

©Hasan Salem Omar Al-Kaf
2017

iii

I dedicate all what I have done to my dear parents, Salem and Maryam, my love

Zainab, brothers, and sweet sister.

Words cannot express how much I’m grateful of your presence in my life, and

I’m thankful for all what you have given to me.

iv

ACKNOWLEDGMENTS

First, Im grateful to ALLAH almighty for everything in my life. Without his

guidance and blessing, this thesis would not have been completed.

I would like to express my gratitude and appreciation to my advisor and mentor

Dr. Jameleddine Hassine for his excellent guidance, encouragement, caring, and

providing me with all needs for doing my research. A special thanks to my

committee members Dr. Mohammad Alshayeb, and Dr. Sami Zhioua for their

support and valuable comments.

I would like to thank and appreciate the Hadhramout Establishment for Human

Development for their financial support during my academic journey.

Finally, Id like thank my dears parents, brothers, and sister for their support and

their prayers. They were always encouraging and motivating me to do the best in

my life and achieved all my goals till now. Also, I would like to thank my best

friends (Ahmed, Manaf, Omer, Taha). Thank you

v

TABLE OF CONTENTS

ACKNOWLEDGEMENT v

LIST OF TABLES ix

LIST OF FIGURES x

ABSTRACT (ENGLISH) xii

ABSTRACT (ARABIC) xiv

CHAPTER 1 INTRODUCTION 1

1.1 Research Motivation . 3

1.2 Thesis Objectives . 3

1.3 Thesis Approach . 4

1.3.1 Evaluation the proposed CIA approach 5

1.3.2 Empirical Validation . 5

1.4 Contributions . 6

1.4.1 Contribution 1: CIA algorithm to GRL Models 6

1.4.2 Contribution 2: CIA algorithm to UCM Models 7

1.4.3 Contribution 3: Experimental Evaluation and Validation . 7

1.5 Thesis Organization . 8

CHAPTER 2 BACKGROUND 9

2.1 URN in a Nutshell . 13

2.1.1 GRL in a Nutshell . 13

vi

2.1.2 UCM in a Nutshell . 15

2.2 Program slicing . 19

2.3 Forward vs. Backward slicing . 20

CHAPTER 3 GRL CHANGE IMPACT ANALYSIS APPROACH 22

3.1 Dependencies in GRL Model . 25

3.2 GRL Model Dependency Graph (GMDG) 26

3.3 Slicing the GRL Model Dependency Graph 28

3.4 Impact Through URN Links . 29

3.5 Identification of the Impacted GRL Strategies 32

3.6 jUCMNav GRL-based Change Impact Analysis Feature 32

CHAPTER 4 UCM CHANGE IMPACT ANALYSIS AP-

PROACH 34

4.1 UCM construct variables’extraction 37

4.2 UCM Dependencies computation 37

4.3 Forward Traversal Algorithm . 42

4.3.1 Responsibility References’s Procedure 43

4.3.2 Or-Fork’s Procedure . 46

4.3.3 Or-Join’s Procedure . 47

4.3.4 Stub’s Procedure . 47

4.3.5 And-Fork’s - And-Join’s Procedures 49

4.3.6 EndPoint’s Procedure . 53

4.4 Change impact through URN links 54

4.5 jUCMNav UCM-based Change Impact Analysis Feature 56

CHAPTER 5 EXPERIMENTAL EVALUATION AND VALIDA-

TION 59

5.1 URN Experimental Evaluation . 59

5.1.1 Mock System . 60

5.1.2 Cases Studies . 63

vii

5.2 Experimental Validation . 76

5.2.1 Experiment planning . 76

5.2.2 Context . 78

5.2.3 Subjects . 78

5.2.4 Materials . 78

5.2.5 Variables . 79

5.2.6 Hypotheses . 80

5.2.7 Data analysis and interpretation 81

5.2.8 Precision and Recall . 83

CHAPTER 6 DISCUSSION 86

6.1 General Benefits of the URN-based CIA Approach 86

6.2 Salability . 87

6.3 Limitations . 89

6.4 Comparison with related work . 90

6.5 Threats to Validity . 96

CHAPTER 7 CONCLUSION AND FUTURE WORK 98

REFERENCES 100

VITAE 114

viii

LIST OF TABLES

3.1 GRL supported URN links by CIA 31

4.1 Responsibilities with their expressions (i.e. source code) 38

5.1 Case studies characteristics . 60

5.2 Adverse Event Management System (AEMS) model information . 68

5.3 Plug-in bindings of stubs in AEMS model 69

5.4 URN links in AEMS Model . 69

5.5 Commuting model information . 71

5.6 Commuting model information . 74

5.7 Commuting model information . 74

5.8 Experiment Material . 79

5.9 Set of hypotheses . 80

5.10 CIA-Correctness Cross tabulation 81

5.11 Test differences between means with respect to correctness (t-test) 82

5.12 Descriptive the perceived difficulty of the CIA task 82

5.13 Test differences between means with respect to the perceived diffi-

culty of the CIA tasks (t-test) . 83

5.14 AEMS GRL Model - Identified elements impacted w.r.t SC 84

5.15 AEMS UCM Model - Identified elements impacted w.r.t SC . . . 84

6.1 Comparison with related works 95

ix

LIST OF FIGURES

2.1 Goal-Oriented Language Components 16

2.2 Use Case Maps Basic Constructs 17

2.3 Use Case Maps Components . 18

2.4 An example of a program and its corresponding backward and for-

ward static slices . 20

3.1 GRL CIA Approach . 23

3.2 A Generic GRL model and its corresponding GMDG 27

3.3 GRL CIA included in command menu of jUCMNav framework . . 33

4.1 UCM CIA Approach . 36

4.2 An example of handling respRefs 45

4.3 An example of handling OR-Fork 46

4.4 An example of handling Or-Join 48

4.5 An example of handling Stub . 50

4.6 An example of handling And-Fork 51

4.7 An example of handling And-Join 52

4.8 UCM CIA included in command menu of jUCMNav framework . 56

4.9 Selection criterion window in jUCMNav framework 58

4.10 Identification of impacted elements in UCM model 58

5.1 Mock system - GRL . 61

5.2 Mock UCM model . 62

5.3 AEMS GRL Model . 64

x

5.4 GMDG Graph corresponding to the AEMS GRL model of Fig. 5.3 64

5.5 Impacted elements of the first AEMS CIA task 65

5.6 Impacted elements of the second AEMS CIA task 66

5.7 AEMS UCM Model . 67

5.8 Identification of impacted elements in two GRL models of the com-

muting case study . 70

5.9 Commuting model - Part 1 . 72

5.10 Commuting model - Part 2 . 73

5.11 Patient Discharge Process . 75

5.12 An overview of experimental plan 77

6.1 Extreme Cases of GRL and UCM 88

7.1 Impacted elements with respect toSC = (task 6 in Graph (see

fig. 5.1), Addition, -) . 115

7.2 Impacted elements with respect toSC = (task 5 in Graph (see

fig. 5.1), Deletion, -) . 115

7.3 Impacted elements with respect toSC = (DependencyLink in Graph

(see fig. 5.1), Modification, -) . 116

7.4 Impacted elements with respect toSC = (resp 8 in MainMap (see

fig. 5.2(a)), Modification, y) . 117

7.5 SC = (resp 9 in staticStubMap (see fig. 5.2(b)), Addition, -) . . 118

7.6 SC = (resp 4 in staticStub 2 - Plugin (see fig. 5.2(c)), Modification,

(z,y)) . 118

7.7 SC = (resp 4 in staticStub 2 - Plugin (see fig. 5.2(c)), Deletion, z) 119

7.8 SC = (resp 8 in staticStub 2 - Plugin (see fig. 5.2(c)), Deletion,

(t,n)) . 119

7.9 SC = (resp 3 in staticStub 2 - Plugin (see fig. 5.2(c)), Addition, t) 120

7.10 SC = (resp 4 in staticStubMap (see fig. 5.2(b)), Modification, (z,y))120

xi

THESIS ABSTRACT

NAME: Hasan Salim Omar Al-Kaf

TITLE OF STUDY: A Change Impact Analysis Approach to User Require-

ments Notation (URN) Models

MAJOR FIELD: Software Engineering

DATE OF DEGREE: December 2017

Requirements tend to change over time in response to the evolving needs of stake-

holders, technologies advances, changes in business environments and global com-

petition. Therefore, there is a need for mechanisms to identify and analyze the

potential impact of the proposed changes in requirements artifacts before the ac-

tual changes are implemented. The User Requirements Notation (URN), an ITU-

T standard, is a modeling language that is intended for the elicitation, analysis,

and validation of high-level requirements. The URN notation combines two com-

plementary sub-languages: the Goal-oriented Requirement Language (GRL) for

modeling actors and their intentions, and the Use Case Maps (UCM) language

for describing functional scenarios bound to architectural components. In this

paper, we propose a Change Impact Analysis (CIA) approach to User Require-

xii

ments Notation (URN) models. Given a suggested modification within a given

GRL or UCM model, our approach allows for the identification of all potentially

impacted elements within the selected model, as well as across all UCM and GRL

models linked to it through URN Links. The proposed URN-based CIA approach

is implemented as a feature within the Eclipse-based jUCMNav framework. We

demonstrate the applicability of our approach using a URN mock system and three

publicly available real-world URN specifications. Furthermore, we have conducted

an empirical study to demonstrate that the proposed URN-based CIA approach

improves the ability to identify impacted elements, as part of a requested URN

specification change.

xiii

xiv

CHAPTER 1

INTRODUCTION

During software development life-cycle, requirements changes are inevitable in

order to fulfill changing stakeholders goals, accommodate changes in business en-

vironments, meet technologies advances, and to respond to competition. Re-

quirements models are often the first artifacts created during early stages of the

software development life-cycle. Requirements models are deemed to evolve and

grow over time as they go through many necessary modifications in order to meet

customers’ needs. However, one of the major issues is that seemingly small require-

ments changes can ripple throughout the system to have major unintended effects

elsewhere [1]. Therefore, there is a need for techniques to identify the impact of

requirements changes in order to understand and assess how such changes prop-

agate through the requirements, so that informed decisions can be made; hence

maintaining consistency and facilitating the successful evolution of software. One

of the most efficient techniques is Change Impact Analysis (CIA) [2], which is

defined as ”the activity of identifying the potential consequences, including side

1

effects and ripple effects, of a change, or estimating what needs to be modified

to accomplish a change before it has been made”. CIA helps maintainers esti-

mate the extent and cost of the effect of changes and allows them to evaluate

and select a suitable solution from a set of potential alternatives. Change impact

analysis techniques have been applied to source code [3], requirements [4, 5, 6],

architectural models [7, 8], and to different combinations of code, architecture and

requirements [9, 10].

The User Requirements Notation (URN) [11], an ITU-T standard, is a visual

modeling language that supports the elicitation, analysis, and validation of early

requirements. URN describes visually and in one unified language, goals and

functional scenarios, and the links between them. It offers two sub-languages: (1)

the Use Case Maps (UCM) language for describing high-level scenarios and ar-

chitectures and (2) the Goal-oriented Requirement Language (GRL) for modeling

stakeholders intentions and their business goals. Modeling goals and functional

scenarios are complementary and would help uncovering additional goals and sce-

narios. Hence, such combination will contribute to the precision and completeness

of requirements. URN offers a mechanism to link any two URN model elements

(called URN links), establishing traceability between GRL and UCM models,

which help us achieve completeness and consistence analysis [12].

2

1.1 Research Motivation

The main motivation of this thesis is to identify the change impact analysis to

User Requirements Notation (URN), in order to help maintainers, manage URN

models by analyzing the impact of changes on both UCM and GRL models. Devel-

oping an efficient change impact analysis algorithms for the URN language would

help software engineers understand the impact of a change prior to performing a

maintenance task, hence, increasing their productivity and reducing the cost of

typical maintenance tasks. In particular, we are interested in understanding and

capturing how changes propagate through URN model (i.e. between GRL and

UCM models and vice versa).

In this thesis, we develop a new CIA feature to target the URN models and

we integrate CIA activity within, the eclipse-based, jUCMNav [13] tool.

1.2 Thesis Objectives

The main objective of our research work is to propose a Change Impact Analysis

(CIA) approach to User Requirements Notation (URN) models. Our approach

allows the analyst to identify the all potentially impacted elements within GRL

and UCM models, as well as across all UCM and GRL models linked to them

through URN Links. To achieve this objective, our work is provided the following:

� It provides a unified URN-based approach to change impact analysis that

combines GRL and UCM languages. It shows how changes are propagated

3

(1) within a GRL model, (2) within a UCM model, and (3) how changes are

propagated across models (i.e. from GRL to UCM and vice versa) through

traceability links (i.e. URN links).

� It provides an implementation of the proposed change impact analysis within

the jUCMNav tool [13].

� It demonstrates the applicability of the proposed approach using a URN

mock system (covering all language constructs) and three real-world publicly

available URN specifications.

� It validates empirically the usefulness of the proposed CIA approach in im-

proving the understandability of URN models and facilitating the identifi-

cation of the impacted URN elements, as part of a suggested maintenance

task.

1.3 Thesis Approach

The research methodology that followed in this research work is a combination

of algorithm design, analysis, empirical evaluation, and empirical validation. Our

methodology consists of the following steps:

� Design and implementation of the CIA algorithm for GRL Models.

� Design and implementation of the CIA algorithm for UCM Models.

4

� Design and implementation of the CIA algorithm from GRL to UCM models

and vice versa (i.e. through URN Links).

� Validate the proposed approach using publicly URN specification available

and a mock system.

� Conduct an experiment to test the proposed work.

� Evaluate the usefulness of the proposed approach.

1.3.1 Evaluation the proposed CIA approach

We evaluate our verification methodology through its application to many spec-

ifications of different types of GRL model and UCM models by conducting an

experiment to demonstrate the evidence that supports the benefits of change im-

pact analysis feature in facilitating both the correctness and the comprehension

of URN models.

1.3.2 Empirical Validation

In addition to evaluation, we validate our CIA approach by conducting an em-

pirical experiment evolving 10 participants to assess our change impact analysis

approach to demonstrate the applicability of the proposed approach using a URN

3 publicly available URN-based case studies of different sizes, complexity, and

feature.

5

1.4 Contributions

This thesis has the following contributions:

1.4.1 Contribution 1: CIA algorithm to GRL Models

Design and implementation of the CIA algorithm to GRL Models.

� The proposed change impact analysis approach allows maintainers and an-

alyst to understand how a change in a GRL model is propagated within the

model itself (e.g., between actors of the model) and across other GRL mod-

els (i.e., GRL to GRL propagation) through URN Links. Furthermore, the

proposed approach allows for the identification of the potentially impacted

GRL evaluation strategies as a result of a proposed change.

� It provides a prototype tool that automates the proposed GRL-based change

impact analysis approach. The prototype is implemented as a feature within

the jUCMNav [13] tool and is publicly available.

The CIA feature can be downloaded from

https://github.com/JUCMNAV/projetseg/tree/grl

� Published paper under the title: An Automated Change Impact Analysis

Approach to GRL Models [14].

Source: https://link.springer.com/chapter/10.1007/978-3-319-68015-6 10

6

1.4.2 Contribution 2: CIA algorithm to UCM Models

Design and implementation of the CIA algorithm to UCM Models.

� It provides a change impact analysis to UCM Models and how changes are

propagated within a UCM Model, and how changes are propagated across

models (i.e. UCM to UCM propagation) through URN Links.

� It provides a prototype tool that automates the proposed UCM-based change

impact analysis approach. The prototype is implemented as a feature within

the jUCMNav [13] tool and is publicly available.

� It provides an algorithm that identifies the URN Links between URN ele-

ments within model through URN Links. The link might be between UCM

to UCM or UCM to GRL.

1.4.3 Contribution 3: Experimental Evaluation and Vali-

dation

Assessment of the proposed work. We evaluated our proposed work using 3 pub-

licly available URN-based case studies of different sizes, complexity and features,

and one mock system model that covers all URN constructs. The experiments

evaluation showed that change impact analysis approach can be applied to URN-

based models of different sizes, complexity, and features. Then, we conducted

some empirical experiments to assess our change impact analysis approach. The

results show that the approach contributes to the correctness of the URN model

7

and reducing the time consuming to identify the impact of change.

1.5 Thesis Organization

The rest of the thesis is organized as follows. In chapter 2, we provide a background

needed to cover this research and literature review. Chapter 3 describes the GRL

change impact analysis approach. In chapter 4, we describe the UCM change

impact analysis approach. In chapter 5, we provide the details of experimental

works and results. Then, in chapter 6, we discuss the benefits and limitations of

proposed work. Finally, we conclude and suggest future work in chapter 7.

8

CHAPTER 2

BACKGROUND

Bohner and Arnold [2] identified the CIA as the process of identifying the potential

consequences of a change, or estimate what needs to be modified to accomplish a

change. The change request is considered as an input to Change Impact Analysis

process. The change request has done by the stakeholders, e.g., product managers,

customers, or users.

In the literature below, several source code based CIA techniques have been

proposed in order to help the understandability of software, debugging, or re-

gression test. Based on program source code, Li et al. [3] conducted a survey

of change impact analysis techniques. Based on this survey, techniques can be

divided into 4 main categories:

� Techniques based on traditional static program analysis techniques involving

the analysis of dependency graph (e.g., through reachability analysis) [15,

16, 17].

� Techniques based on analysis of the information collected during the pro-

9

gram execution [18, 19, 20].

� Techniques based on mining information from the software repositories [21,

22].

� Techniques based on measurement of coupling (e.g., structural, conceptual,

etc.) [23, 24, 25].

Later, the change impact analysis research has extended to other artifacts such

as design, requirements, and testing. A taxonomy for software change impact

analysis was developed by Lehnert [26] and a comprehensive literature review

[27] of 150 studies was conducted that related to change impact analysis of source

code, architecture [28, 29], miscellaneous artifacts (e.g., configuration files, bug

trackers, documentation) [30], and requirements models [31, 32, 33, 34]. The

traceability links between system design and requirement have been investigated

by many researchers.One of them, a new technique has suggested for generating

a highly useful software design from foal models by Yu et al. [35]. This technique

converts all goals into components and determines their connections between all

components from AND OR-refinement links. Also, Lee et al. [33] have based their

theory using a goal-driven traceability-based technique in a CIA approach.

The researchers have utilized traces between goals and use cases to analyze all

proposed changes of requirements. Using cases and utilization trace among goals

are linked via three traceability relations are evolution, satisfaction, and depen-

dency. This traceability has been Stored in a design structure matrix, then the

impacted entities can be determined after performed a reachability analysis on

10

structured matrix. Another study by Lamsweerde [36] has established his theory

to extract software architectures from a system goal model by heuristics which

means that defines tasks for achieving goals to their corresponding components

and establish connections among them. Some researchers have been recommended

by studies to support developers to give more attention to requirements changes

in terms of goal models. Ernst et al. [37] for keeping a requirements model main-

tainable, they have proposed the notion of a Requirements Engineering Knowl-

edge Base (REKB). The authors discover unanticipated modification that might

occur in the operational system requirements. For instance, adding a new fea-

ture, or add a new law coming to effects by the team. The difference between

Ernst et al. [37] and our proposed approach is that we apply CIA analysis once

there is any change on goal models. Based on that known requirement changes.

Cleland-Huang et al. [38] have presented new approach-based probabilistic to

non-functional needs by managing traceability links. Soft-goal Interdependency

Graph (SIG) constructs by shaping Non-functional needs and their dependencies.

Developers can then analyze the effect changes by recovering all link have been

changed in a SIG graph to affected classes. On the other side, Cleland-Huang et

al. ignore the Non-functional needs and their dependencies and replaced with the

non-functional interdependence requirements, our proposed CIA relies on the core

structure of the goal models and regardless the type of requirements. Nakagawa

et al. [39] provided extra details for goal models, expressed in KAOS [40], whereas

from the requirement descriptions, a set of control loops have been explored. In

11

recent work [41], the author has investigated the use of slicing technique to an-

alyze the propagation of changes in GRL models by using GRL. The proposed

technique extracted the dependency from the GRL model using a GRL Model

Dependency Graph (GMDG). GMDG consider two types of dependencies which

are intra- and inter- actor dependencies. By proposed change we can identify the

constructs that are impacted. They apply slicing to the GMDG model. The ini-

tial results were promising. Furthermore, in the early work [31], both slicing and

dependency analysis were applied at the Use Case Map (UCM) level in order to

grasp the effect of requirements changes. This approach does not consider neither

the UCM data flow model nor the URN links to GRL models. Although many

studies have been done in the maintenance of URN-based models, none of them

has provided such techniques to assess the impact of changes in both GRL and

UCM models by using URL links that link any two URM model elements and

establish traceability between GRL and UCM.

Change impact analysis approaches can be divided into (3) classifications:

(1)dependency impact analysis, (2)traceability impact analysis, and Experimental

impact analysis [42, 2]. The impact analysis techniques based on dependency

analysis [43, 44, 45, 46, 47, 48, 49] attempt to assess the effects of change on

requirements.

12

2.1 URN in a Nutshell

The User Requirements Notation (URN) [11], an ITU-T standard, is a visual

modeling language that supports the elicitation, analysis, and validation of early

requirements. URN describes visually and in one unified language, goals and

functional scenarios, and the links between them. It offers two sub-languages: (1)

the Use Case Maps (UCM) language for describing high-level scenarios and ar-

chitectures and (2) the Goal-oriented Requirement Language (GRL) for modeling

stakeholders intentions and their business goals. Modeling goals and functional

scenarios are complementary and would help uncovering additional goals and sce-

narios. Hence, such combination will contribute to the precision and completeness

of requirements. In a requirement engineering process, Liu and Yu [50] found that

there is a link between goals a scenario. Goal oriented model helps the analyst to

find an important scenario of goal, and the scenarios help the analyst to find out

new goals. Weiss and Amyot [51] illustrated the benefits of combining GRL with

UCM for modeling.

2.1.1 GRL in a Nutshell

The Goal-oriented Requirement Language (GRL) [11], part of ITU-T’s User Re-

quirement Notation (URN) standard, is a visual modeling notation that is used

to model intentions, business goals, functional and non-functional requirements

(NFR). A GRL goal model is a graph of intentional elements, that optionally

reside within an actor. Actors (illustrated as) are holders of intentions; they

13

are the active entities in the system or its environment who want goals to be

achieved, tasks to be performed, resources to be available, and softgoals to be

satisfied [11]. Actor definitions are often used to represent stakeholders as well as

systems. A GRL actor may contain intentional elements and indicators describing

its intentions, capabilities and related measures.

Softgoals (illustrated as) differentiate themselves from goals (illustrated

as) in that there is no clear, objective measure of satisfaction for a softgoal

whereas a goal is quantifiable, often in a binary way. Tasks (illustrated as)

represent solutions to (or operationalizations of) goals or softgoals. In order to

be achieved or completed, softgoals, goals, and tasks may require resources (il-

lustrated as) to be available. A GRL indicator (illustrated as) is a GRL

element that is used to represent some real-world measurements. An indicator

usually convert real-world values in user-defined units into GRL satisfaction val-

ues on a standard scale (e.g.[–100, 100]).

Various kinds of links connect the elements in a goal graph. Decomposition

links (illustrated as) allow an element to be decomposed into sub-elements

(using AND, OR, or XOR). Contribution links (illustrated as

) indicate de-

sired impacts of one element on another element. A contribution link has a qualita-

tive contribution type (e.g., Make, Help, SomePositive, Unknown, SomeNegative,

Break, Hurt) and/or a quantitative contribution (e.g., an integer value within [–

100, 100]). Correlation links (illustrated as

) describe side effects rather than

desired impacts. Dependency links (illustrated as

) model relationships be-

14

tween actors, where intentional elements inside actor definitions can be used as

source and/or destination of a dependency link. In this research, we adopt the

classification of GRL dependencies introduced in [52] that considers contributions,

correlations and decompositions links as implicit dependencies, and dependency

links as explicit dependencies.

Initial satisfaction levels, which can be quantitative (e.g., within [–100, 100]),

or qualitative (e.g., Satisfied, Weakly Satisfied, Denied, Weakly Denied, etc.) of

some of the intentional elements constitute a GRL strategy. These initial values

(emanating from a contextual or a future situation) propagate to the other in-

tentional elements of the model through the various model links, allowing for the

assessment of how high-level goals are achieved and may reveal more appropriate

alternative strategies. Finally, URN Links (illustrated as a black triangle symbol

(source) (target)) are used to connect a source URN model element with

a target URN model element. URN Links model user-defined relationships such

as traceability, refinement, implementation, etc. For a detailed description of the

GRL language, the reader is invited to consult [11].

2.1.2 UCM in a Nutshell

The Use Case Maps (UCM) language, part of the ITU-T User Requirements Nota-

tion (URN) standard [11], is a high-level visual scenario-based modeling language.

Use Case Maps are used to capture and integrate high-level functional scenarios

in terms of causal relationships between responsibilities (, i.e., the steps within

15

 Alternative presentation
for an actor reference

Actor with boundary Collapsed Actor

(a) GRL actors

(b) GRL intentional elements

Contribution Correlation Belief link Dependency Decomposition

(c) GRL links

Make Help SomePositive Unknown SomeNegative Break Hurt

(d) GRL qualitative contribution
types

(e) URN links types

Figure 2.1: Goal-Oriented Language Components

16

a scenario describing operations, tasks, actions, etc.) along paths allocated to a

set of architectural components (). UCM Scenarios may be integrated sequen-

tially (in a map-like diagram), as alternatives (with OR-forks/joins; /), or

concurrently (with AND-forks/joins; /).

For a detailed description of the UCM language, the reader is invited to con-

sult [11]. One of the strengths of UCMs resides in their ability to bind respon-

sibilities to architectural components. Several kinds of UCM components allow

system entities () to be differentiated from entities of the environment (). Com-

ponents can be organized hierarchically, i.e., vertical decomposition, through the

component containment mechanism.

Figure 2.2: Use Case Maps Basic Constructs

17

Figure 2.3: Use Case Maps Components

When maps become too complex to be represented as one single UCM, a mech-

anism for structuring sub-maps becomes necessary. Path details can be hidden in

sub-diagrams called plug-in maps, contained in stubs (presented as diamonds) on

a path. A plug-in map is bound (i.e., connected) to its parent map by binding

the in-paths and out-paths of the stub to start points () and end points ()

of the plug-in map, respectively. UCM has a mechanism which allows to define

and structure sub-maps. Path details can be hidden in sub-maps called plug-ins

contained in stubs (diamonds) on a path. UCM supports four types of stubs: (1)

static stub () has at the most one plug-in map that cannot be replicated and

that is always selected, (2) dynamic stub () may have many plug-in maps that

can be replicated and that are selected according to some selection policy. When

the UCM path reaches the dynamic stub, the selected plugin maps of the stub

are traversed in parallel, (3) synchronizing stub () is a dynamic stub that in

addition synchronizes its plug-in maps before the traversal of the UCM path is

allowed to continue past the stub. A synchronization threshold can be defined

for each out-path of a stub, (4) blocking stub () is a synchronizing stub that

does not allow its plug-in maps to be visited more than once at the same time.

18

Figure 2.2illustrates the main UCM constructs.

2.2 Program slicing

Program Slicing, introduced by Weiser [53], is a reduction technique used to de-

crease the size of a program source code by keeping only the statements within a

program that are related to the execution of a specific slicing criterion (program

location l and the set of variables V, written as (l, V)) specified by the user. The

resulting program, called ”static slice”, preserves the semantics of the original

program for all possible inputs.

Given a program P and a slicing criterion (l,V), two types of static slices can

be produced, backward and forward slices. A backward slice of P with respect to

(l,V) consists of all statements and predicates in the program that may affect the

value of variables in V at l. A forward slice of P with respect to (l, V) consists of

all statements and predicates in the program that may be affected by the value

of variables in V at l. Consider the program in Fig. 2.2, that computes the sum

and the product of a set of integer numbers less that a given number n. Figure 2.2

illustrates the produced backward slice with respect to the slicing criterion (10,

product), while Fig. 2.2 shows the resulting forward slice with respect to the slicing

criterion (3, sum).

19

(a) Original Program
-

1. read(n)

2. i := 1

3. sum := 0

4. product := 1

5. while (i <= n) do

6. sum := sum+ i

7. product := product ∗ i
8. i := i+ 1

9. write(sum)

10. write(product)

(b) Backward Slice
C=(10, product)

1. read(n)

2. i := 1

3.

4. product := 1

5. while (i <= n) do

6.

7. product := product ∗ i
8. i := i+ 1

9.

10. write(product)

(c) Forward Slice
C=(3, sum)

1.

2.

3. sum := 0

4.

5.

6. sum := sum+ i

7.

8.

9. write(sum)

10.

Figure 2.4: An example of a program and its corresponding backward and forward
static slices

2.3 Forward vs. Backward slicing

Forward and backward traversal can be done at any part of the program, based

on a given slicing criterion that indicates to start of the traversal point. The for-

ward slicing technique is highlighting the statements, which is contained a source

code, of the original program that may affect by the selected slicing criterion, but

backward slicing technique is highlighting all statements that may impact to the

selected slicing criterion. Forward slicing techniques help and assist maintainers

to predict the portions statements of the program that may affect after perform-

ing the maintenance task [54] whereas the backward slices techniques help analyst

to identify the portions statements of the program that may contain a bugs. As

shown in fig. 2.2, the result of the forward slice with respect to slicing criterion

(3, sum). Statement 6 is contributed to the slice due to the right variable of the

20

statement is belong to slicing criterion and statement 9 also is contributed.

21

CHAPTER 3

GRL CHANGE IMPACT

ANALYSIS APPROACH

The content of this chapter is mainly extracted from the paper [14]. Figure 3.1

describes the proposed GRL-based change impact analysis approach. To identify

the impact of a change in a GRL model under maintenance, an analyst may

select a GRL construct (i.e., an intentional element, an indicator, or a link) to be

changed, then specify the type of change (e.g., addition, modification, deletion).

Next, the GRL Model Dependency Graph (GMDG) is constructed (see Sect. 3.2),

then sliced according to the specified slicing criterion (see Sect. 3.3). GMDG

impacted nodes are then identified, mapped back to the original GRL model,

and marked with a different color. Finally, impacted evaluation strategies and

impacted URN Links are displayed as a GRL Comment construct (see Sect. 3.6).

In what follows, we provide some necessary definitions (adopted and modified

from [41]) that are used in the subsequent sections.

22

Select GRL Construct

Invoke GRL CIA feature

Construct GMDG Graph

Slice GMDG Graph

Identify Impacted GRL
constructs and Strategies

Identify and Follow URN Links of
impacted URN constructs

Mark GRL model and list the impacted
URN constructs (UCM and GRL)

Figure 3.1: GRL CIA Approach

23

Definition 3.1 (GRL Model) We assume that a GRL model GRLM is denoted

by a 3-tuple: (Actors, Elements, Links), where:

� Actors is the set of actor references in the GRL model.

� Elements is the set of intentional elements (i.e., tasks, goals, softgoals, re-

sources) and indicators in the GRL model.

� Links is the set of links in the GRL model.

It is worth noting that we don’t consider collapsed actors (although they are

described in the URN standard [11]), since they are not supported in jUCM-

Nav [13].

Definition 3.2 (GRL Link) We define a GRL link as (type, src, dest): Link-

Types Elements Elements, where LinkTypes = {contribution, correlation, de-

pendency, decomposition}), src and dest are the source and destination of the link,

respectively.

Definition 3.3 (GRL Link Access Functions) Let l=(type, src, dest) be a

GRL link. We define the following access functions over GRL links:

� TypeLink: Links → LinkTypes, returns the link type (i.e., TypeLink(l) =

type).

� Source: Links → Elements, returns the intentional element source of the

link (i.e., Source(l) = src).

24

� Destination: Links→ Elements, returns the intentional element destination

of the link (i.e., Destination(l) = dest).

3.1 Dependencies in GRL Model

The goal-Oriented requirements model illustrates the actors within a large com-

plex system and its requirements, the relationship between systems elements, and

goals of organizational. As mention in section 2.1.1, the dependency links provides

how a source actors depend on a target actors for an elements/indicator. This

relationship shows the reason about how actors depends on other to achieve their

goals. we can classify the dependencies in GRL model to implicit or explicit [52].

To model implicit dependencies, we use contribution link () Correlation link

(), and Decomposition link () . Explicit dependencies are modeled as depen-

dency link. According to [11] required level of details, the explicit dependencies

links can be used for many types of configurations. The GRL actor by its def-

initions, it can be used as destination/ source if explicit dependencies links. In

addition, the intentional elements can be used as destination/ source, but with

implicit dependencies (Contribution, Correlation, and Dependencies), the actors

cannot be used as destination and/or source. Note that the actors overlaps are not

allowed in GRL syntax (i.e. share common GRL elements). When a source inten-

tional elements/indicators and a target intentional elements/indicators within the

same actors, this called Intra-actor dependencies. When a source intentional ele-

ments/indicators and a target intentional elements/indicators bound to different

25

actors, this called Inter- dependencies.

3.2 GRL Model Dependency Graph (GMDG)

In this section, we define the GMDG graph and present the algorithm (Alg. 1) to

construct it.

Definition 3.4 (GRL Model Dependency Graph (GMDG)) A GRL

Model Dependency Graph (GMDG) is defined as a directed graph GMDG=(N,

E), where:

� N is a set of nodes. Each GRL intentional element, indicator, or a link is

mapped to a node n ∈ N.

� E is a set of directed edges. An edge e ∈ E represents a dependency between

2 nodes in GMDG and it is illustrated as a solid arrow (−→).

First, for each intentional element, indicator, or a link a new GMDG node is

created. Next, depending on the type of the GRL links, GMDG dependency links

are created between GMDG nodes (i.e., CreateDependencyLinkGMDG (e1, e2)

creates a GMDG dependency link from e1 to e2).

Figure 3.2 illustrates a generic GRL model along with its corresponding GMDG

graph. Each goal/contribution/decomposition/dependency is represented as a

GMDG node. The satisfaction of G2 depends on the satisfaction of G5 and the

contribution type (help in this case), hence, two GMDG links are created: (1)

26

Algorithm 1: Constructing a GRL Model Dependency Graph (GMDG)

Procedure Name: ConstructGMDG
Input : A GRL Model: (Actors, Elements, Links)
Output: A GRL Model Dependency Graph (GMDG)
foreach e ∈ Elements do

n= createGMDGNode(e);
end
foreach e ∈ Links do

n= createGMDGNode(e);
if (TypeLink(e) == contribution or TypeLink(e) == correlation or
TypeLink(e) == decomposition) then

CreateDependencyLinkGMDG(Destination(e), Source(e)) ;
CreateDependencyLinkGMDG(Destination(e), n);

else
{TypeLink(e) == Dependency}
CreateDependencyLinkGMDG(Source(e), Destination(e)) ;
CreateDependencyLinkGMDG(Source(e), n);

end

end

between G2 and G5 and (2) between G2 and Contrib-G5G2. Since G1 is de-

composed into G3 and G4 (using AND-decomposition), four GMDG dependency

links are created: (1) one between G1 and G3, (2) one between G1 and G4, (3)

one between G1 and AND-Decomp-G3G1, and (4) one between G1 and AND-

Decomp-G4G1. Finally, G1 depends on G2, which is mapped as two GMDG links:

(1) one between G1 and G2, and (2) one between G1 and depend-G1G2.

(a) Generic GRL Model

G1

G3

G2

AND-
Decomp
-G3G1

Contrib
-G5G2

G4

AND-
Decomp
-G4G1

G5
Depend
-G1G2

(b) Generic GMDG Graph

Figure 3.2: A Generic GRL model and its corresponding GMDG

27

3.3 Slicing the GRL Model Dependency Graph

Program Slicing, introduced by Weiser [53] in the early 1980’s, is a reduction

technique used to decrease the size of a program source code by keeping only

the lines within a program that are related to the execution of a specific slicing

criterion specified by the user. In order to perform a change impact analysis on

GRL models, we extend the concept of program slicing to GMDG graphs [55]. In

what follows, we introduce the notion of GRL slicing criterion, then we present

the GMDG slicing algorithm (see Alg. 2).

Definition 3.5 (GRL Slicing Criterion) Let GRLM be a GRL model. A slic-

ing criterion SC for GRLM may be either a GRL intentional element/Indicators

or a GRL link.

The slicing of the GMDG (see Algorithm 2) is based on a backward traver-

sal of the GMDG. It requires as input the GMDG graph and the GMDG node

that corresponds to the slicing criterion SC. The algorithm starts by adding the

GMDG node (called ImpactedGMDGNode) to the set of impacted nodes (i.e.,

SetGMDGImpactedNodes). Next, it follows each incoming link leading to Im-

pactedGMDGNode and add its source to SetGMDGImpactedNodes. Finally, a

recursive call is made by passing the GMDG and the new reached GMDG node.

The resulting set of impacted GMDG nodes (i.e., SetGMDGImpactedNodes)

is then mapped back to SetGRLImpactedElements, the set of the original GRL

model elements. The elements within SetGRLImpactedElements, along with the

28

Algorithm 2: GMDG Backward Slicing Algorithm

Function Name: SlicingGMDG
Input : A GMDG + GMDG node corresponding to SC

(LocationInGMDG(SC))
Output: SetGMDGImpactedNodes
ImpactedGMDGNode = LocationInGMDG(SC);
if ImpactedGMDGNode /∈ SetGMDGImpactedNodes then

AddToImpactedNodes(ImpactedGMDGNode, SetGMDGImpactedNodes);
if hasIncomingLinks(ImpactedGMDGNode) then

foreach incomingLink do
AddToImpactedNodes(Source(incomingLink),
SetGMDGImpactedNodes);

GMDGslicingAlg(GMDG, ImpactedGMDGNode);

end

end

end

impacted elements emanating from following the URN Links (see Sect. 3.4), are

then marked in purple color (see examples in Sect. ??).

3.4 Impact Through URN Links

This step aims at identifying other potential GRL impacted elements by follow-

ing existing URN Links. A URN Link is used to create a connection between

any two URN elements, e.g., intentional element reference/definition, actor refer-

ence/definition, link, etc. A URN Link may be defined as follows:

Definition 3.6 (URN Links) A URN Link is defined as urnl = (type, from,

to), where (1) type denotes a user-defined URN Link type, (2) from denotes the

ID of source URN element, and (2) to denotes the ID of the target URN element.

According to [56], the authors defined a rule as a constraints on URN meta

model. Algorithm 3 iterates through the set of impacted elements (i.e., SetGR-

29

LImpactedElements) and checks whether these elements are involved in any URN

Link, as source (i.e., from field) or as a target (i.e., to field). Since an impacted ele-

ment can serve as a source or a target in a URN Link and since one source element

can be linked to many target elements and vice versa, we have used two search

functions to retrieve the set of elements IDs depending whether we are looking for

source or target IDs. (i.e., searchSourceURNLinks and searchTargetURNLinks).

The new identified elements are then add to the set SetGRLImpactedElements.

Algorithm 3: Excerpt of the algorithm to identify impacted elements
emanating from URN Links

Function Name: IdentificationOfOverallImpactedElements
Input : GRL Model + SetGRLImpactedElements
Output: SetGRLImpactedElements
URNLinksList = getAllURNLinks();
foreach e ∈ SetGRLImpactedElements do
{Search for target elements IDs when e is defined as source};
ToElementList = searchTargetURNLinks(e,from,URNLinksList);
AddToGRLImpactedElements(ToElement, SetGRLImpactedElements);
{Search for source elements IDs when e is defined as target}
FromElementList = searchSourceURNLinks(e, URNLinksList);

AddToGRLImpactedElements(FromElement, SetGRLImpactedElements);

end

It is worth to noting that urn links have various links between all URN model

elements to establish the traceability between GRL and UCM models, which help

us to achieve a completeness and consistence analysis. In case, Intentional Element

linked to Actor Defnition or Component Defnition, our proposed CIA algorithm

will indicate to all references with their IDs that created by its defnition. Table 3.1

listed all supported elements by our change impact analysis approach. IER is a

abbreviation of Intentional Element Reference and Link stands for Contribution,

Decomposition, or Dependency.

30

Intentional Element Reference (IER)
Link Stands for Contribution, Decomposition, or Dependency
Source Element To / From Target Element
IER <- > Intentional Element
IER <- > IER
IER <- > Link
IER <- > Responsibility
IER <- > Responsibility Reference
IER <- > Actor
IER <- > Actor Reference
IER <- > Component
IER <- > Component Reference
Link <- > Intentional Element
Link <- > IER
Link <- > Link
Link <- > Responsibility
Link <- > Responsibility Reference
Link <- > Actor
Link <- > Actor Reference
Link <- > Component
Link <- > Component Reference

Table 3.1: GRL supported URN links by CIA

31

3.5 Identification of the Impacted GRL Strate-

gies

Once the set of impacted GRL model elements (i.e., SetGRLImpactedElements) is

identified, we have to spot all impacted evaluation strategies. Algorithm 4 accepts

as input a GRL model and the set of impacted GRL elements (SetGRLImpact-

edElements resulting from applying the GMDG slicing algorithm), and produces

the set of impacted GRL strategies (i.e., SetImpactedStrategies).

Algorithm 4: Identification of the impacted GRL evaluation strategies

Function Name: IdentificationOfImpactedStrategies
Input : GRL Model + SetGRLImpactedElements
Output: SetImpactedStrategies
SetImpactedStrategies = ∅;
StrategiesList = getAllStrategies();
foreach strategy ∈ StrategiesList do

foreach impactedElement ∈ SetGRLImpactedElements do
if PartOfStrategy(impactedElement, strategy) then

AddToImpactedStrategies(strategy, SetImpactedStrategies) ;
end

end

end

3.6 jUCMNav GRL-based Change Impact Anal-

ysis Feature

Our proposed change impact analysis approach is implemented as a feature 11]The

CIA feature is publicly available and can be downloaded from https://github.

com/JUCMNAV/projetseg/tree/grl. within the jUCMNav framework [13], a full

graphical editor and analysis tool for GRL models developed as an Eclipse-based

32

plug-in.

To exercise this feature, the user starts by selecting a GRL intentional element,

an indicator or a link, then right-clicks to choose from three sub-menu commands:

Addition, Deletion, or Modification (see Fig. 3.3). For the addition option, it is

required that the analyst adds the GRL construct first then call the feature. The

deletion is provided as a separate option because there will be impacted elements

due to the loss of connectivity caused by the deletion. It is worth noting that this

CIA menu is activated for the supported GRL constructs only.

Figure 3.3: GRL CIA included in command menu of jUCMNav framework

If any of the impacted element (marked in purple color (see Fig. 5.5)), is part

of a GRL evaluation strategy, the details of the impacted element will appear as

a GRL Comment (in gray color) with its name, ID, and the name of strategies it

belongs to (see Fig. 5.8(a)). Similarly, information about impacted URN Links,

such as SourceID, TargetID, and Type, are also shown in the same GRL Comment

box (see Fig. 5.6).

33

CHAPTER 4

UCM CHANGE IMPACT

ANALYSIS APPROACH

In this chapter, we introduce the proposed UCM-based CIA approach. In what

follows, we provide some necessary definitions that are used in the subsequent

sections.

Definition 4.1 (UCM Slicing Criterion) A UCM slicing criterion is defined

as SC = (targetConstruct, SCVariables), where:

� targetConstruct is a simple UCM construct (e.g., responsibility reference

(respRef), Or-Fork branch, start point, etc.). A stub cannot be a slicing

criterion.

� SCVariables is a subset (possibly empty) of variables defined or used within

the targetConstruct.

Definition 4.2 (Marked UCM Specification) Given a UCM Specification S

34

and a slicing criterion (SC) for S. MarkedS is produced by showing the impacted

UCM constructs in S (using different colors), with respect to the slicing criterion

SC.

Figure 4.1 describes the main steps of the proposed UCM CIA approach as

an activity diagram. An analyst starts by selecting a UCM construct subject to

change as part of a maintenance task, then invokes the CIA feature. In case of

addition of a new UCM construct, the analyst should add the construct first, then

invoke the CIA feature. If the selected construct encloses code, the analyst may

select the variables of interest, as part of the slicing criterion (through the GUI

shown in Fig. 4.9).

In order to identify the impact of a given change, two main algorithms are

executed in parallel (enclosed between Fork and Join nodes), namely, UCM For-

ward Traversal and UCM Dependencies Computation. The forward traversal (see

Alg. 6) starts from the selected criterion and visits subsequent constructs on the

path, while computing control and data dependencies with respect to the set of

selected variables (part of the slicing criterion). The analysis of dependencies

leads to the identification of relevant/irrelevant constructs. Next, we follow all

URN links associated with the impacted constructs (i.e., relevant constructs) and

identify all related UCM/GRL elements. Finally, the UCM is marked (using dif-

ferent colors for the impacted constructs) and a list of all potentially impacted

URN elements (GRL and UCM) are displayed as a UCM comment.

35

Select UCM Construct

Invoke UCM CIA feature

Select UCM Slicing Criteria

UCM Forward
Traversal

UCM Dependencies
Computation

Identify Impacted UCM constructs

Mark UCM model and list the impacted
URN constructs (UCM and GRL)

Identify and follow the URN links of
impacted URN constructs

Figure 4.1: UCM CIA Approach

36

4.1 UCM construct variables’extraction

Variables are part of the global data model in a URN specification. UCM vari-

ables are of several types and can be used within responsibilities (as executable

source code), in start points (as a precondition), in end points (as postconditions),

within Or-Fork branches (as boolean expressions), in plug-in selection policies for

dynamic stubs, and in UCM scenario definitions. URN offers a textual data

language with concrete textual syntax allowing for the use of operators from con-

ventional programming languages such as C and Java.

Code expressions vary from assignments, if-else conditions, or blocks of state-

ments (see Table 4.1 for some examples that will be used to explain the different

algorithms of our proposed approach). Once the CIA feature is invoked, all vari-

ables within the code expression of the selected construct (i.e., the slicing criterion)

are extracted and displayed.

4.2 UCM Dependencies computation

In what follows, we define control and data flow dependencies in the UCM context.

Definition 4.3 (UCM Control Flow Dependency) There is a control flow

dependency between two UCM constructs C1 and C2 if there exists a UCM path

that starts at C1 and reaches C2. C2 is said to depend on C1 (from a control

flow perspective).

37

Responsibility
name

Responsibility
expression

resp 1 y:= 0;
resp 2 y := y + 1;
resp 3 t := 0;
resp 4 z := y;
resp 5 z := y +1;
resp 6 t := t + 1;

resp 7

if(i <x)
{
i := i + 1;
n := y;
}

resp 8

if(y >= x)
t := t + 1;
else
n := y;

resp 9 -

Table 4.1: Responsibilities with their expressions (i.e. source code)

It is worth noting that UCM control flow dependency results from the inherent

nature of the UCM notation (i.e., causal paths connecting UCM constructs).

Definition 4.4 (UCM Data Flow Dependency) There is a data flow depen-

dency between two UCM constructs C1 and C2 if variables defined (e.g., through

assignments) within C1 are used within C2. C2 is said to depend on C1 (from a

data perspective).

A responsibility may enclose several code statements. It is sufficient to have

a data dependency in one single statement to declare that there is a data flow

dependency.

Definition 4.5 (Relevant UCM Construct) A UCM construct C is consid-

ered to be relevant, with respect to a slicing criterion SC = (targetConstruct, SC-

38

Variables), if and only if, there are both a control flow and data flow dependencies

between targetConstruct and C.

Considering the definition of data flow dependency, it is important to mention

that a UCM construct is either relevant (has a control flow dependency and at

least has a data flow dependency with respect to one single statement) or irrelevant

(i.e., has no control or data flow dependencies).

In our proposed approach, dependencies are calculated on the fly while per-

forming forward traversal of the UCM model.

Algorithm 5 describes the steps of computing and analyzing the extracted code

from UCM constructs. The algorithm is not calculated the dependencies when (1)

the selected slicing criteria either has not enclosed expression (empty-coded) or

(2) it has an expression and the user did not select variables as part of the slicing

criterion (i.e., empty SCVariables). In this case, the entire path located after the

slicing construct will be considered as impacted.

The expression must be read top-down to extract the right side (i.e. assign-

ment) and left side (i.e. declaration). The algorithm requires as input the code

expression and SCVariables which a set of variables within the slicing criterion

in order to compute the dependencies. It starts by initializing the relevantVari-

ablesSet which is a set of relevant variables. Then, we check if Construct(SC)

does not have a SC Variables, the construct will be stated as a relevant and the

entire located path after Construct(SC) will be considered as impacted. Other-

wise, if the expression is not empty, we create a function CreateStack that takes

39

Algorithm 5: UCM Construct Relevancy

Procedure Name: DetermineConstructRelevancy
Input : expression:String {not empty source code}

SCVariables: Set of variables {variables within the slicing criterion}
Output: relevant: Booelan { true if relevant otherwise irrelevant UCM

construct}
relevantVariablesSet: Set of variables = ∅;
{set of relevant variables}
CleanExpression(expression);
{Remove comments from expression}
relevant = false;
if (isEmpty(SCVariablesListOf(Construct(SC)))) then

relevant = true;
{entire path located after the Construct(SC) will be considered as
impacted}

else
if (not(isEmpty(expression))) then

expressionStatements: Stack (string)= CreateStack (expression);
{Decompose the expression and store its statements as a stack}
if (not(isEmpty(SCVariables))) then

relevantVariablesSet = SCVariables;
if (currentNode == Construct(SC)) then

add (relevantVariablesSet, definedVariable (expression,
SCVariables));
{add the newly defined variables to the set of relevant variables}
pop(expressionStatements);
relevant = true;

end
while (not(isEmpty(expressionStatements))) do

if (relevantVariablesSet is included in the right side of
top(expressionStatements)) then

add (relevantVariablesSet, definedVariable
(top(expressionStatements), relevantVariablesSet));

relevant = true;

else
relevant = false;

end
pop(expressionStatements);

end
add (SCVariables, relevantVariablesSet);

else
{Construct does have an expression, but SCVariables is empty}
relevant = false;

end

end

end

40

as input an expression and generates a stack of statements (i.e. expressionState-

ments) ignoring all if/while/for statements (using variables). For once, if the

selected node equal Construct(SC), the definedVariable will be added to relevant-

VariablesSet with respect to SCVariables. Next step is by checking whether the

expressionStatements is empty or not, if not, the definedVariable will be added

to relevantVariablesSet. The dependencies will be computed with relevant vari-

ables by checking the variable(s) resides at the right side of the statement. If

the variables belong to SCVariables, the left variable of the statement will be

added to relevantVariablesSet and the statement is relevant. Then, the expres-

sionStatement will be popped from the stack. In case there is no right variable

in a statement and the left variable side belongs to criterion variable list, then

the left variable will be removed from the list and it is not relevant because the

default value is changed.

In figure 4.4(b) For example, we applying CIA feature with respect to SC=

(resp 1, y). First, we add a set of relevant variables to a relevantVariablesSet

list of the responsibility (i.e. resp 1). Then, we generate a stack of statements

with respect to current responsibility. Next, by checking the expressionStatments

if it is not empty, if not, we add the definedVaraible y of the statement (i.e.

y:=0;) to the relevantVariablesSet, at the same time we pop it from the stack,

and add the responsibility to the global relevantNodes list. Same procedure will be

applied with responsibility (i.e. resp 4). In the last responsibility (i.e. resp 8), the

expressionStatements stack contained two extracted statements (i.e. t:=t+1; and

41

n:=y;). We check the top expression (i.e. t:=t+1;) with regard the SCVariables

(i.e. y), the y is not located in the right side of the top expression, so it will not be

added to SCVariables and it will be popped from the expressioStatments stack.

But the last statement in the stack, it will be revenant and it will be added to the

global relevantNodes list, because the expressionStatement (i.e. n:=y;) is relevant

with respect to the SCVariables (i.e. y) which is resided in the right side.

4.3 Forward Traversal Algorithm

Algorithm 6 illustrates the main steps of the UCM forward traversal algorithm.

It accepts as in input a startLink which is a successor link of the UCM construct,

if the UCM construct is a responsibility, startPoint, or-Join, and-Join, or Timer,

startLink will be the direct successor link of the UCM construct. In addition to

startLink parameter, SCVariables are the chosen slicing criterion variables (pos-

sibly empty). In case of Or-Fork branches and and-Fork branches, the start link

will be the successor link of the branches target. The forward traversal algorithm

starts by declaring visitedJoins list and stubs list. The visited Joins are the list of

all traversed or-Joins that are used to detect the loop and avoid the infinite loop

during forward traversal. Each path has its own visitedJoins list. The stubs list,

it is used to store all plug-in maps in order to traverse all of them during forward

traversal if exist. In our proposed work forward traversal, each UCM construct

is handled separately, and it has own procedure. For that reason, we divided the

forward procedure into switch cases for the constructs. The procedure will be

42

terminated once reached to an end point and an empty stub list (i.e. there are no

nested plug-in maps).

4.3.1 Responsibility References’s Procedure

The procedure accepts as input a responsibility reference (respRef), it is handling

the respRef during forward traversal by extracting the code, analyzing, and com-

puting the data dependencies. As a result of this procedure, the relevant/irrelevant

responsibilities are specified with respect to SCVariables list. in case the respRef

does not have code, it will be ignored. Algorithm 7 describes the steps of han-

dling respRef. In order to determine whether respRef is relevant or irrelevant. At

the beginning, if the currentRespRef is not a Construct(SC) (i.e. selected UCM

construct and its SCVariables), first, we check if the visitedNodes list contained

the currentRespRef in order to avoid the loop. Then, we recall DetermineCon-

structRelevancy function in order to determine the relevancy of currentRespRef,

if it is relevant, it will be added to the relevantRespRef list which is used later

to color the relevant responsibilities and added to relevantNodes list, otherwise

it will be added to the irrelevantRespRef list. Finally, if the currentRespRef is a

selected, either it means a loop or it is a SC. First, check whether SCVariables

is empty or not. If it is not, we add the currentRespRef to relevantRespRef and

relevantNodes, and perform normal determination of relevancy. Otherwise, the

currentRespRef will be added to relevantNodes and the rest of UCM constructs

come after SC will be added to relevantNodes.

43

Algorithm 6: Forward Traversal algorithm for CIA approach

Procedure Name: ForwardTraversal
Input : startLink:NodeConnection,

SCVariables: Set of variables
Output: update SCVariables list and relevantNodes list
currentLink:NodeConnection = startLink;
currentNode:PathNode = getTargetNode(currentLink);
visitedNodes:List(PathNode) = ∅;
endPoints:List(EndPoint) = ∅;
visitedJoins:List(PathNode) = getVisitedJoins list;
stubs:List(Stub) = getStubs list;
relevantNodes:List(PathNode) = ∅;
while (currentNode 6= EndPoint or stubs not empty) do

switch currentNode do
case RespRef do

HandlingRespRef(currentNode) {Alg. 7};
end
case Or-Fork do

HandlingOr-Fork(currentNode) {Alg. 8};
end
case Or-Join do

HandlingOr-Join(currentNode) {Alg. 9};
end
case Stub do

HandlingStub(currentNode) {Alg. 10} ;
end
case And-Fork do

HandlingAnd-Fork(currentNode) (Alg. 11) ;
end
case And-Join do

HandlingAnd-Join(currentNode) (Alg. 12) ;
end
case EndPoint do

HandlingEndPoint(currentNode) {Alg. 13} ;
end
otherwise do
{node does not require action} Add(currentNode) to visitedNodes;

end

end
currentLink= getSuccessorLink(currentNode);
currentNode= getTarget(currentLink) ;
{check whether node is an EndPoint and stubs is an empty}
if (currentNode == EndPoint and stubs is an empty) then

Add(currentNode) to endPoints ;
Add(currentNode) to visitedNodes;

end

end

44

Figure 4.2. For example, applying CIA (i.e. modification change) with respect

to SC = (resp 4, y). As shown in fig. 4.2(b), the impacted elements are colored

in green, and the elements that are not impacted are colored in red. In addition,

more explanation are illustrated in sect. 4.2.

(a) UCM Path Node with set of re-
spRefs

(b) Impacted elements after apply-
ing CIA, SC = (resp 4, y)

Figure 4.2: An example of handling respRefs

Algorithm 7: respRef algorithm

Procedure Name: HandlingResponsibility
Input : currentRespRef:PathNode
Output: update the relevance of respRef whether it is relevant or irrelevant.
relevantRespRef:List(respRef);
irrelevantRespRef:List(respRef);
if (currentRespRef 6= Construct(SC)) then

if (currentRespRef not in visitedNodes) then
add(visitedNodes, currentRespRef);

end
{Check whether currentRespRef is Relevant or Irrelevant
True if currentRespRef is Relevant}
if (DetermineConstructRelevancy(respRefExpression, SCV ariables))
then

add(relevantRespRef , currentRespRef);
add(relevantNodes, currentRespRef);

else
add(irrelevantRespRef , currentRespRef);

end

else
{Either currentRespRef selected as a SC, or Reaching Construct(SC),
means a loop}

call DetermineConstructRelevancy algorithm (see algo. 5)
end

45

4.3.2 Or-Fork’s Procedure

When an Or-Fork is encountered during forward traversal, the outcoming links

(i.e. successor branches) are traversed separately. For each branch, forward traver-

sal will be executed reclusively. It accepts as input a branch link as a startLink

and SCVariables list. For each branch, the forward traversal algorithm computes

its own dependencies and specifies relevant/irrelevant nodes based on local de-

pendency variables (i.e. SCVariables). In case of extracting internal or-Forks,

each sub branches are handled separately in a recursive manner. Then, the com-

putation of dependencies variables is computed according to the parent branch.

The visitedJoins list defined in algorithm 6 is used in order to deduct the loop

when exists. For example (see fig. 4.3), applying CIA (i.e. deletion change) with

respect to SC = (resp 1, y). it shows the control flow paths colored in green,

and relevant/irrelevant elements. Algorithm 8 describes the steps of handling the

Or-Forks nodes.

(a) UCM Path Node with an Or-Fork

(b) Impacted elements after applying CIA, SC
= (resp 1, y)

Figure 4.3: An example of handling OR-Fork

46

Algorithm 8: OR-Fork algorithm

Procedure Name: HandlingOR-Fork
Input : or-Fork:PathNode
Output: update SCVariables, visitedNodes, and visitedJoins lists
if (or − Fork /∈ visitedJoins then

add(visitedJoins, or − Fork);
add(visitedNodes, or − Fork);
add(relevantNodes, or − Fork);
foreach (Link l ∈ getSuccessor(or − Fork)) do

result:List(String) = ForwardTraversal(l, SCV ariables); {see algo. 6}
add(SCV ariables, result);

end

else
{Otherwise it’s a loop} Exit HandlingOF();

end

4.3.3 Or-Join’s Procedure

Or-Join construct receives at least one sub-branch (i.e. incoming lists). The algo-

rithm 9 keeps tracking those incoming links in order to decide whether they will

be impacted or not regarding control flow dependencies. Given an example (see

fig. 4.4) of or-Join having two predecessors links within UCM model. To exercise

Or-Join, applying CIA (i.e. addition change) with respect to SC = (resp 1, y).

It shows the marked impacted elements with colored path nodes. As shown in

fig. 4.4(b), just one incoming link is marked, as a result of the target criterion,

that affected the control flow of execution.

4.3.4 Stub’s Procedure

In order to improve that consistency among UCM model, we use stubs which are

lower level of UCM sub-maps that hide the information in their plug-in (i.e. Plug-

in Bindings). There are two types of plug-in Bindings (1) In-Binding binds the

47

(a) UCM Path Node with an Or-Join (b) Impacted elements after apply-
ing CIA, SC = (resp 1, y)

Figure 4.4: An example of handling Or-Join

Algorithm 9: Or-Join algorithm

Procedure Name: HandlingOr-Join
Input : or-Join:PathNode
Output: update SCVariables list
irrelevantBranches:List(NodeConnection) = ∅;
if (or − Join = Construct(SC)) then

add(visitedJoins, or − Fork);
add(visitedNodes, or − Fork);
add(relevantNodes, or − Fork);
ForwardTraversal(getSuccessor(or − Join), SCV ariables); {see algo. 6}

else
if (or − Join /∈ visitedNodes) then

add(visitedNodes, or − Join);
foreach (Link l ∈ getPredecessor(or − Join)) do

add(irrelevantBranches, l);
end
remove(irrelevantBranches, currentLink);

else
remove(irrelevantBranches, currentLink);

end

end

48

stubs In-Path to Start Point via a link in UCM map(s) (2) Out-Bindings binds the

stubs Out-Path to End Point in UCM map(s). In addition to plug-in Bindings,

there are three types of stubs which are static, dynamic, and synchronize. The

dynamic stub may have more than one plug-in, and it requires traverse all plug-in

in UCM mode. This traversing depends on the data flow dependency. To handle

multiple stubs with their plug-in, we use stubs list to save the hierarchy level of

stubs. In forward traversal, the stubs are handled in two steps (algorithm 10).

(1) In-Binding allows to enter to plug-in maps, and (2) reaching to the End Point

of this plug-in map when encountered End Point(s). then, continue traversing to

parent maps using Out-Bindings (see Algo. 13). Figure 4.5 and Figures[4.5(c),

4.5(d)] shows a UCM model with multiple level of stubs and a UCM specifica-

tion after applying a change impact analysis feature, respectively. For example,

applying CIA (i.e. modification change) with respect to SC = (resp 8, y).

4.3.5 And-Fork’s - And-Join’s Procedures

When and-Fork is encountered during the forward traversal. Since the and-Fork

has at least two branches (see fig. 4.6(a)), so we need to perform forward traversal

algorithm for each branch independently. In case and-Join is encountered, we

move backward to catch all predecessor for the other branches of and-Join in

order to perform forward traversal. For example, applying CIA (i.e. deletion

change) with respect to SC = (resp 1, y).As shown in Fig. 4.6(b), the forward

traversal is applied for both branch EP 1 and EP 2.

49

(a) UCM parent map (b) Plugin map to stub in Parent
map 4.5(a)

(c) Impacted elements after applying
CIA

(d) Impacted elements after apply-
ing CIA

Figure 4.5: An example of handling Stub

Algorithm 10: Stub algorithm

Procedure Name: HandlingStub
Input : stub:PathNode
Output: update visitedNodes and SCVariables lists
irrelevantIN:List(NodeConnection) = ∅;
irrelevantOUT:List(NodeConnection) = ∅;
stubEntry:NodeConnection=null;
if (stub /∈ visitedNodes) then

add(visitedNodes, stub);
add(irrelevantIN , predeccessorLink(stub));
add(irrelevantOUT , SuccessorLink(stub));

end
add(stub, stubs);
foreach (bindings:PluginBindings ∈ getBindings(stub)) do

foreach (IN : InBinding ∈ getInBindings(stub)) do
if (entryLinkOf(IN) == currentLink) then

stubEntry = getStartPointOf(IN);
add(visitedNodes, stubEntry);

end
result:List(String) = ForwardTraversal(SuccessorLinkOF(stubEntry),
SCV ariables); {see algo. 6}

add(SCV ariables, result);
end

end

50

Algorithm 11: And-Fork algorithm

Procedure Name: HandlingAnd-Fork
Input : and-Fork:PathNode
Output: update Groups, visitedNodes lists
if (and− Fork /∈ visitedJoins) then

add(visitedNodes, and− Fork);
foreach (Link l ∈ getSuccessorLinks(and− Fork)) do

ciaForward = ForwardTraversal(l, SCV ariables); {see algo. 6}
add(group, ciaForward);

end
add(Groups, group);

else
{If and-Fork contained in VisitedNodes, means a loop}

end

(a) UCM Path Node with a And-Fork

(b) Impacted elements after applying
CIA, SC = (resp 1, y)

Figure 4.6: An example of handling And-Fork

51

Another case when SC resides within concurrency branch (i.e. enclosed be-

tween And-Fork and And-Join), first, before starting the forward traversal, the

CIA algorithm move backward to get all the other concurrent branches in order to

perform forward traversal for each branch independently. For example, applying

CIA (i.e. addition change) with respect to SC = (resp 6, -) (see Fig. 4.7(a)). As

a result of CIA if Fig. 4.7(b), the forward traversal is applied normally to the

branch that the SC resides in and also the forward traversal is applied to the rest

of concurrent branch after moving backward to get them.

(a) UCM Path Node with an And-Join

(b) Impacted elements after applying CIA,
SC = (resp 6, t)

Figure 4.7: An example of handling And-Join

In case of and-Fork and and-Join, both require a different procedure than

or-Fork and or-Join procedure, because the concurrency enclosed between them,

so the order of execution is an issue that should be considered during a forward

traversal of the sequences of paths (i.e. concurrent branches). An or-Fork is a

path node that exclusively executes on branches (i.e. always all paths) whereas

52

and-Fork allows paths to execute in concurrency manner, but and-Join receives at

least two predecessor branches, on the other word, it waits for all incoming paths.

Algorithm 12: And-Join algorithm

Procedure Name: HandlingAnd-Join
Input : and-Join:PathNode
Output: Groups:List(ciaForwardAlgorithm)
backwardLinks:List(NodeConnection) = ∅;
if (and− Join = Construct(SC)) then

add(visitedJoins, and− Fork);
add(visitedNodes, and− Fork);
add(relevantNodes, and− Fork);
ForwardTraversal(getSuccessor(and− Join), SCV ariables); {see algo. 6}

else
if (and− Join /∈ visitedJoins) then

add(visitedNodes, and− Join);
foreach (Link l ∈ getPredecessorLinks(and− Join)) do

if (l 6= cuurentLink) then
add(backwardLinks, getStartLink(l));

end

end
foreach (Link l ∈ backwardLinks) do

ciaForwardAlg:forwardAlgrithm = new instance of ciaForwardAlgo.
ciaForwardAlg = (call ForwardTraversal(l,SCVariables);
add(Groups, ciaForwardAlg);

end

end

end

4.3.6 EndPoint’s Procedure

An End Point construct is same (i.e. respecting to control flow) as Or-Fork path

nodes. It may determine the execution of the path within another plug-in. when

encountering End Point, that does not mean that we reach to the end of forward

traversal unless there is no stub left un-traversed branches/paths. Algorithm 13

describes the steps of handling the End Point.

53

Algorithm 13: EndPoint algorithm

Procedure Name: HandlingEndPoint
Input : endPoint:PathNode
Output: update SCVariables
irrelevantOUT:List(NodeConnection) = ∅;
stubExit:NodeConnection = null;
if (endPoint /∈ visitedNodes) then

add(visitedNodes, endPoint);
end
if (stub not empty) then

foreach (PluginBinding : binding ∈ getBindings(stub)) do
foreach (OutBindingOutB ∈ getOut(stub)) do

if (endPointOf(OutB) == endPoint) then
stubExit = getStubExitOf(OutB);
remove(irrelevantOUT , stubExit);
result:List(String) = ForwardTraversal(stubExit,
SCV ariables); {see algo. 6}

add(SCV ariables, result);
end

end

end

end

4.4 Change impact through URN links

This step aims at identifying other potential URN impacted elements by fol-

lowing existing URN Links. A URN Link is used to create a connection be-

tween any two URN elements, e.g., intentional element reference/definition, ac-

tor reference/definition, link, responsibility reference/definition, component refer-

ence/definition, etc. URN links may be used to represent traceability information

between different URN elements, e.g., a GRL task is implemented using a UCM

responsibility. This would allow for consistency analysis [56].

We define URN links as follows:

Definition 4.6 (URN Link) A URN Link is defined as urnl = (type, from, to),

54

where type denotes a user-defined URN Link type, from denotes the ID of the

source URN element, and to denotes the ID of the target URN element.

Algorithm 14 iterates through the set of impacted elements (i.e., relevantURN-

Constructs) and checks whether these elements are involved in any URN Link, as

source (i.e., from field) or as a target (i.e., to field). Note that the relevantURN-

Constructs list contains all impacted elements (i.e. relevant URN constructs -

UCM and GRL). Since an impacted element can serve as a source or a target in

a URN Link and since one source element can be linked to many target elements

and vice versa, we have used two search functions to retrieve the set of elements

IDs depending whether we are looking for source or target IDs. (i.e., search-

SourceURNLinks and searchTargetURNLinks). The new identified elements are

then add to the set relevantURNConstructs list.

Algorithm 14: Excerpt of the algorithm to identify impacted elements
emanating from URN Links

Procedure Name: IdentificationOfOverallImpactedElements
Input : URN Model + relevantNodes
Output: relevantURNConstructs
URNLinksList = getAllURNLinks();
relevantURNConstructs:List = relevantNodes;
foreach (e ∈ relevantURNConstructs) do
{Search for target elements IDs when e is defined as source};
ToElementList = searchTargetURNLinks(e,from,URNLinksList);
AddToRelevantURNConstructs(ToElement, relevantURNConstructs);
{Search for source elements IDs when e is defined as target}
FromElementList = searchSourceURNLinks(e, URNLinksList);

AddToRelevantURNConstructs(FromElement, relevantURNConstructs);

end

55

4.5 jUCMNav UCM-based Change Impact

Analysis Feature

Our proposed change impact analysis approach is implemented as a feature 12]The

CIA feature is publicly available and can be downloaded from https://github.

com/JUCMNAV/projetseg. within the jUCMNav framework [13], a full graphical

editor and analysis tool for UCM models developed as an Eclipse-based plug-in.

To exercise this feature, the user starts by selecting an UCM construct. Then

then right-clicks to choose from sub-menu commands: Addition, Deletion, or Mod-

ification (see Fig. 4.8). For the addition and modification option, it is required

that the analyst adds the UCM construct first then call the feature as required.

Three types of changes (Addition, Modification, and Deletion) are supported

on responsibilities, or-Fork branches, or-Join, and-Fork branches, and-Join, Timer

, or StartPoint, where the user can target specific variables, if any. It is worth

noting that deletion do not require variables selection.

Figure 4.8: UCM CIA included in command menu of jUCMNav framework

In case of addition and modification, this type of change requires variable

56

selection criteria. The selection criteria (i.e. code expressions) window will appear.

(see Fig. 4.9). In the left box, all variables reside in the chosen criterion are listed.

Then, the analyst may select these variables from left box to move them to right

box Selected variables by using the arrow button. Note the analyst may be select

zero or many variables as slicing criterion variables in order to identify the impact

of change in the existing model with respect to these criterion variables. if the

user does not select any variable, the CIA algorithm will treat with construct as

an empty code.

Also, in case the responsibility or Or-Fork branch do not have code, the CIA

algorithm will execute without computing the data flow dependencies between

elements and just will do control flow dependencies. the result of this case is

colored all elements come after selected element even if they do not have code or

irrelevant elements to slicing criteria. In addition to the colored element, also,

paths are colored with green color. Note that the impacted elements are marked

in green color, the elements that are not impacted are colored in red color, and

the elements that do not have any embedded code are colored in gray color.

The closure CIA approach marks all relevant UCM elements of the original

model with respect to slicing criterion variables, means temporary coloring. Also,

it cannot be saved color because the nature of jUCMNav tool does not support this

feature. This approach helps the analyst to observe which parts of the model are

impacted by modification. Moreover, it reduces the time consuming to figure out

the impact analysis and avoid error activity in large and complex URN model. If

57

Figure 4.9: Selection criterion window in jUCMNav framework

any of the impacted element (marked in UCM model (see Fig. 4.10(a))), is part of

UCM model, linked to any other UCM constructs through URN links, the details

about impacted URN links, such as SourceID, TargetID, and Type, will appear

as a UCM comment as shown in (see Fig.4.10(b)).

(a) UCM constructs impacted elements

(b) Information about impacted
URN links

Figure 4.10: Identification of impacted elements in UCM model

58

CHAPTER 5

EXPERIMENTAL

EVALUATION AND

VALIDATION

5.1 URN Experimental Evaluation

In this section, we evaluate our proposed change impact analysis approach using

one mock model and three real-world GRL case studies of different sizes, complex-

ity, and features. Table 5.1 provides some characteristics of the used case studies

in terms of number of URN models (i.e. representing root maps/Graph and plu-

gins), number of GRL Elements (Intentional Elements and Indicators), number

of GRL links (i.e. connecting two GRL elements), number of UCM constructs

(respRefs, OR-Forks, AND-Forks, etc.), number of Actors/Components (i.e. Ac-

tors are describing its intentions and capabilities / Components are characterized

59

by its kind (Team, process, agent, etc.)), and number of URN links which are

representing the traceability link between URN elements.

URN Spec.
Nb. of
Models

Nb. of GRL
Elements

Nb. of GRL
Links

Nb. of UCM
Constructs

Nb. of Actors
/ Components

Nb. of URN
Links

Mock Model 18 66 71 22 19 7

Adverse Event Management
System (AEMS)

7 29 13 15 5 9

Commuting System 11 19 20 18 4 8

Patient Discharge
Process

56 61 64 44 13 12

Table provides some characteristics of the used case studies in terms of number of URN models (i.e. representing root maps/Graph and plugins),
number of GRL Elements (Intentional Elements and Indicators), number of GRL links (i.e. connecting two GRL elements), number of UCM
constructs (respRefs, OR-Forks, AND-Forks, etc.), number of Actors/Components (i.e. Actors are describing its intentions and capabilities /
Components are characterized by its kind (Team, process, agent, etc.)), and number of URN links which are representing the traceability link
between URN elements.

Table 5.1: Case studies characteristics

5.1.1 Mock System

In order to cover all URN constructs, we have created a mock system that has

many models, many actors, many components, all types of GRL elements and

UCM constructs, all types of GRL links, many URN links of different types. We

created a mock model to prove the effectiveness and accuracy of our proposed

work to analyze the impact change of URN model.

(A) GRL Model

Figure 5.1illustrates part of GRL model constituting the mock model.

As a result of applying CIA based on different slicing criterion with different

graphs within model. The test cases listed as follow: SC = (Element, Change

type).

� SC = (Task 6 in Graph (see fig. 5.1), Addition, -)

� SC = (Task 5 in Graph (see fig. 5.1), Deletion, -)

60

Figure 5.1: Mock system - GRL

� SC = (DependencyLink in Graph (see fig. 5.1), Modification, -)

The test cases above, exercising GRL elements and Links and how handles

each one of them based on proposed algorithms. The result of applying CIA to

these cases are illustrated in appendix A.

(B) UCM Model

Figure 5.2illustrates part of UCM models constituting the mock model.

As a result of applying CIA based on different slicing criterion with different

maps within model. The test cases listed as follow: SC = (Element, Change type,

SC Variables).

� SC = (resp 8 in MainMap (see fig. 5.2(a)), Modification, y)

� SC = (resp 9 in staticStubMap (see fig. 5.2(b)), Addition, -)

� SC = (resp 4 in staticStub 2 (see fig. 5.2(c)), Modification, (z,y))

� SC = (resp 4 in staticStub 2 (see fig. 5.2(c)), Deletion, z)

61

(a) ”Mock model - Main map UCM”

(b) ”staticStub” plug-in Map for static stub staticStub

(c) ”staticStub 2” plug-in Map for static stub staticStub 2 UCM

Figure 5.2: Mock UCM model

62

� SC = (resp 8 in staticStub 2 (see fig. 5.2(c)), Deletion, t,n)

� SC = (resp 3 in staticStub 2 (see fig. 5.2(c)), Addition, t)

� SC = (resp 4 in staticStubMap (see fig. 5.2(b)), Modification, (z,y))

The test cases above, exercising URN constructs and how handles each one of

them based on proposed algorithms. The result of applying CIA to these cases

are illustrated in appendix A.

5.1.2 Cases Studies

In addition of the Mock model, we also implemented the CIA approach on three

publicly available case studies that vary in size and complexity, as shown in Ta-

ble 5.1.

Case Study 1: Adverse Event Management System (AEMS)

This case study describes an adverse event management system (AEMS) for a

hospital.

(A) GRL Model

Figure 5.3 illustrates one of GRL models constituting the case study.

The first CIA task aims to identify potential impacted elements if we modify

softgoal FastProcess (i.e., the GMDG node corresponding to FastProcess is used

as slicing criterion to execute Algorithm 2). The produced GMDG is shown in

Fig. 5.4, while the impacted GRL elements are shown in Fig. 5.5. Since the goal

comply with Privacy Laws is only linked to the rest of the model through a URN

63

Figure 5.3: AEMS GRL Model

High Data
Quality

High
Completeness

High
Accuracy

AND-Decomp-
HighAccuracy

Make
Appropriate

Decisions
Fast

Process

Depend-
MakeAppropriate

Decisions-
FastProcess

Depend-
MakeAppropriate

Decisions-
HighDataQuality

Low Data
Duplication

AND-Decomp-
HighCompleteness

AND-Decomp-
LowDataDuplication

Depend-
GoodResearch-

HighDataQuality

Good
Research

Figure 5.4: GMDG Graph corresponding to the AEMS GRL model of Fig. 5.3

64

Link, called trace (having its source at softgoal High Data Quality), there is no

GMDG node associated with it.

Figure 5.5: Impacted elements of the first AEMS CIA task

The second CIA task aims to identify potential impacted elements once we

modify the softgoal High Data Quality. Three elements are impacted (i.e., goal

Make Appropriate Decisions, and softgoals High Data Quality and Good Research)

as a result of slicing the GMDG graph with the GMDG node that corresponds

to High Data Quality as slicing criterion. In addition, goal Comply with Privacy

Law is impacted since it is the target of the URN Link trace, having its source at

softgoal High Data Quality. Finally, one evaluation strategy is identified, called

AsIsAnalysis-Summer2010, involving both softgoals High Data Quality and Good

Research. Figure 5.6 illustrates the impacted elements.

(B) UCM Model

Figure 5.7 illustrates two UCM models constituting the case study.

The CIA task aims to identify potential impacted elements if we modify re-

sponsibility WarnObserver (i.e. is used as slicing criterion with its variable to ex-

ecute in algorithm 6 - SC =(WarnObserver, EventReady)). The impacted UCM

elements are shown in Fig. 5.7 itself. In addition, responsibility WarnObserver is

65

Figure 5.6: Impacted elements of the second AEMS CIA task

impacted since it is the target of the URN Link Observer, having its source at

intentional element Number of events returned to Observers. Figure 5.7(c) shows

the details of URN Links, Consisting of the name of the element, source, target,

and map name.

Table 5.2 listed all responsibilities and or-Forks that have code expressions.

The URN Links within the model and Plug-in bindings of the stubs are listed in

Tables 5.4 and 5.3, respectively.

Case Study 2: Commuting System

The second case study is a URN model specification describing a commuting

system.

(A) GRL Model

The second case study is a GRL specification describing a commuting system

66

(a) ”Process” Map UCM

(b) ”Prepare Event” plug-in Map UCM

(c) Identified URN Links within
AEMS model

Figure 5.7: AEMS UCM Model

67

Element Name Type Map Expression / Condition
NewVisit StartPoint Process -

RegisterPatient RespRef Process
EventsCreated = 0;
ExistingEvent = false;
Discharged = false;

AEMS-
CreateVisit

RespRef Process -

EditEventForVisit RespRef Process ExistingEvent = false;
AEMS-
UpdateEvent

RespRef Process -

WarnObserver RespRef Process
ExistingEvent = true;
EventComplete = true;
EventReady = true;

WarnObserver RespRef Process
ExistingEvent = true;
EventComplete = true;
EventReady = true;

WarnReviewer RespRef Process -
EvaluateEvent RespRef Process -
ScoreEvent RespRef Process -
AEMS-
StoreReview

RespRef Process -

Post Rate RespRef Process -
AEMS-
StorePostRating

RespRef Process -

Event Not
Ready

Or-Fork branch Process !EventReady

Event Ready for
Review

Or-Fork branch Process EventReady

Event Complete Or-Fork branch Process EventComplete
Event Not Com-
plete

Or-Fork branch Process !EventComplete

LookForEvents RespRef PrepareEvent -
DischargePatient RespRef PrepareEvent Discharged = true;
AEMS-
CloseVisit

RespRef PrepareEvent -

AEMS-
CreateEvent

RespRef PrepareEvent
EventsCreated =
EventsCreated + 1;

Patient Present Or-Fork branch PrepareEvent
(NumEvents>EventsCreated)
|| ExistingEvent

Patient Gone Or-Fork branch PrepareEvent else

New Event Or-Fork branch PrepareEvent
(EventsCreated<NumEvents)
&& !ExistingEvent

Existing Event Or-Fork branch PrepareEvent else

Table 5.2: Adverse Event Management System (AEMS) model information

68

Stub name Plug-in map IN binding OUT binding
PrepareEvent Process IN1 <–>Prepare OUT1 <–>Continue

Table 5.3: Plug-in bindings of stubs in AEMS model

Stub name Plug-in map IN binding OUT binding
PrepareEvent Process IN1 <–>Prepare OUT1 <–>Continue

Table 5.7: Plug-in bindings of stubs in AEMS model

URN Link
Type

ElementName
as Source

src Map
ElementName
as Target

trgt Map

Trace
(GRL) High
Data Quality

Goals
(GRL) Comply
with Privacy Laws

Goals

Trace
(UCM) Edit
EventForVisit

Process
(GRL) Number of events
with patient information

Privacy-KPI

-
(GRL) Number
of events

DQS-KPI (UCM) WarnObserver Process

Table 5.8: URN links in AEMS Model

any URN link established between impacted elements, the URN links details will

not be shown. Figures 5.11(b) 5.11(c) illustrate the impacted elements within

Commuting system itself.

The second CIA task aims to identify the potential impacted elements if we

modify responsibility (i.e. take #100) (see Fig. 5.12(c)) which resides between

or-Join and and-Join. The impacted elements are shown in Fig.(see Fig. 5.12(c))

itself.

Table 5.9 listed all responsibilities and or-Forks that have code expressions.

The URN Links within the model and Plug-in bindings of the stubs are listed in

Tables 5.11 and 5.10, respectively.

5.2.4 Case Study 3: Patient Discharge Process

This last public URN model describes the patient discharge process at The Ottawa

Hospital. Due to the large size of the URN specification (which contains 56 maps)

and because of the lack of space, the reader is referred to [57]to consult the original

77

Table 5.4: URN links in AEMS Model

which is consists of 4 specifications, 22 Intentional Elements, and 10 URN links.

Figure 5.8 shows the impact (in purple) of changing the task Take own car, on

both models Commuting-Time (Fig. 5.8(a)) and Stakeholders (Fig. 5.8(b)). The

impacted elements are part of a strategy, called Take own car, Alarm, Stairs only.

(B) UCM Model

The second case study is a UCM model specification describing a commuting

system. The first CIA task aims to identify the potentially impacted elements

once we delete the start point ready to leave home. As a result of this modifying,

the entire scenario will be impacted, and the stub arm system (i.e. Alram System

plug-in stub) will be impacted with all its component. Since there is no any

URN link established between impacted elements, the URN links details will not

be shown. Figures 5.9(b) and 5.9(c) illustrate the impacted elements within

Commuting system itself.

The second CIA task aims to identify the potential impacted elements if we

modify responsibility (i.e. take #100) (see Fig. 5.10(c)) which resides between

69

(a) Impacted elements in the Commuting-Time
Model

(b) Impacted elements in the Stakeholders Model

Figure 5.8: Identification of impacted elements in two GRL models of the com-
muting case study

70

or-Join and and-Join. The impacted elements are shown in Fig.(see Fig. 5.10(c))

itself.

Table 5.5 listed all responsibilities and or-Forks that have code expressions.

The URN Links within the model and Plug-in bindings of the stubs are listed in

Tables 5.7 and 5.6, respectively.

Elements Name Type Map Expression / Condition
look door RespRef Secure Home ReadyToLeft = true
use alternative
alarm system

RespRef Secure Home -

noAlarmChoice
Unsecured

Or-Fork branch Secure Home NoAlarmChoice = UNSECURED

noAlarmChoice
Alternate

Or-Fork branch Secure Home NoAlarmChoice = ALTERNATE

noAlarmChoice
Home

Or-Fork branch Secure Home NoAlarmChoice = HOME

accept code RespRef Arm System -
check code RespRef Arm System CodeChecked =true
notArmed Or-Fork branch Arm System QuitAlarm && CodeChecked
matched Or-Fork branch Arm System Matched
not matched Or-Fork branch Arm System !Matched
drive car RespRef Car -
break down RespRef Car GRL Take own car = 0
problem Or-Fork branch Car CarProblem
no problem Or-Fork branch Car !CarProblem
hitch a ride in
car

RespRef Hitch a Ride -

deal with work
email

RespRef Regular Bus -

take #95 RespRef Regular Bus -
take #97 RespRef Regular Bus -
take #96 RespRef Regular Bus -
BusChoice Or-Fork branch Regular Bus BusChoice = Number95
BusChoice Or-Fork branch Regular Bus BusChoice = Number97
deal with work
email

RespRef Express Bus -

take #100 RespRef Express Bus -
call elevator RespRef Take Elevator -
select floor RespRef Take Elevator -
take stairs RespRef Take Elevator -

Table 5.9: Commuting model information

79

Table 5.5: Commuting model information

71

(a) Commuting map

(b) Secure Home map

(c) Alrm System map

(d) Car map

Figure 5.9: Commuting model - Part 1

72

(a) Hitch a Ride map

(b) Reqular Bus map

(c) Express Bus map

(d) Take Elevator map

Figure 5.10: Commuting model - Part 2

73

Stub name Plug-in map IN bindings OUT bindings

secure home Commuting IN1<->ready to leave home
OUT1<->left home
OUT2<->stay at home

commute Car IN1<->ready to commute
OUT1<->reach destination
OUT2<–>car broken

commute Hitch a Ride IN1<->ready to commute OUT1<->reach destination
commute Regular Bus IN1<->ready to commute OUT1<->reach destination
commute Express Bus IN1<->ready to commute OUT1<->reach destination
take elevator Take Elevator IN1<->ready to take elevator OUT1<->at desired floor

Arm system Arm System IN1<->ready to secure home
OUT1 <->armed
OUT2 <->not armed

Table 5.10: Plug-in bindings of stubs in Commuting model

URN Link
Type

ElementName
as Source

src Map
ElementName
as Target

trgt Map

Trace (GRL) Take own car Stakeholders (UCM) drive car Car

Trace (GRL) Hitch a Ride Stakeholders
(UCM) hitch
a ride in car

Hitch a Ride

- (GRL) Commuter Stakeholders (UCM) commuter Regular Bus

Table 5.11: URN links in Commuting Model

URN model. The main reason why this model was selected is to test the scalability

of the approach to large models.

The CIA is applied on the model. The selected element as a SC,

(startImplementingCarePlan), resides within (CarePlanImplementation map).

The map contains one dynamic stub, so the forward algorithm will traverse all

the contained stubs as shown in Fig. 5.13.

5.3 Experimental Validation

Our main goal of this experiment is to check whether the use of change impact

analysis feature improves the comprehension of URN model. In what follows, we

formulated research question in order to seek for the answers.

81

Table 5.6: Commuting model information

Stub name Plug-in map IN bindings OUT bindings

secure home Commuting IN1<->ready to leave home
OUT1<->left home
OUT2<->stay at home

commute Car IN1<->ready to commute
OUT1<->reach destination
OUT2<–>car broken

commute Hitch a Ride IN1<->ready to commute OUT1<->reach destination
commute Regular Bus IN1<->ready to commute OUT1<->reach destination
commute Express Bus IN1<->ready to commute OUT1<->reach destination
take elevator Take Elevator IN1<->ready to take elevator OUT1<->at desired floor

Arm system Arm System IN1<->ready to secure home
OUT1 <->armed
OUT2 <->not armed

Table 5.10: Plug-in bindings of stubs in Commuting model

URN Link
Type

ElementName
as Source

src Map
ElementName
as Target

trgt Map

Trace (GRL) Take own car Stakeholders (UCM) drive car Car

Trace (GRL) Hitch a Ride Stakeholders
(UCM) hitch
a ride in car

Hitch a Ride

- (GRL) Commuter Stakeholders (UCM) commuter Regular Bus

Table 5.11: URN links in Commuting Model

URN model. The main reason why this model was selected is to test the scalability

of the approach to large models.

The CIA is applied on the model. The selected element as a SC,

(startImplementingCarePlan), resides within (CarePlanImplementation map).

The map contains one dynamic stub, so the forward algorithm will traverse all

the contained stubs as shown in Fig. 5.13.

5.3 Experimental Validation

Our main goal of this experiment is to check whether the use of change impact

analysis feature improves the comprehension of URN model. In what follows, we

formulated research question in order to seek for the answers.

81

Table 5.7: Commuting model information

Case Study 3: Patient Discharge Process

This last public URN model describes the patient discharge process at The Ottawa

Hospital. Due to the large size of the URN specification (which contains 56 maps)

and because of the lack of space, the reader is referred to [57]to consult the original

URN model. The main reason why this model was selected is to test the scalability

of the approach to large models.

The CIA is applied on the model. The selected element as a SC,

(startImplementingCarePlan), resides within (CarePlanImplementation map).

The map contains one dynamic stub, so the forward algorithm will traverse all

the contained stubs as shown in Fig. 5.11.

74

(a) Care Plan Implementation map

(b) Radiology Tests map (c) Rehabilitant map

(d) Procedures map (e) Laboratory Tests map

(f) Medicating map (g) Allied Help map

Figure 5.11: Patient Discharge Process

75

5.2 Experimental Validation

Our main goal of this experiment is to check whether the use of change impact

analysis feature improves the comprehension of URN model. In what follows, we

formulated research question in order to seek for the answers.

The experiment investigates the following question:

Is the use of Change Impact Analysis feature would identify precisely the URN

impacted elements with respect to a maintenance task?.

5.2.1 Experiment planning

The main goal of conducting this empirical study is to analyze that change impact

analysis feature is identifying precisely the URN impacted elements with respect

to a maintenance task. We design and conduct an experiment in order to test the

derived hypothesis (see Sect. 5.2.6).

Kitchenham et al. [58], Jedlitschka and Ciolkowski [59], Wohlin et al. [60],

and Juristo and Moreno [61], introduced the guidelines, recommendation, and

templates in order to show the analysis and statistics. Figure[5.12] illustrates an

overview of the experimental plan of conducting experiments. Next, we explain

each step of an experiment in detail. As shown in fig. 5.12, our experiment is

based on the data collected from the subjects of by using (1) Descriptive analysis

(2) Independent-Samples t-test to analyze the data. In addition, we asked experts

to manually identify the change impact analysis for the models in order to validate

the accuracy of approach by computing the precession and recall.

76

Subject

s
A set of postgraduates students (Ph.D./M.Sc.)
(divided into two groups A and B)

Two URN models with same level of complexity.
- 11 questions need to be answered for each URN
model (with/without using CIA feature).

Experimental Tasks

Contents:
- Brief introduction to jUCMNav CIA feature.
- Sample of solved example using CIA feature.

Learning Documentation
(20-30 minutes)

Measurement and Analysis

Dependent variables for measuring identifying the impact
- Correctness of the answers.
- Perceived difficulty of the CIA tasks.

Figure 5.12: An overview of experimental plan

77

5.2.2 Context

The context of the experiment is two URN models namely, Adverse Event Manage-

ment System and Commuting System. The models were evaluated by 10 subjects

in order to identify the impacted of change without/with use of CIA feature.

5.2.3 Subjects

To provide more confidence on the results obtained by our approach, 10 members

majoring in software engineering and computer science who have an experience

with modeling, especially in URN language and familiarity with the jUCMNav

tool. Also, they are unfamiliar with an automated analysis of CIA feature to

URN model to provide their judgments on the results manually and by using our

implemented feature. The members were divided into two groups randomly, each

group was given five materials and those were distributed randomly for members.

5.2.4 Materials

The materials were divided into two parts, which are learning documentation and

experimental tasks.

Learning documentation: This section provides two parts of URN model (i.e.

GRL model and UCM model) to respondents with needed information for each

part in order to carry out the experiment. We give about 20-30 minutes to read

and understand the learning materials to perform the tasks. It consists of the

following:

78

� An introduction to change impact analysis.

� An introduction to jUCMNav change impact analysis.

� Instructions that should be followed by subjects to carry out the experiment

tasks.

� A generic example of the comprehension using change impact analysis fea-

ture.

Experimental Tasks: We summarized the given models to subjects in ta-

ble 5.2.4. Each model has 11 questions of very similar complexity. Those questions

are available online.

Group A

Case study 1: AEMS system. eleven questions
need to be answered withoutusing CIA feature.
Case study 2: Commuting. eleven questions need
to be answered using CIA feature.

Group B

Case study 1: Commuting. eleven questions need
to be answered withoutusing CIA feature.
Case study 2: AEMS system.eleven questions
need to be answered using CIA feature.

Table 5.8: Experiment Material

5.2.5 Variables

The dependent variables that are used to measure the identifying the impact of

the URN model are (1) correctness of the answers, (2) perceived difficulty of the

CIA task. The independent variable is performed the identifying tasks.

79

5.2.6 Hypotheses

Our experiment consists of two main hypotheses, stated in table 5.9. For each

hypothesis, there are the null hypothesis, alternative hypothesis, and dependent

variable. The first hypothesis is test whether there is a difference in the correctness

of the answers when performed the identifying task manually or with CIA fea-

ture. The second hypothesis is test whether there is a difference in the perceived

difficulty of the CIA tasks when performed manually or using the tool proposed.

Hypotheses

Hypothesis 1

Null hypothesis–H0−1: There is no differ-
ence in the correctness of the answers when
performed the identifying task manually or
with CIA feature.
Alternative hypothesis–H1 − 1: There is
a difference in the correctness of the answers
when performed the identifying task manu-
ally or with CIA feature.
Dependent variable: Correctness of the
answers

Hypothesis 2

Null hypothesis–H0 − 2: There is no dif-
ference in the perceived difficulty of the CIA
tasks when performed manually or using the
tool proposed.
Alternative hypothesis–H1 − 2: There is
a difference in the perceived difficulty of the
CIA tasks when performed manually or using
the tool proposed.
Dependent variable: Perceived difficulty
of the CIA task.

Table 5.9: Set of hypotheses

80

5.2.7 Data analysis and interpretation

After completing the experiment tasks, we extracted the data that collected from

subjects. We use the SPSS software [63] to illustrates statistical descriptive and

perform t-test analysis of our hypotheses. For the first dependent variable (i.e.

Correctness), we stated ”1” for the correct answers, and ”0” for the incorrect

answers. Since we conduct tasks once with CIA feature and once with manual

execution. We coded an automation execution as ”1” and the manual execution

as ”0”.

Table 5.10 provides the correctness cross tabulation analysis. In order to test

the hypothesis H0−1, we need to compute the cross-tabulation of the correctness

of the answers on the use of CIA against the correctness of the obtained answers.

The correct answers by using the CIA feature is (107) correct answers (97.3%) and

the incorrect answers is (3) correct answers (2.7%), while the manual execution

obtained (86) correct answers (78.2%) versus (24) incorrect answers (21.8%).

10 Total

Correctness

Count

% within CIAFeature

Count

% within CIAFeature

0

1

Count

% within CIAFeature

Total

CIAFeature

100.0%87.7%12.3%

22019327

100.0%97.3%2.7%

1101073

100.0%78.2%21.8%

1108624

Page 1

Table 5.10: CIA-Correctness Cross tabulation

Based on the provided result in Table 5.10, we can conclude that the use of

CIA feature is strongly improved and increased the number of correct answers.

81

Furthermore, we apply independent t-test to the correctness as a test variable and

the use of CIA feature as a group variable in order to prove that the improvement

is significant. Levens test (see Table 5.11) shows the equality of variances is not

assumed (Sig. = 0.000 <α= 0.05). Based on the value of significance, we can

conclude that there is a statistically significant difference between groups with

respect to the correctness variable (with/without the use of CIA feature). Hence,

we reject the null hypothesis H0−1 and accept the alternative hypothesis H1−1.

F Sig. t df
Sig. (2-
tailed)

Mean
Difference

Std. Error
Difference

t-test for Equality of Means

Levene's Test for
Equality of
Variances

Equal variances
assumed
Equal variances
not assumed

Correctness

.04252-.19091.000142.10338-4.48940

.04252-.19091.000218-4.48940.000116.131

Page 1

Table 5.11: Test differences between means with respect to correctness (t-test)

The second hypothesis H0 − 2, Table 5.12 shows the means of the perceived

difficulty of the CIA task in both automation execution and manual execution.

The mean of difficulty without the use of CIA feature is 2.727, where the mean

with use of CIA feature is 1.3. According to the means values, we conclude that

with use of CIA feature, the perceived difficulty of the CIA task decreased to the

half.

Std. Error
MeanStd. DeviationMeanN

0

1

Difficulty

.04575.479871.3000110

.099131.039662.7273110
CIAFeatureCIAFeature

Page 1

Table 5.12: Descriptive the perceived difficulty of the CIA task

Based on the value of Sig. for Levenes (see Table 5.13), the value of Sig. 0.000

82

which is less than 0.05, we can conclude that there is a difference in the perceived

difficulty of the CIA tasks when performed manually or using the tool proposed.

F Sig. t df
Sig. (2-
tailed)

Mean
Difference

Std. Error
Difference

t-test for Equality of Means

Levene's Test for
Equality of
Variances

Equal variances
assumed
Equal variances
not assumed

Difficulty

.109181.42727.000153.42613.073

.109181.42727.00021813.073.00065.086

Page 1

Table 5.13: Test differences between means with respect to the perceived difficulty
of the CIA tasks (t-test)

5.2.8 Precision and Recall

For the validation, we asked experts to manually identify the impact of change

and they were unware of CIA feature. The 3rd column and 4th column in tables

5.14 and 5.15 show the number of identified elements by the experts for AEMS

model with respect to the slicing criterion and the number of identified elements

by CIA feature, respectively. To provide more confidence on the results obtained

by our proposed approach. We provided the experts with the URN model and

asked them the following question: What is the impact of the change in URN

model with respect to certain slicing criterion?

Further, the effectiveness of our approach is evaluated by recall and precision

[62], two metrics that have been widely used in pattern recognition and informa-

tion retrieval. Here, we borrow these two metrics from information retrieval, and

adapt them to fit in with the evaluation model. We calculate the precision and

recall of identifying the impacted elements on the model in order to assess the

83

Task SC = (ElementName, ChangeType) Identified by
experts

Identified by
CIA feature Precision Recall

1 (Fast Process, modify) 3 3 100% 100%

2 (High Data Quality, modify) 4 4 100% 100%

3 (Completeness index, delete) 8 8 100% 100%

4 (ContributionLink, delete) 3 3 100% 100%

5 (High Accuracy, modify) 6 6 100% 100%

 100% 100%

Table 5.14: AEMS GRL Model - Identified elements impacted w.r.t SC

Task SC = (ElementName,
ChangeType, SCVariables)

Identified by
experts

Identified by
CIA feature Precision Recall

1 (Number of events, add, -) 4 4 100% 100%

2 (WarnObserver, modify, EventReady) 2 2 100% 100%

3 (ScoreEvent, delete, -) 4 4 100% 100%

4 (DischargePatient, add, Discharged) 4 4 100% 100%

5 (AEMS-CreateVisit, delete, -) 17 17 100% 100%

 100% 100%

Table 5.15: AEMS UCM Model - Identified elements impacted w.r.t SC

84

accuracy of the tool, we need the following definitions:

� True Positive (TP): A set of impacted elements are correctly identified.

� False Positive (FP): A set of elements were identified as impacted while

they are not.

� False Negative (FN): A set of elements were not identified while they are

impacted.

TP, FP, and FN are calculated at a coarse-grained level, meaning that the set

of impacted elements are identified by experts and by CIA feature should exactly

match, in terms of their methods and attributes. Precision assesses the number

of the truly impacted elements among the number of all the impacted elements

while recall assesses the number of identified impacted elements among the all

impacted elements. Quantitative evaluation of the approache was conducted by

precision and recall:

Precision =
{TrueImpactedElements} ∩ {AllImpactedElements}

{TrueImpactedElements}

Recall =
{TrueImpactedElements} ∩ {AllImpactedElements}

{AllImpactedElements}

Apparently, it can be shown from the tables 5.14 and 5.15 that the precision

and recall of AEMS model are 100%. The impacted elements obtained by CIA

feature are equal to the impacted elements provided by the experts.

85

CHAPTER 6

DISCUSSION

In what follows, we discuss the benefits and limitations of the proposed approach,

then we compare it with related work.

6.1 General Benefits of the URN-based CIA Ap-

proach

The presented URN-based change impact analysis approach presents the following

advantages:

� It helps maintainers and analysts answer ”what if... ?” questions, and assess

the consequences of changes in GRL and UCM specifications. Indeed, our

approach provides an insight into how changes propagate within a GRL

model, across models (i.e., from GRL to GRL) through URN Links, within

a UCM model, across (i.e. from UCM to UCM), and across URN model

(i.e. from GRL to UCM and vice versa). In addition, it allows for the

86

identification of the impacted GRL strategies, if any. This would allow for

reasoning about different alternatives, when it comes to implement changes

in GRL models.

� Our approach handles some issues such as loop recognition and concurrency.

For loop recognition, to avoid infinite loop within UCM model, we need to

detect it during traversal. Since the order of execution scenario in a syn-

chronous manner need to take into account, so we compute the all possible

of execution and compute the dependencies for each execution.

� We have chosen GRL as target language, given its status as an international

standard, but our proposed approach can likely be adapted and applied to

other goal-oriented languages such as i* [64] and TROPOS [65].

� Our approach is fully automated and covers the full GRL and UCM language

constructs.

6.2 Salability

We also apply our CIA feature on two extreme cases for both models UCM and

GRL (see Figures 6.1(a) and 6.1(b)) to demonstrate the scalability of the ap-

proach. GRL contains Intentional Elements (i.e. representing the number of

elements N = 200) and GRL links (i.e. representing the number of connected

links l = 199). The GRL model extreme case is created like a nearly complete

tree, because we need to construct the GRL Model Dependency Graph (GMDG)

87

(see Sect. 3.2) based on this model. Note that the GMDG graph will be con-

structed as a binary tree with the left depth from the left to the root. The depth

of node is the number of edges from the node to the trees root node. In general,

the worst-case number of the traversal is the depth from the selected node as SC

to the root of GMDG tree which is O(log n). We have applied the CIA feature in

different level of depth of GMDG graph when N = 10, N = 50, N = 100, N = 150

and N = 200. We have observed that there was no impact on the machine.

(a) GRL extreme case

(b) UCM extreme case

Figure 6.1: Extreme Cases of GRL and UCM

For UCM model, it contains a set of responsibilities (representing the number

of responsibilities N = 150), as described previously in Sect. 4.3.5. In case we

88

need to perform change impact analysis task on a huge number of responsibili-

ties enclosed within AND-Fork and AND-Join, that is mean more CIA processes

are required. It is worth noting that we select the parallelism to demonstrate

the scalability of our approach because it is a challenge when computing the de-

pendencies during the forward traversal and it needs more processes that lead

to suffering from the overhead computation. In addition, the order of execution

is important, it may have an impact on the rest of the model global data. So

when computing the dependencies, our approach generates all possible sequences

of the branches enclosed within concurrency to perform CIA for each sequence.

We have applied the CIA feature with different responsibilities which was selected

randomly. We have not observed any impact on the execution.

6.3 Limitations

The proposed CIA approach is subject to the following limitations:

� Our approach supports the evaluation of the impact of a single change at a

time. Assessing the impact of simultaneous changes is left for future work.

� We perform a single iteration to follow the involved URL links. The po-

tentially impacted GRL elements are not used as a source/target to explore

more URN connections, if any. However, we believe that implementing a

transitive chain should take into account the semantics of the URN Links

(i.e., there should be a strong dependency that justifies the capture of the

full ripple effect). This is out of the scope of this research.

89

� The applicability of our approach was demonstrated using three case stud-

ies and a mock system only. Bigger case studies should provide a better

assessment of the effectiveness of our proposed approach.

6.4 Comparison with related work

Less work has been done on creating change impact techniques for GRL-based re-

quirements, which is due to their abstract nature. Several source code based CIA

techniques have been proposed in order to help software understanding, debug-

ging, or repression test. Based on program source code, [3] conducted a survey

of change impact analysis techniques. Later, the change impact analysis research

has extended to other artifacts such as design, requirements, and testing. A tax-

onomy for software change impact analysis was developed by Lehnert [26] and a

comprehensive literature review [27] of 150 studies was conducted that related to

change impact analysis of source code, architecture [28, 29], miscellaneous arti-

facts (e.g., configuration files, bug trackers, documentation) [30], and requirements

models [33]. In what follows, we survey and compare existing model-based change

impact approaches with respect to the following criteria: Note that the criteria

were extracted from A Taxonomy for Software Change Impact Analysis [26] and

A review of software change impact analysis [27]

� Scope : refers to the model used.

� Change : refers to a type of changes such as A-Addition, D-Deletion,

90

M-Modification(i.e. replacement, rename, change value, etc.)), or UC-

Unstructured Change(i.e. CVS change records or Log file entries).

� Technique : refers to what technique the impact analysis approach pro-

posed or used to perform change analysis such as TR-Traceability, DG-

Dependency Graph, S-Model Slicing, DA- Dependecy Analysis, ER-Explicit

Rule, IR- Information retrieval, ET-Execute trace?

� Direction : refers to the direction of traversal that used for the traceability.

� Dependency : According to [66], many types of dependencies were pro-

posed to compute the dependencies either D-Data flow or C-Control flow

dependencies, etc. in our work well care only about supported dependen-

cies.

� Purpose : refer to the purpose of proposed work.

� Output : refer to HOW the proposed work is presented.

� Output : Availability of a tool.

Our proposed approach is listed in the last row in the table, as shown in

Table 6.1. Change impact analysis [67] techniques have focused mainly on source

code level [3] in order to help developers understand and maintain their programs.

Less work has been devoted to change impact analysis in other software artifacts

such as requirements and design models [26]. In what follows, we survey and

compare existing goal-oriented CIA techniques with our proposed approach.

91

In a closely related work, Hassine [41] proposed a preliminary (and manual)

CIA approach based on slicing GRL Model Dependency Graphs (GMDG). In

this paper, we extend the approach by considering inter model propagation, GRL

evaluation strategies, and URN Links. We have also fully automated it. Cleland-

Huang et al. [38] introduced a probabilistic approach for managing the impact

of a change using a Softgoal Interdependency Graph (SIG) that describes non-

functional requirements and their dependencies. This technique allows for the

analysis of the impact of changes by retrieving links between classes affected by

changes in the SIG graph. Our approach is based on the GRL graph structure

and does not distinguish between functional and non-functional requirements.

Tanabe et al. [68] introduced a change management technique in AGORA.

The technique aims at detecting conflicts when a new goal is added and checks

the satisfaction of the parent goal, when a goal is deleted. Semantic information,

described as goal characteristics such as security or usability, should be attached

to goals to allow for the detection of conflicts. Our approach considers struc-

tural change (both addition and deletion) propagation within the same model

and across many models, regardless the semantic aspect of the impacted goals.

Lee et al. [33] proposed a goal-driven traceability technique for analyzing require-

ments, which connects goals and use cases through three different traceability

relations (evolution, dependency, and satisfaction), which are stored as a matrix.

Impacted entities can then be identified by applying a reachability analysis on

the matrix. Our GRL-based approach builds a GRL model dependency graph

92

(GMDG) to represent explicit and implicit, e.g., contribution, dependencies be-

tween model elements. In addition, our approach identifies the potential changes

in other model elements that are linked through user-defined URN Links. Has-

sine et al. [31] proposed a change impact analysis approach for use case map that

describes a scenarios dependencies. The dependencies between scenarios are clas-

sified as functional, containment and temporal dependencies which are used to

identify the impact of change. However, the dependencies between scenarios are

not part of the UCM model and the approach does not cover all UCM constructs.

In this thesis, we extend the approach by considering inter model propagation,

cover all UCM constructs, UCM data flow, and URN links between models. Alkaf

et al. [14] introduced an automated GRL-based approach to change impact anal-

ysis. It helps the analyst to understand how a change is propagated within GRL

model and a cross-related GRL model (i.e. from GRL to GRL), links using URN

links. In this thesis, we extend their work, to assess the impact of such changes

on related Use Case Maps (UCM) functional model.

Ernst et al. [37] proposed an approach to find suitable solutions (that minimize

the effort required to implement new solutions) as requirements change. Their

approach [37] explores a Requirements Engineering Knowledge Base (REKB),

describing goals, tasks, refinements, and conflicts, in order to find new operations

that are additionally required as a result of an unanticipated modification such as

the addition of a new feature or the introduction of a new law. Our approach does

simply spot potential impacted elements based on the GRL model structure and

93

does not propose a solution to implement the change. In order to help developers

identify where changes are required, Nakagawa et al. [39] proposed an approach

based on the extraction of control loops, described as independent components

that prevent the impact of a change from spreading outside them.

More recently, Grubb and Chechik [69] proposed an i*-based method to model

the evolution of goal evaluations over time. Their proposed method integrates

variability in intentions satisfaction (using qualitative values) over time allowing

the stakeholders to understand and consider alternatives over time. In a closely

related work to [69], Aprajita and Mussbacher [70] introduced TimedGRL, an

extension of the GRL standard, allowing for the capture and analysis of a set

of changes to a goal model over time (using quantitative values such as concrete

dates). Both the goal model and the expected changes are represented in one

model. However, both approaches described in [69] and [70] focus only on the

evolution of satisfactions values (qualitative and quantitative) and they do not

consider the evolution of the goal model structure over time.

In [71], the authors have proposed a new Activity-based Process Integration

approach by giving a comprehensive evaluation of each new activity that might be

added. But it still needed to improve by focusing on the real impact of changes

for evaluation, automate the approach, and consider all type of changes. Our

proposed approach allows for the identification of effects overall GRL models not

only potential model.

94

A
p
p
ro

ac
h

S
co

p
e

C
h
an

ge
T

ec
h
n
iq

u
e

D
ir

.
D

ep
.

P
u
rp

os
e

O
u
tp

u
t

T
o
ol

H
as

si
n
e

et
al

.
[3

1]
U

C
M

A
/D

/M
S
,

D
A

F
C

C
om

p
re

h
en

si
on

R
ed

u
ce

d
sl

ic
e

-

H
as

si
n
e

[7
2]

G
R

L
A

/D
/M

T
R

,
D

G
,

S
B

C
C

om
p
re

h
en

si
on

D
ep

en
d
en

cy
G

ra
p
h

-

A
lk

af
et

al
.

[1
4]

G
R

L
A

/D
/M

E
R

,
T

R
,

D
G

,
S

B
C

,
D

C
om

p
re

h
en

si
on

C
lo

su
re

sl
ic

e
C

A
I

G
R

L
V

on
K

n
et

h
en

A
.

[7
3]

A
rc

h
it

ec
tu

re
U

C
R

E
,

D
A

-
D

C
om

p
re

h
en

si
on

T
ex

t
P

la
in

-
B

ai
X

.
et

al
.

[7
4]

U
M

L
U

C
D

A
-

C
,

D
T

es
ti

n
g

G
U

I
tr

ee
st

ru
ct

u
re

in
J
av

a

T
o
ol

su
p
-

p
or

t

S
et

ti
m

i
et

al
.

[7
5]

U
M

L
U

C
T

R
,

IR
-

-
C

om
p
re

h
en

si
on

T
ex

t
P

la
in

-
E

ck
lu

n
d

E
.

et
al

.
[7

6]
A

rc
h
it

ec
tu

re
A

T
ra

ce
ab

il
it

y
-

C
E

x
p

ec
te

d
fu

tu
re

ch
an

ge
s

T
ex

t
P

la
in

-

B
ri

an
d

et
al

.
[7

]
U

M
L

U
C

IR
-

-
T

es
ti

n
g

U
M

L
C

la
ss

d
ia

gr
am

-

T
an

ab
e

et
al

.
[7

7]
G

oa
l

M
o
d
el

A
/D

D
G

-
C

T
es

ti
n
g

(D
et

ec
ts

co
n
fl
ic

ts
)

U
M

L
G

oa
l

m
o
d
el

A
G

O
R

A

B
as

ly
m

an
et

al
.

[7
1]

U
R

N
A

E
T

F
/B

C
en

h
an

ci
n
g

ex
is

t-
in

g
sy

st
em

U
R

N
m

o
d
el

jU
C

M
N

av

C
le

la
n
d

et
al

.
[3

8]
G

oa
l

M
o
d
el

A
/D

/M
T

R
,

D
A

-
C

d
et

ec
ti

n
g

th
e

im
p
ac

t
ch

an
ge

of
N

F
R

’s

G
oa

l
m

o
d
el

-

N
ak

ag
aw

a
et

al
.

[3
9]

G
oa

l
M

o
d
el

A
E

T
,

T
R

-
C

id
en

ti
fy

w
h
er

e
ch

an
ge

ar
e

re
q
u
ir

ed

gr
ap

h
ic

al
d
ia

gr
am

s
k
-t

o
ol

B
ri

an
d

et
al

.
[7

8]
U

M
L

A
/D

/M
IR

,
T

R
-

C
T

es
ti

n
g

U
M

L
C

la
ss

d
ia

gr
am

iA
C

M
T

o
ol

L
io

n
el

B
.

et
al

.
[7

9]
U

M
L

A
to

m
ic

ch
an

ge
T

R
,

IR
-

C
M

o
d
el

C
h
ec

k
in

g
U

M
L

C
la

ss
d
ia

gr
am

V
IA

T
o
ol

L
ee

et
al

.
[3

3]
G

oa
l

M
o
d
el

U
C

T
R

,
IR

-
C

C
om

p
re

h
en

si
on

-
-

E
rn

st
et

al
.

[3
7]

G
oa

l
M

o
d
el

A
IR

-
-

en
h
an

ci
n
g

ex
is

t-
in

g
sy

st
em

-
-

G
ru

b
b

et
al

.
[8

0]
G

R
L

U
C

T
R

,
D

A
-

-
T

es
ti

n
g

-
-

A
p
ra

ji
ta

et
al

.
[8

1]
G

R
L

U
C

R
T

,
D

A
-

-
M

o
d
el

C
h
ec

k
in

g
-

-
A

rd
a

et
al

.
[8

2]
A

rc
h
it

ec
tu

re
U

C
IR

,
D

A
-

-
M

o
d
el

C
h
ec

k
in

g
T

ex
t

P
la

in
T

R
IC

O
u
r

w
or

k
U

R
N

A
/D

/M
E

R
,

S
,

T
R

,
D

G
F

,B
C

,D
C

om
p
re

h
en

si
on

C
lo

su
re

sl
ic

e
C

IA
U

R
N

T
ab

le
6.

1:
C

om
p
ar

is
on

w
it

h
re

la
te

d
w

or
k
s

95

6.5 Threats to Validity

Like any empirical evaluation, our approach, the empirical validation and the

performed experiment (empirical evaluation in Sect. 5.2) are subject to several

limitations and threats to validity, categorized here according to three important

types of threats identified by Wright et al. [83].

� Construct validity : a possible threat is that the empirical validation was per-

formed with subjects who have a different level of knowledge; the time spent

to complete the task depends on their experience with URN models and the

time accuracy was not observed when reported. To avoid such threat, we

selected subjects who have the same level of knowledge and experience in

URN model, provided them with the same training materials in URN model

and change impact analysis approach, and distributed them randomly into

two groups.

� Internal validity : there is a risk threat to the empirical validation is that

some participants did not answer seriously, or not finishing the task although

they wrote down the start and end time of the task. This could be observed

in future while performing the tasks. There is a possible risk of bias in the

selection of URN model. To be not biased, we will use an existing URN

models that are used for different projects. The size constraints and the

availability of data expressions in the model were the criteria of selection

models.

96

� External validity : the approach is currently tailored to URN. Although URN

has many constructs that are common with other goal modeling languages

or UML language, also, URN has some unique features (e.g., GRL eval-

uation strategies, UCM dynamic stubs, UCM executable scenarios, and a

global data model). For that reason, the approach and guidelines might not

be generalizable to other such languages without substantial adaptation. In

addition, the small size of models and numbers of subjects might be a pos-

sible threat for the empirical evaluation and empirical validation. We can

increase the level of confidence in the result by using models with large size

and conduct an experiment with many participants.

97

CHAPTER 7

CONCLUSION AND FUTURE

WORK

In this thesis, we have presented an automated URN-based approach to change

impact analysis. The proposed CIA approach allows maintainers and analysts

understand how a change is propagated within a GRL model and across related

GRL models (i.e., from GRL to GRL), linked using URN Links. In addition, the

approach allows for the identification of the potentially impacted GRL evaluation

strategies. Also, it helps maintainers and analysts understand how a change is

propagated within UCM model and across related UCM models (i.e. from UCM

to UCM) through URN links. Therefore, the approach combines CIA approach

for both GRL and UCM by using URN links (i.e. GRL to UCM and UCM

to GRL), such combination will contribute to the precision and completeness

of requirements. The approach has been implemented as a feature within the

jUCMNav [13] tool. Our proposed approach has been tested and evaluated using

98

three public models and one mock model. In addition, we have conducted an

experiment evolving 10 participants, the results show that there is a significant

improvement of identifying impacted elements by using jUCMNav’s new CIA

feature. As a future work, we plan to extend our approach to cover simultaneous

GRL / UCM changes and perform an iteration to follow the involved URL links.

In addition to the proposed approach, we plan to investigate the implementation

of the other techniques, such as dynamic forward change impact analysis with

respect to the input. The potentially impacted URN elements are not used as

a source/target to explore more URN connections, if any. The applicability of

our approach was demonstrated using three case studies and a mock model only.

Bigger case studies should provide a better assessment of the effectiveness of our

proposed approach.

99

REFERENCES

[1] S. Ibrahim, N. B. Idris, M. Munro, and A. Deraman, “A requirements trace-

ability to support change impact analysis,” Asian Journal of Information

Tech, vol. 4, no. 4, pp. 345–355, 2005.

[2] R. S. Arnold, Software change impact analysis. IEEE Computer Society

Press, 1996.

[3] B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based change

impact analysis techniques,” Software Testing, Verification and Reliability,

vol. 23, no. 8, pp. 613–646, 2013.

[4] Y. Li, J. Li, Y. Yang, and M. Li, “Requirement-centric traceability for change

impact analysis: A case study,” in Making Globally Distributed Software

Development a Success Story, International Conference on Software Process,

ICSP 2008, Leipzig, Germany, May 10-11, 2008, Proceedings, 2008, pp.

100–111. [Online]. Available: https://doi.org/10.1007/978-3-540-79588-9 10

[5] H. Zhang, J. Li, L. Zhu, R. Jeffery, Y. Liu, Q. Wang, and

M. Li, “Investigating dependencies in software requirements for change

100

propagation analysis,” Information and Software Technology, vol. 56,

no. 1, pp. 40 – 53, 2014, special sections on International Conference

on Global Software Engineering August 2011 and Evaluation and

Assessment in Software Engineering April 2012. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S095058491300147X

[6] A. Goknil, I. Kurtev, K. van den Berg, and W. Spijkerman, “Change impact

analysis for requirements: A metamodeling approach,” Information and

Software Technology, vol. 56, no. 8, pp. 950 – 972, 2014. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0950584914000615

[7] L. C. Briand, Y. Labiche, and L. O’sullivan, “Impact analysis and change

management of uml models,” in Software Maintenance, 2003. ICSM 2003.

Proceedings. International Conference on. IEEE, 2003, pp. 256–265.

[8] A. Goknil, I. Kurtev, and K. van den Berg, “A rule-based change

impact analysis approach in software architecture for requirements

changes,” CoRR, vol. abs/1608.02757, 2016. [Online]. Available: http:

//arxiv.org/abs/1608.02757

[9] A. von Knethen, “Change-oriented requirements traceability. support for evo-

lution of embedded systems,” in International Conference on Software Main-

tenance, 2002. Proceedings., 2002, pp. 482–485.

[10] S. Ibrahim, N. B. Idris, M. Munro, and A. Deraman, “A software traceability

validation for change impact analysis of object oriented software,” in Proceed-

101

ings of the International Conference on Software Engineering Research and

Practice & Conference on Programming Languages and Compilers, SERP

2006, Las Vegas, Nevada, USA, June 26-29, 2006, Volume 1, 2006, pp. 453–

459.

[11] ITU-T, “Recommendation Z.151 (10/12), User Requirements Notation

(URN) language definition, Geneva, Switzerland,” Genève,Switzerland,

2012. [Online]. Available: http://www.itu.int/rec/T-REC-Z.151/en

[12] D. Amyot and G. Mussbacher, “User requirements notation: the first ten

years, the next ten years,” JSW, vol. 6, no. 5, pp. 747–768, 2011.

[13] “jucmnav project, v6.0.0,” http://jucmnav.softwareengineering.ca, accessed:

2017-01-15.

[14] H. S. Alkaf, J. Hassine, A. Hamou-Lhadj, and L. Alawneh, An

Automated Change Impact Analysis Approach to GRL Models. Cham:

Springer International Publishing, 2017, pp. 157–172. [Online]. Available:

https://doi.org/10.1007/978-3-319-68015-6 10

[15] L. Badri, M. Badri, and D. St-Yves, “Supporting predictive change impact

analysis: a control call graph based technique,” in Software Engineering Con-

ference, 2005. APSEC’05. 12th Asia-Pacific. IEEE, 2005, pp. 9–pp.

[16] B. Breech, M. Tegtmeyer, and L. Pollock, “Integrating influence mechanisms

into impact analysis for increased precision,” in Software Maintenance, 2006.

ICSM’06. 22nd IEEE International Conference on. IEEE, 2006, pp. 55–65.

102

[17] L. Huang and Y.-T. Song, “Precise dynamic impact analysis with depen-

dency analysis for object-oriented programs,” in Software Engineering Re-

search, Management & Applications, 2007. SERA 2007. 5th ACIS Interna-

tional Conference on. IEEE, 2007, pp. 374–384.

[18] A. Orso, T. Apiwattanapong, and M. J. Harrold, “Leveraging field data for

impact analysis and regression testing,” in ACM SIGSOFT Software Engi-

neering Notes, vol. 28, no. 5. ACM, 2003, pp. 128–137.

[19] J. Law and G. Rothermel, “Whole program path-based dynamic impact anal-

ysis,” in Proceedings of the 25th International Conference on Software Engi-

neering. IEEE Computer Society, 2003, pp. 308–318.

[20] T. Apiwattanapong, A. Orso, and M. J. Harrold, “Efficient and precise dy-

namic impact analysis using execute-after sequences,” in Proceedings of the

27th international conference on Software engineering. ACM, 2005, pp.

432–441.

[21] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining version

histories to guide software changes,” IEEE Transactions on Software Engi-

neering, vol. 31, no. 6, pp. 429–445, 2005.

[22] S. N. Ahsan and F. Wotawa, “Impact analysis of scrs using single and multi-

label machine learning classification,” in Proceedings of the 2010 ACM-IEEE

international symposium on empirical software engineering and measurement.

ACM, 2010, p. 51.

103

[23] L. C. Briand, J. Wust, and H. Lounis, “Using coupling measurement

for impact analysis in object-oriented systems,” in Software Maintenance,

1999.(ICSM’99) Proceedings. IEEE International Conference on. IEEE,

1999, pp. 475–482.

[24] A. Beszedes, T. Gergely, S. Farago, T. Gyimothy, and F. Fischer, “The dy-

namic function coupling metric and its use in software evolution,” in Software

Maintenance and Reengineering, 2007. CSMR’07. 11th European Conference

on. IEEE, 2007, pp. 103–112.

[25] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, “Using information

retrieval based coupling measures for impact analysis,” Empirical software

engineering, vol. 14, no. 1, pp. 5–32, 2009.

[26] S. Lehnert, “A taxonomy for software change impact analysis,” in Proceedings

of the 12th International Workshop on Principles of Software Evolution and

the 7th annual ERCIM Workshop on Software Evolution. ACM, 2011, pp.

41–50.

[27] ——, “A review of software change impact analysis,” Ilmenau University of

Technology, Tech. Rep, 2011.

[28] A. Aryani, I. D. Peake, M. Hamilton, H. Schmidt, and M. Winikoff, “Change

propagation analysis using domain information,” in Software Engineering

Conference, 2009. ASWEC’09. Australian. IEEE, 2009, pp. 34–43.

104

[29] Z. Xing and E. Stroulia, “Umldiff: an algorithm for object-oriented design

differencing,” in Proceedings of the 20th IEEE/ACM international Conference

on Automated software engineering. ACM, 2005, pp. 54–65.

[30] G. Antoniol, V. F. Rollo, and G. Venturi, “Detecting groups of co-changing

files in cvs repositories,” in Principles of Software Evolution, Eighth Interna-

tional Workshop on. IEEE, 2005, pp. 23–32.

[31] J. Hassine, J. Rilling, J. Hewitt, and R. Dssouli, “Change impact analysis for

requirement evolution using use case maps,” in Eighth International Work-

shop on Principles of Software Evolution (IWPSE’05). IEEE, 2005, pp.

81–90.

[32] J. Hewitt and J. Rilling, “A light-weight proactive software change impact

analysis using use case maps,” in Software Evolvability, 2005. IEEE Interna-

tional Workshop on. IEEE, 2005, pp. 41–46.

[33] W.-T. Lee, W.-Y. Deng, J. Lee, and S.-J. Lee, “Change impact analysis with a

goal-driven traceability-based approach,” International Journal of Intelligent

Systems, vol. 25, no. 8, pp. 878–908, 2010.

[34] J. S. O’Neal, “Analyzing the impact of changing requirements,” in Pro-

ceedings of the IEEE International Conference on Software Maintenance

(ICSM’01). IEEE Computer Society, 2001, p. 190.

105

[35] Y. Yu, A. Lapouchnian, S. Liaskos, J. Mylopoulos, and J. C. Leite, “From

goals to high-variability software design,” in International Symposium on

Methodologies for Intelligent Systems. Springer, 2008, pp. 1–16.

[36] A. Van Lamsweerde, “From system goals to software architecture,” in Formal

Methods for Software Architectures. Springer, 2003, pp. 25–43.

[37] N. A. Ernst, A. Borgida, and I. Jureta, “Finding incremental solutions for

evolving requirements,” in Requirements Engineering Conference (RE), 2011

19th IEEE International. IEEE, 2011, pp. 15–24.

[38] J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhanskaya, and

S. Christina, “Goal-centric traceability for managing non-functional require-

ments,” in Proceedings of the 27th international conference on Software en-

gineering. ACM, 2005, pp. 362–371.

[39] H. Nakagawa, A. Ohsuga, and S. Honiden, “A goal model elaboration for

localizing changes in software evolution,” in Requirements Engineering Con-

ference (RE), 2013 21st IEEE International. IEEE, 2013, pp. 155–164.

[40] A. van Lamsweerde, “Requirements engineering: from craft to discipline,” in

Proceedings of the 16th ACM SIGSOFT International Symposium on Foun-

dations of software engineering. ACM, 2008, pp. 238–249.

[41] J. Hassine, “Change impact analysis approach to grl models,” in SOFTENG

2015: The First International Conference on Advances and Trends in Soft-

ware Engineering. ACM, 2015, pp. 1–6.

106

[42] M. S. Kilpinen, “The emergence of change at the systems engineering and

software design interface,” Ph.D. dissertation, University of Cambridge, 2008.

[43] H. Agrawal and J. R. Horgan, “Dynamic program slicing,” in Acm Sigplan

Notices, vol. 25, no. 6. ACM, 1990, pp. 246–256.

[44] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using depen-

dence graphs,” ACM Transactions on Programming Languages and Systems

(TOPLAS), vol. 12, no. 1, pp. 26–60, 1990.

[45] M. Kamkar, “An overview and comparative classification of program slicing

techniques,” Journal of Systems and Software, vol. 31, no. 3, pp. 197–214,

1995.

[46] B. Korel and J. Laski, “Dynamic slicing of computer programs,” Journal of

Systems and Software, vol. 13, no. 3, pp. 187–195, 1990.

[47] M. L. Lee et al., Change impact analysis of object-oriented software. George

Mason University Virginia, 1998.

[48] M. Lee, A. J. Offutt, and R. T. Alexander, “Algorithmic analysis of the

impacts of changes to object-oriented software,” in Technology of Object-

Oriented Languages and Systems, 2000. TOOLS 34. Proceedings. 34th Inter-

national Conference on. IEEE, 2000, pp. 61–70.

[49] B. G. Ryder and F. Tip, “Change impact analysis for object-oriented pro-

grams,” in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on

Program analysis for software tools and engineering. ACM, 2001, pp. 46–53.

107

[50] L. Liu and E. Yu, “Designing information systems in social context: a goal

and scenario modelling approach,” Information systems, vol. 29, no. 2, pp.

187–203, 2004.

[51] M. Weiss and D. Amyot, “Business process modeling with urn,” International

Journal of E-Business Research (IJEBR), vol. 1, no. 3, pp. 63–90, 2005.

[52] J. Hassine and M. Alshayeb, “Measurement of actor external dependencies

in GRL models,” in Proceedings of the Seventh International i* Workshop

co-located with the 26th International Conference on Advanced Information

Systems Engineering (CAiSE 2014), Thessaloniki, Greece, June 16-17,

2014., 2014. [Online]. Available: http://ceur-ws.org/Vol-1157/paper22.pdf

[53] M. Weiser, “Program slicing,” in Proceedings of the 5th International

Conference on Software Engineering, ser. ICSE ’81. Piscataway, NJ,

USA: IEEE Press, 1981, pp. 439–449. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=800078.802557

[54] J.-F. Bergeretti and B. A. Carré, “Information-flow and data-flow analysis

of while-programs,” ACM Transactions on Programming Languages and Sys-

tems (TOPLAS), vol. 7, no. 1, pp. 37–61, 1985.

[55] J. Silva, “A vocabulary of program slicing-based techniques,” ACM comput-

ing surveys (CSUR), vol. 44, no. 3, p. 12, 2012.

[56] O. Akhigbe, D. Amyot, A. A. Anda, L. Lessard, and D. Xiao, “Consistency

analysis for user requirements notation models.” in iStar, 2016, pp. 43–48.

108

[57] A. Pourshahid, D. Amyot, L. Peyton, S. Ghanavati, P. Chen, M. Weiss,

and A. J. Forster, “Business process management with the user requirements

notation,” Electronic Commerce Research, vol. 9, no. 4, pp. 269–316, 2009.

[58] B. Kitchenham, S. L. Pfleeger, L. Pickard, P. Jones, D. C. Hoaglin, K. E.

Emam, and J. Rosenberg, “Preliminary guidelines for empirical research in

software engineering,” IEEE Trans. Software Eng., vol. 28, no. 8, pp. 721–734,

2002. [Online]. Available: http://dx.doi.org/10.1109/TSE.2002.1027796

[59] A. Jedlitschka and D. Pfahl, “Reporting guidelines for controlled

experiments in software engineering,” in 2005 International Symposium

on Empirical Software Engineering (ISESE 2005), 17-18 November

2005, Noosa Heads, Australia, 2005, pp. 95–104. [Online]. Available:

http://dx.doi.org/10.1109/ISESE.2005.1541818

[60] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,

Experimentation in Software Engineering: An Introduction. Norwell, MA,

USA: Kluwer Academic Publishers, 2000.

[61] N. Juristo and A. M. Moreno, Basics of Software Engineering Experimenta-

tion, 1st ed. Springer Publishing Company, Incorporated, 2010.

[62] J. Makhoul, F. Kubala, R. Schwartz, R. Weischedel et al., “Performance

measures for information extraction,” in Proceedings of DARPA broadcast

news workshop, 1999, pp. 249–252.

109

[63] IBM, “SPSS software,” 2012. [Online]. Available: http://www-01.ibm.com/

software/analytics/spss/

[64] E. S. Yu, “Towards modelling and reasoning support for early-phase require-

ments engineering,” in Requirements Engineering, 1997., Proceedings of the

Third IEEE International Symposium on. IEEE, 1997, pp. 226–235.

[65] P. Giorgini, J. Mylopoulos, and R. Sebastiani, “Goal-oriented requirements

analysis and reasoning in the tropos methodology,” Eng. Appl. Artif. Intell.,

vol. 18, pp. 159–171, March 2005.

[66] V. Ganapathy and S. Ramesh, “Slicing synchronous reactive programs,” Elec-

tronic Notes in Theoretical Computer Science, vol. 65, no. 5, pp. 50–64, 2002.

[67] S. Bohner and R. Arnold, “Ieee computer society press,” Los Alamitos, CA,

USA, 1996.

[68] D. Tanabe, K. Uno, K. Akemine, T. Yoshikawa, H. Kaiya, and M. Saeki,

“Supporting requirements change management in goal oriented analysis,” in

16th IEEE International Requirements Engineering (RE’08). IEEE, 2008,

pp. 3–12.

[69] A. M. Grubb and M. Chechik, “Looking into the crystal ball: Requirements

evolution over time,” in 24th IEEE International Requirements Engineering

Conference (RE’16), Sept 2016, pp. 86–95.

110

[70] Aprajita and G. Mussbacher, “TimedGRL: Specifying goal models over

time,” in 24th IEEE International Requirements Engineering Conference

Workshops (REW), Sept 2016, pp. 125–134.

[71] M. Baslyman, B. Almoaber, D. Amyot, and E. M. Bouattane, Activity-based

Process Integration in Healthcare with the User Requirements Notation.

Cham: Springer International Publishing, 2017, pp. 151–169. [Online].

Available: https://doi.org/10.1007/978-3-319-59041-7 9

[72] J. Hassine, “Change impact analysis approach to grl models,” 2015.

[73] A. v. Knethen, “A trace model for system requirements changes on embedded

systems,” in Proceedings of the 4th International Workshop on Principles of

Software Evolution, ser. IWPSE ’01. New York, NY, USA: ACM, 2001, pp.

17–26. [Online]. Available: http://doi.acm.org/10.1145/602461.602465

[74] X. Bai, W.-T. Tsai, R. Paul, K. Feng, and L. Yu, “Scenario-based model-

ing and its applications,” in Object-Oriented Real-Time Dependable Systems,

2002.(WORDS 2002). Proceedings of the Seventh International Workshop on.

IEEE, 2002, pp. 253–260.

[75] R. Settimi, J. Cleland-Huang, O. B. Khadra, J. Mody, W. Lukasik, and C. De-

Palma, “Supporting software evolution through dynamically retrieving traces

to uml artifacts,” in Software Evolution, 2004. Proceedings. 7th International

Workshop on Principles of. IEEE, 2004, pp. 49–54.

111

[76] E. F. Ecklund, Jr., L. M. L. Delcambre, and M. J. Freiling,

“Change cases: Use cases that identify future requirements,” SIGPLAN

Not., vol. 31, no. 10, pp. 342–358, Oct. 1996. [Online]. Available:

http://doi.acm.org/10.1145/236338.236372

[77] D. Tanabe, K. Uno, K. Akemine, T. Yoshikawa, H. Kaiya, and M. Saeki,

“Supporting requirements change management in goal oriented analysis,” in

2008 16th IEEE International Requirements Engineering Conference, Sept

2008, pp. 3–12.

[78] L. Briand, Y. Labiche, L. OSullivan, and M. Swka, “Automated

impact analysis of uml models,” Journal of Systems and Software,

vol. 79, no. 3, pp. 339 – 352, 2006. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S016412120500097X

[79] L. C. Briand, Y. Labiche, and T. Yue, “Automated traceability

analysis for uml model refinements,” Information and Software Technology,

vol. 51, no. 2, pp. 512 – 527, 2009. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0950584908000943

[80] A. M. Grubb and M. Chechik, “Looking into the crystal ball: Requirements

evolution over time,” in 2016 IEEE 24th International Requirements Engi-

neering Conference (RE), Sept 2016, pp. 86–95.

[81] G. Mussbacher et al., “Timedgrl: Specifying goal models over time,” in Re-

quirements Engineering Conference Workshops (REW), IEEE International.

112

IEEE, 2016, pp. 125–134.

[82] A. Goknil, I. Kurtev, K. van den Berg, and W. Spijkerman, “Change impact

analysis for requirements: A metamodeling approach,” Information and

Software Technology, vol. 56, no. 8, pp. 950 – 972, 2014. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0950584914000615

[83] H. K. Wright, M. Kim, and D. E. Perry, “Validity concerns in software en-

gineering research,” in Proceedings of the FSE/SDP workshop on Future of

software engineering research. ACM, 2010, pp. 411–414.

113

Vitae

� Name: Hasan Salem Omar Al-Kaf

� Nationality: Yemeni

� Date of Birth: 7/10/1987

� Email: hsoalkaff@gmail.com

� Permenant Address: Al Khobar, Eastern Region, Saudi Arabia

� Academic Background: Bachelor degree in Computer Information System,

Al al-Bayte University Jordan , currently I’m pursuing my master degree

in Software Engineering at King Fahd University of Petroleum and Minerals

- Saudi Arabia.

� Published paper: An automated Change Impact Analysis to GRL Models.

Sept. 7, 2017

114

Appendix A

This appendix shows the result of applying CIA with respect to our test cases

listed in 5.1.1.

Figure 7.1: Impacted elements with respect toSC = (task 6 in Graph (see fig. 5.1
), Addition, -)

Figure 7.2: Impacted elements with respect toSC = (task 5 in Graph (see fig. 5.1
), Deletion, -)

115

Figure 7.3: Impacted elements with respect toSC = (DependencyLink in Graph
(see fig. 5.1), Modification, -)

116

(a) Mian Map

(b) staticStubMap - Plugin

(c) staticStub 2 - Plugin

Figure 7.4: Impacted elements with respect toSC = (resp 8 in MainMap (see
fig. 5.2(a)), Modification, y)

117

(a) staticStub Map

(b) staticStub 2 - Plugin

Figure 7.5: SC = (resp 9 in staticStubMap (see fig. 5.2(b)), Addition, -)

(a) staticStub 2 - Plugin

Figure 7.6: SC = (resp 4 in staticStub 2 - Plugin (see fig. 5.2(c)), Modification,
(z,y))

118

(a) staticStub 2 - Plugin

Figure 7.7: SC = (resp 4 in staticStub 2 - Plugin (see fig. 5.2(c)), Deletion, z)

(a) staticStub 2 - Plugin

Figure 7.8: SC = (resp 8 in staticStub 2 - Plugin (see fig. 5.2(c)), Deletion, (t,n))

119

(a) staticStub 2 - Plugin

Figure 7.9: SC = (resp 3 in staticStub 2 - Plugin (see fig. 5.2(c)), Addition, t)

(a) staticStub Map

(b) staticStub 2 - Plugin

Figure 7.10: SC = (resp 4 in staticStubMap (see fig. 5.2(b)), Modification, (z,y))

120

Appendix B

121

Page 1 of 17

jUCMNav: A Change Impact Analysis (CIA) to User Requirements
Notation (URN) Feature

Part 1: Learning Documentation of URN + Generic Example.

Part 1.1: A change impact analysis to GRL feature.

Consider the GRL example Fig. 1. The model has a URN link between Goal_4 and Task_3.

Figure 1 GRL Example

Three types of changes are implemented: Addition, Deletion and Modification. These changes are
applicable to Intentional Element (Goal, Softgoal, Task, and Indicator) or Links (Contribution,
Correlation, and Dependency). Suppose that user is planning to make a change to an intentional
element or a link and he wants to know all parts that might be affected by this change. To do so, the
user may execute the GRL change impact analysis (CIA) feature by:

1. Choosing the intentional element or link of interest, for example Task_3, right click on it, then
select what type of change you are planning (Addition, Deletion or Modification) from the sub-
menu Change Impact Analysis. In our example, we will select Addition. As shown below in
fig. 2.

Figure 2 calling the GRL CIA Feature

Page 2 of 17

2. Figure 3 shows all impacted elements in the GRL model by coloring them with purple color. In
addition, it shows the URN Link details if exist between URN elements such as source/target of
impacted elements and the name of graph which belongs to. In addition to URN Links, GRL
CIA feature lists all the strategies that the impacted elements belong to.

Figure 3 All impacted elements, URN links, and strategies.

Page 3 of 17

Part 1.2: A change impact analysis to UCM models.

Consider the UCM in Figure 4. The model contains a set of responsibilities. Note that each
responsibility is named with its code to facilitate the reading of the code embedded within
responsibilities. Responsibility R4 does not have code.

Figure 4 UCM Example

Three types of changes (Addition, Deletion and Modification) are supported on responsibilities and
or-Fork branches, where the user can target specific variables, if any. It is worth noting that
addition and deletion do not require variables’ selection.

In order to compute the set of impacted elements, the user may execute the UCM change impact
analysis feature by:

1. Choosing the Responsibility or Or-Fork branch, such as R1 : x = x + z, right click on it, then
select what type of change is planned (Addition, Deletion or Modification) from the submenu

of Change Impact Analysis. In this example, we will select Modification. As shown in Fig. 5.

Figure 5 Calling UCM CIA Feature

Page 4 of 17

2. After selecting the type of change, the selection criteria window will appear. In the left box, all
variables reside in the chosen criterion are listed. Then, the user may select these variables
from left box to move them to right box “Selected variables” by using the arrow button. In our
example we will select all variables (i.e. x, z).

Figure 6 Selection criteria window

3. Figure 7 shows the impacted elements (marked with a different color) as a result of the selected
type of change. Note that the impacted elements are marked in green color, the elements that
are not impacted are colored in red color, and the elements that do not have any embedded code
are colored in gray color. All impacted URN links are also displayed in a URN comment box.

Figure 7 Marked impacted Element

Page 5 of 17

Part 2: Comprehension of URN model. (Group A)

Part 2.1: Comprehension of URN model without using the CIA feature.

Consider the following URN model of an adverse event management system system (AEMS). See
Figures 8, 9, 10, and 11.

Figure 8 "Goals" Map – GRL

Figure 9 "DQS-KPI" Map - GRL

Page 6 of 17

Figure 10 "Process" Map – UCM

Figure 11 "Prepare Event" plug-in Map – UCM

Page 7 of 17

Please answer the following questions and note the time spent in answering each question:

Q1: [Fig. 8] We plan to add a new Softgoal and a new positive contribution link to the softgoal High
Completeness in Goals map.

Q1.1: Please mark, on the model, all elements and links that might be impacted by this modification.
(Use a different color):

Please record the Start and End times (using the following format: hh:mm:ss):
Start time: [. .] End time: [. .]
Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Q1.2: List any impacted URN Links, if any, as a result of this modification. Please indicate both the
URN start element and the target element.

. ………………………. ……………………. . .

. ………………………. ……………………. . .

. ………………………. ……………………. . .

Please record the Start and End times (using the following format: hh:mm:ss):
Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Q2: [Fig. 9] We plan to delete the GRL Indicator Number of events returned to Observers in DQS-
KPI map.
Q2.1: Please mark, on the model, all elements and links that might be impacted by this modification.
(Use a different color)

Please record the Start and End times (using the following format: hh:mm:ss):
Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Page 8 of 17

Q2.2: List any impacted URN Links, if any, as a result of this modification. Please indicate both the
URN start element and the target element.

. ………………………. ……………………. . .
. ………………………. ……………………. . .
. ………………………. ……………………. . .
. ………………………. ……………………. . .
. ………………………. ……………………. . .

Please record the Start and End times (using the following format: hh:mm:ss):
Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Q3: [Fig. 9] We plan to modify the Contribution link between Number of records duplicated or time
and Low Data Duplication) in DQS-KPI map. Will the softgoal High Completeness be impacted?

Yes [] No []

Please record the Start and End times (using the following format: hh:mm:ss):
Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Q4: [Fig. 10] We plan to delete the responsibility RegisterPatient in Process Map (within Observer
component).

Q4.1: Please draw a circle on all the elements that might be impacted by deleting this responsibility?

Please record the Start and End times (using the following format: hh:mm:ss):
Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Page 9 of 17

Q4.2: List any impacted URN Links, if any, as a result of this modification. Please indicate both the
URN start element and the target element?
. ………………………. ……………………. . .
. ………………………. ……………………. . .

Please record the Start and End times (using the following format: hh:mn:ss):
Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Q5: [Fig. 10] We plan modify the responsibility EditEventForVisit in Process Map (within Observer
component).

Q5.1 Please color the path and draw a circle on all the elements that might be impacted by modifying
this responsibility.

Please record the Start and End times (using the following format: hh:mm:ss):
Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Q5.2: Please list any impacted URN Links, if any, as a result of this modification. Please indicate both
the URN start element and the target element?
. ………………………. ……………………. . .
. ………………………. ……………………. . .
. ………………………. ……………………. . .

Please record the Start and End times (using the following format: hh:mm:ss):
Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Page 10 of 17

Q6: [Fig. 10] We plan to add a new responsibility between ScoreEvent and AEMS-StoreReview in

Process Map (within Reviewer component).

Q6.1: Will the responsibility WarnReviewer be impacted?

Yes [] No []

Please record the Start and End times (using the following format: hh:mm:ss):
Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Q6.2: Please list any impacted URN Links, if any, as a result of this modification. Please indicate both
the URN start element and the target element?

. ………………………. ……………………. . .

. ………………………. ……………………. . .

. ………………………. ……………………. . .

Please record the Start and End times (using the following format: hh:mm:ss):
Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Page 11 of 17

Part 2.2: Comprehension of URN model using jUCMNav CIA feature.

Consider the following URN model of Commuting system. [Commuting]. See Figures 12-20.

Figure 12 "Stakeholders" Map – GRL

Figure 13 "Commuting-Reasons" Map - GRL

Page 12 of 17

Figure 14 "Commuting Map" – UCM

Figure 15 "Secure Home" plugin - UCM

Figure 16 "Arm System" plugin – UCM

Figure 17 "Car" plugin - UCM

Page 13 of 17

Figure 18 "Hitch a Ride" plugin - UCM

Figure 19 "Reqular Bus" plugin - UCM

Figure 20 "Take Elevator" plugin – UCM

Page 14 of 17

Please answer the following questions and note the time spent in answering each question:

Q1: [Fig. 12] We plan to delete the GRL Goal “Available to give ride” in “Stakeholders map”.

Q1.1: Please mark, on the model, all elements and links that might be impacted by this modification.
(Use a different color):

Please record the Start and End times (using the following format: hh:mm:ss):
Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Q1.2: List any impacted URN Links, if any, as a result of this modification. Please indicate both the
URN start element and the target element.

. ………………………. ……………………. . .

. ………………………. ……………………. . .

. ………………………. ……………………. . .

Please record the Start and End times (using the following format: hh:mm:ss):
Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Q2: [Fig. 12] We plan to modify (i.e. replace the Or by And decomposition), then, apply CIA to the
Take private transport in Stakeholders map.
Q2.1: Please mark, on the model, all elements and links that might be impacted by this modification.
(Use a different color)

Please record the Start and End times (using the following format: hh:mm:ss):
Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Page 15 of 17

Q2.2: List any impacted URN Links, if any, as a result of this modification. Please indicate both the
URN start element and the target element.

. ………………………. ……………………. . .

. ………………………. ……………………. . .

. ………………………. ……………………. . .

Please record the Start and End times (using the following format: hh:mm:ss):
Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Q3: [Fig. 13] We plan to add a new Indicator and a new positive contribution link to “Work during
commute” in Commuting-Reasons map. will the goal Minimize travel time be impacted?

Yes [] No []

Please record the Start and End times (using the following format: hh:mm:ss):
Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Q4: [Fig. 18] We plan to add a new responsibility between hitch a ride in car and reached
destination in Hitch a Ride Map (within transport component).

Q4.1: Please color the path and draw a circle on all the elements that might be impacted by modifying
this responsibility.

Please record the Start and End times (using the following format: hh:mm:ss):
Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Page 16 of 17

Q4.2: Please list any impacted URN Links, if any, as a result of this modification. Please indicate both
the URN start element and the target element?

. ………………………. ……………………. . .
. ………………………. ……………………. . .
. ………………………. ……………………. . .

Please record the Start and End times (using the following format: hh:mm:ss):
Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Q5: [Fig. 18] We plan to delete the responsibility hitch a ride in car in Hitch a Ride map (within
transport component).

Q5.1: Please draw a circle on all the elements that might be impacted by deleting this responsibility?

Please record the Start and End times (using the following format: hh:mm:ss):

Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Q5.2: List any impacted URN Links, if any, as a result of this modification. Please indicate both the
URN start element and the target element?
. ………………………. ……………………. . .
. ………………………. ……………………. . .

Please record the Start and End times (using the following format: hh:mn:ss):
Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Page 17 of 17

Q6: [Fig. 15] We plan to modify the responsibility look door in Secure Home map (within home

component).

Q6.1: Will the responsibility startSecure in Commuting map be impacted?

Yes [] No []

Please record the Start and End times (using the following format: hh:mm:ss):
Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

Q6.2: Please list any impacted URN Links, if any, as a result of this modification. Please indicate both
the URN start element and the target element?

. ………………………. ……………………. . .
. ………………………. ……………………. . .
. ………………………. ……………………. . .

Please record the Start and End times (using the following format: hh:mm:ss):
Start time: [. .] End time: [. .]

Please check the level of difficulty of performing the task:

[] Very Easy [] Easy
[] Neither
easy nor
difficult

[] Difficult [] Very Difficult

