

©Ramadan Abdul-Rashid
2017

i

To my Beloved Zeena

ii

ACKNOWLEDGMENTS

All thanks and praises are due to Allah, the Creator and Sustainer of the uni-

verse. May He be glorified for the innumerable blessings and mercies bestowed

upon me. I would like to express my utmost gratitude to my thesis advisor, Dr.

Ali Ahmad Al-Shaikhi for his continuous directions, motivations and support. I

couldnt hope for a more suited advisor to make my Masters study such an exciting

and inspirational journey. Special thanks goes to Dr. Ahmad Abdallah Masoud

for his invaluably astute guidance, critiques and contributions to my work which

has greatly enrich my research experience. I would also like to show my appre-

ciation to Dr. Samir Nasser Alghadhban for his inspirations, advices and warm

hospitality during my thesis work and stay at KFUPM. I ask Allah to shower his

blessings on you all in this world and the next. My thanks also go to Dr. Bo Liu of

the Center for Energy and Geo Processing (CeGP) at the Electrical Engineering

Department for our fruitful discussions in relation to my thesis research. I would

also like to thank my family for their encouragement and support, especially to my

wife, Zeena Abdul-Nasir Mukhtar, my mother, Sakinatu Yakubu and my father,

Abdul-Rashid Abubakar. Finally, my heartfelt gratitude goes to the Electrical

Engineering Department of King Fahd University of Petroleum and Minerals for

granting me the opportunity to study in such a serene environment.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENT iii

LIST OF TABLES ix

LIST OF FIGURES xi

ABSTRACT (ENGLISH) xvi

ABSTRACT (ARABIC) xix

CHAPTER 1 WIRELESS SENSOR NETWORKS OVERVIEW 1

1.1 Architecture . 2

1.1.1 Node Architecture . 3

1.2 Topologies . 6

1.3 Wireless Standards . 6

1.3.1 ZigBee / ZigBee PRO / ZigBee IP 8

1.4 Practical WSN Schemes . 10

1.4.1 TinyOS and NesC Overview 10

1.4.2 Memsic Mote Overview . 11

1.5 Applications of Wireless Sensor Networks 14

1.6 Network Establishment and Management Services for WSNs . . . 16

1.7 Summary . 17

CHAPTER 2 TIME SYNCHRONIZATION IN WIRELESS SEN-

SOR NETWORKS 19

iv

2.1 Background . 20

2.1.1 The Time Synchronization Problem 20

2.1.2 The Need for WSN Time Synchronization 22

2.2 Node Clock Modeling and Synchronization 23

2.2.1 Hardware Clock Models 23

2.2.2 Logical Clock Models . 28

2.3 Performance Metrics for Time Synchronization Protocols 29

2.3.1 Accuracy . 30

2.3.2 Precision . 33

2.3.3 Cost . 34

2.3.4 Fault Tolerance (Robustness) 34

2.3.5 Scalability . 35

2.4 Review of Time Synchronization Protocols 35

2.4.1 Review of Centralized Protocols 37

2.4.2 Review of Distributed Protocols 44

2.4.3 Comparison Between Distributed and Centralized Protocols 51

2.5 Summary . 53

CHAPTER 3 PROBLEM DEFINITION, STATEMENT AND

FORMULATION 55

3.1 Problem Definition and Statement 55

3.2 Suggested Synchronization Procedure 57

3.2.1 Node Local Time Update 58

3.2.2 Dip Phenomenon in Suggested Synchronizer 62

3.2.3 Criterion for Stopping in Dip Region 63

3.2.4 Local Clock Reset and Resynchronization 64

3.2.5 Generalized Algorithm for Suggested Synchronization Pro-

cedure . 66

3.3 Formulation and Methodology . 68

v

3.3.1 Accuracy-Enhanced Method for Time Synchronization in

WSN using Synchronous Average Consensus Control . . . 69

3.3.2 Drawbacks in the Synchronous Local Node Time Update . 70

3.3.3 Suggested Asynchronous Local Node Time Update 70

3.4 Thesis Contributions . 72

CHAPTER 4 ACCURACY-ENHANCED METHOD FOR TIME

SYNCHRONIZATION IN WSN USING SYNCHRONOUS AV-

ERAGE CONSENSUS CONTROL 75

4.1 Introduction . 75

4.2 Accuracy-Enhanced Method for Time Synchronization: Concept . 76

4.2.1 System Stability . 79

4.2.2 Hypothesis for Accuracy-Enhancement 80

4.3 Evaluation Methodology for Simulations and Practical Experimen-

tation . 83

4.3.1 Description and Specifications of Simulations 83

4.3.2 Framework for Practical Experimentation 84

4.4 Test Networks . 85

4.4.1 4-Node Network . 86

4.4.2 9-Node Network . 90

4.4.3 16-Node Network . 93

4.4.4 Synchronous Time Update (STU): Implementation Algorithm 98

4.5 Accuracy-Enhanced Method for Time Synchronization: Results . 100

4.5.1 Simulation Results: Error Profiles for Varying Added Pa-

rameter . 101

4.5.2 Practical Results: Error Profiles for Varying Added Parameter105

4.5.3 Relationship Between Parameter, e and Minimum Error in

Dip Region . 109

4.6 Summary . 110

vi

CHAPTER 5 LOCAL NODE TIME UPDATE USING ASYN-

CHRONOUS CONSENSUS: METHODS AND RESULTS 113

5.1 Introduction . 113

5.2 Proposed Asynchronous Methods for Local Node Time Update . . 114

5.2.1 Timed Sequential Asynchronous Update (TSAU) 115

5.2.2 Unidirectional Asynchronous Flooding (UAF) 116

5.2.3 Bidirectional Asynchronous Flooding (BAF) 120

5.2.4 Performance Metrics for Evaluation 123

5.3 Simulation Evaluation of Proposed Methods of Local Time Update 125

5.3.1 Simulation Results for Timed Sequential Asynchronous Up-

date (TSAU) . 125

5.3.2 Simulation Results for Unidirectional Asynchronous Flood-

ing (UAF) . 130

5.3.3 Simulation Results for Bidirectional Asynchronous Flooding

(BAF) . 136

5.3.4 Simulation Comparison between Proposed Methods of Local

Time Update . 142

5.4 Practical Evaluation of Proposed Methods of Local Time Update 149

5.4.1 Practical Results for Timed Sequential Asynchronous Up-

date (TSAU) . 150

5.4.2 Practical Results for Unidirectional Asynchronous Flooding

(UAF) . 152

5.4.3 Practical Results for Bidirectional Asynchronous Flooding

(BAF) . 154

5.4.4 Practical Comparison between Proposed Methods of Local

Time Update . 158

5.5 Simulation on Network with Stochastic Link Connectivity 163

5.6 Summary . 167

CHAPTER 6 EXPERIMENTAL PERFORMANCE EVALUA-

vii

TION: COMPARISON WITH OTHER PROTOCOLS 170

6.1 Introduction . 170

6.1.1 Test Networks . 172

6.1.2 Experiment Parameters 172

6.1.3 Energy Consumption and Memory Requirements 173

6.1.4 Local and Global Synchronization Errors 179

6.2 Summary . 192

CHAPTER 7 CONCLUSION AND FUTURE WORK 195

7.1 Conclusion . 195

7.2 Future Work . 198

REFERENCES 199

VITAE 209

viii

LIST OF TABLES

1.1 Comparison Between Bluetooth, Wifi and Zigbee 8

1.2 Categorical Applications of Wireless Sensor Networks 15

2.1 Comparison Between Distributed and Centralized Protocols . . . 52

4.1 Parameter Specifications for MATALB Simulation 84

4.2 Simulation Results Summary of Number Iterations and Error Values102

4.3 Simulation Results Summary of Number Iterations and Error Values103

4.4 Simulation Results Summary of Number Iterations and Error Values105

4.5 Practical Results Summary of Number Iterations and Error Values 106

4.6 Practical Results Summary of Number Iterations and Error Values 107

4.7 Practical Results Summary of Number Iterations and Error Values 109

5.1 4 Node Network Dip Region Results Comparison for Timed Se-

quential Asynchronous Update . 127

5.2 9 Node Network Dip Region Results Comparison for Timed Se-

quential Asynchronous Update . 130

5.3 16 Node Network Dip Region Results Comparison for Timed Se-

quential Asynchronous Update . 132

5.4 4 Node Network Dip Region Results Comparison for Unidirectional

Asynchronous Flooding . 134

5.5 9 Node Network Dip Region Results Comparison for Unidirectional

Asynchronous Flooding . 137

ix

5.6 16 Node Network Dip Region Results Comparison for Unidirec-

tional Asynchronous Flooding . 139

5.7 4 Node Network Dip Region Results Comparison for Bidirectional

Asynchronous Flooding . 141

5.8 9 Node Network Dip Region Results Comparison for Bidirectional

Asynchronous Flooding . 144

5.9 16 Node Network Dip Region Results Comparison for Bidirectional

Asynchronous Flooding . 146

5.10 4 Node Grid Network Dip Region Results Comparison 151

5.11 9 Node Grid Network Dip Region Results Comparison 152

5.12 16 Node Grid Network Dip Region Results Comparison 154

5.13 4 Node Grid Network Dip Region Results Comparison 155

5.14 9 Node Grid Network Dip Region Results Comparison 156

5.15 16 Node Grid Network Dip Region Results Comparison 156

5.16 4 Node Grid Network Dip Region Results Comparison 158

5.17 9 Node Grid Network Dip Region Results Comparison 159

5.18 16 Node Grid Network Dip Region Results Comparison 161

6.1 Memory Requirements, CPU Overhead, and Synchronization Mes-

sage Length of FTSP, FloodPISync, EGTSP, AvgPISync, TSAU,

UAF and BAF . 176

6.2 Current Consumption by MicaZ Nodes [1] 178

6.3 Global and Local Error Comparison for Grid Topology 182

6.4 Global and Local Error Comparison for Line Topology 188

x

LIST OF FIGURES

1.1 Typical Node Architecture . 4

1.2 Typical Sensor Network Arrangement 4

1.3 Typical WSN Topologies . 7

1.4 MicaZ Mote attached to MIB520 Board[2] 12

1.5 MDA100 Sensor Board[3] . 13

1.6 MIB520 USB Interface Board [2] 14

2.1 Estimating Angle of Sound Impingement on an Array 21

2.2 An illustration of Aging Effects of Node Clocks over Time (days) . 26

2.3 The Relationship between Hardware Clock and Logical Clock . . 28

2.4 Nodes Clock of Varying Drift Rates 29

3.1 Block Diagram of Suggested Synchronization Procedure 59

3.2 Network of N Nodes and L Links 59

3.3 Transient (Dip) and Steady State Behavior of Node Clocks with

respect to Gateway Node Clock 63

3.4 Suggested Clock Setup for Node Synchronization 67

4.1 4-Node Grid Topology . 86

4.2 4-Node Random Topology . 88

4.3 4-Node Hexagonal Topology . 89

4.4 9-Node Grid Topology . 91

4.5 9-Node Random Topology . 92

4.6 9-Node Hexagonal Topology . 93

xi

4.7 16-Node Grid Topology . 94

4.8 16-Node Random Topology . 96

4.9 16-Node Grid Topology . 97

4.10 Simulation Error Profiles for Varying Added Parameter for 4 Node

Grid Topology . 101

4.11 Simulation Error Profiles for Varying Added Parameter for 9 Node

Grid Topology . 103

4.12 Simulation Error Profiles for Varying Added Parameter for 16 Node

Grid Topology . 104

4.13 Practical Error Profiles for Varying Added Parameter for 4 Node

Grid Topology . 106

4.14 Practical Error Profiles for Varying Added Parameter for 9 Node

Grid Topology . 107

4.15 Practical Error Profiles for Varying Added Parameter for 16 Node

Grid Topology . 108

4.16 Relationship Between Added Parameter,e and Minimum Error in

Dip Region for Simulations of 4, 9 and 16 Node Networks 109

4.17 Relationship Between Added Parameter,e and Minimum Error in

Dip Region for Experiments on 4, 9 and 16 Node Networks 110

5.1 Asynchronous Wake-up Cycle and Operation Mechanism for TSAU 116

5.2 Asynchronous Wake-up Cycle and Operation Mechanism for UAF 118

5.3 Asynchronous Wake-up Cycle and Operation Mechanism for BAF 122

5.4 Node Time and Error Profiles for Grid Topology 126

5.5 Node Time and Error Profiles for Random Topology 126

5.6 Node Time and Error Profiles for Hexagonal Topology 127

5.7 Node Time and Error Profiles for Grid Topology 128

5.8 Node Time and Error Profiles for Random Topology 128

5.9 Node Time and Error Profiles for Hexagonal Topology 129

5.10 Node Time and Error Profiles for Grid Topology 129

xii

5.11 Node Time and Error Profiles for Random Topology 131

5.12 Node Time and Error Profiles for Hexagonal Topology 131

5.13 Node Time and Error Profiles for Grid Topology 133

5.14 Node Time and Error Profiles for Random Topology 133

5.15 Node Time and Error Profiles for Hexagonal Topology 134

5.16 Node Time and Error Profiles for Grid Topology 135

5.17 Node Time and Error Profiles for Random Topology 135

5.18 Node Time and Error Profiles for Hexagonal Topology 136

5.19 Node Time and Error Profiles for Grid Topology 136

5.20 Node Time and Error Profiles for Random Topology 138

5.21 Node Time and Error Profiles for Hexagonal Topology 138

5.22 Node Time and Error Profiles for Grid Topology 140

5.23 Node Time and Error Profiles for Random Topology 140

5.24 Node Time and Error Profiles for Hexagonal Topology 141

5.25 Node Time and Error Profiles for Grid Topology 142

5.26 Node Time and Error Profiles for Random Topology 142

5.27 Node Time and Error Profiles for Hexagonal Topology 143

5.28 Node Time and Error Profiles for Grid Topology 143

5.29 Node Time and Error Profiles for Random Topology 145

5.30 Node Time and Error Profiles for Hexagonal Topology 145

5.31 Simulation Comparison of Minimum Errors, Edipmin for TSAU, UAF

and BAF For Varying Network Sizes 147

5.32 Simulation Comparison of Communication Cycles, kdipmin for TSAU,

UAF and BAF For Varying Network Sizes 148

5.33 Simulation Comparison of Variances in Communication Cycles,

Vkdipmin
for TSAU, UAF and BAF For Varying Network Sizes 149

5.34 Practical Node Time and Error Profiles for 4 Grid Topology . . . 150

5.35 Practical Node Time and Error Profiles for 9 Grid Topology . . . 151

5.36 Practical Node Time and Error Profiles for 16 Grid Topology . . . 153

5.37 Practical Node Time and Error Profiles for 4 Grid Topology . . . 153

xiii

5.38 Practical Node Time and Error Profiles for 9 Grid Topology . . . 155

5.39 Practical Node Time and Error Profiles for 16 Grid Topology . . . 157

5.40 Practical Node Time and Error Profiles for 4 Grid Topology . . . 157

5.41 Practical Node Time and Error Profiles for 9 Grid Topology . . . 158

5.42 Practical Node Time and Error Profiles for 16 Grid Topology . . . 160

5.43 Practical Comparison of Minimum Errors, Edipmin for TSAU, UAF

and BAF For Varying Network Sizes 162

5.44 Practical Comparison of Communication Cycles, kdipmin for TSAU,

UAF and BAF For Varying Network Sizes 163

5.45 Practical Comparison of Variances in Communication Cycles, Vkdipmin

for TSAU, UAF and BAF For Varying Network Sizes 164

5.46 Network for Channel Availability Test 165

5.47 Node Error profile for the Test Network for Different Probabilities

of Channel Availability for TSAU 166

5.48 Node Error profile for the Test Network for Different Probabilities

of Channel Availability for UAF 166

5.49 Node Error profile for the Test Network for Different Probabilities

of Channel Availability for BAF 167

6.1 Distribution of Sensor Nodes for Practical Experiments 173

6.2 TimeSync Packet Payload Field Descriptions for FTSP, Flood-

PISync, EGTSP, TSAU, UAF and BAF 175

6.3 UAF Neighborhood and Global Synchronization Error for Grid

Topology . 183

6.4 TSAU Neighborhood and Global Synchronization Error for Grid

Topology . 184

6.5 FloodPISync Neighborhood and Global Synchronization Error for

Grid Topology . 184

6.6 AvgPISync Neighborhood and Global Synchronization Error for

Grid Topology . 185

xiv

6.7 BAF Neighborhood and Global Synchronization Error for Grid

Topology . 185

6.8 FTSP Neighborhood and Global Synchronization Error for Grid

Topology . 186

6.9 EGTSP Neighborhood and Global Synchronization Error for Grid

Topology . 186

6.10 TSAU Neighborhood and Global Synchronization Error for Line

Topology . 189

6.11 UAF Neighborhood and Global Synchronization Error for Line

Topology . 189

6.12 FloodPISync Neighborhood and Global Synchronization Error for

Line Topology . 190

6.13 AvgPISync Neighborhood and Global Synchronization Error for

Line Topology . 190

6.14 EGTSP Neighborhood and Global Synchronization Error for Line

Topology . 191

6.15 BAF Neighborhood and Global Synchronization Error for Line

Topology . 191

6.16 FTSP Neighborhood and Global Synchronization Error for Line

Topology . 192

xv

THESIS ABSTRACT

NAME: Ramadan Abdul-Rashid

TITLE OF STUDY: A Decentralized Single-Hop Time Synchronization Proto-

col based on Asynchronous Consensus Control in Wireless

Sensor Networks

MAJOR FIELD: Telecommunication Engineering

DATE OF DEGREE: December 2017

Time synchronization is a crucial requirement in Wireless Sensor Networks

(WSNs) in almost all applications. It is the synchronization of the virtual clock

of each network node to the clock of the gateway node of the WSNs. This thesis

concerns with the design of simple time synchronization protocol based on con-

sensus control concept suited for operation in harsh environments using single

hop communication in distributed WSNs. The thesis uses the averaging algo-

rithm used for synchronous synchronization as the main algorithm. First, the

thesis presents a modified averaging algorithm for synchronous synchronization

that improves the accuracy of the averaging algorithm. The modified algorithm is

termed Accuracy-Enhanced Method for Time Synchronization in WSN using syn-

xvi

chronous average censuses control. It provides a trade-off between the convergence

time and synchronization accuracy. This method is inspired by the realization

that, the state equation representing the synchronization error with respect to the

gateway time can be reduced further by reducing the forced response term by in-

troducing a new parameter, a fraction of the time communication cycle, in the

local time update of each node. As this fraction approaches one, it is observed

through simulations and practical experiments that it will lead to orders of magni-

tude less error in the dip region but with a corresponding increase in the number

of communications instances needed to reach the dip synchronization error. De-

spite its excellent performance and simplicity, the averaging protocol is imprac-

tical since it assumes synchronous node time update. To overcome this problem,

the thesis proposes three practical asynchronous schemes named Timed Sequen-

tial Asynchronous Update (TSAU), Unidirectional Asynchronous Update (UAF)

and Bidirectional Asynchronous Flooding (BAF). All these proposed methods are

decentralized and light weight by design. In TSAU, time updates are carried out

in atomic fashion sequentially, whereas in UAF nodes within the same proximity

to the gateway update simultaneously. UAF requires regulation of asynchronous

activations but BAF removes the need for regulation and is adaptive to topology

dynamics. These proposed methods were evaluated using simulations and practi-

cal experiments on the MicaZ sensor node platform and present a comprehensive

evaluation of the energy consumption, memory requirements, convergence time,

local and global synchronization errors of our proposed methods against FTSP,

xvii

EGTSP, FloodPISync and AvgPISync. The proposed schemes consume about 80%

less power and approximately 35% less memory allocation than FTSP and EGTSP

but have similar energy and memory requirements as FloodPISync and AvgPISync.

Further, the proposed methods outperform all these protocols in terms of conver-

gence time, global and local synchronization errors.

xviii

 ملخص الرسالة

 رمضان عبد الرشيد :الاسم الكامل

 مرتكز على التحكم التوافقيّ غير المتزامن في شبكات الاستشعار اللاسلكية وقتيا متزامنة واحدة ذو قفزة لامركزي بروتوكول عنوان الرسالة:

 الاتصالاتهندسة التخصص:

 ٢٠١٧ ديسمبر :تاريخ الدرجة العلمية

و هو تزامن الساعة الافتراضية لكل في جميع التطبيقات تقريبا . (WSNs)ي مطلبا حاسما في شبكات الاستشعار اللاسلكية وقتاليعتبر التزامن

على مفهوم عقدة شبكة مع ساعة عقدة البوابة لشبكات الاستشعار اللاسلكية. تهتم هذه الأطروحة بالتصميم البسيط لبروتوكول تزامن وقتيّ مرتكز

تستخدم الأطروحة ، مناسب للعمل في بيئات قاسية باستخدام اتصالات القفزة الواحدة في شبكات الاستشعار اللاسلكية الموزعة. م التوافقيالتحك

. توسطخوارزمية الم المعدلّة للمزامنة التوافقية و ، تقدم الأطروحة خوارزمية المتوسطأولا المستخدمة في المزامنة التوافقية كخوارزمية رئيسية

تحسين الدقة للمزامنة الوقتية في شبكات الاستشعار اللاسلكية باستخدام يطُلق على الخوارزمية المعدلة "طريقة التي تحسن دقة خوارزمية المتوسط.

من إدراك أن معادلة الحالة التي تمثل ت التقارب و دقة التزامن. هذه الطريقة مستوحاة تحكم التعدادات التوافقية المتزامنة". و توفر مقايضة بين وق

، جزء من دورة وقت الاتصال، في تحديث إدخال معامل سرية من خلال قخطأ التزامن بالنسبة لوقت البوابة يمكن تقليلها بتقليل مدة الاستجابة ال جديد

خطأ ذي قيمة أسية الجزء من واحد، يلُاحظ من خلال عمليات المحاكاة و التجارب العملية أنه سيؤدي إلى الوقت المحليّ لكل عقدة. مع اقتراب هذا

أدائه الممتاز أقل في منطقة الانخفاض، و لكن مع زيادة مقابلة في عدد حالات الاتصالات اللازمة للوصول إلى خطأ تزامن الانخفاض. بالرغم من

لمتوسط ليس عمليا لأنه يفترض تحديث الوقت التزامني للعقدة. للتغلب على هذه المشكلة، تقترح الأطروحة ثلاثة و بساطته، فإن بروتوكول ا

، و (UAF)و التحديث غير المتزامن أحادي الاتجاه ، (TSAU)مخططات عملية غير متزامنة تدعى: التحديث غير المتزامن للتوقيت التسلسلي

، تحديثات TSAU. جميع هذه الطرق المقترحة هي لامركزية و خفيفة الوزن من حيث التصميم. في (BAF)تجاه الفيض غير المتزامن ثنائي الا

، في حين أن عقد تنظيما للتفعيلات UAFالواقعة بقرب البوابة يتم تحديثها في نفس الوقت. تتطلب طريقة UAFالوقت تجُرى تتابعيا بطريقة ذرية

باستخدام المحاكاة و التجارب هذه الطرق المقترحة تم تقييم تزيل الحاجة للتنظيم و هي متكيفة لديناميكية البنُية. BAFغير المتزامنة، و لكن طريقة

و وقت التقارب، و أخطاء التزامن ، و تم تقديم تقييم شامل لاستهلاك الطاقة، و متطلبات الذاكرة،MicaZمستشعر ميكاز برنامجالعملية على

. المخططات المقترحة تستهلك AvgPISync، و FloodPISync، و EGTSP، و FTSPالمحلية و العالمية لطرقنا المقترحة مقارنة بطرق

الذاكرة لكل من ، و لكن لديها متطلبات مماثلة من الطاقة وEGTSPو FTSP% تخصيص ذاكرة أقل من 35% طاقة أقل و تقريبا 80حوالي

FloodPISync وAvgPISyncفإن أداء الطرق المقترحة يفوق أداء جميع هذه البروتوكولات من حيث وقت التقارب، و . علاوة على ذلك ،

 أخطاء التزامن المحلية و العالمية.

xix

CHAPTER 1

WIRELESS SENSOR

NETWORKS OVERVIEW

Wireless Sensor Networks (WSNs) are infrastructure-less networks composed of

small sensors that are deployed in remote locations to sense particular conditions

and send information pertaining to these conditions to a Central Control Room

(CCR). WSN are ad hoc in nature and are often deployed with a large number of

nodes. They work with limited resources and are mostly composed of cheap nodes

that are rarely replaced. WSNs have an endless number of applications. They

are often used in military defense to monitor national borders or munition deploy-

ment of adversaries. They are also normally used by environmentalists to monitor

environmental changes such as temperature and humidity in certain regions. In in-

dustries, WSNs can sense temperature and/or pressure of certain devices and can

be used to instrument an industrial plant. WSNs have certain limitations such as

low communication range, small node battery sizes, and network structures which

1

require very resource efficient algorithms. To successfully deploy and operate a

WSN, a myriad of materials and methods are required. This chapter delves into

a general review of wireless sensor networks and explains typical architectures of

sensor networks. This includes an explanation of the architecture of sensor nodes

and outlining node arrangements and topologies of typical WSNs. The most com-

mon wireless protocols adopted for setting up WSNs are then presented. The

operating system, programming language, and the layout of the sensor node plat-

form adopted in this thesis are presented. Typical applications of wireless sensor

networks are then listed followed by some typical services needed for setting up a

WSN.

1.1 Architecture

A wireless sensor network (WSN) is a network comprising of specially fabricated

nodes that has the ability to instrument, observe and react to events and phe-

nomena in a certain environment [4]. Each node in the network is composed of

a sensing unit, a computing (processing) unit, a memory and wireless communi-

cation element. The environment of WSN operation can be the physical world, a

biological system or an information technology framework, etc. WSNs in general

are made up of four basic components. These basic components are [4].

1. An assembly of distributed or localized sensors

2. An interconnecting wireless protocol

2

3. A base station (central point) of information clustering

4. A group of computing resources at the central point or beyond to handle

data collection, event trending, status querying and data mining.

Sensors are deployed in specialized domains called sensor fields. These venues

of deployment can vary from large fields like battlefields or a river bed to small

fields like a human organ.

1.1.1 Node Architecture

A sensor node has a processing module with embedded processing capabilities and

an internal memory for temporal storage of sensed or relay data. Also embed-

ded on a node are sensors collecting data on radio, acoustic, chemical, magnetic,

optical or infrared phenomena. A node has a wireless communication unit for

inter-node or node-sink communication. A node also has a power source coupled

with a power processing unit to supply the appropriate power to node compo-

nents. Generally, nodes might have position or location knowledge through GPS

or some local positioning algorithm. A typical node architecture is as depicted in

Figure 1.1.

3

Figure 1.1: Typical Node Architecture

Each sensor node deployed in the sensor field has the capability to collect,

analyze and route field data to a designated sink point. Some nodes in the field

may be built to perform specialized functions in addition to the above mentioned

ones. A typical WSN node arrangement is as shown in Figure 1.2.

Figure 1.2: Typical Sensor Network Arrangement

4

The processor subsystem is the focal component in a WSN and the decision of

a processor indicates the trade-off between adaptability and productivity which is

identified with vitality and execution. The processors have numerous parts which

include: microcontrollers, computerized signal processors, application-particular

coordinated circuits, and field programmable gate arrays (FPGA). The sensing

component is composed of larger than one analogue sensors. These sensing equip-

ments are produces analogue or digital system for reading the sensor values. Most

of such sensors contain their locally fashioned analog-to-digital converter (ADC)

which is able to directly interface sensors with the processing unit using a standard

chip-to-chip protocol. Several microcontrollers/processors are composed of one or

more internal ADCs to connect to analogue devices. Recent microcontrollers inte-

grate flash storage, RAM, ADC, and digital I/O onto a single integrated circuit.

In choosing a microcontroller family, several factors has to be taken into consider-

ation such as energy consumption, support for peripherals, voltage requirements,

cost, and number of external components required.

The communication component of a node is connected to the processing unit

using the serial port interface (SPI) bus. The communication subsystem is the

most energy intensive component and the its operation has to managed so as to

conserve power. Several of the market available transceivers give a controlling

functionality to alternate the transceiver between different operation levels such

as active, idle and sleep state.

The power subsystem gives a supply of direct current (DC) power to all node

5

units and their components. This unit is composed of the energy storage compo-

nent, voltage regulator, and sometimes the energy scavenging component. Node

power is usually obtained from a battery-pack. Moreover, other components could

be used in generating power for the sensor nodes so as to extend the lifetime of

the network such as those components solar energy storage qualities.

1.2 Topologies

Due to the instrumentation and monitoring nature of WSNs, the positions of the

nodes with respect to each other and a gateway in the sensor field is a crucial cri-

teria that determines performance metrics like network power consumption which

determines network coverage and lifetime [5]. For example the network topology

is a key factor in time synchronization since the relative position of a node to

its neighbors affect the paths chosen in synchronization algorithms for time up-

date. Several topologies exist for WSNs. Common amongst these topologies are

the star, ring, grid, random and linear topologies. Figure 1.3 presents a general

picture of these topologies for a four node network.

1.3 Wireless Standards

In general, sensor nodes store and/or process the data that are collected from the

sensor field. The sensed data is then transmitted to a base station or sink node

in a centralized network, or can go through processing rather than transmitting

6

Figure 1.3: Typical WSN Topologies

directly to the base station as in distributed network. Several types of commu-

nication channels such as microwave, radio links and satellite links can be used

for transmitting and extracting the information obtained from the wireless sensor

networks.

There are various wireless communication standards employed in WSNs like:

IEEE 802.15.4 and ZigBee. IEEE 802.15.4 standard is normally employed in

low data rate networks where the sensor field is relatively small and is a power

efficient protocol. ZigBee also normally communicates using low data rate and

low power consumption protocols and are normally employed in a myriad WSN

applications. For upper layers (application and network), ZigBee is considered as

the main protocol, while for the lower layers (MAC and physical) IEEE 802.15.4

is considered as the main protocol. Some other protocols considered for wireless

7

Table 1.1: Comparison Between Bluetooth, Wifi and Zigbee

Category Bluetooth Wifi Zigbee

Specification Authority Bluetooth SIG IEEE, WECA IEEE

Year of Development 1994 1991 2003

Bandwidth Low(800 Kbps) High(11 Mbps) Low(250 Kbps)

Range 10 meters 100 meters 10-100 meters

Power Consumption Low High Low

Cost Low High Low

Frequency of Operation 2.4 GHz 2.4 GHz 2.4 GHz

communication in wireless sensor networks are IEEE 802.11 also known as Wifi

and IEEE 802.15.1 mostly referred to as Bluetooth. Table 1.1 compares between

Wifi, Bluetooth and Zigbee.

1.3.1 ZigBee / ZigBee PRO / ZigBee IP

The ZigBee specification [5], was first introduced in 2004 and was further upgraded

in 2006 and 2007. This wireless communication protocol has a low data rate

and energy consumption and was designed by the ZigBee Alliance [6]. In the

specifications of Zigbee, the application and network layers are defined on top of

the physical and Mediun Access Control (MAC) layers of IEEE 802.15.4-2003,

and it’s main target applications are smart grid, home automation and consumer

electronics applications. Since the ZigBee specification uses the physical and MAC

layers of the IEEE 802.15.4, they have the same modulation techniques, bandwidth

and channel configurations [7].

A ZigBee network communicates using the same, user defined channel through-

8

out in its operation lifetime. This gives it a vulnerability in terms of interference

from nearby networks communicating on a similar frequency and also suscepti-

ble to noise from different signal sources in its sensor field. Hence Zigbee is not

usually employed for applications requiring robust communication protocols like

in harsh industrial sensor fields [8]. To deal with this issue, the ZigBee Alliance

upgraded the first variant to the ZigBee PRO specification [7] in 2007. ZigBee

PRO is designed such that, it will perform effectively in industrial settings with

added features like,improved security and agility towards channel noise and net-

work frequency interference. In this protocol, the phenomena of frequency agility

is added where the entire network has the capability of altering its operation

channel frequency when it encounters large amounts of noise and/or interference.

Despite these additions and upgrades, ZigBee has not seen a wide industrial adop-

tion. The ZigBee Alliance pronounced in April 2009 to incorporate standards from

the Internet Engineering Task Force (IETF) into future ZigBee releases, thereby

opening up for IP-based communication in ZigBee networks. Of special interest

for the ZigBee Alliance is the 6loWPAN working group which has created a Re-

quest for Comments (RFC4944) investigating the transmission of IPv6 packets

over IEEE 802.15.4 networks. This work resulted in the ratification of the ZigBee

IP specification in February 2013 [9]. Although Zigbee is not popular in industrial

applications, it is widely used in small electronic equipments, in small scale com-

mercial applications and in scientific experimental inquiry. Most wireless sensor

nodes use Zigbee protocol or it’s variants for communication in the sensor field.

9

Zigbee is also widely used in network architectures and simulators to test the per-

formance of newly designed or proposed schemes of WSN network establishment

and management services such as routing, time synchronization, localization and

congestion control protocols.

1.4 Practical WSN Schemes

1.4.1 TinyOS and NesC Overview

TinyOS is an open-source working framework intended for wireless embedded sen-

sor networks. It highlights a segment based architecture, which empowers quick

development and usage while minimizing code size as required by the serious mem-

ory limitations intrinsic in sensor networks. TinyOS’s segment library incorporates

system protocols, disseminated services, sensor drivers, and information obtaining

instruments all of which can be utilized as is or be further refined for a custom

application. TinyOS’s occasion driven execution model empowers fine-grained

power administration yet permits the planning adaptability made important by

the flighty way of wireless communication and physical world interfaces. TinyOS

is not a working framework (”OS”) in the customary sense; it is a programming

structure for embedded frameworks and set of parts that empower building an

application particular OS into every application. The explanation behind this is

to guarantee that the application code has an amazingly little memory impres-

sion. Furthermore TinyOS is intended to have no record framework, underpins

10

just static memory designation, execute a straightforward assignment display, and

give negligible gadget and systems administration abstractions 1. TinyOS has a

part based programming model arranged by the nesC programming language.

Like other working frameworks, TinyOS sorts out its software segments into lay-

ers. The lower the layer the nearer it is to the equipment; the higher the segment,

the nearer it is to the application. A complete TinyOS application is a diagram of

segments, each of which is a independent computational entity. The nesC (network

embedded systems C) is an extension to C designed to embody the structuring

concepts and execution model of TinyOS.

1.4.2 Memsic Mote Overview

There are different sensor nodes platforms that are normally employed in the

research fields, such as Mica, Mica2, MicaZ,TelosA, TelosB and IRIS. These sensor

node platforms share the same operating system (TinyOS) and all use the nesC

language for implementing WSN applications. Most experimental research works

in wireless sensor networks use memsic motes. The Memsic node consists of three

main components namely; MPR2400 (MicaZ mote), MIB520 gateway, and sensing

boards which come in MDA’s or MTS’s and have varying sensing capabilities. The

following sections describe the hardware and software parts of the Memsic MicaZ

mote.

1http://www.tinyos.net/

11

1.4.2.1 Motes

Figure 1.4 shows the MicaZ mote and the block diagram MicaZ is the latest gener-

ation of motes from Memsic. The MicaZ mote is composed of different hardware

components such as processor, radio transceiver, and external flash (logger). The

MPR2400 (2400 MHz to 2483.5 MHz band) uses the Chipcon CC2420, IEEE

802.15.4 compliant and ZigBee ready radio frequency transceiver integrated with

an Atmega128L micro-controller. It has 51 pin I/O connectors, and a serial flash

memory is used. All MICA applications, softwares and sensor boards are compat-

ible with the MPR2400.

Figure 1.4: MicaZ Mote attached to MIB520 Board[2]

1.4.2.2 Sensor Board

The MDA100CB sensor and information obtaining board shown in Figure 1.5

has a precision thermistor, a light sensor/photocell and a general prototyping

12

region. Intended for use with the IRIS, MICAz and MICA2 Motes, the prototyping

territory underpins connection with every one of the 51 pins on the expansion

connector, and gives an extra 42 unconnected solder points for breadboarding.

Figure 1.5: MDA100 Sensor Board[3]

1.4.2.3 MIB520 USB Interface Board

MIB520 provides USB connectivity to the Micaz motes for communication and

insystem programming. It supplies power to the devices through USB bus.

MIB520CB has a male connector as shown in Figure 1.6. Usually, this board

connects to Micaz mote to construct the base station node that is connected to

the PC for recording the received data.

13

Figure 1.6: MIB520 USB Interface Board[2]

1.5 Applications of Wireless Sensor Networks

WSNs find application in several areas in the real world. These networks are

employed in commercial, civil, research, industrial, military, ecological and med-

ical applications just to mention a few, and serve a myriad of purposes like data

collection, monitoring, field management and so on. Table 1.2 summarizes some

applications into categories [4] and gives examples for each category.

14

T
ab

le
1.

2:
C

at
eg

or
ic

al
A

p
p
li
ca

ti
on

s
of

W
ir

el
es

s
S
en

so
r

N
et

w
or

k
s

R
es

id
en

ti
al

E
n
v
ir

on
m

en
t

M
ed

ic
al

In
d
u
st

ri
al

M
et

ro
p

ol
it

an
M

il
it

ar
y

B
u
il
d
in

g
A

u
to

m
a-

ti
on

(H
V

A
C

,
S
ec

u
ri

ty
,

et
c.

)

W
ea

th
er

S
en

s-
in

g
an

d
m

on
i-

to
ri

n
g

H
ea

rt
b

ea
t

se
n
so

rs
A

ss
em

b
ly

li
n
e

an
d

w
or

k
fl
ow

H
ig

h
w

ay
an

d
B

ri
d
ge

M
on

i-
to

ri
n
g

B
at

tl
e

fi
el

d
m

an
ag

em
en

t,
su

rv
ei

ll
an

ce
an

d
R

ec
on

-
n
ai

ss
an

ce

H
ot

el
en

er
gy

m
an

ag
em

en
t

T
ra

ck
in

g
so

il
co

n
ta

m
in

a-
ti

on

M
ed

ic
al

d
is

as
-

te
r

re
sp

on
se

In
ve

n
to

ry
co

n
tr

ol
an

d
m

an
ag

em
en

t

C
it

y
L

ig
h
ti

n
g

co
n
tr

ol
R

ad
ia

ti
on

an
d

n
u
cl

ea
r

th
re

at
d
et

ec
ti

on

H
om

e
co

n
tr

ol
E

ar
th

q
u
ak

e
d
et

ec
ti

on
T

el
em

ed
ic

in
e

D
is

tr
ib

u
te

d
ro

b
ot

ic
s

P
u
b
li
c

as
se

m
-

b
ly

lo
ca

ti
on

s
m

on
it

or
in

g

M
is

si
le

d
et

ec
-

ti
on

sy
st

em
s

R
es

id
en

ti
al

ac
ce

ss
co

n
tr

ol
W

il
d
fi
re

in
-

st
ru

m
en

ta
ti

on
P

at
ie

n
t

re
h
a-

b
il
it

at
io

n
In

d
u
st

ri
al

In
-

st
ru

m
en

ta
ti

on
H

ig
h
w

ay
m

on
it

or
in

g
In

tr
u
si

on
d
e-

te
ct

io
n

A
p
p
li
an

ce
co

n
tr

ol
(l

ig
h
t-

in
g

an
d

H
V

A
C

)

P
re

ci
si

on
ag

ri
cu

lt
u
re

B
o
d
y
-w

or
n

m
ed

ic
al

se
n
-

so
rs

M
in

e
ai

r-
co

n
d
it

io
n
in

g
M

as
s-

ca
su

al
ti

es
m

an
ag

em
en

t

M
on

it
or

in
g

on
-t

ru
ck

an
d

on
-s

h
ip

ta
m

p
er

of
as

se
t

W
i-

F
i

ta
gs

to
tr

ac
k

ch
il
d
re

n
F

ar
m

se
n
so

r
an

d
ac

tu
at

or
n
et

w
or

k
s

C
ol

le
ct

io
n

of
lo

n
g-

te
rm

d
at

ab
as

es
of

cl
in

ic
al

d
at

a

In
d
u
st

ri
al

au
-

to
m

at
io

n
H

ig
h
w

ay
m

on
it

or
in

g
M

il
it

ar
y

ta
ct

ic
al

su
rv

ei
ll
an

ce

G
as

,
w

at
er

,
an

d
el

ec
tr

ic
m

et
er

s

M
on

it
or

in
g

an
im

al
p

op
u
-

la
ti

on
s

H
ea

rt
b

ea
t

se
n
so

rs
B

u
il
d
in

g
au

to
m

at
io

n
B

ri
d
ge

an
d

h
ig

h
w

ay
m

on
it

or
in

g

M
on

it
or

in
g

fo
r

ex
p
lo

si
ve

s

15

1.6 Network Establishment and Management

Services for WSNs

It is clear from these applications that, several aspects of industrial, military and

commercial works require WSNs and the need for such networks is on an expo-

nential increase in all aspects of distributed systems [10]. Information generation,

transmissions and processing in WSNs require several features. Key amongst them

are;

1. Wireless transmission protocols like Zigbee, ISA100.11a, IEEE 802.11 and

WirelessHart

2. Infrastructure establishment services like time synchronization, topology

control, clustering and localization

3. Network management services such as naming and operation mappings

4. Effective operating systems like TinyOS, Mate, MagnetOS, MANTIS, Pi-

cOS, and SenOS.

5. Sensor network databases

6. Traffic management services like MAC Protocols, transport protocols and

routing protocols

Upon initial activation, WSNs need to perform a myriad of tasks to establish

the necessary infrastructure to ensure effective collaborative work among sensor

nodes. This makes infrastructure establishment very crucial for network operation.

16

Infrastructure establishment services like time synchronization, topology control,

clustering and localization allow for nodes to organize themselves for effective clus-

tering and mapping, establish communication for efficient resource management,

and establish themselves for higher level collaborative network functions like rout-

ing. Among these services, time synchronization is the most important. This is

because, synchronizing network nodes in time is mostly needed before almost all

other tasks are carried out for establishing network infrastructure.

Also, time synchronization is needed for assigning global time stamps for

sensed data and events, for coordinated network tasks such as duty cycling of

nodes for energy efficient techniques and low power Time Division Multiple Ac-

cess (TDMA) based Medium Access Control (MAC) layer and so on. Further,

in some of applications such as data fusion, human and animal tracking, speed

estimation, the network needs to know the time of all nodes in order to determine

the time occurrence of the events. Synchronizing nodes in time can help in sav-

ing the energy by reducing the guard times that are attached to the transmitted

packets among nodes. This is mainly true for the networks that use duty-cycling

techniques and switch off the radio to reduce the energy consumption.

1.7 Summary

In this chapter, we presented a general overview of wireless sensor networks. We re-

viewed the general architectures of wireless sensor networks and sensor nodes. We

further described the common topologies and wireless protocols used for setting up

17

wireless sensor networks. We presented an overview of the TinyOS platform and

the NesC programming language employed for experimentation in most wireless

sensor networks. We then gave a summary about some network establishment

and managements services that are crucial for the operation of wireless sensor

networks. Key services among them are routing and time synchronization. We

briefly gave an exposition on the significance of time synchronization in wireless

sensor networks and the problem of synchronization.

To address the issue of time synchronization in WSNs, lots of research has

gone into developing the most efficient protocols to address this issue. The next

chapter delves into time synchronization in WSNs and addresses the problems

and features of synchronization, and the required tasks needed to carry it out.

The chapter ends with a review of the more relevant recent reported protocols

and algorithms for time synchronization in WSNs.

18

CHAPTER 2

TIME SYNCHRONIZATION IN

WIRELESS SENSOR

NETWORKS

Wireless Sensor Networks (WSNs) as distributed systems used for several preci-

sion and sensitive sensing and instrumentation applications require network nodes

to be as closely synchronized in time as possible. Several factors [11], which in-

clude but not limited to; the tight link between sensors and the physical world,

the scarcity of energy for deployed nodes, the need for large scale deployment,

decentralized topologies and unpredictable and intermittent connectivity between

network nodes necessitate an accurate, flexible and robust time synchronization for

wireless sensor networks. Although most traditional networks depend on physical

time for time synchronization, WSN applications such as object tracking, consis-

tent state updates, and distributed beamforming make it impractical to depend

19

on logical physical time for WSN time synchronization.

In this chapter, we present a general overview on the topic of time synchroniza-

tion in wireless sensor networks. The chapter gives an exposition on the problem

of time synchronization, the need for effective and robust time synchronization

algorithms in wireless sensor networks and the models of hardware and logical

clocks of wireless sensor network nodes. An extensive literature survey is carried

out for the recently reported time synchronization protocols presented in the liter-

ature where we classify protocols into the centralized and distributed types. The

main merits and demerits of these classes are then discussed.

2.1 Background

2.1.1 The Time Synchronization Problem

Generally, the concept of logical time eliminates the need for physical time syn-

chronization in applications where only the causal relationships between different

events are of interest. Despite this advantage, logical time captures the relation-

ships between in-system events which is determined by communication among

application processes generating those events. This does not allow for the inter-

pretation of system events in relation to the physical world and therefore makes

physical time insufficient for the operations of wireless sensor networks. Con-

sider the problem [12] in Figure 2.1, where an acoustic wavefront generated by

a distance sound source impinges onto an array of acoustic sensor nodes. It is

20

required in this problem to estimate the angle at which the wavefront from the

sound source impinges the array denoted as β. Each node in the array records a

time,t at which it is impinged by a sound event.

Figure 2.1: Estimating Angle of Sound Impingement on an Array

From Figure 2.1, x = rsinβ and β = arcsin
x

r
. Since sensors have knowledge of

their respective positions, x is known. Using knowledge of time difference between

node sensors, ∆t and the speed of sound, ν , the value of r can be calculated as

r = ν∆t. Now, assuming x = 1m and ∆t = 0.001s then the calculated angle,

β = 0.336rad. If the clocks of the node sensors are only within 500µs accurate, the

true difference in time can occupy a range of [500µs, 1500µs] hence the estimated

angle, β can be in a range of [0.166rad, 0.518rad]. This presents a big problem,

since a very small error in time synchronization of sensor nodes can lead to a

significant biased estimates obtained from sensed quantities.

21

2.1.2 The Need for WSN Time Synchronization

There are at least two ways [12] to obtain a more accurate estimate. One method

is to obtain the combined measurements of several sensors and average them to

find the estimate. This method however is guaranteed accuracy if the variance

in readings is very small. If the variance is very large, the mean value of the

combined reading might not be a true representation of the event(s). The second

method which has received more research attention is to employ rigorous time

synchronization algorithms to keep the inter-sensor time difference as small as

possible by synchronizing all array sensors and hence all WSN nodes in time.

These amongst several applications require for time synchronization of all nodes

clocks with respect to physical time. Some of these applications are [11]:

1. Distributed Beamforming: To perform spatial filtering using beamforming

arrays, i.e. receiving signals from a specified direction, depends on the rela-

tive offsets of the array sensors.

2. Duplicate Detection: The time of reading an event can help nodes or ad-

ministrator application determine whether it is a single event detected from

two vantage points or two distinct real time events.

3. Object Tracking: Combining proximity detection from several sensors at

different locations in a sensor field can be used to determine the size, shape,

velocity, location, and /or the direction of an object.

4. Consistent State Update: To accurately estimate the current state of an

22

event, it might require knowing the most recent measurements of the event.

5. Temporal Order Delivery: Several data fusion algorithms like Kalman filters

require events in their order of occurrence in order to process them.

2.2 Node Clock Modeling and Synchronization

2.2.1 Hardware Clock Models

As per the definition in [13], a hardware clock is an electronic circuit that counts

oscillations at a certain operating frequency. Henceforth, a hardware clock for

the most part comprises of an oscillator and a counter. The oscillator is utilized

to produce periodic events whereas the counter aggregates these events so as to

obtain the measured time. For example, the oscillator output can be expressed

by a sinusoidal waveform,

S(t) = A(t)sinΦ(t) (2.1)

where Φ(t) is the phase and;

A(t) = A+ ∆A(t) (2.2)

is the amplitude, ∆A(t) defines the variations in amplitude, and t denotes the

reference or global time. Note that the specific amplitude values of the oscillator

are insignificant for this model. The instantaneous radian frequency function Φ̂

23

can be modeled in the form [14]:

Φ̂(t) = ωo +
M−1∑
k=0

L(k)

k!
tk + ξ̂(t) (2.3)

where ωo is a constant representing the nominal value of the free running radian

frequency of the oscillator. L(0) represents the initial radian frequency error

(departure). This error arising from the uncertainties in the initial oscillator

settings. The L(k)s k = 1, · · · ,M specify a set of time-independent values which

characterizes the kth order radian frequency drifts, and ξ̂(t) is a stationary zero-

mean random process characterizing the short-term oscillator instabilities. The

oscillator phase process can be obtained by integrating (2.3) from 0 to t resulting

into:

Φ(t) = Φ(0) + ωot+
M∑
k=1

L(k − 1)

k!
tk + [ξ(t)− ξ(0)] (2.4)

for M > 1. The value of the hardware clock is obtained by dividing the

oscillator phase by the nominal free-running radian frequency of the oscillator ω0.

Correspondingly, the hardware clock value T (t) can be defined as

T (t) ,
Φ(t)

ωo
= T (0) + t+ q(1)t+

q(2)

2
t2 +

M∑
k=3

q(k)

k!
tk + Υ(t) (2.5)

where T (0) = Φ(0)
ωo

, q(k) = L(k−1)
ωo

, k = 1, · · · ,M are a set of values modeling

the (k−1) th order time drifts and Υ(t) = ξ(t)+ξ(0)
ωo

is, in general, a non-stationary

stochastic process characterizing the short-term clock instabilities. Even though

24

(2.5) is a complete hardware clock model in the sense that it will be accurate

for smooth phase functions as M is large and t is small, it is not necessary in

practice. Firstly, the values of q(k), k = 3, · · · ,M are so small (compared to the

clock resolution) [15] that it can be totally ignored. Moreover, in this work it is

assumed that Υ(t) = 0. This is a reasonable assumption since we are not dealing

with the precise measurement of time, but rather the relative time synchronization

of clocks in the network [15]. In this way, the important terms that characterize

the performance of a hardware clock can be defined based on (2.5). These terms

can also be called hardware clock parameters and they include:

1. Offset: θ , T (0)

2. Frequency: f , 1 + q(1)

3. Skew: ρ , q(1)

4. Drift: q(2)
2

Note that offset, frequency, and drift are all determined by the hardware clock

and cannot be measured or adjusted. For a crystal oscillator commonly used in

telecommunication radios, the reasonable values for the skew are [1, 100] part

per million (ppm) relative to f [10]. Additionally, the drift is mainly caused by a

gradual change in frequency over days or months, which is known as aging. An

illustration of the aging effect is shown in Figure 2.2, which is inspired by [15].

Since the values of skew and drift usually have different scales, there should be

different adopted hardware clock models in different applications.

25

Figure 2.2: An illustration of Aging Effects of Node Clocks over Time (days)[20]

For long-term applications, i.e., the synchronized clocks need to be used for

more than several hours, the effects of drift should be considered [16], [17], [18],

[19]. In this case, clock model I is presented as follows.

T (t) = Dt2 + ft+ θ = Dt2 + (1 + ρ)t+ θ (2.6)

For short-term applications, the effects of drift can be neglected. Then, there

are two possible hardware clock models being utilized in the existing literature.

Some works take both offset and skew into account [18], which gives clock model

II as

T (t) = ft+ θ = (1 + ρ)t+ θ (2.7)

26

Other works only consider offset [16], [19], , which introduces clock model

III

T (t) = t+ θ (2.8)

In [20], the authors presented the ticks of node hardware clocks of sensor

nodes as a cumulative function that gives a description of the time evolution of

the tick counter that can be used for the implementation of the clock. This is

given as

s(t) =
∞∑
k=0

1(t− t(k)) (2.9)

where 1 =

1, t > 1

0, otherwise

t(k), k ∈ N is the time at which the hardware oscillator produces an event.

s(t) could be further approximated by [20] as,

s(t) =

∫ t

−∞
f(ζ)dζ (2.10)

and the frequency function is interpreted as f(t) , 1
t(k+1)−t(k)

,∀t ∈ [t(k), t(k+

1)]

Typical nominal values of f(t), f̂ are specified with upper and lower bounds

given respectively as fmax and fmin such that f(t) ∈ [fmax, fmin] = [f̂ −

∆fmax, f̂ + ∆fmax]

27

2.2.2 Logical Clock Models

Since the clock parameters of a hardware clock cannot be measured or adjusted

manually, each node also maintains a logical clock whose value which is a function

of the current hardware clock value. In this work, the focus is on the affine

function, and calculates the logical clock value C(t) as

C(t) = αT (t) + β (2.11)

where α(α > 0) and β are control parameters updated by the synchronization

algorithm. In this way, the logical clock value C(t) represents the synchronized

time for each node.

Figure 2.3: The Relationship between Hardware Clock and Logical Clock

The logical clock C(t) is used in the update because resetting the hardware

clock for an update during node operation is inefficient for node operation and

may interfere in the operation of node application. This relationship is also shown

in 2.3. Where, α is the local clock skew rate which determines the clock speed

and β is the local clock offset. As shown in Figure 2.4, the clock skew of a clock

28

determines how fast the clock is and different sensor nodes equipped with clocks

with different oscillators will tick at relatively different speeds.

Figure 2.4: Nodes Clock of Varying Drift Rates

2.3 Performance Metrics for Time Synchroniza-

tion Protocols

Even though a wide range of applications require time synchronization, each ap-

plication places different performance demands. For instance, some applications

need high accuracy, e.g., object tracking, while some applications have less require-

ment on the accuracy but more on the energy efficiency, e.g., instrumentation or

power management applications. To the best of our knowledge, there is no unique

criterion to evaluate various time synchronization schemes. Some of the criteria

might even be unique to the nature of the synchronization algorithm. In this

29

section, we provide some possible metrics for the performance evaluation of time

synchronization protocols.

2.3.1 Accuracy

In pairwise clock synchronization, the objective is usually to synchronize one node

to the other one by adjusting local clock parameters. In this way, the clock

synchronization problem is inherently a parameter estimation problem. Even in

network-wide synchronization, each node needs to update its clock parameters

based on the timing messages received from other nodes. This is also related

to parameter estimation if we consider that the received messages are inaccurate

due to the delays and distortions. In parameter estimation, a fairly common

performance metric is the root mean square error (RMSE). The RMSE of an

estimator T̂ is defined as

RMSE ,
√

(T̂ − T)2 (2.12)

where T is the true value, and the expectation is taken over different realizations.

2.3.1.1 Problem of Accuracy

Each node in a sensor network is composed of an oscillator operating at a specific

frequency and a counter register, which is incremented in the node hardware

after a certain number of oscillator pulses. The nodes software (firmware) can

only access the register values and the time resolution is determined by the time

between two increments. Where events occurring between two increments are not

30

distinguishable from their timestamps.

The value of the hardware clock of a node in real time t denoted as T (t) which

can be seen as an abstraction of the counter register with a non-decreasing time

value. With this representation, the software equivalent of the clock value, C(t)

given by Equation 2.11, i.e.,

C(t) = αT (t) + β (2.13)

With the phase shift (offset) and the skew rate of a node represented as α and

β respectively. Since it is neither possible nor desirable to alter the oscillator or

the shift register, the coefficients and could be manipulated to obtain a desired

value. Based on this definition, two cases of the precision sensor node clock values

are defined and hence synchronization classified into two folds. The external and

internal synchronization precision.

2.3.1.2 External Synchronization

Given a network of n nodes, all nodes are said to be accurate at time, t within a

bound δ if

|C(t)− t| < δ,∀i, j ∈ {1, 2, · · · , n} (2.14)

If the above condition is satisfied in a wireless sensor network then all the

nodes are said to be externally synchronized [21].

31

2.3.1.3 Internal Synchronization

Similarly, nodes 1,2, · · · ,n are said to agree on the time within a bound of δ or

are said to be synchronized internally if for two nodes i and j

|Ci(t)− Cj(t)| < δ,∀i, j ∈ {1, 2, · · · , n} (2.15)

A reliable source of real time like UTC must be available so as to achieve

external synchronization. It is obvious from (2.14) and (2.15) that, if all nodes

are externally synchronized with a bound δ, then the nodes are also internally

synchronized within a bound 2δ [21].

From these definitions, three problems can be discussed.

1. Nodes are switched on at different and essentially random times, and hence,

without correction, their initial phases are also stochastic in nature.

2. Oscillators often have a priori a slight random deviation from their nominal

frequency, called drift or clock skew due to impure crystals but oscillators

also depend on several environmental conditions like pressure, temperature,

and so on, which in a deployed sensor network might well differ from lab-

oratory specifications. The clock skew is normally expressed in parts per

million (ppm) and gives the number of additional or missing oscillations a

clock makes in the amount of time needed for one million oscillations at

the nominal rate. Normally, cheaper sensor nodes having cheaper oscillators

have a relatively larger clock skew as compared to expensive nodes with well

32

fabricated oscillator.

3. The oscillator frequency is time dependent. The frequency variations could

be within a short span which is normally caused by changes in tempera-

ture, electrical supply variations, and variations in air pressure. Frequency

variations could be long term which is caused by aging. This factor makes

the oscillator frequency stable within a certain time value and hence time

resynchronization must be done within this time interval to keep track of

changing oscillator frequencies.

From the above problems, it could be inferred that even if two nodes have

the same type of oscillator and are started at the same time with identical logical

clocks, the difference of |Ci(t)−Cj(t)| can be arbitrary large as t increases. Hence

a time synchronization protocol is needed to keep the difference within the bounds

of (3.12). Also, since the skew rate β is time varying, one time synchronization

of the nodes within a wireless sensor network is not useful. It is, however, often

possible to bound the maximum drift rate, that is there is a ρ > 0 such that[3],

1

ρi + 1
≤ dTi(t)

dt
≤ ρi + 1 (2.16)

This bound can be used to find the conservative resynchronization frequency.

2.3.2 Precision

For deterministic algorithms, precision is defined as the maximum synchronization

error between a node and real time or between two nodes. For stochastic algo-

33

rithms, the mean error, the error variance, and certain quantiles are of interest.

2.3.3 Cost

Another evaluation criterion, which is mainly a practical issue, is the cost of im-

plementing an algorithm. In general, cost is commonly studied using the following

metrics.

1. Convergence time, which is the time needed by the algorithm to converge

to a desired synchronization accuracy.

2. Power consumption, which is a combination of the power required to perform

the local implementation of the synchronization algorithm, and the power

consumed to send and receive timing messages.

3. Communication overhead, which is the amount of transmitted information

needed for the synchronization algorithm.

2.3.4 Fault Tolerance (Robustness)

This metric determines how well an algorithm can cope with unreliable and time

variant communication links and channels, network partitions, random topolo-

gies, node failures, node mobility, and so on. There are different sources for the

randomness in WSNs therefore, robustness is another important issue for clock

synchronization algorithms. The considerations of robustness include

1. Robustness against random transmission delays with different levels and

distributions;

34

2. Robustness against dynamic topologies with node failures and changing con-

nections, which is considered for network-wide synchronization algorithms;

3. Robustness against packet losses regarding the timing messages.

2.3.5 Scalability

The network may consist of a few or many nodes. Hence, one way to assess the

network-wide synchronization algorithms is to evaluate if they can perform well in

both small networks and large networks, which is often referred as the scalability.

2.4 Review of Time Synchronization Protocols

Due to the several discussed difficulties in the problem of WSN time synchro-

nization and the importance of keeping sensor nodes in a WSN synchronized as

closed as possible, an extensive study has been carried out in this discipline. The

development of novel time synchronization algorithms began for the most part,

with the development of centralized protocols [22], [23] and [24]. These syn-

chronization schemes normally achieve global network time-synchronization by

synchronizing all network nodes to a root/leader/reference node in a hierarchical

tree fashion or using network clusters. Popular among these protocols include

the Reference Broadcast Synchronization (RBS) [25], Timing-synch Protocol for

Sensor Networks (TPSN) [26], Lightweight Time Synchronization (LTS) [27], Hi-

erarchical Time Synchronization Time Synchronization (HRTS) [28]. Realizing

the problems of node failure, sensitivity to topology dynamics and scalability in

35

the usage of centralized protocols, research focus switched towards the develop-

ment of distributed schemes where the issue of network robustness, node failure

and scalability were of prime focus. Most distributed algorithms however are based

on consensus, where an agreement is sort between sensor nodes so as to attain

global time synchronization in the entire network. With several of the consensus

protocols like the Gradient Time Synchronization Protocol (GTSP) [29] and the

Average Time Synch (ATS) protocol [22]. The adoption of a consensus approach

to the problem of time synchronization employed by most researchers find motiva-

tion in three main advantages. First, consensus based algorithms are distributed

and hence do not require a root(leader) node or a spanning tree for time syn-

chronization. Secondly, more accurate synchronized clocks may be obtained for

the entire network especially for neighbors based on a consensus synchronization

algorithm. Finally, consensus algorithms compensate for the skew and offset dif-

ferences among network nodes. This change in the research direction has led to

the development of several distributed protocols. Examples of these protocols be-

ing, the Time Synchronization Protocol using the Maximum And Average Values

(TSMA) [30], Time Diffusion Protocol (TDP) [31], External Gradient Time Syn-

chronization Protocol (EGSync) [32], Reach-Back Firefly Algorithm (RFA) [33],

Gradient Time Synchronization Protocol (GTSP) [29], Average Time-Sync Pro-

tocol(ATS) [22], Weighted Maximum Time Synchronization Protocol(WMTS)

[34], and Maximum Time Synchronization Protocol [34].

36

2.4.1 Review of Centralized Protocols

TPSN [26] was designed by adapting the design of NTP to give some flexibility

which would allow for time synchronization in wireless sensor networks. The

algorithm is made up of the level discovery and the synchronization stages. In the

level discovery part of the algorithm, the entire network is organized into a tree

topology with a leader node acting as the root node. A pair-wise synchronization is

then carried across the whole tree between nodes sharing a common branch using

the conventional sender receiver synchronization handshake exchange approach.

TPSN is a centralized scheme and hence uses medium access layer time-stamping

to minimize message delivery non-determinism and to enhance the efficacy of

synchronization. The convergence speed of TPSN is reported to increase linearly

with the maximum number of network hops. TPSN has two main disadvantages.

Firstly, suppose the root node goes off, then a root discovery process has to

commence for the election of a new leader. This adds a significant overhead

on the protocol source-code and results in prolonged long periods of network

desynchronization. Furthermore, geographically close nodes might not be close in

terms of the tree distance, which leads to an increase local synchronization errors.

The Lightweight tree-based synchronization (LTS) protocol presented in [27];

achieves a reasonable level of accuracy while using reasonable amount of com-

putational resources like memory space and CPU time. LTS is classed into two

categories; centralized and decentralized. In the centralized approach, each round

starts by only one node with a certain frequency whereas in the decentralized,

37

each node can start the synchronization. The LTS algorithm uses a searching

process to construct the tree-based structure for the whole network. Tree nodes

then share the synchronization data with each other. The drawback of this algo-

rithm is that the accuracy of the synchronization decreases with increasing depth

of tree and this in turn increases the error value for each node.

Jiming in [35] proposed a time synchronization algorithm called feedback-

based synchronization that considers the synchronization problem is a closed-loop

control problem and using proportional-integral (PI) controller to compensate the

drift of clock that results from the internal and external factors. The accuracy of

this algorithm depends on the response and overshoot time. This algorithm needs

a reference node and it is a tree- based synchronization and hence suffers from

link and node failures.

Tiny-sync and mini-sync presented in [36]; it depends on a set of data points,

where each point is collected by a two-way message exchange and consists of two

constraints which are bounded by the offset and the skew parameters. Increasing

the number of the data points increases the precision of the estimation bounds

of the two parameters. The computational complexity of the tiny-sync algorithm

is low because it is dependent on the specification of only four points with few

operations. The mini-sync algorithm has improved accuracy than the tiny-sync,

which is achieved at a small computational cost. This algorithm has an accurate

offset and drift information together with tight, deterministic bound, accuracy,

low computation and storage complexity, insensitivity to communication errors

38

and each clock can be approximated by an oscillator with fixed frequency.

RBS [25] is designed to ensure the clock synchronization between a class of

network nodes located within a single-hop broadcast range of a beacon node.

In comparison to conventional protocols operating on LANs, this algorithm con-

tributes to synchronization by directly removing two of the main sources of non-

determinism found in packet transmissions, period of message exchange and access

time. This was done by making use of the property of time critical path, defined as

the path of a message that adds to stochastic errors in clock synchronization. The

algorithm makes use of least-square linear regression to compensate for the clock

skew, its convergence speed is reported to increase linearly with the maximum

number of network hops. The use of the leader(beacon) node within a cluster

makes RBS vulnerable to node and link failures and changing topologies.

FTSP [37] is an ad-hoc, multi-hop time synchronization algorithm for WSNs.

In this protocol, the node with a low value of ID is selected as a root node whose

clock value is used as the reference time for other nodes. The root node peri-

odically floods a synchronization packet with its local time to all network nodes.

In this protocol, clock synchronization between sensor nodes is achieved by em-

ploying a single message that is transmitted by a sender node to multiple receiver

nodes. This message is time-stamped by both the transmitting node and receiv-

ing ones at their MAC layers. This time stamping done at the MAC layer helps

improve the synchronization accuracy of the protocol. To compensate for drifts

between nodes and the reference nodes, linear regression is employed in FTSP.

39

Typical WSN operate in areas larger than the broadcast range of a single node.

Hence sensor networks employed for running this protocol tend to be multi hop

networks. The leader or reference node of the network is a single node which is

dynamically selected using a specially designed algorithm through election. This

reference node maintains the global clock values and synchronizes the slave nodes

to its clock. In FTSP the ad-hoc type network structure is employed as compared

to the spanning tree structure employed in other centralized protocols like the

TPSN. The method employed in FTSP saves the initial phase of tree maintenance

and hence improving convergence time of the protocol. The FTSP methodology

proved more robust under different failures scenarios in the network due to the

flooding technique used. In RBS time-stamps are not included in the message

which is transmitted whereas in FTSP time-stamp of the transmitting node is

incorporated in the currently sent message. Hence, the time-stamping on the

sender side must be performed before the message is transmitted to the receiver.

In a real practical case if clocks that operates on similar frequencies are employed,

setting the clock offset once suffices for synchronization. But this is not the case

and we need to send synchronization message again and again. Since this doesnt

occur practically, in FTSP, network resynchronization is carried out with a period

that is less than one second. If resynchronization period is chosen to be less than

a second, then a microseconds synchronization accuracy is achieved if not node

clocks tend to loss accuracy due to clock skews. The main setback of this protocol

is that resynchronization period is very shortly and hence a large overhead along

40

with a substantial bandwidth is used in every resynchronization period, hence the

significant expense of energy.

Lenzen et al [38] studied the effects of clock drifts and communication de-

lays when scaling the diameter of a network. The authors then do a rigorous

analysis to prove the bound of synchronization accuracy which they report as

approximately the square root of the network diameter and design a novel syn-

chronization technique named PulseSync to achieve this bound of accuracy. In

this technique, flooding is done in a rapid manner as opposed to the slow flooding

adopted in FTSP.

Yildirim and Kantarci [39] show that the slow propagation speed of flooding

adopted in FTSP significantly reduces the synchronization accuracy and scalabil-

ity of wireless sensor networks. They also show that, the rapid flooding adopted

in PulseSync [38], has several drawbacks. The authors design a protocol which

removes the undesirable drawbacks of the slow flooding in FTSP without altering

the propagation speed of the flood. This method is dubbed Flooding with Clock

Speed Agreement (FCSA) protocol. The show with experiments, that the syn-

chronization accuracy and scalability of slow-flooding can drastically be improved

by employing a clock speed agreement algorithm among the sensor nodes.

DMTS [40] collects different concepts at the same time such as master-slave

synchronization, sender-receiver synchronization and clock correction approach.

This protocol was created to avoid the round trip time estimation in the previous

protocols. DMTS synchronizes the transmitter with multiple receivers at the

41

same time with less number of packets when compared to RBS. In this protocol,

the leader node is selected as time master and broadcasts its time. All receivers

estimate the delay value and set their time the same as the master time. All

nodes that receive this packet can synchronize with this leader. DMTS has some

advantages like; computational complexity is low and energy efficiency is high.

On the other hand, one of the drawbacks of DMTS protocol is that it uses only

low frequency external clocks.

The authors in [41] presented a novel technique for time synchronization that

uses a dual-clock delayed-message method, for wireless sensor networks (WSNs).

In order to ensure energy efficiency for sensor nodes, the time synchronization

scheme adopts the flooding time synchronization method using one-way timing

messages. The clock variables like the clock drift and clock offset are then esti-

mated using the maximum-likelihood (ML) estimation of time parameters, so as

to ensure an efficient time synchronization. Further, this synchronization method

transforms the clock drift and offset estimation problem into a model that has no

dependency of random delay and propagation delay. This synchronization scheme

has the merits of minimal energy consumption, low complexity and effective for

clock synchronization of sensor networks prone to jitter and delays. The method

is however not so efficient for very large networks since the flooding method would

require the transmission of several packets in other to attain synchronization.

In [20], a time synchronization algorithm named FloodPISync and

PulsePISync are presented. In these algorithms, the clock of nodes are modeled

42

and adjusted as a proportional integral control system and show with computa-

tions, simulation and experimental work that this model effectively synchronizes

Wireless sensor nodes. The FloodPISync is done by synchronizing all nodes to

a reference node by adjusting the node drifts and offsets using the PI analogy.

A similar strategy is adopted in the PulsePISync but here, flooding is done in a

rapid manner similar to that of PulseSync.

The authors in [42] presented a novel framework for addressing the problem

of wireless sensor node clock synchronization. This framework was analyzed and

found to conserve some node resources and hence presented a more energy ef-

ficient method for achieving synchronization in time as compared to traditional

synchronization techniques like the Reference Broadcast Time Synchronization

(RBS) and Time-Sync Protocol for Sensor Network (TPSN). The synchronization

was designed to be not require a Global Positioning System or some other form

of external time like UTC in order to effectively achieve synchronization coordi-

nate with time, like conventional time synchronization protocols used in wireless

sensor networks. This method was classified as a peer to peer, clock-correcting

sender- receiver network-wide synchronization protocol which depends on the fea-

tures of the sensor network. The analysis of the clock offset was done using the

maximum probability theory. The synchronization accuracy of this scheme was

reported to depend on the resynchronization interval. The protocol performance

was then evaluated by conducting a simulation on NS2. The protocol was found

to demonstrate energy efficiency in the synchronization process.

43

2.4.2 Review of Distributed Protocols

Weilian et al. [31] proposed the Time Diffusion Protocol (TDP) that pushes

all nodes to have time slot with a small difference. This algorithm is applied

periodically to compensate for clock drifts. It is divided into two parts; active

and inactive parts. In the active part, there are multiple of cycles with T for each

cycle. During each cycle, a set of nodes are selected as master nodes by election.

Each master node starts the diffusion of timing messages; it builds tree-based

scenario in the network. Additionally, the network has non-leaf nodes which are

considered as diffused leaders and elected by the election procedure. This will

make some propagation on the timing messages. This algorithm tolerates packet

losses, can achieve equilibrium for all nodes during all synchronization times. Since

it is independent on the static structure, it provides the network with flexibility,

mobility, and many of the master nodes are distributed in the network with the

hierarchal structure. The last advantage is that the synchronization can be done

without using an external time. However, there are several drawbacks for this

algorithm including; high complexity, convergence time is high when there is no

external time, and clocks can run backward. This can occur when the value of

clock is changed to a lower value.

In GCS [43], nodes take turns to broadcast a synchronization request to their

neighbors. Each neighbor then responds with a packet having their local time.

The receive node(s) centered in this exchange averages the received timestamps

and broadcasts this value back to its neighbors. The neighbors use this value to

44

update their clocks. This process repeats until a global network synchronization

is attained at a certain level of accuracy. The protocol is fully distributed, but

has no clock skew compensation.

Yi et al, in [10] proposed a clustering firefly synchronization algorithm called

reach-back firefly algorithm (RFA) that depends on the initial phases of all nodes.

Due to the difference between the initial phases, the number of clusters will be

evaluated. Each cluster starts the synchronization process independently and each

node receives firing packets from its cluster, until all clusters reach the synchronous

state. These synchronous clusters are considered as new integrated nodes when

the clusters enter the synchronization phase. This technique deals with nodes that

are randomly distributed, all- to-all communication, has homogeneous oscillators

and bi-directional links. The simple RFA technique mainly suffers from a worse

precision in averaging the packet delays and is not robust. Leidenfrost et al

in [44] proposed another technique that overcomes this drawback by using the

two techniques together which called Fault-Tolerant Averaging (FTA) and robust

RFA. This technique is suitable for network that suffers from delays and provides

a high level of synchrony in multi-hop networks.

Sommer in [29] presented the gradient time synchronization protocol

(GTSP).This protocol is a fully distributed time synchronization scheme. In its

operations every node periodically sends a broadcast packet with the time infor-

mation. This packet will be received by all neighbors and used to estimate their

clocks. In this network neither tree nor any reference point is required that makes

45

GTSP robust to link/node failures; GTSP depends only on the local information

of the nodes.

Apicharttrisorn et al. in [45] proposed an energy-efficient gradient time syn-

chronization protocol (EGTSP) that is distributed, gradient-based and energy-

efficient. This protocol is completely localized, achieves time consensus and gra-

dient using drift estimation and incremental average estimation. In GTSP, every

node estimates its clock by using the received time from all neighbors. According

to this estimation, the global clock is adjusted. This adjustment can be large,

this may cause some errors. In GTSP the broadcasting period is constant and

therefore it has small trends that significantly consume sensor networks energy.

Each node in EGTSP estimates the incremental average of time immediately after

receiving the broadcasting packet from its neighbors. Whenever the incremental

averaging is less, the global time is improved.

Qun et al. in [43] discussed a distributed time synchronization protocol

(DTSC), it is consensus-based algorithm that uses to maintain only the clock

offsets and neglecting the clock drifts. On the other hand, Cremaschi et al. in

[46] discussed distributed frequency compensation i.e. clock drift compensation

for phase locked loops (PLLs) using consensus techniques. Additionally, Carli in

[] proposed a proportional-integral (PI) consensus-based controller that compen-

sates both clock offset and clock drift. But, still these algorithms consume more

energy to reach the synchronous state since the internal components are complex.

This will reduce the lifetime of all nodes when they are deployed.

46

Schenato et al. in [22] proposed another consensus algorithm called average

time sync (ATS) algorithm. It is an asynchronous consensus protocol and it is used

to average the local time of the nodes to agree on the global synchronization in

the network. Correspondingly, it is used to cascade the two consensus methods to

estimate the clock parameters where the clock converges to a specific value. This

algorithm has three main properties. First it is fully distributed and it is robust

to node failure and it is easy to add a new node. Secondly, it maintains the clock

skew differences among all nodes. Thirdly, it involves only simple computations

like sum/product operations. ATS algorithm is adaptive to slowly time-varying

clock drifts and need minimal memory and computational resources. Since ATS

is a fully distributed communication topology, there are no specific nodes such

as roots and all nodes run with the same algorithm; the nodes broadcast their

local time to calculate the skew rates relative to each other. Thereafter, the nodes

broadcast their current estimate of the skew rate. Finally, the receiving nodes

measure the relative skew estimates depending on the skew rate of other nodes to

justify their own virtual clock estimate.

CCS [47] uses average consensus algorithm to estimate and update the offset

of each nodes clock. From the accumulation clock offset errors which are removed

in each run of offset compensation, each node is able to observe the drift of their

respective clocks from the global consensus time, then each node uses this data

to compensate the clock drift. This method is observed to be an enhancement of

ATS algorithm. This scheme is also fully distributed and just like the ATS but

47

has a relatively of slow convergence speed.

Qun and Rus in [43] discussed a new time synchronization consensus protocol

using maximum and average values called TSMA. The main idea is that this

technique is based on the maximum and averaging time values to estimate the

offset and skew values. This algorithm is fully distributed like ATS, does the skew

compensation, contributes MAC- layer to increase the accuracy, does not need a

root node, it is asynchronous, robust to node failure and replacement and high

convergence speed compared to ATS. This algorithm uses average consensus to

estimate the clock offset. It aims to obtain an internal agreement of the network

on the time and how fast it travels. For each synchronization round, this algorithm

updates the skew and offset for each node until the clocks converge to a specific

value. Mainly, this process is divided into two parts; offset and skew estimation. In

the offset estimation part, nodes exchange their local clocks to synchronize nodes

to the same time. While in the skew estimation, nodes compare their current and

previous values in each round to improve the accuracy of these parameters.

Jianping et al. in [48] presented the maximum time synchronization (MTS)

protocol that depends on the maximum values and the objective is to maximize the

local time to get global synchronization within the network. The benefits of this

algorithm compared to other algorithms is that it has higher convergence speed

with a finite value, compensate the skew/offset values at the same time, it is fully

distributed, asynchronous, robustness to node failure and replacement or adding

new nodes is easier. This algorithm pushes the nodes to get the maximum value

48

of time for all nodes and each of these nodes broadcasts a packet with its local

hardware clock and relative logical clock skew and offset, without any feedback

data from the neighboring nodes. The same author proposed another algorithm

in [48] called weighted maximum time synchronization (WMTS) protocol by

taking care of the delay problem in the reception and transmission packets. In

this algorithm there are two decision variables; source reference node and the

number of hops where the logical clock information will be sent according to

these variables from a source node to the receiver node. MTS and WMTS have

many advantages over ATS and GTSP such as; GTSP and ATS have asymptotic

convergence while MTS converges to the global synchronization with finite time.

The convergence time of ATS and GTSP depends on the error value but MTS

does not, and the compensation of skew and offset can be done simultaneously

using MTS but in GTSP and ATS, offset will be started after skew has been

completed. So, the MTS/WMTS has higher speed convergence compared to the

other techniques. Moreover, these two algorithms are asynchronous, distributed,

and robust to packet losses and node failure, replacement or relocation is possible

or easier. On the other hand, WMTS needs a reference node in its operation.

In [49] a new scheme comprising two distributed time synchronization algo-

rithms are presented for deployment in wireless sensor networks. These proposed

scheme was based on method of multi-agent consensus and therefore do not need

any master or leader node for time synchronization. Furthermore, these schemes

use an event-based method for the enhancement of the efficiency in information

49

transmission between network nodes. The author then analyzes the convergence

characteristics. The method is shown to attain network synchronization at a cer-

tain precision with a minimal exchange packets between nodes. Which indicated

that in clock synchronization is easily achieved up to some thresholds defined in

the protocol design. Numerical computations and simulations carried out on some

chosen networks showed the minimization of the rates of communication using this

scheme.

Wu et al [50] proposed a novel scheme called clustered consensus time syn-

chronization (CCTS) for the synchronization of nodes clocks in wireless sensor

networks. The scheme is distributed in operation and is based on consensus. A

clustering technique is then imbibed into this scheme so as to improve a higher

convergence time and hence reduce the consumption of node battery power. This

CCTS algorithm was classified into the intracluster and intercluster time synchro-

nization. In the intracluster time synchronization, the enhanced DCTS is used.

The cluster head is used for the exchange of packets in a particular domain or clus-

ter. The mean value of drift compensation variables of intracluster virtual clock

and the mean value of intracluster virtual clocks are employed for the update

of the drift compensation parameter and offset compensation parameter, respec-

tively. In the intercluster time synchronization, cluster heads exchange packets

via gateway nodes. To update the clock compensation parameters of the net-

work virtual clocks, clock compensation parameters of intracluster virtual clocks

of every cluster head are assigned with corresponding weights based on the size

50

of each cluster. Results obtained by simulating the algorithm using some selected

networks. The simulation results showed a reduction in communication traffic

as compared to traditional distributed consensus time synchronization algorithms

and improves the rate of convergence due to the amalgamation of the cluster-

ing topologies. The algorithm however might be sensitive to node failures and

dynamic topologies due to the leader nodes in each network cluster.

Yildirim et al [20] proposed a new control theoretic distributed time synchro-

nization algorithm, named PISync, which is based on a Proportional-Integral (PI)

controller. They presented a flooding-based and fully distributed PISync protocols

which are based on PISync algorithm and observed their performances through

real-world experiments and simulations. Their research revealed that PISync pro-

tocols have several superiorities over existing protocols in that, they do not store

any distinct time information and have very little memory allocation overhead,

have a very little CPU overhead, requires very little amount of information to be

exchanged, have a very small code footprint, and are quite scalable in terms of

steady state global synchronization error performance.

2.4.3 Comparison Between Distributed and Centralized

Protocols

Generally, Distributed protocols are robust and flexible to the variations in the

network topology and have a steady state value. Additionally, similar to other

protocols they are affected by network propagation delays and noise. These proto-

51

cols are characterized by low complexity iterative processes since the neighboring

nodes can communicate with each other to achieve the agreement point depending

only on the initial evaluations without the need of transmitting data to a reference

point. Centralized protocols on the other hand, are generally easy to implement,

and mostly comprised of pairwise synchronization followed by global network syn-

chronization. However, these protocols have several drawbacks such as the high

overhead behind constructing the whole tree structure, not suitable for operation

in networks with changing topologies, and usually require more time and over-

head when there is a new node added to the network or leader election required.

Table 2.1 summarizes the merits and demerits of centralized and distributed time

synchronization protocols.

Table 2.1: Comparison Between Distributed and Centralized Protocols

Centralized Protocols Distributed Protocols

High overhead in network construction High processing capabilities

High overhead in leader election High memory in calculations

Sensitive to node and link failures Robust to Link and Node failures

Lower convergence speed Relatively high convergence speed

Relatively high power consumption Requires less power to converge

Relatively high convergence time Mostly takes less time to converge

52

2.5 Summary

In this chapter the topic of time synchronization was thoroughly discussed. First,

the problem of time synchronization in WSNs was presented and models of hard-

ware and logical clocks for sensor nodes was then reviewed. We then carried out

an extensive literature survey on time synchronization protocols. We observed

from our review that, most of the reported protocols require a high number of

communication cycles to synchronize, since synchronization has to be carried out

throughout the operation of the network. This makes the reported protocols

wasteful in terms of energy consumption and hence will not be well suited for

operation in networks deployed in harsh environments.

A lot of WSNs are, however, usually deployed in harsh environments under

unstable conditions where regular and/or frequent communications might not be

practical. This is challenging for the applications that consider time as an im-

portant factor in their operations. Harsh environments are unpredictable and

uncontrolled sensor fields where factors such as vast fluctuation in temperatures,

rain storms, vibration, humidity, chemicals, electrical shocks, pressure, mechanical

stress may affect the normal operation of the nodes. Deployed WSNs must achieve

synchronization while facing these obstacles coupled with the goal to achieve other

primary requirements including being computationally light, scalable, and robust

to node and link failures. Most of the reviewed protocols do not take the above

stated challenges into consideration in their design. Chapter 3 focuses on a novel

method of synchronization that addresses the problem of operation in harsh en-

53

vironments. The presented method addresses the synchronization problem by

focusing on consensus control, nearest neighbor communication and synchroniza-

tion to network gateway node.

54

CHAPTER 3

PROBLEM DEFINITION,

STATEMENT AND

FORMULATION

3.1 Problem Definition and Statement

For a wireless sensor network to operate properly, all nodes in the network have

to achieve a consensus on a common time. Although several methods have been

suggested to accomplish this task, these methods are designed based on some as-

sumptions that make them unsuitable for operation in harsh environments. Most

methods adopted for time synchronization in wireless sensor networks normally as-

sume specific stationary network connectivity, a multi-hop communication and/or

a node labeling scheme, etc [22, 34]. Moreover, sensor nodes employed for in-

dustrial applications are normally cheap and small with limited resources [32],

55

have a wide range of drifts: usually between 30 to 100 ppm [29] and are mostly

deployed in unstructured dynamic networks [26, 37]. Therefore, time synchroniza-

tion protocols operating under such assumptions will not effectively synchronize

nodes under these stated conditions and would have to constantly resynchronize

to ensure global network synchronization which sharply depletes node energy and

hence, network lifetime.

In this work, we adopt a method suitable for operation in harsh environments

that uses a single hop communication scheme to synchronize state parameters

representing the virtual clock of each node to the clock of the gateway node of

the wireless sensor network. This decentralized approach to time synchronization

was first introduced in [51].

A set of nodes in a distributed network can communicate through the exchange

of information where each node initially holds a measured or computed parameter

and wants to learn in a distributive way, the average of all the measurements of

the other nodes in the network. Distributed average consensus algorithms are

designed to solve this problem. Node units in the network do not necessarily have

a thorough global knowledge about the network. For example nodes might not

be aware of the number of nodes, the network topology, or the type of quantities

collected at other nodes, etc. Moreover, in some applications or network frame-

works, the network topology can vary with time due to link instability or node

mobility. The goal of the average consensus algorithm is to reach consensus in a

reliable and robust manner. Average consensus algorithms operate iteratively and

56

the instantaneous value at each node is an estimate of the measurements average.

These algorithms are designed such that all the estimates in a particular network

converge to the sought average up to any desired level of precision. The iterative

process is classed into three parts.

1. First one or several nodes wake up.

2. Then the woken nodes send their estimates to one or several neighbors in

the network.

3. Finally each receiving node updates its estimate to a value which depends

on its current estimate and on the estimates it has received from the woken

nodes.

In a synchronous algorithm, all the nodes in the network wake up at each

instance of iteration and broadcast their estimates. All nodes in the network then

update their estimates before the next iteration instance can begin. On the other

hand, in an asynchronous algorithm, only one node or a subset of nodes wake up

at each iteration. These node(s) call some chosen neighbors. Only a subset of

nodes in the network update their estimates at the end of each iteration.

3.2 Suggested Synchronization Procedure

In this thesis, we present a protocol that accomplishes time synchronization by

adopting the average consensus approach through the exchange of the global es-

timated time values of each node with its neighboring nodes until all network

57

nodes reach an agreement in global time within acceptable error margins. This

method is inspired by the synchronization approach presented in [51, 52]. In this

approach, a decentralized dynamical system is used to drive the virtual clocks of

each network node to the time of the gateway node. Through interaction with

one hop neighbors, the synchronization procedure can drive the local time of each

node to the time of a gateway node until all the nodes converge to almost the

same time. Once a network node achieves a minimum synchronization error with

respect to the gateway node, the node halts its communication and the local

physical(logical) clock of each node is reset to the time estimate at this minimum

error. The task of detecting the instant of minimum synchronization error is car-

ried out using a stopping criterion derived from the dynamic nature of the local

time series estimate. At this instant of minimum error, the nodes stop updating

so as to conserve energy and memory [52]. The nodes are made to resume update

once the nodes’ clocks drift beyond a certain threshold or after a predetermined

period. The updates are then halted after a consensus is reached. This process is

carried out continuously to keep the network synchronized as shown in the block

diagram of Figure 3.1. Detailed discussion of each stage or component of the

synchronization procedure is presented.

3.2.1 Node Local Time Update

In [51, 52], a synchronous average consensus approach is adopted for local time

update at each network node. This approach assumes a simultaneous update for

58

Figure 3.1: Block Diagram of Suggested Synchronization Procedure

all network nodes at each communication round as described below.

Consider a network having N nodes comprising of 1 gateway node, g and

N − 1 ordinary nodes as shown in Figure 3.2. If there exist a spanning path from

a certain node i in the network to the gateway node [51], the update of its time

estimate can be expressed in terms of the neighborhood time values, tj(k) and the

gateway time, tg(k).

Figure 3.2: Network of N Nodes and L Links

59

If node i has n nearest neighbors 1, where n < N − 1, then at the kth time

instant when the node receives tj(k − 1), a new time average at node i denoted

by ti(k) is calculated using the relation:

ti(k) =
1

n

N−1∑
j=1,j 6=i

tj(k − 1) (3.1)

In this synchronization procedure, it is assume the gateway node ticks as a

perfect clock given by tg(k) = ∆k, where ∆ is the ticking rate of the gateway

clock. If i is also connected to the gateway node, then the update is expressed in

terms of both neighbors’ time estimate and gateway clock as;

ti(k) =
1

n

N−2∑
j=1,j 6=i

tj(k − 1) +
1

n
∆k (3.2)

At the kth iteration, each node yields time estimates Tk. Hence a general

linear state equation relating all values in the iterative process can be given by:

Tk = A Tk−1 + ∆kB (3.3)

Hence the network acts like a discrete linear dynamic system with a discrete-

time ramp input signal with an increment of ∆, where the output of the first

component of the synchronizer is a time series of individual node time esti-

mates, representing the virtual clocks of all network nodes, i.e. Tk which

1It is assumed that, all node that can communicate with node i in a single hop are
nearest neighbors

60

is a vector of the entire network time estimates also expressed as: Tk =

[t1(k) t2(k) t3(k) · · · tN−1(k)]T

B is an (N − 1)x1 matrix representing the connectivity matrix between nodes

and the gateway node and A is an (N − 1)x(N − 1) matrix representing the

connectivity matrix between nodes and their neighbors excluding the gateway

node. The entries of matrices A and B are respectively given by;

aij =

1
n
, if nodes i and j are neighbors

0, otherwise

bi1 =

1
n
, if node i is connected to the gateway node

0, otherwise

The error at time k with respect to the gateway clock is given by;

Ek = Tk − k∆1 (3.4)

This error can also be represented by the difference equation given by;

Ek+1 = AEk + ∆B−∆1 (3.5)

It is shown in [51] that if the gateway node is connected to at least one of the

network nodes, i.e. at least bi1 = 1 for any node i in the network, then if there

exist a spanning path to the gateway node, the system is shown to be marginally

61

stable with a steady state error vector given by;

Ess = [I−A]−1 × [∆B−∆1] (3.6)

Where, Ess = limk→∞E(k) and 1 is an all-one vector.

3.2.2 Dip Phenomenon in Suggested Synchronizer

It is shown in [51] that, the synchronization algorithm represented by the state

equation given in (3.3) can drive all network nodes’ times to the clock of the

gateway node with a very small error margin if the rate of the gateway clock

is significantly reduced. This solution is not practical since an increase in the

gateway clock ticking rate would mean a higher number of communication cycles,

which would lead to high consumption of node power [51]. It is observed, however,

from the evolution of node local clock value with respect to the gateway clock

that, there exist a certain time estimate, ti(k), where the node’s local time curve

intersect with that of the gateway clock curve as illustrated by Figure 3.3. This

phenomenon is observed in node error profile curves with respect to the gateway

time as a dip before steady state as shown in Figure 3.3. Ideally, at this point of

intersection labeled as Transient Error in Figure 3.3, a node i in the network has

to be perfectly synchronized to the gateway node. However, for a certain number

of communication cycles, an absolute error well below ∆ can be achieved between

the clock of node i and the gateway node [51]. To harness this advantage, a scheme

has to be devised to make nodes recognize and stop at this point of intersection. If

62

this task is achieved, synchronization can be reached at maximum accuracies using

minimal number of communication cycles. This is expected to make our proposed

method of synchronization outperform several of the reported synchronization

strategies in the literature in terms of memory and energy consumption.

Figure 3.3: Transient (Dip) and Steady State Behavior of Node Clocks with re-
spect to Gateway Node Clock

3.2.3 Criterion for Stopping in Dip Region

To exploit the dip nature of the evolving node time estimates, a stopping criterion

is needed to halt the iterative process of each node before steady state is reached.

This solution might come in the form of a detection filter which operates on

each node’s time series to detect the minimum error at the dip region. This

filter will produce a signal to indicate where in the time series a node’s time

63

estimate is closest to the gateway time. To design an optimum filter that achieves

the cessation of updates at the dip requires rigorous analysis of the dynamic

linear equations presented by Equation 3.3 which is beyond the scope of this

work. However, in [51], a heuristic finite impulse response filter which exploits

the turning point of the time curve is employed to provide the indicator signal for

detecting the dip region. Through experimentation, it was reported that the zero-

crossings of the filter output corresponds with high probability, to the instant of

error dip. An example of such a filter was reported in [52, 51] to have an impulse

response, h(k) given by,

h(k) = 0.2δ(k+3)+0.5δ(k+2)+0.2δ(k+1)−0.2δ(k−3)−0.5δ(k−2)−0.2δ(k−1)

(3.7)

Where δ is the Khronecker delta function. The above filter is a typical example

of a difference filter of length 7.

3.2.4 Local Clock Reset and Resynchronization

When the filter indicates the dip region, an algorithm is used to locate the itera-

tive instant corresponding to this minimum time estimate. To effectively carry out

this task, the consensus algorithm used for local node update has to achieve the

dip at almost the same time instant. If the variance in the instances of reaching

the dip region for all network nodes is nearly null, then the scheduling, wakeup

and sleep of the network can be carried out in unison which would make syn-

chronization more energy efficient. In [51], it is reported that this algorithm

64

used for the stopping criterion is based on polarity change of the filter output

provided a certain number of communication cycles have passed. It was further

indicated that, 11 communication cycles, representing the very rough transient

period at the beginnings of synchronization, were optimal for all the cases tested.

Once the time estimate at the transient error is obtained, it is used to reset the

physical local clock of the node. After which it seizes to update and goes into

sleep mode. The node then awakes after a certain predetermined period when the

clocks of the network nodes drift beyond a certain threshold to start. In [37],

experiments were conducted using mica and mica2 mote platforms to determined

the resynchronization period. The authors reported a resynchronization period

of 30s gave the best results but showed that, when skew compensation is taken

into consideration in protocol design, the resynchronization period can go up to

several minutes depending on the accuracy requirements of the specific applica-

tion of the wireless sensor network. In [21], it is reported that if a node only

does offset compensation during synchronization, given a node with a constant

drift rate, x ppm, if an application desires an accuracy of δ seconds, a protocol

has to resynchronize every δ
x×10−6 seconds. Where x is the accuracy of the crystal

oscillator of the node clock given in parts-per-million (ppm). Hence an oscillator

with 100ppm running at 1 MHz drifts apart 100µs in one second.

65

3.2.5 Generalized Algorithm for Suggested Synchroniza-

tion Procedure

To summarize the suggested scheme for time synchronization in wireless sensor

networks, the pseudo-code presented by Algorithm 1 and illustrated in Figure

3.4 for a node i having n nearest neighbors and deployed in a network of size N is

presented in this subsection. Node i maintains two variables related to its clock:

a time estimate, ti which is an estimation of the gateway clock representing the

global estimate and a logical clock variable, Ci which is a representation of the

physical clock of node i and related to the hardware clock, Ti by Equations 2.11

and 2.13 2. Due to memory constraints, initially when each node is turned on or

comes online, the stored data for the previous synchronization cycle except for

the core heuristics in the node repository are cleared. Node i then initializes the

variable ti to the current hardware clock value, Ti(0) and set its beaconing rate, R

to a predetermined resynchronization period 3. If a synchronization packet from

a neighbor, j is received, node i calculates its time estimate, t̂ using a local time

update algorithm and sets ti to t̂. In [51, 52], the synchronous average consensus

algorithm is used to compute, t̂ 4 as discussed in Section 3.2.1. It is assume

that with single hop communication, node i receives packets from all neighbors

at approximately the same time and hence t̂ is computed using the tj’s from all n

nodes.

2Refer sections 2.2.2 and 2.3.1.1
3Refer section 3.2.4
4Refer section 3.2.1

66

Figure 3.4: Suggested Clock Setup for Node Synchronization

For each time estimate, ti, node i uses a stopping criterion to check if it is in

the transient or dip region of minimum error 5. If ti is at the transient stage, then

the logical clock Ci set to ti and the node seizes communication. On the other

hand if ti is not in the transient stage, the node broadcasts it’s synchronization

packet and reinitialize the synchronization algorithm. If the former is fulfilled,

the node starts a timer to fire after R seconds ticks of the hardware clock and

then goes to sleep. Upon timer timeout, the node wakes up and reinitializes the

5Refer to section 3.2.3

67

Algorithm 1: Suggested Synchronization Procedure Pseudo-Code for Node i

� Initialization
Wakeup to resynchronize to network
Clear repository
ti ←− Ti(0); R←− Predetermined resynchronization period;
� Upon receiving < tj > from n nodes

Compute neighborhood time estimate, t̂ using Local Time Update Algorithm
set ti ←− t̂
� For each estimate < ti >

If < ti > is in the transient phase then
set Ci ←− ti and seize communication

elseif < ti > is not in the transient phase then
transmit < ti > and reinitialize algorithm

endif

� Upon Ci set and communication seized
Set timer to fire after R seconds
Node goes to sleep mode

� Upon timer timeout
Node wakeup and reinitialize algorithm

synchronization algorithm.

3.3 Formulation and Methodology

In this section, the problem of synchronization with respect to the suggested

method for synchronizing network nodes is analyzed and formulated. The pro-

posed methods adopted to improve the suggested synchronizer given in [52, 51]

are presented. These improvements are carried out on the first component of the

proposed synchronizer, i.e. the local node time update 6.

6Refer to Figure 3.1, section 3.2

68

3.3.1 Accuracy-Enhanced Method for Time Synchroniza-

tion in WSN using Synchronous Average Consensus

Control

Equation 3.5 gives a representation of each nodes time error with respect to the

gateway time as a function of discrete time. It can be observed for (3.5) that

this error depends on the connectivity matrices A and B and the ticking rate of

the gateway node, ∆. It can be observed that, the last term of Equation 3.5 is

a constant error vector, ∆1. Since ∆ is alway known, the error of each node can

be minimized by reducing the effect of this constant vector. Hence the local node

time estimate given in Equation 3.2 can be modified to by including a parameter,

e which is a scalar factor of ∆. This modified average node time estimate is given

by;

ti(k) =
1

n

N−2∑
j=1,j 6=i

tj(k − 1) +
1

n
∆k + e (3.8)

This parameter, e, is observed to improve synchronization of each node at

the expense of increased cycles of communication and hence presents a designer

of a WSN with flexibility since some applications need a higher synchronization

accuracy whereas others are energy efficiency centric.

69

3.3.2 Drawbacks in the Synchronous Local Node Time

Update

The synchronous local update approach adopted in [51, 52] is able to drive all

nodes’ time estimates to that of the gateway node but the assumption of simulta-

neous updates of all nodes at each instant of communication is not practical. This

stems from the fact that all nodes will have to be switched on almost at the same

time and all nodes must also have some initial conception of network time during

operation. In other words, synchronization is needed to carryout a synchronous

local node time update. This makes the use of synchronous consensus algorithms

for time synchronization paradoxical. Therefore we adopt practical approaches

based on asynchronous local time updates which does not have these setbacks for

reaching consensus among network nodes.

3.3.3 Suggested Asynchronous Local Node Time Update

For the asynchronous averaging process, since only a subset of nodes carry out

the averaging at each instant, the state linear equation given in 3.3 includes an

activation matrix, Jk which is a representation of the subset of network nodes

that update at each iteration. The dynamic state space representation of the

asynchronous local time update is therefore given by;

Tk = Jk(A Tk−1 + ∆kB)

Jk1 = F(Jk−11)

(3.9)

70

Where,

Jk =

J1k 0 . . . 0

0 J2k . . . 0

...
...

. . .
...

0 0 . . . JNk

The non-zero components of Jk at discrete time, k are expressed as a of function

their state values at the previous time, k − 1 and the activation function F(.) is

determined by the graph connectivity of the WSN. The entries of Jik are expressed

as Jik =

1, if node i updates at time k

0, otherwise

The local node time estimate for node i at discrete time k can therefore be

represented as;

ti(k) =
Jik
n

[
N−2∑

j=1,j 6=i

tj(k − 1) + ∆k

]
(3.10)

Where node i is activated for update when Jik is ′1′ and inhibited from update

when Jik is ′0′. The activation variables are used to control the local time update

of each node and is determined by the graph of the wireless sensor network. The

subset of nodes that update at any time instant also depend on their respective

virtual clock values in the previous instant.

Based on this framework, we develop three procedures for synchronization

where the node local time update is done in an asynchronous manner. In the first

method, synchronization is carried out by making one node conduct the averaging

process at each instant in a sequential manner. The updates are done in a chrono-

71

logical order based on proximity to the gateway node. This method is dubbed

Timed Sequential Asynchronous Update. Since some network nodes can be at an

approximately equal distance from the gateway node, the second method named

Unidirectional Asynchronous Flooding, which improves upon the first method is

designed to make such nodes update at the same communication instant, hence

reducing the convergence time and saving node energy. However, this method

requires the gateway node to trigger a wake-up protocol for the asynchronous

waking of the nodes. The third method called the Bidirectional Asynchronous

Flooding eliminates the need for wake-up triggers by the gateway node using a

two-way triggering protocol conducted by the closest and furthest node(s) to the

gateway node. This method is hence adaptive to changes in network topology and

is self regulating in terms of wake-up and sleep thus is best suited for networks

deployed in harsh environments where node failures and topology changes occur

frequently. It is worth noting that, Equation 3.9 becomes a synchronous system

represented by Equation 3.3 if Jik = 1, ∀i ∈ N or Jk = I, hence (3.9) represents

a somewhat general form of all the methods of node local time update.

3.4 Thesis Contributions

In this chapter, we presented our proposed synchronizer and gave a detailed de-

scription of its components. The proposed synchronization procedure is based on

consensus control, single hop communications and synchronization to the clock

of a gateway node which is based on the synchronizer presented in [51]. The

72

main components of the proposed synchronizer are first, the local node update

where average consensus is adopted for establishing a common time estimate for

all nodes. The mathematical representation of the local node time update and

dynamic state space linear equations are presented for the synchronous average

consensus presented in [51]. This is followed by a filtering process to detect the

instance of minimum error in the dip region, representing the second component of

the synchronizer. Finally, in the third component, each node is made to initialize

its physical clock to the time at the detected iterative instance. We then present

and address the drawbacks of the synchronous average consensus adopted for the

local time update in the previous work. This was followed by a description of the

main contributions of this work which are to:

1. Propose an accuracy-enhanced method for synchronizing sensor nodes using

synchronous average consensus.

2. Remove the need of synchronous local time update by extending to an asyn-

chronous framework for local time update which is more practical.

3. Present three methods to practically achieve synchronization using the asyn-

chronous local node time update.

The rest of this thesis is organized as follows. Chapter 4 gives a detailed exposi-

tion on the design flexibility for the protocol and presents the general methodology

for simulations and practical experiments adopted in this work. In chapter 5, we

formulate and present the methods adopted for the suggested asynchronous frame-

work for local time update. The simulation and practical experimental results for

73

each method are also presented in this chapter. A comprehensive comparative

practical evaluation of our proposed methods with some reported protocols in the

literature are presented in Chapter 6. Chapter 7 ends the report by concluding

the thesis work and gives some recommendations for future research.

74

CHAPTER 4

ACCURACY-ENHANCED

METHOD FOR TIME

SYNCHRONIZATION IN WSN

USING SYNCHRONOUS

AVERAGE CONSENSUS

CONTROL

4.1 Introduction

The original averaging consensus control method is able to drive nodes in a wireless

sensor network by letting each node trace the time of a perfect clock (gateway node

75

clock) and simultaneously averaging its clock values with that of its neighbors.

Hence for that proposed method to run in an optimized mode, each nodes clock

at a certain discrete time, k is supposed to be as close to the perfect(gateway)

clock as possible. To understand the behavior of the algorithm, the evolution of

the error existing between each node clock, ti(k) and the perfect gateway clock

tg(k) = k∆ has to be carefully analyzed. Here, a somewhat detailed analysis of

this error is presented. From the analyses, we devise a method of improving the

accuracy in synchronization of the suggested method. To examine this concept,

we perform simulations and practical experiments on nodes of different networks.

From these simulations and experiments, we show that the local synchronization

accuracy of each node can be improved at the expense of increased number of

communication cycles. Simulations and practical experiments and the evaluation

results of the modified method are also presented and discussed in this chapter.

4.2 Accuracy-Enhanced Method for Time Syn-

chronization: Concept

Given a wireless sensor network having N nodes comprising of 1 gateway node,

g perfectly ticking at a rate, ∆, and N − 1 ordinary nodes subject to drifts, the

error at time k with respect to the gateway clock is given by;

Ek = Tk − tg(k)1 = Tk − k∆1 (4.1)

76

⇒ Tk = Ek + k∆1 and similarly ⇒ Tk+1 = Ek+1 + (k + 1)∆1

Inserting Tk+1 and Tk in Equation 3.3, we have

Ek+1 + (k + 1)∆1 = A[Ek + k∆1] + (k + 1)∆B

Ek+1 = A[Ek + k∆1] + k∆B− (k + 1)∆1 + ∆B

Ek+1 = AEk + ∆kA1 + ∆kB− k∆1−∆1 + ∆B

Ek+1 = AEk + ∆k[A1 + B− 1] + ∆B−∆1

But the network connectivity matrices are such that, A1 + B = 1

Hence,

Ek+1 = AEk + ∆k[1− 1] + ∆B−∆1

Which Implies that,

Ek+1 = AEk + ∆B−∆1 (4.2)

This can be rewritten as;

Ek+1 = AEk + R, where R = ∆B−∆1. (4.3)

Equation 4.2 shows that, at some discrete time, k + 1, the error vector, Ek+1

depends on the network connectivity matrices A and B, the previous error vector,

Ek and the constant rate, ∆ of the gateway clock.

To further probe the nature of the error vector, we solve Equation 4.3 itera-

77

tively. This goes as follows:

E1 = AE0 + R

Similarly;

E2 = AE1 + R = A[AE0 + R] + R

E2 = A2E0 + RA1 + R

E3 = A[A2E0 + RA1 + R] + R

E3 = A3E0 + RA21 + RA1 + R

E4 = A[A3E0 + RA21 + RA1 + R1] + R

E4 = A4E0 + RA31 + RA21 + RA1 + R

...

Ek = AkE0 + RAk−11 + RAk−21 + · · ·+ RA1 + R

Ek = AkE0 + R[Ak−11 + Ak−21 + · · ·+ A1 + 1]

which can be reconfigured as;

Ek = AkE0 + R[1 + A1 + · · ·+ Ak−21 + Ak−11]

Hence we have,

Ek = AkE0 +
k−1∑
j=0

Ak−j−1R, k ≥ 1 (4.4)

78

From Equation 4.4, the error vector, Ek could be described as the solution of

the state equation of a discrete linear time varying system with input given by

u(k) = 1 for k ≥ 0 [53] and simplified as;

Ek = AkE0 +
k−1∑
j=0

Ak−j−1(∆B−∆1), k ≥ 1 (4.5)

Ek = AkE0 −∆
k−1∑
j=0

Ak−j−11 + ∆
k−1∑
j=0

Ak−j−1B, k ≥ 1

Ek = Uk + Vk

We note from Equation 4.5 that this solution has two distinct parts; a ho-

mogeneous part, Uk = AkE0 depends only on the initial state error E0 and the

other, Vk =
∑k−1

j=0 Ak−j−1R depends on the gateway connectivity matrix, B and

the rate of the gateway node, ∆. These terms could be respectively called the

natural or unforced or zero-input error response, and the zero-state error response

[53, 54, 55, 56]. With a constant input, u(k) = 1, for k ≥ 0, the system stability

could be said to mainly depend on the natural error response [53]. It is worth

noting here that, the zero-state response, Vk has a form that is reminiscent of a

convolution sum.

4.2.1 System Stability

From stability theory [53, 48], the nature of Ek is such that, the system is asymp-

totically stable if Uk converges to zero, which occurs if and only if the magnitude

of all the eigenvalues, λi of the connectivity matrix A are less than 1 [53, 54].

79

Further analysis of this system is needed to explain the reason and nature of the

dip feature of the protocol. i.e.,

lim
k→∞

Ek = lim
k→∞

Ak E0 = 0 iff |λi| < 1

Three other cases of stability could be considered [57];

1. If one or more eigenvalues, or pair of conjugate eigenvalues, has a magnitude

larger than one, there is at least one corresponding modal component that

increases exponentially without bound from any initial condition, violating

the definition of stability.

2. Any pair of conjugate eigenvalues that have magnitude equal to one,

λi,i+1 = e±j2πf , generates an undamped oscillatory component in the state

response. The magnitude of the homogeneous system response neither de-

cays nor grows but continues to oscillate for all time at a frequency, f . Such

a system is defined to be marginally stable.

3. An eigenvalue λ = 1 generates the exponent λk = 1k = 1 that is a constant.

The system response neither decays or grows, and again the system is defined

to be marginally stable.

4.2.2 Hypothesis for Accuracy-Enhancement

From the analyses above, we observe that Equations 4.2 and 4.5 have a constant

vector of the gateway clock rate, ∆1 and since ∆ is always known, we predict

80

that if we include ∆ or a fraction of ∆ in each node average during the local time

update, the first part of Vk is reduced and this will decrease the overall node error

with respect to the gateway clock. Hence the local update Equations 3.2 and 3.3

are modified to include a parameter, e, which is a fraction of ∆. These are given

by;

ti(k) =
1

n

N−2∑
j=1,j 6=i

tj(k − 1) +
1

n
∆k + e, and (4.6)

Tk = A Tk−1 + ∆kB + e1 (4.7)

If a similar logic of derivation is followed, the vector R becomes, R = ∆B −

∆1 + e1. Equations 4.2 and 4.5 then respectively become;

Ek+1 = AEk + ∆B−∆1 + e1, and (4.8)

Ek = AkE0 +
k−1∑
j=0

Ak−j−1(∆B−∆1 + e1), k ≥ 1

Ek = AkE0 + e
k−1∑
j=0

Ak−j−11−∆
k−1∑
j=0

Ak−j−11 + ∆
k−1∑
j=0

Ak−j−1B, k ≥ 1 (4.9)

� Remark 4.1: It is expected that, an increase in the variable e towards ∆ will

lead to a corresponding decrease in overall error and since Equation 4.10 is general,

the decrease in error is expected to also occur in the dip region. Since an in-depth

mathematical analysis of the dip feature is not yet complete, we use simulations

and practical experiments to investigate the behavior of this decrease in dip region

error. As we will show in section 4.4 that, the parameter, e is observed to give a

trade-off between accuracy in synchronization in the dip region and the number

81

of communication cycles needed to reach the dip region.

Although the crucial aspect of the proposed synchronizer is the dip region, it

is worth mentioning that, with the inclusion of e, the steady state error vector

given by Equation 3.6 becomes;

Ess = [I−A]−1 × [e1 + ∆B−∆1] (4.10)

Also, if e = ∆, then R = ∆B and Equations 4.9 and 4.10 respectively become;

Ek+1 = AEk + ∆B, and (4.11)

Ek = AkE0 +
k−1∑
j=0

Ak−j−1∆B, k ≥ 1 (4.12)

The a steady state error vector then becomes;

Ess = [I−A]−1 × [∆B] = ∆1 (4.13)

It is observed from simulations that the dynamic system represented by Equa-

tions 4.9 and 4.10 does not exhibit the dip phenomenon and from Equation 4.14,

the steady state error vector, Ess is always ∆1 irrespective of the network size

and topology, i.e., if e = ∆, Ess = ∆1, ∀i ∈ N .

82

4.3 Evaluation Methodology for Simulations

and Practical Experimentation

To evaluate the performance of the suggested synchronization scheme, simulations

and practical experiments are carried out on networks of different sizes and con-

figurations. In this section, we give a detailed description of the framework, speci-

fications and parameters employed for the simulations and practical experiments.

This is followed by a description of the test network configurations considered for

the evaluation.

4.3.1 Description and Specifications of Simulations

To evaluate the performance of all the suggested methods for node time update,

simulations are carried out on MathWorksTM MATALB platform. In each sim-

ulation, it is assumed that there are perfect network conditions with no delays,

jitters, fading and noise. Each node time is initialized as a random scalar between

0 and 1 , i.e. ti(k = 0) = rand[0− 1] and the gateway time is initialized to 0, i.e.

tg(k = 0) = 0. The incremental time step and ticking rate of the gateway node ∆

is taken to be 1ms. Each node time estimate is carried out iteratively by taking

the average of its neighborhood time values 1 . Respective equations representing

the time estimate of nodes each network used in the simulations are presented in

section 4.3.4. The simulation parameters are given in Table 4.1.

1Refer sections 3.2.1, 3.3.1 and 3.3.3

83

Table 4.1: Parameter Specifications for MATALB Simulation

Parameter Value Unit

Incremental Time-Step Size, ∆ 0.001 sec

Initial slave time, ti(k = 0) rand[0.0-1.0] sec

Initial master time, tg(k = 0) 0 sec

4.3.2 Framework for Practical Experimentation

4.3.2.1 Hardware Platform

In our practical experiments, the platform based on a network comprising MicaZ

nodes from manufactured by MemsicTM, instrumented with 7.37MHz 8-bit Atmel

Atmega128L microcontrollers are employed. The MicaZ nodes are equipped with

4kB RAM, 128kB program flash and Chipcon CC2420 radio chip 2 which provides

a 250 kbps data rate at 2.4 GHz frequency. The 7.37MHz quartz oscillator on the

MicaZ board is employed as the clock source for the timer used for timing mea-

surements. This timer operates at 1/8 of that frequency and thus each timer tick

occurs at approximately every 921 kHz (approx. 1 µs). TinyOS-2.1.2 3 installed

on Ubuntu Linux Distribution 14 is used as the base operating system for all ex-

perimental work. The CC2420 transceiver on the MicaZ board has the capability

of timestamping synchronization packets at MAC layer with the timer used for

timing measurements. This is a well-known method that increases the quality

of time synchronization by reducing the effect of non-deterministic error sources

arising from communication [41, 32]. Packet level time synchronization interfaces

2http://www.ti.com/product/CC2420
3http://www.tinyos.net/

84

provided by TinyOS are utilized to timestamp synchronization messages at MAC

layer [58, 59]. The TMilli timer [60] is used for all timing and timestamping

operations in our implementation source codes.

4.3.2.2 Testbed Setup

In each practical experiment, the testbed is composed of MemsicTM MicaZ sensor

nodes are placed in the communication range of a reference broadcaster. The

reference node periodically broadcasts query packets which are received approxi-

mately at the same time by all nodes. Each sensor node then transmits a reply

packet carrying its logical clock value at the reception time of the query packet

to its neighboring nodes and the base station node. The base station node is

connected to a PC collects these reply packets and forwards them through the

serial port for logging. At the end of each experiment, we analyze the logged ex-

perimental data and plot error profiles using MATLAB. The realization of specific

network topologies is done by forcing nodes to accept only the packets from their

neighboring nodes.

4.4 Test Networks

The proposed methods of local time update are tested using networks of varying

sizes and topologies. The sizes considered are 4, 9 and 16 node networks for

grid, hexagonal and random topologies. The mathematical representation for the

85

asynchronous average consensus 4 used for the time updates for each network is

presented.

4.4.1 4-Node Network

The first network considered is a small network of 1 gateway node and 3 ordinary

nodes.

4.4.1.1 Grid Topology

The distribution of the nodes in this topology is shown in Figure 4.1. The math-

ematical representation of this configuration is also discussed. From Figure 4.1,

node 1 is connected to node 2 and gateway node, therefore the time average value

for node 1 is as given by Equation 4.14.

Figure 4.1: 4-Node Grid Topology

4Described in section 3.3.3, where the system becomes synchronous as represented
by Equation 3.3 if Jik = 1, ∀i ∈ N , and therefore the presented asynchronous equations
for each network represents a more general form of all the update methods. Also, for
the sake of generality, the added parameter, e of the first contribution is excluded from
all equations.

86

t1(k) = J1k
t2(k − 1) + t3(k − 1)

2
(4.14)

Similarly the time average values of nodes 2 and 3 are derived based on their

connections and given respectively by Equations 4.15 and 4.16.

t2(k) = J2k
t1(k − 1) + ∆k

2
(4.15)

t3(k) = J3k
t1(k − 1) + ∆k

2
(4.16)

The equations representing each node time average can be written in a a

general state equation given by Equation 4.17.

t1(k)

t2(k)

t3(k)

 =

J1k 0 0

0 J2k 0

0 0 J3k

0 1

2
1
2

1
2

0 0

1
2

0 0

t1(k − 1)

t2(k − 1)

t3(k − 1)

+ ∆k

0

1
2

1
2

(4.17)

The first part of the right hand side of the equation depends on the connec-

tivity between a node and its neighbors whereas the second part depends on the

connectivity between a node and the gateway node given that a link exist between

them. This is all multiplied by the activation matrix which determines the nodes

that wake up at time instant, k.

87

4.4.1.2 Random Topology

In this configuration, all nodes are interconnected as shown in Figure 4.2. Node 1

receives its time updates from nodes 2 and 3 plus gateway node. Node 2 receives

from 1, 3 and gateway node and node 3 receives from nodes 1, 2 and gateway

node. The respective time values for nodes 1, 2 and 3 are given by Equations

4.18, 4.19 and 4.20. Equation 4.21 represents the combined time update state

equation. This distribution of nodes becomes the same after the first iteration

since all nodes are interconnected.

Figure 4.2: 4-Node Random Topology

t1(k) = J1k
∆k + t2(k − 1) + t3(k − 1)

3
(4.18)

t2(k) = J2k
∆k + t2(k − 1) + t3(k − 1)

3
(4.19)

t3(k) = J3k
∆k + t2(k − 1) + t3(k − 1)

3
(4.20)

88

t1(k)

t2(k)

t3(k)

 =

J1k 0 0

0 J2k 0

0 0 J3k

0 1

3
1
3

1
3

0 1
3

1
3

1
3

0

t1(k − 1)

t2(k − 1)

t3(k − 1)

+ ∆k

1
3

1
3

1
3

(4.21)

4.4.1.3 Hexagonal Topology

In this configuration, all nodes are interconnected as shown in Figure 4.3. Node

1 receives its time updates from nodes 2 and 3. Node 2 receives from 1, 3 and

gateway and node 3 receives from nodes 1, 2 and gateway node. The respective

time values for nodes 1, 2 and 3 are given by Equations 4.22, 4.23 and 4.24.

Equation 4.25 represents the combined time update state equation.

Figure 4.3: 4-Node Hexagonal Topology

t1(k) = J1k
t2(k − 1) + t3(k − 1)

2
(4.22)

89

t2(k) = J2k
∆k + t1(k − 1) + t3(k − 1)

3
(4.23)

t3(k) = J3k
∆k + t1(k − 1) + t2(k − 1)

3
(4.24)

t1(k)

t2(k)

t3(k)

 =

J1k 0 0

0 J2k 0

0 0 J3k

0 1

3
1
2

1
2

0 1
3

1
3

1
3

0

t1(k − 1)

t2(k − 1)

t3(k − 1)

+ ∆k

0

1
3

1
3

(4.25)

4.4.2 9-Node Network

The mathematical representation and node distribution of a 9 node network for

grid, random and hexagonal topologies are presented. The state equation for all

three configurations derived using the asynchronous average consensus algorithm

is given in Equation 4.26. All networks follow the same state equation with

differences only in the entries of the matrices A and B.

[Tk]
8×1 = [Jk]

8×8
{

[A]8×8[Tk−1]8×1 + ∆k[B]8×1
}

(4.26)

4.4.2.1 Grid Topology

In this topology, 8 slave nodes and 1 master node are connected in a grid topology

as shown in Figure 4.4. The connectivity matrices A and B are given respectively

90

as;

Figure 4.4: 9-Node Grid Topology

A =

0 1
2

0 1
2

0 0 0 0

1
3

0 1
3

0 1
3

0 0 0

0 1
2

0 0 0 1
2

0 0

1
3

0 0 0 1
3

0 1
3

0

0 1
4

0 1
4

0 1
4

0 1
4

0 0 1
3

0 1
3

0 0 0

0 0 0 1
2

0 0 0 1
2

0 0 0 0 1
3

0 1
3

0

B =

0

0

0

0

0

1
3

0

1
3

4.4.2.2 Random Topology

Here, 8 slave nodes and 1 master node are connected in a random configuration

as shown in Figure 4.5.The connectivity matrices A and B are given respectively

as;

91

Figure 4.5: 9-Node Random Topology

A =

0 1
2

0 1
2

0 0 0 0

1
4

0 1
4

1
4

1
4

0 0 0

0 1
3

0 0 1
3

1
3

0 0

1
5

1
5

0 0 1
5

0 1
5

1
5

0 1
6

1
6

1
6

0 1
6

0 1
6

0 0 1
3

0 1
3

0 0 0

0 0 0 1
2

0 0 0 1
2

0 0 0 1
4

1
4

0 1
4

0

B =

0

0

0

0

1
6

1
3

0

1
4

4.4.2.3 Hexagonal Topology

In this topology, 8 slave nodes and 1 master node are connected in a hexagonal

configuration as shown in Figure 4.6. The connectivity matrices A and B are

given respectively as;

92

Figure 4.6: 9-Node Hexagonal Topology

A =

0 1
2

0 1
2

0 0 0 0

1
4

0 1
4

1
4

1
4

0 0 0

0 1
3

0 0 1
3

1
3

0 0

1
5

1
5

0 0 1
5

0 1
5

1
5

0 1
6

1
6

1
6

0 1
6

0 1
6

0 0 1
3

0 1
3

0 0 0

0 0 0 1
2

0 0 0 1
2

0 0 0 1
4

1
4

0 1
4

0

B =

0

0

0

0

1
6

1
3

0

1
4

4.4.3 16-Node Network

Similar to the 9 node network, the mathematical representation and node dis-

tribution of the 16 node network for grid, random and hexagonal topologies are

presented in this section. The state equation for all three configurations derived

using the asynchronous average consensus algorithm is given in Equation 4.27.

All networks follow the same state equations with differences only in the entries

93

of the matrices A and B.

[Tk]
15×1 = [Jk]

15×15
{

[A]15×[Tk−1]15×1 + ∆k[B]15×1
}

(4.27)

4.4.3.1 Grid Topology

In this topology, 15 slave nodes and 1 master node are connected in a grid topology

as shown in Figure 4.7. The connectivity matrices A and B are given respectively

as;

Figure 4.7: 16-Node Grid Topology

94

A =

0 1
2

0 1
2

0 0 0 0 0 0 0 0 0 0 0

1
3

0 1
3

0 0 1
3

0 0 0 0 0 0 0 0 0

0 1
3

0 1
3

0 0 1
3

0 0 0 0 0 0 0 0

0 0 1
2

0 0 0 0 1
2

0 0 0 0 0 0 0

1
3

0 1
3

0 0 1
3

0 0 0 0 0 0 0 0 0

0 1
4

0 0 1
4

0 1
4

0 0 1
4

0 0 0 0 0

0 0 1
4

0 0 1
4

0 1
4

0 0 1
4

0 0 0 0

0 0 0 1
3

0 0 1
3

0 0 0 0 1
3

0 0 0

0 0 0 0 1
3

0 0 0 0 1
3

0 0 1
3

0 0

0 0 0 0 0 1
4

0 0 1
4

0 1
4

0 0 1
4

0

0 0 0 0 0 0 1
4

0 0 1
4

0 1
4

0 0 1
4

0 0 0 0 0 0 0 1
3

0 0 1
3

0 0 0 0

0 0 0 0 0 0 0 0 1
2

0 0 0 0 1
2

0

0 0 0 0 0 0 0 0 0 1
3

0 0 1
3

0 1
3

0 0 0 0 0 0 0 0 0 0 1
3

0 0 1
3

0

B =

0

0

0

0

0

0

0

0

0

0

0

0

1
3

0

0

1
3

4.4.3.2 Random Topology

In this topology, 15 slave nodes and 1 master node are connected in a random

topology as shown in Figure 4.8. The connectivity matrices A and B are given

respectively as;

95

Figure 4.8: 16-Node Random Topology

A =

0 1
2

0 0 1
2

0 0 0 0 0 0 0 0 0 0

1
4

0 1
4

0 1
4

1
4

0 0 0 0 0 0 0 0 0

0 1
7

0 1
7

0 1
7

1
7

1
7

0 0 1
7

1
7

0 0 0

0 0 1
3

0 0 0 1
3

1
3

0 0 0 0 0 0 0

1
6

1
6

0 0 0 1
6

0 0 1
6

1
6

1
6

0 0 0 0

0 1
7

1
7

0 1
7

0 1
7

0 0 1
7

1
7

0 0 0 1
7

0 0 1
7

1
7

0 1
7

0 1
7

0 0 1
7

1
7

0 0 0

0 0 1
4

1
4

0 0 1
4

0 0 0 0 1
4

0 0 0

0 0 0 0 1
5

0 0 0 0 1
5

1
5

0 1
5

1
5

0

0 0 0 0 1
7

1
7

0 0 1
7

0 1
7

1
7

0 1
7

1
7

0 0 1
9

0 1
9

1
9

1
9

0 1
9

1
9

0 1
9

0 1
9

1
9

0 0 1
6

0 0 0 1
6

1
6

0 0 1
6

0 0 0 1
6

0 0 0 0 0 0 0 0 1
3

1
10

0 0 0 1
3

0

0 0 0 0 0 0 0 0 1
5

1
5

1
5

0 1
5

0 1
3

0 0 0 0 0 1
7

1
7

0 0 1
7

1
7

1
7

0 1
7

0

B =

0

0

0

0

0

0

0

0

0

0

0

0

1
6

0

0

1
7

96

4.4.3.3 Hexagonal Topology

In this topology, 15 slave nodes and 1 master node are connected in a hexagonal

topology as shown in Figure 4.9. The connectivity matrices A and B are given

respectively as;

Figure 4.9: 16-Node Grid Topology

97

A =

0 1
2

0 0 1
2

0 0 0 0 0 0 0 0 0 0

1
4

0 1
4

0 1
4

1
4

0 0 0 0 0 0 0 0 0

0 1
4

0 1
4

0 1
4

1
4

0 0 0 0 0 0 0 0

0 0 1
3

0 0 0 1
3

1
3

0 0 0 0 0 0 0

1
5

1
5

0 0 0 1
5

0 0 1
5

1
5

0 0 0 0 0

0 1
6

1
6

0 1
6

0 1
6

0 0 1
6

1
6

0 0 0 0

0 0 1
6

1
6

0 1
6

0 1
6

0 0 1
6

1
6

0 0 0

0 0 0 1
3

0 0 1
3

0 0 0 0 1
3

0 0 0

0 0 0 0 1
3

0 0 0 0 1
3

0 0 1
3

0 0

0 0 0 0 1
6

1
6

0 0 1
6

0 1
6

0 1
6

1
6

0

0 0 0 0 0 1
6

1
6

0 0 1
6

0 1
6

0 1
6

1
6

0 0 0 0 0 0 1
5

1
5

0 0 1
5

0 0 0 1
5

0 0 0 0 0 0 0 0 1
3

1
3

0 0 0 1
3

0

0 0 0 0 0 0 0 0 0 1
4

1
4

0 1
4

0 1
4

0 0 0 0 0 0 0 0 0 0 1
4

1
4

0 1
4

0

B =

0

0

0

0

0

0

0

0

0

0

0

0

1
5

0

0

1
4

4.4.4 Synchronous Time Update (STU): Implementation

Algorithm

In order to implement the system described in section 4.2, we present a fully

distributed method for local time update using synchronous average consensus

named Synchronous Time Update (STU) where each node computes it’s time

98

estimate in a synchronous manner. In this method all nodes are made to update

their estimates within the same specified period and hence the state of network

nodes can be represented by Equation 3.3. The pseudo-code of Synchronous Time

Update is given by Algorithm 2.

Algorithm 2: STU Protocol Pseudo-Code for Node i

Initialization
ti ←− ti(0); clockSum←− 0; totalReceived←− 0;

If < tj > is received
clockSum←− clockSum+ (tj);
totalReceived←− totalReceived+ 1;
tav ←− clockSum/totalReceived+ e;

Upon every ∆ seconds
If totalReceived > 1 and IncomingID = Nodej
ti ←− tav

clockSum←− 0; totalReceived←− 0;
broadcast < ti >

Initially when the node is powered on, two variables, clockSum and

numReceived required to calculate the average synchronization time estimate to

the neighboring nodes are initialized to zero. Whenever a synchronization message

from any neighboring node is received, the time estimate tj of a neighboring node

j at the time of reception, is saved. The received time, tj is then added to the

clockSum variable and the number of received clock values, totalReceived is in-

cremented. To exchange time synchronization packets with its neighboring nodes,

node i transmits a broadcast packet of its current time information approximately

every ∆ seconds. In every ∆ seconds, and when the number of received clock val-

99

ues is more than one, the time variable of node i, ti is updated by setting it to the

average estimate, tav. Finally, the time estimate of node i, ti is transmitted and

the clockSum variable and the number of received clock values, totalReceived are

initialized.

� Remark 4.2: In this method, knowledge of network nodes and connectivity

is needed and node initialization or wakeup for all network nodes has to be done

within a short period of time for all nodes. This method is an ideal conception

of the protocol and cannot be deployed in the practical sense since it requires a

synchronized network and cannot be used for synchronization but is presented

here for comparison with the developed asynchronous schemes.

4.5 Accuracy-Enhanced Method for Time Syn-

chronization: Results

In this section, we assess how variations in the added parameter, e affects the

minimum error in the dip region and the number of communication cycles or

iterations. This is done by plotting the error profiles of node time error with e

varied from 0.1∆ to 0.9∆ and comparing the minimum error in the dip region

and the number of iterations needed to reach that error. The assessment is done

using both simulations and practical experiments and is carried out on grid node

networks of 4, 9 and 16 nodes. For the sake of clarity, the error profiles for nodes

closest to the gateway node are plotted for each test 5.

5Nodes closest to gateway node exhibit the most accurate synchronization [52]

100

4.5.1 Simulation Results: Error Profiles for Varying

Added Parameter

Simulations are carried out using the specifications stated in section 4.3.1 the

simulations are carried out based on the equations in section 4.4.

4.5.1.1 Simulation Results for 4 Node Network

Figure 4.10 shows the simulation error profiles for node 2 6, where the parameter

e is varied from 0.1∆ to 0.9∆.

Figure 4.10: Simulation Error Profiles for Varying Added Parameter for 4 Node
Grid Topology

6Refer Figure 4.1, section 4.4.4.1

101

It can be observed that, the synchronization error in the dip region decreases

consistently as e is increased from 0.1∆ to 0.9∆ which is due to the reduction

in the Vk term in Equation 4.5. It is also observed there is a corresponding

increase in the number of communications needed to reach the dip region as e

is increased from 0.1∆ to 0.9∆. For instance the dip region error and number

of communications for e = 0 are respectively 13 and 4 × 10−4 where as that

at e = 0.5∆ are 19 and 3 × 10−5 and if e = 0.9∆ are 27 and 2 × 10−7 as

summarized in Table 4.2. Hence if e = 0.9∆ compared to if e is null7, about

two times communications are required at e = 0.9∆ but a reduction in error by

approximately a factor of about 103.

Table 4.2: Simulation Results Summary of Number Iterations and Error Values

Dip Region Results for 4 Node Grid Network

e 0 0.1∆ 0.2∆ 0.3∆ 0.4∆ 0.5∆ 0.6∆ 0.7∆ 0.8∆ 0.9∆
Iterations 13 15 17 17 18 19 20 21 24 27
Error Value 4.E-04 3.E-04 1.E-04 7.E-05 6.E-05 3.E-05 2.E-05 5.E-06 2.E-06 2.E-07

4.5.1.2 Simulation Results for 9 Node Network

To further probe the behavior of the system with the inclusion of e, we carried out

simulations on a 9 node grid network. Here, we show the error profiles for node 8

8 as shown in Figure 4.11. Here we observe a similar pattern of reduction in dip

minimum error with a corresponding increase in the number of communications

7Which represents the original local update presented in [51, 52]
8Closest with node 6 to gateway node, M, Refer Figure 4.4, section 4.4.4.1

102

needed to reach the dip region as e is increased from 0.1∆ to 0.9∆. Here, if e = 0

compared to if e = 0.9∆, the dip region error and number of communications

are respectively 44 and 6 × 10−4 for e = 0 whereas that at e = 0.9∆ are 82 and

4× 10−7 as summarized in Table 4.3.

Figure 4.11: Simulation Error Profiles for Varying Added Parameter for 9 Node
Grid Topology

Table 4.3: Simulation Results Summary of Number Iterations and Error Values

Dip Region Results for 9 Node Grid Network

e 0 0.1∆ 0.2∆ 0.3∆ 0.4∆ 0.5∆ 0.6∆ 0.7∆ 0.8∆ 0.9∆
Iterations 44 46 50 51 56 58 63 77 80 82
Error Value 6.E-04 2.E-05 1.E-05 1.E-05 4.E-06 3.E-06 2.E-06 6.E-07 5.E-07 4.E-07

103

4.5.1.3 Simulation Results for 16 Node Network

On an even larger network of 16 node grid network, we show the error profiles for

node 15 9 as shown in Figure 4.11, we observe a similar pattern of reduction in dip

minimum error with a corresponding increase in the number of communications

needed to reach the dip region as e is increased from 0.1∆ to 0.9∆. It is observed

that, if e = 0 compared to if e = 0.9∆, the dip region error and number of

communications are respectively 76 and 5 × 10−4 where as that at e = 0.9∆ are

165 and 8× 10−8 as summarized in Table 4.4.

Figure 4.12: Simulation Error Profiles for Varying Added Parameter for 16 Node
Grid Topology

9Closest with node 12 to gateway node, M, Refer Figure 4.7, section 4.4.4.1

104

Table 4.4: Simulation Results Summary of Number Iterations and Error Values

Dip Region Results for 16 Node Grid Network

e 0 0.1∆ 0.2∆ 0.3∆ 0.4∆ 0.5∆ 0.6∆ 0.7∆ 0.8∆ 0.9∆
Iterations 76 80 84 90 96 101 109 120 156 165
Error Value 5.E-04 3.E-04 3.E-05 3.E-05 1.E-05 6.E-06 3.E-06 1.E-06 6.E-07 8.E-08

4.5.2 Practical Results: Error Profiles for Varying Added

Parameter

To further study the behavior of this phenomenon, we conducted practical ex-

periments based on framework presented in section 4.3.2. The implementation

algorithm employed for the practical experiments is Algorithm 2.

4.5.2.1 Practical Results for 4 Node Network

Figure 4.13 shows the practical error profiles for node 2 10, where the parameter

e is varied from 0.1∆ to 0.9∆. Similar to the simulation results, we observe the

pattern of reduction in dip minimum error with a corresponding increase in the

number of communications needed to reach the dip region as e is increased from

0.1∆ to 0.9∆, although the consistency is not as clear as in the simulation results.

It is also observed that, no dip appears for 0.8∆ and 0.9∆11. Here, if e = 0

compared to if e = 0.7∆, the dip region error and number of communications

are respectively 17 and 8 × 10−4 for e = 0 whereas that at e = 0.7∆ are 24 and

2× 10−5 as summarized in Table 4.5.

10Refer Figure 4.1, section 4.4.4.1
11This is expected for a small network, although we see the steady state error ap-

proaching ∆ as predicted by the the analysis in section 4.2

105

Figure 4.13: Practical Error Profiles for Varying Added Parameter for 4 Node
Grid Topology

Table 4.5: Practical Results Summary of Number Iterations and Error Values

Dip Region Results for 4 Node Grid Network

e 0 0.1∆ 0.2∆ 0.3∆ 0.4∆ 0.5∆ 0.6∆ 0.7∆ 0.8∆ 0.9∆
Iterations 17 18 20 17 17 20 22 24 - -
Error Value 8.E-04 9.E-05 6.E-04 1.E-04 7.E-05 7.E-05 8.E-05 2.E-05 - -

4.5.2.2 Practical Results for 9 Node Network

To further probe the behavior of the system with the inclusion of e practically,

we carried out experiments on a 9 node grid network. Here, we show the error

profiles for node 8 12 as shown in Figure 4.14. Here we observe a similar pattern

12Similar to simulations, node 8 and node 6 are closest to the gateway node, M, Refer
Figure 4.4, section 4.3.4.1

106

of reduction in dip minimum error with a corresponding increase in the number

of communications needed to reach the dip region as e is increased from 0.1∆ to

0.9∆. Here, if e = 0 compared to if e = 0.9∆, the dip region error and number

of communications are respectively 51 and 9 × 10−4 for e = 0 whereas that at

e = 0.9∆ are 97 and 3× 10−5 as summarized in Table 4.6.

Figure 4.14: Practical Error Profiles for Varying Added Parameter for 9 Node
Grid Topology

Table 4.6: Practical Results Summary of Number Iterations and Error Values

Dip Region Results for 9 Node Grid Network

e 0 0.1∆ 0.2∆ 0.3∆ 0.4∆ 0.5∆ 0.6∆ 0.7∆ 0.8∆ 0.9∆
Iterations 51 57 53 59 63 65 68 77 83 97
Error Value 9.E-04 7.E-04 2.E-04 6.E-04 1.E-04 3.E-04 1.E-04 7.E-05 3.E-05 3.E-05

107

4.5.2.3 Practical Results for 16 Node Network

On larger network of 16 nodes on a grid topology, we show the error profiles for

node 15 13 as shown in Figure 4.15, we observe a similar pattern of reduction in

the dip minimum error with a corresponding increase in the number of communi-

cations needed to reach the dip region as e is increased from 0.1∆ to 0.9∆. It is

observed that, if e = 0 compared to if e = 0.9∆, the dip region error and number

of communications are respectively 102 and 5 × 10−4 where as that at e = 0.9∆

are 190 and 3× 10−5 as summarized in Table 4.7.

Figure 4.15: Practical Error Profiles for Varying Added Parameter for 16 Node
Grid Topology

13Node 15 is closest with node 12 to gateway node, M, Refer Figure 4.7, section
4.4.4.1

108

Table 4.7: Practical Results Summary of Number Iterations and Error Values

Dip Region Results for 16 Node Grid Network

e 0 0.1∆ 0.2∆ 0.3∆ 0.4∆ 0.5∆ 0.6∆ 0.7∆ 0.8∆ 0.9∆
Iterations 102 99 112 119 115 125 140 127 158 190
Error Value 5.E-04 1.E-04 2.E-04 2.E-04 3.E-04 7.E-05 3.E-04 4.E-05 5.E-05 3.E-05

4.5.3 Relationship Between Parameter, e and Minimum

Error in Dip Region

Figures 4.16 and 4.17 shows the graphical relationship between the parameter, e

and the minimum dip synchronization error for simulations and practical experi-

ments on 4, 9 and 16 node grid networks respectively.

Figure 4.16: Relationship Between Added Parameter,e and Minimum Error in
Dip Region for Simulations of 4, 9 and 16 Node Networks

109

Clearly, as e increases, the minimum error decreases and hence we can infer

that, there exist a negative correlation between the added parameter, e and the

minimum error in dip region for all the considered networks sizes for both sim-

ulations and practical experimental results. As expected, we see a more defined

relationship in the simulation results as compared to the practical results.

Figure 4.17: Relationship Between Added Parameter,e and Minimum Error in
Dip Region for Experiments on 4, 9 and 16 Node Networks

4.6 Summary

In this chapter, we presented detailed analysis and discussions on the first contri-

bution of this thesis where we assessed how variations in the added parameter, e

110

reduces further the minimum error in the dip region at the expense of increasing

the number of communication cycles or iterations. The effect of the parameter

was shown by plotting the error profiles of node time error with e varied from 0.1∆

to 0.9∆ and comparing the minimum errors in the dip region and the number of

iterations needed to reach those errors. the method is tested through simulations

and practical experimentation. The method employed for simulations and prac-

tical experiments was first presented then the results obtained from simulations

and experiments were discussed.

We compared the extreme case of lowest synchronization error when e = 0.9∆

to the original method when e is null. I was observed that, on average, about

two times the number of communications is required at e = 0.9∆ with a corre-

sponding reduction in error by approximately a factor of 5 × 10−4 as compared

to the original case when e = 0 in simulations for 4, 9 and 16 grid networks.

For the practical results, it was also observed that, on average, about twice the

number of communications is required at e = 0.9∆ with a corresponding reduc-

tion in error by a factor of approximately 5 × 10−2 as compared to when e = 0,

although the results for the 4 node network deviated slightly from this pattern.

Hence the variable, e, representing a fraction of the ticking rate of the gateway

node, ∆, gives a trade-off between the dip synchronization error and the number

of communication cycles required to reach that error. This presents a flexibility

in the protocol design because some applications of wireless sensor networks like

distributed beamforming, object tracking and temporal order delivery require a

111

high level of synchronization accuracy [11] whereas other applications like medical,

weather and marine sensing/monitoring require minimal number of communica-

tions for energy conservation [61, 21].

Despite, the consistency shown in the results presented in this chapter, the

local node time update was carried out using the synchronous average consensus

algorithm which is not practical for real time wireless sensor networks. In Chapter

5, we take away the need for the synchronous approach to local time update by

extending it to some practical asynchronous methods for local node time update.

Detailed analysis and discussions of each method is presented with simulation and

practical experimental results.

112

CHAPTER 5

LOCAL NODE TIME UPDATE

USING ASYNCHRONOUS

CONSENSUS: METHODS AND

RESULTS

5.1 Introduction

In the preceding chapter, the synchronous average consensus approach was used

for the local node update in the implementation of the suggested synchronization

protocol. However, this method is not practical since all synchronous average

consensus algorithms require simultaneous updates of all nodes (synchronous) to

operate [55, 7, 62]. In this chapter, we remove this requirement by extending to

asynchronous consensus approach for local node time update which does not re-

113

quire synchronous update. [63] and hence is a well suited method for distributed

consensus based synchronization algorithms. We the present the design and im-

plementation of three practical methods for the local node time update namely,

Timed Sequential Asynchronous Update, (TSAU), Unidirectional Asynchronous

Flooding, (UAF) and Bidirectional Asynchronous Update, (BAF). In this work,

we focus on the simulation and practical experimental performance evaluations of

each method.

5.2 Proposed Asynchronous Methods for Local

Node Time Update

In this section, a detailed operation of our developed methods of local node time

update for the the proposed method of synchronization are presented. The general

mathematical framework of the asynchronous time update specific to the proposed

protocol was presented in section 3.3.3. The pseudo-code and description of each

method aided by relevant diagrams is presented here. It is assumed that for all

methods that the master (gateway) node ticks uniformly at a rate ∆, represented

by tg(k) = ∆× k, and not subject to drifts and hence ∆ is constant, i.e. ∆(k) =

∆, ∀k. This assumption is practical since many sensor network architectures

consist of a gateway or base-station that has access to a stable and precise clock

reference, for example a GPS receiver [59, 64]. In the absence of an external

clock source, the hardware clock of a selected sensor node, i.e. the gateway(root)

114

node might serve as a source. As discussed in [51], in our suggested approach to

synchronization, the gateway node clock, tg(k) acts as the source or input to the

network during synchronization 1.

5.2.1 Timed Sequential Asynchronous Update (TSAU)

The first method TSAU, network nodes are made to compute time estimates one

at a time asynchronously in a sequential manner. The sequence is done using

proximity to the gateway node, i.e. the closer a node is to the gateway node, the

earlier it updates. This is illustrated by Figure 5.1. The pseudo code of TSAU is

given by Algorithm 3.

5.2.1.1 Operation Mechanism

All the variables used for STU in Algorithm 2 are also used here except another

variable labeled UpdateT ime is introduced. In order for nodes to update in a

sequential manner, node IDs are assigned based on proximity to the gateway node,

and we program each node to update when the variable UpdateT ime is a multiple

of ∆, and this variable is calculated by UpdateT ime+ = (N − 1)×∆, where N is

the number of network nodes including the gateway node. The UpdateT ime for

a node with ID, i is initialized to i ×∆. This allows the activation of the nodes

to be carried out in an atomically in a sequential manner.

� Remark 5.1: It should be noted that this method operates in a completely

blind fashion since it requires neither to know the sender node nor stores its time

1Refer Equations 3.3 and 3.9, and discussions in sections 3.2.1 and 3.3.3

115

Figure 5.1: Asynchronous Wake-up Cycle and Operation Mechanism for TSAU

information. Therefore is expected to show some robustness to changes in network

topology. However, for this algorithm to work properly, the network topology

has to be maintained throughout its operation 2. If deployed in a network whose

graph is time variant, a wake-up activation sequence which might require different

communication packet(s) will be required to control the sequential update of the

nodes. In that case, a fixed network topology is not necessary but full knowledge

of the network nodes and connectivity would be needed.

5.2.2 Unidirectional Asynchronous Flooding (UAF)

The second method, UAF, is now presented. In this method, nodes update asyn-

chronously based on a wake-up activation protocol regulated by the gateway node.

This method improves upon TSAU, whereby it is designed to make nodes at ap-

proximately the same proximity to the gateway node update at the same com-

2Refer to Line 7 of Algorithm 3

116

Algorithm 3: TSAU Pseudo-Code for Node i

Initialization
ti ←− ti(0); UpdateT ime←− i×∆; clockSum←− 0; totalReceived←− 0;
If < UpdateT ime > is a multiple ∆
If < tj > is received
clockSum←− clockSum+ (tj);
totalReceived←− totalReceived+ 1;
tav ←− clockSum/totalReceived;
UpdateT ime←− UpdateT ime+ (N − 1)×∆;

Upon every ∆ seconds
If totalReceived > 1 and IncomingID = Nodej
ti ←− tav

clockSum←− 0; totalReceived←− 0;
broadcast < ti >

munication instant since it is fair to assume that, the transmission and reception

times of messages to and from their neighbors and/or to the gateway node are

the same. Here, the gateway node is made to regulate the activation of nodes

by flooding the network with wake-up messages in every cycle of asynchronous

update to begin the cycle and re-initiates the cycle once a current cycle completes

and hence the name Unidirectional.

5.2.2.1 Operation Mechanism

The description of this asynchronous activation cycle procedure is illustrated by

Figure 5.2. As shown in Figure 5.2, layers of connectivity are defined for all

network nodes based on their proximity to the gateway node.

All nodes belonging to the same connectivity layer wake up at the same time to

carry out the averaging process hence the name Synchronous Layer. To elaborate

117

Figure 5.2: Asynchronous Wake-up Cycle and Operation Mechanism for UAF

further on the operation of the method, we outline its stages of operation in the

pseudo-code of Algorithm 4 which is described as follows;

1. Each node, i has a binary status variable labeled as si that is set to, si = 0.

Let us assume an upper bound L on connectivity layer, where L depends on

the network size and topology. For example, for the network in Figure 5.2,

L = 4.

2. The gateway node initializes update timer Ts and triggers the update of the

nodes connected to it.

3. Once a node i updates, it triggers the update of its nearest neighbor nodes,

j whose status bit variable, sj are a complement of its own, i.e., si = śj.

Once the flooding of the status bits variable begin, if i receives < tj, sj >

such that, si = śj then node i accepts the clock value of j and computes its

average, then updates its clock with the computed average and set its si to

118

sj. If on the other hand, si = sj, then it means that nodes i and j belong

to the same connectivity layer or the connectivity layer of j lies above that

of i therefore it doesn’t wake-up to compute and update its clock and hence

conserve energy.

4. Each node then broadcasts whatever values of < ti, si > it has every ∆

seconds.

5. This process continues until the timer of the gateway node is Ts > L×∆.

When this event is true, the gateway node initializes its update time Ts and

trigger the update of the nearest nodes and hence the whole process begins

again.

Algorithm 4: UAF Pseudo-Code for Node i

� Initialization
ti ←− ti(0); si ←− 0; clockSum←− 0; totalReceived←− 0;
� Upon receiving < tj, sj >
If < sj 6= si > then
clockSum←− clockSum+ (tj)
totalReceived←− totalReceived+ 1
tav ←− clockSum/totalReceived
si ←− sj
else if < sj = si > then tav ←− ti endif

� Upon every ∆ seconds
ti ←− tav

clockSum←− 0; totalReceived←− 0;
broadcast < ti, si >

� Remark 5.2: It should be noted here that, the only knowledge needed for this

method is a loose upper bound on the connectivity layers at the gateway node and

119

at least one spanning path from any node in the network to the gateway node.

Also, no knowledge of size of the network or it’s constituents is also needed.

5.2.3 Bidirectional Asynchronous Flooding (BAF)

In this section we present another version of our proposed synchronization scheme

which does not require any regulation of the update wake-up sequence by the

gateway node and hence can effectively operate in a sparsely distributed random

network. In this method, all variables are similar to those in Algorithm 4 except

another variable is introduced to make the network self-regulating in carrying out

the update wake-up cycle and hence removes the need for the centralized wake-

up regulation seen in UAF. To achieve this, once the update wake-up cycle is

initiated by the gateway node, the node(s) in the first and the last connectivity

layers automatically carry out the regulation and does not depend on the gateway

node for the regulation. Hence we have two realizations of connectivity layers: a

Forward Synchronous Layer and a Backward Synchronous Layer, hence the name

Bidirectional.

5.2.3.1 Operation Mechanism

The pseudo-code is presented in Algorithm 5 and described as follows;

1. Each node, i has a binary status variable labeled as si that is set to, si = 0

and also has a counter variable ci that is also initially set to zero

2. The gateway node triggers the update of the nodes by broadcasting its clock

120

values

3. Once any node receives the gateway clock value (i.e. nodes in the Forward-S

Layer-1 as shown in Figure 5.3), the node updates its clock and negates its

status bit variable.

4. After doing stage 3, the node triggers the update of its nearest neighboring

nodes whose status bit is the complement of its own.

5. When a node i receives a packet from another node j, it compares its si

with the received sj and if si 6= sj it means node j belongs to a layer that

triggers the update of node i’s layer.

6. If the event in 4 is true, then node i accepts the time estimate of j and

computes its average, then save its computed average time estimate and set

it’s si to sj and also set its ci to ci + 1. If on the other hand, if si = sj,

then it means that nodes i and j belong to the same connectivity layer or

the connectivity layer of j does to trigger the update of i for the current

wake-up cycle and therefore it doesn’t wake-up to compute and update its

clock and hence conserves energy.

7. The process continues until a node finds that its ci variable is the highest

compared to the connected node and their si’s are the same, then this is the

furthest node from the gateway node.

8. This furthest node sets its ci = 0, negate its si and trigger a backward

flooding.

121

9. In the backward flooding, all network nodes now have the complement of

their initial si’s , i.e. śi hence the process automatically continues until the

fist layer is reached, which in-turn trigger the next forward flooding.

Figure 5.3: Asynchronous Wake-up Cycle and Operation Mechanism for BAF

Algorithm 5: BAF Pseudo-Code for Node i

� Initialization
ti ←− ti(0); si ←− 0;ci ←− 0;clockSum←− 0; totalReceived←− 0;
�Upon receiving < tj, sj, cj >
If < sj 6= si > then
clockSum←− clockSum+ (tj)
totalReceived←− totalReceived+ 1
tav ←− clockSum/totalReceived
si ←− sj
ci ←− cj + 1
else if < sj = si > then tav ←− ti endif
if < sj = si > and ci > cj, ∀j then ci ←− 0 and si ←− s̄i endif

� Upon every ∆ seconds
ti ←− tav

clockSum←− 0; totalReceived←− 0
broadcast < ti, si, ci >

� Remark 5.3: As observed from the operation of BAF, once the gateway node

triggers the initial asynchronous process, the network nodes automatically con-

122

tinues to carry-out the update wake-up cycles whiles making use of the proximity

to the gateway node, asynchronicity and energy conservation from controlled and

limited computations. This feature make this version of our proposed scheme

very robust in that, even if the connectivity layers of nodes are not maintained

with time due to node failure and changes in network topology, new layers of con-

nectivity are automatically formed based on the capacity of the nodes in terms

of transmission range and the update wake-up cycle continues to be regulated.

The only added requirement here is the increased bytes introduced by the added

counter variable, cj.

5.2.4 Performance Metrics for Evaluation

To compare the performance of the developed schemes with the previously devel-

oped synchronous method, three parameters are employed. First the minimum

error of each node in the dip region is compared, followed by the number of it-

erations needed to reach that minimum error. Then finally the variance in the

number of communication cycles needed to reach the dip region is compared for

all network nodes.

5.2.4.1 Minimum Error in Dip Region

The minimum error in the dip region gives a sense of how accurate a protocol is.

Hence an efficient method is expected to give very small error values in the dip

region. This error is determined by comparing the time values of each node to

the gateway node and taking the minimum. For N network nodes, this can be

123

measured by taking the average of the minimum error in the dip region of all the

nodes, i.e., Edipmin = 1
N

∑
i∈V min

i∈V
(tg(k)− ti(k)).

5.2.4.2 Communication Cycles to Reach Dip Region

This parameter is obtained by looking at the number of communication cycles at

which the minimum error in the dip region occurs and can be measured by taking

the average of this value for all the nodes and is denoted, kdipmin. The lower this

parameter, the lower the energy needed by a protocol to reach the dip region and

hence the more efficient the protocol.

5.2.4.3 Variance in Communication Cycles to Reach Dip Region

For a very efficient protocol, all nodes in the network are expected to reach the

dip region using approximately the same number of communication cycles. If

this is achieved, the local clock reset and sleep for all node can occur at same

time and hence nearly all nodes will synchronize with the gateway node using

approximately the same number of pooling cycles. This parameter is calculated

by take the variance in the number iterative or communication cycles needed to

reach the minimum error in the dip region for all network nodes. This parameter

is denoted, Vkdipmin
.

124

5.3 Simulation Evaluation of Proposed Methods

of Local Time Update

In this section we present simulation results for all designed methods of local node

time update. Results are presented for 4, 9 and 16 node networks configured in

three topologies:grid, random and hexagonal 3. Simulations are done based on

the equations presented in section 4.3.6. In the result of each configuration, we

present a graph of the error profile and the node time versus the gateway time.

5.3.1 Simulation Results for Timed Sequential Asyn-

chronous Update (TSAU)

5.3.1.1 Results for 4 Node Network

Figures 5.4, 5.5, 5.6 show the error, Ek profile4 plot and node time, Tk val-

ues plot both against the gateway time of the 4 node network for grid, random

and hexagonal topologies respectively. We observe from these figures that, the

dip phenomenon is exhibited by all network configurations for Timed Sequential

Asynchronous Update (TSAU) with all topologies registering, average minimum

error in Edipmin in the 10−4 range although Edipmin, for random where all nodes are

interconnected is lowest followed by hexagonal and then the grid network.

This pattern is also shown in the number of communications required to reach

the dip region, kdipmin, although here the grid topology requires less than the hexag-

3Refer section 4.3.4
4Refer Equation 3.4, section 3.2.1

125

Figure 5.4: Node Time and Error Profiles for Grid Topology

Figure 5.5: Node Time and Error Profiles for Random Topology

onal topology. An important feature to observed here is that, the variance in

communication cycles to reach dip region, Vkdipmin
is zero for all networks. This

implies all nodes can synchronize and go to sleep at the time for these type of

networks when using TSAU for local node time update. The summary of the dip

region results for the 4 node network for the three topologies is given in Table 5.1.

126

Figure 5.6: Node Time and Error Profiles for Hexagonal Topology

Table 5.1: 4 Node Network Dip Region Results Comparison for Timed Sequential
Asynchronous Update

Topologies Grid Hex Random
Nodes Iterations Error Iterations Error Iterations Error

N1 10 5.76E-04 12 2.99E-04 8 3.69E-04
N2 10 2.88E-04 12 2.16E-04 8 3.24E-04
N3 10 2.88E-04 12 1.72E-04 8 2.31E-04

Statistics

Mean 10 3.84E-04 12 2.29E-04 8 3.08E-04
Minimum 10 2.88E-04 12 1.72E-04 8 2.31E-04
Maximum 10 5.76E-04 12 2.99E-04 8 3.69E-04
Variance 0.00 2.77E-08 0.00 4.19E-09 0.00 4.97E-09

5.3.1.2 Results for 9 Node Network

Figures 5.7, 5.8, 5.9 show the error profile plot and node time plot both against

the gateway time of the 9 node network for grid, random and hexagonal topologies

respectively.

We observe from these figures that, the dip phenomenon is exhibited by all

network configurations for Timed Sequential Asynchronous Update (TSAU) with

all topologies registering, average minimum error in Edipmin in the 10−4 range. It is

127

Figure 5.7: Node Time and Error Profiles for Grid Topology

Figure 5.8: Node Time and Error Profiles for Random Topology

observe that Edipmin , kdipmin and Vkdipmin
for random and hexagonal topologies are almost

the same and better as compared to the grid topology. This stems from the fact

that, these topologies have numerous connection as compared to the grid topology

and hence achieve better synchronization at less number communications.

The summary of the dip region results for the 9 node network for the three

topologies is given in Table 5.2.

128

Figure 5.9: Node Time and Error Profiles for Hexagonal Topology

5.3.1.3 Results for 16 Node Network

Figures 5.10, 5.11, 5.12 show the error profile plots and node time plots both

against the gateway time of the 16 node network for grid, random and hexagonal

topologies respectively.

Figure 5.10: Node Time and Error Profiles for Grid Topology

We observe from these figures that, the dip phenomenon is exhibited by all

network configurations for Timed Sequential Asynchronous Update (TSAU) with

all topologies registering, average minimum error in Edipmin in the 10−4 range.

129

Table 5.2: 9 Node Network Dip Region Results Comparison for Timed Sequential
Asynchronous Update

Topologies Grid Hex Random
Nodes Iteration Error Iteration Error Iteration Error

N1 34 2.30E-04 27 5.87E-04 25 5.88E-04
N2 34 4.74E-04 26 4.65E-04 24 4.63E-04
N3 33 4.04E-04 26 1.15E-04 24 1.14E-04
N4 34 4.74E-04 26 3.62E-04 24 3.60E-04
N5 33 4.04E-04 26 1.29E-04 24 1.28E-04
N6 33 2.69E-04 26 8.14E-05 24 8.07E-05
N7 33 4.04E-04 26 2.05E-04 24 2.04E-04
N8 33 2.69E-04 26 1.74E-04 24 1.73E-04

Statistics

Mean 33 3.66E-04 26 2.65E-04 24 2.64E-04
Minimum 33 2.30E-04 26 8.14E-05 24 8.07E-05
Maximum 34 4.74E-04 27 5.87E-04 25 5.88E-04
Variance 0.27 9.27E-09 0.13 3.42E-08 0.13 3.44E-08

It is observe that Edipmin , kdipmin and Vkdipmin
for random and hexagonal topologies

are almost the same with the grid topology exhibiting the best results. The

summary of the dip region results for the 16 node network for the three topologies

is given in Table 5.3.

5.3.2 Simulation Results for Unidirectional Asynchronous

Flooding (UAF)

5.3.2.1 Results for 4 Node Network

Figures 5.13, 5.14, 5.15 show the error, Ek profile 5plot and node time, Tk values

plot both against the gateway time of the 4 node network for grid, random and

hexagonal topologies respectively. We observe from these figures that, the dip

5Refer Equation 3.4, section 3.2.1

130

Figure 5.11: Node Time and Error Profiles for Random Topology

Figure 5.12: Node Time and Error Profiles for Hexagonal Topology

phenomenon is exhibited by all network configurations for Unidirectional Asyn-

chronous Flooding (UAF) with all topologies registering, average minimum error

in Edipmin in the 10−4 range although Edipmin, for random where all nodes are inter-

connected is lowest followed by hexagonal and then the grid network. This is also

observed for the other two parameters, kdipmin and Vkdipmin
. An important observa-

tion for UAF is, the dip region results for all nodes in the 4 node network are

equal. This implies that, nodes can synchronize, sleep and wake-up at the same

time. The summary of the dip region results for the 16 node network for the three

131

Table 5.3: 16 Node Network Dip Region Results Comparison for Timed Sequential
Asynchronous Update

Topologies Grid Hex Random
Nodes Iteration Error Iteration Error Iteration Error

N1 63 1.12E-04 67 4.30E-04 68 5.30E-04
N2 63 1.51E-04 67 5.86E-04 67 4.83E-04
N3 63 4.86E-04 66 2.72E-04 67 2.62E-04
N4 62 3.59E-04 66 2.51E-05 67 2.14E-04
N5 63 1.51E-04 66 5.42E-04 67 4.56E-04
N6 63 4.09E-04 66 2.72E-04 67 3.19E-04
N7 62 3.33E-04 66 2.15E-05 67 1.96E-04
N8 62 1.08E-04 66 1.33E-04 67 1.69E-04
N9 63 4.86E-04 66 3.89E-04 67 3.96E-04
N10 62 3.33E-04 66 2.23E-04 67 3.39E-04
N11 62 1.72E-05 66 6.04E-05 67 2.67E-04
N12 62 3.04E-05 66 1.21E-04 67 1.65E-04
N13 62 3.59E-04 66 1.89E-04 67 3.58E-04
N14 62 1.08E-04 66 9.43E-06 67 2.91E-04
N15 62 3.04E-05 66 4.76E-05 67 2.25E-04

Statistics

Mean 62 2.32E-04 66 2.21E-04 67 3.11E-04
Minimum 62 1.72E-05 66 9.43E-06 67 1.65E-04
Maximum 63 4.86E-04 67 5.86E-04 68 5.30E-04
Variance 0.26 2.85E-08 0.12 3.65E-08 0.07 1.32E-08

topologies is given in Table 5.4.

5.3.2.2 Results for 9 Node Network

Figures 5.16, 5.17, 5.18 show the error, Ek profile plot and node time, Tk plot both

against the gateway time of the 9 node network for grid, random and hexagonal

topologies respectively. We observe from these figures that, the dip phenomenon is

exhibited by all network configurations for Unidirectional Asynchronous Flooding

(UAF) with all topologies registering, average minimum error in Edipmin in the 10−4

range. An important observation for UAF is, the dip region error for nodes in the

132

Figure 5.13: Node Time and Error Profiles for Grid Topology

Figure 5.14: Node Time and Error Profiles for Random Topology

network are equal very close but it is observed that, Vkdipmin
for all networks is null

which except for the random topology where, Vkdipmin
= 0.13. With this advantage,

nodes can synchronize, sleep and wake-up nearly at the same time. The summary

of the dip region results for the 16 node network for the three topologies is given

in Table 5.5.

133

Figure 5.15: Node Time and Error Profiles for Hexagonal Topology

Table 5.4: 4 Node Network Dip Region Results Comparison for Unidirectional
Asynchronous Flooding

Topologies Grid Hex Random
Nodes Iteration Error Iteration Error Iteration Error

N1 8 2.77E-04 13 2.15E-04 10 3.58E-05
N2 8 2.77E-04 13 2.15E-04 10 5.26E-05
N3 8 2.77E-04 13 2.15E-04 10 5.47E-05

Statistics

Mean 8 2.77E-04 13 2.15E-04 10 4.77E-05
Minimum 8 2.77E-04 13 2.15E-04 10 3.58E-05
Maximum 8 2.77E-04 13 2.15E-04 10 5.47E-05
Variance 0.00 0.00E+00 0.00 2.01E-14 0.00 1.08E-10

5.3.2.3 Results for 16 Node Network

Figures 5.19, 5.20, 5.21 show the error, Ek profile plot and node time, Tk plot

both against the gateway time of the 16 node networks.

We observe from these figures that, the dip phenomenon is exhibited by all

network configurations for Unidirectional Asynchronous Flooding (UAF) with all

topologies registering, average minimum error in Edipmin in the 10−4 range. An

important observation for UAF is, the dip region error for nodes in the network

134

Figure 5.16: Node Time and Error Profiles for Grid Topology

Figure 5.17: Node Time and Error Profiles for Random Topology

are equal very close but more importantly, Edipmin for all networks is null which is

unprecedented for a large network. With this advantage, nodes can synchronize,

sleep and wake-up at the same time. The summary of the dip region results for

the 16 node network for the three topologies is given in Table 5.6.

135

Figure 5.18: Node Time and Error Profiles for Hexagonal Topology

Figure 5.19: Node Time and Error Profiles for Grid Topology

5.3.3 Simulation Results for Bidirectional Asynchronous

Flooding (BAF)

5.3.3.1 Results for 4 Node Network

Figures 5.22, 5.23, 5.24 show the error, Ek profile 6plot and node time, Tk values

plot both against the gateway time of the 4 node network for grid, random and

hexagonal topologies respectively. We observe from these figures that, the dip phe-

6Refer Equation 3.4, section 3.2.1

136

Table 5.5: 9 Node Network Dip Region Results Comparison for Unidirectional
Asynchronous Flooding

Topologies Grid Hex Random
Nodes Iteration Error Iteration Error Iteration Error

N1 33 9.27E-05 29 1.03E-04 25 5.88E-04
N2 33 1.93E-04 29 3.95E-05 24 4.63E-04
N3 33 1.77E-04 29 1.09E-04 24 1.14E-04
N4 33 1.85E-04 29 2.04E-05 24 3.60E-04
N5 33 1.62E-04 29 4.54E-05 24 1.28E-04
N6 33 1.62E-04 29 1.05E-04 24 8.07E-05
N7 33 3.00E-04 29 7.05E-05 24 2.04E-04
N8 33 1.75E-04 29 4.95E-05 24 1.73E-04

Statistics

Mean 33 1.81E-04 29 6.78E-05 24 2.64E-04
Minimum 33 9.27E-05 29 2.04E-05 24 8.07E-05
Maximum 33 3.00E-04 29 1.09E-04 25 5.88E-04
Variance 0.00 3.27E-09 0.00 1.17E-09 0.13 3.44E-08

nomenon is exhibited by all network configurations for Bidirectional Asynchronous

Flooding (BAF) with all topologies registering, average minimum error in Edipmin

in the 10−4 range although Edipmin, for random where all nodes are interconnected

is lowest followed by hexagonal and then the grid network.

This is also observed for the other two parameters, kdipmin and Vkdipmin
. An impor-

tant observation for BAF is that the dip region results for all nodes in the 4 node

network are equal. This implies that, nodes can synchronize, sleep and wake-up

at the same time. The summary of the dip region results for the 16 node network

for the three topologies is given in Table 5.7.

137

Figure 5.20: Node Time and Error Profiles for Random Topology

Figure 5.21: Node Time and Error Profiles for Hexagonal Topology

5.3.3.2 Results for 9 Node Network

Figures 5.25, 5.26, 5.27 show the error, Ek profile plot and node time, Tk plot both

against the gateway time of the 9 node network for grid, random and hexagonal

topologies respectively. We observe from these figures that, the dip phenomenon is

exhibited by all network configurations for Bidirectional Asynchronous Flooding

(BAF) with all topologies registering, average minimum error in Edipmin in the 10−4

range.

138

Table 5.6: 16 Node Network Dip Region Results Comparison for Unidirectional
Asynchronous Flooding

Topologies Grid Hex Random
Nodes Iteration Error Iteration Error Iteration Error

N1 68 3.38E-04 68 4.55E-04 76 1.54E-05
N2 68 3.38E-04 68 4.52E-04 76 1.93E-05
N3 68 2.87E-04 68 3.59E-04 76 6.78E-05
N4 68 2.24E-04 68 2.45E-04 76 1.08E-04
N5 68 3.38E-04 68 4.58E-04 76 1.14E-05
N6 68 3.18E-04 68 3.85E-04 76 3.74E-05
N7 68 2.27E-04 68 2.39E-04 76 8.12E-05
N8 68 1.30E-04 68 1.49E-04 76 1.09E-04
N9 68 2.87E-04 68 4.47E-04 76 3.50E-06
N10 68 2.27E-04 68 4.00E-04 76 6.15E-06
N11 68 8.84E-05 68 2.17E-04 76 3.88E-05
N12 68 2.57E-05 68 1.64E-05 76 1.02E-04
N13 68 2.24E-04 68 4.06E-04 76 1.24E-05
N14 68 1.30E-04 68 2.63E-04 76 1.60E-06
N15 68 2.57E-05 68 2.01E-05 76 6.50E-05

Statistics

Mean 68 2.14E-04 68 3.01E-04 76 4.53E-05
Minimum 68 2.57E-05 68 1.64E-05 76 1.60E-06
Maximum 68 3.38E-04 68 4.58E-04 76 1.09E-04
Variance 0.00 1.21E-08 0.00 2.31E-08 0.00 1.61E-09

We observe from the results that, the dip region error for nodes in the network

are equal very close but it is observed that, Vkdipmin
for the grid, random and hexag-

onal topologies are 2.48, 1.7 and 1.07 respectively. From these results, it is clear

that, the more connected the network, the better its dip region performance with

respect to kdipmin and Vkdipmin
. With this advantage, nodes can synchronize, sleep and

wake-up nearly at the same time. The summary of the dip region results for the

16 node network for the three topologies is given in Table 5.8.

139

Figure 5.22: Node Time and Error Profiles for Grid Topology

Figure 5.23: Node Time and Error Profiles for Random Topology

5.3.3.3 Results for 16 Node Network

Figures 5.28, 5.29, 5.30 show the error, Ek profile plot and node time, Tk plot both

against the gateway time of the 16 node network for grid, random and hexagonal

topologies respectively.

We observe from the results that, the dip region error for nodes in the net-

work are equal very close but it is observed that, Vkdipmin
for the grid, random and

hexagonal topologies are 8.60, 7.64 and 2.60 respectively. From these results, it is

140

Figure 5.24: Node Time and Error Profiles for Hexagonal Topology

Table 5.7: 4 Node Network Dip Region Results Comparison for Bidirectional
Asynchronous Flooding

Topologies Grid Hex Random
Nodes Iteration Error Iteration Error Iteration Error

N1 8 2.77E-04 13 2.15E-04 10 3.58E-05
N2 8 2.77E-04 13 2.15E-04 10 5.26E-05
N3 8 2.77E-04 13 2.15E-04 10 5.47E-05

Statistics

Mean 8 2.77E-04 13 2.15E-04 10 4.77E-05
Minimum 8 2.77E-04 13 2.15E-04 10 3.58E-05
Maximum 8 2.77E-04 13 2.15E-04 10 5.47E-05
Variance 0.00 0.00E+00 0.00 2.01E-14 0.00 1.08E-10

clear that, the more connected the network, the better its dip region performance

with respect to kdipmin and Vkdipmin
.

With this advantage, nodes can synchronize, sleep and wake-up nearly at the

same time. The summary of the dip region results for the 16 node network for

the three topologies is given in Table 5.9.

141

Figure 5.25: Node Time and Error Profiles for Grid Topology

Figure 5.26: Node Time and Error Profiles for Random Topology

5.3.4 Simulation Comparison between Proposed Methods

of Local Time Update

In this section, we compare the performance of TSAU, UAF and BAF based on

the average minimum error in the dip region, Edipmin, the number of communication

cycles needed to reach the minimum error, kdipmin and the variance in kdipmin, Vdip
min

7 on the presented simulation results of each method. For each method of local

7Detailed explanations on the importance of these parameters in the design of our
proposed sync protocol is given in section 5.3.1

142

Figure 5.27: Node Time and Error Profiles for Hexagonal Topology

Figure 5.28: Node Time and Error Profiles for Grid Topology

time update, we present the results on these critical parameters for 4, 9, and 16

node networks. In addition to the above mentioned methods, we include the dip

region results on the three critical parameters for the Synchronous Time Update,

(STU) 8. The comparison is done by employing bar graphs for each parameter.

8Theoretical descriptions and implementation algorithm of STU are respectively
given in sections 3.2.1 and 4.3.7

143

Table 5.8: 9 Node Network Dip Region Results Comparison for Bidirectional
Asynchronous Flooding

Topologies Grid Hex Random
Nodes Iteration Error Iteration Error Iteration Error

N1 40 6.05E-04 33 4.33E-04 27 4.42E-04
N2 40 9.86E-04 33 1.02E-03 27 7.66E-04
N3 39 1.77E-03 32 6.21E-04 26 2.66E-04
N4 40 2.25E-04 32 1.82E-03 26 1.76E-03
N5 39 1.30E-03 31 4.71E-04 25 3.40E-05
N6 36 7.16E-04 29 1.38E-03 24 1.58E-03
N7 39 4.25E-04 32 8.62E-04 26 4.62E-04
N8 36 1.44E-05 31 6.87E-04 25 1.49E-04

Statistics

Mean 39 7.56E-04 32 9.12E-04 26 6.83E-04
Minimum 36 1.44E-05 29 4.33E-04 24 3.40E-05
Maximum 40 1.77E-03 33 1.82E-03 27 1.76E-03
Variance 2.84 3.35E-07 1.70 2.31E-07 1.07 4.24E-07

5.3.4.1 Minimum Error in Dip Region, Edipmin

In Figure 5.31, we compare the synchronization accuracy in the dip region for

TSAU, UAF, BAF and STU. From the results, we observe that UAF registers

the lowest error as compared to all the other methods for all networks and BAF

registers the highest for the large networks. In the small network of 4 nodes, its

accuracy in the dip region is nearly similar to that of UAF and slightly lower than

the dip error of STU. TSAU is observed to have a higher error than UAF and

STU for all the 4 and 9 node networks but has a similar minimum dip error as

STU in the 16 node network.

We also observe that, for TSAU, synchronization accuracy increases as the

network gets bigger. This pattern is not observed for the other methods. In

general, we can conclude here that UAF showed the best accuracy in terms of

144

Figure 5.29: Node Time and Error Profiles for Random Topology

Figure 5.30: Node Time and Error Profiles for Hexagonal Topology

synchronization in the dip region. This is followed by STU then TSAU. BAF

was observed to have the least synchronization accuracy especially for the large

networks.

5.3.4.2 Communication Cycles to Reach Dip Region, kdipmin

In Figure 5.32, we compare the number of iterations required to reach minimum

error in the dip region for TSAU, UAF, BAF and STU. From the results, we

observe that UAF and BAF required the least number of iterations to reach the

145

Table 5.9: 16 Node Network Dip Region Results Comparison for Bidirectional
Asynchronous Flooding

Topologies Grid Hex Random
Nodes Iteration Error Iteration Error Iteration Error

N1 55 6.96E-04 70 1.63E-03 86 3.94E-04
N2 55 6.96E-04 70 6.17E-04 85 6.92E-04
N3 54 8.78E-05 69 5.45E-04 84 1.03E-03
N4 53 3.89E-04 68 6.81E-04 85 5.73E-04
N5 55 6.96E-04 70 7.42E-04 85 5.20E-04
N6 54 4.37E-04 69 7.34E-04 85 9.03E-04
N7 53 5.40E-05 68 5.65E-04 84 9.27E-04
N8 51 1.18E-03 67 3.69E-04 84 2.49E-04
N9 54 8.78E-05 70 4.77E-05 85 2.69E-04
N10 53 5.40E-05 69 7.42E-04 85 2.38E-04
N11 50 3.32E-04 67 7.71E-05 84 5.13E-04
N12 46 7.59E-04 62 3.37E-04 80 3.04E-04
N13 53 3.89E-04 69 6.59E-04 85 8.51E-04
N14 51 1.18E-03 67 9.00E-04 85 4.88E-04
N15 46 7.59E-04 61 6.66E-04 81 7.67E-04

Statistics

Mean 52 5.20E-04 68 6.21E-04 84 5.81E-04
Minimum 46 5.40E-05 61 4.77E-05 80 2.38E-04
Maximum 55 1.18E-03 70 1.63E-03 86 1.03E-03
Variance 8.60 1.40E-07 7.64 1.38E-07 2.60 7.15E-08

dip region for the 4 node network, followed by TSAU and the STU. For the 9 nodes

network, UAF and TSAU required the least number of iterations to reach the dip

region followed by BAF then STU. This pattern is similar to the 16 node network

except BAF outperforms UAF by a margin of about 16 iterations and TSAP

outperforms UAF by a margin of about 6 iterations. In general kdipmin increases as

the number of network nodes increase.

In general, we can infer here that, for the number of iterations needed to reach

the minimum error in the dip region, BAF performs best, followed by TSAU then

UAF. STU was observed to have the least performance as shown in Figure 5.32

146

Figure 5.31: Simulation Comparison of Minimum Errors, Edipmin for TSAU, UAF
and BAF For Varying Network Sizes

although from the operation of STU 9, all nodes update at each iteration whereas

in TSAU 10, UAF 11 and BAF12 only a subset of the nodes update, in each iteration

time values of nodes not activated do not update but since some nodes update,

we assume it is fair to take an iteration in all the methods to be the same.

5.3.4.3 Variance in Communication Cycles to Reach Dip Region, Vkdipmin

In Figure 5.33, we compare the variances in the number of iterations required to

reach minimum error in the dip region for TSAU, UAF, BAF and STU.

9Refer Algorithm 2, section 4.3.7
10Refer Algorithm 3, section 5.2.1
11Refer Algorithm 4, section 5.2.2
12Refer Algorithm 5, section 5.2.3

147

Figure 5.32: Simulation Comparison of Communication Cycles, kdipmin for TSAU,
UAF and BAF For Varying Network Sizes

First we observe that all methods had null variances for the small network. For

the large networks, we observe that UAF performs best by having zero variance for

all networks. This is a very crucial since all nodes can stop update, sleep, wakeup

and activate at the same time. This unique feature if replicated in the practical

results, will give UAF a clear advantage over all the other method. TSAP has

the next best performance for the 9 and 16 node networks, followed by STU. The

performance of BAF on the large networks was the least for this metric.

148

Figure 5.33: Simulation Comparison of Variances in Communication Cycles, Vkdipmin

for TSAU, UAF and BAF For Varying Network Sizes

5.4 Practical Evaluation of Proposed Methods

of Local Time Update

In this section, we evaluate the performance of TSAP, UAF and BAF by looking at

the error profiles and the evolution of the node time as a function of the gateway

time. In this practical evaluation we adopt only the grid topologies shown in

section 4.3.3 and the performance of each method is tested using the criteria

given in section 5.3.1. A summary of the critical values in the dip region is also

given for each method. Detailed explanations on the methods and materials used

in the practical experiments are presented in section 4.3.2.

149

5.4.1 Practical Results for Timed Sequential Asyn-

chronous Update (TSAU)

Figures 5.34, 5.35, 5.36 show the error, profile plot and node time values plot

both against the gateway time of the 4, 9 and 16 node networks respectively. We

observe from these figures that, the dip phenomenon is exhibited by all network

configurations for Timed Sequential Asynchronous Update (TSAU) with all net-

works registering, average minimum error in Edipmin in the 10−4 range. For the 4,

9 and 16 node networks, we observe Edipmin to be 4.17 × 10−4, 3.57 × 10−4 and

2.89 × 10−4 respectively. Hence the synchronization accuracy in the dip region

can be said to improve with increased network size/density. We also observe kdipmin

of 13, 48 and 109 for the 4, 9 and 16 node networks respectively. Hence the num-

ber of iterations needed to reach the dip region increases with increased network

size/density.

Figure 5.34: Practical Node Time and Error Profiles for 4 Grid Topology

Finally for Vkdipmin
, we observe values of 0, 0.27 and 0.17 for the 4, 9 and 16 node

150

Table 5.10: 4 Node Grid Network Dip Region Results Comparison

Topologies Grid
Nodes Iteration Error

N1 13 6.21E-04
N2 13 3.10E-04
N3 13 3.10E-04

Statistics

Mean 13 4.14E-04
Minimum 13 3.10E-04
Maximum 13 6.21E-04
Variance 0.00 3.21E-08

Figure 5.35: Practical Node Time and Error Profiles for 9 Grid Topology

networks respectively. Hence the variance of the number of iterations needed to

reach the dip region is below 0.3 for all networks. This is an advantageous feature

for this method if employed for local time update in the proposed protocol. The

summary of the dip region results for the 4, 9 and 16 node networks are given in

Tables 5.10, 5.11 and 5.12 respectively.

151

Table 5.11: 9 Node Grid Network Dip Region Results Comparison

Topology Grid
Nodes Iteration Error

N1 49 3.25E-04
N2 49 5.57E-04
N3 48 3.27E-04
N4 49 5.57E-04
N5 48 3.27E-04
N6 48 2.18E-04
N7 48 3.27E-04
N8 48 2.18E-04

Statistics

Mean 48 3.57E-04
Minimum 48 2.18E-04
Maximum 49 5.57E-04
Variance 0.27 1.74E-08

5.4.2 Practical Results for Unidirectional Asynchronous

Flooding (UAF)

Figures 5.37, 5.38, 5.39 show the error, profile plot and node time values plot

both against the gateway time of the 4, 9 and 16 node networks respectively. We

observe from these figures that, the dip phenomenon is exhibited by all network

configurations for Unidirectional Asynchronous Flooding (UAF) with all networks

registering, average minimum error in Edipmin in the 10−4 range.

For the 4, 9 and 16 node networks, we observe Edipmin to be 3.44×10−4, 2.69×10−4

and 2.89×10−4 respectively. Hence the synchronization accuracy in the dip region

can be said to improve with increased network size/density. We also observe

kdipmin of 18, 88 and 109 for the 4, 9 and 16 node networks respectively. Hence

the number of iterations needed to reach the dip region increases with increased

152

Figure 5.36: Practical Node Time and Error Profiles for 16 Grid Topology

Figure 5.37: Practical Node Time and Error Profiles for 4 Grid Topology

network size/density. Finally for Vkdipmin
, we observe values of 0, 0 and 0.24 for

the 4, 9 and 16 node networks respectively. Hence the variance in the number

of iterations needed to reach the dip region is below 0 for all networks except

the 16 node network. This is similar to the simulation which gives this protocol

a an advantageous feature for implementation in the proposed protocol 13. The

summary of the dip region results for the 4, 9 and 16 node networks are given in

13Refer Figure 3.1, section 3.2

153

Table 5.12: 16 Node Grid Network Dip Region Results Comparison

Topology Grid
Nodes Iteration Error

N1 109 6.08E-04
N2 109 3.19E-04
N3 109 5.69E-05
N4 109 2.99E-04
N5 109 3.19E-04
N6 109 2.91E-05
N7 109 3.16E-04
N8 109 4.53E-04
N9 109 5.69E-05
N10 109 3.16E-04
N11 108 3.04E-04
N12 108 2.55E-04
N13 109 2.99E-04
N14 109 4.53E-04
N15 108 2.55E-04

Statistics

Mean 109 2.89E-04
Minimum 108 2.91E-05
Maximum 109 6.08E-04
Variance 0.17 2.41E-08

Tables 5.13, 5.14 and 5.15 respectively.

5.4.3 Practical Results for Bidirectional Asynchronous

Flooding (BAF)

Figures 5.40, 5.41, 5.42 show the error, profile plot and node time values plot

both against the gateway time of the 4, 9 and 16 node networks respectively. We

observe from these figures that, the dip phenomenon is exhibited by all network

configurations for Bidirectional Asynchronous Flooding (BAF) with all networks

registering, average minimum error in Edipmin in the 10−4 range.

154

Table 5.13: 4 Node Grid Network Dip Region Results Comparison

Topologies Grid
Nodes Iteration Error

N1 18 4.31E-04
N2 18 3.01E-04
N3 18 3.01E-04

Statistics

Mean 18 3.44E-04
Minimum 18 3.01E-04
Maximum 18 4.31E-04
Variance 0.00 5.60E-09

Figure 5.38: Practical Node Time and Error Profiles for 9 Grid Topology

For the 4, 9 and 16 node networks, we observe Edipmin to be 4.1×10−4, 2.2×10−4

and 1.14×10−4 respectively. Hence the synchronization accuracy in the dip region

can be said to improve with increased network size/density. We also observe

kdipmin of 13, 50 and 96 for the 4, 9 and 16 node networks respectively. Hence

the number of iterations needed to reach the dip region increases with increased

network size/density. Finally for Vkdipmin
, we observe values of 0, 2.79 and 13.11 for

the 4, 9 and 16 node networks respectively. Hence the variance in the number of

iterations needed to reach the dip region is high compared to the other methods

155

Table 5.14: 9 Node Grid Network Dip Region Results Comparison

Topology Grid
Nodes Iteration Error

N1 58 2.07E-04
N2 58 2.95E-04
N3 58 2.61E-04
N4 58 2.82E-04
N5 58 2.47E-04
N6 58 2.26E-04
N7 58 3.92E-04
N8 58 2.38E-04

Statistics

Mean 58 2.69E-04
Minimum 58 2.07E-04
Maximum 58 3.92E-04
Variance 0.00 3.29E-09

Table 5.15: 16 Node Grid Network Dip Region Results Comparison

Topology Grid
Nodes Iteration Error

N1 105 4.05E-04
N2 105 4.05E-04
N3 105 4.29E-04
N4 105 4.62E-04
N5 105 4.05E-04
N6 105 4.12E-04
N7 105 4.50E-04
N8 104 3.69E-04
N9 105 4.29E-04
N10 105 4.50E-04
N11 104 3.07E-04
N12 104 1.35E-04
N13 105 4.62E-04
N14 104 3.69E-04
N15 104 1.35E-04

Statistics

Mean 105 3.75E-04
Minimum 104 1.35E-04
Maximum 105 4.62E-04
Variance 0.24 1.11E-08

156

Figure 5.39: Practical Node Time and Error Profiles for 16 Grid Topology

Figure 5.40: Practical Node Time and Error Profiles for 4 Grid Topology

for all networks except the 4 node network where it is zero. The summary of the

critical parameters dip region results for the 4, 9 and 16 node networks are given

in Tables 5.16, 5.17 and 5.18 respectively.

157

Table 5.16: 4 Node Grid Network Dip Region Results Comparison

Topologies Grid
Nodes Iteration Error

N1 13 6.21E-04
N2 13 3.10E-04
N3 13 3.10E-04

Statistics

Mean 13 4.14E-04
Minimum 13 3.10E-04
Maximum 13 6.21E-04
Variance 0.00 3.21E-08

Figure 5.41: Practical Node Time and Error Profiles for 9 Grid Topology

5.4.4 Practical Comparison between Proposed Methods of

Local Time Update

5.4.4.1 Minimum Error in Dip Region, Edipmin

In Figure 5.43, we compare the synchronization accuracy in the dip region for

TSAU, UAF, BAF and STU. From the results, we observe that STU registers the

lowest error as compared to all the other methods for the 4 node network. This

is followed bu UAF, whereas BAF and TSAU have almost the same performance.

158

Table 5.17: 9 Node Grid Network Dip Region Results Comparison

Topology Grid
Nodes Iteration Error

N1 52 7.70E-03
N2 52 1.27E-03
N3 50 2.52E-03
N4 52 7.27E-04
N5 50 1.77E-03
N6 48 1.93E-03
N7 50 6.20E-04
N8 48 1.03E-03

Statistics

Mean 50 2.20E-03
Minimum 48 6.20E-04
Maximum 52 7.70E-03
Variance 2.79 5.36E-06

For the 9 and 16 node networks, BAF registers the highest error. In the network

of 9 nodes, the accuracy of UAF in the dip region is nearly the lowest followed by

STU then TSAU.

TSAU is observed to have a lowest error than UAF and STU for the 16 node

network. We also observe that, for TSAU, synchronization accuracy increases

as the network gets bigger. This pattern is however not observed for the other

asynchronous methods by is inverse for STU. In general, we can say conclude here

that UAF showed the best accuracy in terms of synchronization in the dip region

for the asynchronous schemes. This is followed by TSAU. BAF was observed to

have the least synchronization accuracy especially for the large networks.

159

Figure 5.42: Practical Node Time and Error Profiles for 16 Grid Topology

5.4.4.2 Communication Cycles to Reach Dip Region, kdipmin

In Figure 5.44, we compare the number of iterations required to reach minimum

error in the dip region for TSAU, UAF, BAF and STU for the practical exper-

iments. From the results, we observe that TSAU and BAF required the least

number of iterations to reach the dip region for the 4 node network, followed by

STU and the UAF. For the 9 nodes network, BAF and TSAU required the least

number of iterations to reach the dip region followed by STU then UAF. For the

16 node network we observe a clear pattern of performance. STU registers the

least value of kdipmin, this is followed by BAF then UAF then TSAU. In general kdipmin

increases as the number of network nodes increase.

In general, we can infer here that, for the number of iterations needed to reach

the minimum error in the dip region, STU performs best, followed by BAF then

TSAU. UAF was observed to have the least performance as shown in Figure 5.44

although it outperforms TSAU in the 16 node network. From the operation of

160

Table 5.18: 16 Node Grid Network Dip Region Results Comparison

Topology Grid
Nodes Iteration Error

N1 99 1.57E-03
N2 99 1.57E-03
N3 98 8.87E-04
N4 97 1.09E-03
N5 99 1.57E-03
N6 98 2.83E-04
N7 96 8.93E-04
N8 94 7.12E-04
N9 98 8.87E-04
N10 96 8.93E-04
N11 93 3.81E-04
N12 88 2.28E-03
N13 97 1.09E-03
N14 94 7.12E-04
N15 88 2.28E-03

Statistics

Mean 96 1.14E-03
Minimum 88 2.83E-04
Maximum 99 2.28E-03
Variance 13.11 3.61E-07

STU 14, all nodes update at each communication instant whereas in TSAU 15, UAF

16 and BAF17 only a subset of the nodes update, at each communication instant

the clocks or time values of nodes not updating in the asynchronous methods still

progress or tick. This is because the clock of a node is still active even if the node

sleeps 18. Therefore it is fair to take an iteration in all the methods to be the

same.

14Refer Algorithm 2, section 4.3.7
15Refer Algorithm 3, section 5.2.1
16Refer Algorithm 4, section 5.2.2
17Refer Algorithm 5, section 5.2.3
18A detailed exposition on clocks is given in section 2.2

161

Figure 5.43: Practical Comparison of Minimum Errors, Edipmin for TSAU, UAF and
BAF For Varying Network Sizes

5.4.4.3 Variance in Communication Cycles to Reach Dip Region, Vkdipmin

In Figure 5.45, we compare the variances in the number of communication cycles

required to reach minimum error in the dip region for TSAU, UAF, BAF and

STU for our practical experiments on the grid networks. First we observe that all

methods had null variances for the small network except for STU. For the large

networks, we observe that UAF performs best by having zero variance for 4 and

9 node networks. This is a very crucial since all nodes can stop update, sleep,

wakeup and activate at the same time. This unique feature in the practical results

gives UAF a clear advantage over all the other methods. TSAP has the next best

162

Figure 5.44: Practical Comparison of Communication Cycles, kdipmin for TSAU,
UAF and BAF For Varying Network Sizes

performance for the 9 and 16 node networks, followed by STU. The performance

of BAF on the large networks is observed to be the least for this metric.

5.5 Simulation on Network with Stochastic Link

Connectivity

To test the error profile created by the averaging procedure, in particular the

transient dip in the error profile 19, the test network in Figure 5.46 is simulated

on a network with random connectivity links. Node 1 is selected as the gateway

19Refer [51] Section II, C

163

Figure 5.45: Practical Comparison of Variances in Communication Cycles, Vkdipmin

for TSAU, UAF and BAF For Varying Network Sizes

node and a communication rate of 1 KHz is used. A connectivity function, f(Cij)

among nodes is modeled as a Bernoulli random variable as shown in Figure 5.46

with a discrete probability distribution function given by:

f(Cij) =

p if Cij = 1

1− p if Cij = 0

(5.1)

Where p is the probability that the channel is on and the nodes are communi-

cating and Cij is the channel connectivity binary variable which ′1′ if the channel

between nodes i and j is active and functional and ′0′ otherwise.

164

Figure 5.46: Network for Channel Availability Test

For each method, we present the error profile for each node taken at four values

for p: p = 1 where the links are available 100% of the time, p = 0.75 and p = 0.5

and 0.25 where communication links malfunction 25%, 50% and 75% of the time,

respectively. The error profile represents a graph of the error between the evolving

time series of each node and the gateway node.

Figures 5.47, 5.48 and 5.49 show the error profiles for TSAU, UAF and BAF

respectively. We observe that, the dip characteristic persists in each profile at all

levels of connectivity in both methods. As expected, the error profile becomes

less well defined as the probability of links being active decreases. It is observed

that, for both all methods, error values range between 10−3 and 10−4. Further,

we observe that number of iterations required to reach the dip region is higher

165

Figure 5.47: Node Error profile for the Test Network for Different Probabilities of
Channel Availability for TSAU

Figure 5.48: Node Error profile for the Test Network for Different Probabilities of
Channel Availability for UAF

in UAF as compared to TSAU with BAF registering lowest errors for all nodes

but the nodes are more tightly synchronized in UAF and TSAU as compared to

BAF. Also for all methods, it is observed that, the number of iterations required

to reach the dip error remains nearly the same irrespective of link availability.

166

Figure 5.49: Node Error profile for the Test Network for Different Probabilities of
Channel Availability for BAF

5.6 Summary

In this chapter, three methods based on asynchronous consensus were proposed

for local node time update. The first method named Timed Sequential Asyn-

chronous Update (TSAU) carries out time updates asynchronously through se-

quential activation of nodes one at a time using proximity to the gateway node.

The second method, Unidirectional Asynchronous Flooding (UAF) improves the

design of TSAU by allowing nodes at approximately same proximity to the gate-

way node to update at the same communication instant. Node activation in UAF

is coordinated by the gateway node. The third method dubbed Bidirectional

Asynchronous Flooding (BAF) removes the need for the gateway coordination of

activation through an adaptive bidirectional wakeup cycle.

Simulation and practical experiments of each method was then conducted for

4, 9 and 16 networks configured in the grid, random and hexagonal topologies.

167

The results for all the suggested methods and the Synchronous Time Update

(STU) method are compared using the three key parameters of evaluation: the

average minimum error in dip region, Edipmin, the number of communication cycles

to reach dip region, kdipmin and the variance in the number of communication cycles

required to reach minimum error in the dip region, Vkdipmin
. For the simulation

results, we observed that, in general, UAF showed the best accuracy in terms of

synchronization in the dip region followed by STU then TSAU. BAF was observed

to have the least synchronization accuracy especially for the large networks. A

similar performance pattern was observed for the practical results.

We also inferred from our simulations that, for the number of iterations needed

to reach the minimum error in the dip region, BAF generally performs best, fol-

lowed by TSAU then UAF. For the practical results, STU was observed performs

best, followed by BAF then TSAU and UAF had the least performance. For the

last parameter, Vkdipmin
, UAF outperformed all the other methods for all networks.

TSAP has the next best performance for the 9 and 16 node networks, followed

by STU. The performance of BAF on the large networks was the least for this

metric. Similar observations were made for the practical experimental results.

The comparative analyses carried out in this chapter are done between the de-

veloped local time update methods for the suggested time synchronization protocol

and the parameters considered are specific to it. To ascertain the performance of

our suggested schemes on real time networks, an extensive experimental evaluation

is required to compare these schemes to some reported relevant synchronization

168

protocols in the literature. This task is carried out in the next chapter, where we

adopt two distributed and two centralized reported protocols for the comparative

evaluation.

Simulation sensitivity test was carried out for all three methods on a network

with stochastic connectivity. The dip feature of the protocol was observed to

persist for all methods with link failures up to 75%.

169

CHAPTER 6

EXPERIMENTAL

PERFORMANCE

EVALUATION: COMPARISON

WITH OTHER PROTOCOLS

6.1 Introduction

This chapter focuses on a comparative experimental evaluation of the sug-

gested asynchronous local time update schemes: TSAU, UAF and BAF with

two fully distributed protocols: Energy Efficient Gradient Time Synchronization

protocol (EGTSP) and Average Proportional-Integral Synchronization protocol

(AvgPISync) and two centralized flooding-based protocols: Flooding Time Syn-

chronization Protocol(FTSP) and Flooding Proportional-Integral Synchroniza-

170

tion protocol (FloodPISync) 1. The experimental framework and methodology

adopted for TSAU, UAF and BAF are in section 4.3.2. FTSP and FloodPISync

are flooding-based protocols where time synchronization is done by synchronizing

all network nodes to a reference node. In FTSP [58] the estimation of the reference

node clock is done using linear regression. In FloodPISync [20], clock synchro-

nization is done by adjusting the drifts and offsets of each network node using

the proportional-integral controller analogy so as to estimate the clock speed and

offset of a reference or root node. AvPISync [20] is a distributed protocol where

the speed of node logical clocks are adjusted using PI controllers. In this proto-

col, neighborhood and hence global synchronization is achieved through average

consensus, which is also used in our proposed methods. EGTSP [45] is a localized

algorithm that achieves a global time consensus and gradient time property using

effective drift compensation and incremental averaging estimation. Detailed re-

view of these protocols are given in chapter 2. To compare the proposed methods

with these reported protocols in the literature, the main parameters considered for

evaluation are the global and local synchronization errors [45, 48, 58], the mem-

ory required to efficiently execute and store the core heuristics and parameters for

each protocol [32, 65], and the energy consumed [40, 56] by a node to fully run

the protocol.

1The source codes for AvgPISync, EGTSP, FTSP and FloodPISync are publicly
available in the GitHub for TinyOS applications repositories

171

6.1.1 Test Networks

In our experiments, we utilize a line and grid topology of 16 nodes shown in Figure

6.1. Experiments on line topologies allows for the scalability of protocols to be

tested since the performance of flooding based time synchronization protocols

degrade with increase in network diameter [38] whereas experiments on the grid

topology gives an indication of the performance of time synchronization protocols

when subjected to some adverse network conditions like contention, congestion

and increased packet collisions [32, 66]. It should be noted here that, in order to

realize these network configurations for our experiments, network nodes are forced

to accept packets from only some nodes. The testbed setup of the nodes which

entails the way each network operates for our experiments for TSAU, UAF and

BAF is discussed in section 4.3.2.1.

6.1.2 Experiment Parameters

In our experiments, a beacon period, B of 30 seconds was used for all protocols.

The least-squares regression table used for FTSP and EGTSP is kept at a capacity

of 8 elements as used for the comparative work in [39, 58]. The experimental

parameters for FloodPISync and AvgPISync, β, αmax and emax are set respectively

at 1, 3.33× 10−8 and 6000 ticks as used for comparisons in [20]. Since it takes a

number of pooling cycles for FTSP to elect the root node, the protocol is modified

to have a fixed root node. Node ’1’ is used as the reference node for the FTSP

and FloodPISync experiments and used as the gateway node for TSAU, UAF

172

(a) Grid Topology

(b) Line Topology

Figure 6.1: Distribution of Sensor Nodes for Practical Experiments

and BAF. A TMicro timer ticking periodically at an interval of 1000 2 is used

for the gateway node in the experiments for TSAU, UAF and BAF. When each

experiment commences, network nodes are switched on randomly within 2 minutes

of operation with each experiment taking about 3.8 hours.

6.1.3 Energy Consumption and Memory Requirements

In this section we present an evaluation of the performances of EGTSP, FTSP,

AvgPISync, FloodPISync, TSAU, UAF and BAF in terms energy consumption

and memory requirements. For a time synchronization protocol to operate effi-

ciently, it’s operation must conserve resources which are deemed scarce for WSN

2i.e., ∆ of 1 ms

173

nodes. The Random Access Memory (RAM) is the memory used to store node

information obtained from the network during the execution of the protocol and

therefore determines the main memory requirements of the protocol 3. This re-

source must therefore be conserved especially in distributed protocols where the

retention of neighborhood clock information is necessary for effective operation.

For each node to store the main protocol application source code and the aux-

iliary codes and interfaces required to carryout synchronization, the Read-Only

Memory is needed, which is also a limited resource and must be conserved. The

core heuristics and main applications of the protocol must be effective to syn-

chronize all network nodes but simple enough to fit on the ROM4. Since most

wireless sensor nodes perform other tasks, like routing, clustering, congestion con-

trol and traffic management, the time synchronization protocol should occupy only

a small fraction of the available ROM space. Apart from conserving the RAM

and ROM, each protocol must also conserve the energy consumption of network

nodes. Crucial for energy consumption is the number of communication cycles,

the CPU overhead 5 and the length of synchronization messages. For the number

of communication cycles, the higher the frequency at which nodes communicate,

the higher the amount of information needed to be exchanged to achieve syn-

chronization and the more energy is expended in the transmission and reception

of synchronization messages. Also the higher the CPU overhead, the higher the

3The Memsic MicaZ nodes are equipped with 4kB RAM
4Each Memsic MicaZ node is equipped with 128kB program flash memory
5The CPU overhead is the time in ticks taken for a recently received synchronization

message to be processed and used to update the clock of a node. It should be noted
that 1 tick = 1 µs.

174

energy needed to process and update the time synchronization information. The

length of the message is also a crucial determinant in the time taken to transmit,

receive and process synchronization messages. In Table 6.1, we present the CPU

overhead, the message length and the main memory (RAM) and flash momory

(ROM) requirements for EGTSP, FTSP, AvgPISync, FloodPISync, TSAU, UAF

and BAF.

(a) FTSP and FloodPISync Payload Fields

(b) EGTSP Payload Fields

(c) BAF Payload Fields

(d) UAF Payload Fields

(e) AvgPISync and TSAU Payload Fields

Figure 6.2: TimeSync Packet Payload Field Descriptions for FTSP, FloodPISync,
EGTSP, AvgPISync, TSAU, UAF and BAF

In the operation of FTSP, when a new synchronization packet is received,

FTSP is designed to store the current clock information in an 8 element regression

table and conduct least square regression computations involving several float

point divisions and multiplications [37], hence is observed to have the high CPU

overhead of 5440 ticks. EGTSP carries out all these tasks and but also computes

the averages of the clock rate multiplies and offsets. This involves the storage

175

of neighborhood time values and the averaging involves arithmetic operations

and floating points. EGTSP has the highest CPU overhead of approximately

5610 ticks. For AvgPISync and FloodPISync, the protocols are lightweight

and carry out few additions and multiplications with almost no float point

divisions and are therefore observed to each consume a significantly reduced

computation time or CPU overhead of 145 ticks. TSAU carries out an averaging

calculation in each cycles and also maintains the parameter, UpdateT ime

which regulates the sequential activation. TSAU has a CPU overhead of

133. For UAF, the mathematical computations involves just the additions

and floating point division used in calculating the average and hence has the

lowest CPU overhead of 133 ticks, whereas in BAF the CPU overhead increases

by 29 ticks due to the added logical operations involving the counter variable, ci
6.

Table 6.1: Memory Requirements, CPU Overhead, and Synchronization Message
Length of FTSP, FloodPISync, EGTSP, AvgPISync, TSAU, UAF and BAF

Protocols
Centralized Distributed Proposed

FTSP FloodPISync EGTSP AvgPISync TSAU UAF BAF

CPU Overhead (ticks) '5440 '145 '5610 '145 '141 '133 '162
Message Length (bytes) 9 9 11 6 6 7 9
Main Memory (bytes) 52 16 64|N |+ 12 16 12 12 14
Flash Memory (bytes) 17974 17974 20738 16166 13510 13320 12282

As shown in Figure 6.2 (a), for FTSP and FloodPISync, each synchronization

payload is composed of 2 bytes reference or root node ID, 2 bytes node ID of the

particular node sending the packet, 4 bytes current clock information and 1 byte

6ci is the variable included to ensure automatic regulation of the asynchronous bidi-
rectional cycling (Refer section 5.2.3, Algorithm 5, lines 9 and 11)

176

sequence number, making a total message length of 9 bytes as shown in Table 6.1.

For EGTSP, each payload is composed of 1 byte sequence number, 2 bytes node ID

of the particular node sending the packet, 4 bytes local time and 4 bytes local time,

making the total message length of 11 bytes as shown in Figure 6.2 (b). For TSAU

and AvgPISync each payload has a length of 6 bytes composed of node ID of the

particular node sending the packet and 4 bytes global time as shown in Figure 6.2

(e). For UAF, each synchronization payload shown in Figure 6.2 (d) is composed

of 2 bytes node ID of the particular node sending the packet, 4 bytes current

clock information and 1 bytes for the binary-status bit variable, si, making a total

message length of 7 bytes. The added counter variable, ci is the only difference

between BAF and UAF packets and hence BAF has a total message length of 9

bytes similar to FTSP and FloodPISync. Based on the clock model presented by

Equation 2.2 in [20] which is employed in the source code of all these protocols,

each protocol is required to store a hardware clock of 4 bytes, a logical clock of 4

bytes and a rate multiplier of 4 bytes. In addition to this, FTSP allocates 40 bytes

for its regression table [37] whereas AvgPISync and FloodPISync allocates 4 bytes

for storing an error parameter [20]. EGTSP also requires an extra 64 bytes of

memory allocated to keep track of each neighbouring node, which is an extremely

big memory overhead. Hence EGTSP requires a total of (64|N |+12)bytes, where

|N | denotes the maximum neighborhood cardinality. For TSAU, UAF and BAF,

no memory allocation is required for the storage of neighboring node(s) or gateway

node clocks, but 2 bytes is allocated for the counter variable, ci in BAF. Therefore

177

as shown in Table 6.1, the main memory (RAM) required for the execution and

operations of FTSP, FloodPISync, EGTSP, AvgPISync, TSAU, UAF and BAF

are 52 bytes, 16 bytes, (64|N |+ 12)bytes, 16 bytes,12 bytes, 12 bytes and 14 bytes

respectively. Hence both TSAU, UAF and BAF outperforms all the other reported

protocols in terms of memory requirements. For the flash memory (ROM), FTSP

requires 17947 bytes, FloodPISync requires 16352 bytes, EGTSP requires 20738

bytes,AvgPISync requires 16166 bytes, TSAU requires 13510 bytes, UAF requires

13320 bytes and BAF requires 12282 bytes.

Table 6.2: Current Consumption by MicaZ Nodes [1]

Operation MicaZ

Minimum Voltage 2.7 V
Standby 27.0 µA
MCU Idle 3.2 mA
MCU Active 8.0 mA
MCU + Radio RX 23.3 mA
MCU + Radio TX (0 dBm) 21.0 mA

In order to calculate the total energy consumed, we need to combine the total

required energy for transmission, reception and processing. For the Memsic MicaZ

nodes employed in this work, the minimum voltage, vmin required, the current

consumed in transmission, iTX , the current consumed in reception, iRX and the

current consumed by the microcontroller in active mode, iMCU are given in Table

6.2. Given a default 11 bytes header and 7 bytes footer for TinyOS packets, the

total packet length, L of FTSP, FloodPISync and BAF is 27 bytes each, that of

AvgPISync and TSAU is 24 bytes each, that of EGTSP is 29 bytes and that of

178

UAF, 25 bytes. Given a CPU overhead, c and a data rate, R of 250 kbps 7, the

total energy, ET require for each protocol can given as;

ET = c× iMCU × vmin +
L

R
× iTX × vmin +

L

R
× iRX × vmin (6.1)

Based on Equation 6.1, the energy required for FTSP, FloodPISync, EGTSP,

AvgPISync, TSAU, UAF and BAF are given respectively as 130.4 µJ , 16.1 µJ ,

135 µJ , 14.6 µJ , 14.53 µJ , 14.8 µJ and 16.4 µJ . Hence we observe that TSAU

consumes least power but has nearly a similar consumption with UAF followed by

the PISync protocols then BAF. EGTSP consumes the highest power among all

the protocols. We see here that our proposed protocols consume about 9 times less

than FTSP and EGTSP but approximately similar consumption as the PISync

protocols.

6.1.4 Local and Global Synchronization Errors

To evaluate the synchronization accuracy for each protocol, the differences in clock

values of network nodes has to be observed. We accomplish this by collecting all

nodes’ clock values at each communication instant, k. Network-wide synchroniza-

tion error at each communication instant is then calculated using the maximum

global synchronization error, EG
max and the average global synchronization error,

EG
avg which gives a measure of the global synchronization accuracy for all nodes

given by Equations 6.2 and 6.4 respectively [20]. Further, we observe the syn-

7Chipcon CC2420 radio chip provides a 250 kbps data rate at 2.4 GHz frequency.

179

chronization error of nodes with respect to their neighbors by using the maximum

local synchronization error, EL
max and the average local synchronization error, EL

avg

which given respectively by Equations 6.3 and 6.5 [39]. An important note here

is that, since our suggested synchronization ceases update at the dip region, it is

fair to compare the above described parameters with the global and local errors

in the dip region for our developed method. The time taken for the network to

synchronize to a global time, i.e. convergence time is also compare. For TSAU,

UAF and BAF, the convergence time is the same as the number of communication

cycles needed to reach the dip region depicted by the parameter, kdipmin.

EG
max = max

i,j∈V
(ti(k)− tj(k)) (6.2)

EL
max = max

i∈V,j∈E
(ti(k)− tj(k)) (6.3)

EG
avg =

1

N

∑
i∈V

max
i,j∈V

(ti(k)− tj(k)) (6.4)

EL
avg =

1

N

∑
i∈V

max
i∈V,j∈E

(ti(k)− tj(k)) (6.5)

Where V and E are the global network vertex set and the neighborhood graph

vertex set respectively and N is the number of nodes in the network.

6.1.4.1 Comparison: Synchronization Error for Grid Topology

In this section we compare the performance of each protocol in terms of local and

global errors for the grid topology. The maximum and average, local and global

errors are presented for FTSP, FloodPISync, EGTSP, AvgPISync, TSAU, UAF

180

and BAF by Figures 6.8, 6.5, 6.9, 6.6, 6.4, 6.3 and 6.7 respectively. The

critical values for these metrics including the convergence time are summarized

in Table 6.3. First we observe that, the global and local errors curve for TSAU,

UAF and BAF show a more smooth characteristic as compared to AvgPISync,

EGTSP, FTSP and FloodPISync.

This might stem from the fact that in our methods of time update, clock

estimation is not done by an independent estimation of clock skew rate and offset

like in these other protocols but is done by directly using the global logical time

values. Although individual estimation of skew rate and offset is widely reported

in a myriad of synchronization protocol, for our method of synchronization, the

skew rate and offset would still converge to a consensus value so far as for any

network node, i, there exist a spanning path from it to the gateway node.

Secondly, we observe the dip characteristics 8 of the algorithm in all the global

and local errors. With a well defined minimum error our proposed method are

expected to locate the transient and stop update. This is a huge advantage for

our proposed synchronization protocol because unlike the other protocols where

nodes are continuously, communicating and estimating the global time through

drift and offset compensation, nodes running on TSAU, UAF and BAF only need

to identify the transient dip, stop updates and sleep to conserve a lot of energy.

From the results we observe that, the global and local errors for BAF far

out perform all the other protocols as shown in Table 6.3. This is followed by

TSAU then UAF. We further observe from Table 6.3 that, FTSP outperforms

8Refer section 3.2.3

181

FloodPISync on the grid topology in terms all the error registering an average

local error on 4.1 µs as compared to 6.2µs for FloodPISync. We also observed

that, EGTSP performed worst on the grid network with a maximum global error

as high as 42 µs as compared to the highest for our method, maximum global error

for UAF at 4 µs. Hence given the same network, after convergence is achieve in

the dip region, at worst it will take about 10 time the same time for our proposed

method to drift to the same level as EGTSP on a grid network. The protocol with

a near performance to our schemes is AvgPISync which has error values about 1.5

time that of UAF.

Table 6.3: Global and Local Error Comparison for Grid Topology

Global and Local Error Comparison for Grid Topology

Protocols
Centralized Distributed Proposed

FTSP FloodPISync EGTSP AvgPISync TSAU UAF BAF

Max. Global(µs) 8.0 13.0 42.0 6.0 0.73 4.00 0.42
Avg. Global(µs) 6.9 11.6 37.8 5.0 0.47 3.80 0.20
Max. Local(µs) 8.0 13.0 42.0 5.0 0.53 1.50 0.23
Avg. Local(µs) 4.1 6.2 18.4 2.9 0.35 0.47 0.14
Conv. Time(s) 900 750 1000 1200 400 155 230

On the convergence time, TSAU, UAF and BAF also out performed all the

other protocols. We observe that, the centralized protocols outperformed the

distributed protocols on the grid networks. This might be due to the time take

to exchange neighborhood information and estimate global time, whereas for the

centralized protocols nodes just pass on the clock information of the root node

for estimation. Our proposed methods are all decentralized and communication

is done only with 1-hop neighbors therefore a lower convergence time is observed.

182

Since for TSAU only one node updates at a time, we observe that it takes about

twice more time for the network to converge as compared to UAF and BAF as

shown in Table 6.3.

Figure 6.3: UAF Neighborhood and Global Synchronization Error for Grid Topol-
ogy

183

Figure 6.4: TSAU Neighborhood and Global Synchronization Error for Grid
Topology

Figure 6.5: FloodPISync Neighborhood and Global Synchronization Error for
Grid Topology

184

Figure 6.6: AvgPISync Neighborhood and Global Synchronization Error for Grid
Topology

Figure 6.7: BAF Neighborhood and Global Synchronization Error for Grid Topol-
ogy

185

Figure 6.8: FTSP Neighborhood and Global Synchronization Error for Grid
Topology

Figure 6.9: EGTSP Neighborhood and Global Synchronization Error for Grid
Topology

186

6.1.4.2 Comparison: Synchronization Error for Line Topology

The results for global and local performances of the protocols in a line topology are

presented in this section. The maximum and average, local and global errors are

presented for FTSP, FloodPISync, EGTSP, AvgPISync, TSAU, UAF and BAF

by Figures 6.16, 6.12, 6.14, 6.13, 6.10, 6.11 and 6.15 respectively and Table

6.4 summarizes these results including the convergence time.

For TSAU, UAF and BAF, the characteristics of the error curves are observed

to be similar to those of the grid topology but almost all the global and local errors

are have surprisingly lower values as compared to those in the grid topology. For

TSAU we observed all global and local error values to be below 0.7 µs as compared

the grid topology where values go as high as 4µs. This is understandable because

TSAU operate one node at a time so a structured line networks fit its operation as

compared to the grid topology. But TSAU still recorded the higher error values

as compared to UAF and BAF. BAF still performed best in terms of local and

global error followed by UAF. This pattern is also identical to the comparative

results in chapter 5.

For FTSP, we observe a graph with high overshoots and undershoots as com-

pared to the grid error curves.Also we note that, PBAF has the lowest local and

global skews in the steady state region. But as opposed to the results in the

grid topology, UAF out performs both FloodPISync and FTSP for the grid topol-

ogy. EGTSP has the worst performance with error values in the hundreds. All

the other protocols also registers in the tens compared to values less than one

187

in TSAU, UAF and PBAF. Hence, once the stopping criterion is able to stop

node updates in the dip region, our proposed protocol will outperformed all these

protocols by a huge margin.

Table 6.4: Global and Local Error Comparison for Line Topology

Global and Local Error Comparison for Line Topology

Protocols
Centralized Distributed Proposed

FTSP FloodPISync EGTSP AvgPISync TSAU UAF BAF

Max. Global(µs) 63.0 51.0 519.0 50.0 0.66 1.01 0.34
Avg. Global(µs) 61.5 50.0 418.8 50.0 0.30 2.80 0.18
Max. Local(µs) 62.0 50.0 225.0 50.9 0.57 0.77 0.21
Avg. Local(µs) 22.7 15.4 195.3 29.8 0.38 0.36 0.10
Conv. Time(s) '2150 '550 '1700 '1750 '400 '150 '250

In the line topology, we see an even larger convergence time for all protocols

except FloodPISync. Also TSAU, UAF and BAF have nearly similar convergence

times as in the grid topology but we observe that BAF has an increased conver-

gence time from 230µs in the grid topology to 250 µs in the line network. It

is also observed here that, FTSP has about more than 5 time convergence time

as compared to our developed methods. FloodPISync still registered the lowest

convergence time for the reported protocols whereas EGTSP and AvgPISync have

a fairly high convergence time. Hence we can infer that amongst our protocols

UAF performs best in terms of convergence time with is matches the results in

chapter 5.

188

Figure 6.10: TSAU Neighborhood and Global Synchronization Error for Line
Topology

Figure 6.11: UAF Neighborhood and Global Synchronization Error for Line Topol-
ogy

189

Figure 6.12: FloodPISync Neighborhood and Global Synchronization Error for
Line Topology

Figure 6.13: AvgPISync Neighborhood and Global Synchronization Error for Line
Topology

190

Figure 6.14: EGTSP Neighborhood and Global Synchronization Error for Line
Topology

Figure 6.15: BAF Neighborhood and Global Synchronization Error for Line Topol-
ogy

191

Figure 6.16: FTSP Neighborhood and Global Synchronization Error for Line
Topology

6.2 Summary

In this chapter, a comprehensive comparative experimental evaluation was car-

ried out for our developed local time update methods: TSAU, UAF and BAF as

against FTSP, EGTSP, AvgPISync and FloodPISync. The experimental param-

eters adopted for the evaluation of all the protocols were discussed in detail. The

test networks employed for the evaluation were 16 node networks of grid and line

topologies.

For each protocol, we evaluated how much access and flash memory it requires

to effectively synchronize a network. We observed that TSAU, UAF and BAF had

less access and flash memory requirements as compared to the other protocols.

192

For our developed methods, TSAU had the least memory requirements followed

by UAF and then BAF. We also compared the packet length of each protocol

and observed that, FTSP, FloodPISync and BAF need 27 bytes each, AvgPISync

and TSAU is require 24 bytes each, EGTSP requires 29 bytes and for UAF, 25

bytes is needed for each synchronization message. The number of CPU cycles a

protocol requires to fully process and update the logical clock was also compared

for all protocols. EGTSP and FTSP were observed to require more than 30

times the number of cycles needed for all our developed methods. However, the

PISync protocols require similar values of CPU cycles as our developed methods.

All these parameters were used to compute the total energy consumed by each

network node for one cycle of update. We observed that, FTSP, FloodPISync,

EGTSP, AvgPISync, TSAU, UAF and BAF respectively require 130.4 µJ , 16.1

µJ , 135 µJ , 14.6 µJ , 14.53 µJ , 14.8 µJ and 16.4 µJ .

To further compare TSAU, UAF and BAF against FTSP, EGTSP, AvgPISync

and FloodPISync, we evaluated the synchronization accuracy by comparing the

global and local synchronization errors for each protocol for the 16 node gird

and line networks. We observed the dip-before-steady state phenomenon in all

the global and local error curves for TSAU, UAF and BAF. With a well defined

minimum error, once a node locates the transient and stops updates, unlike the

other protocols where nodes are continuously communicating and estimating the

global time through drift and offset compensation, nodes running on TSAU, UAF

and BAF only need to identify the transient dip, stop updates and sleep, hence

193

each node spends a short time consuming the energy presented above and is

therefore expected to survive for a long time with respect to power if deployed

in a wireless sensor network operating in a harsh environment where nodes are

prone to failures and devoid of resources.

For the convergence time, since our methods are all decentralized and commu-

nication is done only with 1-hop neighbors a lower convergence time is observed

as against the other protocols for both grid and line networks. We also observed

that, the global and local errors for BAF far out perform all the other protocols.

The performance of TSAU was next best followed by UAF. For the proposed

methods, their performance in terms of global and local synchronization errors

were lower in the line topology as compared to the grid topology.

194

CHAPTER 7

CONCLUSION AND FUTURE

WORK

7.1 Conclusion

Sensor network applications can greatly benefit from synchronized clocks to per-

form various tasks such as data fusion and energy-efficient communication. A per-

fect time synchronization algorithm should fulfill a handful of different properties

simultaneously: precise global and local time synchronization, fast convergence,

fault-tolerance, low memory requirements and energy-efficiency. In this thesis, we

presented a time synchronization scheme, based on consensus control and suited

for operation in harsh environments that uses a single hop communication scheme

to synchronize state parameters representing the virtual clock of each node to the

clock of the gateway node of the wireless sensor network. The proposed synchro-

nizer, inspired by [51], was designed with three main components namely; local

195

node time update where nodes establish consensus on a global time, followed by

a stopping criterion which halts the update process once a minimum error with

respect to the gateway time is achieved. The last component involves putting

network nodes to the idle/sleep mode for a certain period of drift and switching

them back on to resynchronize. This work focused on the first component of the

proposed synchronizer. First, this work presented a way of introducing flexibility

in the proposed synchronizer by modifying the local node time update in a way

that gives a trade-off between the convergence time and synchronization accuracy.

This method was inspired by the realization that, the state equation representing

the synchronization error with respect to the gateway time has a term, whose

effect can be nullified by introducing a new parameter in the local time update of

each node. We then carry out simulations and practical experiments on 4, 9, and

16 node networks configured in the grid topology. In our simulations we observed

that, generally, with this addition, the synchronization error can be reduced up

to a factor of about 5× 10−4 at the expense of twice the number of iterations for

the networks considered. From the practical results we also observed a reduction

in synchronization error of up to a factor of about 60 × 10−3 at the expense of

twice the number of iterations therefore offering flexibility in the design of the

synchronizer. The original local node time update presented for the synchronizer

utilized synchronous averaging to achieve consensus in on a global network time

which is not practical since synchronous consensus requires synchronization. We

extended this observation by adopting the asynchronous approach for local node

196

time update. The main difference being, in the asynchronous time update, a sub-

set of the nodes are activated to update their times based on proximity to the

gateway node whiles all other nodes are inhibited. Based on this framework, we

designed three different schemes of practically carrying out the activation so as

to realize the asynchronous update. The three methods are the Timed Sequential

Asynchronous Update (TSAU) where only one node updates in each communica-

tion instant, the Unidirectional Asynchronous Update (UAF) where nodes within

the same proximity to the gateway node update at the same instant but activa-

tion is regulated by the gateway and Bidirectional Asynchronous Flooding (BAF)

which removes the need of the activation regulation by the gateway node. These

methods and evaluated using simulations and practical experiments on 4, 9 and

16 node networks configured in grid, random and hexagonal topologies. All the

suggested methods exhibited the the dip phenomenon even in a network with

random connectivity. BAF was generally observed to perform best in terms of

synchronization accuracy and UAF and TSAU were observed to perform best in

terms of the number of communication cycles needed to converge and the variance

in this parameter. To show the feasibility of our suggested methods in practice,

we performed experiments on a testbed of 16 grid and line node networks on

the TinyOS platform. We also conducted experiment on the same testbed for

two fully distributed protocols: Energy Efficient Gradient Time Synchronization

protocol (EGTSP) and Average Proportional-Integral Synchronization protocol

(AvgPISync) and two centralized flooding-based protocols: Flooding Time Syn-

197

chronization Protocol(FTSP) and Flooding Proportional-Integral Synchronization

protocol (FloodPISync). The suggested methods were observed to outperform

FTSP and EGTSP in terms of memory required and energy consumption but had

somewhat similar performance as the PISync protocols for these metrics. Further,

it was observed that, the global and local errors for BAF far out perform all the

other protocols. The performance of TSAU was next best followed by UAF. For

the convergence time, a lower convergence time is was observed for our proposed

schemes as against the other protocols for both grid and line networks.

7.2 Future Work

Although the dip behavior manifests in all results for our simulations and practical

experiments, a mathematical analysis needs to be carried out to ascertain and

explain this behavior in future research. Future work may also include testing

synchronization performance of the protocol on node and link failures, changing

network topology and mobile networks. Research could further be conducted to

optimize the algorithm to achieve minimum error at the dip region by designing

an optimal filter capable of stopping the update of each node when minimum error

is reached. Further studies could also be carried out to test the sensitivity of the

protocol to communication impairments like delays, jitters and noise. Also, the

period for network resynchronization could be investigated by estimating the time

at which each nodes reaches a certain threshold of synchronization error or drift.

198

REFERENCES

[1] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low power

wireless research,” in Proceedings of the 4th international symposium on In-

formation processing in sensor networks, p. 48, IEEE Press, 2005.

[2] Memsic, MICAz, WIRELESS MEASUREMENT SYSTEM. Memsic Inc, One

Tech Drive Suite 325 Andover, MA 01810, 2017.

[3] Memsic, MTS/MDA, SENSOR, DATA ACQUISITION BOARDS. Memsic

Inc, One Tech Drive Suite 325 Andover, MA 01810, 2017.

[4] K. Sohraby, D. Minoli, and T. Znati, Wireless Sensor Networks: Technology,

Protocols, and Applications. John Wiley & Sons, Apr. 2007.

[5] G. Kaur and R. M. Garg, “Energy efficient topologies for wireless sensor

networks,” International Journal of Distributed and Parallel Systems, vol. 3,

no. 5, p. 179, 2012.

[6] A. Giridhar and P. Kumar, “Toward a theory of in-network computation in

wireless sensor networks,” IEEE Communications Magazine, vol. 44, pp. 98–

107, Apr. 2006.

199

[7] S. Kar and J. Moura, “Sensor Networks With Random Links: Topology

Design for Distributed Consensus,” IEEE Transactions on Signal Processing,

vol. 56, pp. 3315–3326, July 2008.

[8] O. Chughtai, N. Badruddin, and A. Awang, “Distributed on-demand multi-

optional routing protocol in multi-hop wireless networks,” in TENCON 2014

- 2014 IEEE Region 10 Conference, pp. 1–6, Oct. 2014.

[9] Protocols and Architectures for Wireless Sensor Networks. Dec. 2015.

[10] E. Mallada and T. Ao, “Distributed clock synchronization: Joint frequency

and phase consensus,” in in Decision and Control and European Control

Conference (CDC-ECC), 2011 50th IEEE Conference, 2011.

[11] K. R. Jeremy Elson, “Wireless Sensor Networks: A New Regime for Time

Synchronization,” Computer Communication Review, vol. 33, no. 1, pp. 149–

154, 2003.

[12] H. Karl and A. Willig, Protocols and architectures for wireless sensor net-

works. John Wiley & Sons, 2007.

[13] S. B., U. Buy, and D. Kshemkalyani A, “Clock synchronization for wireless

sensor networks: A survey,” University of Illinois at Chicago, Tech. Rep,

March 2005.

[14] C. Lindsey W, F. Ghazvinian, C. Hagmann W, and K. Dessouky, “Network

synchronization,” in Proceedings of IEEE, vol. 73, pp. 1445–1467, October

1985.

200

[15] H. Rentel C, Network time synchronization and code-based scheduling for

wireless ad hoc networks. PhD thesis, Carleton University, January 2006.

[16] Y. Quan and G. Liu, “Drifting clock model for network simulation in time

synchronization,” in Proc. IEEE International Conf. on Innovative Comput-

ing Information and Control,, pp. 385–388, June 2008.

[17] S. Sun, G. Strom E, F. Branstom, and D. Sen, “Long-term clock synchro-

nization in wireless sensor networks with arbitrary delay distributions,” in

Proc. IEEE Global Communications Conf. (GLOBECOM, December 2012.

[18] M. Leng and Y. Wu, “On joint synchronization of clock offset and skew for

wireless sensor networks under exponential delay,” in Proc. IEEE Interna-

tional Symposium on Circuits and Systems (ISCAS), no. 461464, June 2010.

[19] M. Chaudhari Q, E. Serpedin, and K. Qaraqe, “On minimum variance unbi-

ased estimation of clock offset in a two-way message exchange mechanism,”

IEEE Trans. Inf. Theory, vol. 56, p. 28932904, June 2010.

[20] S. L. Yldrm K.S., Carli R., “Adaptive control-based clock synchronization in

wireless sensor networks,” (Linz, Austria,), IEEE, European Control Confer-

ence ECC15, jul 2015.

[21] H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor Net-

works. John Wiley & Sons, Oct. 2007.

201

[22] L. Schenato and F. Fiorentin, “Average TimeSynch: A consensus-based pro-

tocol for clock synchronization in wireless sensor networks,” Automatica,

vol. 47, no. 9, pp. 1878–1886, 2011.

[23] S. Lasassmeh and J. Conrad, “Time synchronization in wireless sensor net-

works: A survey,” in IEEE SoutheastCon 2010 (SoutheastCon), Proceedings

of the, pp. 242–245, Mar. 2010.

[24] D. Mills, “Internet time synchronization: the network time protocol,” IEEE

Transactions on Communications, vol. 39, pp. 1482–1493, Oct. 1991.

[25] J. Elson, L. Girod, and D. Estrin, “Fine-grained Network Time Synchro-

nization Using Reference Broadcasts,” SIGOPS Oper. Syst. Rev., vol. 36,

pp. 147–163, Dec. 2002.

[26] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync Protocol for

Sensor Networks,” in Proceedings of the 1st International Conference on Em-

bedded Networked Sensor Systems, (New York, NY, USA), pp. 138–149, ACM,

2003.

[27] H. Dai and R. Han, “TSync: A Lightweight Bidirectional Time Synchro-

nization Service for Wireless Sensor Networks,” SIGMOBILE Mob. Comput.

Commun. Rev., vol. 8, pp. 125–139, Jan. 2004.

[28] J. van Greunen and J. Rabaey, “Lightweight Time Synchronization for Sen-

sor Networks,” in Proceedings of the 2Nd ACM International Conference on

202

Wireless Sensor Networks and Applications, (New York, NY, USA), pp. 11–

19, ACM, 2003.

[29] P. Sommer and R. Wattenhofer, “Gradient clock synchronization in wireless

sensor networks,” in International Conference on Information Processing in

Sensor Networks, 2009. IPSN 2009, pp. 37–48, Apr. 2009.

[30] Z. Dengchang, A. Zhulin, X. Yongjun, Z. Dengchang, A. Zhulin, and

X. Yongjun, “Time Synchronization in Wireless Sensor Networks Using Max

and Average Consensus Protocol, Time Synchronization in Wireless Sen-

sor Networks Using Max and Average Consensus Protocol,” International

Journal of Distributed Sensor Networks, International Journal of Distributed

Sensor Networks, vol. 2013, 2013, p. e192128, Mar. 2013.

[31] W. Su and I. Akyildiz, “Time-diffusion synchronization protocol for wireless

sensor networks,” IEEE/ACM Transactions on Networking, vol. 13, pp. 384–

397, Apr. 2005.

[32] K. Yildirim and A. Kantarci, “External Gradient Time Synchronization in

Wireless Sensor Networks,” IEEE Transactions on Parallel and Distributed

Systems, vol. 25, pp. 633–641, Mar. 2014.

[33] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal, “Firefly-

inspired Sensor Network Synchronicity with Realistic Radio Effects,” in Pro-

ceedings of the 3rd International Conference on Embedded Networked Sensor

Systems, (New York, NY, USA), pp. 142–153, ACM, 2005.

203

[34] J. He, P. Cheng, L. Shi, J. Chen, and Y. Sun, “Time Synchronization in

WSNs: A Maximum-Value-Based Consensus Approach,” IEEE Transactions

on Automatic Control, vol. 59, pp. 660–675, Mar. 2014.

[35] C. Jiming, “Feedback-based clock synchronization in wireless sensor net-

works: A control theoretic approach.,” Vehicular Technology, IEEE Trans-

actions, pp. 2963–2973, 2010.

[36] H. Dai and R. Han, “TSync: A Lightweight Bidirectional Time Synchro-

nization Service for Wireless Sensor Networks,” SIGMOBILE Mob. Comput.

Commun. Rev., vol. 8, pp. 125–139, Jan. 2004.

[37] M. Marti, B. Kusy, G. Simon, and k. Ldeczi, “The Flooding Time Synchro-

nization Protocol,” in Proceedings of the 2Nd International Conference on

Embedded Networked Sensor Systems, SenSys ’04, (New York, NY, USA),

pp. 39–49, ACM, 2004.

[38] C. Lenzen, P. Sommer, and R. Wattenhofer, “Pulsesync: An efficient and

scalable clock synchronization protocol,” IEEE/ACM Transactions on Net-

working (TON), vol. 23, no. 3, pp. 717–727, 2015.

[39] K. S. Yildirim and A. Kantarci, “Time synchronization based on slow-

flooding in wireless sensor networks,” IEEE Transactions on Parallel and

Distributed Systems, vol. 25, no. 1, pp. 244–253, 2014.

[40] J. He, “Time synchronization in wsns: A maximum-value-based consensus

approach,” . ISA Transactions, vol. 53, no. 2, pp. 347–357, 2014.

204

[41] Y.-R. Lee and W.-L. W. Chin, “Low-complexity time synchronization for

energy-constrained wireless sensor networks: Dual-Clock delayed-message ap-

proach,” Peer-to-Peer Networking and Applications, pp. 1–10, Feb. 2016.

[42] D. Upadhyay and P. Banerjee, “An Energy Efficient Proposed Framework

for Time Synchronization Problem of Wireless Sensor Network,” in Infor-

mation Systems Design and Intelligent Applications (S. C. Satapathy, J. K.

Mandal, S. K. Udgata, and V. Bhateja, eds.), no. 435 in Advances in In-

telligent Systems and Computing, pp. 377–385, Springer India, 2016. DOI:

10.1007/978-81-322-2757-1 38.

[43] Q. Li and D. Rus, “Global clock synchronization in sensor networks,” in IN-

FOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer

and Communications Societies, vol. 1, p. 574, Mar. 2004.

[44] R. Leidenfrost, W. Elmenreich, and C. Bettstetter, “Fault-tolerant averaging

for self-organizing synchronization in wireless ad hoc networks,” in Wireless

Communication Systems (ISWCS), 2010 7th International Symposium on,

pp. 721–725, IEEE, 2010.

[45] C. C. Apicharttrisorn, K. and C. Intanagonwiwat, “Energy-efficient gradi-

ent time synchronization for wireless sensor networks,” in Computational In-

telligence, Communication Systems and Networks (CICSyN), 2010 Second

International Conference, 2010.

205

[46] M. Cremaschi, O. Simeone, and U. Spagnolini, “Distributed timing synchro-

nization for sensor networks with coupled discrete-time oscillators,” 2007.

[47] M. Maggs, S. O’Keefe, and D. Thiel, “Consensus Clock Synchronization for

Wireless Sensor Networks,” IEEE Sensors Journal, vol. 12, pp. 2269–2277,

June 2012.

[48] J. He, P. Cheng, L. Shi, J. Chen, and Y. Sun, “Time Synchronization in

WSNs: A Maximum-Value-Based Consensus Approach,” IEEE Transactions

on Automatic Control, vol. 59, pp. 660–675, Mar. 2014.

[49] Y. Kadowaki and H. Ishii, “Event-Based Distributed Clock Synchronization

for Wireless Sensor Networks,” IEEE Transactions on Automatic Control,

vol. 60, pp. 2266–2271, Aug. 2015.

[50] J. Wu, L. Zhang, Y. Bai, and Y. Sun, “Cluster-Based Consensus Time Syn-

chronization for Wireless Sensor Networks,” IEEE Sensors Journal, vol. 15,

pp. 1404–1413, Mar. 2015.

[51] A. Al-Shaikhi and A. Masoud, “Efficient, single hop time synchronization

protocol for randomly-connected wsns,” IEEE Wireless Communications Let-

ters, 2017.

[52] I. Nemer, “A distributed time average synchronization protocol for wireless

sensor networks,” Master’s thesis, King Fahd University of Petroleum and

Minerals, 2015.

206

[53] C.-T. Chen, Linear system theory and design. Oxford University Press, Inc.,

1995.

[54] D. Luenberger, Introduction to Dynamic Systems: Theory, Models, and Ap-

plications. Wiley, 1979.

[55] S. Kar and J. Moura, “Distributed Average Consensus in Sensor Networks

with Random Link Failures,” in IEEE International Conference on Acoustics,

Speech and Signal Processing, 2007. ICASSP 2007, vol. 2, pp. II–1013–II–

1016, Apr. 2007.

[56] L. Schenato and F. Fiorentin, “Average TimeSynch: A consensus-based pro-

tocol for clock synchronization in wireless sensor networks,” Automatica,

vol. 47, pp. 1878–1886, Sept. 2011.

[57] T. van den Boom, “Discrete-time systems analysis.” Internet, Oct. 2006.

[58] M. M. and S. J., M. Maroti and J. Sallai, Packet-level time synchroniza-

tion, TinyOS Core Working Group, Technical Report, May 2008. [Online].

Available: http://www.tinyos.net/tinyos-2.x/doc/pdf/tep133.pdf, may 2008.

[59] C. Lenzen, P. Sommer, and R. Wattenhofer, “Pulsesync: An efficient and

scalable clock synchronization protocol,” IEEE/ACM Transactions on Net-

working (TON), vol. 23, no. 3, pp. 717–727, 2015.

[60] D. G. Cory Sharp, Martin Turon, “Tep-102: Timers.” Online.

207

[61] “Wiley: Protocols and Architectures for Wireless Sensor Networks - Holger

Karl, Andreas Willig,” Dec. 2015.

[62] S. Kar and J. Moura, “Distributed Consensus Algorithms in Sensor Networks

With Imperfect Communication: Link Failures and Channel Noise,” IEEE

Transactions on Signal Processing, vol. 57, pp. 355–369, Jan. 2009.

[63] P. Denantes, F. Benezit, P. Thiran, and M. Vetterli, “Which Distributed

Averaging Algorithm Should I Choose for my Sensor Network?,” in IEEE

INFOCOM 2008. The 27th Conference on Computer Communications, Apr.

2008.

[64] A. Akl, T. Gayraud, and P. Berthou, “An investigation of self-organization

in ad-hoc networks,” in 2011 IEEE International Conference on Networking,

Sensing and Control (ICNSC), pp. 1–6, Apr. 2011.

[65] K. S. Yildirim, “Gradient Descent Algorithm Inspired Adaptive Time Syn-

chronization in Wireless Sensor Networks,” arXiv:1512.02977 [cs], Dec. 2015.

arXiv: 1512.02977.

[66] S. L. Yldrm K.S., Carli R., “Proportional-integral clock synchronization in

wireless sensor networks,” IEEE/ACM TRANSACTIONS ON NETWORK-

ING.

208

Vitae

� Name: Ramadan Abdul-Rashid

� Nationality: Ghanaian

� Date of Birth: 01-04-1990

� Email: g201409740@kfupm.edu.sa, ram.rashid.rr@gmail.com

� Permenant Address: University Blvd, King Fahd University of Petroleum

and Minerals, Dhahran 34463, KSA

� Bachelor Degree of Science in Electrical and Electronic Engineering at the

University of Mines and Technology (UMaT), Tarkwa, W/R, Ghana, West-

Africa in June, 2013.

� Master Degree of Science in Telecommunication Engineering at the King

Fahd University of Petroleum and Minerals (KFUPM), Dhahran, KSA from

January 2015 until now.

209

