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The simulation of fluid flow in fractured-vuggy reservoirs is a challenging task. The 

presence of free-flow media (fractures, vugs, and caves) at multiple scales introduces non-

Darcian flow regimes and significantly affects the flow paths in the reservoir. The presence 

of these different complexities in a karst reservoir necessitates the use of non-traditional 

reservoir modelling techniques. Assigning high permeability to the free-flow regions is 

considered to be a suitable approach in the case of single-phase, isothermal flow. However, 

using this approach leads to inaccurate model response in the case of non-isothermal flow 

in karst reservoirs. 

The first point that is tackled in this study is the simulation of a single-phase, non-

isothermal flow within karst reservoirs containing macro features such as caves. Two 

synthetic karst reservoir models are used for this study. The Stokes-Brinkman’s equation 

is used to couple the flow mechanics in the porous media to the flow in the free-flow media. 

The temperature distribution in the proposed reservoir is modeled. The conservation of 
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mass and Stokes-Brinkman’s equations were solved simultaneously for pressure and flow 

rate. The energy equation was then solved sequentially for the temperature distribution in 

the reservoir. The results are then compared with a control case that simplifies the free-

flow regions as extremely high permeable region and is modelled using Darcy’s equation. 

The computational costs associated with the use of Stokes-Brinkman (or single domain 

approach) is much higher when compared with the use of Darcy model while Darcy-Stokes 

(known as double domain approach) requires the implementation of the interface 

conditions. The second target of this research is introducing an approximation technique 

that assigns different permeability values to the grids in the free-flow region. The technique 

computes (apparent) permeability values (for different grid locations in the free-flow 

regions) that make it possible for the Darcy model to closely approximate the Stokes-

Brinkman’s model. This makes it possible to replace the Stokes-Brinkman model with the 

Darcy model without significant loss of accuracy in modelling flood fronts. The values of 

the apparent permeability of the grids inside the free-flow region and the surrounding 

porous media are calculated from the analytical solution of Stokes-Brinkman’s equation. 

Four examples using synthetic reservoir models are presented to illustrate the effectiveness 

of this technique. In the first three examples, the principal axes of the cave (free-flow 

region) align with those of the porous media. The fourth example consists of a more 

complex scenario in which the principal axes of the cave are not in alignment with those 

of the porous media. 

 

  



xvi 

 

 ملخص الرسالة

 سف السعيدوعبدالله عبدرب النبي ي :الاسم الكامل

 درجات الحرارة انحدار مع يةكارستال الخزاناتالسوائل في محاكاة تدفق  :عنوان الرسالة

 هندسة البترول التخصص:

 2018يناير  تاريخ الدرجة العلمية:

ق الحر التدف مناطقوجود . هي مهمة صعبةو المجوفه  المتشققةإن محاكاة تدفق السوائل في الخزانات 

كبير  أنظمة تدفق غير دارسية ويؤثر بشكل يقدم، والكهوف( على مستويات متعددة الفجوات)الكسور، و

دام تقنيات وجود هذه التعقيدات المختلفة في خزان الكارست يستلزم استخ. على مسارات التدفق في الخزان

وجود  في حالة . ويعتبر تعيين نفاذية عالية لمناطق التدفق الحر نهجا مناسباللخزان النمذجة غير تقليدية

في حالة  فإن استخدام هذا النهج يؤدي إلى نموذج غير دقيقة لكنالحرارة. ومتساوي و تدفق  مائع واحد

 تدفق غير متساوي الحرارة في الخزانات الكارستية.

وي الحرارة غير متساأحادي الطور سائل النقطة الأولى التي تم تناولها في هذه الدراسة هي محاكاة تدفق

ات م استخدام اثنين من نماذج الخزانتلكهوف. مثل ا ضخمهداخل خزانات الكارست يحتوي على سمات 

النسيج في  تدفقالبرينكمان لربط آليات -لهذه الدراسة. يتم استخدام معادلة ستوكس المفترضهالكارستية 

ة ل معادلحتم ي. هالمقترح اتتوزيع درجة الحرارة في الخزان محاكاه تميالتدفق الحر. و مناطق  الصخري

تم حل يلضغط ومعدل التدفق. ثم ا للحصول علي واحد برينكمان في وقت-سستوك همعادل و يقاء الكتله

لنتائج مع حالة التوزيع درجة الحرارة في الخزان. ثم تتم مقارنة  للحصول علي الطاقة بالتتابع بقاء معادلة

 ط مناطق التدفق الحر كمنطقة نفاذية عالية للغاية باستخدام معادلة دارسي.يتبس
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على بكثير بالمقارنة أبرينكمان هي -الحسابية المرتبطة باستخدام ستوكس لاجراء العملياتالوقت المستهلك 

السطح الفاصل بين النسيج شروط  وجودتوكس يتطلب س-مع استخدام نموذج دارسي في حين أن دارسي

ين قيم تع ليتقوم ع . الهدف الثاني من هذا البحث هو إدخال تقنية تقريبيةالصخري و المناطق حرة التدفق

 الخلايا)لمواقع  الظاهرية في منطقة التدفق الحر. وتحسب هذه التقنية  قيم النفاذية للخلايانفاذية مختلفة 

نموذج  من جيدالمختلفة في مناطق التدفق الحر( التي تجعل من الممكن لنموذج دارسي أن يقترب بشكل 

 قدفرينكمان مع نموذج دارسي دون ستوكس برينكمان. وهذا يجعل من الممكن استبدال نموذج ستوكس ب

طقة التدفق الحر داخل من خلايا. يتم حساب قيم النفاذية الظاهرة للالاغراق  جبهاتكبير من الدقة في نمذجة 

أمثلة  المسامي المحيط من الحل التحليلي لمعادلة ستوكس برينكمان. يتم عرض أربعة النسيج الصخريو

لرئيسية للكهف هذه التقنية. في الأمثلة الثلاثة الأولى، المحاور ا لتوضيح فعالية مفترضه اتنماذج خزانل

يناريو س. المثال الرابع يتكون من النسيج الصخري و النموذج)منطقة التدفق الحر( تتماشى مع محاور 

 .بالنسيج الصخري الخاصه أكثر تعقيدا حيث المحاور الرئيسية للكهف ليست في مواءمة مع تلك
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1. CHAPTER 1 

INTRODUCTION 

1.1. Motivation and State of Research  

The numerical modelling of carbonate karst aquifers is considered to be one of the more 

challenging and attractable problems to be studied. Many water aquifers are related to 

paleokarst, such as Yarqon-Taninim aquifer [1], Buda thermal karst system [2] and 

Guang’an Longtan reservoir [3]. 

Karstification is a geological process that produces morphological features of the karst 

topography including caverns and channels. Karst reservoirs are separated into two types: 

1) microkarst, 2) megakarst.  Microkarsts are defined as consisting of vugs and fractures 

having openings so small that they cannot be observed by routine borehole logging tools 

but can only be observed through the cores and from nuclear magnetic resonance and 

borehole imaging tools. Megakarsts on other hand is a term used to define karst reservoirs 

consisting of large conduits and caves [4]. Underground caves are openings that are in 

some cases large enough to accommodate humans [5]. Underground caves often provide 

natural access to oil and groundwater and also act as access ways for exploratory or drilled 

openings. These karstic caves are the main source of heat for many wells and springs that 

are used to generate energy. Primary examples of these features are the baths of Budapest, 

Hungary [6,7] and the thermal springs in Stuttgart, Germany [8]. 

Acidic water that contains the 
2CO  can dissolve the carbonate rock due to a set of chemical 

reactions that can be simplified as: - 
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2

2 3 2 2 32 2H O CaCO CO H O Ca HCO      

It was reported that temperature is an important factor in the formation of karsts and that 

low temperatures favor karstification process  [9,10]. The experiments conducted in [4] 

demonstrated that one liter of water at 0 oC  dissolved 4 5  times more limestone than 

water at 30 oC  and 6  times more than water at 40 oC . 

Modeling flow through such heterogeneous reservoirs and aquifers with coexistence of 

free-flow and porous regions is considered a complex problem [11,12]. The transport 

equation to model flow in a free-flow region is the Navier-Stokes equation while the 

required equation in the porous media is Darcy’s equation. The effect of viscous shear in 

the unobstructed channel flow parallel to the surface of a porous media is experimentally 

proven to penetrate the permeable surface to form a boundary layer in the porous medium 

as shown in Figure 1 [13,14]. The two approaches proposed to couple the two different 

flow behaviors are: - 

1. Double domain approach (Coupled Darcy-Stokes approach).  

2. Single domain approach (Stokes-Brinkman’s equation).  

Double domain approach uses Navier-Stokes equation to model the transport of fluids in 

the free-flow region and Darcy’s equation to model the transport of fluids in the porous 

region. However, Darcy’s law is not compatible with the existence of a boundary layer 

region in the porous medium because no macroscopic shear term (second order term) is 

present in Darcy’s law [15]. To model this change in velocity at the boundary, Beavers, 

Joseph and Saffman proposed the BJS interface boundary condition, a mathematical 

equation that introduces a fluid slip phenomenon of the tangential velocity component at 
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the interface between porous media and free-flow region [13]. The jump in the velocity is 

related to the fine structure of the interface. In addition to this condition, it is essential to 

conserve both mass and stress normal to the interface [16]. 

 

Figure 1 Actual velocity profile of coupled flow 

Motivated by the complexity of modeling flow in a coupled free-flow and porous region, 

Brinkman, 1949, developed a general equation that can be used to model the coupled flow 

without the need to define additional interface boundary conditions [17]. The Brinkman’s 

equation incorporates the effect of viscous shear in Darcy’s model. One of the greatest 

advantages of using the Brinkman’s equation is that it can theoretically switch between the 

Stokes equation and Darcy’s equation (position dependent parameter equation). 

Brinkman’s equation, therefore, offers a more realistic model over the double domain 

approach [18]. The BJS boundary condition models a slip velocity at the interface between 

porous media and free-flow region which is not actually what happens. In actual flow, the 

free-flow velocity gradually decreases inside the porous media until it becomes equal to 

the Darcy velocity [15]. Majority of studies have been devoted to model single phase 
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isothermal flow in karstic media using both analytical approaches [15,19] and numerical 

approaches using finite element [11,18] or using the finite difference instead of the finite 

element [20,21].  

Krotkiewski et al. [22] asserted that, in the case of single-phase, isothermal flow where 

410p fk k   , the use of Stokes-Brinkman equation is unnecessary. This is because in such 

cases, Darcy’s law would adequately model the resulting pressure distribution in the free 

flow region and the porous regions by assigning very high permeability values to the free-

flow regions. This implies that single domain or double domain approaches are only 

important in modeling single-phase isothermal flows in reservoirs with sub-millimeter.  

Unfortunately, none of the previously mentioned studies tackled the cases that involve the 

mega-karst aquifers that have temperature gradient. Also, no simple approach was found 

in the literature that can be used to simulate fluid flow in simple karstic media without the 

need to use single domain approach or double domain approach due to difficulties 

associated with them.   

1.2. Goals of the Thesis   

Existing literature is replete with studies on isothermal flow of fluids in karst reservoirs 

(see e.g. [12,18]). To the best of our knowledge, no work has been performed on modeling 

fluid flow in karst reservoirs under non-isothermal flow using the Stokes-Brinkman’s 

equation. Also, most of the simulation studies that have already been done deals with 

microscale and mesoscale vugs and fractures such as the modeling of geothermal karst 

aquifer in Weibei, Shaanxi Province, China [23]. 
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The previous considerations imply that the first target of this study is to model fluid flow 

with thermal gradients in karst aquifers. This research aims to build the cornerstone of 

thermal fluid flow simulation in caved aquifers by performing simulation studies of the 

flow of fluids using the Brinkman’s equation on a field scale and concentrate more on large 

caves. To model the flow of single phase fluid, a finite-volume, implicit pressure, standard 

volumetric flow rate and temperature are used. At every time-level, the system is solved 

for pressure and flow rate in the first stage, then solved for temperature in the following 

step. The same problem is then solved using Darcy’s equation in the entire karst aquifer 

(as a single continuum model) placing very high permeability values in the caves. The 

results from these two models (Darcy and Stoke-Brinkman) are compared to show the 

differences in temperature profiles obtained at the production well.  

The second target of the research is an alternative approach to model fluid flow in karst 

reservoirs. This approach, named Darcy Model with Estimated Permeability Distribution 

(DMEPD), is simple and computationally less expensive than the Stokes-Brinkman model. 

The approach doesn’t use the interface conditions that are implemented in Darcy-Stokes 

approach. Rather, the approach involves pre-calculating the apparent permeability values 

in the free-flow region and in the surrounding porous media (where the boundary layer is 

effective) from the analytical solution of Stokes-Brinkman’s equation. Then, using Darcy’s 

law to simulate fluid flow in karst reservoirs. 
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2. CHAPTER 2 

LITERATURE REVIEW 

2.1. Karst Reservoirs and Aquifers   

2.1.1. Introduction  

One of the major topographical features in carbonates is the presence of karsts. Karst 

represents a topography consisting of complex geological features and specific 

hydrogeological characteristics which are generally formed in carbonate rock reservoirs 

and are highly heterogeneous. They are mainly composed of limestone, dolomite, gypsum, 

halite and conglomerates. Carbonate karsts are highly abundant and its most representative 

morphological features are karrens, tectonic fractures, dolines, shafts, diagenetic fractures, 

poljes, caves, vugs, ponors, caverns, estavelles, intermittent springs, lost rivers, stylolite, 

dry river valleys, intermittently inundated poljes, underground river systems, denuded 

rocky hills, karst plains and collapses [24]. 

Many reservoirs and aquifers are related to paleokarst, such as Hainaut carbonate and 

sulphate karstic aquifer [25], Raspo Mare reservoir [26,27], gas reservoirs of Sinian [28] 

and Tahe oil reservoir in Tarim Basin in China [29,30]. Between all the cases Tahe oil 

reservoir is the most popular oil reservoir case due to the presence of large scale and 

variable distribution karst system. 

2.1.2. Karstification Process 

Karstification is the process of dissolution of the carbonate rock due to chemical reactions 

with underground water and mechanical processes. The karstification process may take 
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millions of years, but small scale caves can form within hundreds to thousands of years 

[31]. 

Turbulence plays an important role in determining the effectiveness of the karstification 

process. It has been experimentally shown that the increase in flow velocity and 

consequently an increase in turbulence increases the dissolution process, a Reynolds 

number increase from 250 to 25,000 increased the rate of the dissolution by approximately 

a factor of 3 [32]. 

2.1.3. Karst Porosity  

The porosity of karst system is defined as the volume of voids of the system of interest 

relative to total surrounding rock bulk volume [33,34]. Karst porosity can be classified into 

three component porosity model: - 

1. The matrix porosity (pores) that results from sedimentation and diagenesis. This 

porosity is classified as primary porosity.  

2. The fracture porosity (fissures, bedding planes, faults, and joints) that is a result of 

tectonism, weathering and late diagenesis.  

3. The cave porosity (tabular opening or elongated planar) which is a result of 

speleogenesis. The last two types are considered as secondary porosity [35-37]. 

2.1.4. Karst Caves  

Table 1 reveals the classification of carbonate rock voids [38]. In this work the primary 

interest is to model the flow in caves. The caves can be defined as the openings that people 

can access [5]. These karstic caves are the main source of the heat for many wells and 
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springs that are used to generate energy like the baths of Budapest, Hungary [6,7] and the 

thermal springs in Stuttgart, Germany [8].  

The largest cave system is 560 km long and is called Mammoth cave system in Kentucky, 

USA. The deepest is the Krubora Cave in Wester Caucasus, Russia and is 2080 deep. The 

most popular karst oil reservoir is Tahe oil field in China [30]. Buda Karst is considered as 

the largest thermal water system in Europe out of volcanic areas [2,39]. 

Table 1 Classification of Carbonate Pores, Cavities, and Fractures [38]. 

Pore Cavity Fracture 

Type 

Diameter 

(mm) 

Type 

Diameter 

(mm) 

Type 

Diameter 

(mm) 

Big pore 50 Huge cavity >1000 

Huge 

fracture 

>100 

Mid pore 0.25-0.5 Big cavity 100-1000 Big fracture 10-100 

Small pore 0.01-0.25 Mid cavity 20-100 Mid fracture 1-10 

Micro pore <0.01 Small cavity 2-20 

Small 

fracture 

0.1-10 

    

Micro 

fracture 

<0.1 
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Our work deals with the modelling of flow in karst reservoir on a field scale. Therefore, 

this work deals with flow through caves and we will neglect the effects of vugs on the much 

smaller microscale. 

2.2. Mathematical Models of Karstic Media 

In modelling fluid flow in an aquifer, there is the need to solve a set of coupled differential 

equations arising from mass balance, momentum balance and energy balance.  

2.2.1. Conservation of Mass 

The mass balance is often modelled with a continuity equation given by [40]: -   

  
 

.             in  ,q
t





   


u   (2.1) 

where    is the fluid density, u  is the fluid velocity,   is the porosity of the system, t  is 

the time variable, q  is the mass sink/source term in unit of mass/volume/time and   is the 

domain of interest. Equation (2.1) is used in the entire computational domain but adapted 

to model flow in both the porous media and the free-flow regions by proper selection and 

definition of equation parameters as follows: - 

 if 1,           is actual velocity i ,fn  u   

this selection of the porosity and definition of the velocity is appropriate for the 

free-flow regions. 

 if 1,            is apparent velocity i ,p

p n   u   

where p  is the porosity of the porous media. This selection of the porosity and 

definition of the velocity is appropriate for the porous media. 
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2.2.2. Conservation of Momentum 

To adequately model the flow of fluids through a porous or open media, Equation (2.1) 

should be coupled with a transport equation. Different models have been proposed in the 

literature to describe flow in the karst reservoirs. The most well-known three models are 

Darcy’s law, coupled Darcy-Stokes approach and Stokes-Brinkman’s equation. The three 

models are discussed in the subsequent sections. 

2.2.2.1.Darcy’s Law 

The simplest transport model is the Darcy’s law given by: - 

 
1

. ,k p


  u   (2.2) 

where K  is the permeability tensor of the medium,   is the viscosity of the flowing fluid 

and p  is the fluid pressure [41]. Equations (2.1) and (2.2) can be combined together as 

following: - 

 
 1

. .             in  .k p q
t





 
     

 
  (2.3) 

Equation (2.3) can be used to model fluid flow in a karst system. However, the use of the 

Darcy's equation in this case is a simplified approach and may not give accurate models of 

flood fronts in the free-flow regions of the karst system as it will be shown later in the 

results. Thus, other approaches involving coupling the more complex Navier-Stokes 

equation with the continuity equation (Equation (2.1)) is often adopted. The Navier-Stokes 

equation more accurately models the transport of fluid in the cave while Darcy's equation 

is appropriate for fluid transport in the porous region. However, the main difficulty arises 
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in trying to couple the equations representing fluid transport in the different subsystems. 

Consequently, coupled Darcy-Stokes approach and Brinkman’s equation are the two main 

approaches that are extensively used to model this phenomenon trying to handle the 

transition of flow from the free-flow region to the porous region (and vice versa).  

2.2.2.2.Double Domain Approach (Coupled Darcy-Stokes Model) 

Coupled Darcy-Stokes model uses the Navier-Stokes equation to model fluid transport in 

the free-flow region and the Darcy’s equation to model flow in the porous region. 

Appropriate boundary conditions are used at the interface between the porous region and 

the free-flow region. Beavers et al. developed a mathematical equation that introduces a 

fluid-slip phenomenon at the boundary which then was known as BJS (Beavers, Joseph 

and Saffman) interface boundary condition: - 

  
 .

     o. ,
x

x

k
n

y




 

i
v

v
u i   (2.4) 

where v  is the fluid velocity in the free-flow region, u  is the apparent (superficial) velocity 

in the porous media, xi  is a unit vector parallel to the interface    in two dimensional 

flow and   is a dimensionless constant which no general estimate is well-known so far 

[13]. Different studies showed that   depends on the fine structure of the porous media 

and, hence, it must be considered as adjustable parameter along the interface [42,43]. 

Moreover, different studies conducted on various flow geometries presented a specific 

formula of   for each case (see, e.g., [15,44]). 

Practical use of the Darcy-Stokes technique requires the need of conservation of mass and 

normal stress at the interface in addition to the jump in velocity as follows [16]: - 
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1. Conservation of mass: - 

  . .     o .y y n v i u i   (2.5) 

2. Continuity of normal stress: - 

      o .2 . y f pD p p n   i   (2.6) 

3. BJS interface tangential velocity jump (refer to Equation (2.4)). 

In Equations (2.5) and (2.6), 
yi  is the unit normal unit vector on the interface   , D  is 

the strain rate tensor and fp  and pp  are the fluid pressure in the free-flow region and the 

porous media, respectively [16]. 

Various researches have been conducted on the use of Darcy-Stokes model to simulate 

flow in fractured reservoir. Arbogast used the coupled Darcy-Stokes system to homogenize 

channeled system using mixed finite element simulation study. The study showed that vugs 

connectivity is the most critical variable in predicting macroscopic permeability. However, 

without using the concept of the permeability tensor, the research faced some difficulties 

to upscale the permeability [16]. Darcy-Stokes system has also been coupled with the 

stream line simulation to predict water breakthrough in Tahe oil field. The results indicate 

that using simplified model with high permeability in free-flow region would fail to predict 

the fast breakthrough in caved reservoirs [29]. 

The computational cost associated with this approach is not much greater than that 

associated Darcy’s model. However, the coupled Darcy-Stokes approach is very sensitive 

to interface conditions especially in cases where advection is dominant [45]. Also, it has 
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been shown that the performance of the system is different depending on the selected 

interface conditions [46]. 

2.2.2.3.Single Domain Approach (Stokes-Brinkman’s Equation) 

Brinkman presented a single equation that models the flow inside both porous media and 

free-flow region without the need to introduce additional interface conditions (Brinkman 

1949). Brinkman added the effect of viscous shear in Darcy’s model to provide a seamless 

transition between the porous media and the free-flow region. The Brinkman’s equation is 

given by: - 

 
1

*( . )   .  in ,gk p 


     u F u   (2.7) 

where gF  is the body force and *  is the effective viscosity. The main advantage of Stokes-

Brinkman’s equation over Darcy-Stokes model is its ability to incorporate the porous 

media and the free-flow region by proper selection of parameters of Equation (2.7) as 

following: - 

 *if ,  ,   is theactual velocity in ,fk   u   

Equation (2.7) reduces to Navier-Stokes equation that is appropriate for the free-

flow region. 

 *if 0,  ,   is theapparent velocity i ,p

pk k n     u v   

the second order shear term is eliminated and Equation (2.7) reduces to Darcy’s 

law. 
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Durlofsky and Brady mentioned that, in the free-flow regions, the pressure gradient term 

in Equation (2.7) balances the Laplacian term so that the flow is viscous, although, deeper 

in the porous media the velocity varies very slowly [47]. Therefore, away from the free-

flow region, the pressure gradient balances the apparent velocity similar to Darcy’s law. 

Also, From the analytical solution of Equation (2.7) it is realized that the thickness of the 

boundary shear layer inside the porous media is of order k  and increases as the thickness 

of free-flow region increases [15]. Therefore, Equation (2.7) can be used throughout the 

whole computational domain without the need to define additional boundary conditions at 

the interface between the porous media and the free-flow region. The presence of the 

second order shear term in the porous media only introduces small perturbations to the 

Darcy’s law as the shear term has a minor effect compared to the pressure gradient in the 

porous media [11,15,18,21,22]. 

Originally, Brinkman assigned *   [17]. However, this approach does not create any 

difference between actual and apparent velocity in porous media. Some researchers have 

claimed that the ratio *   should be less than unity [48], [49] and others have mentioned 

that the ratio should be greater than unity [44], [50]. The value of the effective viscosity 

relies on the fine structure of the interface between the free-flow region and the porous 

media specially the porosity and tortuosity [18], [22]. Belhaj et al. [51] used a value of 

* 



 . More details are presented about the effect of *   in our analysis. In this study, 

we fix *   as this has a negligible effect on the solution. Although Stokes-Brinkman’s 

equation represent a single domain equation without the need for the interface conditions, 

the computational cost associated with numerical simulation using it is very high [45]. 
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2.2.3. Conservation of Energy  

Tackling the energy equation in porous media is challenging. Many simplifications have 

been introduced to incorporate the whole system in one equation. One of the most 

important assumptions is the local thermal equilibrium between rock and fluid, where rock 

matrix and fluid in any particular grid are assumed to have the same temperature. The final 

form of the energy equation under the assumption of local thermal equilibrium can be 

written as: - 

   ˆ(1 ) .( ) .( . )           ,f f s s f f th T q in
t
      


     


u   (2.8) 

where 
f  is fluid specific internal energy, 

s  is solid specific internal energy, 
s  is solid 

density, ˆ
fh  is the specific enthalpy,   is the thermal conductivity tensor, T  is temperature 

and 
tq  is the energy sink/source term in unit of heat/volume/time. 

By using the same previous approach used in the conservation of mass, Equation (2.8) is 

adequate for the whole domain. In all the cases that are under consideration in this study, 

it is assumed that the thermal conductivity is isotropic and the following relations are valid 

1ˆ,   ,  ,  ,
f ff v f p s s f sc T h c T c T            

where 
fvc  is fluid specific heat at constant volume, 

fpc is fluid specific heat at constant 

pressure, sc  is solid specific heat, f  is fluid thermal conductivity and s  is solid thermal 

conductivity. Further details about this energy balance equation in porous media flow can 

be found in [40].  
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3. CHAPTER 3 

Methodology 

This chapter considers a detailed explanation of the methodology that we have followed to 

reach to the results. First, the discretization of conservation equations and procedure of 

simulation are introduced. Then, Darcy model with estimated permeability distribution that 

is used as an approximation instead of Stokes-Brinkman is explained in details. 

3.1. Finite-Volume Discretization  

In this section, the discretization of all the previous conservation equations is presented for 

two-dimensional flow in Cartesian coordinates. Instead of using velocity as a primary 

variable, the flow rate is used because the flow rate is more intuitive than velocity, and the 

solution has a faster convergence than when using velocity [21]. The finite-volume method 

and implicit scheme are used for discretization. Figure 2 is used to illustrate the cell-

centered finite-volume discretization used in this work. The unknown rates 
1

x

nq 
 and 1

y

nq   

are located at the grid interfaces while the unknown pressures are located at the grid centers. 

The assumptions used are single-phase laminar flow, slightly-compressible aquifer fluid 

and rock mass and that the fluid is Newtonian. 

3.1.1. Discretization of Conservation Equation of Mass 

The conservation of mass in two-dimensional Cartesian coordinates can be stated as: - 

 
 

,
sc

y y wellx x
b

A uA uB p
V dx dy q

p t x B y B


    

    
      

  (3.1) 
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where 
bV  is the bulk volume, B is the formation volume factor, A is the cross-sectional area 

and 
sc

wellq  is the fluid withdrawal or injection rate (at standard conditions) at any well drilled 

into the aquifer. In Equation (3.1), we can replace 
Au

B
 with q , the fluid flux across 

interfaces. Using the finite-volume method and implicit scheme the discretized form of the 

equation of conservation of mass can be written as: - 

    
, 1 , 1 , ,

1 1 1 1 1 , 1

x x y y mm m m m m m I m m I

n n

n n n n n well n nb b
m sc m

m mm m

V V
p q q q q q p

B Bt p t p

 
   

            
           

         
 

 (3.2) 

In Equation (3.2), 
, 1

1

x m m

nq



 is the fluid flux across the interface between adjacent grids m and 

1m   in the x-direction while 
,

1

y m m I

nq



 is the fluid flux across the interface between adjacent 

grids m and m I  in the y-direction. 

 

Figure 2 Connections of adjacent grids to Grid Block m. Rates xq  and yq  are computed at grid interfaces while 

pressures are computed at grid centers. 
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3.1.2. Discretization of Conservation Equation of Momentum 

In the two-dimensional problem, the Stokes-Brinkman’s equation has two equations: one 

in the x-direction and the other in the y-direction. In this subsection, we present the 

discretization of the Stoke-Brinkman’ equation in the x-direction only. The discretization 

of the equation in the y-direction follows the same steps. The Stokes-Brinkman’s equation 

in x-direction, when ux is replaced with xq B

A
 is: - 

 
2 2 2

2 2 2

x x x x

x x x

q B q q qp B

k A x A x y z

     
      

     
  (3.3) 

and by adopting the same approach used in discretizing Equation (3.1), the discretized form 

of Equation (3.3) is: - 

 

, 1

1, 2 , 1 , 1 , 1 , 1 1 , 1 , 1 , 1 , 1

, 1

1

1 1

1

, 1

1 1 1 1 1 1 1 1 1
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m m

n

xn n

m m n

m m
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n

x

q
p p

q q q q q q q q q

x y z





                 





 





        

 

      
    

   
 

 

 (3.4) 

where x xk A

B x






 is the fluid transmissibility and xA

B x






. 

Harmonic average is used to calculate   and   at the interfaces between grid blocks. 

Because we assumed a no-slip boundary condition in z-direction, then we have 

, 1 , 1
0

m IJ m IJ m IJ m IJx xq q
     

  . 
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In this work, the coefficients of q in Equation (3.4) are computed at time-level n (i.e. using 

the most recent values of pressure and temperature) while q is computed implicitly as 

shown in the equation. Although this approach reduces the accuracy of the solution, it has 

the advantage of linearizing the system of equations and reducing the matrix size as will 

be shown in the following section.  

3.1.3. Discretization of Conservation Equation of Energy  

The conservation of energy equation in two-dimensional space in Cartesian coordinates 

can be written as: - 

 

     1

                                                               .

f f

sc sc
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 (3.5) 

By applying the finite-volume discretization, we obtain: - 
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where 

sc

x
x

f

A

x





 is the thermal conduction transmissibility that is harmonically averaged 

at the interfaces between any two grid blocks. The superscript n  means that this parameter 

is evaluated at old temperature and new pressure. To evaluate the effect of advection on 

the transport of heat through the media, we used the Peclet number defined as: - 

 
advection

,
diffusion

fc

e

c

f pLu c
P




    (3.7) 

where 
cu  and c  are the characteristic velocity and the characteristic thermal conductivity, 

respectively. It is expected that advection will be more dominant than diffusion in these 

large caves because the caves can sustain large flow rates and also because the fluid thermal 

conductivity is much less than rock thermal conductivity. Therefore, the more accurate 

procedure to obtain the average temperature at grid interfaces is the upwinding technique. 

For example, the average temperature at the interface between Grid m and Grid 1m   is: - 

, 1

, 1

, 1

1

  if 0  (flow from  toward 1)
.

 if 0  (flow from 1 toward )

m m

m m

m x

m m

m x

T q m m
T

T q m m









 
 

 

    

3.2. Solution  

One of the challenges in using Stokes-Brinkman is that there is no way to combine 

conservation of mass and conservation of momentum in one equation. Instead, we must 

solve for pressure at the center of the grids and inter-grid rates simultaneously. Therefore, 

while solving a x yN N  discretized system using the Darcy’s model produces only N 

 where x yN N N  unknown pressures, using the Stokes-Brinkman model produces N 
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unknown pressures in addition to ( 1)x yN N  unknown rates in x-direction and ( 1)y xN N  

unknown rates in y-direction. This shows that the Stoke-Brinkman model leads to a much 

larger system of equations than does the Darcy’s model for the same problem size. Also, 

many of the parameters required to compute the coefficients in the Stokes-Brinkman’s 

model are dependent on both pressure and temperature. Thus, to solve the entire problem 

of fluid flow and heat transport in the karst aquifer with a fully-implicit approach would 

require the addition of N discrete energy-balance equations to the equations obtained from 

the Stokes-Brinkman, making the system of equations even bigger and more challenging 

to solve in a reasonable length of time. Hence, instead of adding N unknown temperatures 

to the unknown pressures and rates from the discretized flow equations, the coefficients of 

Equations (3.2) and (3.4) are calculated at previous time-level n. These coefficients are 

evaluated using old pressures and old temperatures as shown in matrix form: - 

 

1

1

1

0 0

00

x y

p qx

p qy

n nn
p q q

n n

x x x

n
n

y
y y

M M M Rp

q

q

 

 







                        

  (3.8) 

In Equation (3.8), the components of the matrix are smaller block-matrices and their 

elements are evaluated at old time step. 
n

pM  , 
xqM  and 

yqM are the coefficient block-

matrices of pressure, x-direction flow rate and y-direction flow rate, respectively, all 

generated from the discretization of the mass-conservation equation. 
px  and 

qx

n

x  are the 

coefficient block-matrices of pressure and x-direction flow rate, respectively, both 

generated from the discretization of the Brinkman’s equation in x-direction. Similarly, 
py  
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and 
qy

n

y  are generated from the discretization of the Stokes-Brinkman equation in the y-

direction. Equation (3.8) is then solved for pressures at the center of grid blocks and flow 

rates at grid interfaces. This newly computed pressure values together with the old 

temperature values are used to calculate the coefficients of Equation 

Error! Reference source not found. (superscript n ). Finally, the temperatures at the 

centers of the grid blocks are calculated by solving a system of N linear equations 

(involving an N N  matrix) formed from Equation Error! Reference source not found.

. These steps are summarized in the flow chart shown in Figure 3. 

Start

Initializations and 
Boundary conditions 

t<tmaxEnd 

Calculate 
parameters at 
pold and Told

No

Yes

Solve Conservation of 
mass and Stokes-

Brinkman for p, qx and qy

update parameters at 
pnew and Told

Solve Conservation of 
energy for T

 

Figure 3 Flow chart of solution steps 

3.3. Darcy Model with Estimated Permeability Distribution (DMEPD) 

We introduce an alternative approach to model fluid flow in karst reservoirs. This 

approach, named Darcy Model with Estimated Permeability Distribution (DMEPD), is 
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simple and computationally less expensive than the Stokes-Brinkman model. The approach 

does not use the interface conditions that are implemented in Darcy-Stokes approach. 

Rather, the approach involves pre-calculating the apparent permeability values in the free-

flow region and in the surrounding porous media (where the boundary layer is effective) 

from the analytical solution of Stokes-Brinkman’s equation. Then, using Darcy’s law to 

simulate fluid flow in karst reservoirs.  

The first step in the DMEPD approach is to calculate the apparent permeability of the free-

flow region grids and the surrounding porous media. Then, the permeability is distributed 

in the free-flow region and in the porous media around it. Using this technique, karst 

reservoirs and aquifers are simulated using Darcy’s law instead of previous approaches. 

3.3.1. Analytical solution    

The analytical solution of Equation (2.7) was first introduced by Neale and Nader [15]. 

Their solution was only introduced for a channel that has a no-slip boundary condition on 

one side and a porous media on the other side. This solution was extended to account for 

periodic porous media with the same properties surrounding the free-flow region [19]. The 

previous two approaches considered the continuity of the velocity at the interface between 

the free-flow region and the porous media, however, both considered the apparent velocity 

as the actual velocity in the porous media. The approach presented in this research follow 

the same procedure, except that it assumes different properties of each porous media 

around the free-flow region as shown in Figure 4. Also, it is considered the continuity of 

the actual velocity (which it is different from apparent velocity) by implementing a jump 

between xv  (velocity along interface in free flow region) and xu  (superficial velocity along 
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interface in porous media). The domain is composed of a free-flow region with width w  

and surrounded by porous media on both sides. The porous media on each side has its own 

properties  *, ,k    different from those on the other side of the channel. The analytical 

solution is given by: - 
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  (3.9) 

where 1c , 2c , 3c  and 4c  are coefficients to the solution of the Stokes-Brinkman's 

differential equations. Note that the free-flow region extends from 0y   to y w , the 

upper porous media (Porous Media 1) extends from y w   towards  , and the lower 

porous media (Porous Media 2) extends from 0y   towards  . The interfaces between 

the cave and the two-porous media are at 0y   and y w . The details of this solution 

(Equation (3.9)) is presented in Appendix. Equation (3.9) shows that the boundary shear 

layer deteriorates exponentially as we move deeper into the porous media. It is also clear 

that the location of the maximum velocity is not necessarily located at the center of the 

channel, but shifted towards the porous media with a higher value of *k  (see Appendix 

for more details). 

The velocity in Equation (3.9) can be used to calculate the equivalent permeability of any 

grid in the flow direction (x-direction in this case). The equivalent permeability of any grid 

cell that extends in the y-direction between any two points jy  and 1jy   is given by: - 
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  (3.10) 

 

Figure 4 Apparent velocity distribution for a channel surrounded by porous media on each side. 

In Equation (3.10), 
1j jy yk


 is a volume-averaged permeability (in x-direction) obtained by 

averaging apparent velocity over the volume of a grid cell. In arriving at Equation (3.9), 

we have assumed that p x   is constant throughout the system and that the cross-sectional 

area of free flow region does not vary. The Equation is applicable to both the free-flow 

region and the porous media. For any grid inside the free-flow region  0 y w  , the 

equivalent permeability is calculated by substituting the appropriate expression for xv  

from Equation (3.9) into Equation (3.10) to obtain: - 
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  (3.11) 



26 

 

If we assume that 
* *

1 2     and 1 2 pmk k k  , the effect of the slip velocity on the 

channel permeability becomes crucial only when 
410pm Poisk k  , where 

2 12Poisk w  is 

the channel average permeability calculated from Poiseuille’s equation with no-slip 

boundaries. This is evident in Figure 5 where app poisk k  is plotted against pm poisk k   (where 

appk  is the apparent permeability of the free-flow region). In the figure, we observe that 

when pm poisk k  is less than 
410

, the plot is almost flat indicating that below this value, 

app Poisk k  exhibits no noticeable change with pm Poisk k . Thus, in this range, the Poiseuille's 

equation can be used in place of the Stokes-Brinkman's equation. This result indicates that, 

it is only practical to use Stokes-Brinkman in the calculation of the apparent permeability 

of the free-flow region when the previous condition is satisfied and apart from that it is 

more practical to use Poiseuille’s equation instead. Also, this result is in strong agreement 

with the results that generated by using numerical simulation by Krotkiewski [22]. 

 

Figure 5 Variation of apparent channel permeability with respect to Darcy permeability at different ratios of 

porous media permeability with respect to channel Darcy permeability. 
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Figure 6 shows the effect of *   . When   decreases, the apparent permeability 

increases due to the increase of the actual velocity inside porous media. 

 

Figure 6 Effect of 
*




  on the calculated apparent permeability. 

One problem with the DMEPD method is that in the case of free-flow regions with large 

widths  410pm poisk k , the estimated permeability inside free-flow region is very high. 

In this case, the very large contrast between the permeability in the free-flow region and 

that in the porous region causes the coefficient matrix of the resulting linear system to be 

ill-conditioned. To reduce this effect, a weighted version of DMEPD known as Darcy’s 

model with weighted estimated permeability distribution (DMWEPD) is proposed. In 

DMWEPD, a suitable weighting factor (between zero and one) is multiplied by the 

estimated free-flow region permeability during the pressure calculation step. Then, after 

calculating the pressure, the rate is calculated using original permeability computed from 

the analytical solution. This technique reduces the ratio between maximum eigenvalue and 
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minimum eigenvalue in transmissibility matrix and thus stabilizes the linear system. The 

flow charts of DMEPD and DMWEPD are shown in  Figure 7and Figure 8. 

3.3.2. Flow in Caves Not Aligned with the Principal Direction of Flow 

The analytical solution presented in Subsection 3.3.1. gives the apparent permeability in 

the direction of the free-flow region. However, in reality, the flow direction in the caves do 

not necessarily align with the proposed system direction of flow in the reservoir. For such 

cases that contains free-flow region not aligned with principle direction, there are two 

approaches. The first approach is considering unstructured gridding where the grids inside 

the free-flow region are aligned with the direction of the cave. The second approach is to 

use the full tensor permeability. 

This work considers that all the grids are aligned with the principal directions of 

permeability in the porous media. Therefore, the full permeability tensor is used to handle 

the non-alignment of the free-flow region with the system directions. Many methods are 

found in the literature that deal with simulation using full tensor permeability using 

multipoint flux approximation (see [52-55]). Majority of these methods suffer from non-

monotonicity problem [56,57] which is not suitable in our case due to the high contrast 

between permeabilities of the principle directions in the free-flow region (one direction is 

aligned with the free-flow region and the other is perpendicular to it).  A recent method 

known as globally-coupled pressure method (GCP) does not face this issue in the case of 

no-flow external boundaries. However, the method also suffers from the non-monotonicity 

problem when constant-pressure boundaries are imposed. Nonetheless, the globally-

coupled pressure method was shown to be the more efficient than the other multipoint flux 

approximation methods and we adopt this method in this work. 
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Figure 7 Flow chart of DMEPD 



30 

 

 

Figure 8 Flow chart of DMWEPD 
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The globally-coupled pressure method relies on introducing auxiliary pressure unknowns 

at the centroid of the interface between grids, and then imposing flux continuity across the 

interfaces between grids as shown in Figure 9 which considers two adjacent grids labelled 

1 and 2. The flux from Grid-1 toward Grid-2 can be calculated as the component of the 

velocity in the x-direction as: - 

  
1 1. ,x xf A u i   (3.12) 

where the velocity is calculated from Darcy’s law as: - 

 
1 1 1

1

1
. ,k p


  u   (3.13) 

where 1 11
1

1 1/ 2 / 2

yx
p pp p

p
x y

 
   

  

. The flux from Grid-2 toward Grid-1 is computed in 

similar manner and then, from the flux continuity across interface between two grids we 

have: - 

 
1 2

0.x xf f    (3.14) 

The linear system of equations between the primary pressures at the center of the grid 

blocks and the auxiliary pressures at the interfaces can be stated as: - 

 ,S Wp p   (3.15) 

where p  is the vector of auxiliary pressure unknowns (e.g. xp  and 
1yp ), S  is an 

f fN N  

matrix composed of the coefficients of the auxiliary pressures, and W  is an  f cN N  matrix 



32 

 

that contains the coefficients of the primary pressures. Then, the fluxes through the 

interfaces can be written as: -  

  1 ,R E R S L E T    f p p p p p   (3.16) 

where T is the transmissibility matrix. Equation (3.16) can be used to replace the flux by 

primary pressure in the conservation of mass equation. Further information can be obtained 

from [58]. The GCP method used in this work models flow in the caves with a reasonable 

degree of accuracy. However, the main disadvantage of this approach is that the 

transmissibility matrix contains many non-zero entries due to the large flux stencil, thus 

increasing the computational complexity of the model. 

 

Figure 9 Flux continuity across interface between two grid blocks. 
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4. CHAPTER 4 

Results, Discussion and Conclusion 

The cases that are related to thermal simulation using Stokes-Brinkman’s equation is 

prenoted first followed by the cases related to DMEPD. The numerical simulation is 

performed using mldivide operator \s A b  in MATLAB (MATLAB and Statistics 

Toolbox Release 2015b, The MathWorks, Inc., Natick, Massachusetts, United States) on 

personal computer with a 2-core processor of Intel CoreTMi5-2450M CPU @ 2.5 GHz. 

4.1. Application Examples of Thermal Flow Simulation in Karstic Media   

Two examples are investigated and the results from both Stokes-Brinkman and Darcy 

models are compared. 

4.1.1. Example 1 (Simple Model) 

The aquifer parameters used in this example are presented on Table 2. Rectilinear gridding 

is used in y-direction to capture flow behavior inside and around the cave. In the y-

direction, there are 6  divisions, each of 4 ft  inside the cave (Figure 10). The water 

viscosity and formation volume factor are slightly variable functions of pressure and 

temperature. There are two wells (one injector and a producer) located in the neighborhood 

of the cave. The injector injects relatively cold water while the producer produces hot water 

at a relatively high temperature. Water contains a small amount of dissolved gas about 

30scf stb . Therefore, this little amount of dissolved gas has a negligible effect and hence 

it is assumed that 
f fp vc c .  The equivalent constant permeability of the grids inside the 

free-flow region in the second case is calculated from Poiseulle’s equation to be 
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154.5 10 md  for each of the grids. The outer boundaries of the aquifer are assumed to be 

sealed. 

Table 2 Simple model parameters 

Length ( .)ft  4500  No. of grids in x  direction 150  

Width ( .)ft  1728  Grid size in x  direction ( .)ft  30 

Thickness ( .)ft  15  No. of grids in y  direction 18  

Cave aperture ( .)ft  24  

Porous media porosity at standard 

conditions 
0.18  

Initial pressure 

( )psig  
6000  Formation compressibility 1( )psi  610

 

Initial temperature

( )oR  
670  Porous media permeability ( )mD  333  

Producer grid index (2,6)
 

Fluid density at standard conditions 

3( / )lb ft  
62.4  

Injector grid index (149,13)
 

Fluid thermal conductivity 

( / . . )oBTU d ft R  
8.016  

Production rate 700 /STB d
 

Rock thermal conductivity 

( / . . )oBTU d ft R  
61.537  
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Injection rate 700 /STB d  Injected fluid temperature ( )oR  550  

 

 

Figure 10 (a) Simple caved aquifer model (b) Magnification of the region surrounded by brown box 

The Stokes-Brinkman model and the Darcy model separately were used to model the fluid 

flow in the aquifer and the results from these two models were compared. Figure 11 and 

Figure 12 show the aquifer temperature distribution after 100days obtained from the 

Stokes-Brinkman model and Darcy model, respectively. It is evident from the two figures 



36 

 

that the heat front moves faster in Stokes-Brinkman model than in the Darcy model. Due 

to fast movement of the heat front in the Stokes-Brinkman model, the fluid temperature 

observed at the production well starts to decrease early in the Stokes-Brinkman model than 

in the Darcy model. Figure 13 shows that the temperature of the produced fluid from 

producer drops earlier in the Stokes-Brinkman model than in Darcy model.  

Figure 14 indicates that decreasing grid cell size around the interface between porous media 

and free-flow region from 4 .ft  to 0.5 .ft   makes the model more accurate by increasing 

the velocity of the tip of the heat front compared with Figure 5. Also, small grid cells reduce 

effect of numerical dispersion. However, the increase in the accuracy with decreasing grid 

cells size around interface is not significant after certain limit beside increasing the 

computational cost dramatically. More clarification related to the effect of the gridding on 

Stokes-Brinkman’s equation is mentioned later. 

 

Figure 11 Temperature distribution in oR  at 100days  using Stokes-Brinkman’s model (Hint: - the sizes of all 

the grid blocks are equal for the sake of visualization) 
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Figure 12 Temperature distribution in oR  at 100days  using Darcy model (Hint: - the sizes of all the grid blocks 

are equal for the sake of visualization) 

 

Figure 13 Temperature of the fluid produced from production well 

4.1.2. Example 2 

The second example involves a more complex aquifer model containing a cave  

(12 10 )ft ft  with two branches, and a heterogeneous permeability distribution within the 

porous media as shown in Figure 16. To properly observe the movement of the heat front, 
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a very fine gridding is used in and around the free-flow region. The fluid and rock 

properties are the same as used in Example 1 (Table 1). 

 

Figure 14 Temperature distribution in oR  at 100days  using Brinkman’s equation and grid width 0.5 .ft   in  y-

direction around interface between porous media and free-flow region (Hint: - the sizes of all the grid blocks are 

equal for the sake of visualization) 

 

Figure 15 Effect of grid cells size around interface between porous media and free-flow region on the produced 

fluid temperature 
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Figure 16 Permeability distribution in md of complicated caved aquifer model (Hint: - the cave is in yellow) 

Figure 17 shows also that the temperature of the produced fluid from the producers 

decreases earlier in the Stokes-Brinkman model than in the Darcy model, except for the 

case of Producer 3, which is located inside the porous media far away from the free-flow 

region. Because the thermal conductivity of porous media is about 8 times larger than the 

fluid’s thermal conductivity, thermal conduction will dissipate energy inside porous media. 

Also, the difference in temperature between the two models is insignificant in the case of 

Producer 1. Therefore, there is negligible difference in produced fluid temperature between 

Darcy and Stokes-Brinkman models for the wells that are located in the porous media and 

far from the cave, due to dispersion of the energy caused by diffusion. 
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Figure 17 Produced fluid temperature from production wells (complicated model) 

4.2. Sample Applications of DMEPD 

Four cases are investigated and the numerical results using finite-volume discretization 

from both the DMEPD and DMWEPD approaches are compared with Stokes-Brinkman 

and with analytical solution in the first two cases. 

4.2.1. Example 1: Channel Flow 

This example presents a simple straight channel with constant pressure boundaries in x-

direction and no-flow boundaries in y-direction and the fluid is incompressible. This case 

is tackled as a matter of validation due to the existence of analytical solution. The estimated 

permeability distribution that is used for the DMEPD is shown in Figure 18. The results 

presented in Figure 19 show that the velocity profile obtained from numerical simulation 

using both of DMEPD is in a good agreement with both the simulation using Stokes-

Brinkman and the analytical solution of Stokes-Brinkman’s equation. 100 runs with 

different numbers of grids were performed to evaluate the performance of DMEPD and 



41 

 

Stokes-Brinkman. Due to the existence of fluxes at the boundaries of the grids as primary 

unknowns the size of the coefficient matrix in Stokes-Brinkman’s approach is larger than 

the one associated with DMEPD. The high-low-close diagram presented in Figure 20 

reveals the significant reduction in time of simulation when DMEPD is used instead of 

Stokes-Brinkman. A larger reduction in time is observed as the number of grid blocks 

increases. 

4.2.2. Example 2: Underground River 

In Example 2, we consider flow of water in an underground river. The free-flow region is 

surrounded from two opposite banks by porous media. The permeability distribution in the 

DMEPD is shown in Figure 21. Figure 22 presents comparison between the apparent 

velocity profile generated by different methods. Again, the results show perfect match 

between analytical solution and both DMEPD and DMWEPD. The selected weighting 

factor is 610  which increases  

 
min

max

| |

| |

T

T

λ

λ
 (where  Tλ  are the eigenvalues of 

transmissibility matrix) from 
189.3 10  to 127.8 10 . 

 

Figure 18 Estimated permeability (mD) distribution calculated from analytical solution for DMEPD of the 

channel flow case. 
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Figure 19 Velocity profile for channel case using different approaches. 

 

Figure 20 Variation of  S B

DMEPD

t

t

   with model number of grids. 
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Figure 21 Estimated permeability distribution (md) of underground river case 

 

Figure 22 Velocity profile for underground river case using different approaches. 
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The velocity profile calculated from Stokes-Brinkman’s exhibits a little deviation 

compared with analytical solution. Further runs are carried out with different grid widths 

in y-direction for the grids in the free flow region and for those in porous media close to 

interfaces. It is obvious from Figure 23 that Stokes-Brinkman model is highly affected by 

the grids dimensions. These differences are due to effect of the discretization of the second 

order Laplacian term around the interfaces between the porous media and the free flow 

region. Although it is well-known from the literature and from the analytical solution that 

the velocity deteriorates quickly (of order k  and exponential decay) inside the porous 

media, in the discretized domain the velocity feels the apparent interfaces at the center of 

the porous media grids neighbor to the free flow region not at the actual interfaces like if 

the size of the free flow region is extended. Hence, as Stokes-Brinkman contains a second 

order shear term which is discretized around interface, Stokes-Brinkman’s models are 

greatly sensitive to width of grids around interface as shown in Figure 23. Figure 24 gives 

a closer look to the velocity distribution around the interfaces for different grid widths 

using Stokes-Brinkman. It is also predicted from Figure 24 that the no-slip boundary 

conditions force the velocity to be reduced to zero at the boundaries which is not consistent 

with Darcy’s law and needs very fine gridding to reduce this effect. Figure 25 validates the 

hypothesis of the apparent increase in the area of the free flow-flow region when utilizing 

Stokes-Brinkman’s equation for simulating large widths. It is clear from the diagram that 

anticipated max velocity using Stokes-Brinkman  
maxS Bv   is higher than the expected 

velocity expected max velocity using Poiseuille’s equation with actual free-flow region 

width which can be calculated from the following equation: - 
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  (4.1) 

However, the max velocity using Stokes-Brinkman’s equation is nearly the same as that 

expected from analytical solution with the width of the free flow region is apparently 

expanded to the center of the neighbor grids to the interface in the porous media. Then, the 

max apparent velocity can be calculated as following: - 
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  (4.2) 

DMEPD has the advantage of not suffering from the effect gridding neither near the 

boundaries nor close to interfaces as it is shown in both Figure 26 and Figure 27 which 

indicates the unnecessary use of fine gridding with DMEPD. 

 

Figure 23 Velocity profile using Stokes-Brinkman at different grid width. 
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Figure 24 Velocity profile near the interfaces and boundaries using Stokes-Brinkman at different grid width. 

 

Figure 25 Ratio of max anticipated velocity using numerical Stokes-Brinkman to max Poiseuille’s velocity using 

actual area of free flow region and apparent area (start from center of first grid inside porous media adjacent to 

interface) at various grid widths. 
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Figure 26 Velocity profile using DMEPD at different grid width. 

 

Figure 27 Velocity profile near the interfaces and boundaries using DMEPD at different grid width. 
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4.2.3. Example 3: Advection-dominant flow in karst reservoir 

This example involves the flow of fluid with thermal gradient in a karst reservoir presented 

previously in Figure 10. The two main differences are that a hot fluid is injected to displace 

a relatively colder fluid instead of cold fluid displacing hot fluid and two cases involving 

different fluid properties are considered. In the first case, fluid's viscosity varies slightly 

with temperature, while in the second case, the fluid's viscosity is a strong function of 

temperature.   

Figure 28 shows the comparison between the heat front generated from the simulation 

using both Stokes-Brinkman’s equation and the DMEPD at 200day  for the case in which 

the viscosity is a weak function of temperature. It is clear that the heat front generated by 

Stokes-Brinkman’s equation is slower than the front generated using the DMEPD. Due to 

the apparent increase in the area of the free-flow region while using Stokes-Brinkman’s 

equation, the velocity is reduced in the case of constant injection rate. To eliminate the 

effect of the grid size on the results from the Stokes-Brinkman's model, very fine gridding 

is used in the free-flow region and the surrounding porous media. The heat front generated 

from this very fine gridding model is in good match with the results obtained from DMEPD 

approach as shown in Figure 29.  

Stokes-Brinkman’s equation takes into consideration the effect of the viscous shear 

between fluid layers which is mainly controlled by the viscosity, however, DMEPD 

approach cannot predict the same behavior in the cases that has great change in the 

viscosity between fluid layers as analytical solution assumes constant fluid viscosity. 

Figure 30 and Figure 31 show the difference in the produced fluid temperature and the 
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temperature distribution at   using both Stokes-Brinkman’s equation and DMEPD approach 

of a fluid that its viscosity changes sharply with temperature. 

 

Figure 28 Temperature distribution in 
oR  using different approaches at 200day  for constant viscosity fluid 

(Hint: - the sizes of all the grid blocks are equal for the sake of visualization) 

 

Figure 29 Produced fluid temperature (slight change in viscosity) 
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Figure 30 Temperature distribution in 
oR  using different approaches at 200day  for strong variable viscosity 

fluid (Hint: - the sizes of all the grid blocks are equal for the sake of visualization) 

 

Figure 31 Produced fluid temperature (sharp change in viscosity) 

4.2.4. Example 4: Tilted Channel 

This case considers the situation when the free-flow region or part of it is not aligned with 

the selected system axes. Globally coupled pressure method-2 (GCP-2) is implemented to 

account for the inclination of the free-flow region with selected system directions. The full 

tensor permeability is calculated using the following relation: - 

 1,Dk J k J    (4.3) 
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 and   is the inclination angle of the free-

flow region as shown in Figure 32. 

 

Figure 32 Permeability distribution  md  and inclination angle    of tilted channel case 

To investigate the performance comparison between our DMEPD coupled with GCP-2 and 

Stokes-Brinkman’s in the case of tilted channels with non-aligned grids, numerical study 

is carried on three different inclination angles. The computational domain 

[0,15] [0,37.5]ft ft  is meshed by 30 150  cartesian grid. Dirichlet boundary are applied 

in the x-direction where inlet pressure at left boundary is 1000 psi  and outlet pressure at 

right boundary is 500 psi . The results presented in Figure 33 indicate a match to some 

degree between two approaches. However, Stokes-Brinkman’s approach has difficult time 

with sharp change in the direction of interfaces in the discrete domain which increases with 

increasing the inclination angle in our model, DMEPD shows smooth transient in the 

pressure at the interfaces. Hence, there are some differences in the streamline profile 
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between two methods due to the difference in the pressure around the interfaces. Moreover, 

it can be noted that Stokes-Brinkman’s suffers from monotonicity problem with these sharp 

interfaces as it is clear from the pressure peaks at location of interfaces in Figure 34. 

Although, GCP consist of a preprocessing step to form T , the computation cost is still 

lower than Stokes-Brinkman. For such specific case, the average S B

DMEPD

t

t

  for 100 runs is 

around 6.718. It worth also to note that, using DMEPD or DMWEPD without considering 

GCP for the cases that 0   nor 
2

   would be fatal mistake as it appears in Figure 35. 

4.3. Conclusion  

This study demonstrates the importance of Stokes-Brinkman’s equation in modeling fluid 

flow with thermal gradients in of caved aquifers. Stokes-Brinkman’s equation can 

accurately model the actual velocity profile in the free-flow region. In the cases where the 

advection is dominant, this fluid velocity distribution contributes greatly to the temperature 

distribution inside the aquifer. Also, the effect of the gridding on the results of the models 

that utilizes Stokes-Brinkman’s equation is significant if large grid cell is used around the 

interface between the porous media and the free-flow region. The size should be convenient 

as decreasing the size of the grids under certain limit has negative effect by increasing 

calculation time and no noticeable impact on the results. Not all the thermal cases that 

contains free-flow regions are essential to be simulated using Stokes-Brinkman. Only the 

cases where the advection is dominant are those ones that should be modeled using Stokes-

Brinkman.    

Another contribution to this study is introducing a new approach called DMEPD approach 

for simulating karst reservoirs.  The apparent permeability inside free-flow region and the 
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surrounding porous media is calculated from the analytical solution of Stokes-Brinkman’s 

equation. DMEPD can mimic the same behavior predicated by Stokes-Brinkman’s 

equation except for the cases that have sharp change in the fluid viscosity. Also, this 

approach can be utilized with full tensor permeability to model the cases that consider 

unalignment of the free-flow region interface with system directions without the need to 

align the grids with the direction of the channel. 

  

  

(a) 
6.776
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(b) 
4
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(c) 
2.838

   

Figure 33 Pressure contour maps (colored maps) and streamline profile (blue) diagram with velocity profile 

(red) using both DMEPD (left) and Stokes-Brinkman (right) for different inclination angles 
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Figure 34 Surface pressure distribution for 
2.838

    using DMEPD (left) and stokes-Brinkman (right). 

 

Figure 35 Pressure distribution (psi) using DMWEPD without using GCP 
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Appendix : Analytical solution of Stokes-Brinkman’s Equation 

If we neglect the body force, Equation (2.7) can be written for flow in only x-direction as: 

- 
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Equation (A.1) has two components: one in the free-flow region and the other in the porous 

media. The component in the free-flow region is given by: - 
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and the one in the porous media given by: - 
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  (A.3) 

Because p x   is constant throughout the entire domain, Equations (A.2) and (A.3) are 

ordinary differential equations in y with unknowns xv  and xu , respectively. To solve this 

problem, we assume a single-phase fluid, an incompressible system and that the pressure 

gradient is constant and the same in both the porous media and the free-flow region. Also, 

the Reynolds number is small such that the flow under the consideration is laminar [59]. 

The flow is fully developed in the x-direction. The following physical conditions are used: 

- 

 Inside the free-flow region  0 y w  , xk  and *   
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 In Porous Media 1  y w  (see Figure 4) * *

1   and 
1xk k . While in Porous 

Media 2  0y  , * *

2   and 
2xk k . 

Also, the continuity of the actual velocity and that of its derivative at the interfaces between 

the free-flow region and the two-porous media are enforced by the four interface 

conditions. 

 Interface between the free-flow region and Porous Media 1  y w   

1. The continuity of the actual velocity is given by: - 

 *

1 .x xv u    (A.4) 

2. The continuity of its derivative is expressed as: - 

 *

1 .x xdv du

dy dy
    (A.5) 

 Interface between the free-flow region and Porous Media 2  0y     

3. The continuity of the actual velocity is given by: - 

 *

2 .x xv u    (A.6) 

4. The continuity of its derivative is expressed as: - 

 *

1 .x xdv du

dy dy
    (A.7) 

The solutions to Equations (A.2) and (A.3) are straightforward and are obtained by 

integrating with respect to y twice. Thus, we obtain: - 
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as the solution to Equation (A.2) and 
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as the solution to Equation (A.3). Note that 
1 2,c c  and c  in Equations (A.8) and (A.9) are 

the coefficients of integration. The solution in Equation (A.8) is valid in the free-flow 

region  0 y w   while that in Equation (A.9) is valid in the porous media. However, 

because we have two porous media separated by the free-flow region, Equation (A.9) 

should be written for the two-porous media as: - 

 1

1

1
3

y

x

k p
cu e

x












  (A.11) 

for Porous Media 1  y w  and 
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In Equations (A.10) and (A.11), 1 *

1 1k





  and 2 *

2 2k





 . We see from the solutions 

in (A.9) and (A.10), that as y   in (A.9) and y   in (A.10), the velocity xu  

tends towards Darcy's law as the first term on the right-hand-side in each of these equations 

tends to zero. That means that as we move deeper into the porous media the effect of the 

free-flow region on the flow within the porous media becomes negligible. The coefficients   
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and   in Equations. (A.8-A.11) can be obtained by applying the interface conditions in (A.4-

A.7) to obtain: - 
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We can then determine the location of maximum flow velocity in the free-flow region by 

enforcing the first order optimality condition  0xv y    to obtain: - 
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