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Recently, the amount of greenhouse gas emissions such as carbon dioxide in the
atmosphere increases continuously. This tendency leads to several issues harming the
environment such as global warming. Using natural gas as a fuel source instead of other
fusel fuels emits lower amount of carbon dioxide in the atmosphere. Several treatment
steps must be done before start producing the natural gas namely acid gas removal,
dehydration and NGL fractionation. The objective of this thesis is to study and model
these treatment steps in details and filling some gaps in this area. Two models employing
two different solvents were analyzed in the acid gas removal section namely, DGA and
MDEA. The results revealed that the plant employed MDEA requires less energy
compared to DGA one. Energy saving opportunities were investigated using different
design alternatives. Mechanical Vapor Recompression configuration was found to be
superior to other designs and more energy efficient while maintaining the product purity.
The analogy between natural gas and carbon capture dehydration using two different
design approaches namely, conventional and stripping gas was investigated in the
dehydration part. Results showed that the stripping gas configuration requires less
amount of circulation rate and energy maintaining the same water removal level as the
conventional scheme for both cases. NGL fractionation process consists of a connecting

series of distillation columns to separate the NGL components. Dividing wall column

XiX



sequence was selected as an alternative design for this part. Results show that using
dividing wall column arrangement can save 24% of the energy requirement compared to

the conventional sequence.
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CHAPTER 1

INTRODUCTION

1.1 Overview Background

The continuous increase in the amount of carbon dioxide (CO.) contributes negatively to
climate change and cause global warming. Recently, CO, emission level has reached 399
ppm and is expected to increase continuously if no preventive measure is taken (Anon
2016a). Among other strategies to limit the emissions, use of clean fuel have been one of
the main approaches to mitigate the impact of climate change. Natural gas is considered
as a clean energy source and produce 71% and 56% less emissions compared to oil and
coal, respectively (Lim et al. 2013). Conventionally, natural gas is produced from the
underground reservoirs together with or without crude oil. The natural gas recovered
along with oil is referred as associated gas while the gas produced without much oil
phase is referred to as non-associated gas. Usually, the associated gas contains lower
methane and higher amount of high molecular weight hydrocarbons than the non-
associated gas. Before the natural gas can be used for any domestic and industrial
application, it must be processed to purify it from the undesired impurities. Also, the
conditioning of natural gas is important for its transmission, which if not done, can be
disastrous to pipelines and personnel health. There are several stages in the natural gas

processing as shown in figure 1. First, the gas is pre-processed to remove any free water



or associated liquid phases. It is then sent to the acid gas removal (AGR) section for the
removal of acid gases before entering the dehydration plant. The purpose of dehydration
unit is to remove water contents below certain level so that gas hydrate formation can be
prevented. Finally, the gas is either sent as sales gas or further processed in fractionation

units to separate C1 -Cs hydrocarbons
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1.1 Objectives

The objectives sought for this project are as following:
Acid Gas Removal

1

Process model development for the AGR

2- Model validation with the literature

3- Improve the process performance maintaining the product purity.
4- Development of several alternative designs to look for energy savings opportunity

Dehydration

1- Process model development for the dehydration for natural gas and carbon

capture cases.

N
1

Model validation with the literature

3

Improve the process performance maintaining the product purity.

4

Comparison the analogy between the natural gas and carbon capture dehydration

NGL Fractionation

1- Process model development for the NGL fractionation columns
2- Parametric study on some of the important design variables
3- Alternative design development such as dividing wall column for process

improvement



1.2 Layout of Thesis

This thesis mainly focuses on the three natural gas treatment stages namely, AGR,
dehydration and natural gas liquids (NGL) fractionantion, sections. Two representative
acid gas removal plants namely Shedgum and Khursaniyah were selected based on the
source of natural gas. Shedgum gas plant (SGP) receives the low pressure associated
natural gas, while Khursaniyah gas plant (KGP) processes the high pressure non-
associated gas. These two plants employed two different amine solvents to absorb acid
gas primarily, CO2 and H>S. The aim of this section is to study and analyze the
sweetening and the energy performance of the two cases. The model used is validated
against plant data to check the reliability of the model. Finally, parametric analysis is
performed to investigate the effect of some key parameters on the removal and energy
performance. The sweetened gas stream from the KGP is selected to be the feed to the
dehydration plant where water is removed at this stage. The dehydration model is
validated against plant data as well. The analogy between the natural gas and captured
CO- dehydration is investigated by performing sensitivity analysis for both scenarios.
The dried gas stream is then sent to the fractionation unit where C1 — Cs hydrocarbons are
separated. In this section, energy saving opportunities using dividing wall column (DWC)

designs has been investigated.



CHAPTER 2

LITERATURE REVIEW

2.1 Acid Gas Removal

This study will mainly focus on the use of amine solvents for the gas treatment. Chemical
amines can be mainly classified into three main categories, namely primary, secondary
and tertiary amines. Monoethanol amine (MEA) and diglycolamine amine (DGA) are
examples of primary amines, whereas diethanolamine (DEA) and monodiethanolamone
(MDEA) are representative examples of secondary and tertiary amines, respectively.
Furthermore, more recently sterically hindered amines such as 2-amino-2 methyl-1-
propanol (AMP), 1,8-p-methanediamine (MDA) and 2-piperidiene ethanol (PE) got
attention for their capability to efficiently absorb acid gases. However, these amines are
still at the development stage and deemed too expensive for commercial use. Each of
these above mentioned amines have their own characteristics and limitations, and have

been used in various industries.

In the past, many studies investigated the performance of DGA and MDEA solvents.
However, not many studies have analyzed the application of these solvents in the actual
industrial plants. Specially, open literature on the performance and application of DGA is
rarely reported. Pellegrini et al. (Pellegrini et al. 2010) compared various amines that can
be employed for the CO> capture. The authors investigated the performance of MEA,

DGA and ammonia in terms of their capture capability and found that the NH3 is superior



to other solvents. However, when using ammonia solvent, salt formation can occur and
require another separation unit to remove solid salts from the streams. Erfani et al. (Erfani
et al. 2015) also compared between various amines including MEA, DGA, MDEA, DEA
and DIPA. Their results showed that the mixture of MEA-DGA amine can reduce the
reboiler duty compared to the MEA base case. Kazemi et al. (Kazemi et al. 2014)
investigated the effect of CO, content in the lean amine for MEA, DGA and MEA-
MDEA mixture on the acid gas removal process. They reported that the use of DGA
solvent to be more economical compared to the other processes. More recently, Zahid et
al, (Zahid et al. 2017) performed an energy analysis of a gas sweetening unit employing
DGA solvent and estimated the reboiler duty to be 5.57 GJ/ton CO, removed. However,
this study considered only CO: in the sour feed gas and did not investigate the effect of

H>S presence in the feed.

Similarly, many researchers have reported the application of MDEA in the gas
sweetening industry. For example, Borhani et al.,(Borhani et al. 2016) used rate-based
model to describe the absorption and reactive system between MDEA and acid gases.
They investigated the impact of some key parameters and found that decreasing the
surface area of packing increases the removal efficiency. Also, their results showed that
increasing the liquid flow rate in the column can enhance the overall mass transfer
coefficient leading to a better absorption. Aliabad and Mirzaei (Aliabad & Mirzaei 2009)
studied the MDEA and DEA solvents and found that increasing the circulation rate and
concentration of the solvents increase the removal of acid gases. Jassim (Jassim 2016)
performed a parametric analysis and reported that the MDEA concentration and lean

amine flow rate are the most important parameters which influence the energy



performance and removal efficiency. Mofarahi et al., (Mofarahi et al. 2008) compared
the performance of various amines for the acid gas removal application and found that
MDEA is a good solvent for selective removal of H>S. Fouad and Berrouk (Fouad &
Berrouk 2013) compared blends of various amines and found the combination of
MDEA/TEA to have the least regeneration energy compared to the other amines. Al-
gahtani and Garland (Al-Qahtani & Garland 2013) investigated the foaming problem in
Khursaniyah plant which employs MDEA as the chemical solvent. The authors
recommended increasing the sour gas temperature along with the use of antifoaming

solvent to avoid foaming in the absorber.

2.2 Dehydration

Several dehydration methods are available depending on the downstream requirement
including condensation by cooling, adsorption, absorption and membranes (L. L.
Faulkner 2006) as shown in figure 2. The simplest dehydration method is condensation
by cooling which involves cooling the gas in order to condense the water content which
can then be separated. However, water removal by cooling can only achieve water
contents down to 600 ppmv in the dried gas which in most of the applications is higher
than the required limits. Another drawback of this process is the formation of methane
hydrates which require hydrate inhibitors. Adsorption can be done by a variety of
desiccants such as silica gel, activated alumina and molecular sieves. The amount of
water removed mainly depends on the type of desiccant used and the feed gas
thermodynamic conditions. Usually, the moisture removal efficiency by adsorption

increases with an increase in the pressure and decrease in the temperature. Various



desiccants have their own characteristics and are typically employed for adsorption in a
cycle of two beds with one bed under adsorption while the other regenerates the solid
adsorbent. Regeneration can be performed either by temperature swing adsorption (TSA)
or pressure swing adsorption (PSA). However, the TSA process is more common
employed than that of the PSA process. Adsorption can achieve very low water
concentration in the dried gas with dew point as low as < -50 °C. However, adsorption
offers high capital and operating cost compared to the other technologies. Studies suggest
that CAPEX for adsorption can be 2 -3 times higher than that of the absorption process
(Netusil & Ditl 2011; Kinigoma & Ani 2016). More recently, membranes received
significant attention for the dehydration of natural gas because of their less weight, large
turn down ratio and ability to operate at medium to high pressures (50-70 barg).
However, throughput scale-up and a pretreatment stage requirement for solids and
droplets (> 3micrcons) removal pose a technical challenge (L. L. Faulkner 2006).
Absorption is the most widely used method employed for the purpose of dehydration.
Liquid solvent usually a glycol is used to remove the moisture content from the feed gas.
The common glycols include diethylene glycol (DEG), triethylene glycol (TEG),
ethylene glycol (EG) and tetraethylene glycol (TREG). The glycols are preferred choice
of solvent because of their ability to selectively absorb water with no significant loss of
natural gas, low viscosity and volatility at absorption conditions, and thermally stable
with low corrosion rate. In this study, absorption process using TEG solvent has been
selected for the investigation of water removal from the natural gas and CO2 streams. In

industrial dehydration processes, TEG is a preferred solvent because of its superior dew



point depression characteristics, low cost and high operational reliability compared to the

other glycols.
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Figure 2 Gas Dehydration Methods
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2.2.1 Natural Gas Dehydration

Dehydration has been employed industrially for many decades and significant literature is
available on various dehydration technologies. For example, Netusil and Ditl (Netusil &
Ditl 2011) compared absorption, adsorption and condensation technologies over a wide
operational range in terms of energy consumption. Their results showed that the
adsorption is the highest energy consuming process compared to the other technologies.
They also showed that the absorption is a better choice for low pressure operation while
the condensation is suitable for high pressure process. Similar results were reported by
Kinigoma and Ani (Kinigoma & Ani 2016).Their results showed that the condensation
can only remove water content up to certain level which limits the process performance.
Nemati Rouzbahani et al., (Nemati Rouzbahani et al. 2014) simulated the natural gas
dehydration process employing DEG as the solvent and reported that the volatile organic
compounds emissions have a great influence on enhancing the purity of DEG in the
stripper. Neagu and Cursaru (Neagu & Cursaru 2017) simulated two design
configurations of natural gas dehydration and showed that the TEG concentration of the
regenerated glycol can be increased from 98.74 % to 99.85 % when stripping gas
configuration is used without substantial increment in the capital investment.
Anyadiegwu et al (Anyadiegwu et al. 2014) studied the effect of TEG flow rate on the
water removal performance. Their study results showed that, at 92 bar and 30 °C
absorption conditions, 3.5 m3/h is sufficient to remove the water up to 6.8 1b/MMSCF
from the gas stream flowing at 10 MMSCFD. Similar work was done by Collins et al,.
(Collins et al. 2015) at relatively lower pressure operation i.e. 62 bar. Simulation results

showed that 10 MMSCFD gas flow rate required 53 to 70 L/h solvent rate to obtain 6 to 7
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Ib/MMSCFD water concentration in the gas stream, respectively. Mawgoud et al (El
Mawgoud et al. 2015), discussed the opportunities to revamp an existing natural gas
dehydration plant. Their results revealed that decreasing the lean TEG temperature before
the absorption leads to higher water removal efficiency. Rahimpour et al (Rahimpour et
al. 2013), investigated the influence of several parameters on the dehydration
performance. They reported that increasing the pressure operation, glycol concentration,
glycol flow rate can enhance the water removal process and cost saving. Felicia and
Evboumwan (Felicia & Evbuomwan 2015) performed an optimization study of natural
gas dehydration plant that employed TEG. Their analysis implied that by varying the

circulation rate of TEG, an optimum point of the water purity in the dry gas stream exists.

2.2.2 Carbon Capture Dehydration

Several studies were done in carbon capture dehydration process as well. Abbas et al,
(Abbas et al. 2013) compared refrigeration, adsorption and absorption in terms of water
removal performance. Their analysis showed absorption by EG can be applied at wide
range of circulation rate and the water can be removed below 50 ppmv. However, the
refrigeration is the most advantageous among other technologies for CO> dehydration
application because it requires lower cost than absorption. Oi and Fazlagic (di &
Fazlagic 2014), simulated several retrofit designs for CO, dehydration process using two
different equilibrium models. Their results showed that injecting the stripping gas to an
additional stripping column that is connected to the main regenerator can reduce the
water content in the dry gas more than injecting the stripping gas to the reboiler of the

stripper. Wise and Chapoy (Wise & Chapoy 2016), analyzed the carbon dioxide
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solubility in TEG over different operating conditions. Their model results are agreed with
the experimental findings. According to their results, as pressure increases, the solubility
of CO: in TEG increases as well for a wide range of temperatures. Also, the presence of

water can reduce the solubility of CO. in TEG substantially.

2.3 NGL Fractionation

NGL recovery is done in the demethanizer where methane is separated from NGL and
leave the column from the top while NGL is recovered in the bottom of the column. The
most concerning issue regarding demethanizer is that it requires low temperature
operation to partially condense it. Many retrofit designs are used to reduce the plant
capital and operating cost and save the energy for cooling the feed gas such as utilizing
the low temperature from the overhead product, using some external refrigeration cycles
such as propane refrigeration and turboexpansion of feed gas which will consequently

results in low overhead temperature.

The NGL fractionation process is done by a connected series of distillation columns.
Conventionally, the number of distillation columns required to get the pure NGL
components depends primarily on the number of products desired. Separating ternary
mixtures can be done by different sequences or configurations and it requires at least two
columns to perform the separation. The simplest methods are direct splitting and indirect
splitting. The direct sequencing involves separating the lightest component in the first
column and the heavier components are leaving at the reboiler stage of the first column
and then isolated to their pure components in the second column. The indirect splitting

sequence separates the heaviest component at the first column while the other
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components enter the second column to obtain their pure products. Another possible
configuration is using three columns where the first column performs sloppy separation.
The top product of the first column is the light component and some portion of the second
component and it is fed to the second column while the bottom product consists of the
other portion of the second component and the heavy key product and it enters the third
column. The separation to the pure component is continued in the second and third
column. However, the disadvantage of the mentioned columns, aside from high energy
requirement, is lack of ability to perform reversible split. To overcome these drawbacks,
a thermally linked column was proposed, which simply combining the second and third
column of the sloppy configuration in one shell and the intermediate component is
withdrawn from the middle side of the second column. another improvement reported is
to construct one main column along with side rectifier or side stripper. The light and
heavy components are withdrawn from the main column while the middle component
leaves from the side column. One reboiler or condenser can be omitted using these two
configurations. Another energy efficient column design is the fully thermally coupled
column, namely Petlyuk column, which consists of prefractionator and main columns as
shown in figure 3. The overhead, bottom and side products are withdrawn from the main
column. This arrangement can reduce the capital cost and save energy since a single
condenser and a single reboiler are used to supply the whole sequence with heat.
Combining the prefractionator with the main column into a single shell with a welded
wall in the middle section is the recent configuration proposed and it is known as
dividing wall column (DWC) as shown in figure 4. Moreover, the idea of top divided

wall column and bottom divided wall column arises from integrating the two columns
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into one single shell in the side rectifier and side stripper, respectively, as well (Asprion

& Kaibel 2010; Dejanovic et al. 2010).

Many simulation and optimization studies were done in NGL fractionation to compare
the direct split and more advanced arrangements. Long and Lee (Long & Lee 2012)
investigated several design alternatives to improve the performance of the deethanizer
and depropanizer. The results revealed that using DWC arrangement reduces the total
annual cost (TAC) up to 33.63%. The same authors in another study. Uwitonze et al,
(Uwitonze et al. 2016) proposed new process schemes which involve a heat and energy
integration between LNG production and NGL recovery processes. Their results showed
the heat integration between dual mixed refrigerant (DMR) and fully thermally coupled
distillation column configuration leads to lower total reboiler duty than DMR-
conventional and DMR-heat integrated distillation sequences. For total condenser duty,
DMR- heat integrated distillation sequence has the lowest value among all cases.
Factorial design method was used to design and optimize dividing wall in the work of
Long and Lee (van Duc Long & Lee 2012). After optimizing DWC which separates i-
butane, n-butane and pentane components, energy and cost analysis showed that using
DWC can reduce the reboiler duty, investment cost and TAC by 25.6, 13.7 and 18.9%,
respectively. Chew et al., (Chew et al. 2014) investigated several design approaches to
enhance the energy performance of the DWC in various well-known processes including
depropanizer and debutanizer. Their results show that vapor recompression, closed cycle
compression, absorption heat pump, absorption heat transformer, organic Rankine cycle
and Kalina cycle configurations are thermodynamically inefficient and costly. Long et

al.,(Long et al. 2016) studied various retrofit designs to reduce energy consumption in
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NGL fractionation. Optimization results show that using side reboiler and heat pump-
assisted, thermally coupled distillation to integrate deethanizer and depropanizer
minimizes the operating cost. For debutanizer and deisobutanizer, vapor remporession
heat pump system is used for each column and both top products are used to supply heat
to the reboilers of the deisobutanizer. This retrofit design can save 52.8 and 68.80% of
operating cost and reboiler energy, respectively. Ching et al., (Ching et al. 2016) conduct
a research to investigate the feasibility of distinct retrofit designs for depropanizer
column using commercial simulation software. their analysis showed that mechanical
vapor recompression and vapor compression save more than 65% of energy cost. Another
study (Van Duc Long & Lee 2012) investigated the possibilities of separating quaternary
mixtures that contains propane, i-butane, n-butane and propane+ using DWC
configurations. After comparing the results with the conventional sequence, double
prefractionator arrangement and double dividing wall column are the most efficient

configurations which lowers the energy consumption substantially.
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CHAPTER 3

ACID GAS REMOVAL

3.1 Introduction

The scope of this chapter is limited to the AGR section where the acid gases, mainly HzS
and COy, are removed from the gas stream. Depending on the feed conditions,
composition and operating environment, a number of methods can be employed for the
removal of acid gases. The common industrial methods for the removal of acid gases
include treatment using chemical amines, physical solvents and mixtures of physical and
chemical solvents (L. L. Faulkner 2006). The natural gas produced in the Saudi Arabia
comes from both associated and non-associated sources. In 2015, the non-associated gas
accounted to 80% of natural gas production while the rest 20% was associated gas (Anon
2016b). Inherently, the associated gas is available at low pressure compared to the non-
associated gas which is mostly available at a high pressure. The natural gas produced in
the Saudi Arabia is mainly directed to six main gas plants, namely Haradh, Hawiyah,
Uthmaniyah, Khursaniyah, Berri and Shedgum. Figure 5 shows the source of natural gas
that is being treated at each of the processing facility along with the solvent employed for
gas treatment (McMurray 2011). It is interesting to see that four of the gas plants employ
diglycolamine (DGA) as the chemical solvent for the gas cleaning while the Khursaniyah
and Haradh employ monodiethanolamine (MDEA) for gas treatment. Although acid gas

removal processes have been used for many decades, however, the details on how an
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industrial plant performance can be manipulated is not extensively reported in open
literature. The goal of this study is to investigate the dynamics of natural gas sweetening
process especially in the Middle East region. For this reason, this study has selected two
representative natural gas processing plants from the Saudi Arabia, namely Shedgum and
Khursaniyah gas plants. Shedgum gas plant (SGP) receives low pressure associated
natural gas and DGA solvent is used for the acid gas removal. On the other hand,
Khursaniyah gas plant (KGP) which receives high pressure non-associated natural gas
and employs MDEA as the chemical solvent. It is well understood that the two solvents
belong to different class of amines and a direct performance comparison cannot be
drawn. However, the goal of this chapter is to investigate the performance of two
different cases from associated and non-associated sources available at different
pressures. In the presence of both H.S and CO: in the feed gas, MDEA is mainly utilized
for the selective removal of H2S, while DGA is used for the removal of both acid gases.
In this study, first a steady-state model is simulated using a commercial software for each
of the gas plants. The models are then validated against the available actual plant data in
order to ensure the model reliability. Finally, a sensitivity analysis for both the models
has been done to observe the impact of key process parameters such as circulation rate,
solvent strength, stripper pressure and lean amine temperature on the energy performance

and product purities.
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3.2 Design Basis

This study considered two representative base cases namely Shegum and Khursaniyah
Gas plant. The base case flowsheet structure is same for both the designs. However, the
feed specification and solvent employed is different. The base case configuration for the
Shedgum gas plant considers the associated feed gas available at a low pressure. The feed

composition along with other specification for the SGP is shown in table 1.

Table 1 Feed Gas Specifications for Shedgum Gas Plant

Parameters Value
Inlet gas flow rate (MMSCFD) 249
Inlet gas temperature (°C) 38
Inlet gas pressure (bar) 12.76
C1in sour gas (mol%) 56
Cz in sour gas (mol%) 12.7
C3 in sour gas (mol%) 9
Ca+ in sour gas (mol%) 10.5
H20 in sour gas (mol%) 0.9913
BTEX in sour gas (mol%) 0.0311
H>S in sour gas (mol%) 2.9
COz in sour gas (mol%) 7.9

The feed has relatively high amount of higher hydrocarbons because the feed is coming
from an associated source. The acid gas content is also high compared to the other
regional feeds containing H2S and CO2 mole percent of 2.9 and 7.9 % respectively. Sour
feed gas at SGP is treated using DGA solvent. The allowable DGA concentration in the
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solution is usually in the range of 35 — 70 wt. % which can lead to lower solvent
circulation rates compared to that of the MEA solvent (Mofarahi et al., 2008). However,
the degradation of DGA solvent in the presence of CO, adds up to the solvent makeup
cost. Also, when both H.S and CO; are present in the natural gas, DGA is not suitable for
the selective removal of HzS. In this study, 50 wt % DGA solution is employed at the
SGP with a circulation rate of 2862 GPM for a sour gas feed flow rate of 249 MMSCFD

as shown in table 1.

The base case for the KGP receives the sour feed from a non-associated high pressure
source. KGP employs MDEA solvent for the sweetening process. Since the non-
associated feed is usually available at high pressure, there are some benefits associated
with the high pressure gas sweetening process. High pressure operation tends to enhance
the removal performance that can lead to a decrease in required circulation rate and
consequently decrease in the reboiler duty. However, operating absorber at a high
pressure requires more pumping energy. Therefore, there is a trade-off between pumping
energy requirement and reboiler duty reduction at high feed gas pressure that must be
optimized for required product purity. KGP is one of the largest gas processing plants
having three processing trains of identical capacity with total processing capacity of 1860
MMSCFD (Al-Qahtani & Garland 2013). This study simulated one of those identical
process trains. Table 2 shows the feed gas composition along with the feed specifications
for the KGP. The feed to KGP comes from Karan gas field which has around 2 mol%
H2S and high CO; content of around 8 mol%. In this study, 45 wt% MDEA solvent is

used to selectively absorb the H2S from the sour feed gas.
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Table 2 Feed Gas Specifications for Khursaniyah Gas Plant

Parameters

Inlet gas flow rate (MMSCFD) 620

Inlet gas temperature (°C) 36

Inlet gas pressure (bar) 61
C1in sour gas (mol%) 82.47
C. in sour gas (mol%) 1.62
C3in sour gas (mol%) 0.33
Ca+ in sour gas (mol%) 0.39
H>S in sour gas (mol%) 2.06

CO2 in sour gas (mol%) 8.3
N2 in sour gas (mol%) 4.83

MDEA is a tertiary amine with typical concentration of 20-50 wt% in the gas sweetening
applications. The weight concentration of MDEA used is proportional to the operating
pressure i.e. lower pressure operations requires low concentration of MDEA to remove
H2S efficiently. In order to ensure that the amine is not degraded at a high temperature,
the operational temperature range should be between 25-127 °C. MDEA has unique
characteristics among other amines, for example low heat of reaction, low vapor pressure
and low degradability. Also, MDEA causes less corrosion compared to other amines

provided it does not react with oxygen to form corrosive acids.

The design requires the sweet gas to have less than 4 ppm of H»S. For CO> the acceptable
range for DGA process is to have less than 100 ppm in the sweet gas. The required

product purities must be achieved by operating the plant within reasonable range of rich
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and lean loadings that result in the minimum energy requi