

iii

© Abdullah Alwi Hussein Al-Baity

2018

iv

Dedicated to

My Beloved Mother

v

ACKNOWLEDGMENTS

All praises and worship are for ALLAH SWT alone; we seek His help and ask for

His forgiveness, we thank Him for providing us with knowledge and we always strive to

achieve His reward. I feel privileged to glorify His name in the sincerest way through this

small accomplishment. Peace and blessings be upon the greatest human being that ever

walked on this earth, the last and the final Prophet, Muhammad (peace be upon him), upon

his family, his companions, and all those who follow him until the day of judgment.

I would like to thank my parents, Mr. Alwi Al-Baity and Mrs. Alwyah Ba-Alwi,

from the bottom of my heart for their immense patience and the motivation they had given

me and also for teaching me the true meaning of hard work through their lives. My two

brothers Khalid and Majed, my sisters Nawal and Fawzyah, and my beloved wife, too share

the same acknowledgments for their support. It would not be wrong to say that they have

worked more than me, in making me what I am today. I ask Allah to reward all of them the

best in this world and the hereafter, Ameen.

I would like to pay a high tribute to my thesis advisor Dr. Mohammad Alshayeb

for his invaluable guidance and helpful ideas throughout this research. His appreciation

and words of motivation gave a new life to my efforts in hard times. I am also indebted to

him for his valuable time, efforts, his continuous support, and inspiration. I always admired

his knowledge, intuition, and vision. I feel very great to say, he has successfully instilled

in me a passion for scientific research, which will continue to guide me for many more

years to come.

vi

I would like to acknowledge Dr. Mohammed Misbhauddin for helping me in

understanding the Integrated Metamodel and for guiding me to the appropriate way to

define the design patterns, I am also indebted to him for his valuable time, efforts, his

continuous support, and inspiration.

I owe a deep appreciation to my committee members, Dr. Mahmood Niazi and Dr.

Sajjad Mahmood, who have spared their valuable times and given their thoughtful

suggestions and they have been a source of constant help and encouragement. I thank all

the other teachers who taught me in the university.

I acknowledge King Fahd University of Petroleum & Minerals for supporting my

M.S. studies. I am thankful to Dr. Khalid A. Al-Jasser the chairman of Information and

Computer Science Department, for providing an excellent environment for learning and

research in the department.

 جزاکم اللہ خیر

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... V

TABLE OF CONTENTS ... VII

LIST OF TABLES .. XI

LIST OF FIGURES ... XIII

LIST OF ABBREVIATIONS ... XV

ABSTRACT XVI

 XVIII ملخص الرسالة

1 CHAPTER 1 INTRODUCTION ... 1

1.1 Problem Description ... 3

1.2 Motivation .. 3

1.3 Research Contribution .. 4

1.4 Thesis Structure .. 6

2 CHAPTER 2 BACKGROUND .. 7

2.1 Design Patterns ... 7

2.2 UML: Unified Modeling Language ... 11

2.2.1 Structural View ... 13

2.2.2 Behavioral View .. 14

2.2.3 Functional View .. 14

2.2.4 UML Class Diagram ... 14

2.2.5 UML Sequence Diagram .. 17

2.2.6 UML Use Case Diagram ... 21

viii

2.3 UML Meta-Model .. 23

2.4 UML Integrated Meta-Model .. 24

3 CHAPTER 3 LITERATURE REVIEW.. 27

3.1 Related Work .. 27

3.1.1 Database Queries .. 27

3.1.2 Metrics .. 30

3.1.3 Matrices .. 32

3.1.4 Graph Based .. 33

3.1.5 CSP Based.. 36

3.2 Systematic Literature Review .. 38

3.2.1 Research Question .. 39

3.2.2 Data Sources and Search Strategy ... 41

3.2.3 Citation Retrieval and Management ... 43

3.2.4 Results Analysis and Discussion .. 45

4 CHAPTER 4 RESEARCH METHODOLOGY .. 60

4.1 Design Pattern Specifications .. 63

4.2 Functional Representation of Design Patterns .. 74

4.3 Traditional Representations and definition of design patterns 75

4.3.1 Builder .. 75

4.3.2 Adapter ... 78

4.3.3 Chain of Responsibility .. 79

4.3.4 Observer ... 81

4.4 Design Patterns Definition and Representation Using the Integrated Metamodel 84

4.4.1 Creational Design Patterns .. 86

ix

4.4.2 Structural Design Patterns .. 95

4.4.3 Behavioral Design Patterns ... 112

5 CHAPTER 5 VALIDATION .. 145

5.1 Visual Validation ... 145

5.1.1 Case 1.. 148

5.1.2 Case 2.. 149

5.2 Design Pattern Detection Tool .. 151

5.2.1 Design Pattern Detection Algorithm.. 152

5.3 Empirical Experiment .. 154

5.3.1 The Contest ... 154

5.3.2 Research Questions and Hypotheses .. 155

5.3.3 Objects .. 156

5.3.4 Subjects .. 157

5.3.5 Variable Selection ... 157

5.3.6 Instrumentation .. 157

5.3.7 Experimental Procedure .. 157

5.3.8 Results Discussion ... 158

5.3.9 Empirical Experimental Conclusion ... 165

5.3.10 Threats to Validity ... 165

6 CHAPTER 6 CONCLUSION AND FUTURE WORK 167

6.1 Conclusion .. 167

6.2 FUTURE WORK .. 168

APPENDIX A: XMI SCHEMA FOR INTEGRATED METAMODEL 169

x

APPENDIX B: UML INTEGRATED NETAMODEL REPRESENTATION OF GOF

DESIGN PATTERNS .. 171

REFERENCES:. ... 187

VITAE……..195

xi

LIST OF TABLES

Table 1 Creational Design Patterns [9] ... 9

Table 2 Structural Design Patterns [9] .. 10

Table 3 behavioural Design Patterns [9] ... 11

Table 4 Class Diagram Operation [1] ... 15

Table 5 Hierarchical Classification of UML Diagrams [1] .. 16

Table 6 Sequence Diagram Fragments [17] .. 18

Table 7 Comparison of design pattern detection techniques .. 37

Table 8 The detailed summary of all the articles and their stage.................................. 45

Table 9 Summary of all design pattern detection techniques 45

Table 10 Representations forms statics... 54

Table 11 Design pattern detection algorithms statics ... 55

Table 12 Design pattern detection views based statics ... 56

Table 13 Design pattern detection automation statics .. 58

Table 14 Design pattern type statics ... 59

Table 15 Builder Design Pattern Specifications ... 63

Table 16 Prototype Design Pattern Specifications.. 64

Table 17 Singleton Design Pattern Specifications .. 64

Table 18 Decorator Design Pattern Specifications ... 64

Table 19 Proxy Design Pattern Specifications.. 65

Table 20 Adapter Design Pattern Specifications .. 66

Table 21 Bridge Design Pattern Specifications .. 66

Table 22 Flyweight Design Pattern Specification .. 67

Table 23 Chain of Responsibility Design Pattern Specifications 67

Table 24 Observer Design Pattern Specification .. 69

Table 25 Strategy Design Pattern Specifications .. 70

Table 26 Mediator Design Pattern Specifications .. 71

Table 27 State Design Pattern Specifications ... 72

Table 28 Visit Design Pattern Specifications ... 72

Table 29 Template Method Design Pattern Specification .. 73

Table 30 Command Design Pattern Specifications .. 74

Table 31 The description of Building the Complex Object Use Case 87

Table 32 The Description of Clone Object Use Case ... 90

Table 33 The Description of getting Instance Use Case ... 93

Table 34 The Description of Add Behavior Use Case .. 96

Table 35 The Description of Representing the Functionality of Subject Use Case........ 99

Table 36 Adapter Design Pattern Use Case Diagram ... 102

Table 37 The Description of Decouple the Abstraction from the Implementation Use

Case ... 106

Table 38 The Description of Reduce Memory Load Use Case 109

xii

Table 39 The description of Handling Request by Controller Use Case 113

Table 40 The description of Handling Request by a Mediator Use Case 114

Table 41 The description of Handling Partial Request Use Case 114

Table 42 The description of Watching Item Use Case ... 119

Table 43 The description of Item State Changed Use Case.. 120

Table 44 The description of Select the Appropriate Solution Use Case....................... 125

Table 45 The Description of Handle the Objects Communications Use Case 128

Table 46 The Description of Change Object State Use Case 132

Table 47 The Description of Change Object State Use Case 135

Table 48 The Description of Define Algorithm Skelton Use Case 138

Table 49 The Description of Encapsulate a Request as an Object Use Case 142

Table 50 Design Pattern Detection Algorithm Pseudocode ... 153

Table 51 Precise and Recall test No.1 .. 160

Table 52 Precise and Recall Test No.2 ... 162

Table 53 Re-Conducted Test No.2 .. 164

xiii

LIST OF FIGURES

Figure 1 Hierarchical Classification of UML Diagrams [1] ... 13

Figure 2 UML Sequence Diagram Graphical notations [17] .. 21

Figure 3 UML Use case diagram Graphical notations [17] .. 23

Figure 4 Outline of an OCL Constraint Specification [1]... 24

Figure 5 (Intermediate) Metamodel [3, 24] .. 25

Figure 6 Representations forms statics ... 54

Figure 7 Design pattern detection algorithms statics .. 56

Figure 8 Design pattern detection algorithms statics .. 57

Figure 9 Design pattern automation statics ... 58

Figure 10 Design pattern type statics .. 59

Figure 11 Design pattern detection automation .. 61

Figure 12 Builder class diagram ... 76

Figure 13 Builder Collaboration Diagram .. 78

Figure 14 Adapter Diagram [9]... 79

Figure 15 Chain of Responsibility Class Diagram [9] .. 80

Figure 16 Chain of Responsibility Collaboration Diagram [9] 81

Figure 17 Observer Class Diagram [9] ... 82

Figure 18 Observer Collaboration Diagram [9] .. 84

Figure 19 Builder Design Pattern Use Case Diagram .. 86

Figure 20 Sequence Diagram of Builder Design Pattern .. 88

Figure 21 Class Diagram of Builder Design Pattern .. 89

Figure 22 Prototype Design Pattern Use Case Diagram ... 90

Figure 23 Prototype Design Pattern Sequence Diagram... 91

Figure 24 Prototype Design Pattern Class Diagram ... 92

Figure 25 Singleton Design Pattern Use Case Diagram ... 93

Figure 26 Singleton Design Pattern Sequence Diagram ... 94

Figure 27 Singleton Design Pattern Class Diagram ... 95

Figure 28 Decorator Design Pattern Use Case Diagram .. 96

Figure 29 Decorator Design Pattern Sequence Diagram .. 97

Figure 30 Decorator Design Pattern Class Diagram ... 98

Figure 31 Proxy Design Pattern Use Case Diagram ... 99

Figure 32 Proxy Design Pattern Sequence Diagram... 100

Figure 33 Proxy Design Pattern Class Diagram ... 101

Figure 34 Adapter Design Pattern Use Case Diagram.. 102

Figure 35 Sequence Diagram of Adapter Design Pattern ... 103

Figure 36 Class Diagram of Adapter Design Pattern.. 104

Figure 37 Bridge Design Pattern Use Case Diagram.. 105

Figure 38 Bridge Design Pattern Sequence Diagram ... 107

Figure 39 Bridge Design Pattern Class Diagram .. 108

file:///C:/Users/Abdullah/Dropbox/My%20thesis%20offline/Final%20Submission/Design%20Pattern%20Detection%20for%20UML%20Integrated%20Meta-2018-01-09.docx%23_Toc503260804

xiv

Figure 40 Flyweight Design Pattern Use Case Diagram .. 109

Figure 41 Flyweight Design Pattern Sequence Diagram .. 110

Figure 42 Flyweight Design Pattern Class Diagram... 111

Figure 43 Chain of Responsibility Design Pattern Use Case Diagram 113

Figure 44 The sequence diagram of the Handling Request by Controller Use Case 115

Figure 45 The sequence diagram of the Handling Request by a Mediator Use Case ... 116

Figure 46 The sequence diagram of the Handling Partial Request Use Case 117

Figure 47 Class Diagram of Chain of Responsibility ... 118

Figure 48 Observer Design Pattern Use Case Diagram .. 119

Figure 49 The sequence diagram of Watching Item Use Case 121

Figure 50 The sequence diagram of Item State Changed Use Case 122

Figure 51 The class diagram of Item Observer Design Pattern 123

Figure 52 Strategy Design Pattern Use Case Diagram ... 124

Figure 53 Strategy Design Pattern Sequence Diagram ... 125

Figure 54 The class diagram of Strategy Design Pattern .. 126

Figure 55 Mediator Design Pattern Use Case Diagram .. 127

Figure 56 Mediator Design Pattern Sequence Diagram ... 129

Figure 57 Mediator Design Pattern Class Diagram .. 130

Figure 58 State Design Pattern Use Case Diagram .. 131

Figure 59 State Design Pattern Sequence Diagram .. 132

Figure 60 State Design Pattern Class Diagram ... 133

Figure 61 Visitor Design Pattern Use Case Diagram ... 134

Figure 62 Visitor Design Pattern Sequence Diagram ... 135

Figure 63 Visitor Design Pattern Class Diagram .. 136

Figure 64 Template Method Design Pattern Use Case Diagram 138

Figure 65 Template Method Design Pattern Sequence Diagram 139

Figure 66 Template Method Design Pattern Class Diagram .. 140

Figure 67 Command Design Pattern Use Case Diagram .. 141

Figure 68 Command Design Pattern Sequence Diagram ... 142

Figure 69 Command Method Design Pattern Class Diagram 143

Figure 70 A Sequence Diagram of a program that looks like a Chain of

Responsibility Design Pattern ... 148

Figure 71 A Class Diagram of a Program that looks like a Chain of Responsibility

Design Pattern ... 149

Figure 72 A Sequence Diagram of a Program that looks like an Observer Design Pattern

 .. 150

Figure 73 A Class Diagram of a Program that looks like an Observer Design Pattern 151

Figure 74 A Use Case That Looks Like a Design Pattern .. 162

xv

LIST OF ABBREVIATIONS

GoF : Gang of Four

DP : Design Patterns

DPDT : Design Patterns Detection Tool Technique

SC : Sequence Diagram

CD : Class Diagram

UD : Use Case Diagram

UD : Not Specified

UD : Not Applicable

xvi

ABSTRACT

Full Name : [Abdullah Alwi Hussein Al-Baity]

Thesis Title : [Design Pattern Detection for UML Integrated Meta-Model]

Major Field : [Software Engineering]

Date of Degree : [January, 2018]

Design patterns are general reusable solutions that can be applied to a commonly occurring

problem within a given context in software design. Design patterns are not finished designs

that can be transformed blindly into the source code. They are descriptions or templates for

how to solve a problem that can be used in many different situations. Taking care of such

area will improve the software development processes and reduce the maintenance cost as

well. In this research, we propose a new technique to detect design patterns from a UML

integrated meta-model which is built from three UML views, the structural view

represented by a class diagram, the behavioral view represented by sequence diagram and

functional view represented by use case diagram. In the proposed approach, first, we

conduct a systematic literature review to collect and review all the design pattern detection

techniques proposed in the literature. Second, we represent design patterns using the UML

integrated metamodel to have all the different views features in one concrete XML file.

Third, we validate the representation of design patterns using the integrated metamodel to

see if the integrated metamodel gives more information about the design patterns than the

other individual representation forms. Finally, we develop a tool that detects the design

patterns in the integrated metamodel to show that the integrated metamodel representation

is giving more information about the design pattern, which will increase the level of

accuracy. The manual and the automatic validation of our technique showed that the

xvii

integrated metamodel representation of the design patterns gives more information about

the design pattern to be detected, which will decrease the level of accuracy of design pattern

detection

xviii

 ملخص الرسالة

 عبدالله علوي حسين البيتي :الاسم الكامل

 جاد أنماط التصاميم البرمجية للنماذج المدمجة في لغة التصميم الموحدةيتقنية إ :عنوان الرسالة

 هندسة البرمجيات التخصص:

 2018يناير :تاريخ الدرجة العلمية

ان تعتبر نماذج التصميم فرعا مهمّا من فروع وعلوم هندسة البرمجيات. إن الهدف الرئيسي لنماذج التصميم هو

المتكررة لحل مشاكل متكررة وجدت في عمليات التصميم البرمجية. ولكن يجب ان م باستخدام الحلولميقوم المص

نعلم ان هذه الحلول المتكررة ليست عبارة عن قوالب جاهزة يمكن استخدامها مباشرة، فهي لا تعدو إلا أن تكون

نحدد ونكيف هذه النماذج فكما هو مبين من اسم هذه النماذج فأنها تحتاج للتعديل والتكييف فلابد أن ،نماذج للحل

لكي تتوافق مع المشاكل البرمجية التي نريد حلها. ومن الجدير بالذكر إن أغلب هذه النماذج التصميمية تعتمد بشكل

أساسي في البرمجة والتصميم على التوجه الكائني في. لذلك فإن نماذج التصاميم دايما ما تضع تصورا" كاملا

فالاهتمام التفاعلات بين كل مكون من مكونات البرنامج والفئات الخاصة به. اذاورسوما" مبنية على العلاقات و

بهذا الجانب من هندسة البرمجيات وتطويره من شأنه أن يطور البرمجيات ويزيد من جودتها ويقلل من تكلفة تصميم

 .هذه البرمجيات وصيانتها

ة للكشف عن نماذج التصاميم في مرحلة التصميم قبل ان بتقديم تقنية جديد ،لذلك قمنا في هذه الرسالة وهذا البحث

حيث اننا سوف نستكشف ،وذلك باستخراجها من النماذج المدمجة في لغة التصميم الموحدة ،نبدأ بتشفير البرنامج

ونماذج التصميم ذج التصميم الإنشائية أو الخلقية،نماذج التصميم بالنظر الى ثلاث نواحي وجهات مهمة وهي: نما

 .ونماذج التصميم الهيكلية ،سلوكيةال

مثل: قواعد ،في هذا البحث سوف نقوم بدمج عدة تقنيات للحصول على تقنية اكتشاف انماط او نماذج التصميم

 .تقنية النقاط ،المقاييس البرمجية ،الذكاء الاصطناعي ،البيانات

xix

 دسة البرمجياتنهفي ريماجست
 الملك فهد للبترول والمعادن جامعة

 السعودية العربية, المملكة الظهران
8201

1

1 CHAPTER 1

INTRODUCTION

Design patterns are general reusable solutions that can be applied to widely occurring

problems within a given context in software design. Design patterns are not completely

ready designs that can be used directly inside source code to solve the problem. They are

descriptions that can be used in many different situations to solve commonly occurring

problems. They provide best practices in a formal way to the designer and programmer to

solve the commonly occurring problems. The complex software system design needs

complex tools and tasks in order to generate high quality software design.

One of the simplest, yet more powerful, techniques to improve a design is to use

patterns whenever possible and to follow some well-known rules to realize them. The

application of this technique to an existing design is tedious because it requires finding all

pattern realizations used in the design. He design patterns plays a major role in improving

the software design [1].

Design pattern detection is not only beneficial to forward engineering it also can

help and aid to the reverse-engineering, as well as helping in code comprehension. Design

patterns are very important that it can reflect the designers' intents, and code maintenance

would be easier.

2

In the last decades, Object Oriented concept have gained immense popularity and

strength over the other programming languages concepts and paradigms. One of the main

reasons behind this acceptance is that the Object Orient Paradigm gives the priority to the

component and modeling aspects and concepts. This issue is very important from the

problem domain’s perspective. “With this huge growing and popularity of the Object-

Oriented concepts and paradigm the needs were raised to provide a general standard for

Object-Oriented Analysis and Design, the Object Management Group (OMG) adopted

UML as a standard language for the design and analysis of Object-Oriented Programs.

UML is a graphical language that provides notations and action semantics to describe and

design software systems” OMG group[2].

The integrated meta-model is composed of meta-models of the three UML meta-

model diagrams, which are the meta-model of the class diagram, the meta-model of the

sequence diagram and the meta-model of the use case diagram. The integrated meta-model

integrated the three UML structural (Class Diagram), behavioral (Sequence Diagram), and

function (Use Case Diagram) views to provide more understandability of the overall UML

[24].

Software design patterns gained a lot of attention in the literature review. Recently,

many approaches and methods have been proposed to detect Design Patterns from the

different software artifacts. Some of these methods are based on the source code [4], while

other methods are based on diagrams or graph trees such as UML or Directed Graph [5].

However, most of the previous studies were based on only one single view either structural,

behavioral, or functional view. Other design pattern detection methods use the class

diagram to detect the structural behavioral and sequence or statechart diagram to capture

3

the behavioral of the design patterns. This may affect the accuracy of the Design Pattern

detection since it will be biased by one single view as different views may provide more

information.

1.1 Problem Description

Although the concept of detecting design patterns at the model level is extensively

researched, several problems remain. The research of design pattern detection techniques

is still under development surrounded by different open gaps and challenges. The main

issue and challenge is due to the lack of design pattern detection in the integrated meta-

model or inter-related models: Based on our literature review, there was no study

conducted for design pattern detection at any integrated meta-model or inter-related views.

All the previous studies were focusing on detecting design pattern at a single view such as

[6, 7] or separated two views such as [4, 8].

1.2 Motivation

Design patterns detection at the model level is more crucial and accurate than at the low

level (Code-level) because the model level has multiple views to represent the software

system's functionality and aspects. A typical software system design is represented by

using different diagrams from the three main UML views (Structural, Behavioral, and

Functional), each view is capturing major and crucial characteristics of the software

system. Multiple views have been used by researchers in different areas since the UML-

based techniques got more attention. Most of the research studies published on design

4

pattern detection techniques based mainly on a single view, some prominent studies

proposed a design detection technique based on only a class diagram (Structural view) [5],

some are based only on sequence diagram (behavioral) [6]. Only very view studies

proposed a design pattern detection technique based on two views (Structural view, and

Behavioral view) [3, 7]. The main motivation behind using multiple views in design pattern

detections are [24]:

1. There is a complementary relationship between all the UML views. Detecting design

pattern from one or two views would ignore the other supplementary information that

could be obtained from the other views.

2. Detecting designs patterns from the inter-view relationship, multiple or integrated

views is more accurate than detecting design patterns using a single view at a time.

3. Detecting design patterns at the model level is much better than detecting it at the code

level since we can detect the design pattern earlier and improve the design before going

to the code level.

1.3 Research Contribution

A typical software system design is represented by using different diagrams from the three

main UML views (Structural, Behavioral, and Functional); each view is capturing major

and crucial characteristics of the software system. Multiple views have been used by

researchers in different areas since the UML-based techniques got more attention.

However, these views are not connected or integrated to each other, instead, they are

separated views.

5

In our research we are going to use UML integrated metamodel of the three main

views: functional view, behavioral view and structural view to build up a design pattern

detection technique that is based on taking the advantages of the integrated metamodel,

since all the different views features will be placed in one UML integrated metamodel file,

instead of taking each one separately.

We are going to use the class diagram to represent the structural view features, and

use case diagram to represent the functional view features and the sequence diagram to

represent the behavioral view features. However, this is the first research study that

discussed the design patterns from the functional point of view. We have implemented the

design patterns by the three main views, the structural view, the behavioral view and the

functional view.

Each view will provide us with different features, these features are integrated used

the UML integrated metamodel. We have also conducted a systematic literature review for

state of art of design patterns detection approaches to have a deep understanding of the

design patterns detection techniques. The systematic literature review survived 7,403

different papers in total that matched our search string.

The systematic literature review helped us to answer different research questions to

classify and categorize the different techniques based on the type of technique and the

representation form they have used in their proposed approach. The systematic literature

review also opened a lot of different future gaps that haven’t yet fulfilled by the researchers.

6

1.4 Thesis Structure

The rest of this thesis is structured as follows:

Chapter 2: This section discussed the background knowledge of what is our research was

based on. This section describes all the design patterns categories and what each design

patterns intended to do. It also describes UML (Unified Modeling language) different

views, and how each view is described and defined in it. The declarative specification

language (OCL) is discussed also in this section, as well as the integrated metamodel.

Chapter 3: This section discussed the traditional literature review where all the previous

detection techniques were discussed and defined. This section also contains the systematic

literature review that discussed and reviewed more than 7,403 different papers and

categorized all the different techniques based on the detection techniques and

representation forms they have used.

Chapter 4: This section discussed our proposed methodology, this section contains the

functional representation of design patterns, the traditional representations of design

pattern compared with the design pattern representation used the three main views, and the

UML integrated metamodel representation.

Chapter 5: This section discussed the validation of our proposed approach; it contains the

visual validation, the tool support, and the empirical study.

Chapter 6: This section discussed the conclusion of our proposed technique as well as the

future work.

7

2 CHAPTER 2

Background

2.1 Design Patterns

Design Pattern is one of the most important areas in software engineering recently. Design

patterns are general reusable solutions that can be applied to widely occurring problems

within a given context in software design. Design patterns are not completely ready designs

that can be used directly inside source code to solve the problem [8]. They are descriptions

that can be used in many different situations to solve commonly occurring problems. They

provide best practices in a formal way to the designer and programmer to solve the

commonly occurring problems [9]. For instance, in many cases in the real world situations

we might need to create just one instance of a specific class. This pattern is called Singleton

pattern. In Other cases in software development a programmer needs to have only one

database connection that can be shared by many objects because creating a separate

database connection for every object is very expensive. Another example of a real world

situation is the Adapter design pattern. Adapter design pattern is a structural design pattern

that used to repurpose a specific class with a many different interfaces. Another term to

reference an adapter class is a wrapper, which lets you "wrap" actions into a class and reuse

these actions in the correct situations. A classic example might be when you create a

domain class for table classes. Instead of calling the different table classes and calling up

their functions one by one, you could encapsulate all of these methods into one method

using an adapter class. This would not only allow you to reuse whatever action you want,

8

it also keeps you from having to rewrite the code if you need to use the same action in a

different place.

Design Patterns was first proposed in 1994 by four authors (Erich Gamma, Richard

Helm, Ralph Johnson and John Vlissides) they published a book titled as a Design Patterns

- Elements of Reusable Object-Oriented Software [9]. This book initiated the concept of a

design pattern as a solution description in Software implementation and development.

Later on, researchers called these authors as Gang of Four (GoF).

The Gang of Four proposed 23 Designed Patterns that can be classified into three

different categories, Creational, Structural and Behavioral patterns. Every category of

Design Pattern contains many different Design Patterns that can be used as a reusable

solution in order to solve some widely according to problems. Every Design Pattern has a

terminology to a specific problem scenario.

Many researchers have been accomplished by different institutes and universities

to improve the original draft of GoF Design Patterns, as well as introducing new design

patterns that could be added to the 23 GoF Design Patterns.

Creational Patterns provide the developer with a flexible way to create an object

whilst allowing the developer to hide the object creation logic, instead of directly creating

and instantiating objects using some new operators. This feature gives a software flexibility

of choosing which object to be created or selected for a given use case. Table 1 Creational

Design Patterns [9] lists the GoF Creational Design Patterns.

9

Table 1 Creational Design Patterns [9]

No. Design Pattern Description

1 Abstract Factory Creates an instance of several families of

classes.

2 Builder Separates object construction from its

representation.

3 Factory Method Creates an instance of several derived classes.

4 Object Pool Avoid expensive acquisition and release of

resources by recycling objects that are no

longer in use.

5 Prototype A fully initialized instance to be copied or

cloned

6 Singleton A class of which only a single instance can

exist.

Structural Patterns provide the way of composition between class and objects. Structural

Design Patterns are used to ease the software design by simplifying the relationship

between the software design different entities. Structural Design Patterns used the concept

of inheritance in order to establish the composition between the interfaces, and provide the

ways to establish the composition between different objects to come up with different

functionality. Table 2 Structural Design Patterns [9] lists the GoF Structural Design

Patterns.

https://sourcemaking.com/design_patterns/abstract_factory
https://sourcemaking.com/design_patterns/builder
https://sourcemaking.com/design_patterns/factory_method
https://sourcemaking.com/design_patterns/object_pool
https://sourcemaking.com/design_patterns/prototype
https://sourcemaking.com/design_patterns/singleton

10

Table 2 Structural Design Patterns [9]

No. Design Pattern Description

1 Adapter Match interfaces of different classes

2 Bridge Separates an object’s interface from its

implementation

3 Composite A tree structure of simple and composite objects

4 Decorator Add responsibilities to objects dynamically

5 Facade A single class that represents an entire subsystem

6 Flyweight A fine-grained instance used for efficient sharing

7 Proxy An object representing another object

8 Private Class Data Restricts accessor/mutator access

Behavioral Patterns are mainly concerned with the management of communications

between different objects in a software design. Table 3 behavioural Design Patterns [9]

lists the GoF Behavioral Design Patterns.

https://sourcemaking.com/design_patterns/adapter
https://sourcemaking.com/design_patterns/bridge
https://sourcemaking.com/design_patterns/composite
https://sourcemaking.com/design_patterns/decorator
https://sourcemaking.com/design_patterns/facade
https://sourcemaking.com/design_patterns/flyweight
https://sourcemaking.com/design_patterns/private_class_data

11

Table 3 behavioural Design Patterns [9]

No. Design Pattern Description

1 Chain of responsibility A way of passing a request between a chain of

objects

2 Command Encapsulate a command request as an object

3 Interpreter A way to include language elements in a program

4 Iterator Sequentially access the elements of a collection

5 Mediator Defines simplified communication between classes

6 Memento Capture and restore an object's internal state

7 Null Object Designed to act as a default value of an object

8 Observer A way of notifying change to a number of classes

9 State Alter an object's behavior when its state changes

10 Strategy Encapsulates an algorithm inside a class

11 Template method Defer the exact steps of an algorithm to a subclass

12 Visitor Defines a new operation to a class without change

2.2 UML: Unified Modeling Language

In the last decades, Object Oriented concept have gained immense popularity and strength

over the other programming languages concepts and paradigms. One of the main reasons

behind this acceptance is that the object orient paradigm gives the priority to the component

and modeling aspects and concepts. This issue is very important from the problem

domain’s perspective. “With this huge growing and popularity of the Object-Oriented

https://sourcemaking.com/design_patterns/chain_of_responsibility
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/interpreter
https://sourcemaking.com/design_patterns/iterator
https://sourcemaking.com/design_patterns/mediator
https://sourcemaking.com/design_patterns/memento
https://sourcemaking.com/design_patterns/null_object
https://sourcemaking.com/design_patterns/observer
https://sourcemaking.com/design_patterns/state
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/template_method
https://sourcemaking.com/design_patterns/visitor

12

concepts and paradigm the needs were raised to provide a general standard for Object-

Oriented Analysis and Design, the Object Management Group (OMG) adopted UML as a

standard language for the design and analysis of Object-Oriented Programs. UML is a

graphical language that provides notations and action semantics to describe and design

software systems” OMG group [1].

UML is a graphical language type that used to provide a way to describe a software

systems design with graphical notations and semantic procedures and actions. UML is a

result of combining different graphical models that were proposed by Ivar Jacobson [10,

11], Rumbaugh et al. [12] and Booch [13]. UML is also used in many software tools to

simulate software [14].

Since OMG group had set the UML as an open standard in 1997, it has been a

continued improvement to keep UML up with the new criticisms [15]. These improvements

made UML more expressive, accurate and precise model graphical language. In the most

recent UML specification, UML 2.4, UML describes the software under design by 14

formal diagrams. A UML view is a group of diagrams that used to illustrate and explain

the software system similar characteristics. The original UML taxonomy classifies it

software design diagrams into structural and behavioral views. There have been many tries

to classify UML views such as the four + one classification view which proposed by

Kruchten [16], and the three views classification (Functional, Structural, and Behavioral)

which was proposed by Iivari [17]. The typical classification of the UML diagrams mainly

classified into three different views: Functional, Structural, and Behavioral views, as

illustrated in Figure 1: Hierarchical Classification of UML Diagrams [1]Figure 1.

13

Figure 1: Hierarchical Classification of UML Diagrams [1]

2.2.1 Structural View

The structural view is the most important view in the UML views. Since objects and classes

are the basic building blocks in any software system design. The Structural view is

concerned about provides diagrams that would help in capturing the physical organization

of the software building blocks. The structural view provides a description of the static

structure and organization of any software system. The class diagram is the most prominent

14

and widely used diagram in structural view, which will be considered as a representative

diagram of the structural view in our proposed thesis.

2.2.2 Behavioral View

Behavioral view diagrams are concerned with showing the dynamic behavior of all the

structural classes and objects in the software system. The behavioral view used to illustrate

and show the list of series changes that made to any software system over the time. A

sequence diagram is a mostly used diagram to describe the behavioral view of any software

system, which will be considered as a representative diagram of the behavioral view in our

proposed thesis.

2.2.3 Functional View

The functional view is supported by different diagrams, these diagrams provide a picture

of how a software system is supposed to act. The functional view grasps the software

system information from the user's point of view. Use case diagram is the most vital

diagram in functional view which provides a way of modeling the software system's

functional requirements, which will be considered as a representative diagram of the

functional view in our proposed thesis.

2.2.4 UML Class Diagram

The structural view is represented by the class diagram in an object-oriented software

system. It consists of a set of classes that are used to represent and design all the important

entities of the modeled software system. As well as, class diagram contains many ways to

represent the different relationships between these classes. In the modeling object-oriented

15

software systems, the class diagram considered as the most important and commonly used

diagram [1].

Each class contains set of objects that share the same attributes, methods

(operations) and the associations between class objects. Attributes are defined as unique

features of any class, while methods (operation) are defined as the means of how a class

can show up its own functionality to other class of the modeled software system.

The class diagram in UML is represented as a rectangular box that contains three

different sections and partitions. The top section of the box contains the name of the class,

the middle section of the box defines the list of all class attributes, and the bottom section

of the box contains and defines the list of all class methods (operations).

One of the most concepts regarding class diagram called visibility. Visibility

defines the way whether class members are allowed to see the corresponding class member

of a given class. There are three kinds of visibility is defined in UML, as following:

Table 4 Class Diagram Operation [1]

Notation Name Meaning

+ Public
It allows all the other class objects to access any class member.

- Private
It allows accessing the class member only from the owner

class.

Protected
It allows accessing the class member from the class subclasses

only.

16

As we mentioned earlier, all classes in the UML class diagram are communicated to each

other using different types of relationships. UML class diagram defines the relationships

into four different categories: Association, Generalization, Dependency, and Composition.

The description of the UML class diagram relationships is as follows:

Table 5 Hierarchical Classification of UML Diagrams [1]

Notation Name Meaning

 Association
Association is used to connect two or

more classes to each other.

Aggregation

Aggregation represents a specific type

of association, as a class is a part of or

has a relationship. E.g. a doctor "has a

"patient to take care of.

Composition

The composition has the same meaning

of aggregation but it stronger that

aggregation in which the lifetime of the

part class is dependent on the lifetime

of the whole class.

Generalization

Generalization is used to establish the

relationship between the parent class

and its subclasses, it is also known as

inheritance. Where the subclass

inherits the common functionalities

that are defined in the superclass.

Dependency

Dependency is the most complicated

relationship type of class diagram,

where it concerned about establishing a

semantic connection between two

classes.

17

2.2.5 UML Sequence Diagram

Dynamic view is represented by sequence diagram in an object-oriented software system.

The sequence diagram main purpose is to capture the dynamic behavior of a software

system. The sequence diagram shows how the class objects interact with each other for a

specific scenario for a particular use case. The class objects are interacting with each other

and share vital information through using messages, as well as the order of the occurrence

of the objects. Sequence diagram conveyed this vital information using two dimensions:

virtual and horizontal. Moving from left to right in the vertical dimensions in sequence

diagram identifies and shows the objects through which messages are exchanged while

moving from the top to the bottom in the horizontal dimension provides us with time

sequence and lifetime of these messages. Objects in sequence diagram are represented by

a dotted line lies along with virtual dimension, and this line will be extended as long as the

interaction exists. Messages in sequence diagram are represented with arrows that move

from source object to the destination object. Each message in sequence diagram has two

different events: a send event which occurred at the end of the sender, and a receive event

which occurs at the end of the receiver [1].

One important notation feature of UML sequence diagram is the Combined

Fragment. Combined fragment provides the conditional flow in the series of sequences in

the sequence diagram. The combined fragment consists of two elements: an operand and

a guard. The operand could be defined as a sub-sequence diagram which constitutes the

body of the combined fragment. One or more operand can belong to a combined fragment

depends on its type. Every operand is associated with a guard, a guard is a Boolean

condition that should be evaluated either to "true" or "false", if "true" then it will execute

18

the sequence, otherwise it will not. The main concerned of a guard is about execution the

sequence of the operand it belongs to [1].

Twelve kinds of combined fragments identified in UML specification as following [18]:

Table 6 Sequence Diagram Fragments [17]

Notation Fragment

Name

Description

Alt

(alternatives)

The alternative combined

fragment is used to choose

between two different behaviors.

It has multiple operands, at most

one of the operands should be

chosen. The alternative combined

fragment can be realized in

programming logic by "if – else ".

Opt (optional)

The optionally combined

fragment is used to specify a

behavior that might or might not

occur. The optionally combined

fragment can be realized in

programming logic by "if – else".

Break

Break combined fragment is used

to break up a behavioral scenario.

It consists of a single operand

which executes when the guard is

true. It is mostly used to handle

exception behaviors.

19

Par (parallel)

The parallel combined fragment is

used to define the parallel

execution of multiple operands at

the same time without exposing

the integrity of the results.

Seq

(Sequencing)

Sequencing combined fragment is

used to settle the order of

execution between multiple

operands. The message is

enforced to execute within an

operand before the next operand

starts.

Neg (negative)

The negatively combined

fragment is used to identify an

invalid behavior. It has only one

guarded operand that represents

an invalid sequence, while the

other behavioral sequences are

positive.

Assert

Assert combined fragment is used

to identify the assertion sequence

of a behavior while the other

sequences are not valid.

20

Critical

The critical combined fragment is

used to identify the group of

sequence messages as critical.

Loop

Loop combined fragment is used

to identify a repletion of a

sequence. It has a single operand

that contains the number of times

of reparations depends on the

maximum and minimum iteration

number in the loop guarded

operator.

Consider /

Ignore

Consider combined fragment is

used to identify the messages that

should be considered with a

sequence of a combined fragment

while ignoring combined

fragment defines these messages

that should be ignored.

The following diagram shows all UML sequence diagram graphical notations:

21

Figure 2: UML Sequence Diagram Graphical notations [17]

2.2.6 UML Use Case Diagram

The concept of use case diagrams is initially introduced by Jacobson et al. [10], later on,

the OMG group adopted the use case concept and conceded it as a part UML (Unified

Modeling Language). The main purpose of use case diagram is to represent the object-

oriented system's functional view. Use case diagram is playing a critical role in the

collection and modeling the software system requirements. Requirement engineers

describe and represent the requirements of a system using a set of use cases in the UML

use case diagram. The specification of the system is represented by use cases that operate

and interacts with the actors in order come up with a result that is valuable to both the

stakeholders and the actors of the system.

Mainly use case contains four different items that show how the system works [10]:

22

The first element is the software system itself, the uses cases that describe the system's

service that should be performed, and the actors who contribute to the software system,

and the different relationships between the system's elements.

We can classify the relationships in the UML use case diagram into three main

categories as follows:

The actor to Use Case Relationship.

The Actor to another Actor Relationship.

The Use Case to another Use Case Relationship.

There are also three relationships between use cases in UML:

Generalization: In uses case generalization relationship when one use case functionality

is separated to different use cases. Generalization is similar to the concept of inheritance

where a use case inherits other's use case functionality and add it to their own specific

functionality [10].

 Inclusion: In use case inclusion two use cases are related to each other by one of the use

cases is offered by the other one. The use case which included the other use case is not a

complete use case in its own functionality, and that supports the idea of reusability since

one use case can use other use case functionality without repeating [10].

Extension: In use case extension relationship when one of the use cases wants to employ

and profit the other use case functionality. The disparity of the inclusion use case relation,

the use case that extends the other use case functionality is complete by its own

functionality.

23

Figure 3: UML Use case diagram Graphical notations [17]

2.3 UML Meta-Model

The UML notation provides designers with information in a graphical way. OMG group

proposes a declarative specification language (OCL) [1] to express and present the software

properties that can't be represented in a graphical way such as invariants and constraints.

The OCL metamodel language represents and traces the software design elements and its

constraints using conditions, post-condition, and invariants. The UML metamodel provides

the designer with a well-formedness and preciseness of the software design models. It also

assists in the validation and certification processes. The following figure outlines OCL

metamodel language specifications.

24

Figure 4: Outline of an OCL Constraint Specification [1]

2.4 UML Integrated Meta-Model

In order to model a complex software design, it requires the software designer to pay more

attention to system's different aspects and look to it from different views. The system

design different views should be considered the structural (static) view (methods and

attributes), the behavioral (dynamic) view (invariants, and scenarios), and the functional

view (the rights of access, requirements). Since there are core functionalities and aspects

are shared by different views for the same metamodel, the need for the integrated

metamodel is essential. The definition of the integrated metamodel is to create links

between different views, processes or services [19]. The concept of integrated metamodel

has been used and applied for a massive number of applications is the domain of Model-

driven software engineering [20-23].

The Object Management Group currently defines the UML language using a metamodel.

The three parts of defines the metamodel in the UML specification docmunent are:

25

1. Abstract Syntax: A class diagram describes the abstract syntax of UML, which is

composed of meta-classes and meta-associations. The syntax of UML is well defined

and unambiguous.

2. Well-formedness Rules: Specification of constraints on instances of the meta-classes

(that represent the UML language constructs) is through a set of well-formedness rules.

3. Semantics: Semantics describe the meanings of the meta-classes introduced in the

abstract syntax.

Misbhauddin and Alshayeb[3, 24] proposed an integrated metamodel composed of

three main metamodel diagrams class diagram metamodels, sequence diagram

metamodels, and use case diagram metamodels see figure 5.

Figure 5: (Intermediate) Metamodel [3, 24]

26

The integrated metamodel proposed by Misbhauddin and Alshayeb [3, 19, 24]

provides a multi-view integrated approach to model-driven refactoring using UML models.

They selected a single model from each UML view at metamodel level to construct an

integrated metamodel. They selected class diagram to represent the structural view,

sequence diagram to represent the behavioral view and use case diagram to represent the

functional view. Misbhauddin and Alshayeb [3, 19, 24] in their proposed integrated

metamodel used the class diagram to represent the structural view without any extension,

however, they extended metamodel of the sequence diagram to represent the behavioral

view and the extended metamodel of the use case diagram to represent the functional view.

To ensure complete modeling of information, the integrated metamodel also incorporates

the OCL metamodel so that constraints (from class diagrams), invariants and guards (from

sequence diagrams) and pre- and post-conditions (from use case diagrams) are structurally

represented.

They validated the proposed approach by comparing integrated refactoring

approach with refactoring applied to models individually in terms of quality improvement

through UML model metrics.

The main objective of the integrated metamodel proposed by Misbhauddin and

Alshayeb [3, 19, 24] is to identify refactoring opportunities within the software design

using model information from multiple views. They identified a total of seven refactoring

opportunities that can be detected from the integrated model.

In our design pattern detection technique, we going to use the integrated metamodel

that proposed by Misbhauddin and Alshayeb [3, 19, 24].

27

3 CHAPTER 3

LITERATURE REVIEW

In this chapter, we are going to discuss two types of literature reviews, the first is the

traditional literature review and the second is the systematic literature review.

The traditional literature review highlights the previous different design pattern

detection techniques. The revision had been conducted without analyzing or investigation

the results. In the other way around, we had conducted a systematic literature review for

almost 7,403 papers to investigate and discuss the state of art of design pattern detection

techniques, as well as spotting the future gaps in the existing work.

3.1 Related Work

This section highlights the attempts for design patterns detection techniques proposed in

the past. Different design pattern detection techniques have been proposed in the literature

review, some are based on Database queries, metrics, matrices, graph based and constraint

satisfaction problem based.

3.1.1 Database Queries

Different techniques and methods use database queries in order to detect the occurrence of

Design Patterns [23-27]. Keller et al. [23] proposed a tool called SPOOL to detect and

identify design patterns. The purpose of this tool is to confirm that the pattern-based reverse

engineering is a very valuable approach for software understandability and comprehension.

The tool was applied to C++ case studies. SPOOL tool first converts the C++ source code

28

into UML meta-model, then it applies a query mechanism to the UML meta-model that can

recognize and detect design patterns in three different modes: automatic design recovery,

manual design recovery, and semi-automatic design pattern recovery. Lee et al. [24]

proposed a design pattern detection algorithm to detect the 23 Gang of Four (GoF) design

patterns. The purpose of this algorithm is to reduce the maintenance costs in reverse-

engineering by reusing the design patterns to solve the commonly occurred problem in

software design. Their proposed algorithm was applied to different well-known open

source systems. Their technique first converts the source code into AST (Abstract Syntax

Tree), or ASG (Abstract Syntax Graph), and then to XMI. Second, a query mechanism

applied to XMI to detect the design patterns. Rasool et al. [25] proposed a design pattern

detection technique based on database queries, regular expressions, and annotations. Their

annotations are added to the source code to profile more understandability. Their

annotation can be used by both the human and the configurable machine. The annotation

is directly applied on the source code instead of converting it to any intermediate

representation. Their approach examines the source code annotations with the specific

design pattern annotation using database queries and regular expressions. Stencel and

Wegrzynowicz [26] proposed a new method to detect the occurrence of design patterns

automatically. The purpose of their proposed method is to increase the level of

understandability and to help in the reverse engineering process. Their method can detect

the standard implementation of design patterns as well as the non-standard

implementations. They provided the proof-of-concept tool for their proposed method. The

tool was based on three main phases. The first phase is parsing, the tool converts the Java

source code into an Abstract Syntax Tree (AST) and then it builds the main core parts of

29

the software system based on AST. The second phase is analyzing, the tool computes the

transitive closures of relationships between the core elements, and then it stores the core

parts with their relations in a rational database. The third phase is detecting, the tool

executes SQL queries on the rational databases to detect the occurrence of the design

patterns. Marek Vokác [27] developed a tool to detect the occurrence of design patterns.

The tool is based on C++ open source systems to detect only five design patterns with a

high precision and speed. The tool goes through three different stages. The first stage is to

convert the C++ source code into UML metadata. The second stage is to link between the

entities and references of metadata then store it in an SQL database. The third stage is to

perform SQL queries to detect the occurrence of design patterns.

These approaches and techniques first transform the source code into some intermediate

representations such as XMI, AST, ASG, UML structures, and metadata etc. Then they use

SQL queries as a next step to detect and extract patterns that have related information from

particular representations. The main advantage of using database queries is the

performance of the queries to extract and detect related features and information of design

patterns can be directly bound to the database in use and can be scaled very well, but such

method of using queries has some disadvantages. The major disadvantage is that they are

limited to the information which is available in the intermediate representations. One of

the main limitations of intermediate languages is that they cannot represent the non-

functional requirements of the system. Based on the literature review, there is no currently

available intermediate representation format which could be used to store all the

information and features presented in the source code. Another disadvantage of these SQL

30

queries based approaches is that they are restrictive to structural and creational design

patterns so far and they do not fully support behavioral design pattern recovery.

Wang and Tzerpos [28] proposed an REQL query design pattern detection technique called

Design Pattern Verification toolKit (DPVK). REQL is a query language (RethinkDB query

language) used to manipulate JSON files. The technique fist creates a repository database

to store all the variants of design patterns. This technique is done in two main stages. The

first stage is to store and describe all the classes and methods in the system using some java

parser tools. The second stage is to compare the candidate design pattern instances with

the file description in stage 1.

3.1.2 Metrics

Metrics were used by different design pattern detection techniques. These

techniques calculate the software related metrics like (associations, generalizations,

interface hierarchies, aggregations etc.) from the different source code representations and

then the tool will use other techniques to validate and compare the design pattern definition

metric values with source code metrics. Paakki et al. [29] proposed a metric tool to detect

the design pattern occurrence. The tool is based on constraint satisfaction problem (CSP).

CSP has been applied to many different areas such as program understanding, machine

vision, and scheduling. The main idea behind the CSP algorithm is to formulate a large

number of the central problems as a single set of constraints (predicates) in a particular

domain over variables. The tool first converts the source code into the UML intermediate

representation then it applies the proposed metric to detect the occurrence of the design

patterns. Another metric based tool is called Fujaba, Fujaba Tool Suite [FUJABA] [17] is

an Eclipse Plug-In for detecting design patterns in source code. The tool suite is based on

31

two parts, the structural part, and the behavioral part. UML intermediate representation

represents the structural part of the tool, while the Story Driven Modeling (SDM)

represents the behavioral part. SDM allows the user to identify the complete part of method

bodies in the activity diagram in UML environment. In the first phase, the tool specifies

the design pattern by specifying it in two main parts the structural part and the behavioral

part. The second phase is to compare the specified design pattern with an actual design of

the software system. Antonio et al. [30] proposed a tool based on java to automatically

detect the occurrence of design patterns. The tool first maps the source code into Abstract

Syntax Tree (AST) intermediate representation. Then it parses the AST tree using Abstract

Object Language (AOL) to generate the structure properties and components of software

systems. A set of matrices then applied to AOL to detect the instances of design patterns.

Lucia et al. [3] proposed a new design pattern detection technique based on structural and

behavioral analysis techniques. This technique detects only behavioral design patterns. The

first phase is to extract the information of class relationships and method with their calls

from the source code system. Then a source code analyzer is used to check if the identified

design pattern instances are confirmed to the predefined design pattern instances. The

second phase is to capture the behavioral of the classes and methods that were collected

from the static phase, and if the identified design pattern description matches the actual one

then the tool claims that it caught the design pattern.

The main advantage of metric based techniques is that they are computationally

efficient. However, the metric-based approaches have many drawbacks, the first one is the

experiments were performed on very few sets of patterns, so the generalization cannot be

32

made towards all the types of the GoF patterns. Furthermore, these techniques are not

considered to be interactive. These techniques reported a low precision and recall as well.

3.1.3 Matrices

This technique uses the matrices to represent the structural and behavioral

information of software systems. These approaches build corresponding matrices for each

system to store all the classes and their interrelations. They applied different techniques

and algorithms to examine and match the predefined design pattern templates with the

matrices generated by the software system.

Tsantalis et al. [4] proposed a technique based on graph similarity algorithm. Their

approach uses similarity scoring mechanism. This technique gives scores to each node in

the similarity graph depending on the structural information that was collected from the

class diagram (association, aggregation, abstract method invocation, and etc). This

approach uses a set of predefined matrices that represents all of the static structure of design

patterns of interest. Dong et al. [31] introduced a new pattern detection technique. The

technique is based on weights and matrices. This approach has three main analyses models,

structural, behavioral, and semantic modes. The Structural analysis main job is to parse the

XMI files that were generated from the UML diagram, and then build up a square matrix

that stores each class as rows and columns. Each row represents a class and each

corresponding column represents another corresponding class. Each cell in this matrix

stores the relationship between the both classes in the row and in the column. The

behavioral analysis main concern is to check if the interested method invocation really

exists in the class within its right signature. Finally, the semantic analysis here is to

distinguish between the similar designs patterns such as Bridge and Strategy.

33

These techniques and approaches have many different advantages since they are

computationally efficient, and they have very good precision and recall rates, however,

these techniques are not well interactive as they are not able to distinguish and extract the

different implementation variants of the similar design patterns. In addition, matrix-based

techniques and approaches are limited and restrictive to only a few number of design

patterns and they cannot recover the whole complete set of the GoF design patterns which

does not make it a reliable technique.

3.1.4 Graph Based

This section presents the other techniques proposed in the literature.

PTIDEJ team [32] developed a tool suite called Pride, this tool was used as a reverse

engineering framework to detect and identify macro-patterns, idioms, design defects and

design patterns using a meta-model called PADL (Pattern and Abstract-Level Description

Language). PADL meta-model represents the software at different abstraction levels.

PADL meta-model provides components like Relationships, Methods, Classes, and Model.

Therefore, by using PADL they can build a whole representation for the software. This tool

detects design pattern by representing the relationships among roles as constraints among

variables. PTIDEJ group focuses on gaining and ensuring a 100% recall rate, but they

sacrificed the precision and the detection performance is very low.

Pierre et al. [33] proposed a fuzzy weight based technique to detect design patterns.

The patterns of interest are identified by graph transformation rules. A graph

transformation rule is a UML-alike collaboration diagram. These graph transformation

rules are defined as collaborative diagrams to detect the annotation of abstract syntax graph

34

(ASG) patterns, and each rule is given a specific weight. Abstract syntax graph (ASG) is

generated using JavaCC source code parser (JCC).

Shi and Olsson [34] proposed a data flow and control flow based technique to detect

the occurrence of design patterns using ASTs. Their proposed technique uses data-flow

analysis to analyze the entire AST (Abstract Syntax Tree) of a specific method body. The

tools build a group of related methods as building blocks using a control-flow graph (CFG).

Then the technique compares the behavioral of each building block with specific

behavioral of the desirable design pattern.

Beyer and Noack [35] proposed a new design pattern detection technique based on

directed graph. This technique uses the (BDD) data structure binary decision diagram to

represent the relationships between classes and hierarchical representations between them.

The tool first converts the desired system into directed graph then it applies a binary

relationship between the implemented design patterns and the system directed graph in

order to detect the design patterns.

Heuzeroth et al. [36] proposed a new design pattern detection technique based on

the static and dynamic analysis. The static analysis converts the source code into AST

(Abstract Syntax Tree) to collect the static information of the system (classes, methods,

and relationships). The dynamic analysis of this technique takes the static information set

as an input. Then it executes the nodes of the AST (Abstract Syntax Tree) to monitor the

behavioral of the system. Then it tracks the execution of the system to check if the

candidate design pattern satisfies the rules that identified at the dynamic analysis. This

technique can’t detect the design if it did not execute at the dynamic phase.

35

Balanyi and Ferenc [37] proposed a new design pattern detection technique based

on XML matching. The matching is done in two main stages. In the first stage, the

technique analyzes and converts the source code into ASG (Abstract Semantic Graph). In

the second stage, DPML (Design Pattern Mark-Up Language), is used to define the

description of the design patterns. The selected DPML design pattern description is taken

as an input into XML DOM file. Then the proposed technique checks and matches the ASG

tree with the DMPL design pattern description.

Wang and Tzerpos [28] proposed an REQL query design pattern detection

technique called Design Pattern Verification toolKit (DPVK). REQL is a query language

(RethinkDB query language) used to manipulate JSON files. The technique fist creates a

repository database to store all the variants of design patterns. This technique is done in

two main stages. The first stage is to store and describe all the classes and methods in the

system using some java parser tools. The second stage is to compare the candidate design

pattern instances with the file description in stage 1.

Ferenc et al. [38] proposed a machine learning based design pattern detection

technique. The machine learning technique is used to improve the results of the detection

method by using predictors. Predictors are the metrics related to each design pattern that

can be used to detect the pattern instance. This technique has two main stages. The first

stage is to convert the source code into Abstract Semantic Graph (ASG) using Columbus

framework. The design pattern descriptions are stored in the DPML (Design Pattern

Markup Language). Applying DPML design pattern description to the ASG graph to detect

the design pattern instance is the second stage.

36

Huang et al. [39] introduced a new pattern detection technique based on runtime

behavioral capturing. They proposed a prolog tool to represent the design pattern

descriptions called Hrycej. The idea is similar to the previously mentioned approach. The

technique first captures all the structural description of the system by converting the source

code to the UML intermediate representation. Then it captures the behavioral parts at

runtime. The algorithm then checks the design pattern description stored in Hrycej with the

structural and behavioral information.

Arcelli and Cristina [40] proposed a data mining based design pattern detection

technique. This technique uses Weka data mining environment to increase the correctness

of the detection method. This technique first divides the source components into a set of

subcomponents to make it easier to deal with. The next step is to collect all the design

pattern structure components using their proposed tool MARPLE (Metrics and

Architecture Reconstruction Plug-in for Eclipse). The false positives of the results are

improved using data mining technique (Weka data, and neural network). Table 7

summarizes the current design pattern techniques.

3.1.5 CSP Based

Guyomarc’h and Sahraoui [41] proposed a numerical signature based technique to

detect the occurrence of design patterns. The technique uses the constraint satisfaction

problem (CSP) algorithm to identify the source code classes and the relationships between

these classes. The numerical signatures are used to reduce the research latency of detection.

The idea behind the numerical signatures is to give each class, playing a role in the design

motif, a specific number and then remove every class that is not playing any role in design

motifs.

37

Table 7 Comparison of design pattern detection techniques

Paper No. Detection Technique No. Of

Views

Applied on

Keller et al. 1999 [25] Data Base Queries 1-View Class Diagram

and Source Code

Lee et al. 2007 [8] Data Base Queries 1-View Class Diagram

and Source Code

Rasool et al. 2010

[26]

Data Base Queries 1-View Class Diagram

and Source Code

Stencel and

Wegrzynowicz. 2008

[27]

Data Base Queries 1-View Class Diagram

and Source Code

Marek Vokác.[28] Data Base Queries 1-View Class Diagram

and Source Code

Paakki et al. 2000

[29]

Metrics 1-View UML

UJABA 1997 [30] Metrics and matrices 1-View SDM and UML

Antoniol et al. 1998

[31]

Metrics 1-View AST and AOL

Lucia et al. 2009 [4] Metrics 1-View Source Code

Tsantalis et al. 2006

[32]

Matrices (scoring

mechanism)

2-View UML

Dong et al. 2009 [6] Matrices 1-View XMI

PTIDEJ 2003 [33] PADL 1-View Source Code

Niere et al.2002 [34] Fuzzy Reasoning 1-View ASG and graph

transformation

rule

Guyomarc’h and

Sahraoui. 2009 [34]

Numerical Signature 1-View CSP

Shi and Olsson. 2006

[35]

Data flow and control flow 1-View CFG and AST

Beyer and Noack.

2007 [36]

Directed Graph 1-View BDD

38

Heuzeroth et al. 2003

[37]

Static and Dynamic

Analysis

1-View AST

Balanyi and Ferenc.

2003 [38]

XML matching 2-View ASG and DPML

Wang and Tzerpos.

2005 [39]

REQL query 1-View Source Code

Ferenc et al. 2005

[40]

Machine Learning 1-View ASG and DPML

Huang et al. 2005

[41]

Runtime Behavioral

Capturing

1-View UML

Arcelli and Cristina

2007 [42]

Data Mining 1-View Source Code

The proposed

approach

XML Integrated

Metamodel

3- Views UML

We noticed from Table 7 that most previous studies are based on only one single view.

Only a few number of studies have conducted their proposed approach in two views. There

has been no study used the main three views (Functional, Behavioral, and Structural).

Furthermore, there has been no research study used any integration model to detect design

patterns. We can also notice that most of these methods focused on detecting design

patterns from UML and source code.

3.2 Systematic Literature Review

We have conducted a systematic literature review is to state the art of the existing design

pattern techniques in the last two decades as well as providing a classifications and

categorization review of these techniques to the design pattern detection research area. In

order to meet our goal, we conducted a systematic literature review to cover all the primary

studies conducted in design pattern recovery area. Based on our research question provided

39

different customized research terms to determine on literature on design patterns detection

techniques.

 In this systematic literature review, we categorized and classified the design

patterns detection techniques based on the representation model used to build up the

software design model as well as the detection techniques used to detect the design patterns.

Furthermore, we provided a review of the views used in the detection processes. The

automation of the techniques also considered and reviewed.

The first attempt to review the different design pattern techniques in a

comprehensive way was made by Rasool, and Streit [43]. The authors studied the different

design pattern techniques and provided a detailed observation lessons as a benchmark and

guidelines and directions for this discipline.

Another review had been conducted by Kamatchi Priya [44] in a comparative

analysis. The author provided a detailed list of different design pattern detection

approaches that show the different aspects of each technique.

To the best of our knowledge, this is the first systematic literature review in

reviewing the design pattern detection approaches. A systematic review process requires

precise definition and documentation of the whole process. So for the sake of space, in this

section, we are going limit the discussion for the only research question, research string,

and the discussion of the results.

3.2.1 Research Question

The objective of this review is to analyze and use the results of the survey to answer the

research question (RQ) discussed below. This research question is subdivided into five

40

different sub-questions. The rationale about why these specific sub-questions were selected

for the review is included for each research sub-question.

(RQ) What are the available design pattern detection techniques in software development

lifecycle?

The sub-questions of the research question are listed as follows:

(RQ).1 what are the different software design model representations used in DPDT?

Rationale: Software design model representation is the vital rule in DPDT since each

approach used a different type of representation. The main motivation behind this research

sub-question is identified the different representation approaches that have been used in in

order to detect the design patterns.

(RQ).2 what are the different software design patterns detection algorithms and methods

used in DPDT?

Rationale: In order to detect the design patterns from an existing software design, different

algorithms have been applied to search and parse the design pattern features. Each

technique built their own algorithm to detect design patterns either at the code level or

design level. The main aim of this research sub-question is to identify what are the different

algorithms and methods used in the literature to detect the design patterns.

(RQ).3 what are the different software design views used in the DPDT?

Rationale: A software model is built up from many different views, a view is a collection

of models that illustrate similar characteristics of the system. There are three main views

for every software design model (Functional, Structural, and Behavioral) views. The main

41

goal of this research sub-question is to identify what are the different model views are used

in every DPDT to detect the design patterns.

(RQ).4 is the DPDT seamlessly integrated with the existing software CASE tool or

providing prototype tools to simplify the DPDT?

Rationale: DPDT automation is one of the most important issues related to this discipline.

The automation plays a vital rule in software development lifecycle. The main motivation

of this research sub-question is to show which of the proposed DPDT was implemented to

be adapted to existing CASE tools or which of it used a prototype tool to assist the detection

process.

(RQ).5 which design pattern categories have been used in the DPDT?

Rationale: There are different types of design patterns proposed in the literature such as

GoF and Web Design patterns. The main motivation of this research sub-question is to

identify which design patterns categories are used in a specific DPDT proposed in the

literature.

3.2.2 Data Sources and Search Strategy

The objective of this review is to analyze and use the results of the survey to answer the

research question (RQ) discussed below. This research question is subdivided into five

different sub-questions. The rationale about why these specific sub-questions were selected

for the review is included for each research sub-question.

42

Research articles published in literature related to the field of design pattern detection were

extracted from pertinent scientific databases and considered for review. Scientific

databases considered in this review process include:

1. IEEE Explore (http://ieeexplore.ieee.org)

2. ACM Digital Library (http://dl.acm.org/)

3. Science Direct (http://www.sciencedirect.com/)

4. Springer Link (http://link.springer.com/)

5. John Wiley Online Library (http:// http://onlinelibrary.wiley.com/)

Depending on the search Database we can use Boolean operator ‘AND’ for concatenation

of the major term and Boolean operator ‘OR’ for the concatenation of alternative spellings

and synonyms. The search strings for the specific electronic Databases are given below

with the screenshots present in Appendix A respectively for each database:

RQ1)

 ((" Design pattern* " AND (Detect* OR Recovery OR Identif* OR Min* OR Recognition

OR Discovering OR Revealing OR Retrieval OR Searching OR Research OR Extraction

OR Miner)))

IEEExplore- 561 Proper Results returned

RQ1)

"Design Pattern" in All Fields AND "Detection " OR " Recovery " OR " Identification "

OR " Mining " OR " Recognition " OR " Discovering " OR " Revealing " OR " Retrieval "

OR " Extraction " OR " Representation " OR " Identifying " OR " Detecting " OR " Miner

" OR " Detector " OR " Discover" in All Fields between years 1998 and 2016

John Wiley Online Library- 2037 Proper Results returned

43

RQ1)

("Design pattern") and ("Detection " OR " Recovery " OR " Identification " OR " Mining

" OR " Recognition " OR " Discovering " OR " Revealing " OR " Retrieval " OR "

Extraction " OR " Identifying " OR " Detecting " OR " Miner " OR " Detector " OR "

Discover")[All Sources(Computer Science)].

Science Direct- 2,186 proper results returned

RQ1)

'("Design Pattern") and ("Detection " OR " Recovery " OR " Identification " OR " Mining

" OR " Recognition " OR " Discovering " OR " Revealing " OR " Retrieval " OR "

Extraction " OR " Identifying " OR " Detecting " OR " Miner " OR " Detector " OR "

Discovering ") ' within Computer Science English Article

Springer Link- 1,399 proper results returned

RQ1)

(+"design pattern" Detection Recovery Detector Miner Detecting Identifying Extraction

Research Searching Retrieval Revealing Discovering Recognition Mining Identification)

ACM- 1,220 proper results returned

3.2.3 Citation Retrieval and Management

The number of the returned citations in Stage 1 is 7,403, these citations were maintained

and organized using a citation management tool called EndNote [46]. Then the citations

were recorded in a spreadsheet using the author, the source of citation, the year of

publication and type.

Both authors shared the filtering and classification processes independently; in case if a

disagreement raised up, the common decision achieved.

44

In Stage 2, the citations titles of Stage 1 were studied to the scope of the proposed

systematic review. We excluded the studies that are not related to the design pattern

detection techniques. For instance, surveys and imperial studies were excluded. The vague

and unclear citations in this stage were included to be studied in the next stage. In Stage 2

we ended up having 2,262 out of 7,403.

In Stage 3, by studying the articles abstracts we excluded the studies that are not related to

the design pattern detection techniques such as surveys and empirical studies, the articles

that have unclear abstract were included to the next stage (detailed quality assessment) for

further investigations. In this stage, we left up with 210 citations. In Stage 4 (detailed

quality assessment) we ended up with 91 articles.

Stage 5 (Snowballing Stage) was performed to cover as many articles as we can, since

some articles might be missed by our proposed research string, by looking to the citations

and references of the 91 articles of (detailed quality assessment stage) we found other 8

articles that were not found by our research string. The Snowballing stage was made by

applying Stage 2 to Stage 4 processes for the final number of the articles in stage 4.

The citations duplication found by the citation management tool were studied by both

authors based on the content of the whole article and then removed. Intra-database

duplicates were reviewed and the ones secondarily indexed were removed. For instance,

an article published in Springer was retrieved from Springer, Scholar, and ACM. Hence,

its instance from Scholar and ACM was deleted leaving behind the one in its primary index

database.

45

Table 8 the detailed summary of all the articles and their stage

 IEEE ACM Springer Science

Direct

John

Wiley

Total

number

Stage 1 561 1,220 2,186 1,399 2,037 7,403

Stage 2 300 266 620 442 900 2,262

Stage 3 95 23 47 26 19 210

Stage 4 56 12 16 4 3 91

Stage 5 2 0 0 6 0 8

3.2.4 Results Analysis and Discussion

In this part of the review, the studies are reviewed and analyzed in order to analysis the

future gaps and challenges, drawbacks, and challenges based on the main research question

and its sub-questions. Table 9 shows the summary of the systematic review, the table

summarized each study with the results corresponding to each one.

Table 9 Summary of all design pattern detection techniques

N
o
.

R
eferen

ce

J
o
u

rn
a
l N

a
m

e

In
itia

l R
ep

rese
n

ta
tio

n

F
in

a
l R

ep
resen

ta
tio

n

D
etectio

n
 T

ech
n

iq
u

e

D
esig

n
 P

a
ttern

 T
y
p

e

V
iew

s

A
u

to
m

a
tio

n

1 Iacob, Claudia
[45]

ACM - Manual Text
Discerption of
DPs

A Query
Algorithm
and Metrics
Based (DoR)

N/A

1- View
(Structural
)

N/A

2 Arnold and
Corporaal [46]

ACM - Directed Graph Graph
Matching
Algorithm
(Incremental
Matching)

N/A 1- View
(Structural
)

Automated

3 Alnusair et al.
[47]

ACM - Ontology-Based First-Order
Predicate
Logic

GoF 1- View
(Structural
)

Automated

4 Pappalardo
and

ACM UML Class
Diagram,
Concern and

XML Graph
Matching

N/A 2- Views (
Structural
and
Behavioral

Automated

46

Tramontan
[48]

Pattern Concern
View

'Concern
view')

5 J Dong et
al.[49]

ACM - Matrix Template
Matching
and
Similarity
Score
calculation

Composite,
Adapter,
State,
Decorator

1 - View (
Structural
)

Automated

6 Dabain, et
al[50]

ACM - Source Code Query
Based
Algorithm

GoF 1 - View (
Structural
)

Automated

7 Stephan and
Cordy[51]

ACM UML Class
Diagram

XML Model Clone
Detection

N\A 1 - View (
Class
Diagram)

Automated

8 Seemann and
Gudenberg
[52]

ACM UML Class
Diagram

XML Graph
Matching

Composite,
Bridge, and
Strategy

1 - View (
Class
Diagram)

Manual

9 Wendehals
and Orso [53]

ACM UML Pattern Catalog
and Finite
Automata

Static
Analysis
Algorithm

Behavioral
Patterns

2- Views (
Structural
and
Behavioral
Sequence
Diagram
and FA')

Automated

10 Sudhakar and
Gyani [54]

ACM - Intent
Aspects(IA's)

Selection
Based
Algorithm

Prototype,
Builder, and
Singleton

1 - View (
Class
Diagram)

Automated

11 Moha and
Guéhéneuc
[54]

ACM - PADL meta-
model

 Matching
Algorithm

GoF 1 - View (
Class
Diagram)

Automated

12 Bernardi et al.

[55]

JW - Domain Specific

Language (DSL)

Graph

Matching

GoF 2- Views (

Class and
Sequence
Diagram
"Method
Call")

Automated

13 Martino and
Esposito [56]

JW UML Web Ontology
Language
(OWL), XML,
and Logic Rules

Prolog
Facts
Search
Algorithm

GoF 2- Views (
Class and
Behavioral
interaction
diagram)

Automated

14 Ng and
Guéhéneuc
[57]

JW UML Scenario
Diagrams

Scenario
Diagrams

 Matching
Algorithm
and CSP

Behavioral
and
Creational

2- Views (
Class and
Sequence
Diagram)

Automated

15 D Yu et al.
[58]

Science
Direct

Class-
Relationship
Directed Graphs

XML Graph
Matching

GoF 2- Views (
Structural
and
Behavioral
Method
Signature'
)

Automated

16 Tekin and
Buzluca [59]

Science
Direct

UML and
Abstract Syntax
Trees (AST)

XML The
Subgraph
Mining
Algorithm

GoF 1- View
(Structural
)

Semi-
Automatic

17 Huang et al.
[41]

Science
Direct

UML XML Prolog
Rules and
Selection
Based
Algorithm

GoF 2- Views (
Structural
and
Behavioral
At
Runtime)

Automated

47

18 Fontana and
Zanoni [60]

Science
Direct

AST(abstract
syntax tree) and
UML

XML Metrics and
Basic
Elements
Detector
(BED)

GoF 1 - View (
Structural
)

Automated

19 Gaitani et al.
[61]

Science
Direct

UML and AST XML Prolog
Rules
Queries

NULL
OBJECT
design
pattern

1 - View (
Structural
)

Automated

20 Christopoulo
u et al. [62]

Science
Direct

UML XML Identificatio
n Algorithm
and Logic
Metrics

Strategy
Design
Pattern

1 - View (
Structural
)

Automated

21 Rasool et al.
[26]

Science
Direct

UML with
Annotation and
Regular
expressions

XML Database
queries

Singleton,
Factory
method,
Adapter,
Composite,
Proxy,
Observer,
Visitor

1 - View (
Structural
)

Automated

22 De Lucia et
al.[63]

Science
Direct

UML XML XPG
formalism

and LR-
based

parsing

GoF 1 - View (
Structural
)

Automated

23 Wang and
Tzerpos [64]

Science
Direct

UML and
Abstract Syntax
Trees (AST)

XML Database
queries

GoF 1 - View (
Structural
)

Automated

24 Kaczor et al.
[65]

Science
Direct

UML Finite Automata Automata
Simulation
processing
Algorithm
and bit-
vector
processing
algorithm

GoF 1 - View (
Structural
)

Automated

25 Fabry and
Mens [66]

Science
Direct

- Logic parse tree Logic Based
and Query-
Based

GoF 1 - View (
Structural
)

Automated

26 Antoniol et al.
[67]

Science
Direct

 Abstract
Objects
Language (AOL)

Metrics
Based

GoF 1 - View (
Structural
)

Manual

27 Zanoni et
al.[68]

Science
Direct

AST XML Machine
Learning
and
Matching
Algorithm

Singleton

Adapter

Composite

Decorator

Factory
method

1 - View(
Structural
)

Automated

48

28 Haitzer and
Zdun[69]

Science
Direct

UML Structural
Primitives and
Annotation

Selection
Based
Algorithm

Architectural
Patterns

1 - View (
Structural
)

Semi-
Automatic

29 Chihada et al.
[2]

Science
Direct

- Association
Graph and
Matrix

Searching
Algorithm
and
Machine
Learning

Adapter

Builder

Composite

Factory
method

Iterator

Observer

1 - View (
Structural
)

Semi-
Automatic

30 Fontana et al.
[70]

Science
Direct

- Micro-
Structures

Selection
Based
Algorithm

Singleton,
Abstract
Factory,
Template
Method,

State,
Composite,
and
Decorator

1 - View (
Structural
)

Automated

31 Philippow et
al. [71]

Springe
r

UML XML Minimal key
Structures

GoF 1 - View (
Structural
)

Automated

32 Qing-hua et
al. [72]

Springe
r

UML XML minimal key
structures

N/A 1 - View (
Structural
)

Semi-
Automatic

33 Alnusair et al.
[73]

Springe
r

UML Ontology-Based Graph
Matching

Composite,
Factory
Method, and
Visitor

1 - View (
Structural
)

Automated

34 Issaoui et al.
[74]

Springe
r

UML Metrics Based Search
Based
Algorithm
MAPeD

(Multi-phase
Approach
for Pattern
Discovery)

GoF 1 - View (
Structural
)

Automated

35 Issaoui et
al.[75]

Springe
r

UML Matrix and
Metrics-Based

Query
Based
Algorithm
and
Normalized
Algorithm

N\A 1 - View (
Structural
)

Automated

36 Kim and
Boldyreff [76]

Springe
r

UML Metrics Based Searching
Algorithm

GoF 1 - View (
Structural
)

Automated

37 Pande et al.
[77]

Springe
r

Directed Graph
and UML

Matrix Graph
Matching

GoF 1 - View (
Structural
)

N/A

38 Bouassida
Ben-Abdallah
[78]

Springe
r

UML Matrix
(CRMatrix and
Normalized
CRMatrix)

Identificatio
n Algorithm

Bridge 1 - View (
Structural
)

Automated

39 Kirasić and
Basch[79]

Springe
r

AST XML and
Ontology Based

XML Query
Algorithm

N/A 1 - View (
Structural
)

N/A

49

40 Bouassida
and Ben-
Abdallah [80]

Springe
r

UML XML XML Query
Algorithm

Behavioral
and
Creational

2- Views (
Structural
and
Behavioral
' Method
Signature')

Automated

41 Bernardi et al.
[81]

IEEE - Domain Specific
Language (DSL)

Graph-
Matching

GoF 1 - View (
Structural
)

Automated

42 Zhang et al.
[82]

IEEE UML Matrix Graph-
Matching

NS 1 - View (
Structural
)

Manual

43 Paydar and
Kahani [83]

IEEE - Ontology-Based Query
Based
Algorithm

GoF 1 - View (
Structural
)

NS

44 De Lucia et al.
[84]

IEEE UML XML visual
language
parsing

GoF 1 - View (
Structural
)

Automated

45 Muangon and
Intakosum
[85]

IEEE - Formal Concept
Analysis (FCA)

Case Based
Reasoning
(CBR)

GoF 1 - View (
Structural
)

Manual

46 Chen and Qiu
[86]

IEEE - State Space
Graph

Mining
Algorithm

GoF 1 - View (
Structural
)

Automated

47 Ren and Zhao
[87]

IEEE - Ontology-Based Selection
Based
Algorithm

Observer 2- Views (
Structural
and
Behavioral
' Sequence
Diagram')

Automated

48 Heuzeroth et

al. [37]

IEEE AST XML Searching

Algorithm

Observer,

Composite,
Mediator,
Chain of
Responsibilit
y and Visitor

2- Views (

Structural
CD and
Behavioral
' Dynamic
Rules')

Semi-

Automatic

49 Gupta et al.
[88]

IEEE UML Matrix Normalized
cross
correlation
(NeC)

GoF 1 - View (
Structural
)

Manual

50 Gupta et al.
[89]

IEEE UML Matrix Matching
Algorithm

NS 1 - View (
Structural
)

Semi-
Automatic

51 Ferenc et al.
[90]

IEEE UML and
Abstract

Semantic Graph
(ASG)

XML Graph
Matching
Algorithm

and
Machine
Learning

Adapter

Strategy

1 - View (
Structural
)

Automatic

52 Pande et al.
[91]

IEEE UML Matrix Matching
Algorithm

Composite 1 - View (
Structural
)

Semi-
Automatic

53 Basu et al.
[92]

IEEE XMPL XML Graph
Matching

GoF 1 - View (
Structural
)

NS

54 Alhusain et al.
[93]

IEEE UML ANFIS
architecture

Search
Algorithm
and

Adapter,
Command,

Composite,
Decorator,

1 - View (
Structural
)

Manual

50

Machine
Learning

Observer and
Proxy

55 Antoniol et
al.[31]

IEEE UML Abstract Object
Language

(AOL)

Metrics and
Parsing

GoF 1 - View (
Structural
)

Automatic

56 Kramer and
Prechelt [94]

IEEE - Prolog Rules Logic Query
Algorithm

Structural
Design
Patterns

1 - View (
Structural
)

Automatic

57 Binun and
Kniesel [95]

IEEE UML XML Search
Algorithm

GoF 2- Views (
Structural
CD and
Behavioral
control
flow graph
CFG)

Automatic

58 Washizaki et
al. [96]

IEEE - Source Code Searching
Algorithm

NS 1 - View (
Structural
)

Manual

59 Stoianov and
Sora [97]

IEEE - Prolog Rules Logic Query
Algorithm

Observer,
Singleton,
Strategy,
Adapter,
Decorator.

1 - View (
Structural
)

Automatic

60 Thongrak and
Vatanawood
[98]

IEEE - Semantic
Query-
Enhanced Web
Rule Language

(SQWRL)

Query
Based
Algorithm

GoF 1 - View (
Structural
)

Automatic

61 Dongjin et al.
[99]

IEEE - Directed and
weighted Graph

Search
Algorithm

NS 1 - View (
Structural
)

NS

62 Pradhan et al.
[100]

IEEE UML Matrix Normalized
Cross
Correlation
and Graph
Matching

NS 1 - View (
Structural
)

Automatic

63 Stencel and
Wegrzynowic
z [27]

IEEE - logic Rules SQL queries
and Parsing
Algorithm

GoF 2- Views (
Structural
CD and
Behavioral
‘Message
Call’)

Automatic

64 Thankappan
and Patil [101]

IEEE UML XML Similarity
Scoring
Algorithm

GoF 1 - View (
Structural
)

NS

65 Pandel et al.
[102]

IEEE - Directed Graph Graph
Matching

GoF 1 - View (
Structural
)

NS

66 Dong et al.
[103]

IEEE UML Matrix Matching
Matrix
algorithm

GoF 2- Views (
Structural
CD and
Behavioral
'Control
Flow
Graph
(CFG)')

Automatic

67 Nguyen and
Pooley [104]

IEEE UML XML Similarity
Scoring
Algorithm

GoF 1 - View (
Structural
)

Automatic

51

and Fuzzy
Method

68 Kaczor et al.
[11]

IEEE - Eulerian mode
and String
representation

bit-vector
algorithm

GoF 1 - View (
Structural
)

Automatic

69 Arcelli et al.
[105]

IEEE AST XML Parsing
Algorithm

GoF 2- Views (
Structural
CD and
Behavioral
‘Message
Call’)

Automatic

70 Arcelli and
Christina [42]

IEEE AST XML Metrics
Neural
Networks

Elemental
Design
Patterns

1 - View (
Structural
)

Automatic

71 De Lucia et al.
[106]

IEEE UML XML Searching
Algorithm

GoF 2- Views (
Structural
CD and
Behavioral
‘Sequence
Diagram’)

Automatic

72 Sandhu et al.
[107]

IEEE UML XML Metrics and
Searching
Algorithms

GoF 1 - View (
Structural
)

NS

73 Lebon and
Tzerpos [108]

IEEE - fine-grained
detection rules

Searching
Algorithms

GoF 1 - View (
Structural
)

Automatic

74 Rasool and
Mäder [109]

IEEE - Feature Types
and Regular
expressions

Different
Search
Techniques

GoF 1 - View (
Structural
)

Automated

75 Yu et al. [110] IEEE Class-
Relationship

Directed Graph
and A Structural
Feature Model

XML Searching
Algorithms

Structural DP 1 - View (
Structural

)

Automated

76 Heuzeroth et
al. [111]

IEEE - Prolog Rules Searching
Algorithm
and query
based

GoF 2- Views (
Structural
CD and
Behavioral
temporal
logic of
actions
(TLA))

Automated

78 He et al. [112] IEEE - (Object
Constraint
Language) and
Java Annotation

Searching
Algorithms

GoF 1 - View (
Structural
)

Semi-
Automatic

79 Stephan and

Cordy[51]

IEEE UML Prolog Rules Model clone

detection
(MCD)

NS 1 - View (

Structural
)

Automated

80 De Lucia et al.
[113]

IEEE UML XML Model
Checking
phase
analyzes

Behavioral
DP

2- Views (
Structural
CD and
Behavioral
SD)

Automated

81 Albin-Amiot
et al. [114]

IEEE - Pattern
Description
Language

CSP GoF 1 - View (
Structural
)

Automated

82 Haqqie and
Shahid [115]

IEEE UML XML Search
Algorithm

NS 1 - View (
Structural
)

Semi-
Automatic

52

83 Balanyi and
Ferenc [38]

IEEE Design Pattern
Markup
Language
(DPML)

XML Mining
Algorithm

GoF 1 - View (
Structural
)

Automated

84 Bernardi and
Di Lucca [116]

IEEE UML XML Matching
Algorithm

GoF 1 - View (
Structural
)

Automated

85 Nagy and
Kovari[117]

IEEE UML XML Matching
Algorithm

GoF 1 - View (
Structural
)

Automated

86 Fayad et al.
[118]

IEEE UML XML Searching
Algorithm

Stable Design
Patterns

2- Views (
Structural
CD and SD
)

NS

87 Wegrzynowic
z and Stencel
[119]

IEEE UML Prolog Rules Logic
queries

GoF 1 - View (
Structural
)

Automated

88 Li et al. [120] IEEE UML Matching
Algorithm

GoF 2- Views (
Structural
CD and
Behavioral
MCT)

Automated

89 Muangon and
Intakosum
[85]

IEEE Formal Concept
Analysis (FCA)

Case Based
Reasoning
(CBR)

GoF 1 - View (
Structural
)

Manual

90 N Shi and RA
Olsson [35]

IEEE AST XML Machine
Learning
and
Searching
Algorithm

GoF 2- Views (
Structural
CD and
Behavioral
CFG)

Automated

91 Miao et
al.[121]

IEEE UML XML Relational
Calculus

GoF 1 - View (
Structural
)

Automated

92 Smith and
Stotts [122]

IEEE UML XML Searching
Algorithm

GoF 1 - View (
Structural
)

Automated

93 Zhu et al.
[123]

IEEE Descriptive
Semantics of
UML

XML Query
Based

GoF 1 - View (
Structural
)

Automated

94 Alhusain et
al.[93]

IEEE UML XML artificial
neural
network
(ANN) and
Machine
Learning

Adapter,

Decorator,

Observer,

Proxy,

Composite,
and

Command

1 - View (
Structural
)

Automated

95 Niere et al.
[34]

IEEE UML and
abstract syntax
graph (ASG)

XML Parsing
Algorithm

GoF 1 - View (
Structural
)

Automated

96 Tsantalis et
al. [32]

IEEE UML Matrix Using
Similarity
Scoring

GoF 1 - View (
Structural
)

Automated

53

97 Guéhéneuc
and Antoniol
[124]

IEEE - Pattern and
Abstract-level
Description
Language
(PADL)

CSP GoF 1 - View (
Structural
)

Automated

98 Antoniol et al.
[125]

IEEE AST XML Metrics GoF 1 - View (
Structural
)

Automated

Not specified fields “NS” in Table 9 means that the study didn’t mention a clear evidence

about the part of the study mentioned in the table.

In the following we are going to discuss each research question based on the results

showed in table 9:

Design Pattern Representations (RQ).1?

The effectiveness of the design pattern detection techniques is mainly based on the model

representation of the design patterns. Based on the results there are different model

representation forms have been used to represent design patterns to detect design patterns

effectively. Most of the studied techniques used graph-based representations such as UML,

AST, ASG and Directed Graph. The main advantage of using a graphical based

representation is that the information of design patterns can be stored as graphs which make

it easy to understand and to detected features.

The other representations model is based on logic. A logic-based representation such as

first-order logic, and prolog rules. Ontology-based representation is another representation

model that has been used in representing and defining design patterns.

There are some studies proposed design patterns detection techniques based on matrix

representation form.

54

There are also other variants of representation models have been used in order to define

and represent the different characteristics of design patterns, such as formal concept,

relational calculus, Pattern Description Language, etc.

The following table and figure illustrated the percent of each design patterns representation

form covered in the systematic literature review:

Table 10 Representations forms statics

Representation Form No.

Matrix 11

Graph-Based 43

Logic-Based 5

Others 39

Figure 6 Representations forms statics

The previous table, and figure showed the different statics of each representation covered

in the systematic literature review based on Table 9.

11%

44%

5%

40%

Representation Forms Statics

Matrix

Graph Based

Logic Based

Others

55

Matrix-based representation form takes 11% of the total representation forms used, while

graph-based representation takes 40% in total, logic-based represents only 5%, and the

44% represents the other presentation forms like metrics and ontology.

 Detection algorithms and methods of DPDT (RQ).2?

To detect design patterns effectively, the researchers should implement and introduce an

algorithm that looks for a design pattern based on the representation forms selected. Most

of the previous design pattern detection techniques used a search algorithm to search for a

design pattern at the code, text, or metamodel.

Some used a matching algorithm to compare the design model with the predefined design

pattern model. Some research studies used SQL queries algorithm to detect design pattern.

The following table and figure illustrated the different statists of design pattern detection

algorithms used in the literature review:

Table 11 Design pattern detection algorithms statics

Algorithm No.

Graph Matching 25

Searching Algorithm 49

SQL Queries 10

Others 14

56

Figure 7 Design pattern detection algorithms statics

 The searching algorithm takes 50% of the total design pattern detection algorithms. Whilst

Graph matching algorithm is taking 26%, SQL queries are taking 10%, and other design

pattern detection algorithms are taking 14%.

What are the different software design views are used in the DPDT?

From the summary Table 9, we can realize that easily most of the previous techniques were

conducted only in one view the structural view, there are few studies were conducted in

two views (structural and behavioral).

The following table and figure show the statics of different views used in the literature:

Table 12 Design pattern detection views based statics

Views No.

1 View 77

2 Views 20

3 Views 0

Integrated Views 0

26%

50%

10%

14%

Detection Algorithm

Graph Matching

Searching Algorithm

Sql Queries

Others

57

Figure 8 Design pattern detection algorithms statics

The previous figure and table showed that 79% of the previous design pattern detection

techniques were based only on one view, while only 21% are based on two views. No

research study was conducted on three views or an integrated metamodel.

Is the DPDT seamlessly integrated with the existing software CASE tool or providing

prototype tools to simplify the DPDT?

The summary table 9 showed that there is a variety of the automation process of detection

design patterns. Some studies were conducted manually or in a semi-manual manner,

whilst the most techniques used different CASE TOOLS to fully automate the design

pattern detection process.

The following table and figure will list the statics of how much design pattern detection

techniques are automated:

79%

21%
0%0%

No.

1 View

2 Views

3 Views

Integrated Views

58

Table 13 Design pattern detection automation statics

 Views No.

Automated 70

Manual 18

Semi-Automated 9

Figure 9 Design pattern automation statics

The statics showed that 72% of design pattern detection techniques proposed in the

literature review are automated, whilst 19% are manually conducted, and 19% of the

previous detection techniques are semi-automated.

Which design pattern categories have been used in the DPDT?

The summary Table 9showed that most of the previous techniques were conducted in GoF

design patterns. Some techniques were conducted in specific design patterns of GoF. There

are some studies hadn’t mention the type of GoF they have conducted their results on.

72%

19%

9%

Automation

Automated

Manual

Semi-Automated

59

Table 14 Design pattern type statics

Design Patterns No.

GoF 95

Others 3

Figure 10 Design pattern type statics

The previous table and figure showed that 97% of the previous design patterns detection

techniques were conducted on GoF design patterns, while 3% of the studies conducted their

proposed technique in other types of design patterns.

97%

3%

Design Patterns
Type

GoF

Others

60

4 CHAPTER 4

RESEARCH METHODOLOGY

In order to address our research objectives mentioned earlier, we propose to use the

integrated metamodel representation to represent the design patterns. Since were using

UML to represent the design pattern specification we used the concept of views. The UML

model classified into three main views: functional view, behavioral view, and the structural

view. Each view represents a major aspect of the software system, when combining all the

different views it provide a comprehensive description of the software system. Each view

can be represented by different diagrams, we have selected the popular and the most

efficient diagram for each view.

Use case diagram represents the functional aspects of the software system,

sequence diagram represents the behavioral aspects of the software system, and class

diagram represents the structural aspects of the software system.

The outline of our research methodology is illustrated in Figure 11. Figure 11 shows the

steps of our proposed representation and detection techniques of design patterns process in

a graphical form.

61

Phase #2: UML integrated

metamodel Representation

Phase #3: XML Converter

Component.

Phase #4: Design Pattern Detector.

Phase #5: Viewer: The list of

Design Patterns detected.

Functional Specification:

Behavioral Specification:

Structural Specification:

Phase #1: Define all the Design

Pattern Specification

Figure 11 Design pattern detection automation

62

Phase #1: Define all the Design Pattern Specification

In this stage, we are going to define each design pattern different views features. Each

design pattern will be detected only if the XML file satisfies all the different views features

and specifications. The definition of each design pattern will be discussed for each view.

Phase #2: UML integrated Metamodel Representation

The first step in the automated detection process is representing the design patterns using

the UML integrated metamodel proposed in [24]. Every design pattern has been defined

and represented by the three main views (Functional, Structural, and behavioral).

Phase #3: XML Converter Component.

We have used the proposed representation tool in [24] in order to convert all the different

views of the design pattern to an XML file. We have also used a tool called XML spy in

order to validate our representation with UML integrated metamodel proposed in [24].

Phase #4: Design Pattern Detector.

In this phase, we have developed a detection tool by using Python programming language.

The algorithm of detection procedure had been taken from the design pattern specification.

The tool reads an XML file and checks every tag based on the design pattern specifications,

if the XML file satisfies all the different view specification of the design pattern, then the

tool claims that it found the design pattern. Otherwise, if the XML file does not satisfy all

the different design pattern views specification the tool will claim that there is no design

pattern detected.

Phase #5: Display the Detected Design Pattern.

63

In this phase, the tool displays a list of design patterns detected from the XML file and the

number of occurrences of each design patterns.

4.1 Design Pattern Specifications

In this section, we are going to define the design patterns specification. In order to generate

an integrated metamodel representation for every design pattern, the design pattern three

main views specification should be defined first. The definition of the design pattern

specifications will be discussed per each view as follows:

Table 15 Builder Design Pattern Specifications

Building the Complex Object

Functional Specification:

➢ Use Case Name: Building the Complex Object

➢ Actor Name: Client\Programmer\Designer

Behavioral Specification:

➢ The first Life Line: Director

 Operations: director (ConcreteBuilder).

 Operations: construct ().

➢ The Second Life Line: ConcreteBuilder

 Operations: buildPartA().

 Operations: buildPartB().

 Operations: buildPartC().

Structural Specification:

➢ The first Class: Director

 Operations: director (ConcreteBuilder).

 Operations: construct ().

➢ The Second Class: ConcreteBuilder

 Operations: buildPartA().

 Operations: buildPartB().

 Operations: buildPartC().

Inherits: Builder

➢ The Third Class: Builder

 Operations: buildPartX().

 Compose: Director

64

Table 16 Prototype Design Pattern Specifications

Clone Object

Functional Specification:

➢ Use Case Name: Clone Object

➢ Actor Name: Client\Programmer\Designer

Behavioral Specification:

➢ The first Life Line: ConcretePrototype1

 Operations: doneItSelf().

➢ The Second Life Line: ConcretePrototype2

 Operations: doneItSelf().

Structural Specification:

➢ The first Class: Prototype

 Operations: done().

➢ The Second Class: ConcretePrototype1

 Operations: done().

Inherits: Prototype

➢ The Third Class: ConcretePrototype2

 Operations: done().

 Inherits: Prototype

Table 17 Singleton Design Pattern Specifications

Get Instance

Functional Specification:

➢ Use Case Name: Get Instance

➢ Actor Name: Client\Programmer\Designer

Behavioral Specification:

➢ The first Life Line: Singleton

 Operations: getInstance().

Structural Specification:

➢ The first Class: Singleton

 Operations: getInstance().

 Operations: singelton().

 Association: itSelf

Table 18 Decorator Design Pattern Specifications

Add Behavior

Functional Specification:

➢ Use Case Name: Add Behavior

➢ Actor Name: Client\Programmer\Designer

Behavioral Specification:

➢ The first Life Line: Decorator1

 Operations: operation().

65

 Operations: addBehaviorr().

➢ The Second Life Line: Decorator2

 Operations: operation ().

 Operations: addBehaviorr().

➢ The Third Class: ConcreteComponenet

 Operations: operation ().

Structural Specification:

➢ The first Class: Component

 Operations: operation().

➢ The Second Class: ConcreteComponenet

 Operations: operation ().

Inherits: Component

➢ The Third Class: Decorator

 Operations: operation ().

➢ The Fourth Class: Decorator1

 Operations: operation ().

 Operations: addBehaivor ().

 Inherits: Decorator

➢ The Fifth Class: Decorator2

 Operations: operation ().

 Operations: addBehaivor ().

 Inherits: Decorator

Table 19 Proxy Design Pattern Specifications

Requesting the Functionality of Subject

Functional Specification:

➢ Use Case Name: Requesting the Functionality of Subject

➢ Actor Name: Client\Programmer\Designer

Behavioral Specification:

➢ The first Life Line: Subject

 Operations: operation().

➢ The Second Life Line: RealSubject

 Operations: operation ().

Structural Specification:

➢ The first Class: Subject

 Operations: operation().

➢ The Second Class: RealSubject

 Operations: operation ().

Inherits: Subject

➢ The Third Class: Proxy

 Operations: operation ().

Inherits: Subject

Association: RealSubject

66

Table 20 Adapter Design Pattern Specifications

Adapting the Request

Functional Specification:

➢ Use Case Name: Adapting the Request

➢ Actor Name: Client\Programmer\Designer

Behavioral Specification:

➢ The first Life Line: Adapter

 Operations: requiredMethod().

➢ The Second Life Line: Adaptee

 Operations: specificedMethod().

Structural Specification:

➢ The first Class: Target

 Operations: requiredMethod ().

➢ The Second Class: Adapter

 Operations: requiredMethod ().

Inherits: Target

Uses: Adaptee

➢ The Third Class: Adaptee

 Operations: specificedMethod ().

Table 21 Bridge Design Pattern Specifications

Decouple the Abstraction from The Implementation

Functional Specification:

➢ Use Case Name: Decouple the Abstraction from The Implementation

➢ Actor Name: Client\Programmer\Designer

Behavioral Specification:

➢ The first Life Line: Abstraction

 Operations: operation ().

➢ The Second Life Line: ConcreteImpelementor1

 Operations: operationImpl ().

➢ The Third Life Line: ConcreteImpelementor2

 Operations: operationImpl ().

Structural Specification:

➢ The first Class: Abstraction

 Operations: operation ().

➢ The Second Class: Implementor

 Operations: operationImp ().

Compose: Abstraction

➢ The Third Class: ConcreteAbstraction

 Operations: operation ().

➢ The Fourth Class: ConcreteImpelementor1

 Operations: operationImp ().

 Inherits: Implementor

➢ The Fifth Class: ConcreteImpelementor2

67

 Operations: operationImp ().

 Inherits: Implementor

Table 22 Flyweight Design Pattern Specification

Reduce Memory Load

Functional Specification:

➢ Use Case Name: Reduce Memory Load

➢ Actor Name: Client\Programmer\Designer

Behavioral Specification:

➢ The first Life Line: Flyweight

 Operations: create().

 Operations: operationExtrinsicState().

➢ The Second Life Line: FlyweightFactory

 Operations: getFlyweight ().

 Operations: findFlyweight ().

Structural Specification:

➢ The first Class: Flyweight

 Operations: operationExtrinsicState().

Compose: FlyweightFactory

➢ The Second Class: FlyweightFactory

 Operations: getFlyweight ().

Inherits: Component

➢ The Third Class: ConcreteFlyweight

 Operations: operationExtrinsicState().

 Inherits: Flyweight

➢ The Third Class: UnsharedConcreteFlyweight

 Operations: operationExtrinsicState().

 Inherits: Flyweight

Table 23 Chain of Responsibility Design Pattern Specifications

Handling Request by Controller

Functional Specification:

➢ Use Case Name: Handling Request by Controller

➢ Actor Name: Client\Programmer\Designer

Behavioral Specification:

➢ The first Life Line: Controller

 Operations: HandleRequest().

➢ The Second Life Line: Mediator 1

 Operations: None.

➢ The Third Life Line: Mediator 2

 Operations: None.

➢ Alternative Name: Handling the request by the next Mediator

68

The first Life Line: Controller

 Operations: ForwardRequest().

Structural Specification:

➢ The first Class: Controller

 Operations: HandleRequest().

 Operations: ForwardRequest().

➢ The Second Class: Mediator 1

 Operations: HandleRequest().

 Operations: ForwardRequest().

Inherits: Controller

➢ The Third Class: Mediator 2

 Operations: HandleRequest().

 Operations: ForwardRequest().

Inherits: Controller

Handling Request by a Mediator

Functional Specification:

➢ Use Case Name: Handling Request by a Mediator

➢ Actor Name: Client\Programmer\Designer

Behavioral Specification:

➢ The first Life Line: Controller

 Operations: ForwardRequest().

➢ The Second Life Line: Mediator 1

 Operations: HandleRequest().

➢ The Third Life Line: Mediator 2

 Operations: None.

➢ Alternative Name: Handling the request by the next Mediator

The first Life Line: Controller

 Operations: ForwardRequest().

The first Life Line:: Mediator 1

 Operations: ForwardRequest().

The first Life Line: Mediator 2

 Operations HandleRequest().

Structural Specification:

➢ The first Class: Controller

 Operations: HandleRequest().

 Operations: ForwardRequest().

➢ The Second Class: Mediator 1

 Operations: HandleRequest().

 Operations: ForwardRequest().

Inherits: Controller

➢ The Third Class: Mediator 2

 Operations: HandleRequest().

 Operations: ForwardRequest().

Inherits: Controller

 Handling Request Partially

Functional Specification:

69

➢ Use Case Name: Handling Request Partially

➢ Actor Name: Client\Programmer\Designer

Behavioral Specification:

➢ The first Life Line: Controller

 Operations: ForwardRequest().

 Operations: HandlePartially().

 Operations: ForwardPartially().

➢ The Second Life Line: Mediator 1

 Operations: HandlePartially().

 Operations: ForwardPartially().

➢ The Third Life Line: Mediator 2

 Operations: HandlePartially().

 Operations: ForwardPartially().

➢ Alternative Name: Handling the request by the next Mediator

- The first Life Line: Controller

 Operations: Exception ().

- The first Life Line: Mediator

- The first Life Line: Mediator

Structural Specification:

➢ The first Class: Controller

 Operations: HandleRequest().

 Operations: ForwardRequest().

➢ The Second Class: Mediator 1

 Operations: HandleRequest().

 Operations: ForwardRequest().

Inherits: Controller

➢ The Third Class: Mediator 2

 Operations: HandleRequest().

 Operations: ForwardRequest().

 Inherits: Controller

Table 24 Observer Design Pattern Specification

Watching Item

Functional Specification:

➢ Use Case Name: Watching Item

➢ Actor Name: Client\Programmer\Designer

Behavioral Specification:

➢ The first Life Line: ConcreteSubject

 Operations: watchItemState().

 Operations: registerObcerver().

➢ The Second Life Line: Observer 1

 Operations: None.

➢ The Third Life Line: Observer 2

 Operations: None.

70

Structural Specification:

➢ The first Class: ConcreteSubject

 Operations: notify ().

 Operations: watchItemState().

 Operations: registerObcerver().

 Operations: removeObcerver().

Inherits: Subject

➢ The Second Class: Observer 1

 Operations: update ().

Inherits: Observer

➢ The Third Class: Observer 2

 Operations: update ().

Inherits: Observer

Item State Changed

Functional Specification:

➢ Use Case Name: Item State Changed

➢ Actor Name: Client\Programmer\Designer

Behavioral Specification:

➢ The first Life Line: ConcreteSubject

 Operations: notify().

➢ The Second Life Line: Observer 1

 Operations: update ().

➢ The Third Life Line: Observer 2

➢ Operations: update ().

Structural Specification:

➢ The first Class: ConcreteSubject()

 Operations: notify().

Inherits: Subject

➢ The Second Class: Observer 1

 Operations: update().

Inherits: Observer

➢ The Third Class: Observer 2

 Operations: update ().

 Inherits: Observer

Table 25 Strategy Design Pattern Specifications

Building the Complex Object

Functional Specification:

➢ Use Case Name: Building the Complex Object

➢ Actor Name: Client\Programmer\Designer

Behavioral Specification:

➢ The first Life Line: Director

 Operations: director (ConcreteBuilder).

 Operations: construct ().

71

➢ The Second Life Line: ConcreteBuilder

 Operations: buildPartA().

 Operations: buildPartB().

 Operations: buildPartC().

Structural Specification:

➢ The first Class: Director

 Operations: director(ConcreteBuilder).

 Operations: construct ().

➢ The Second Class: ConcreteBuilder

 Operations: buildPartA().

 Operations: buildPartB().

 Operations: buildPartC().

Inherits: Builder

➢ The Third Class: Builder

 Operations: buildPartX().

Compose: Director

Table 26 Mediator Design Pattern Specifications

Handle the Objects Communications

Functional Specification:

➢ Use Case Name: Handle the Objects Communications

➢ Actor Name: Client\Programmer\Designer

Behavioral Specification:

➢ The first Life Line: ConcreteMediator

 Operations: mediate().

➢ The Second Life Line: Colleague1

 Operations: action ().

 Operations: getState().

➢ The Third Class: Colleague2

Operations: action ().

Operations: getState().

Structural Specification:

➢ The first Class: Mediator

 Operations: mediate().

Use: Colleague

➢ The Second Class: ConcreteMediator

 Operations: mediate().

Inherits: Mediator

Associate: Colleague1, Colleague2

➢ The Third Class: Colleague

 Operations: action ().

 Operations: getState ().

➢ The Forth Class: Colleague1

 Operations: action ().

72

 Operations: getState ().

 Inherits: Colleague

➢ The Fifth Class: Colleague2

 Operations: action ().

 Operations: getState ().

 Inherits: Colleague

Table 27 State Design Pattern Specifications

Change Object State

Functional Specification:

➢ Use Case Name: Change Object State

➢ Actor Name: Client\Programmer\Designer

Behavioral Specification:

➢ The first Life Line: Context

 Operations: request().

➢ The Second Life Line: State1

 Operations: handleRequestState1 ().

➢ The Third Class: State2

 Operations: handleRequestState2 ().

Structural Specification:

➢ The first Class: Context

 Operations: request ().

➢ The Second Class: State1

 Operations: handleRequestState1 ().

Inherits: State

➢ The Third Class: State2

 Operations: handleRequestState1 ().

Inherits: State

➢ The Forth Class: State

 Operations: handleRequestState1 ().

 Compose: Context

Table 28 Visit Design Pattern Specifications

Visit Class Elements to Perform Operations

Functional Specification:

➢ Use Case Name: Visit Class Elements to Perform Operations

➢ Actor Name: Client\Programmer\Designer

Behavioral Specification:

➢ The first Life Line: ElementA

 Operations: acceptVisitor().

 Operations: operation().

➢ The Second Life Line: ElementB

73

 Operations: acceptVisitor ().

 Operations: operation ().

➢ The Third Class: Visitor

 Operations: visitElementA ().

 Operations: visitElementB ().

Structural Specification:

➢ The first Class: Visitor

 Operations: visitElementA ().

 Operations: visitElementB ().

➢ The Second Class: ConcreteVisitor

 Operations: visitElementA ().

 Operations: visitElementB ().

Inherits: Visitor

Uses= ElementA, ElementB

➢ The Third Class: Element

 Operations: acceptVisitor ().

➢ The Forth Class: ElementA

 Operations: operation ().

 Operations: acceptVisitor ().

 Inherits: Element

➢ The Fifth Class: ElementB

 Operations: operation ().

 Operations: acceptVisitor ().

 Inherits: Element

Table 29 Template Method Design Pattern Specification

Define Algorithm Skelton

Functional Specification:

➢ Use Case Name: Define Algorithm Skelton

➢ Actor Name: Client\Programmer\Designer

Behavioral Specification:

➢ The first Life Line: AbstractClass

 Operations: templateMethod().

➢ The Second Life Line: ConcreteClass

 Operations: premitiveOperation1 ().

 Operations: premitiveOperation2 ().

Structural Specification:

➢ The first Class: AbstractClass

 Operations: templateMethod ().

➢ The Second Class: ConcreteClass

 Operations: premitiveOperation1 ().

 Operations: premitiveOperation2 ().

 Inherits: AbstractClass

74

Table 30 Command Design Pattern Specifications

Encapsulate a Request as an Object

Functional Specification:

➢ Use Case Name: Encapsulate a Request as an Object

➢ Actor Name: Client\Programmer\Designer

Behavioral Specification:

➢ The first Life Line: Command

 Operations: createCommand().

 Operations: execute().

➢ The Second Life Line: Invoker

 Operations: storeCommand ().

 Operations: executeCommand ().

➢ The Third Class: Receiver

 Operations: action ().

Structural Specification:

➢ The first Class: Command

 Operations: createCommand ().

 Operations: execute ().

Compose: Invoker

➢ The Second Class: Invoker

 Operations: createCommand ().

 Operations: executeCommand ().

➢ The Third Class: Receiver

 Operations: action ().

➢ The Fourth Class: ConcreteCommand

 Operations: createCommand ().

 Operations: execute ().

 Inherits: Command

4.2 Functional Representation of Design Patterns

To the best of our knowledge and the literature review we have done, there is no research

study tried to represent the design patterns functionality using any modeling diagram such

as Use Case diagram. Since all the previous studies were focusing only on studying design

patterns from the two views only (Behavioral and Structural). In our study we used Use

Case diagram to represent the design patterns functionality features. We have found that it

is better to describe the functionality of each design pattern using some modeling diagram

for the following reasons:

75

1. Defining the functionality of each design pattern will give a concrete base to cover

all the different instances and implementation of the design patterns. We think that

the best practice is to describe all the different possible functionality and instances

for a design pattern using a modeling diagram. Every use case will describe a

concrete instance or a functionality of a design pattern.

2. Defining the design patterns functionality using some modeling diagrams will

increase the level of documentation because all the different implementation and

instances will be described with each Use Case, each Use Case will have its

description, sequence diagram, and class diagram.

3. Defining design pattern functionality using some modeling diagrams will help in

detecting the design patterns in a semantic way because each use case contains the

description of each design pattern instance and implementation.

4.3 Traditional Representations and definition of design patterns

In this part of the research, we are going to define and represent the design patterns using

the traditional representation based on Gang of four definitions.

4.3.1 Builder

Builder design patterns is a creational design pattern. The intention behind builder design

pattern is to Separate the construction of a complex object from its representation so that

the same construction process can create different representations [9].

Applicability

Use the Builder pattern when

76

1. The algorithm for creating a complex object should be independent of the parts

that make up the object and how they are assembled.

Structure View

Here is the class diagram of builder design pattern that represented the structural view

features.

Figure 12 Builder class diagram

The class diagram in Figure 12 showed that the Builder design pattern contains one

superclass and two subclasses. The subclasses inherit the superclass and implement its

functionality.

The participants in Builder are as following:

• Builder

1. Specifies an abstract interface for creating parts of a Product object.

• ConcreteBuilder

77

1. Constructs and assembles parts of the product by implementing the

2. Builder interface.

• Director

1. Constructs an object using the Builder interface.

• Product

1. Represents the complex object under construction. ConcreteBuilder builds the

product's internal representation and defines the process by which it is assembled.

Collaborations

1. The client creates the Director object and configures it with the desired Builder

object.

2. Director notifies the builder whenever a part of the product should be built.

3. Builder handles requests from the director and adds parts to the product.

4. The client retrieves the product from the builder.

The following showing the cooperative procedure between Builder and Director.

78

Figure 13 Builder Collaboration Diagram

4.3.2 Adapter

Adapter design patterns is a structural design pattern. The intention behind Adapter

design pattern is to convert the interface of a class into another interface clients expect.

Adapter lets classes work together that couldn't otherwise because of incompatible

interfaces.

• Applicability

Use the Adapter pattern when

• You want to use an existing class, and its interface does not match the one

you need.

• You want to create a reusable class that cooperates with unrelated or

unforeseen classes, that is, classes that don't necessarily have compatible

interfaces.

• Structure View

Here is the class diagram of Adapter design pattern that represented the structural view

features.

79

Figure 14 Adapter Diagram [9]

The following class diagram shows the structural view features of Adapter design pattern.

• Target

1. Defines the domain-specific interface that Client uses.

• Client

1. Collaborates with objects conforming to the Target interface.

• Adaptee

1. Defines an existing interface that needs adapting.

• Adapter

1. Adapts the interface of Adaptee to the Target interface.

4.3.3 Chain of Responsibility

Chain of responsibility design patterns is a behavioral design pattern. The intention

behind Chain of responsibility design pattern is to avoid coupling the sender of a

request to its receiver by giving more than one object a chance to handle the request.

Chain the receiving objects and pass the request along with the chain until an object

handles it.

• Applicability

80

Use Chain of Responsibility when:

• More than one object may handle a request, and the handler is not known a

priori. The handler should be ascertained automatically.

• You want to issue a request to one of the several objects without specifying

the receiver explicitly.

• The set of objects that can handle a request should be specified dynamically.

• Structure View

Here is the class diagram of a chain of responsibility design pattern that represented

the structural view features.

Figure 15 Chain of Responsibility Class Diagram [9]

The class diagram in Figure 15 showed that the chain of responsibility design pattern

contains one superclass and two subclasses. The subclasses inherit the superclass and

implement its functionality.

A typical object structure might look like this:

81

Figure 16 Chain of Responsibility Collaboration Diagram [9]

Figure 16 showed that how the different classes are structured, a client establishes a handler

then the handler maintains the connection between the two subclasses.

The participants in the chain of responsibility are as follows:

• Handler

2. Defines an interface for handling requests.

3. Optional) implements the successor link.

• ConcreteHandler

1. Handles requests it is responsible for.

2. Can access its successor.

3. If the ConcreteHandler can handle the request, it does so; otherwise, it forwards the

request to its successor.

• Client

1. Initiates the request to a ConcreteHandler object on the chain.

4.3.4 Observer

The intention of observer design pattern is to define a one-to-many dependency between

objects so that when one object changes state, all its dependents are notified and updated

automatically [9].

• Applicability

82

Use the Observer pattern in any of the following situations:

• When an abstraction has two aspects, one dependent on the other. Encapsulating

these aspects in separate objects lets you vary and reuse them independently.

• When a change to one object requires changing others, and you don't know how

many objects need to be changed?

• Structure View

The following class diagram shows the structural view features of Observer design

pattern.

Figure 17 Observer Class Diagram [9]

The class diagram in Figure 17 shows that the observer design pattern contains four main

classes. Two of these classes are superclasses while the other two classes are the

subclasses. Each subclass implemented its superclass functionality.

The participants in the chain of responsibility are as follows:

• Subject

1. Knows its observers. Any number of Observer objects may observe a subject.

83

2. Provides an interface for attaching and detaching Observer objects.

• Observer

1. Defines an updating interface for objects that should be notified of changes in a

subject.

• ConcreteSubject

1. Stores state of interest to ConcreteObserver objects.

2. Sends a notification to its observers when its state changes.

• ConcreteObserver

1. Maintains a reference to a ConcreteSubject object.

2. Stores state that should stay consistent with the subjects.

3. Implements the Observer updating interface to keep its state consistent with the

subjects.

• Collaborations

1. ConcreteSubject notifies its observers whenever a change occurs that could make

its observers' state inconsistent with its own.

2. After being informed of a change in the concrete subject, the aConcreteObserver

object may query the subject for information. ConcreteObserver uses this

information to reconcile its state with that of the subject.

The following interaction diagram shows the behavioral procedure between subject and

two observers:

84

Figure 18 Observer Collaboration Diagram [9]

To know more about the traditional way of representing and defining the rest of design

patterns we recommend the reader to refer to GoF book [9].

4.4 Design Patterns Definition and Representation Using the

Integrated Metamodel

In this section we will discuss the design patterns from the three main views (Functional,

Behavioral, and Structural Diagrams), the discussion here will be different from the

traditional representation and definition of design patterns since we added the functional

view and the behavioral view as well to support the integrated metamodel representation

of the design pattern. We will also consider the different implementations of a design

pattern if there is any.

The actor for all the design patterns will be a programmer or a designer and we

are going to call it a client.

85

The importance of defining the functional view of the design patterns using use

case diagram is to clarify the main functionality of any design pattern since some design

patterns have more than one functionality. Then based on that functionality we can build

up the different stages of design patterns defection and representation (behavioral and

structural) views. The integrated metamodel XML representation of the design patterns

should have all the behavioral and structural features included within one use case. Each

use case belongs to one instance of a design pattern.

The main advantage of using the integrated metamodel to represent the design

patterns is to have one concrete and integrated XML file that contains all features of the

three main views of the design pattern. Each view provides the other views with a

complementary information, so the design of the detection made after the design pattern

specifies all the three main views features. This advantage helps the programmer and

developer to detect the design patterns is a more accurate way. In the other way around,

representing the design patterns with individual views will not provide a full description of

the design patterns from the three main views.

We are going also to show how the design patterns can be represented using the UML

integrated metamodel. We numbered each line of the XML code to make it easy to discuss

each section of the code and show what it provides. Two main tools we used to generate

the XML file, XML Spy and Enterprise Architecture.

86

4.4.1 Creational Design Patterns

❖ Builder

We will represent the builder design pattern with an only one-use case that represents its

main functionality. Builder design pattern has three main classes: director, builder and

concrete builder. The three views representation of builder design pattern is as follows:

Functional View Using Case Diagram

In the functional view of builder design pattern, we will consider only one implementation

implemented by only one use case. The use case will include a use case description that

explains the main scenario and the functionality of the use case.

The use case diagram of Builder design pattern as follows:

Figure 19 Builder Design Pattern Use Case Diagram

Figure 19 shows the use case diagram of builder design pattern. The only main use case is:

Building the Complex Object. The use case has its own description and sequence diagram.

The following is the description of the use case:

87

Table 31 the description of Building the Complex Object Use Case

Use Case

Name
Building the Complex Object.

Actor Client

Main Flow 1- The client creates the Director object and configures it

with the desired builder.

2- Director notifies the builder whenever a part of the product

should be built.

3- Builder handles requests from the director and adds parts

to the product.

4- The client retrieves the product from the builder.

Table 31 shows the description of the Builder uses case 1: Building the Complex Object.

The description showed the different steps of the use case in the main flow. The structural

and behavioral views representations are similar to the traditional views representation and

definition.

Behavioral View Using Sequence Diagram

Since we have only one use case for Builder design pattern then we will have only on

sequence diagram that shows the flows of scenario steps from the object and to object and

actors of the use case.

88

Figure 20 Sequence Diagram of Builder Design Pattern

The sequence diagram in Figure 20 shows the flow of action of objects to create and build

a complex object. Where small parts of the object are collected together to build up the

final one.

Structural View Using Class Diagram

In the structural view of Builder, there are no changes in the traditional representation

since the structural features of the Builder design pattern have been well maintained and

defined in the literature review.

The following is the class diagram of Builder:

89

Figure 21 Class Diagram of Builder Design Pattern

 Builder UML integrated Representation

The following XML code is the UML integrated metamodel representation of Builder

design pattern. The integrated metamodel contains all the three main views features in on

concrete file. See Appendix B.

❖ Prototype

We will consider one use case for Prototype design pattern. Prototype design pattern is

used for creating new objects (instances) by cloning (copying) other objects and in this way

we can improve the performance by not creating the objects from scratch. The prototype is

used when the creation of an object is costly or complex. For instance, creating an object

after we have a costly database operation.

 The three views representation is as follows:

Functional View Using Use Case Diagram

90

Similarly, as what we have done with previous design patterns, Prototype design pattern

we will have use case diagram that describes its functionality, the use case will describe

the main functionality of strategy design pattern.

The use case diagram of prototype design pattern as follows:

Figure 22 Prototype Design Pattern Use Case Diagram

Figure 22 shows that Prototype design pattern has one main use case: Clone. This main use

case represents the main flow of Prototype. The following are the description of each use

case:

Table 32 the Description of Clone Object Use Case

Use Case

Name

Clone Object

Actor Client

Main Flow 1- The client sends a request to the prototype to clone itself.

2- The specified concrete class clones itself.

3- The cloned prototype created and send back to the client.

4- End.

Table 32 shows the description of State main uses case: Clone Object. The description

showed the different steps of the use case in the main flow.

Behavioral View Using Sequence Diagram

91

Each use case has its separate sequence diagram that showing the flows of scenario steps

from each and to each object and actors of the use case.

Figure 23 Prototype Design Pattern Sequence Diagram

Figure 23 shows the sequence flow of Prototype main use case: Clone Object. The

sequence behavior between the Client and the two different concrete classes

ConcretePrototype1 and 2, shows how the flow of action happens if the Client sends a

request to clone one of the concrete classes.

Structural View Using Class

In the structural view of Prototype design pattern, the class diagram similar to the

traditional class diagram. Where we have the client class and the different Prototype

classes.

The following is the class diagram of Prototype:

92

Figure 24 Prototype Design Pattern Class Diagram

Figure 24 shows the class diagram of Prototype design pattern. The class diagram

illustrates all the different structural view features. The class diagram contains four classes:

Client, Prototype, and two concrete Prototype classes. The client sends a request to one of

the concrete classes to clone itself. The specified concrete class clones itself and creates a

copy of itself.

Prototype UML integrated Representation

The UML integrated metamodel representation of Prototype design pattern, See Appendix

B, contains all the three main view features in the concrete file.

❖ Singleton

We will consider one use case for Singleton design pattern. Singleton design pattern is

used for Ensuring a class only has one instance, and provide a global point of access to it.

 The three views representation is as follows:

Functional View Using Use Case Diagram

93

Similarly, as what we have done with previous design patterns, Singleton design pattern

we will have use case diagram that describes its functionality.

The use case diagram of Singleton design pattern as follows:

Figure 25 Singleton Design Pattern Use Case Diagram

Figure 25 shows that Singleton design pattern has one main use case: Get Instance. This

main use case represents the main flow of Singleton. The following are the description of

each use case:

Table 33 the Description of getting Instance Use Case

Use Case

Name

Get Instance

Actor Client

Main Flow 1- The client sends a request to the Singleton to create an instance

of itself.

2- Singleton checks if the instance is empty.

3- Singleton creates a new instance of itself.

4- The instance returns to the client

5- End.

Table 33 shows the description of Singleton main uses case: Get Instance. The description

showed the different steps of the use case in the main flow.

Behavioral View Using Sequence Diagram

94

Each use case has its separate sequence diagram that showing the flows of scenario steps

from each and to each object and actors of the use case.

Figure 26 Singleton Design Pattern Sequence Diagram

Figure 26 shows the sequence flow of Singleton main use case: Get Instance. The sequence

behavior between the Client and the Singleton classes shows how the flow of action

happens if the Client sends a request to Singleton to create an instance of the class.

Structural View Using Class

In the structural view of Singleton design pattern, the class diagram similar to the

traditional class diagram. Where we have the client class and the different Singleton

classes.

The following is the class diagram of Singleton:

95

Figure 27 Singleton Design Pattern Class Diagram

Figure 27 shows the class diagram of Singleton design pattern. The class diagram illustrates

all the different structural view features. The class diagram contains two classes: Client,

and Singleton. The client sends a request to Singleton to create one instance of the class.

The Singleton ensures that only one instance is created from the specified class.

Singleton UML integrated Representation

The UML integrated metamodel representation of Singleton design pattern, See Appendix

B, contains all the three main view features in the concrete file.

4.4.2 Structural Design Patterns

❖ Decorator

We will consider one use case for Decorator design pattern. Decorator design pattern is

used for Attach additional responsibilities to an object dynamically. Decorators provide a

flexible alternative to subclasses for extending functionality.

 The three views representation is as follows:

Functional View Using Use Case Diagram

Similarly, as what we have done with previous design patterns, Decorator design pattern

we will have use case diagram that describes its functionality.

The use case diagram of Decorator design pattern as follows:

96

Figure 28 Decorator Design Pattern Use Case Diagram

Figure 28 shows that Decorator design pattern has one main use case: Add Behavior. This

main use case represents the main flow of Decorator. The following are the description of

each use case:

Table 34 the Description of Add Behavior Use Case

Use Case

Name

Add Behavior

Actor Client

Main Flow 1- The client sends a request to the Decorator.

2- Decorator forwards requests to its Component object.

3- The Decorator performs additional operations before and after

forwarding the request.

4- End.

Table 18 shows the description of State main uses case: Add Behavior. The description

showed the different steps of the use case in the main flow.

Behavioral View Using Sequence Diagram

Each use case has its separate sequence diagram that showing the flows of scenario steps

from each and to each object and actors of the use case.

97

Figure 29 Decorator Design Pattern Sequence Diagram

Figure 29 shows the sequence flow of Decorator main use case: Add Behavior. The

sequence behavior between the Component and Decorator classes shows how the flow of

action happens if the Client sends a request to Decorator to add behavior.

Structural View Using Class

In the structural view of Decorator design pattern, the class diagram similar to the

traditional class diagram. Where we have the client class and the different Decorator

classes.

The following is the class diagram of Decorator:

98

Figure 30 Decorator Design Pattern Class Diagram

Figure 30 shows the class diagram of Decorator design pattern. The class diagram

illustrates all the different structural view features. The class diagram contains five classes:

Component defines the interface for objects that can have responsibilities added to them

dynamically. ConcreteComponent defines an object to which additional responsibilities

can be attached. Decorator maintains a reference to a Component object and defines an

interface that conforms to Component's interface. ConcreteDecorator adds responsibilities

to the component.

Decorator UML integrated Representation

The UML integrated metamodel representation of Decorator design pattern, See Appendix

B, contains all the three main view features in the concrete file.

99

❖ Proxy

We will consider one use case for the Proxy design pattern. A proxy design pattern

provides a surrogate or placeholder for another object to control access to it.

 The three views representation is as follows:

Functional View Using Use Case Diagram

Similarly, as what we have done with previous design patterns, Proxy design pattern we

will have use case diagram that describes its functionality.

The use case diagram of a Proxy design pattern as follows:

Figure 31 Proxy Design Pattern Use Case Diagram

Figure 31 shows that Proxy design pattern has one main use case: Representing the

Functionality of Subject. This main use case represents the main flow of Proxy. The

following are the description of each use case:

Table 35 the Description of Representing the Functionality of Subject Use Case

Use Case

Name

Representing the Functionality of Subject

Actor Client

Main Flow 1- The client sends a request to the Decorator.

100

2- Decorator forwards requests to its Component object.

3- The Decorator performs additional operations before and after

forwarding the request.

4- End.

Table 19 shows the description of Proxy main uses case: Representing the Functionality of

Subject. The description showed the different steps of the use case in the main flow.

Behavioral View Using Sequence Diagram

Each use case has its separate sequence diagram that showing the flows of scenario steps

from each and to each object and actors of the use case.

Figure 32 Proxy Design Pattern Sequence Diagram

Figure 32 shows the sequence flow of Proxy main use case: Representing the Functionality

of Subject. The sequence behavior between the Proxy and RealSubject classes.

101

Structural View Using Class

In the structural view of Proxy design pattern, the class diagram similar to the traditional

class diagram. Where we have the client class and the different Proxy classes.

The following is the class diagram of Proxy:

Figure 33 Proxy Design Pattern Class Diagram

Figure 33 shows the class diagram of the Proxy design pattern. The class diagram illustrates

all the different structural view features. The class diagram contains three classes: Proxy

maintains a reference that lets the proxy access the real subject. A proxy may refer to a

Subject if the RealSubject and Subject interfaces are the same. Subject defines the common

interface for RealSubject and Proxy so that a Proxy can be used anywhere a RealSubject is

expected. RealSubject defines the real object that the proxy represents.

Proxy UML integrated Representation

The UML integrated metamodel representation of Proxy design pattern, See Appendix B,

contains all the three main view features in the concrete file.

102

❖ Adapter

We will represent the adapter design pattern with only one use case that represents its main

functionality. Adapter design pattern has three main classes: director, builder and concrete

builder. The three views representation of Adapter design pattern is as follows:

Functional View Using Use Case Diagram

In the functional view of adapter design pattern, we will consider only one implementation

implemented by only one use case. The use case will include a use case description that

explains the main scenario and the functionality of the use case.

The use case diagram of adapter design pattern as follows:

Figure 34 Adapter Design Pattern Use Case Diagram

Figure 34 shows the use case diagram of Adapter design pattern. The only main use case

is: Adapting the Complex Object. The use case has its own description and sequence

diagram. The following is the description of the use case:

Table 36 Adapter Design Pattern Use Case Diagram

Use Case

Name
Adapting the Request.

103

Actor Client

Main Flow 1- Client calls operations on an Adapter instance.

2- The adapter calls Adaptee operations that carry out the

request.

3- The Adapter replies the results to the client.

Table 20 shows the description of the Adapter use-case 1: Adapting the Request. The

description showed the different steps of the use case in the main flow. The structural and

behavioral views representations are similar to the traditional views representation and

definition.

Behavioral View Using Sequence Diagram

Since we have only one use case for Adapter design pattern then we will have only on

sequence diagram that shows the flows of scenario steps from the object and to object and

actors of the use case.

Figure 35 Sequence Diagram of Adapter Design Pattern

104

The sequence diagram in Figure 35 shows the flow of action of objects to adapt an object

to be suitably used by a client since the object can’t be used in its initial formal by the

client.

Structural View Using Class Diagram

In the structural view of Adapter, there are no changes in the traditional representation

since the structural features of Adapter design pattern have been well maintained and

defined in the literature review.

The following is the class diagram of Adapter:

Figure 36 Class Diagram of Adapter Design Pattern

105

Adapter UML integrated Representation

The following XML code is the UML integrated metamodel representation of Adapter

design pattern. The integrated metamodel contains all the three main views features in on

concrete file. See Appendix B.

❖ Bridge

We will consider one use case for Bridge design pattern. Bridge design pattern is used for

Ensuring a class only has one instance, and provide a global point of access to it.

 The three views representation is as follows:

Functional View Using Use Case Diagram

Similarly, as what we have done with previous design patterns The Bridge Design Pattern

is a structural design pattern used to completely decouple an abstraction from its

implementation so that both of them can change independently.

The use case diagram of Bridge design pattern as follows:

Figure 37 Bridge Design Pattern Use Case Diagram

106

Figure 37 shows that Bridge design pattern has one main use case: Decouple the

Abstraction from The Implementation. This main use case represents the main flow of

Bridge. The following are the description of each use case:

Table 37 the Description of Decouple the Abstraction from the Implementation Use Case

Use Case

Name

Decouple the Abstraction from The Implementation

Actor Client

Main Flow 1- The client sends the request to the Abstraction to perform a

specific operation.

2- The Abstraction sends the request to the appropriate

implementation.

3- The Abstraction returns the implementation to the client.

4- End.

Table 21 shows the description of Bridge main use case: Decouple the Abstraction from

The Implementation. The description showed the different steps of the use case in the main

flow.

Behavioral View Using Sequence Diagram

Each use case has its separate sequence diagram that showing the flows of scenario steps

from each and to each object and actors of the use case.

107

Figure 38 Bridge Design Pattern Sequence Diagram

Figure 38 shows the sequence flow of Bridge main use case: Decouple the Abstraction

from The Implementation. The sequence behavior between the Abstract Class and the two

concrete Implementor classes, it shows how the flow of action happens if the client

requested a specific implementation for an operation.

Structural View Using Class

In the structural view of Bridge design pattern, the class diagram similar to the traditional

class diagram. Where we have the client class and the different Bridge classes.

The following is the class diagram of Bridge:

108

Figure 39 Bridge Design Pattern Class Diagram

Figure 39 shows the class diagram of Bridge design pattern. The class diagram illustrates

all the different structural view features. The class diagram contains four classes:

Abstraction (abstract class) which defines the abstract interface maintains the Implementor

reference. ConcreteAbstraction (normal class) extends the interface defined by Abstraction

Implementor (interface) which defines the interface for implementation classes

ConcreteImplementor (normal class) that implements the Implementor interface.

Bridge UML integrated Representation

The UML integrated metamodel representation of Bridge design pattern, See Appendix B,

contains all the three main view features in the concrete file.

❖ Flyweight

We will consider one use case for Flyweight design pattern. Use sharing to support large

numbers of fine-grained objects efficiently.

 The three views representation is as follows:

109

Functional View Using Use Case Diagram

Similarly, as what we have done with previous design patterns The Bridge Design Pattern

is a structural design pattern used to completely decouple an abstraction from its

implementation so that both of them can change independently.

The use case diagram of Bridge design pattern as follows:

Figure 40 Flyweight Design Pattern Use Case Diagram

Figure 40 shows that Flyweight design pattern has one main use case: Reduce Memory

Load. This main use case represents the main flow of Flyweight. The following are the

description of each use case:

Table 38 the Description of Reduce Memory Load Use Case

Use Case

Name

Reduce Memory Load

Actor Client

Main Flow 1- The client sends a request to get a copy from an object.

2- The FlyweightFactory checks if the Flyweight exists.

3- If it exists then it shares it.

4- Otherwise, it creates it and then shares it.

5- End.

Table 22 shows the description of Flyweight main use case: Reduce Memory Load. The

description showed the different steps of the use case in the main flow.

Behavioral View Using Sequence Diagram

110

Each use case has its separate sequence diagram that showing the flows of scenario steps

from each and to each object and actors of the use case.

Figure 41 Flyweight Design Pattern Sequence Diagram

Figure 42 shows the sequence flow of Flyweight main use case: Decouple the Abstraction

from The Implementation. The sequence behavior between the FlyweightFactory and the

Flyweight class, it shows how the flow of action happens when the FlyweightFactory

creates and shares the Flyweight.

Structural View Using Class

In the structural view of Flyweight design pattern, the class diagram similar to the

traditional class diagram. Where we have the client class and the different Flyweight

classes.

111

The following is the class diagram of Flyweight:

Figure 42 Flyweight Design Pattern Class Diagram

Figure 42 shows the class diagram of Flyweight design pattern. The class diagram

illustrates all the different structural view features. The class diagram contains five classes:

Flyweight declares an interface through which flyweights can receive and act on the

extrinsic state. ConcreteFlyweight implements the Flyweight interface and adds storage for

the intrinsic state if any. A ConcreteFlyweight object must be sharable. It stores must be

intrinsic; that is, it must be independent of the ConcreteFlyweight object's context.

UnsharedConcreteFlyweight, not all Flyweight subclasses need to be shared. The

Flyweight interface enables sharing; it doesn't enforce it. It is common for

UnsharedConcreteFlyweight objects to have ConcreteFlyweight objects as children at

some level in the flyweight object structure. FlyweightFactory creates and manages

flyweight objects. It ensures that flyweights are shared properly. When a client requests a

flyweight, the FlyweightFactory object supplies an existing instance or creates one, if none

112

exists. The client maintains a reference to flyweight(s). It computes or stores the extrinsic

state of flyweight(s).

Flyweight UML integrated Representation

The UML integrated metamodel representation of Flyweight design pattern, See Appendix

B, contains all the three main view features in concrete file.

4.4.3 Behavioral Design Patterns

❖ Chain of Responsibility

We will consider a chain of responsibility case where we have one controller and two

mediators. The controller is the main object which responsible for forwarding and

receiving requests to and from mediators and response to the client. The three views

representation of the chain of responsibility is as follows:

Functional View Using Use Case Diagram

In the functional view of the chain of responsibility design pattern, we will consider all the

possible implementations and scenarios. Each use case will represent one possible scenario

or instance. Each use case will include a use case description that explains the main

scenario and the functionality of the use case.

The use case diagram of a chain of responsibility design pattern as follows:

113

Figure 43 Chain of Responsibility Design Pattern Use Case Diagram

Figure 43 shows that Chain of responsibility has three main use cases: Handling Request

by Controller, Handling Request by a Mediator, and Handling Partial Request. Each use

case has a specific scenario different from the other one. Some use cases have an alternative

section as well as some extends other use cases. The following are the descriptions of each

use case:

Table 39 the description of Handling Request by Controller Use Case

Use Case

Name

Handling Request by Controller

Actor Client

Main Flow 1- Receive request from Client.

2- Check if the request can be done completely.

3- Response to the Client.

Alt a. If the request can’t be done completely:

a.i Forward request to the next mediator.

a.ii End.

Table 23 shows the description of the chain of responsibility use case 1: Handling Requests

by Controller. The description showed the different steps of the use case in the main flow.

The alt section shows the alternative scenario of the use case.

114

Table 40 the description of Handling Request by a Mediator Use Case

Use Case

Name

Handling Request by Mediator

Actor Client

Main Flow 1- Receive request from the controller.

2- Check if the request can be done completely.

3- Response to the Controller.

4- Response to the Client

Alt a. If the request can’t be done completely by a Mediator:

a.i Forward request to the next mediator.

a.ii End.

Table 24 shows the description of the chain of responsibility use case 2: Handling Request

by Mediator. The description showed the different steps of the use case in the main flow.

The alt section shows the alternative scenario of the use case.

Table 41 the description of Handling Partial Request Use Case

Use Case

Name

Handling Partial Request

Actor Client

Main Flow 1- If the request can’t be handled completely by Controller or

a Mediator.

2- Check if the request can be done partially by the controller.

3- Forward request to next mediator.

4- Check if the request can be done partially by a Mediator.

5- Forward request to next mediator.

6- Response to the Controller.

7- Response to the Client

Alt 1- If the request can’t be done partially:

a.i Exception Handler.

Table 25 shows the description of the chain of responsibility use case 3: Handling Partial

Request. The description showed the different steps of the use case in the main flow. The

alt section shows the alternative scenario of the use case.

115

Behavioral View Using Sequence Diagram

Each use case has its separate sequence diagram that showing the flows of scenario steps

from each and to each object and actors of the use case.

Figure 44 the sequence diagram of the Handling Request by Controller Use Case

Figure 44 shows the sequence flow of chain of responsibility use case 1: Handling Requests

by Controller. The sequence behavior between Controller, Mediator 1 and Mediator 2 are

described in a sequential manner.

The alternative section sequence behavior also described and the lower part of the sequence

diagram.

All the behavioral view features and how the sequence is managing between the different

classes of use case 1 is shown in a visual point of view.

116

Figure 45 the sequence diagram of the Handling Request by a Mediator Use Case

Figure 45 shows the sequence flow of chain of responsibility use case 2: Handling Request

by Mediator. The sequence behavior between Controller, Mediator 1 and Mediator 2 are

described in a sequential manner.

The alternative section sequence behavior also described and the lower part of the sequence

diagram. All the behavioral view features and how the sequence is managing between the

different classes of use case 2 is shown in a visual point of view.

117

Figure 46 the sequence diagram of the Handling Partial Request Use Case

Figure 46 shows the sequence flow of chain of responsibility use case 3: Handling Partial

Request. The sequence behavior between Controller, Mediator 1 and Mediator 2 are

described in a sequential manner.

The alternative section sequence behavior also described and the lower part of the sequence

diagram. All the behavioral view features and how the sequence is managing between the

different classes of use case 3 is shown in a visual point of view.

Structural View Using Class

In the structural view of the chain of responsibility, there are no changes in the traditional

representation since the structural features of a chain of responsibility have been well

maintained and defined in the literature review.

The following is the class diagram of chain responsibility:

118

Figure 47 Class Diagram of Chain of Responsibility

Figure 47 shows the class diagram of a chain of responsibility design pattern. The class

diagram illustrates all the different structural view features. The class diagram contains

three classes’ controller, mediator 1, and mediator 2.

Chain of responsibility UML integrated Representation

 The following XML code is the UML integrated metamodel representation of the chain

of responsibility design pattern. The integrated metamodel contains all the three main

views features in on concrete file. See Appendix B.

❖ Observer

We will consider an observer case where we have two observers. The subject maintains

the state of the object and notifies the observers whenever the state of the object changed.

The observers need to register in the subjects to get the notifications. The three views

representation is as follows:

119

Functional View Using Use Case Diagram

Similarly, as a chain of responsibility, observer design pattern use case diagram will have

different uses cases, each use case will represent one possible scenario for instance. Each

use case will include a use case description that explains the main scenario and the

functionality of the use case.

The use case diagram of a chain of responsibility design pattern as follows:

Figure 48 Observer Design Pattern Use Case Diagram

Figure 48 shows that Chain of responsibility has two main use cases: Watching Item, and

Item State Changed. Each use case has a specific scenario different from the other one.

Some use cases have an alternative section as well as some extends other use cases. The

following are the description of each use case:

Table 42 the description of Watching Item Use Case

Use Case

Name

Watching Item

Actor Client

Main Flow 1- Register the Observers to the Subject.

2- Check the state of the Item.

3- If Item is available to set Item State =0;

4- Keep watching the Item.

120

5- If the Item State Changes:

a.i Call Use Case 2.

a.ii End.

 shows the description of Observer uses case 1: Watching Item. The description showed

the different steps of the use case in the main flow.

Table 43 the description of Item State Changed Use Case

Use Case

Name

Item State Changed

Actor Client

Main Flow 1- Notify the Observers.

2- Send Information to the Observers.

3- Update the State of the Item;

Table 43 shows the description of Observer uses case 2: Item State Changed. The

description showed the different steps of the use case in the main flow.

Behavioral View Using Sequence Diagram

Each use case has its separate sequence diagram that showing the flows of scenario steps

from each and to each object and actors of the use case.

121

Figure 49 the sequence diagram of Watching Item Use Case

Figure 49 shows the sequence flow of Observer uses case 1: Watching Item. The sequence

behavior between concrete subject, observer 1 and observer 2 are described in a sequential

manner.

All the behavioral view features and how the sequences are managing between the different

classes of use case 1 is shown in a visual point of view.

122

Figure 50 the sequence diagram of Item State Changed Use Case

Figure 50 shows the sequence flow of Observer uses case 2: Item State Changed. The

sequence behavior between concrete subject, observer 1 and observer 2 are described in a

sequential manner.

All the behavioral view features and how the sequence is managing between the different

classes of use case 1 is shown in a visual point of view.

Structural View Using Class

In the structural view of Observer design pattern, we have made some changes to the

traditional representation to support more than two observers and to cover all the different

implementations of the observer.

The following is the class diagram of chain responsibility:

123

Figure 51 the class diagram of Item Observer Design Pattern

Figure 51 shows the class diagram of a chain of responsibility design pattern. The class

diagram illustrates all the different structural view features. The class diagram contains

three classes Subject, ConcreteSubject, Observer, Observer 1, and Observer 2. Observer 1

and Observer 2 inherits Observer, while ConcreteSubject inherits Subject. Subject uses

Observer 1…* multiplicity.

Observer UML integrated Representation

The following XML code is the UML integrated metamodel representation of observer

design pattern. The integrated metamodel contains all the three main view features in the

concrete file. See Appendix B.

124

❖ Strategy

We will consider one use case for Strategy design pattern. Strategy pattern is used to have

multiple algorithms for a specific task and client decides the actual implementation to be

used at runtime. The Strategy design pattern attempts to solve the issue where you need to

provide multiple solutions for the same problem so that one can be selected at runtime. The

three views representation is as follows:

Functional View Using Use Case Diagram

Similarly, as what we have done with previous design patterns, strategy design pattern we

will have use case diagram that describes the functionality of strategy design pattern, the

use case will describe the main functionality of strategy design pattern.

The use case diagram of strategy design pattern as follows:

Figure 52 Strategy Design Pattern Use Case Diagram

Figure 52 shows that Strategy design pattern has one main use case: Select the appropriate

solution. This main use case represents the main flow of strategy. The following are the

description of each use case:

125

Table 44 the description of Select the Appropriate Solution Use Case

Use Case

Name

Select the Appropriate Solution

Actor Client

Main Flow 1- The context takes the request from the clients.

2- The context forwards the request to its concrete strategy

classes.
3- The context choose the appropriate solution.

4- The

Table 44 shows the description of Strategy main uses case: Select the appropriate solution.

The description showed the different steps of the use case in the main flow.

Behavioral View Using Sequence Diagram

Each use case has its separate sequence diagram that showing the flows of scenario steps

from each and to each object and actors of the use case.

Figure 53 Strategy Design Pattern Sequence Diagram

Figure 53 shows the sequence flow of Strategy main uses case: Select the appropriate

solution. The sequence behavior between the context and the two different concrete classes

126

Strategy A and B shows how the flow of action happens where the context choose the

appropriate solution at runtime.

Structural View Using Class

In the structural view of Strategy design pattern, the class diagram similar to the traditional

class diagram. Where we have the client and the context classes that have many different

strategy concrete classes.

The following is the class diagram of Strategy:

Figure 54 the class diagram of Strategy Design Pattern

Figure 54 shows the class diagram of Strategy design pattern. The class diagram illustrates

all the different structural view features. The class diagram contains four classes: Context,

Strategy, Strategy A and Strategy B. Strategy A and Strategy B inherit Strategy in order to

implement the appropriate solution for the context, while context composes the strategy

classes to decide among different solutions.

127

Strategy UML integrated Representation

The UML integrated metamodel representation of Strategy design pattern, See Appendix

B, contains all the three main view features in concrete file.

❖ Mediator

We will consider one use case for Mediator design pattern. Mediator design pattern is used

to reduce the communication complexity between multiple objects. Mediator provides a

mediator object which normally handles all the communications between different objects.

Mediator design pattern can be considered as a communication center for the objects when

an object needs to communicate with another object it does not call the other object directly.

Instead, it calls the mediator object whose main duty is to route the messages to the

destination object. . The three views representation is as follows:

Functional View Using Use Case Diagram

Similarly, as what we have done with previous design patterns, Mediator design pattern we

will have use case diagram that describes its functionality, the use case will describe the

main functionality of strategy design pattern.

The use case diagram of a chain of responsibility design pattern as follows:

Figure 55 Mediator Design Pattern Use Case Diagram

128

Figure 55 shows that Mediator design pattern has one main use case: Handle the Objects

Communications. This main use case represents the main flow of strategy. The following

are the description of each use case:

Table 45 The Description of Handle the Objects Communications Use Case

Use Case

Name

Handle the Objects Communications

Actor Client

Main Flow 1- The colleagues send a request to the mediator.

2- The mediator handles the request.
3- The mediator implements the cooperative behavior and routing

the request to the appropriate colleagues.

4- The colleagues receive the results from the mediator.

Table 45 shows the description of Mediator main uses case: Handle the Objects

Communications. The description showed the different steps of the use case in the main

flow.

Behavioral View Using Sequence Diagram

Each use case has its separate sequence diagram that showing the flows of scenario steps

from each and to each object and actors of the use case.

129

Figure 56 Mediator Design Pattern Sequence Diagram

Figure 56 shows the sequence flow of Mediator main uses case: Handle the Objects

Communications. The sequence behavior between the Mediator and the two different

concrete classes Colleague1 and 2, shows how the flow of action happens where the

mediator handles and maintain the communications between different colleagues.

Structural View Using Class

In the structural view of Mediator design pattern, the class diagram similar to the traditional

class diagram. Where we have the client and the context classes that have many different

colleagues classes.

The following is the class diagram of Mediator:

130

Figure 57 Mediator Design Pattern Class Diagram

Figure 57 shows the class diagram of Mediator design pattern. The class diagram illustrates

all the different structural view features. The class diagram contains five classes: Mediator,

ConcreteMediator, Colleague, Colleague1, and Colleague2. Colleague1 and Colleague2

inherit Colleague, it defines the interface for communication with other Colleagues, while

ConcreteMediator implements the Mediator interface and coordinates communication

between Colleague objects. It is aware of all of the Colleagues and their purposes with

regards to inter-communication. It defines the interface for communication between

Colleague objects

Strategy UML integrated Representation

The UML integrated metamodel representation of Mediator design pattern, See Appendix

B, contains all the three main view features in the concrete file.

131

❖ State

We will consider one use case for State design pattern. State design pattern allows an

object to alter its behavior when its internal state changes. Mediator allows an object to

completely change its behavior depending upon its current internal state.

 The three views representation is as follows:

Functional View Using Use Case Diagram

Similarly, as what we have done with previous design patterns, State design pattern we will

have use case diagram that describes its functionality, the use case will describe the main

functionality of strategy design pattern.

The use case diagram of state design pattern as follows:

Figure 58 State Design Pattern Use Case Diagram

Figure 58 shows that State design pattern has one main use case: Change Object State. This

main use case represents the main flow of strategy. The following are the description of

each use case:

132

Table 46 the Description of Change Object State Use Case

Use Case

Name

The Description of Change Object State Use Case

Actor Client

Main Flow 1- The Context keeps the state of the object not changed.

2- If the internal state of the object changed then the context

requests to change the state of the object based on the current

state.

3- The context returns to the default state.

Table 46 shows the description of State main uses case: Change Object State. The

description showed the different steps of the use case in the main flow.

Behavioral View Using Sequence Diagram

Each use case has its separate sequence diagram that showing the flows of scenario steps

from each and to each object and actors of the use case.

Figure 59 State Design Pattern Sequence Diagram

133

Figure 59 shows the sequence flow of State main use case: Change the object state. The

sequence behavior between the Context and the two different concrete classes State1 and

2, shows how the flow of action happens if the object state changed at runtime.

Structural View Using Class

In the structural view of State design pattern, the class diagram similar to the traditional

class diagram. Where we have the context class and the different state classes.

The following is the class diagram of State:

Figure 60 State Design Pattern Class Diagram

Figure 60 shows the class diagram of State design pattern. The class diagram illustrates all

the different structural view features. The class diagram contains four classes: Context,

State, and two concrete State classes. Context class maintains an instance of a

ConcreteState subclass that defines the current state. State class defines an interface for

encapsulating the behavior associated with particular state of the Context. ConcreteState

subclasses each subclass implements a behavior associated with a state of the Context.

134

State UML integrated Representation

The UML integrated metamodel representation of State design pattern, See Appendix B,

contains all the three main view features in on concrete file.

❖ Visitor

We will consider one use case for Visitor design pattern. Visitor is used to represent an

operation to be performed on the elements of an object structure. Visitor lets you define a

new operation without changing the classes of the elements on which it operates.

 The three views representation is as following:

Functional View Using Use Case Diagram

Similarly, as what we have done with previous design patterns, Visitor design pattern we

will have use case diagram that describes its functionality, the use case will describe the

main functionality of strategy design pattern.

The use case diagram of Visitor design pattern as following:

Figure 61 Visitor Design Pattern Use Case Diagram

Figure 61 shows that Visitor design pattern has one main use case: Visit Class Elements to

Perform Operations. This main use case represents the main flow of Visitor. The following

are the description of the use case:

135

Table 47 the Description of Change Object State Use Case

Use Case

Name

Visit Class Elements to Perform Operations

Actor Client

Main Flow 1- The Visitor sends a request to visit class elements.

2- The Elements should approve the Visitor.

3- The Visitor traces each class elements to perform specific

operations.

4- End.

Table 47 shows the description of Visitor main uses case: Visit Class Elements to Perform

Operations. The description showed the different steps of the use case in the main flow.

Behavioral View Using Sequence Diagram

Each use case has its separate sequence diagram that showing the flows of scenario steps

from each and to each object and actors of the use case.

Figure 62 Visitor Design Pattern Sequence Diagram

136

Figure 62 shows the sequence flow of Visitor main use case: Visit Class Elements to

Perform Operations. The sequence behavior between the Visitor and the two different

concrete Elements A and B shows how the flow of action happens if the Visitor object

wants to perform operations with class elements without altering it is definition.

Structural View Using Class

In the structural view of Visitor design pattern, the class diagram similar to the traditional

class diagram. We will have a class diagram with two deferent class elements and one

concrete visitor.

The following is the class diagram of visitor:

Figure 63 Visitor Design Pattern Class Diagram

Figure 63 shows the class diagram of Visitor design pattern. The class diagram illustrates

all the different structural view features. The class diagram contains four classes: Visitor

declares a Visit operation for each class of ConcreteElement in the object structure. The

operation's name and signature identify the class that sends the Visit request to the visitor.

That lets the visitor determine the concrete class of the element being visited.

137

Then the visitor can access the element directly through its particular interface.

ConcreteVisitor implements each operation declared by Visitor. Each operation

implements a fragment of the algorithm defined for the corresponding class of object in the

structure. ConcreteVisitor provides the context for the algorithm and stores its local state.

This state often accumulates results during the traversal of the structure. Element defines

an Accept operation that takes a visitor as an argument. ConcreteElement implements an

Accept operation that takes a visitor as an argument.

Visitor UML integrated Representation

The UML integrated metamodel representation of Visitor design pattern, See Appendix B,

contains all the three main view features in the concrete file.

❖ Template Method

We will consider one use case for the Template Method design pattern. Template Method

design pattern Define the skeleton of an algorithm in an operation, deferring some steps to

subclasses. Template Method lets subclasses redefine certain steps of an algorithm without

changing the algorithm's structure.

 The three views representation is as follows:

Functional View Using Use Case Diagram

Similarly, as what we have done with previous design patterns, Template Method design

pattern we will have use case diagram that describes its functionality, the use case will

describe the main functionality of Template Method design pattern.

The use case diagram of Template Method design pattern as follows:

138

Figure 64 Template Method Design Pattern Use Case Diagram

Figure 64 shows that Template Method design pattern has one main use case: Define

Algorithm Skelton. This main use case represents the main flow of Template Method. The

following are the description of each use case:

Table 48 the Description of Define Algorithm Skelton Use Case

Use Case

Name

Define Algorithm Skelton

Actor Client

Main Flow 1- The AbstractClass defines the sequence of the ConcreteClass

operations in the TemplateMethod.

2- The ConcreteClass follows the sequences of performing the

operations as per defined in the TemplateMethod.

3- Ends.

Table 48 shows the description of Template Method main uses case: Define Algorithm

Skelton. The description showed the different steps of the use case in the main flow.

Behavioral View Using Sequence Diagram

Each use case has its separate sequence diagram that showing the flows of scenario steps

from each and to each object and actors of the use case.

139

Figure 65 Template Method Design Pattern Sequence Diagram

Figure 65 shows the sequence flow of Template Method main use case: Define Algorithm

Skelton. The sequence behavior between the AbstractClass and the ConcreteClass, where

the ConcreteClass performing the operations based on the sequence identified in the

TemplateMethod.

Structural View Using Class

In the structural view of Template Method design pattern, the class diagram similar to the

traditional class diagram. Where we have the AbstractClass and the ConcreteClasses.

The following is the class diagram of Template Method:

140

Figure 66 Template Method Design Pattern Class Diagram

Figure 66 shows the class diagram of the Template Method design pattern. The class

diagram illustrates all the different structural view features. AbstractClass defines abstract

primitive operations that concrete subclasses define to implement steps of an algorithm. It

implements a template method defining the skeleton of an algorithm. The template method

calls primitive operations as well as operations defined in AbstractClass or those of other

objects. ConcreteClass implements the primitive operations to carry out subclass specific

steps of the algorithm.

Template Method UML integrated Representation

The UML integrated metamodel representation of Template Method design pattern, See

Appendix B, contains all the three main view features in the concrete file.

141

❖ Command

We will consider one use case for Command design pattern. Command design pattern

encapsulates a request as an object, thereby letting you parameterize clients with different

requests, queue or log requests, and support undoable operations.

 The three views representation is as follows:

Functional View Using Use Case Diagram

Similarly, as what we have done with previous design patterns, Command design pattern

we will have use case diagram that describes its functionality, the use case will describe

the main functionality of Command design pattern.

The use case diagram of Command design pattern as follows:

Figure 67 Command Design Pattern Use Case Diagram

Figure 67 shows that Command design pattern has one main use case: Encapsulate a

Request as an Object. This main use case represents the main flow of Command. The

following are the description of each use case:

142

Table 49 the Description of Encapsulate a Request as an Object Use Case

Use Case

Name

Encapsulate a Request as an Object

Actor Client

Main Flow 1- The client creates a ConcreteCommand object and specifies its

receiver.

2- An Invoker object stores the ConcreteCommand object.

3- The invoker issues a request by calling Execute on the

command. When commands are undoable, ConcreteCommand

stores state for undoing the command prior to invoking Execute.

4- The ConcreteCommand object invokes operations on its

receiver to carry out the request.

5- End.

Table 49 shows the description of Command main uses case: Encapsulate a Request as an

Object. The description showed the different steps of the use case in the main flow.

Behavioral View Using Sequence Diagram

Each use case has its separate sequence diagram that showing the flows of scenario steps

from each and to each object and actors of the use case.

Figure 68 Command Design Pattern Sequence Diagram

143

Figure 68 shows the sequence flow of Command main use case: Encapsulate a Request as

an Object. The sequence behavior between the Command, Invoker and receiver when the

command encapsulates a request the invoker and then the request executed by the receiver.

Structural View Using Class

In the structural view of Command design pattern, the class diagram similar to the

traditional class diagram. Where we have the three main classes Command, Invoker, and

A Receiver.

The following is the class diagram of Command:

Figure 69 Command Method Design Pattern Class Diagram

Figure 69 shows the class diagram of Command design pattern. The class diagram

illustrates all the different structural view features. Command declares an interface for

executing an operation. ConcreteCommand defines a binding between a Receiver object

144

and an action. It implements Execute by invoking the corresponding operation(s) on

Receiver. The Client creates a ConcreteCommand object and sets its receiver. Invoker asks

the command to carry out the request. The Receiver knows how to perform the operations

associated with carrying out a request. Any class may serve as a Receiver.

Command UML integrated Representation

The UML integrated metamodel representation of Command design pattern, See Appendix

B, contains all the three main view features in concrete file.

145

5 CHAPTER 5

VALIDATION

5.1 Visual Validation

In this section, we are going to validate our proposed technique by two main ways, the

visual validation, and the automatic validation to see if the integrated metamodel gives

more information and better accuracy to the design pattern detection process. Before

starting discussing the validation process, we are going to elaborate on how to use the

integrated UML metamodel to represent design pattern.

Choosing a good representation model of design patterns is the crucial part of any

design pattern detection technique or methodology since the representation of design

patterns will decide how accurate and beneficial the detection technique is. Different

representation forms have been used in the literature review like XML, Ontology-Based or

text. In our proposed technique we are going to use the integrated metamodel to represent

the design patterns, we chose two design patterns (Chain of Responsibility, and Observer).

To show a clear picture of how the design patterns were defined and represented

and compare it with our study using the UML integrated metamodel. We will discuss the

four design patterns in two cases the traditional case as the design pattern have been defined

and represented in the literature and how we defined and represented the design patterns

using the integrated metamodel representations. We will also show the XML representation

of both the traditional design pattern representation and the representation using the UML

146

integrated metamodel. For the traditional representation and definition of the design

patterns, we are going to consider Gang of Four (GoF) [9] definition of Design patterns.

6 The traditional representation and definition of design patterns are considering only the

behavioral and Structural views. Mostly design patterns were represented and defined in

the literature using the class diagram and sequence diagram. While in our technique we are

representing the design patterns with the three main views the Functional, Behavioral and

Structural using the Use case diagram, sequence diagram and class diagram.

The XML representations of the traditional form of design patterns will be

considered separately for each view using the Enterprise Architect framework. In our

representation form, we used the IntegraUML tool proposed by [3, 24] to produce the

design pattern XML representation.

The visual validation process will be established by comparing the separated XML

source code of each design pattern class and sequence diagrams in the traditional definition

of the XML source code of the integrated metamodel of the design pattern use case,

sequence and class diagram to show that the UML integrated metamodel gives more

information for the design pattern to be detected and discovered, as well as the integrated

metamodel gathers all the design pattern functional, behavioral, and structural features in

one concrete XML file which will help to reduce the false-positive and true-negative.

We also developed a tool that detects the design patterns from a UML integrated

metamodel file. The tool detects design patterns based on its specification since each design

pattern has different functional, behavioral, and structural features that distinguish it from

the other design patterns. The design pattern specifications were taken from the design

pattern definition and representation.

147

7 We developed also a Pseudocode for each design pattern instances and then we converted

it to a hard code using Java programming language.

We conducted the manual validation of our proposed technique by comparing two

different cases, the traditional representation case with our proposed case using the

integrated metamodel. Where in the traditional case when we look at a separate view of a

design such as a behavioral view, it might look like a design pattern but when we check

the other view such as structural view; we realized that it is not actually a design pattern.

The reason behind that is the traditional representation each view is considered

separately from other views, they are not integrated or connected by any case. In the other

way around, using the UML integrated metamodel, since all the three views are integrated

and connected, gives more information about the design pattern Functional, Behavioral,

and Structural features in one integrated file.

Converting each view separately to its metamodel will reduce the other features of

the other views. For instance, converting the behavioral view (sequence diagram) to the

integrated metamodel will only give the behavioral features of the design pattern, and it

will give no clue about what are the structural features of that design pattern. Similarly

converting the structural view (Class Diagram) will only give the structural features of the

design pattern without mention anything about the behavioral features.

Using the integrated metamodel to represent the design pattern will concrete all the

different views features in one single place. All the functional, Behavioral and Structural

feature are connected and integrated into one single file, which will reduce the false-

positive and true-negative of design pattern detection.

148

We will give examples for each studied design patterns were looking to a single

view might look like a design pattern but checking the other view will show that it is not a

design pattern.

5.1.1 Case 1

In this case, we will look at a sequence diagram and its integrated metamodel that looks

like a chain of responsibility design pattern, but when we investigated the class diagram, it

shows that this is not actually a design pattern.

Figure 70 A Sequence Diagram of a program that looks like a Chain of Responsibility Design Pattern

Looking to sequence diagram Figure 70, the sequence of the methods between classes are

like the sequence diagram of a chain of responsibility, and it satisfied all the behavioral

features of the design pattern. When we look at its class diagram in figure 19, the class

diagram does not satisfy the structural features of a chain of responsibility design pattern.

149

Class C in class diagram Figure 71, does not implement Class A, instead it has a

0...* dependency relationship with Class A. While to satisfy the structural features of a

chain of responsibility design pattern both Classes B and C should implement Class A.

Figure 71 A Class Diagram of a Program that looks like a Chain of Responsibility Design Pattern

5.1.2 Case 2

Like the case 1, we have another case study where we have a sequence diagram in figure

20, that looks like an Observer design pattern but when we checked its class diagram figure

21, the class diagram does not satisfy the structural features of Observer design pattern.

As we mentioned before looking only to one view of a design pattern might cause

a wrong detection of a design pattern. We need to look at all the different views to detect

the design pattern accurately.

150

Figure 72 A Sequence Diagram of a Program that looks like an Observer Design Pattern

The sequence diagram in Figure 72 looks like an Observer design pattern since all the

different behavioral features and specifications have maintained and satisfied. However,

figure 22 is the class diagram of the sequence diagram represented in figure 31, the class

diagram does not actually satisfy all the structural features of Observer design pattern.

Class A uses Class B with 0…1 multiplicity, while in the Observer class diagram the

multiplicity should be 1…*. In addition, Class A is concrete in Figure 73, while the true

case of Observer there should be another class implements Class A.

151

Figure 73 a Class Diagram of a Program that looks like an Observer Design Pattern

5.2 Design Pattern Detection Tool

Based on the design pattern views specifications, we have implemented a design pattern

detection tool that detects the design patterns from an XML file. The tool reads an XML

file that is based on the integrated metamodel with a number of use cases. Some of these

use cases are real design patterns where some of these use cases are not. The tool is based

on Python programming language. The detecting parser checks the file use case by use case

with comparing each use case with the design pattern specification. The parser claims that

the use case is a design pattern whenever it meets the specifications of a specific design

pattern, otherwise, the detection parser claims that the use case is not a design pattern.

The tool consists of two parts, the first part is the design pattern specification where the

tool contains all the GoF design patterns specifications, and the second part is the design

pattern detection parser. The parser compares each use case in the XML file with all the

GoF design patterns specification.

152

5.2.1 Design Pattern Detection Algorithm

In this section we are going to explain our proposed design pattern algorithm. Our proposed

design pattern algorithm consists of two main parts:

The Design Pattern Specifications Dictionary: Which is represented by text

paths. Each design pattern is represented by number of XML tags path. For instance

this is one path of the chain of responsibility design pattern:

("Interaction/InteractionFragment/MultiOperand/InteractionOperand/Alt/Interac

tion/class/Message",1). All the design patterns paths are stored towards it design

pattern.

The Detection Code: This is the actual design pattern detector. The detector traces

all the different use cases in the integrated metamodel XML file. The detector

compares each use case with the stored design pattern XML tags Paths. Whenever

a use case matches a specific design pattern XML tags paths it reports that it found

a design pattern, otherwise it escapes to the next use case until it reaches the end of

the XML file. The following is the python pseudocode of our design pattern

detector:

153

Table 50 Design Pattern Detection Algorithm Pseudocode

Design Pattern Detection Algorithm Pseudocode

Require :

1-XML file contains one or more use cases

Procedure :

//Create a dictionary for all the 16 design patterns

1. Define DPdictionary

//inside the dictionary define all the design patterns corresponding to their features :

2. Define chain of responsibly implementation1 :

A. ("Interaction/InteractionFragment/MultiOperand/InteractionOperand/Alt/Intera

ction/class/Message",1),

B. ("Interaction/InteractionFragment/MultiOperand/InteractionOperand/Alt/Intera

ction/class/implements",1),

("Interaction/InteractionFragment/MultiOperand/InteractionOperand/Alt/Intera

ction/class/Message",1),

("Interaction/InteractionFragment/MultiOperand/InteractionOperand/Alt/Intera

ction/class/implements",1),

("Interaction/class/Message",2),

("Interaction/class/Message",1),

("Interaction/class/implements",1),

("Interaction/class/implements",1)

//Read an XML file that contains one or more use case , the use cases might be real

design pattern use cases see Appendix B, or use cases that looks like a design pattern

see Figure 74:

3- Read (File.xml)

4- Start from the file root.

5- Set Patterncounter to 0

6- Set UseCase Counter to 0

#for all the design patterns in the design pattern dictionary check all the design

pattern features (tag paths) against each use case in the XML file.

7- For each use case in the XML file

a- For each design pattern in the dictionary do

UseCase+1

#if the design pattern features met the traced use case then the specific-pattern

counter updated otherwise it goes to the next design pattern.

For each feature in the design pattern do

If use case feature == design pattern features then

 Patterncounter+1

Otherwise

 Read next use case

8- Display UseCase

9- Display Patterncounter

154

5.3 Empirical Experiment

The objective of this section is to analyze our design pattern detection technique based on

the UML integrated metamodel with respect to design pattern detection techniques that use

only one or two views separately from the point of view of the researcher, designer, and

programmer.

This experiment will discuss the results of using the three views representation and

implementing the design patterns using the integrated metamodel compared to using

individual and non-integrated views design pattern representation and detection

techniques.

5.3.1 The Contest

The context of this experiment is the two design patterns selected from GoF design

patterns. Each design pattern was defined and represented with the three main views

(Functional, Behavioral, and Structural) and compared to the definition and representation

of design patterns proposed in the literature review using one and two views.

The validation and the comparison between the two views were conducted in two

stages: visual validation, and automatic validation. In visual validation, we have two case

studies of designs where it looks like a design pattern when we consider each view

separately, but when we consider both views we realize that the design does not satisfy the

different design pattern view features. In the automatic validation, we developed a java

parser that parses an XML design pattern representation using the UML integrated

metamodel of a design pattern and an XML file that uses one view representation.

155

5.3.2 Research Questions and Hypotheses

We need first to know all the previous detection techniques that based on one or two views

to detect design patterns, we also need to know how design patterns we implemented,

defined and presented. Based on the objectives of our case study, we designed the

following research questions:

1. Does the design pattern detection technique using the UML integrated metamodel

which is based on the integration of the three UML main views detects design pattern

in a more accurate manner than using each view separately?

2. Does defining and presenting design patterns using the three main views (Functional,

Behavioral, and Structural) gives more information to detect the design patterns than

the traditional definition and representing using one or two views?

Based on the previous research questions we formulated the following Null Hypotheses of

this study:

H10: The design pattern detection technique using the UML integrated metamodel which

is based on the integration of the three UML main views does not detect design patterns in

a more accurate manner than using each view separately.

H20: Defining and presenting design patterns using the three main views (Functional,

Behavioral, and Structural) does not give more information to detect the design patterns

than the traditional definition and representing using one or two views.

The alternative hypotheses of this study are as the following:

156

H1: The design pattern detection technique using the UML integrated metamodel which is

based on the integration of the three UML main views detects design patterns in a more

accurate manner than using each view separately.

H2: Defining and presenting design patterns using the three main views (Functional,

Behavioral, and Structural) gives more information to detect the design patterns than the

traditional definition and representing using one or two views.

To reject the null hypotheses and accept the hypotheses, we need to discuss the results of

three main stages of the study: the functional representation of design patterns, the visual

validation of design patterns, and the automatic validation using the Java XML parser we

developed.

5.3.3 Objects

To investigate and validate our proposed technique, we must select the appropriate design

patterns. The design patterns we selected for this study are GoF design patterns proposed

by [9]. The reasons behind selected the GoF design pattern above other design patterns like

web design patterns are as follows:

1. GoF design patterns are well known and widely used design patterns in the empirical

studies and the literature review. From the table of comparison in section 3, we can

realize that the majority of design pattern detection techniques are using GoF design

patterns.

2. The GoF design patterns are well presented and defined in the literature review,

structural and behavioral features specifically.

3. Many of GoF design patterns have more than one instance and different scenarios.

157

5.3.4 Subjects

The subjects of this case study are the tools that we used to build up the design patterns

UML diagrams of the main three view (use case, sequence, and class), as well as the tools

that we used to represent the design patterns using the UML integrated metamodel. We

also used other tools that convert and builds up the XML code for the integrated metamodel

and UML diagrams.

5.3.5 Variable Selection

The independent variables in this study are the GoF design patterns. Whereas, the

dependent variables are the different representation forms of design patterns.

5.3.6 Instrumentation

This case study uses different instrumentations to help to conduct the experiment; we used

Python Editor, Eclipse, XML Spy, and Enterprise Architecture.

5.3.7 Experimental Procedure

First, we have conducted two main literature reviews: the traditional literature review and

the systematic literature review to collect all the necessary data of the previous design

patterns detection techniques, in order to conduct and compare our proposed technique

with the techniques we reviewed and surveyed.

Second, we defined the selected GoF design patterns with the three main views (structural,

behavioral, and functional).

Third, we represented the selected GoF design patterns using the UML integrated

metamodel.

158

Fourth, we defined and specified the design patterns specifications of the three main views.

Fifth, we conducted a visual validation of two case studies of a software design that look

like design patterns if we look at each view individually. However, when we consider the

other views it showed that they are not actually designed patterns.

Finally, we developed java parser tool that parses the XML file and checks for all design

patterns three main views specifications. The tool reads different XML files and checks for

all the design pattern specification when it all the specification of a design pattern is

satisfied then the tool prompt that it found a design pattern, otherwise it prompts that there

are no design patterns found.

5.3.8 Results Discussion

In this section, we are going to discuss the results of experiment procedure individually,

and then we are going to either accept or reject the null hypotheses based on the results:

Visual Validation results:

In the visual validation procedure in section 4, we have discussed two different case studies

of different software designs. In the visual validation, we checked each view of the case

studies individually. The results showed that it is not accurate to look at only one view of

a design pattern without looking to the views of the design pattern because each view gives

specific features and information than the other view cannot provide. So from the visual

validation results, we have found that if we look only at a single view without considering

the other views might give a wrong decision in detecting design patterns as what happened

in case studies 1, and 2. The UML metamodel of these case studies showed that each view

provides specific information about the design patterns, for instance, class diagram will

159

provide only the structural information about the design pattern without mentioning

anything about how the sequential procedural is going between the objects and class.

Likely wise, sequence diagram provides the behavioral aspects of the different design

patterns without mentioning anything about how the design patterns have been structurally

defined.

Based on the results, considering more and integrated three main (structural, behavioral,

and functional) views of a design pattern will provide a full specification of the main

different views features. The UML integrated metamodel integrates all the three main

views features in one concrete XML file, so this will increase the level of accuracy in

detecting the design patterns.

In this case, we are going to reject the first two null hypotheses and accept the alternative

ones.

Evaluation of Precision and Recall

To validate out proposed technique we have developed a Python code Parser that detects

the design patterns occurrences in the XML file. We have conducted two precision and

recall tests. The tool reads the XML file and checks all the structural, behavioral, and

functional features of the design pattern. If the XML file contains all the features then the

tool claims that it found a design pattern otherwise, it prompts that it didn’t find any design

patterns. For the calculation of precision and recall, we need the following definitions:

• True Positive (TP): a real design pattern exists in the XML file and it is detected

by the design pattern detection tool.

160

• False Positive (FP): there is no real design pattern exists in the XML file but the

design pattern detection tool reports that there is a design pattern exists.

• False Negative (FN): a real design pattern exists in the XML file but the design

pattern detection tool did not detect it.

The tool reads an XML file that based on the integrated metamodel contains different use

cases some of these use cases are design patterns while others are not:

1. Precision and recall test no.1: In this test, we have only real design patterns use

cases, we have one integrated metamodel file that contains only GoF real use cases.

These use cases are based on the UML integrated metamodel that contains all the

three main view features of a design pattern. When the tool reads this type of use

cases, it reports that it found a design pattern and then it lists the number of

occurrences. We created an XML file that contains all 16 use cases for the design

patterns implemented in our study, each use case represents a real design pattern,

the flowing table representing the results:

Table 51 Precise and Recall test No.1

Design

Pattern

Category TP FN FP Precision (%) Recall (%)

Builder Creational 1 0 0 100% 100%

Prototype Creational 1 0 0 100% 100%

Singleton Creational 1 0 0 100% 100%

Adapter Structural 1 0 0 100% 100%

161

Bridge Structural 1 0 0 100% 100%

Decorator Structural 1 0 0 100% 100%

Flyweight Structural 1 0 0 100% 100%

Proxy Structural 1 0 0 100% 100%

Chain of

Resp.

Behavioral 1 0 0 100% 100%

Observer Behavioral 1 0 0 100% 100%

Strategy Behavioral 1 0 0 100% 100%

Mediator Behavioral 1 0 0 100% 100%

State Behavioral 1 0 0 100% 100%

Visitor Behavioral 1 0 0 100% 100%

Template

Method

Behavioral 1 0 0 100% 100%

Command Behavioral 1 0 0 100% 100%

The results in Table 51 showed that the detection tool detected one instance of each

design pattern, the number of expected design pattern instance use cases equals to

the number of the detected design patterns. The results implies that representing the

design patterns using the integrated metamodel showed a high accurate results than

representing design patterns with individual views.

2. Precision and recall test no.2: In this test, we created two use cases that looks like

a real design pattern for each design pattern of the 16 design patterns we are

reviewing in this study. This two fake design patterns where added to the XML file,

162

this XML files ends up with three use cases for each design pattern one real design

pattern use case as well as the two fake design patterns. The following is an example

of an XML file for a fake chain of responsibility design pattern:

Figure 74 A Use Case That Looks Like a Design Pattern

This use case looks like a chain of responsibility design pattern, but it not a real chain of

responsibility design pattern since it does not satisfies the three main views specification

of chain of responsibility that we defined before. When the tool reads this type of XML

use cases, it reports that it did not find any design patterns due to lacking the design pattern

specifications. We have created an XML file that contains all the real design patterns uses

with two fake use cases for each, the results were as following:

Table 52 Precise and Recall Test No.2

Design

Pattern

TP No. Of Non real

design patterns

FN FP Precision (%) Recall (%)

Builder 1 2 0 0 100% 100%

163

Prototype 1 2 0 0 100% 100%

Singleton 1 2 0 0 100% 100%

Adapter 1 2 0 0 100% 100%

Bridge 1 2 0 0 100% 100%

Decorator 1 2 0 0 100% 100%

Flyweight 1 2 0 0 100% 100%

Proxy 1 2 0 0 100% 100%

Chain of

Resp.

1 2 0 0 100% 100%

Observer 1 2 0 0 100% 100%

Strategy 1 2 0 0 100% 100%

Mediator 1 2 0 0 100% 100%

State 1 2 0 0 100% 100%

Visitor 1 2 0 0 100% 100%

Template

Method

1 2 0 0 100% 100%

Command 1 2 0 0 100% 100%

From Table 52 we can see that the tools detects only the use cases that satisfies all the

design pattern specifications, while it ignores all the other fake use cases. In order to ensure

that the tool detected the real use case of the design patterns we removed the real use case

164

of the design pattern from the same XML file and then we re-conducted the same test, thus

we got the following results:

Table 53 Re-Conducted Test No.2

Design

Pattern

TP No. Of Non real

design patterns

FN FP Precision (%) Recall (%)

Builder 0 2 0 0 100% 100%

Prototype 0 2 0 0 100% 100%

Singleton 0 2 0 0 100% 100%

Adapter 0 2 0 0 100% 100%

Bridge 0 2 0 0 100% 100%

Decorator 0 2 0 0 100% 100%

Flyweight 0 2 0 0 100% 100%

Proxy 0 2 0 0 100% 100%

Chain of

Resp.

0 2 0 0 100% 100%

Observer 0 2 0 0 100% 100%

Strategy 0 2 0 0 100% 100%

Mediator 0 2 0 0 100% 100%

State 0 2 0 0 100% 100%

Visitor 0 2 0 0 100% 100%

165

Template

Method

0 2 0 0 100% 100%

Command 0 2 0 0 100% 100%

The results in Table 53 showed that the detection tool did not report any occurrence of

design pattern in the modified XML file. This implies that the results in table 35 were

accurate and precise.

So, from the results above, using the UML integrated metamodel is more accurate in

detecting design patterns than using individual views. Based on these results, we are going

to reject the first two hypotheses and accept the alternative ones.

5.3.9 Empirical Experimental Conclusion

Based on these results and analysis we are going to reject all the null hypotheses and accept

the alternative ones. Defining and representing design patterns using the three views give

more information about the design pattern so it can be detected in more accurate way.

From the documentation point of view, representing design patterns using the three

main views (Functional, Behavioral, and Structural) increase the level of documentation of

the design patterns for designers, and researchers. Furthermore, documenting the three

views features help in discussing the all possible implementations and instances of the

design pattern in one concrete document.

5.3.10 Threats to Validity

Internal Validity: in these study, there might be some confounding factors that may affect

the results of the experiment. The design patterns instances and scenarios were

166

implemented based on our understanding, thus the results might be biased. There is also a

manual intervention in our proposed technique, so that may effects the results.

External Validity: this study is limited to 16 GoF design patterns, the results are only

biased by the design patterns that we selected for this study. However, we might not get

the same results if we conducted the proposed technique on all GoF design patterns. Thus,

the results cannot be generalized

Construct Validity: this study has used the class, sequence, and use case diagram to

represent the structural, behavioral, and functional views respectively. There are other

diagrams might represent the three views in a more efficient way than the selected

diagrams. We also chose GoF design patterns, although there are other types of design

patterns like web design patterns, and elemental design patterns.

167

6 CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this study, we proposed a design pattern detection method and representation using UML

integrated Metamodel. The integrated metamodel integrates the three main views

(Functional, Behavioral, and Structural). The representation using UML integrated

metamodel gives more information about the design patterns than taking each view

separately.

The proposed technique provided better accuracy to detect the design patterns and

decreased the false-positive and true-negative of the detection process because one XML

file of the UML integrated metamodel contains the whole concrete Functional, Behavioral,

and Structural features of the design pattern in one self-contained file.

The systematic literature review and the traditional literature review showed that

most the previous design pattern detection techniques were based only on one view. Some

of the proposed detection techniques were using two views, but they are considering each

view separately, which will decrease the detection process.

168

6.2 FUTURE WORK

In this study, we applied our design pattern detection technique to all GoF design patterns

to prove and validate our concept. Since we have approved the concept of detection design

patterns using the UML integrated metamodel we are planning to apply our proposed

technique to other design pattern types.

A fully automated procedure will be followed to detect design patterns, from the

first stage of the automated methodology.

Using the UML integrated metamodel will open a future research opportunity to

discover design patterns semantically since it provides a name for each design pattern

components and features.

169

Appendix A: XMI Schema for Integrated Metamodel

170

171

Appendix B: UML INTEGRATED NETAMODEL

REPRESENTATION OF GoF DESIGN PATTERNS

Builder

1- <?xml version="1.0" encoding="UTF-8"?>

2- <IntegratedModel id="1" name="Builder">

3- //UseCase 1

4- <UseCase id="UC1" name="Build the Complex Object">

5- <Actor id="1" name="Client" />

6- <Interaction>

7- <class id="UC1-C1" name="Director" isAbstract=" No">

8- <Message id="Msg1" name="Director " visibility="Visible" />

9- <Message id="Msg2" name="Construct " visibility="Visible" />

10- <Association name="Compose" targetClass="C1-Builder" AggregationKind="

Compossite" />

11- </class>

12- <class id="UC1-C2" name="ConcreteBuilder" isAbstract=" No">

13- <implements id="UC1-Builder" />

14- <Message id="Msg3" name="buildPartA" visibility="Visible" />

15- <Message id="Msg4" name="buildPartB" visibility="Visible" />

16- <Message id="Msg5" name="buildPartC" visibility="Visible" />

17- <Message id="Msg6" name="getResult" visibility="Visible" />

18- </class>

19- </Interaction>

20- </UseCase>

21- </IntegratedModel>

The previous XML code represented the UML integrated metamodel for Builder design

pattern. Line 4 and 6 represented the three main views of the design pattern. Each use case

in the integrated metamodel each tag represents a feature of the design pattern. Each use

case has its name, actor and the extended or included use case. The tags in 6 to 19

represented the interaction of the different objects of the design pattern. Each tag contains

all the different classes with its structural features and methods as well as the sequence of

the classes. Hence, all the different views features are integrated into one XML file.

This will add a lot of benefits to the detection approach since all the different features and

collaboration sequences are maintained and integrated into one XML file.

Prototype

2- <?xml version="1.0" encoding="UTF-8"?>

3- <IntegratedModel id="1" name="Prototype">

4- //UseCase 1

5- <UseCase id="UC1" name="Clone Object">

6- <Actor id="1" name="Client" />

172

7- <Interaction>

8- <class id="UC1-C1" name="ConcretePrototype1" isAbstract=" No">

9- <Message id="Msg1" name="doneItSelf() " visibility="Visible" />

10- <implements id="Prototype" />

11- </class>

12- <class id="UC1-C2" name="ConcretePrototype2" isAbstract=" No">

13- <Message id="Msg2" name="doneItSelf() " visibility="Visible" />

14- <implements id="Prototype" />

15- </class>

16- </Interaction>

17- </UseCase>

18- </IntegratedModel>

The previous XML code represented the UML integrated metamodel for Prototype design

pattern. Line 5 and 7 represented the three main views of the design pattern. Each use case

in the integrated metamodel each tag represents a feature of the design pattern. Each use

case has its name, actor and the extended or included use case. The tags in 7 to 16

represented the interaction of the different objects of the design pattern. Each tag contains

all the different classes with its structural features and methods as well as the sequence of

the classes. Hence, all the different views features are integrated into one XML file.

This will add a lot of benefits to the detection approach since all the different features and

collaboration sequences are maintained and integrated into one XML file.

Singleton

1- <?xml version="1.0" encoding="UTF-8"?>

2- <IntegratedModel id="1" name="Singleton">

3- //UseCase 1

4- <UseCase id="UC1" name="Get Instance">

5- <Actor id="1" name="Client" />

6- <Interaction>

7- <class id="UC1-C1" name="Singelton" isAbstract=" No">

8- <Message id="Msg1" name="getInstance" visibility="Visible" />

9- <Message id="Msg2" name="singelton" visibility="Visible" />

10- <Association name="ComposeItself" targetClass="C1-Singelton"

AggregationKind=" Compossite" />

11- </class>

12- </Interaction>

13- </UseCase>

14- </IntegratedModel>

The previous XML code represented the UML integrated metamodel for Singleton design

pattern. Line 4 and 6 represented the three main views of the design pattern. Each use case

in the integrated metamodel each tag represents a feature of the design pattern. Each use

case has its name, actor and the extended or included use case. The tags in 6 to 13

represented the interaction of the different objects of the design pattern. Each tag contains

173

all the different classes with its structural features and methods as well as the sequence of

the classes. Hence, all the different views features are integrated into one XML file.

This will add a lot of benefits to the detection approach since all the different features and

collaboration sequences are maintained and integrated into one XML file.

Decorator

1- <?xml version="1.0" encoding="UTF-8"?>

2- <IntegratedModel id="1" name="Decorator">

3- //UseCase 1

4- <UseCase id="UC1" name="Add Behaivor">

5- <Actor id="1" name="Client" />

6- <Interaction>

7- <class id="UC1-C1" name="Decorator1" isAbstract=" No">

8- <Message id="Msg1" name="operation " visibility="Visible" />

9- <Message id="Msg2" name="addBehaivor " visibility="Visible" />

10- <implements id="Decorator" />

11- <Association name="Compose" targetClass="C1-Builder" AggregationKind="

Compossite" />

12- </class>

13- <class id="UC1-C1" name="Decorator2" isAbstract=" No">

14- <Message id="Msg1" name="operation " visibility="Visible" />

15- <Message id="Msg2" name="addBehaivor " visibility="Visible" />

16- <implements id="Decorator" />

17- </class>

18- <class id="UC1-C1" name="ConcreteComponenet" isAbstract=" No">

19- <Message id="Msg1" name="operation " visibility="Visible" />

20- <implements id="Componenet" />

21- <Association name="Compose" targetClass="Decorator" AggregationKind="

Compossite" />

22- </class>

23- </Interaction>

24- </UseCase>

25- </IntegratedModel>

The previous XML code represented the UML integrated metamodel for Decorator design

pattern. Line 4 and 6 represented the three main views of the design pattern. Each use case

in the integrated metamodel each tag represents a feature of the design pattern. Each use

case has its name, actor and the extended or included use case. The tags in 6 to 23

represented the interaction of the different objects of the design pattern. Each tag contains

all the different classes with its structural features and methods as well as the sequence of

the classes. Hence, all the different views features are integrated into one XML file.

This will add a lot of benefits to the detection approach since all the different features and

collaboration sequences are maintained and integrated into one XML file.

174

Proxy

1- <?xml version="1.0" encoding="UTF-8"?>

2- <IntegratedModel id="1" name="Proxy">

3- //UseCase 1

4- <UseCase id="UC1" name="Representing the Functionality of Subject">

5- <Actor id="1" name="Client" />

6- <Interaction>

7- <class id="UC1-C1" name="Proxy" isAbstract=" No">

8- <Message id="Msg1" name="operation " visibility="Visible" />

9- <Association name="Compose" targetClass="UC1-C2" AggregationKind=" share" />

10- <implements id="Subject" />

11- </class>

12- <class id="UC1-C2" name="RealSubject" isAbstract=" No">

13- <implements id="Subject" />

14- <Message id="Msg2" name="opertion" visibility="Visible" />

15- </class>

16- </Interaction>

17- </UseCase>

18- </IntegratedModel>

The previous XML code represented the UML integrated metamodel for Proxy design

pattern. Line 4 and 6 represented the three main views of the design pattern. Each use case

in the integrated metamodel each tag represents a feature of the design pattern. Each use

case has its name, actor and the extended or included use case. The tags in 6 to 16

represented the interaction of the different objects of the design pattern. Each tag contains

all the different classes with its structural features and methods as well as the sequence of

the classes. Hence, all the different views features are integrated into one XML file.

This will add a lot of benefits to the detection approach since all the different features and

collaboration sequences are maintained and integrated into one XML file.

Adapter

1- <?xml version="1.0" encoding="UTF-8"?>

2- <IntegratedModel id="1" name="Adapter">

3- //UseCase 1

4- <UseCase id="UC1" name="Adapting the Complex Object">

5- <Actor id="1" name="Client" />

6- <Interaction>

7- <class id="UC1-C1" name="Adapter" isAbstract=" No">

8- <Message id="Msg1" name="requiredMethod " visibility="Visible" />

9- <implements id="Target" />

10- <Association name="Compose" targetClass="UC1-C2" AggregationKind="

Compossite" />

11- </class>

12- <class id="UC1-C2" name="Adaptee" isAbstract=" No">

175

13- <Message id="Msg3" name="specifiedMethod" visibility="Visible" />

14- </class>

15- </Interaction>

16- </UseCase>

17- </IntegratedModel>

The previous XML code represented the UML integrated metamodel for Adapter design

pattern. Line 4 and 5 represented the three main views of the design pattern. Each use case

in the integrated metamodel each tag represents a feature of the design pattern. Each use

case has its name, actor and the extended or included use case. The tags in 6 to 15

represented the interaction of the different objects of the design pattern. Each tag contains

all the different classes with its structural features and methods as well as the sequence of

the classes. Hence, all the different views features are integrated into one XML file.

This will add a lot of benefits to the detection approach since all the different features and

collaboration sequences are maintained and integrated into one XML file.

Bridge

1- <?xml version="1.0" encoding="UTF-8"?>

2- <IntegratedModel id="1" name="Bridge">

3- //UseCase 1

4- <UseCase id="UC1" name="Decouple the Abstraction from The Implementation">

5- <Actor id="1" name="Client" />

6- <Interaction>

7- <class id="UC1-C1" name="ConcreteAbstractrion" isAbstract=" No">

8- <Message id="Msg1" name="operation " visibility="Visible" />

9- <Association name="Compose" targetClass="Implementor" AggregationKind="

Compossite" />

10- </class>

11- <class id="UC1-C2" name="ConcreteImplementor1" isAbstract=" No">

12- <implements id="Implementor" />

13- <Message id="Msg3" name="operationImp" visibility="Visible" />

14- </class>

15- <class id="UC1-C2" name="ConcreteImplementor2" isAbstract=" No">

16- <implements id="Implementor" />

17- <Message id="Msg3" name="operationImp" visibility="Visible" />

18- </class>

19- </Interaction>

20- </UseCase>

21- </IntegratedModel>

The previous XML code represented the UML integrated metamodel for Bridge design

pattern. Line 4 and 6 represented the three main views of the design pattern. Each use case

in the integrated metamodel each tag represents a feature of the design pattern. Each use

case has its name, actor and the extended or included use case. The tags in 6 to 19

represented the interaction of the different objects of the design pattern. Each tag contains

176

all the different classes with its structural features and methods as well as the sequence of

the classes. Hence, all the different views features are integrated into one XML file.

This will add a lot of benefits to the detection approach since all the different features and

collaboration sequences are maintained and integrated into one XML file.

Flyweight

1- <?xml version="1.0" encoding="UTF-8"?>

2- <IntegratedModel id="1" name="Flyweight">

3- //UseCase 1

4- <UseCase id="UC1" name="Reduce Memory Load">

5- <Actor id="1" name="Client" />

6- <Interaction>

7- <class id="UC1-C1" name="FlyweightFactory" isAbstract=" No">

8- <Message id="Msg1" name="getFlyweight " visibility="Visible" />

9- <Message id="Msg1" name="findFlyweight " visibility="Visible" />

10- <Association name="Compose" targetClass="Flyweight" AggregationKind="

Compossite" />

11- </class>

12- <class id="UC1-C2" name="Flyweight" isAbstract=" No">

13- <Message id="Msg3" name="create" visibility="Visisble" />

14- <Message id="Msg4" name="operationExtrinsicState" visibility="Visible" />

15- </class>

16- </Interaction>

17- </UseCase>

18- </IntegratedModel>

The previous XML code represented the UML integrated metamodel for Flywright design

pattern. Line 4 and 6 represented the three main views of the design pattern. Each use case

in the integrated metamodel each tag represents a feature of the design pattern. Each use

case has its name, actor and the extended or included use case. The tags in 6 to 16

represented the interaction of the different objects of the design pattern. Each tag contains

all the different classes with its structural features and methods as well as the sequence of

the classes. Hence, all the different views features are integrated into one XML file.

This will add a lot of benefits to the detection approach since all the different features and

collaboration sequences are maintained and integrated into one XML file.

Chain of Responsibility
1- <?xml version="1.0" encoding="UTF-8"?>

2- <IntegratedModel id="1" name="Chain of Responsibility">

3- //UseCase 1

4- <UseCase id="UC1" name="Handling Request by Controller">

5- <Actor id="1" name="Client">

6- </Actor>

7- <Interaction>

177

8- <InteractionFragment id="1" name="IF the Request Can't be handled by the

Controller">

9- <MultiOperand id="1" name="UC1-Alt">

10- <InteractionOperand>

11- <Alt>

12- </Alt>

13- <Interaction>

14- <class id="UC1-C1" name ="Controller" isAbstract= " Yes" >

15- <Message id="Msg1" name="ForwardRequest" visibility="Visible">

16- </Message>

17- </class>

18- <class id="UC1-C2" name ="Mediator1" isAbstract= " Yes" >

19- <implements id="UC1-C1">

20- </implements>

21- <Message id="Msg2" name="ForwardRequest" visibility="Visible">

22- </Message>

23- </class>

24- <class id="UC1-C3" name ="Mediator2" isAbstract= " Yes" >

25- <implements id="UC1-C1">

26- </implements>

27- </class>

28- </Interaction>

29- </InteractionOperand>

30- </MultiOperand>

31- </InteractionFragment>

32- <class id="UC1-C1" name ="Controller" isAbstract= " Yes" >

33- <Message id="Msg1" name="ForwardRequest" visibility="Visible">

34- </Message>

35- <Message id="Msg2" name="HandleRequest" visibility="Visible">

36- </Message>

37- </class>

38- <class id="UC1-C2" name ="Mediator1" isAbstract= " Yes" >

39- <implements id="UC1-C1">

40- </implements>

41- <Message id="Msg2" name="ForwardRequest" visibility="Visible">

42- </Message>

43- </class>

44- <class id="UC1-C3" name ="Mediator2" isAbstract= " Yes" >

45- <implements id="UC1-C1">

46- </implements>

47- </class>

48- </Interaction>

49- </UseCase>

50- //UseCase 2

51- <UseCase id="UC2" name="Handling Request by a Mediator">

52- <Actor id="1" name="Client">

178

53- </Actor>

54- <Extend extension="UC1">

55- </Extend>

56- <Interaction>

57- <InteractionFragment id="2" name="IF the Request Can't Be handled then

forward it to the next Mediator">

58- <MultiOperand id="1" name="UC2-Alt">

59- <InteractionOperand>

60- <Alt>

61- </Alt>

62- <Interaction>

63- <class id="UC1-C1" name ="Controller" isAbstract= " Yes" >

64- <Message id="Msg1" name="ForwardRequest" visibility="Visible">

65- </Message>

66- </class>

67- <class id="UC1-C2" name ="Mediator1" isAbstract= " Yes" >

68- <implements id="UC1-C1">

69- </implements>

70- <Message id="Msg2" name="ForwardRequest" visibility="Visible">

71- </Message>

72- </class>

73- <class id="UC1-C3" name ="Mediator2" isAbstract= " Yes" >

74- <implements id="UC1-C1">

75- </implements>

76- <Message id="Msg2" name="HandleRequest" visibility="Visible">

77- </Message>

78- </class>

79- </Interaction>

80- </InteractionOperand>

81- </MultiOperand>

82- </InteractionFragment>

83- <class id="UC2-C1" name ="Controller" isAbstract= " Yes" >

84- <Message id="Msg1" name="ForwardRequest" visibility="Visible">

85- </Message>

86- </class>

87- <class id="UC2-C2" name ="Mediator1" isAbstract= " Yes" >

88- <implements id="UC2-C1">

89- </implements>

90- <Message id="Msg2" name="ForwardRequest" visibility="Visisble">

91- </Message>

92- <Message id="Msg2" name="HandleRequest" visibility="Visisble">

93- </Message>

94- </class>

95- <class id="UC2-C3" name ="Mediator2" isAbstract= " Yes" >

96- <implements id="UC1-C1">

97- </implements>

179

98- </class>

99- </Interaction>

100- </UseCase>

101- //UseCase 3

102- <UseCase id="UC3" name="Handling Request by a Mediator">

103- <Actor id="1" name="Client">

104- </Actor>

105- <Extend extension="UC1">

106- </Extend>

107- <Interaction>

108- <InteractionFragment id="3" name="IF the Request Can't Be handled then

forward it to the next Mediator">

109- <MultiOperand id="1" name="UC3-Alt">

110- <InteractionOperand>

111- <Alt>

112- </Alt>

113- </InteractionOperand>

114- </MultiOperand>

115- </InteractionFragment>

116- <class id="UC3-C1" name ="Controller" isAbstract= " Yes" >

117- <Message id="Msg1" name="ForwardRequest" visibility="Visible">

118- </Message>

119- <Message id="Msg2" name="HandlePartially" visibility="Visible">

120- </Message>

121- </class>

122- <class id="UC3-C2" name ="Mediator1" isAbstract= " Yes" >

123- <implements id="UC2-C1">

124- </implements>

125- <Message id="Msg3" name="ForwardPartialy" visibility="Visible">

126- </Message>

127- <Message id="Msg4" name="HandlePartially" visibility="Visible">

128- </Message>

129- </class>

130- <class id="UC3-C3" name ="Mediator2" isAbstract= " Yes" >

131- <implements id="UC1-C1">

132- </implements>

133- <Message id="Msg5" name="HandlePartially" visibility="Visible">

134- </Message>

135- </class>

136- </Interaction>

137- </UseCase>

138- </IntegratedModel>

The previous XML code represented the UML integrated metamodel for a chain of

responsibility design pattern. Line 4, 36, and 62 represented the three main views of the

design pattern. In each use case in the UML integrated metamodel, every tag represents a

180

feature of the design pattern. Each use case has its name, actor and extended or included

use case. The tags in 7, 13, and 46 represents the interaction of the different objects of the

design pattern. Each tag contains all the different classes with its structural features and

methods as well as the sequence of the classes. Hence, all the different views features are

integrated into one XML file.

This will add a lot of benefits to the design patterns detection approach since all the

different features and collaboration sequences are maintained and integrated into one XML

file.

Observer

1- <?xml version="1.0" encoding="UTF-8"?>

2- <IntegratedModel id="1" name="Observer">

3- //UseCase 1

4- <UseCase id="UC1" name="Watching Item">

5- <Actor id="1" name="Client">

6- </Actor>

7- <Include includeCase="2">

8- </Include>

9- <Interaction>

10- <class id="UC1-C1" name ="ConcreteSubject" isAbstract= " Yes" >

11- <implements id="UC1-C00">

12- </implements>

13- <Message id="Msg1" name="RegisterObserver" visibility="Visible">

14- </Message>

15- <Message id="Msg2" name="RemoveObserver" visibility="Visible">

16- </Message>

17- <Message id="Msg3" name="CheckItem" visibility="Visible">

18- </Message>

19- </class>

20- <class id="UC1-C2" name ="Obserever 1" isAbstract= " Yes" >

21- <implements id="UC1-C01">

22- </implements>

23- </class>

24- <class id="UC1-C3" name ="Obserever 2" isAbstract= " Yes" >

25- <implements id="UC1-C01">

26- </implements>

27- </class>

28- </Interaction>

29- </UseCase>

30- //UseCase 2

31- <UseCase id="UC1" name="Item State Changed">

32- <Actor id="1" name="Client">

33- </Actor>

34- <Interaction>

35- <class id="UC1-C1" name ="ConcreteSubject" isAbstract= " Yes" >

36- <implements id="UC1-C00">

181

37- </implements>

38- <Message id="Msg1" name="NotifyObserver" visibility="Visible">

39- </Message>

40- </class>

41- <class id="UC1-C2" name ="Obserever 1" isAbstract= " Yes" >

42- <implements id="UC1-C01">

43- </implements>

44- <Message id="Msg1" name="Update" visibility="Visible">

45- </Message>

46- </class>

47- <class id="UC1-C3" name ="Obserever 2" isAbstract= " Yes" >

48- <implements id="UC1-C01">

49- </implements>

50- <Message id="Msg1" name="Update" visibility="Visible">

51- </Message>

52- </class>

53- </Interaction>

54- </UseCase>

55- </IntegratedModel>

The previous XML code represented the UML integrated metamodel for Observer design

pattern. Line 4 and 31 represented the two main use cases of the design pattern. Each use

case in the integrated metamodel each tag represents a feature of the design pattern. Each

use case has its name, actor and the extended or included use case. The tags in 9, and 34

represented the interaction of the different objects of the design pattern. Each tag contains

all the different classes with its structural features and methods as well as the sequence of

the classes. Hence, all the different views features are integrated into one XML file.

This will add a lot of benefits to the detection approach since all the different features and

collaboration sequences are maintained and integrated into one XML file

Strategy

1- <?xml version="1.0" encoding="UTF-8"?>

2- <IntegratedModel id="1" name="Strategy">

3- //UseCase 1

4- <UseCase id="UC1" name="Select the appropriate solution">

5- <Actor id="1" name="Client" />

6- <Interaction>

7- <class id="UC1-C1" name="Context" isAbstract=" No">

8- <Message id="Msg3" name="selectAlgorithm" visibility="Visible" />

9- <Association name="Compose" targetClass="Strategy" AggregationKind="

Compossite" />

10- </class>

11- <class id="UC1-C2" name="StrategyA" isAbstract=" No">

12- <Message id="Msg1" name="AlgorithmA " visibility="Visible" />

13- <implements id="Strategy" />

182

14- </class>

15- <class id="UC1-C3" name="StrategyB" isAbstract=" No">

16- <Message id="Msg1" name="AlgorithmB " visibility="Visible" />

17- <implements id="Strategy" />

18- </class>

19- </Interaction>

20- </UseCase>

21- </IntegratedModel>

The previous XML code represented the UML integrated metamodel for Strategy design

pattern. Line 4 and 6 represented the three main views of the design pattern. Each use case

in the integrated metamodel each tag represents a feature of the design pattern. Each use

case has its name, actor and the extended or included use case. The tags in 6 to 16

represented the interaction of the different objects of the design pattern. Each tag contains

all the different classes with its structural features and methods as well as the sequence of

the classes. Hence, all the different views features are integrated into one XML file.

This will add a lot of benefits to the detection approach since all the different features and

collaboration sequences are maintained and integrated into one XML file.

Mediator

1- <?xml version="1.0" encoding="UTF-8"?>

2- <IntegratedModel id="1" name="Mediator">

3- //UseCase 1

4- <UseCase id="UC1" name="Handle the Objects Communications">

5- <Actor id="1" name="Client" />

6- <Interaction>

7- <class id="UC1-C1" name="ConcreteMediator" isAbstract=" No">

8- <Message id="Msg3" name="mediate" visibility="Visible" />

9- <implements id="Mediator" />

10- <Association name="use" targetClass="Colleague" AggregationKind=" none" />

11- </class>

12- <class id="UC1-C2" name="Colleague1" isAbstract=" No">

13- <Message id="Msg1" name="action1 " visibility="Visible" />

14- <Message id="Msg1" name="getState " visibility="Visible" />

15- <implements id="Colleague" />

16- </class>

17- <class id="UC1-C2" name="Colleague2" isAbstract=" No">

18- <Message id="Msg1" name="action2" visibility="Visible" />

19- <Message id="Msg1" name="getState " visibility="Visible" />

20- <implements id="Colleague" />

21- </class>

22- <class id="UC1-C3" name="StrategyB" isAbstract=" No">

23- <Message id="Msg1" name="AlgorithmB " visibility="Visible" />

24- <implements id="Strategy" />

25- </class>

183

26- </Interaction>

27- </UseCase>

28- </IntegratedModel>

The previous XML code represented the UML integrated metamodel for Mediator design

pattern. Line 4 and 6 represented the three main views of the design pattern. Each use case

in the integrated metamodel each tag represents a feature of the design pattern. Each use

case has its name, actor and the extended or included use case. The tags in 6 to 26

represented the interaction of the different objects of the design pattern. Each tag contains

all the different classes with its structural features and methods as well as the sequence of

the classes. Hence, all the different views features are integrated into one XML file.

This will add a lot of benefits to the detection approach since all the different features and

collaboration sequences are maintained and integrated into one XML file.

State

1- <?xml version="1.0" encoding="UTF-8"?>

2- <IntegratedModel id="1" name="State">

3- //UseCase 1

4- <UseCase id="UC1" name="Change Object State">

5- <Actor id="1" name="Client" />

6- <Interaction>

7- <class id="UC1-C1" name="Context" isAbstract=" No">

8- <Message id="Msg1" name="request " visibility="Visible" />

9- <Association name="Compose" targetClass="State" AggregationKind="

Compossite" />

10- </class>

11- <class id="UC1-C2" name="State1" isAbstract=" No">

12- <implements id="State" />

13- <Message id="Msg3" name="handleRequest" visibility="Visible" />

14- </class>

15- <class id="UC1-C3" name="State3" isAbstract=" No">

16- <implements id="State" />

17- <Message id="Msg3" name="handleRequest" visibility="Visible" />

18- </class>

19- </Interaction>

20- </UseCase>

21- </IntegratedModel>

The previous XML code represented the UML integrated metamodel for State design

pattern. Line 4 and 6 represented the three main views of the design pattern. Each use case

in the integrated metamodel each tag represents a feature of the design pattern. Each use

case has its name, actor and the extended or included use case. The tags in 6 to 19

represented the interaction of the different objects of the design pattern. Each tag contains

all the different classes with its structural features and methods as well as the sequence of

the classes. Hence, all the different views features are integrated into one XML file.

184

This will add a lot of benefits to the detection approach since all the different features and

collaboration sequences are maintained and integrated into one XML file.

Visitor

1- <?xml version="1.0" encoding="UTF-8"?>

2- <IntegratedModel id="1" name="Visitor:">

3- //UseCase 1

4- <UseCase id="UC1" name="Visit Class Elements to Perform Operations">

5- <Actor id="1" name="Client" />

6- <Interaction>

7- <class id="UC1-C1" name="ElementA" isAbstract=" No">

8- <Message id="Msg1" name="acceptVisitor " visibility="Visible" />

9- <Message id="Msg2" name="operation " visibility="Visible" />

10- <implements id="Element" />

11- </class>

12- <class id="UC1-C1" name="ElementB" isAbstract=" No">

13- <Message id="Msg1" name="acceptVisitor " visibility="Visible" />

14- <Message id="Msg2" name="operation " visibility="Visible" />

15- <implements id="Element" />

16- </class>

17- <class id="UC1-C2" name="ConcreteVisitor" isAbstract=" No">

18- <implements id="Visitor" />

19- <Message id="Msg3" name="visitElementA" visibility="Visible" />

20- <Message id="Msg3" name="visitElementB" visibility="Visible" />

21- <implements id="Visitor" />

22- <Association name="use" targetClass="Element" AggregationKind=" none" />

23- </class>

24- </Interaction>

25- </UseCase>

26- </IntegratedModel>

The previous XML code represented the UML integrated metamodel for Visitor design

pattern. Line 4 and 6 represented the three main views of the design pattern. Each use case

in the integrated metamodel each tag represents a feature of the design pattern. Each use

case has its name, actor and the extended or included use case. The tags in 6 to 24

represented the interaction of the different objects of the design pattern. Each tag contains

all the different classes with its structural features and methods as well as the sequence of

the classes. Hence, all the different views features are integrated into one XML file.

This will add a lot of benefits to the detection approach since all the different features and

collaboration sequences are maintained and integrated into one XML file.

185

Template Method

1- <?xml version="1.0" encoding="UTF-8"?>

2- <IntegratedModel id="1" name="Template Method">

3- //UseCase 1

4- <UseCase id="UC1" name="Define Algorithm Skelton">

5- <Actor id="1" name="Client" />

6- <Interaction>

7- <class id="UC1-C1" name="AbstracClass" isAbstract=" No">

8- <Message id="Msg1" name="templateMethod " visibility="Visible" />

9- </class>

10- <class id="UC1-C2" name="ConcreteClass" isAbstract=" No">

11- <implements id="AbstracClass" />

12- <Message id="Msg2" name="premitiveOperation1" visibility="Visible" />

13- <Message id="Msg3" name="premitiveOperation2" visibility="Visible" />

14- </class>

15- </Interaction>

16- </UseCase>

17- </IntegratedModel>

The previous XML code represented the UML integrated metamodel for Template Method

design pattern. Line 4 and 6 represented the three main views of the design pattern. Each

use case in the integrated metamodel each tag represents a feature of the design pattern.

Each use case has its name, actor and the extended or included use case. The tags in 6 to

16 represented the interaction of the different objects of the design pattern. Each tag

contains all the different classes with its structural features and methods as well as the

sequence of the classes. Hence, all the different views features are integrated into one XML

file.

This will add a lot of benefits to the detection approach since all the different features and

collaboration sequences are maintained and integrated into one XML file.

Command

1. <?xml version="1.0" encoding="UTF-8"?>

2. <IntegratedModel id="1" name="Command">

3. //UseCase 1

4. <UseCase id="UC1" name="Encapsulate a Request as an Object">

5. <Actor id="1" name="Client" />

6. <Interaction>

7. <class id="UC1-C1" name="ConcreteCommand" isAbstract=" No">

8. <Message id="Msg1" name="createCommand " visibility="Visible" />

9. <Message id="Msg2" name="action " visibility="Visible" />

10. <implements id="Command" />

11. <Association name="Compose" targetClass="Reciever" AggregationKind="

Composite" />

12. </class>

13. <class id="UC1-C2" name="Invoker" isAbstract=" No">

14. <implements id="" />

186

15. <Message id="Msg3" name="storeComman" visibility="Visible" />

16. <Message id="Msg4" name="executeCommand" visibility="Visible" />

17. </class>

18. <class id="UC1-C3" name="Reciever" isAbstract=" No">

19. <Message id="Msg3" name="action" visibility="Visible" />

20. </class>

21. </Interaction>

22. </UseCase>

23. </IntegratedModel>

The previous XML code represented the UML integrated metamodel for Command design

pattern. Line 4 and 6 represented the three main views of the design pattern. Each use case

in the integrated metamodel each tag represents a feature of the design pattern. Each use

case has its name, actor and the extended or included use case. The tags in 6 to 21

represented the interaction of the different objects of the design pattern. Each tag contains

all the different classes with its structural features and methods as well as the sequence of

the classes. Hence, all the different views features are integrated into one XML file.

This will add a lot of benefits to the detection approach since all the different features and

collaboration sequences are maintained and integrated into one XML file.

187

References:
1. http://www.omg.org/. OMG Group. Website.

2. Chihada, A., et al., Source code and design conformance, design pattern detection

from source code by classification approach. Applied Soft Computing, 2015. 26:

p. 357-367.

3. Misbhauddin, M., Towards an integrated metamodel based approach to software

refactoring. 2012.

4. De Lucia, A., et al. Behavioral pattern identification through visual language

parsing and code instrumentation. in Software Maintenance and Reengineering,

2009. CSMR'09. 13th European Conference on. 2009. IEEE.

5. Tsantalis, N., et al., Design pattern detection using similarity scoring. IEEE

Transactions on Software Engineering, 2006. 32(11): p. 896-909.

6. Dong, J., Y. Zhao, and Y. Sun, A matrix-based approach to recovering design

patterns. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems

and Humans, 2009. 39(6): p. 1271-1282.

7. Meyer, M. and L. Wendehals, Selective tracing for dynamic analyses.

Comprehension through Dynamic Analysis, 2005. 33.

8. Lee, H., H. Youn, and E. Lee. Automatic detection of design pattern for reverse

engineering. in 5th ACIS International Conference on Software Engineering

Research, Management & Applications (SERA 2007). 2007. IEEE.

9. Gamma, E., Design patterns: elements of reusable object-oriented software. 1995:

Pearson Education India.

10. Jacobson, I., Object-oriented software engineering: a use case driven approach.

1993: Pearson Education India.

11. Kaczor, O., Y.-G. Guéhéneuc, and S. Hamel. Efficient identification of design

patterns with bit-vector algorithm. in Software Maintenance and Reengineering,

2006. CSMR 2006. Proceedings of the 10th European Conference on. 2006. IEEE.

12. Rumbaugh, J., et al., Object-oriented modeling and design. Vol. 199. 1991:

Prentice-hall Englewood Cliffs, NJ.

13. Grady, B., Object-oriented analysis and design with applications. 1994, Addison

Wesley Longman.

14. Arief, L.B. and N.A. Speirs. A UML tool for an automatic generation of simulation

programs. in Proceedings of the 2nd international workshop on Software and

performance. 2000. ACM.

15. Meyer, B., UML: the positive spin. American Programmer, 1997. 10: p. 37-41.

16. Kruchten, P.B., The 4+ 1 view model of architecture. IEEE software, 1995. 12(6):

p. 42-50.

17. Iivari, J., Object-orientation as structural, functional and behavioural modelling:

a comparison of six methods for object-oriented analysis. Information and Software

Technology, 1995. 37(3): p. 155-163.

18. http://www.uml-diagrams.org/. UML diagrams.

19. Misbhauddin, M. and M. Alshayeb, Extending the UML use case metamodel with

behavioral information to facilitate model analysis and interchange. Software &

Systems Modeling, 2015. 14(2): p. 813-838.

20. Boronat, A., et al., Formal model merging applied to class diagram integration.

Electronic Notes in Theoretical Computer Science, 2007. 166: p. 5-26.

http://www.omg.org/
http://www.uml-diagrams.org/

188

21. Da Silva, P.P. and N.W. Paton, User interface modeling in UMLi. IEEE software,

2003. 20(4): p. 62-69.

22. Egyed, A. and N. Medvidovic. Extending architectural representation in UML with

view integration. in International Conference on the Unified Modeling Language.

1999. Springer.

23. Tchertchago, A., Formal Semantics for a UML fragment using UML/OCL

Metamodeling. Project, Dresden University of Technology, Department of

Computer Science, Germany, February, 2002.

24. Misbhauddin, M. and M. Alshayeb, An integrated metamodel-based approach to

software model refactoring. Software & Systems Modeling, 2017: p. 1-38.

25. Keller, R.K., et al. Pattern-based reverse-engineering of design components. in

Proceedings of the 21st international conference on Software engineering. 1999.

ACM.

26. Rasool, G., I. Philippow, and P. Mäder, Design pattern recovery based on

annotations. Advances in Engineering Software, 2010. 41(4): p. 519-526.

27. Stencel, K. and P. Wegrzynowicz. Detection of diverse design pattern variants. in

Software Engineering Conference, 2008. APSEC'08. 15th Asia-Pacific. 2008.

IEEE.

28. Vokáč, M. and J.M. Glattetre. Using a domain-specific language and custom tools

to model a multi-tier service-oriented application—experiences and challenges. in

International Conference on Model Driven Engineering Languages and Systems.

2005. Springer.

29. Paakki, J., et al. Software metrics by architectural pattern mining. in Proceedings

of the International Conference on Software: Theory and Practice (16th IFIP

World Computer Congress). 2000.

30. https://www.uni-paderborn.de/.

31. Antoniol, G., R. Fiutem, and L. Cristoforetti. Design pattern recovery in object-

oriented software. in Program Comprehension, 1998. IWPC'98. Proceedings., 6th

International Workshop on. 1998. IEEE.

32. Tsantalis, N., et al., Design pattern detection using similarity scoring. IEEE

transactions on software engineering, 2006. 32(11).

33. http://www.ptidej.net/.

34. Niere, J., et al. Towards pattern-based design recovery. in Proceedings of the 24th

international conference on Software engineering. 2002. ACM.

35. Shi, N. and R.A. Olsson. Reverse engineering of design patterns from java source

code. in Automated Software Engineering, 2006. ASE'06. 21st IEEE/ACM

International Conference on. 2006. IEEE.

36. Beyer, D. and C. Lewerentz. CrocoPat: Efficient pattern analysis in object-oriented

programs. in Program Comprehension, 2003. 11th IEEE International Workshop

on. 2003. IEEE.

37. Heuzeroth, D., et al. Automatic design pattern detection. in Program

Comprehension, 2003. 11th IEEE International Workshop on. 2003. IEEE.

38. Balanyi, Z. and R. Ferenc. Mining design patterns from C++ source code. in

Software Maintenance, 2003. ICSM 2003. Proceedings. International Conference

on. 2003. IEEE.

http://www.uni-paderborn.de/
http://www.ptidej.net/

189

39. Wang, W. and V. Tzerpos. Design pattern detection in Eiffel systems. in Reverse

Engineering, 12th Working Conference on. 2005. IEEE.

40. Ferenc, R., et al. Design pattern mining enhanced by machine learning. in Software

Maintenance, 2005. ICSM'05. Proceedings of the 21st IEEE International

Conference on. 2005. IEEE.

41. Huang, H., et al., A practical pattern recovery approach based on both structural

and behavioral analysis. Journal of Systems and Software, 2005. 75(1): p. 69-87.

42. Arcelli, F. and L. Christina. Enhancing software evolution through design pattern

detection. in Software Evolvability, 2007 Third International IEEE Workshop on.

2007. IEEE.

43. Rasool, G. and D. Streitfdert, A survey on design pattern recovery techniques. IJCSI

International Journal of Computer Science Issues, 2011. 8(2): p. 251-260.

44. Priya, R.K. A survey: Design pattern detection approaches with metrics. in

Emerging Trends In New & Renewable Energy Sources And Energy Management

(NCET NRES EM), 2014 IEEE National Conference On. 2014. IEEE.

45. Iacob, C. A design pattern mining method for interaction design. in Proceedings of

the 3rd ACM SIGCHI symposium on Engineering interactive computing systems.

2011. ACM.

46. Arnold, M. and H. Corporaal. Automatic detection of recurring operation patterns.

in Hardware/Software Codesign, 1999.(CODES'99) Proceedings of the Seventh

International Workshop on. 1999. IEEE.

47. Alnusair, A., T. Zhao, and G. Yan. Automatic recognition of design motifs using

semantic conditions. in Proceedings of the 28th Annual ACM Symposium on

Applied Computing. 2013. ACM.

48. Pappalardo, G. and E. Tramontana. Automatically discovering design patterns and

assessing concern separations for applications. in Proceedings of the 2006 ACM

symposium on Applied computing. 2006. ACM.

49. Dong, J., Y. Sun, and Y. Zhao. Design pattern detection by template matching. in

Proceedings of the 2008 ACM symposium on Applied computing. 2008. ACM.

50. Dabain, H., A. Manzer, and V. Tzerpos. Design pattern detection using FINDER.

in Proceedings of the 30th Annual ACM Symposium on Applied Computing. 2015.

ACM.

51. Stephan, M. and J.R. Cordy. Identifying instances of model design patterns and

antipatterns using model clone detection. in Modeling in Software Engineering

(MiSE), 2015 IEEE/ACM 7th International Workshop on. 2015. IEEE.

52. Seemann, J. and J.W. von Gudenberg. Pattern-based design recovery of Java

software. in ACM SIGSOFT Software Engineering Notes. 1998. ACM.

53. Wendehals, L. and A. Orso. Recognizing behavioral patterns atruntime using finite

automata. in Proceedings of the 2006 international workshop on Dynamic systems

analysis. 2006. ACM.

54. Sudhakar, N. and J. Gyani. Tecdp: a tool for extracting creational design patterns.

in Proceedings of the International Conference and Workshop on Emerging Trends

in Technology. 2010. ACM.

55. Bernardi, M.L., M. Cimitile, and G. Di Lucca, Design pattern detection using a

DSL‐ driven graph matching approach. Journal of Software: Evolution and

Process, 2014. 26(12): p. 1233-1266.

190

56. Di Martino, B. and A. Esposito, A rule‐ based procedure for automatic recognition

of design patterns in UML diagrams. Software: Practice and Experience, 2016.

46(7): p. 983-1007.

57. Ng, J.K.Y., Y.G. Guéhéneuc, and G. Antoniol, Identification of behavioural and

creational design motifs through dynamic analysis. Journal of Software

Maintenance and Evolution: Research and Practice, 2010. 22(8): p. 597-627.

58. Ng, J.K.Y., Y.G. Guéhéneuc, and G. Antoniol, Identification of behavioural and

creational design motifs through dynamic analysis. Journal of Software: Evolution

and Process, 2010. 22(8): p. 597-627.

59. Tekin, U. and F. Buzluca, A graph mining approach for detecting identical design

structures in object-oriented design models. Science of Computer Programming,

2014. 95: p. 406-425.

60. Fontana, F.A. and M. Zanoni, A tool for design pattern detection and software

architecture reconstruction. Information sciences, 2011. 181(7): p. 1306-1324.

61. Gaitani, M.A.G., et al., Automated refactoring to the null object design pattern.

Information and Software Technology, 2015. 59: p. 33-52.

62. Christopoulou, A., et al., Automated refactoring to the Strategy design pattern.

Information and Software Technology, 2012. 54(11): p. 1202-1214.

63. De Lucia, A., et al., Design pattern recovery through visual language parsing and

source code analysis. Journal of Systems and Software, 2009. 82(7): p. 1177-1193.

64. Wang, W. and V. Tzerpos, DPVK-an eclipse plug-in to detect design patterns in

Eiffel systems. Electronic Notes in Theoretical Computer Science, 2004. 107: p. 71-

86.

65. Kaczor, O., Y.-G. Guéhéneuc, and S. Hamel, Identification of design motifs with

pattern matching algorithms. Information and Software Technology, 2010. 52(2):

p. 152-168.

66. Fabry, J. and T. Mens, Language-independent detection of object-oriented design

patterns. Computer Languages, Systems & Structures, 2004. 30(1): p. 21-33.

67. Antoniol, G., et al., Object-oriented design patterns recovery. Journal of Systems

and Software, 2001. 59(2): p. 181-196.

68. Zanoni, M., F.A. Fontana, and F. Stella, On applying machine learning techniques

for design pattern detection. Journal of Systems and Software, 2015. 103: p. 102-

117.

69. Haitzer, T. and U. Zdun, Semi-automatic architectural pattern identification and

documentation using architectural primitives. Journal of Systems and Software,

2015. 102: p. 35-57.

70. Fontana, F.A., S. Maggioni, and C. Raibulet, Understanding the relevance of

micro-structures for design patterns detection. Journal of Systems and Software,

2011. 84(12): p. 2334-2347.

71. Philippow, I., et al., An approach for reverse engineering of design patterns.

Software and Systems Modeling, 2005. 4(1): p. 55-70.

72. Qing-hua, L., Z. Zhi-xiang, and B. Ke-rong, Design pattern mining using graph

matching. Wuhan University Journal of Natural Sciences, 2004. 9(4): p. 444-448.

73. Alnusair, A., T. Zhao, and G. Yan, Rule-based detection of design patterns in

program code. International Journal on Software Tools for Technology Transfer,

2014. 16(3): p. 315-334.

191

74. Issaoui, I., N. Bouassida, and H. Ben-Abdallah, Using metric-based filtering to

improve design pattern detection approaches. Innovations in Systems and Software

Engineering, 2015. 11(1): p. 39-53.

75. Issaoui, I., N. Bouassida, and H. Ben-Abdallah, A design pattern detection

approach based on semantics. Software Engineering Research, Management and

Applications 2012, 2012: p. 49-63.

76. Kim, H. and C. Boldyreff. A method to recover design patterns using software

product metrics. in International Conference on Software Reuse. 2000. Springer.

77. Pande, A., M. Gupta, and A.K. Tripathi, A new approach for detecting design

patterns by graph decomposition and graph isomorphism. Contemporary

Computing, 2010: p. 108-119.

78. Bouassida, N. and H. Ben-Abdallah. A new approach for pattern problem

detection. in Advanced Information Systems Engineering. 2010. Springer.

79. Kirasić, D. and D. Basch. Ontology-based design pattern recognition. in

International Conference on Knowledge-Based and Intelligent Information and

Engineering Systems. 2008. Springer.

80. Bouassida, N. and H. Ben-Abdallah, Structural and behavioral detection of design

patterns. Advances in Software Engineering, 2009: p. 16-24.

81. Bernardi, M.L., M. Cimitile, and G.A. Di Lucca. A model-driven graph-matching

approach for design pattern detection. in Reverse Engineering (WCRE), 2013 20th

Working Conference on. 2013. IEEE.

82. Zhang, Z.-X., Q.-H. Li, and K.-R. Ben. A new method for design pattern mining. in

Machine Learning and Cybernetics, 2004. Proceedings of 2004 International

Conference on. 2004. IEEE.

83. Paydar, S. and M. Kahani. A semantic web based approach for design pattern

detection from source code. in Computer and Knowledge Engineering (ICCKE),

2012 2nd International eConference on. 2012. IEEE.

84. De Lucia, A., et al. A two phase approach to design pattern recovery. in Software

Maintenance and Reengineering, 2007. CSMR'07. 11th European Conference on.

2007. IEEE.

85. Muangon, W. and S. Intakosum. Adaptation of design pattern retrieval using CBR

and FCA. in Computer Sciences and Convergence Information Technology, 2009.

ICCIT'09. Fourth International Conference on. 2009. IEEE.

86. Chen, L. and M. Qiu. An algorithm for automatic mining design pattern. in

Computer Science and Education (ICCSE), 2010 5th International Conference on.

2010. IEEE.

87. Ren, W. and W. Zhao. An observer design-pattern detection technique. in

Computer Science and Automation Engineering (CSAE), 2012 IEEE International

Conference on. 2012. IEEE.

88. Gupta, M., et al. Design pattern detection by normalized cross correlation. in

Methods and Models in Computer Science (ICM2CS), 2010 International

Conference on. 2010. IEEE.

89. Gupta, M., R.S. Rao, and A.K. Tripathi. Design pattern detection using inexact

graph matching. in Communication and Computational Intelligence (INCOCCI),

2010 International Conference on. 2010. IEEE.

192

90. Ferenc, R., et al. Design pattern mining enhanced by machine learning. in 21st

IEEE International Conference on Software Maintenance (ICSM'05). 2005. IEEE.

91. Pande, A., M. Gupta, and A. Tripathi. Design pattern mining for GIS application

using graph matching techniques. in Computer Science and Information

Technology (ICCSIT), 2010 3rd IEEE International Conference on. 2010. IEEE.

92. Basu, N., S. Chatterjee, and N. Chaki. Notice of Violation of IEEE Publication

Principles Design Pattern Mining from Source Code for Reverse Engineering. in

TENCON 2005 2005 IEEE Region 10. 2005. IEEE.

93. Alhusain, S., et al. Towards machine learning based design pattern recognition. in

Computational Intelligence (UKCI), 2013 13th UK Workshop on. 2013. IEEE.

94. Kramer, C. and L. Prechelt. Design recovery by automated search for structural

design patterns in object-oriented software. in Reverse Engineering, 1996.,

Proceedings of the Third Working Conference on. 1996. IEEE.

95. Binun, A. and G. Kniesel. DPJF-design pattern detection with high accuracy. in

Software Maintenance and Reengineering (CSMR), 2012 16th European

Conference on. 2012. IEEE.

96. Washizaki, H., et al. Detecting design patterns using source code of before applying

design patterns. in Computer and Information Science, 2009. ICIS 2009. Eighth

IEEE/ACIS International Conference on. 2009. IEEE.

97. Stoianov, A. and I. Şora. Detecting patterns and antipatterns in software using

Prolog rules. in Computational Cybernetics and Technical Informatics (ICCC-

CONTI), 2010 International Joint Conference on. 2010. IEEE.

98. Thongrak, M. and W. Vatanawood. Detection of design pattern in class diagram

using ontology. in Computer Science and Engineering Conference (ICSEC), 2014

International. 2014. IEEE.

99. Dongjin, Y., J. Ge, and W. Wu. Detection of design pattern instances based on

graph isomorphism. in Software Engineering and Service Science (ICSESS), 2013

4th IEEE International Conference on. 2013. IEEE.

100. Pradhan, P., A.K. Dwivedi, and S.K. Rath. Detection of design pattern using graph

isomorphism and normalized cross correlation. in Contemporary Computing (IC3),

2015 Eighth International Conference on. 2015. IEEE.

101. Thankappan, J. and V. Patil. Detection of Web Design Patterns Using Reverse

Engineering. in Advances in Computing and Communication Engineering

(ICACCE), 2015 Second International Conference on. 2015. IEEE.

102. Pandel, A., M. Gupta, and A. Tripathi. DNIT—A new approach for design pattern

detection. in Computer and Communication Technology (ICCCT), 2010

International Conference on. 2010. IEEE.

103. Dong, J., D.S. Lad, and Y. Zhao. DP-Miner: Design pattern discovery using matrix.

in Engineering of Computer-Based Systems, 2007. ECBS'07. 14th Annual IEEE

International Conference and Workshops on the. 2007. IEEE.

104. Nguyen, T. and R. Pooley. Effective Recognition of Patterns in Object-Oriented

Designs. in Software Engineering Advances, 2009. ICSEA'09. Fourth International

Conference on. 2009. IEEE.

105. Arcelli, F., S. Masiero, and C. Raibulet. Elemental design patterns recognition in

Java. in Software Technology and Engineering Practice, 2005. 13th IEEE

International Workshop on. 2005. IEEE.

193

106. De Lucia, A., et al. ePadEvo: A tool for the detection of behavioral design patterns.

in Software Maintenance and Evolution (ICSME), 2015 IEEE International

Conference on. 2015. IEEE.

107. Sandhu, P.S., P.P. Singh, and A.K. Verma. Evaluating quality of software systems

by design patterns detection. in Advanced Computer Theory and Engineering,

2008. ICACTE'08. International Conference on. 2008. IEEE.

108. Lebon, M. and V. Tzerpos. Fine-grained design pattern detection. in Computer

Software and Applications Conference (COMPSAC), 2012 IEEE 36th Annual.

2012. IEEE.

109. Rasool, G. and P. Mäder. Flexible design pattern detection based on feature types.

in Automated Software Engineering (ASE), 2011 26th IEEE/ACM International

Conference on. 2011. IEEE.

110. Yu, D., et al. From sub-patterns to patterns: an approach to the detection of

structural design pattern instances by subgraph mining and merging. in Computer

Software and Applications Conference (COMPSAC), 2013 IEEE 37th Annual.

2013. IEEE.

111. Heuzeroth, D., S. Mandel, and W. Lowe. Generating design pattern detectors from

pattern specifications. in Automated Software Engineering, 2003. Proceedings.

18th IEEE International Conference on. 2003. IEEE.

112. He, C., Z. Li, and K. He. Identification and Extraction of Design Pattern

Information in Java Program. in Software Engineering, Artificial Intelligence,

Networking, and Parallel/Distributed Computing, 2008. SNPD'08. Ninth ACIS

International Conference on. 2008. IEEE.

113. De Lucia, A., et al. Improving behavioral design pattern detection through model

checking. in Software Maintenance and Reengineering (CSMR), 2010 14th

European Conference on. 2010. IEEE.

114. Albin-Amiot, H., et al. Instantiating and detecting design patterns: Putting bits and

pieces together. in Automated Software Engineering, 2001.(ASE 2001).

Proceedings. 16th Annual International Conference on. 2001. IEEE.

115. Haqqie, S. and A.A. Shahid. Mining Design Patterns for Architecture

Reconstruction using an Expert System. in 9th International Multitopic Conference,

IEEE INMIC 2005. 2005. IEEE.

116. Bernardi, M.L. and G.A. Di Lucca. Model-driven detection of Design Patterns. in

Software Maintenance (ICSM), 2010 IEEE International Conference on. 2010.

IEEE.

117. Nagy, A. and B. Kovari. Programming language neutral design pattern detection.

in Computational Intelligence and Informatics (CINTI), 2015 16th IEEE

International Symposium on. 2015. IEEE.

118. Fayad, M., J. Rajagopalan, and H. Hamza. Recovery design pattern. in Information

Reuse and Integration, 2003. IRI 2003. IEEE International Conference on. 2003.

IEEE.

119. Wegrzynowicz, P. and K. Stencel. Relaxing queries to detect variants of design

patterns. in Computer Science and Information Systems (FedCSIS), 2013

Federated Conference on. 2013. IEEE.

194

120. Li, W., G. Chen, and J. Pan. Research on detecting and validating design pattern

instances from source code. in Computer Science & Service System (CSSS), 2012

International Conference on. 2012. IEEE.

121. Miao, K., et al. Run-time discovery of Java design patterns. in Artificial

Intelligence, Management Science and Electronic Commerce (AIMSEC), 2011 2nd

International Conference on. 2011. IEEE.

122. Smith, J.M. and D. Stotts. SPQR: Flexible automated design pattern extraction

from source code. in Automated Software Engineering, 2003. Proceedings. 18th

IEEE International Conference on. 2003. IEEE.

123. Zhu, H., et al. Tool support for design pattern recognition at model level. in

Computer Software and Applications Conference, 2009. COMPSAC'09. 33rd

Annual IEEE International. 2009. IEEE.

124. Guéhéneuc, Y.-G. and G. Antoniol, Demima: A multilayered approach for design

pattern identification. IEEE Transactions on Software Engineering, 2008. 34(5): p.

667-684.

125. Antoniol, G., R. Fiutem, and L. Cristoforetti. Using metrics to identify design

patterns in object-oriented software. in Software Metrics Symposium, 1998.

Metrics 1998. Proceedings. Fifth International. 1998. IEEE.

195

Vitae

Name : Abdullah Alwi Hussien Al-Baity

Nationality : Yemeni

Date of Birth : 7/28/1985

Email : mr.albaity@gmail.com

Address : Dhahran Saudi Arabia

Academic Background : Abdullah Al-Baity earned his Bachelor of Computer

Science degree from Al-Ahgaff University Hadramout, Yemen, in June 2010. He

completed his Master in King Fahd University of Petroleum and Minerals (KFUPM)

Technology, Dhahran, Saudi Arabia in January 2017. His research interests include

empirical studies in software engineering, Enterprise Resource Planning (SAP), Design

Patterns, Project Management, Programming Languages, Requirements engineering, and

Programming Languages.

Publications : Abdullah A. Al-Baity, Kanaan Faisal, and Moataz Ahmed,

Software Reuse: The State of Art Software Reuse, worldcomp-proceedings p2013

