a fully attached flow for the oscillating airfoil motion accounting

also for change in position. Leishman in [33] presented both analytical solution

and experimental results which indicates lift lag or double stall phenomenon dur-

ing fully attached conditions with a higher lift at decreasing α and relatively lower

lift at increasing α as compared to the flow over a non-rotating airfoil . Hence,

the wind turbine blade dynamics requires the periodic modeling of aerodynamic

forces. Numerous dynamic stall models have been suggested as discussed and

suggested by researchers to account for these dynamic effects. Current research

divides the dynamic stall models into three categories based on the approach that

is being used to model the forcing function. These approaches include the effects

of different flow conditions over the wind turbine, the characteristics of the lift

curve and dynamic angle of attack [34].

Beddoes and Leishman [35] formulated a dynamic stall model for a rotating

helicopter blade and accounted for separated and attached flow effects over a ro-

tating blade cross-section. The model was mainly formulated for helicopter rotor

dynamics and include variations in flow response as parameters like Mach number

change. Hansen et al. [36] developed a reduced DOF Beddoes-Leishman model
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ignoring the effects of compressible flow and leading edge separation while aiming

to account for the effect of the flow conditions around turbine blades. [31] Nour

et al. [37] used FEM to obtain natural frequencies and mode shapes of helicopter

blades made of various materials subjected to static aerodynamic load. Analytical

and numerical modeling depicts the difference between stresses and various spec-

trum of displacements of orthotropic and isotropic materials. Liu [38] defined the

appropriate coordinate system and developed coordinate transformation relations

to derive the equations of motion for elastic rotating beam with constant angular

velocity. A distributed aerodynamic forces and moments model was developed

to yield a state-space model for aerodynamic loads. The analytical expressions

for strain energy, external work were also obtained with rotational velocity effect

included in kinetic energy. The technique was found to reduce effectively both

noise and vibrations in helicopter blades with active and passive adaptive control.

Larsen et al. [34] developed and validated a wind turbine aerodynamic model for

lift under dynamic stall and made a comparison between different aerodynamic

lift models including Beddoes-Leishman and the ONERA model for various wind

turbine profiles subjected to different dynamic effects under certain loading con-

ditions. Svendsen et al. [39] used dynamic stall aerodynamic model from [34] and

developed an active control for vibration modes of a HAWT. The control system

consists of actuator-sensor pairs on each of the blades, and targets a set of three

modes. The control signals from the blades tuned the response of the actuators to

provide resonant damping of three modes. Numerical simulations were validated
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by experimental data and show that active damping system can provide a signifi-

cant reduction in the response amplitude of the targeted modes. Similarly, in [40]

Nailu and Balas devleoped a rotating blade mathematical model with dynamic

aerodynamic coefficients calculated using Beddoes-Leishman dynamic stall model.

Adaptive Controller was designed and validated for the model to control flutter

vibrations using flap under periodic aerodynamic loads.

Roura et al. [41] focused on development of an aero-elastic model using vortex

panel method to predict the effect of near and far wake by coupling BiotSavart law

with rotor aerodynamics. Numerical code was formulated using relaxation method

with periodic boundary condition and validated against published experimental

results. In 2011, Jeong et al. [42] developed nonlinear beam FE model to perform

aero-elastic analysis of Wind Turbine blades through vortex method to estimate

forces, deformations and their effect on aero-elastic stability. This study used

nonlinear beam theory model for the structural analysis to account for significant

structural non-linearities that exist in large wind turbines. Aeroelastic analyses

of wind turbine blades were conducted using the vortex method. In vortex model

of the rotor blades, trailing and shed vorticity in the wake are represented by

lifting lines. The strength and position of the vortices from the induced velocity

were found using the Biot-Savart law. Hence, an aero-elastic model was developed

and both stiffness and aerodynamic matrices were obtained. A verification and

validation of vibration mode was performed by comparing the aero-elastic model to

previously published computational results and they were found to be in excellent
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agreement with the previously publish results as well as experimental data. In

2013, Zou et al. [43] formulates a numerical vortex type aerodynamic model

for an airfoil subjected to time varying loads and aero-elastic instabilities. Lift

and drag predictions at high angles of attack of the Vortex aerodynamic model are

validated with experimental and CFD results. Subsequent aero-elastic simulations

concluded that beyond certain wind velocity the edge-wise vibrations surge both

due to negative damping and lock-in phenomenon. Skrzypinski[44] developed

an aerodynamic and CFD model for a wind turbine to predict vortex and stall-

induced vibrations of wind turbines in parked condition. The results suggest

that further aero-elastic analysis and simulations are required to predict blade

vibrations in parked conditions. Hence, suggesting an area that can be worked

upon by future researchers.

In [45], Bichiou et al. coupled a 2D quasi-steady approximated aerodynamic

model with an airfoil section to determine the effects of structural and dynamic

non-linearities on using Hopf bifurcation near the onset of instability. Using the

Numerical simulations of the approximated model, flutter speed was shown to

be varied with parameters such as initial conditions, limit-cycle oscillations, rota-

tional speed and blade radius. Wenzhi and Jianxin [46] employed Blade element

momentum (BEM) theory to present a modified Wilson optimized model of a

turbine blade for a wind turbine. Aerodynamic coefficients and their dependency

on factors such as cost, craft, structure and blade aerodynamic parameters was

found. 3D modelling of the turbine blade was carried out using CAD software.
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The model can be further used for aerodynamic, FEM, dynamic simulation as well

as a CNC machine model. In [47], Staino et al. use Euler-Lagrangian approach

to develop an aerodynamic mathematical model for a blade with embedded active

actuators to control edgewise vibrations through Linear-quadratic (LQ) control

law. The blade mathematical model was a Bernoulli-Euler cantilever beam ro-

tating at a constant rotational speed and accounts for the structural properties

like stiffness per unit length, mass, gravity, centrifugal stiffness and the overall

interaction between tower and the blade. The model takes into account the vari-

ations in aerodynamic loads under different wind conditions using modified Blade

Element Momentum (BEM) theory. Numerical solutions were then carried out

and compared with the experimental data and show promising improvement in

the control performance and vibration suppression. Bernhammer and De Breuker

[48] develop and validated a geometrically non-linear wind turbine structural FE

model using blade element method (BEM) which reduces structural degrees of

freedom. Ther aerodynamic loads were obtained from [49] using an aeroelas-

tic tool for wind turbines known as DU SWAT. The 6 rigid body modes were

obtained and used to describe deformation and compatibility between different

components of wind turbines.

Alpay et al. [50] validates a nonlinear static and dynamic aerodynamic model

of a HAWT blade using FEM with coupling between rotations and deformations.

The research used a simple dynamic linearly varying aerodynamic force model

acting along the span of the turbine blade. It uses floating frame approach and
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studies the effect of various parameters on deformation such as coupling between

inertial forces, bending and blade skin.

Peters et al. in [51], presented a detailed hierarchical aeroelastic model for a

rotating helicopter blades using the ONERA dynamic stall model. The aeroelas-

tic model considers the coupling between the structural-dynamic model, induced

flow model and a derived airloads model using an extension of thin airfoil the-

ory by Theodorsens approach. The shape functions are used to represent inflow

model and are converted to closed-form state-variable equations which are ideal

for aeroelastic modal analysis.
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# Source Aeroelastic Model Loading Condition

1 Leishman and
Beddoes, 1989
[35]

Developed a semi-empirical dynamic
stall model for helicopter blade section
for unsteady lift, drag and pitching mo-
ment.

Pitching and Plunging Mo-
tion

2 Fung, 1993 [22] Presented an overview of 2D oscil-
lating airfoil theory and fundamental
equations for fully attached flow using
Theodorsen function

Vertical Translational and
Rotational Oscillations

3 Peters and Bar-
wey, et al., 1994
[51]

Used ONERA type model for flow
around helicopter blades

Rotating Motion

4 Hansen and
Gaunaa, et al.,
2004 [36]

Developed a reduced linearized
Beddoess-Leishman dynamic stall
model for helicopter blade section by
ignoring leading edge separation

Heaving, lead-lag and pitch-
ing Motion

5 Wenzhi and
Jianxin, 2009
[46]

Used Wilson optimized BEM model
for designing and subsequently calcu-
lating aerodynamic coefficients for tur-
bine blade

Only Rotational Motion

6 Larsen, 2007 [34] Presented a dynamic stall model for
Wind turbines and compare results
with ONERA and Beddoess-Leishman
dynamic stall model

Both attached and stalled
aerodynamic loading condi-
tions under Rotational mo-
tion

7 Svendsen, 2011
[28]

Used Larsen model in [34] to develop a
3D aeroelastic vibration model of a sin-
gle blade as well as for complete wind
turbine.

Aerodynamic forces under
Rotational motion while in-
cluding centrifugal effect as
in [34]

8 Nour and
Gherbi, et al.,
2012 [37]

Developed and simulated a FE model
of helicopter blades made of different
materials to calculate mode shapes and
natural frequency

Aerodynamic loads in-
cluded the effect of cen-
trifugal force with varying
rotational speed

9 Staino and
Basu, 2012 [47]

Used modified BEM model and Euler-
Lagrange beam model to develop aeroe-
lastic model for 5 MW wind turbine
blade

Accounts for Centrifugal
stiffening, gravity and in-
teraction between blade and
tower

10 Li and Balas,
2013 [52]

Beddoess-Leishman dynamic stall
model

Periodic aerodynamic Load-
ing under rotational effect

Table 2.2: Summary of the Numerical Aeroelastic modelling of Wind Turbines blades.
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# Source Aeroelastic Model Loading Condition

1 Liu, 2005 [38] Developed a Vortex based simulation
model for BVI induced vibrations and
noise suppression of a helicopter blade
using an actively controlled flap tech-
nique.

Accounted for blade flexi-
bility and used distributed
model of aerodynamic force
and moment under Rota-
tional Motion

2 Roura and
Cuerva, et al.,
2009 [41]

Used Vortex panel method to develop a
numerical code for near and far wake of
3D rotor and coupled Biot-Savart law
with Rotor dynamics to determine tip
vortices

Periodic aerodynamic load-
ings under rotational effect

3 Alpy and Barut,
2010 [50]

Used FEM to develop a non-linear
static and dynamic aerodynamic model
for a linearly varying force

Rotation and deformation
coupling

4 Jeong and Yoo,
et al., 2011 [42]

Developed a FE model for aeroelastic
analysis of a large isolated wind tur-
bines blade using Vortex method and
non-linear beam theory

- Rotational effects were in-
cluded while elastic effects
were ignored

5 Skrzypinski,
2012 [44]

Used both analytical and CFD tech-
nique to predict vibrations due to the
effect of vortex and stall for 2D and 3D
airfoil models at standstill conditions

Loads under parked condi-
tions

6 Zou and Rizio-
tis, et al., 2013
[43]

Developed a numerical non-linear aero-
lastic tool using Vortex method for an
airfoil at high AOA (60°-120°)

Dynamic loads along with
aeroelastic instabilities at
parked conditions for differ-
ent speeds

7 Bichiou and Ab-
delkefi, 2014 [45]

Used Numerical simulation for 2-D
quasi steady flow using normal form of
Hopf bifurcation near instability region
for an airfoil

Plunging and Pitching Mo-
tion

8 Bernhammer
and De Breuker,
2014 [48]

Used modified BEM and beam the-
ory to develop non-linear wind turbine
model using DUSTWAT FE tool

-

Table 2.3: Summary of the Simulation based Aeroelastic modelling of Wind Turbines blades.
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2.3 Simulation based Modelling

In [53] Wang et al. presented a nonlinear beam FE mathematical composite beam

model using geometrically exact beam theory (GEBT) and spatial discretization

technique. The numerical simulations for displacements were carried out using

BeamDyn software and are validated through simulating vibration solutions for

static and dynamic composite cantilever beam with rectangular cross-section.

Couturier et al. [54] developed a method to get 6 DOF stiffness matrix for a

general cross-section anisotropic beam. The stiffness matrix is used in FEM

analysis which is validated by comparing deformation modes. The model is found

to be accurate and fewer elements were required to obtain satisfactory mode

shapes for wind turbines blades.

Kumar et al. [55] formulated a Al 2024 based wind turbine blade design

and simulated the CAD model on ANSYS software for vibrational response at

above and below survival speed. The maximum deformation occurred at tip when

the turbine blade was subjected to forced vibration with free-free and fixed-free

boundary conditions. Buren et al. [56] performs modal analysis using ANSYS

FE software and validates results with a derived analytical model for a hollow

cylinder. Wind turbine isotropic blade modal analysis is than performed in order

to find mode shapes. In part II, Buren et al. [57] develops and verifies an error

bounded isotropic FE model of CX-100 HAWT and obtain vibration solution using

Gaussian process models. Using test analysis correlation (TAC), error quantifica-
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tion and statistical methods such as Phenomena Identification and Ranking Table

(PIRT), the model code has been found to predict with great accuracy the bend-

ing and mode shapes for different types of boundary conditions when compared

with experimental results. Leung developed governing equations for pre-twisted

helical anisotropic beam with rectangular cross-section with fixedfixed, fixedfree

and freefree boundary conditions. The results were compared after the vibration

solution was obtained through Galerkin method with a pre-twisted straight beam

model in ANSYS [58]. Garinis et al. [59] obtained the natural frequencies and

mode shapes for composite helicopter blades using Lanczos method on ANSYS

software. In [60] Buren et al. quantifies the amount of uncertainty in a non-linear

FE beam code (NLBeam) based on geometrically exact beam theory. The mode

shapes for different beam configuration and boundary conditions were compared

to establish the credibility of NLBeam. The study compares a three dimensional

shell model and a simplified one dimensional beam model. Experimental modal

analysis were also performed and the results were than compared with those ob-

tained from NLBeam software for both free-free and fixed-free boundary condi-

tions. The results demonstrate that the simplified beam models are capable of

replicating vastly different experimental configurations. The research also suggest

that, in order to study the nonlinear behavior more accurately, the assumption of

a wind turbine blade as a simplified cantilever beam needs to be modified.
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# Source Model Type Numerical Technique

1 Wang and
Sprague, et al.,
2014 [53]

Used GBET through spatial dis-
cretization technique to model
both static and dynamic rectan-
gular composite cantilever beam.

Employed BeamDyn Software to
implement Legendre spectral fi-
nite elements (LSFE) code for
FEM analysis

2 Couturier and
Krenk, et al.,
2015 [54]

Developed 6 DOF stiffness ma-
trix for composite beam

-

3 Kumar and
Dwivedi, et al.,
2014 [55]

Developed a CAD model for a
Wind turbine blade

Used ANSYS software and ob-
tained results for free-free and
fixed-free boundary conditions

4 Buren and
Mollineaux, et
al., 2011 [56, 56]

Isotropic Wind Turbine Blade
and error bounded FE model

Mode shapes Gaussian process
models Test analysis correlation
error qualification using ANSYS

5 Leung, 2010 [58] Galarkin method pre-twisted
straight beam

pre-twisted helical anisotropic
beam with different boundary
conditions

6 Garinis and Din-
ulović, et al.,
2012 [59]

Composite helicopter blades Used Lanczos method

7 Buren and
Mollineaux, et
al., 2012 [60]

non-linear FE beam code NL-
Beam

3D shell model 1D model different
beam config and B.C

Table 2.4: Summary of the Simulation based modelling for Wind Turbines blades.

31



2.4 Control Techniques

Khulief and Bazoune in [61] also used active control method by implying two sets of

sensors and actuators for suppressing vibrations of an elastic beam. Finite element

results for vibrational modes were obtained through numerical simulations. Fei

[62] succesfully employed and verified the effectiveness of the optimal PID and

couple of feedback controller in active alleviation of vibration using PZT actuators

for a homogeneous cantilever beam. Rotea et al. [63] designed active structure

control of offshore floating wind turbines based on a reduced-order turbine model.

The results are verified by carrying out the simulations of the system and the

possible advantages and disadvantages of active control technique are discussed

at the end. Nailu and Balas [52] formulate a robust and effective adaptive control

technique for wind turbine with microtabs as modeled by Beddoes-Leishman and

establish control law stability under different wind conditions.

Ali and Padhi [64] presented an optimal dynamic inversion approach for simply

supported Euler-Bernoulli beam using non-linear PDE of motion. The governing

equation were obtained using Hamilton principle and an exact expression for the

control variable was developed. Numerical simulation showed the implementa-

tion of control law, which applied the force based on error between actual and

desired state, effectively reduces beam transverse vibrations. Zhang [65] used

a data-driven technique based on collecting drive train and tower acceleration

measurements to develop a control law and analyze its mitigation effect on wind

turbine vibrations by collecting a large set of experimental and on-field data.
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# Source Model Type Control Technique

1 Khulief,
2001 [61]

2 DOF reduced order model for
an elastic double-span (2m) rect-
angular cross-section beam
using FEM.

Deterministic Optimal Control
technique using two sets of active con-
trol schemes

2 Fei, J. et
al., 2010
[62]

Used FEM model for homoge-
neous steel cantilever beam
(0.8m) .

Developed Optimal PID, Strain
Rate Feedback and Positive Posi-
tion Feedback Control using bonded
PZT actuators

3 Ali and
Padhi,
2009 [64]

Used finite difference method
to develop a numerical model
for non-linear Euler-Bernoulli
PDE for beam (5m).

Implemented both continuous and dis-
creet controller by employing non-
linear Optimal dynamic inversion
control

4 Li and
Balas,
2013 [52]

Used 2 DOF periodic time-
varying Beddoes-leishman
aeroelastic model for NACA
0012 airfoil (0.27m) under various
wind conditions .

Employed active microtab to imple-
ment adaptive control technique

5 Zhang,
2009 [65]

Employed various data mining
algorithms to extract vibration
data from real-time acceleration
measurement from 1.5MW Wind
Turbines.

Implemented non-linear and non-
parametric control

6 Rotea, M
A., et al.,
2010 [63]

Used reduced order wind tur-
bine model using FAST code for
offshore wind turbines with a Ro-
tor radius of 126m.

Implemented Loop Shaping Con-
troller (Robust Control) using Active
Mass dampers (AMD)

Table 2.5: Summary of the Control Techniques for Wind Turbines blades.
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2.5 Current Status

1. After the literature review, it was observed that the modelling of an appro-

priate aerodynamic forcing function is an inspiring area for researches and

offers great prospect for future research.

2. The challenge is to select and validate an appropriate aerodynamic model

which would closely predict the actual wind turbine dynamic response.

3. The present BEM models are more efficient but there is a need to improve

the accuracy by accounting for unsteady and harmonic motion of the blades

especially due to rotor yaw, rotation speed, cross-section and twist along the

span.

4. Future aerodynamic models may propose a hybrid approach, switching to

vortex method when subjected to rotor yaw, which could prove more accu-

rate.

5. Also, a suitable BEM would also account for the reduction in free stream

velocity as the wind approaches turbine blades.

Hence, an aerodynamic model which would make this correction is required in

order to improve the accuracy of dynamic response of models using BEM and get

comparable results in dynamic conditions.
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2.6 Objective

1. Develop a more realistic aeroelastic model that responds to real-time atmo-

spheric conditions.

2. Development of a responsive control that significantly reduce edge-wise vi-

brations.

3. Improve the accuracy of the forced response simulations that are based on

predicted aerodynamic forces.

2.6.1 Major Tasks

The major tasks of this work are hereby outlined below:

• Analyze the aeroelastic turbine blade models that were presented in the

literature review and select a model which is not only efficient but would

also help to improve the accuracy of wind turbine dynamic response.

• Propose an improvement on an existing turbine blade mathematical model

by using Blade Element Momentum and Vortex Method.

• Estimate the aerodynamic force based on geometry, wind condition and

other parameters which affects the wind turbine performance.

• Derive Beam equation in state space form for modified model.

• Formulate a code to find stiffness, mass and damping matrix from mathe-

matical model.
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• Solve for characteristics and dynamic behavior of turbine blades including

mode shapes and natural frequencies.

• Implement LQR control technique to suppress wind turbine edge-wise (lead-

lag) vibrations.

• Validate results using existing published numerical simulations and experi-

mental data.

2.7 Procedure and Methodology

This research work would be designed to follow a sequence to make an effective

mathematical model and eventually a controller. The first step naturally is to

obtain kinematic representation of an aero-elastic, rotating composite beam using

Euler-Bernoulli partial differential beam expression as given in Equation 2.1 and

determine the appropriate initial and boundary conditions.

∂2

∂x2

(
EI

∂2w

∂x2

)
+ ρA

∂2w

∂t2
+

∂

∂x

(
T (x)

(
∂w

∂x

))
= f(x, t) (2.1)

Where:

Tc(x) - centrifugal tensile load at a distance x from the axis of rotation

The next step is to use the approximate analytical method such as Rayleigh-

Ritz, assumed modes, lumped parameter and finite element method etc. to obtain

the stiffness and mass matrix which can than be used to find natural frequencies

and mode shapes of the system. The details of the applied method are presented
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under the section of Rayleigh-Ritz Method.

At this step, an aerodynamic model would be formulated as suggested in liter-

ature review and described in problem statement. There are several aerodynamic

approaches that exist in aerodynamic modelling and a study in this regard would

include the following tasks:

• Select an aerodynamic technique for formulating load over wind turbine

blade based on literature review.

• Use the technique to formulate an aerodynamic force expression in terms of

relative wind velocity, rotation speed and geometry of turbine blade among

other parameters. This would include

– Defining different reference frames such as local and rotating etc.

– Modelling the flow around the airfoil and along the span of turbine

blade.

– Account for dynamic conditions such as rotor yaw and induction at

blades .

– Make a comparison of the forcing function obtained from BEM and

vortex Method.

• Formulating the expression into a matrix that can be used in state-space

equation.

Different aerodynamic models were studied and one of them that is currently

being used is presented under the section of current work. After getting the
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aerodynamic expression from above, aerodynamic forcing function can be included

in the equation of motions of the system obtained earlier. The next stage would

include getting a state space model for the equations of motions (EOMs) developed

in the previous step. This would help to obtain frequencies and mode shapes of

the system for the forced uncontrolled response.

2.8 Objective of Predicting Aerodynamic Loads

A realistic aerodynamic model will help to achieve the following objectives:

• Determine allowable aerodynamic loading of the system

• Distinguish weakly aerodynamically damped edge-wise vibration modes

from strongly damped flap-wise vibration modes.

• Improve performance of wind turbine blades under various wind velocity

conditions

• Design an efficient controller based on more realistic vibration model

All these objectives, if achieved, would would eventually contribute towards

increasing the overall life of wind turbine and lowering renewable energy cost.

The results of natural frequencies and mode shapes can be compared with pub-

lished numerical and experimental data to verify the validity of the aerodynamic

model. Generally, the geometric and material parameters of the wind turbines

are taken from the published experimental data and are used to obtain the forced
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response so that the results can be compared afterwards. This step is critical

before controller design as it validates the effectiveness of the aerodynamic and

mathematical model.

2.9 Controller Design

Controller forms an important step in the development of the project. Like con-

troller design, this would normally start by obtaining the dynamic equation of the

proposed beam model with bonded piezoelectric actuator and sensor combination.

Hence, a dynamic equation for the smart structure will be obtained which would

include the control force expression. Afterwards, applying the state space method

and piezoelectric theory, a state space model would be obtained. In the next step,

a transfer function can be obtained from this model and system can be mod-

elled in MATLAB Simulink tool. The system can than be subjected to numerous

conditions such as ramp, step and periodic inputs and the vibration response of

system to these and other inputs can be modelled under LQR control technique

as described in the earlier section. LQR control technique which make optimum

use of actuator force, under various input conditions, is selected to dampen the

vibrations.

Controller design is also a pivotal part of the vibration suppression in wind

turbine blades as actuators dampens the vibrations significantly by generating

the correct stimuli in a dynamic environment. The effectiveness of the controller

depends on type of control technique, algorithm, number and position of actu-
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ator/sensor combination among other factors. The challenge faced in this area

is to design a cost, reliable, effective, robust yet efficient LQR controller that

significantly reduce the overall vibrations.

The literature survey suggests numerous control techniques that are currently

being used with most popular being PID and LQR controller. However, other

techniques like Adaptive , Optimal and Fuzzy logic techniques were also found to

be effective in reducing the vibration. The decision of controller was made based

on results and LQR was found effective in reducing the vibrations. Hence, LQR

controlled is suggested after testing the controller for the forced response of the

wind turbine blade.
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CHAPTER 3

STRUCTURAL MODELLING

3.1 Modelling of Beam

In case of a turbine blade, free and forced response can be modelled using various

numerical techniques and natural frequencies and mode shapes can be obtained

and a suitable control law can be formulated to suppress targeted modes.

The wind turbine blade can be modelled as a uniform cantilever Beam because

the length of the large turbine blades is very large as compared to the other two

dimensions and usually the aspect ratio is greater than 7 [66]. The dimensions of

the beam were taken from the literature [1]. The beam considered here is made

up of an isotropic, homogeneous material with a constant value of young modulus

and density. This is taken as a case of validation for the development of the beam

code in order to apply the Rayleigh-Ritz method on more complex problems later.

The geometric and material properties of the uniform beam are summarized in

the form of a table 3.1.
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Characteristic Value

Length 0.6128 m

Width 0.0254 m

Thickness 0.0106 m

Young Modulus 6.9× 1010 Pa

Density 2705 kg/ m3

Mass 0.4456 kg

Moment of Inertia 2.5089× 10−9

Table 3.1: The table summarizes the geometric and material properties for a
uniform cantilever beam [1]

3.1.1 Governing Equation for Beam

The governing equation for forced transverse vibration for a wind turbine blades is

Euler-Bernoulli equation which is also known as Dynamic beam equation (Euler-

Lagrange Equation) [67] :

∂2

∂x2

(
EI

∂2w

∂x2

)
+ ρA

∂2w

∂t2
= f(x, t) (3.1)

For a uniform beam the above equation reduces to:

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
= f(x, t) (3.2)

For Free vibration, uniform beam case, the product EI is constant and hence the

equation 3.2 can be rewritten as:

c2
∂4w

∂x4
+
∂2w

∂t2
= 0 (3.3)
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Where:

c =

√
EI

ρA

Two initial conditions and four boundary conditions are needed to obtain a unique

solution of w(x, t).

3.1.2 Moment and Forces

This section defines the moments and internal forces for beam axis given by Figure

3.1. The internal forces can be written in terms of stress

3.2 State Space Form

The Analytical solutions of Euler-Bernoulli beam Equation do not exist except

for the simplest of cases. Hence, numerical solution is required along with an

appropriate mathematical model to predict mass, stiffness and forcing term. For

numerical simulation, PDE as in equation 3.1 are converted to state space form,

and than the appropriate matrices are obtained. Hence, the Euler-Bernoulli equa-

tion is converted to state space equation which is given in [28] as follows:

Mü+Du̇+Ku = f (3.4)

Where:

• D - Equivalent Damping matrix

• M Equivalent Mass matrix

43



• K - Equivalent Stiffness matrix

• f Forcing vector

3.2.1 Equivalent Mass Matrix

The equivalent mass matrix is a symmetric matrix and can be expressed in terms

of area and longitudinal interpolation matrix as defined in reference in integral

form (equation 3.5).

M =

∫
L

NT
x

(∫
A

NT
ANAρdA

)
Nxdx (3.5)

The area interpolation matrix is a function of y and z coordinates as given by

equation 3.6

NA(y, z) =


1 0 0 0 z −y

0 1 0 −z 0 0

0 0 1 y 0 0

 (3.6)

44



The integral term with area interpolation matrix in equation 3.5 can be expressed

in terms of weighted area, section moments and moment of inertia of the beam.

∫
A

NT
ANAρdA =



Aρ 0 0 0 Sρz -Sρy

0 Aρ 0 -Sρz 0 0

0 0 Aρ Sρy 0 0

0 -Sρz Sρy Iρ 0 0

Sρz 0 0 0 Iρzz -Iρzy

Sρy 0 0 0 -Iρzy -Iρyy



(3.7)

Where:

Aρ =

∫
A

ρdA

Sρy =

∫
A

yρdA

Sρz =

∫
A

zρdA

Iρyy =

∫
A

yyρdA

Iρzz =

∫
A

zzρdA

Iρzy =

∫
A

zyρdA

The longitudinal interpolation matrix can be defined in terms of shape function
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in s domain.

Nx(x) =



Na
1 0 0 0 0 0 N b

1 0 0 0 0 0

0 Na
q 0 0 0 Na

r 0 N b
q 0 0 0 −N b

r

0 0 Na
q 0 -Na

r 0 0 0 N b
q 0 N b

r 0

0 0 0 Na
1 0 0 0 0 0 N b

1 0 0

0 0 0 0 Na
1 0 0 0 0 0 N b

1 0

0 0 0 0 0 Na
1 0 0 0 0 0 N b

1



(3.8)

Where:

Na
1 (s) =

1

2
(1− s)

Na
q (s) =

1

4
(2 + s)(s− 1)2

Na
r (s) =

1

8
L(1 + s)(s− 1)2

N b
1(s) =

1

2
(1 + s)

N b
q (s) = −1

4
(s− 2)(1 + s)2

N b
r (s) = −1

8
L(s− 1)(1 + s)2

3.2.2 Calculation of equivalent damping matrix

Damping can be described as a mechanical phenomenon in which the system un-

der motion dissipates energy which leads to decrease in system vibrations. The

improvement in stiffness/mass ratio which is primarily achieved because of the

reduction in mass and enhanced stiffness properties also lead to reduced damp-
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ing and increased extension-shear coupling of the material. Hence, damping is

an important parameter that should be considered in selection of material and

designing any sort of vibration control for wind turbine. The damping matrix can

be defined by the following equation [28]

D = 2GD −Da (3.9)

Where, GD is the skew-symmetric matrix gyroscopic coupling matrix and can be

defined in integral form as :

GD =

∫
L

NT
x

(∫
A

NT
A ω̂NAρdA

)
Nxdx (3.10)

The skew-symmetric matrix gyroscopic coupling matrix is an inertial force matrix

(due to rotating reference frame) directly proportional to the angular velocity.

The detailed derivation of these forces also known as Coriolis forces can be found

in reference [28, 68]. The skew-symmetric angular velocity matrix ω̂ can be defined

as:

ω̂ =


0 −ωz ωy

ωz 0 ωx

ωy ωx 0


Also, the aerodynamic damping matrix Da can be defined by the following equa-

tion

Da =

∫
L

NT
x TaRaADNxdx (3.11)
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Where Ta and Ra are the transformation matrix for equivalent forces & moments

and transformation matrix for rotation as given by Equations 3.12 and 3.13 re-

spectively [69].

Ta =



1 0 0

0 1 0

0 0 1

0 -dz dy

dz 0 0

-dy 0 0



(3.12)

Ra =


0 0

cosαU sinαU

-sinαU cosαU

 (3.13)

AD =
1

2
ρaC

U2

UD

0 −C ′L cos(β) C ′L sin(β) C ′Lh 0 0

0 −C ′D cos(β) C ′D sin(β) C ′Dh 0 0

 (3.14)

3.2.3 Equivalent Stiffness Matrix

The equivalent stiffness matrix K can be defined in terms of elastic stiffness (Ke),

geometric element stiffness (Kg), gyroscopic angular acceleration (Ġ), centrifugal

stiffness (CK) and aerodynamic stiffness matrix (Ka) as given in equation 3.15.

K = Ke +Kg + Ġ− CK −Ka (3.15)
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The element stiffness matrix Ke is defined in reference [70] in terms of the flex-

ibility matrix H and the elastic transformation matrix Te as given in equation

3.16.

Ke = TeH
−1T Te (3.16)

The Te is the matrix for transforming internal forces on to the nodal forces and

is defined in terms of distribution matrix Td. The distribution Matrix (T ) can

be defined in terms of normalized coordinates ξ with domain [−1, 1] as given in

equation 3.18. The flexibility matrix H is defined in terms of elements of cross-

section flexibility matrix C and its inverse namely cross-section stiffness matrix

Kcs is defined in equation 3.20.

Te =

−Td(−1)

Td(1)

 (3.17)

Td(ξ) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 aξ 0 1 0 0

−aξ 0 0 0 1 0

0 0 0 0 0 1



(3.18)
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H = 2a



C11 + 1
3
a2C55 C12 − 1

3
a2C54 C13 C14 C15 C16

C21 − 1
3
a2C45 C22 + 1

3
a2C44 C13 C14 C15 C16

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66



(3.19)

Kcs =



EA 0 0 0 0 0

0 Ks2GSA 0 0 0 0

0 0 Ks3GSA 0 0 0

0 0 0 GSI
ρ 0 0

0 0 0 0 EIρyy 0

0 0 0 0 0 EIρzz



(3.20)

Where GS is the shear modulus defined as E/2(1 + v). The geometric stiffness

matrix is defined in equation 3.21 in terms of longitudinal interpolation matrix

Nx and stress matrix S.

Kg =

∫
L

[
NT
x N ′Tx

]
S

Nx

N ′x

 dx (3.21)

The stress matrix can be defined in terms of stress transformation matrix T̂S and

initial stress matrix Ŝ as given in equation 3.22. The variables cx, cy and cz are

the coordinates of the elastic center position vector while ax, ay and az are shear
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center (AS) coordinates.

S =

T̂ TS 0

0 T̂ TS

 Ŝ
T̂S 0

0 T̂S

 (3.22)

T̂S =



1 0 0 0 cz −cy

0 1 0 −az 0 0

0 0 1 ay 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



(3.23)

The gyroscopic angular acceleration matrix Ġ is derivative of gyroscopic coupling

matrix defined in equation 3.10. The centrifugal stiffness matrix CK is defined in

terms of longitudinal interpolation, area interpolation, skew symmetric angular

velocity matrix and mass density in integration form.
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Ŝ =



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −Q0
z Q0

y azQ
0
z + ayQ

0
y 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 Q0
x 0 −M0

y 0 0

0 0 azQ
0
z + ayQ

0
y Q0

y −Q0
z 0 0 0 Q0

x −M0
z 0 0

0 0 0 0 0 0 0 0 −M0
z S0 0 0

0 0 0 0 0 0 0 0 −M0
y 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0


(3.24)

CK =

∫
L

NT
x

(∫
A

NT
A ω̂

T ω̂NAρdA

)
Nxdx (3.25)

The aerodynamic stiffness matrix uses sectional Lift and Drag values to calculate

the effect of forces on stiffness as given in equation 3.26.

Ka =

∫
L

NT
x TaRaAKNxdx (3.26)
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Where :

AK =
1

2
ρaCU

2

0 0 0 C ′L 0 0

0 0 0 C ′D 0 0

 (3.27)

The equivalent force vector f can be written in terms of centrifugal force fC ,

angular acceleration force fG, aerodynamic force fa and external force vector fe

as given in equation 3.28

f = fC − fG + fa + fe (3.28)

Where :

fC =

∫
L

NT
x

(
NT
A ω̂

T ω̂xρdA
)
dx (3.29)

fG =

∫
L

NT
x

(
NT
A α̂

TxρdA
)
dx (3.30)

fa =

∫
L

NT
x TaRaFadx (3.31)

Fa =
1

2
ρaCU

2(αU + β + α0)

C ′L
C ′D

 (3.32)

Where:

Nx(x) - Longitudinal Shape function

Ta - Force and Moment transformation Matrix
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Ra - Rotational Transformation Matrix

Fa - Aerodynamic Force Matrix due to rigid blade profile

AD - Aerodynamic force for damping due to blade deformation

AK - Aerodynamic force for stiffness due to transverse velocity of the blade

The closed form of these matrices are presented in Appendix of this report.

The integral equations can be solved using numerical integration along the span

of the blade using methods such as Gauss quadrature in a MATLAB code. This

is in the process of development and once solved the results can be compared with

the published results.

Aerodynamic model of wind turbine blades would contribute in making the

forcing function, damping and stiffness term due to the deformation more realis-

tic and would help determine the consequent change in inflow angle. A linearized

dynamic stall model was obtained from reference [28] that accounts for all these

terms. This aerodynamic model was studied and a brief description of this model

along with equations is presented in this section. Generally, using the basic aero-

dynamic principle, lift is directly proportional to the relative angle of attack (AoA)

α and relative wind velocity U (Equation 3.33). The relative AoA was than subdi-

vided in order to get separate terms for aerodynamic force, damping and stiffness

matrix as given in Equation 3.34.

Lf =
1

2
ρU2Sref (CLαrαr + CL0) (3.33)

αr = αf + αK + αD (3.34)
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The mean inflow angle αf can be written in terms of mean wind flow angle (αU),

twist angle (βt), and profile camber (α0) contribution.

αf = αU − βt + α0 (3.35)

Where :

tanαU =
Uy
Uz

(3.36)

The contribution due to stiffness αK can be written in terms of torsional degree

of freedom rx and the damping contribution is given by equation 3.37.

αD =
1

UD
(q̇z sin β − q̇y cos β + ṙxh) (3.37)

Where:

ρ - Air Density

U - Relative Wind Velocity

Sref - Blade Reference Area

αf - AoA for rigid blade profile

αK - AoA due to blade deformation

αD - AoA due to the velocity across blade profile
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3.2.4 Rayleigh-Ritz Method

Principle of minimum potential energy at equilibrium position can be used to ob-

tain natural frequencies. The natural frequencies of conservative systems may be

obtained by equating the maximum kinetic energy to the maximum total poten-

tial energy associated with vibration. The detailed description of this method is

given in [71] and briefly described here as follows:

• A displacement function of beam is assumed for the deflection curve consist-

ing of series containing unknown parameters such as (n = 1, 2 ). The selected

function needs to satisfy the geometric boundary conditions (Constraints

pertaining to deflection & slopes) whereas the static boundary conditions

needs not to fulfilled.

• Potential energy is than expressed in terms of unknown parameters an. As

described earlier, using the fact that potential energy is minimum at equilib-

rium, we can get set of algebraic equations. These set of algebraic equations

can be solved to get an and subsequently potential energy can be obtained.

• an is Substituted into assumed displacement function and approximate so-

lution for natural frequencies and mode shapes can be obtained.

Rayleigh-Ritz method was developed on a basic principle that the overall en-

ergy of an enclosed system remains unchanged. The wind turbine can be consid-

ered as a largely conservative system and its natural frequencies will first be deter-

mined ignoring any losses due to aerodynamic and mechanical friction. Rayleigh-
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Ritz Method was applied in order to obtain higher natural frequencies of wind

turbine blade which was modelled as cantilever beam as shown in Figure 3.1.

This method is highly influenced by assumed displacement shapes but at the

same time allows to determine the higher frequencies of the turbine blades with

more computational efficiency. The maximum displacement f(x) in this method

was assumed as the sum of the series of the weighing coefficient and assumed dis-

placement functions. Natural frequencies were obtained for the different modes.

The assumed displacement function, in this case must not have any discontinuity

Figure 3.1: A Simple cantilever beam with Length L

and should satisfy the geometric boundary conditions. i.e.

At x = 0, f = 0

At x = 0, f ′ = 0

Hence, the assumed displacement function for Rayleigh-Ritz method can be ex-

pressed in the general form:

f(x) =
n∑
i=1

Wiφi Where : φi =
(x
L

)i+1

(3.38)

Where: Wi is the weighing coefficient.
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Using the Rayleigh-Ritz concept, a MATLAB code for a uniform cantilever

beam was implemented both for a third degree polynomial (Equation 3.39) and

an infinite series solution for n degree polynomial (Equation 3.38). Polynomial

assumed admissible Function [71]:

f(x) = W1

(x
L

)2
+W2

(x
L

)3
(3.39)

Where:

L - Length of the beam.

W1 & W2 - Weighing coefficients

Stiffness and mass matrix were obtained using Polynomial Admissible Func-

tions, given in Equation 3.39, by differentiating Kinetic & Potential energy twice

w.r.t weighing coefficients as shown in Equation 3.40 and 3.41.

K =
∂2Vm

∂Wi∂Wj

(3.40)

M =
∂2Tm

∂Wi∂Wj

(3.41)

Where:

Vm - Potential Energy function

Tm - Kinetic Energy function

The solution of an n degree polynomial was obtained through a MATLAB program

which gives natural frequencies. The mass and stiffness matrix for an Infinite
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Series Polynomial are given in reference [71] as:

K =
(i+ 1)i(j + 1)jEI

(i+ j − 1)L3
(3.42)

M =
mL

(i+ j + 3)
(3.43)

3.2.5 Implementation of FEM Matlab Code

In order to model the problem, the Finite Element technique can be used to

obtain the mode shapes and natural frequencies. FEM is well-known technique

and more complex problems, accommodating aerodynamic forcing function with

three dimensional beam can be more easily modelled using this technique. As a

test case for validation, the dimensions of the beam were taken from the literature

[2] and a MATLAB routine was developed to obtain mode shapes and natural

frequencies.

The geometric and material properties of the uniform cantilever beam are

summarized in the form of a table 3.2.

Characteristic Value

Length 2 m

Young Modulus 21× 1010 Pa

Moment of Inertia 60× 10−6 kg.m2

Table 3.2: Geometric and Material properties for FEM analysis of beam [2]

The beam would be studied for forced vibration response once the forcing

function is obtained. The MATLAB code was implemented for an isotropic, ho-

mogeneous beam with a constant value of young modulus and density. The beam

was modelled consisting of two elements and the stiffness matrix for the individual
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elements were obtained in the form of the matrix. Afterwards, the global stiffness

matrix was assembled using the stiffness matrix of individual elements. The tech-

nique can be further developed for any number of elements to obtain mode shapes

and natural frequencies. This is taken as a case of validation for the development

of the complex beam code in order to apply the FEM on more complex problems

later. The global stiffness matrix was obtained from the results as given below.

K =



18900 18900 -18900 18900 0 0

18900 25200 -18900 12600 0 0

-18900 -18900 37800 0 -18900 18900

18900 12600 0 50400 -18900 12600

0 0 -18900 -18900 18900 -18900

0 0 18900 12600 -18900 25200



N/m2 (3.44)
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CHAPTER 4

AEROELASTIC MODELLING

4.1 Aerodynamics of Wind Turbine

The wind turbine rotor can be seen as a system of rotating beam-like structures. In

order to estimate the forcing function, a three-dimensional formulation for beams

in a rotating frame of reference is needed to be developed.

In a real time dynamic environment, the forcing function for wind turbine

change as the aerodynamic forces oscillate. The objective is to obtain the forced

response of the blade with more accurate representation of the aerodynamic loads.

Hence, the challenge is to predict an appropriate model for forcing function f(x, t).

Aerodynamic force depends on the numerous parameters including blade profile,

relative flow speed, stiffness and aerodynamic damping. All these parameters

collectively determines the angle of attack or inflow angle which determine the lift

and drag coefficient for a particular blade cross-section.

The governing equation 3.1 of vibration will accommodate the aerodynamic
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force matrix and hence it will be able to predict the vibrations. The challenge

faced by researchers is to find a suitable enough matrix which is very close in

nature to the real time force changes on turbine blade and would also be valid

for different blade cross-section and length. Also, the vibration mode should also

include the vibrations effects of tower, nacelle and due to the rotation of the

turbine itself.

First the vibration governing equation were studied with some background

knowledge as it tells the exact nature of the aerodynamic matrix required. Also,

it needs to be understood where we can accommodate the effects of the rotation

of the turbine blade and what effect they have on aerodynamic force matrix or on

governing equation 3.1. The aerodynamic theories that are applicable for aero-

dynamic calculation were studied. The literature survey suggests that the most

popular theory for calculating aerodynamic load is Blade Element Momentum

(BEM) Method and researchers used this theory for the development of an aero-

dynamic and mathematical model [16]. This is because BEM method has been

found to be computationally efficient as compared to free wake vortex method.

However, BEM based models have been found to be comparatively less accurate

for predicting the aerodynamic force variations along the span of turbine blades.

Therefore, there is a potential to improve current BEM models which would en-

able the researchers to make more accurate prediction of aerodynamic forces with

relatively less computation time and cost. Moreover, there are some limitations of

BEM theory and it is unable to predict accurate aerodynamic coefficients under
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dynamic conditions such as during stall and rotor yaw.

On the other hand, vortex method predicts dynamic response with great accu-

racy and carries immense research potential. Infact, most researchers now focus

on developing a reduced degree of freedom model based on vortex method which

is also computationally efficient. There are numerous dynamic models including

Beddoss-Leishman model, ONERA model and linearised airfoil flow model using

Kirchoff flow theory. However, for this particular work, we used modified ON-

ERA type model presented by Peters in [51]. This dynamic model was modified

for wind turbine blades in order to obtain its sectional lift and drag which can

be used in aeroelastic model. The ONERA type model has few advantages over

other models which including the prediction of both lift and drag coefficient with a

skewed cylindrical wake, finite number of states and absence of any hidden states

among others.

4.2 Blade Element Momentum Model

Blade Element Momentum theory can be used to effectively calculate lift coeffi-

cient for a wind turbine. The flow over the wind turbine blades is shown in Figure

4.1

The basis for this theory is both Momentum and Blade Element Theory. Blade

element theory is based on analysis of forces at a section of the blade, while

momentum theory is based on conservation of momentum. It is assumed that

• The aerodynamic interference between elements is negligible
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Figure 4.1: The figure shows the flow over the wind turbine blade

• Airfoil shape contributes largely towards forces on the blades by altering its

lift and drag characteristics.

Lift and drag forces act perpendicular and parallel, respectively, to relative

wind. The relative wind is the vector sum of the wind velocity at the rotor, and

the wind velocity due to rotation of the blade. The torque and force equations

from momentum and blade element theory are equated along with some geometric

relations to obtain an expression for lift coefficient. The method assumes that the

airfoil section lift coefficient vs. angle of attack relation must be linear in the region

of operation and the angle of attack must be small enough that the small-angle

approximations can be used. This simplified method use an expression to find

the angle of incidence of the relative wind at each blade element. The expressions
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which are used to calculate the lift coefficient are given below as :

Lift Curve Equation : CL = CL,0 + CL,αα (4.1)

Solidity : σS =
Bc

2πR
(4.2)

Tip Speed Ratio : λ =
ωr

U
(4.3)

Local Speed Ratio : λr =
λr

R
(4.4)

Relative F low Angle : βr = 90°− 2

3
tan−1

(
1

λr

)
(4.5)

Incidence Angle : i = βt − βr (4.6)

Axial Factor : a =

(
1 +

4cos2(β)

σ́CLsin(β)

)−1
(4.7)

Angular Induction Factor á =
1− 3a

4a− 1
(4.8)

Geometric Relation : tan(βr) = λr
1 + á

1− a
(4.9)

Angular Factor =

[
σ́CL

4λrcos(βr)

]
(1− a) (4.10)

However, the solution for the lift coefficient cannot be found directly from the

equations but an iterative process is adopted. For the initial analysis, The drag

coefficient CD is assumed to be zero while the tip loss correction factor Q is

assumed to be one. The step by step procedure is outlined below:

1. Find the value of Solidity using the equation 4.2 .

2. Find the Relative flow angle using the equation 4.5 .

3. From the blade geometry, use the corresponding twist angle to find the

section incidence angle i using equation 4.6 .
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4. Find the initial guess for axial induction factor a and angular induction

factor á using equations 4.7 and 4.8 respectively.

5. Use values of a and á obtained in step 4 to find the value of βr using geometric

relation given in equation 4.9

6. Calculate the incidence angle using equation 4.6 by using the corresponding

value of twist angle βt from given blade geometry.

7. Use the value of βt obtained in step 6 to find the value of CL using the

equation 4.1 from CL vs α curve.

8. Find the new values for axial induction factor a and angular induction factor

á using equations 4.7 and 4.10 respectively.

9. Repeat the procedure from Step 5 to 8 until the difference between the new

value of axial and angular induction factors are very close together (i.e. ∆a

and ∆á <= 0.0001)

4.3 Dynamic Aeroelastic Model

The rotor aeroelasticity is a coupled problem and it involves coupling between

different modules such as structure and aerodynamics. This modified aeroelastic

model, initially known as Peters-He Model, was developed by Peters and Su and

includes structural-dynamic model, induced flow model along with the airloads

model. The aerodynamics and airfoil effects is based on a ONERA type model and
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the integration of structural-dynamics with airloads allow this model to include

the past history of blade motions. This model was used to calculate the lift and

drag coefficient of the turbine blade section under wake conditions. The lift and

drag coefficients are defined by the equations 4.12 and 4.12:

Cl =
Ly
ρbU2

(4.11)

Cd =
Lx
ρbU2

(4.12)

Moreover, the lift and drag are defined in reference and are given in equation 4.13

as below:

Ly = ρ2πbu0(w0 − λ0 +
1

2
w1)

Lx = −ρ2πb(w0 − λ0) + (w0 − λ0 +
1

2
w1)

(4.13)

The coefficients w0 and w1 represents Fourier coefficients and are explicitly

defined in reference for NACA 4 digit airfoil through an empirical relation in

equation 4.14. Also, the induced flow λ0, which is defined in the model using the

equation 4.15, can be written in Fourier form in terms of shape functions and

inflow expansion coefficients :

w0 =
q

(1− q2)2

[
4

π
{q sin−1(q) +

√
(1 + q2)} − (1 + q2)

]
4m

w1 =
1

(1− q2)2

[
(1 + q2)− 4

π
q{sin−1(q) + q

√
1 + q2}

]
4m

(4.14)

λ0 =
∑
r,j

φ̄rjJ0(rb̂)ΩR[αrj cos(rψq) + βrj sin(rψq)] (4.15)

For NACA 0012 airfoil, the typical values of w0 and w1 are 0.20 and 0.10
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as noted in reference and more recently these values were published in another

reference for 18 different NACA airfoils. The term φrj basically represent expan-

sion functions and are simple polynomials in r̄ and can be obtained by solving

series given in reference. The m and n are harmonic numbers and they follow a

certain convention for cosine and sine terms such that for cosine coefficients m

= 0, 1, 2, 3, ... and n = 1, 3, 5, .. while for sine coefficients m = 1, 2, 3, ... and n =

2, 4, 6, ... The r and j also follow a similar convention as m and n and an example

is given for φ vector for both cosine and sine terms in equation 4.16.

φrj =



φ0
1

φ1
3

φ2
5

φ3
7


, φrj =



φ1
2

φ2
4

φ3
6

φ4
8


(4.16)

The term J0 represents Beseel function of first kind can be obtained from a

simplified form of the Bessel functions J0(rb̂) as represented through equation 4.17.

The angle ψq is the azimuth angle given by equation 4.18 in which q represents

the number of qth blade. The αmn and βmn are the cosine and sine inflow expan-

sion coefficients both of which can be calculated by solving first order differential

equations 4.20 given below in matrix form.

J0(rb̂) =
∞∑
r=0

(−1)r
1

r!(n+ r)!

(x
2

)2r+n
(4.17)

ψq = ωt+
2

3
π(q − 1) (4.18)
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φrj =
1

2

√
(2n+ 1)π

n−1∑
q=m,m+2

r̄q
(−1)

(q−m)
2 (n+ q)!!

(q −m)!!(q +m)!!(n− q − 1)!!
(4.19)

{αmn }∗ + [L̄c]−1[V m
n ]{αmn } = {τmcn }

{βmn }∗ + [L̄s]−1[V m
n ]{βmn } = {τmsn }

(4.20)

The solution of the differential equation requires determination of all the ma-

trices including mass flow matrix (V m
n ), influence coefficient matrices (L̄c and L̄s)

and forcing vectors (τmcn and τmsn ) . The mass flow matrix is a diagonal matrix

and its each element is equal to free stream velocity for the case of wind turbine

blades. This is a reasonable assumption because in case of wind turbine blades,

as opposed to a helicopter blades, there is no energy added to the flow from the

rotor. The sine and cosine influence coefficients can be written in terms of wake

skew angle and azimuthal harmonics as given in reference in terms of elements of

matrix Lrmjn . An example is given for cosine matrix L̄c in equation 6.12, where j

and n are row-column pair within each r and m row-column division. In order to

find forcing vectors, a reasonable estimate of the lift distribution is required which

can be obtained through equation 4.22 .

L̄c =



L00
11 L00

13

L00
31 L00

33

L01
12 L01

14

L01
32 L01

34

L10
21 L10

23

L10
41 L10

43

L11
22 L11

24

L11
42 L11

44


(4.21)

Ls = ρCLαbu0(w0 − λ0) + ρδbu0w1 (4.22)
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In equation 4.22, the δ is defined as the pitch rate coefficient which can be assumed

to be equal to π for a thin airfoil while u0 is a Fourier coefficient obtained by

equation 4.23 in which u represents the component of the flow parallel to the

airfoil. The term u0 is the Fourier expansion coefficient which can be obtained

from the component of flow parallel to the airfoil (u) as given by equation 4.23.

u0 =
1

π

∫ b

a

udθ (4.23)

The forcing vectors can then be obtained by evaluating Fourier coefficients

which are given in series form in terms of lift, azimuth angle, Bessel function and

expansion functions in reference. An example is given for for both cosine and sine

forcing vector Tmcn in equation 4.24, where m and n follows the same convention

as described before.

τmcn =



τ 0c1

τ 1c3

τ 2c5

τ 3c7


, τmsn =



τ 1s2

τ 2s4

τ 3c6

τ 4c8


(4.24)

Similarly, the αmn and βmn vectors can be defined in the similar manner. The

initial conditions for both α and β were assumed to be zero as an initial guess as
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defined in 4.25.

αmn =



α0
1

α1
3

α2
5

α3
7


, βmn =



β1
2

β2
4

β3
6

β4
8


(4.25)

Using these initial conditions, the first order differential equations 4.20 can be

solved numerically using any standard method such as Runge-Kutta 4th order.

However, there is a coupling between lift and the inflow model as can be observed

from equation 4.22 and 4.15. Therefore, the forcing vectors must be updated after

every solution of differential equation using the lift term (equation 4.22) which in

turn should be updated by the induced flow term (equation 4.15).

4.3.1 Solution Strategy

The dynamic aeroelastic model was obtained through numerical solution of first

order differential equation and the adopted approach is summarized in the form

of a flow chart as shown in Figure 4.2.

The initial conditions are obtained from atmospheric and geometric conditions.

4.4 Verification of Aeroelastic Model

The model is based on Theodorsen function which can be evaluated in terms of

Bessel functions of the first and second kind. One practical approximation for

rotorcraft applications having small frequencies consists of real and imaginary
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Figure 4.2: The Flow chart presents a summary for solving dynamic Aeroelastic
Model

part and can be given by

C(k) ≈
(

1− π

2
k
)

+ ιk

(
ln
k

2
+ γe

)
(4.26)
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Where:

γe = 0.5772156 (EulerConstant)

ωk =
ωb

U
(ReducedFrequency)

In case of wind turbine blades, whose aspect ratio is usually more than 7, the

reduced frequency can be estimated as 0.05n.
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CHAPTER 5

CONTROLLER DESIGN

In this chapter, the Optimal LQR control technique and its effects on the active

control of wind turbine blade vibrations have been discussed. A MATLAB code

was developed to design the LQR controller and to study the response of wind

turbine blade model to various disturbance input types. The aim is to design a

responsive high-performance controller for a flexible wind turbine blade subjected

to time varying loads. The wind turbine model can have infinite number of modes,

however, the controller would only focus on the most significant modes in order

to avoid complexity and wastage of control effort [27].

5.1 Linear Quadratic Regulator

We will consider a system represented with a state space model having a control

input represented by u(t) and a disturbance input represented by r(t) as given by

equation 5.1.
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ẋ = Ax(t) +Bu(t) + Er(t) (5.1)

The state space equation can be remodelled by substituting the control input u(t)

with control gain row vector and state column vector x(t). The control gains

(g1, g2, g3, g4...) can be varied to achieve desirable performance of the controlled

response. The derivation steps to remodel the state space equation are summa-

rized below:

Let:

u(t) = −gx(t) (5.2)

Substituting the above form of control input into the state space equation 5.1

and the result can be rearranged to obtain the desired form.

ẋ = Ax(t) +B(−gx(t)) + Er(t)

ẋ = (A−Bg)x(t) + Er(t)

ẋ = Acx(t) + Er(t)

Where:

Ac = A−Bg

In LQR control, the feedback gain g is selected as to minimize the quadratic
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function which is given by:

J =
1

2

∫ ∞
0

(xT (t)Qx(t) + uT (t)Ru(t))dt (5.3)

In the above equation, Q represents the weighing matrix of state variables x while

the R represents the weighing matrix of input variables u. Generally, Q is selected

as a substantial sized value for more prompt response while a larger value of R

increases the energy consumption of the controller. Moreover, the feedback gain

also depends on the two weighing matrix Q and R and is calculated using the

equation 5.4. There are numerous techniques for obtaining Q and R, however, it

can be selected by trial and error for initial analysis.

g = R−1BTP (5.4)

In the above equation, P is the symmetric positive solution of Riccati equation

given by the equation below:

PA+ ATP +Q− PBR−1BTP = 0 (5.5)
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CHAPTER 6

RESULTS AND DISCUSSION

The main aim of this study is to reduce edgewise vibrations using an aeroelastic

model of a wind turbine blade. The active vibration control of a wind turbine

aeroelastic model was carried out in numerous stages. First, the Rayleigh-Ritz

and blade element momentum model was studied and a comparison was made

between the results obtained from MATLAB routine and published experimental

data. The BEM results signifies the need of an alternate aeroelastic model and

depict the inaccuracy of analytical results at various tip speed ratios (λ ). In the

next section, results from an induced flow based model along with the various

matrices are outlined. The NACA 0012 airfoil was used for evaluation of these

matrices and induced flow results. Finally, the system response and controlled

response results are presented with validation.
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6.1 Results of Rayleigh Ritz Method

The results for uniform cantilever beam from Rayleigh Ritz method, as described

in section 3.2.4, were compared with the existing experimental and numerical

work and were found to be in agreement with the published data. The table 6.1

summarizes the results for both the third order and the infinite series polynomial.

The results depict that the second and third modes are more closer to experimental

results than the results obtained using FEM analysis method by [1]. However, the

admissible polynomial being used in this case is unable to capture the first modal

frequency. Hence it is suggested to use various admissible functions as a future

work to capture maximum modal frequencies in range. [1]

Mode Experiment [1] FEM [1]
Rayleigh-Ritz

% Difference
3rd Order nth order

2 13.64 14.42 13.6179 13.5856 0.4
3 36.64 40.40 42.7451 34.0099 7.17

Table 6.1: Comparison of natural frequencies of Uniform Cantilever beam
(Rayleigh-Ritz Method)

6.2 BEM Model Results

In this section, the BEM method was used to obtain the Power Coefficient of a

wind turbine blade using a Matlab routine named “BladeElement.m”. A compar-

ison of the coefficient was made with published data for wind turbine blades. The

geometric profile of wind turbine blade was obtained from an illustrated graph of

a turbine blade and has been summarized in the form of a table 6.2.
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Blade Radius [m] Chord Length [m] Twist Angle [°]
0.05 0.030 37
0.10 0.080 28
0.15 0.060 19
0.20 0.050 13
0.25 0.045 9.5
0.30 0.040 7.0
0.35 0.035 5.0
0.40 0.030 2.5
0.45 0.025 -1.0

Table 6.2: Geometric properties of Wind Turbine Blade [3]

The airfoil used for this comparative study was NREL s286 as shown in Figure

6.1 and its lift and drag curve equations were obtained through curve fitting in

MATLAB using the best-fit Xfoil software results from reference [3].

Figure 6.1: The figure shows the shape of the NREL s286 airfoil

Equation for lift and drag curves:

Cl = 1.7× 10−5α4 − 3.7× 10−4α3 + 2.4× 10−3α2 + 0.12α + 0.5 (6.1)

Cd = 2.3× 10−6α4 − 1× 10−5α3 + 4.2× 10−5α2 + 0.00055α + 0.021 (6.2)

The data presented here is for a small-scaled wind turbine which was specif-

ically manufactured for wind tunnel testing. The simple blade element model

was used for aerodynamic analysis in MATLAB while the published experimental

results of Power coefficient (CP ) and Thrust Coefficient (CT ) were extracted from
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reference [3]. These coefficients were analytically calculated using BEM theory

along with equation 6.3 and 6.4.

Power Coefficient : CP =
ωM

1
2
ρU3
∞A

(6.3)

Thrust Coefficient : CT =
T

1
2
ρU2
∞A

(6.4)

The value of tip speed ratio (λ) was varied while all the other geometric and

dynamic parameters including the wind turbine airfoil, rotational velocity, wind

speed, etc were kept same and are summarized in the form of a table. In this study,

a higher value (10m/s) of wind speed was used, however, local meteorological

data obtained from various published resources shows that the wind speed varies

between 4 to 8 m/s [12, 13].

Parameters Values
Rotational Velocity 7 rad/s
Airfoil Type NREL s826
Ncrit 3.0
Wind speed 10 m/s
Reynolds Number 1× 105

Table 6.3: Input parameters for Wind Turbine Blade [3]

The lift and drag forces were compared and the difference between experimen-

tal and analytical results are summarized in the form of table 6.4. It is clear from

table that there is a substantial error for higher and lower values of λ and hence

a better aerodynamic model is required in order to improved the performance

calculation for a wind turbine. The model should take into account the vorticity

and other turbulent effects such as those accounted for in the vortex method.
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λ Experimental BEM % Difference
2 0.05 0.04 20
3 0.14 0.10 29
4 0.39 0.32 18
5 0.46 0.42 8.7
6 0.49 0.45 8.1
7 0.48 0.44 8.3
8 0.41 0.42 2.4
9 0.32 0.37 15.6
10 0.20 0.31 55

Table 6.4: Comparison of Power Coefficient of a Wind Turbine Blade [3]

6.3 Dynamic Model Results

The matrices obtained are as follows:

L̄c =



0.4775 0.0810 −0.1045 0

0.0810 0.1857 −0.0684 −0.0510

0.2089 0.1368 0 0

0 0.1019 0 0


(6.5)

L̄s =



0 0 −0.0796 0

0 0 −0.0593 −0.0473

0.0796 0.0593 0 0

0 0.0473 0 0


(6.6)

V̄ m
n =



15 0 0 0

0 15 0 0

0 0 15 0

0 0 0 15


(6.7)
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φrcj =



−1.5

−0.052r̄2 − 0.39

−3.2× 10−5r̄4 − 1.7× 10−3r̄2 − 0.012

−9.0× 10−9r̄6 − 1.6× 10−6r̄4 − 3.0× 10−5r̄2 − 2.3× 10−4


(6.8)

φrsj =



−0.99

−6.9× 10−3r̄2 − 0.055

0

0


(6.9)

τmcn =



17.0000

−8.3000

0.1800

−0.0013


, τmsn =



17.0000

−1.3000

0

0


(6.10)
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L̄c =



L00
11 L00

13

L00
31 L00

33

L01
12 L01

14

L01
32 L01

34

L02
13 L02

15

L02
33 L02

35

L03
14 L03

16

L03
34 L03

36

L04
15 L04

17

L04
35 L04

37

L10
21 L10

23

L10
41 L10

43

L11
22 L11

24

L11
42 L11

44

L12
23 L12

25
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(6.11)
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(6.12)

These matrices were used to solve the differential equation and obtain cosine and

sine inflow expansion coefficients. These coefficients were then used to calculate
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the induced flow as defined earlier. Also, the result of differential equation was

obtained and compared with the published results of the model. The results

of ONERA type model were subsequently used to obtain stiffness and damping

matrix along with forcing vector of state space form of Euler Bernoulli equation.

6.4 Validation of Stiffness Matrix

In order to validate the simplified form of mass matrix, a space frame element

which had same DOF was taken and compared with the result obtained from

MATLAB routine [72]. The mass matrix was found to be in agreement with that

obtained from result and is shown below:

Figure 6.2: The figure shows the mass matrix for 12 DOF, six deflections and six
rotations
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6.5 LQR Control Response

The LQR control response was obtained using a MATLAB routine and the results

are summarized in the form of the time response. The state space model was

obtained using and is given below.

λ1,2 = 0.0371,−0.0381 and λ3,4 = −4.3989± 8.2842i

The system is given below:

A =



0 0 1 0

0 0 0 1

0.0014 −1.8022× 10−5 −9.9986× 10−4 −1.8022× 10−9

−6.7892× 10−10 −8.7978× 1010 −6.7892× 10−14 −8.7978× 103



B =



0

0

−0.0058

−3.5684× 108


, C =

[
0 0 0.7597 0.6316

]
, D =

[
0

]
, E =



0

0

1.3708× 103

5.1175× 10−11
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Figure 6.3: The figure shows the root locus for the system
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Figure 6.4: The figure shows the bode plot for the system

6.6 The Effect of variation of Young Modulus

The young modulus was varied from 69 to 150N/m2. The results are presented

below for a step and impulse response.
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Figure 6.5: The figure shows the Impulse response for controlled and uncontrolled

system at E = 69N/m2
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Figure 6.6: The figure shows the Step response for controlled and uncontrolled

system at E = 69N/m2
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Figure 6.7: The figure shows the Impulse response for controlled and uncontrolled

system at E = 100N/m2
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Figure 6.8: The figure shows the Step response for controlled and uncontrolled

system at E = 100N/m2
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Impulse Response for E = 150 N/m 2
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Figure 6.9: The figure shows the Impulse response for controlled and uncontrolled

system at E = 150N/m2
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Figure 6.10: The figure shows the Impulse response for controlled and uncontrolled

system at E = 150N/m2
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6.7 The Effect of variation of Blade length
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Figure 6.11: The figure shows the Impulse response for Blade Length of 1m
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Figure 6.12: The figure shows the Step response for Blade Length of 1m
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Figure 6.13: The figure shows the Impulse response for Blade Length of 2m
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Figure 6.14: The figure shows the Step response for Blade Length of 2m
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Figure 6.15: The figure shows the Impulse response for Blade Length of 3m
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Figure 6.16: The figure shows the Step response for Blade Length of 3m
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CHAPTER 7

CONCLUSIONS

The work utilizes an innovative technique to obtain more accurate aeroelastic

results which was previously only being used in suppressing helicopter vibrations.

This allowed to simulate real time conditions and hence eventually contributed in

the design of a more responsive controller. The following conclusions can be made

from this study.

It can be noted from results that BEM model alone doesn’t provide accurate

results for the vibration model and the accuracy increased substantially under

under varying dynamic conditions. The wind turbine aeroelastic model adopts a

3D formulation in a rotating frame of reference using finite element method. This

formulation enables the overall aeroelastic model to account for mass distribution

and allowed it to include elastic properties, geometric stiffness effects as well as

account for dynamic conditions. The result from the aeroelastic models allow

the evaluation of eigenvalues for finite element rotating beam solution. Thus, the

LQR control strategies developed using this aeroelastic model is more responsive
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and would accommodate for dynamic stall conditions. The results indicate that

ONERA type model can be adopted after some modifications into the state space

format. This aeroelastic model was used for suppression of edgewise vibrations in

wind turbine blades.
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