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Background : Sequencing refactoring tasks play an important role in maximizing

the benefits of refactoring in software development. Several techniques are pro-

posed for the refactoring automation based on different preferences, yet far from

reaching the optimal solutions.

Objective: We employ reinforcement learning (RL) techniques to automate the

refactoring sequencing process. Automation is carried out to optimize coupling

and cohesion at the class-level.

Method : The proposed solutions are developed and integrated as an Eclipse plu-

gin and validated through case studies with detailed analysis and discussions.

Results : Empirical evaluation shows that the proposed methods contribute to au-

tomating refactoring while achieving the targeted software quality measures.
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Conclusion: RL techniques are shown to be fit to the dynamic nature of the prob-

lem of refactoring sequencing. Both planning- and learning-based RL techniques

attained efficient results with acceptable execution time and space requirements.
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 الرسالة ملخص

 
 اتسأرمين كوبيلي  :الكامل  اإسم

وان السالة  ياتالبرمجي إعادة هيكلة  فولويات  حسين تحديد اأالتعزيز في تب: استخدام التعلم  ع

 : علوم الحاسب اآليتخصصال

 م 2017: ديسمبر  ة العلميةتاريخ الدرج

هيكلة  الفوائد إعادة  حسين  دورا هاما في تالبرمجيات  ادة هيكلة  إع  تسلسل مهاميمثل وضع  الخلفية: 

يات  تم اقتراح   تطوير البرمجيات.عملية  في   على أساس  هيكلة البرمجيات  إعادة  ة  تأتمالعديد من التق

يات لم تحقق بعد  تفضيات مختلفة  .لهذ المسألة  حلول مثلى. لكن هذ التق

يات التعلم  قترح  الهدف: ن تسلسل  وضع    ةت( أتمreinforcement learningالتعزيز )بتوظيف تق

فيذ  البرمجيات. ادة هيكلة  إع  مهام  .ئةوالتماسك على مستوى الفو    قترانعبر مق اييس اإة  تتماأيتم ت

المعروفة    متكاملةالتطوير  البيئة  كبرنامج مساعد في   دمجها    الطريقة: يتم تطوير الحلول المقترحة و

اقشات.  تحااة  لتحقق من صحتها من خال دراس(. كما تم اEclipseبإسم إيكلبس )  مع تحليل مفصل وم

تائج: يظهر التقييم التجريبي أن ال مع تحقيق  هيكلة البرمجيات  المقترحة تسهم في أتمتة إعادة    حلولال

 جودة البرمجيات المستهدفة.  مق اييس

يات  ت  مائمةأثبتت هذ الرسالة  :  الخاصة إعادة  تسلسل  وضع  المتغيرة لمسألة    طبيعة  للالتعزيز  بالتعلم  ق

يات    .برمجياتهيكلة ال التعلم حققت نتائج فعالة  المعتمدة على التخطيط و  التعزيز  بالتعلم  حيث أن تق

فيذ مقبول و  متطلبات تخزين في الذاكرة بسيطة.  مع وقت الت
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Software projects have a tendency to become very complex in very short time

frames. Complex projects are challenging to maintain and become rapidly obsolete

with low reusability levels. This phenomenon, known as the technical debt, affects

all software stakeholders. One of the effective ways to minimize this debt consist

of restructuring existing projects on a regular basis. This restructuring is known

as refactoring process. While the refactoring process restructures existing code

without adding new functionalities, software practitioners strive to maximize this

process’s effect with minimum effort and time spent. The success of the refactoring

phase relies heavily on the refactoring task prioritization. Prioritization can be

done based on different goals (time, effort and quality) and usually requires feasible

automation. Automation of refactoring prioritization is not a trivial task due to

the many complex factors involved (infinite search space, human-written code,
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developers’ practices, coding standards, software project’s goals and natures).

Despite different techniques proposed in the literature to automate prioritization,

no practical implementation is available to assess the validity of these techniques.

In addition, the prototypes based on optimal prioritization are lacking.

1.2 Motivation

It is a software engineering dream to have a codebase ”coded once” and used many

times with slight updates for different purposes and projects. This would mean

less time for testers, less cost for project managers, more optimized code for devel-

opers. In fact, such codebase will be easy to understand, reuse and maintain. On

the other hand, for clients, such codebase will perform better, work faster and cost

less. But the reality of software engineering projects reality says otherwise; tech-

nical debt has to be paid sometime in the process of code reusability and trade-offs

have to be made where not all software-related stakeholders will be satisfied at the

same extent, Traditionally, refactoring is defined as changing the internal struc-

ture of code without changing its external behaviour [1]. These changes aim to

improve software for easier maintenance, better readability, and more reusability.

Favorably, the same changes will lead to ”simpler” software, cost-effective main-

tenance and enthusiastic developer attitude towards software improvement and

future functionality. In research and software community, refactoring is tackled,

using different techniques where effects are analyzed via theoretic and empirical

procedures. In these techniques, refactoring is performed in semi-automated and

2



automated fashions. Initially, refactoring was solely performed at the code level,

while later many efforts focused on design-based approaches.

Recently, the software refactoring problem is formulated using artificial intel-

ligence (AI) and optimization techniques for improved process automation based

on different objective functions.

AI and optimization-based refactoring approaches are still in their infancy and

this work aims at contributing to AI-based refactoring research by exploring prior-

itization of refactoring tasks based on different software quality preferences using

Markov decision processes (MDP) and reinforcement learning (RL) solutions.

Prioritization of refactoring tasks intends to efficiently utilize the developer

time by classifying refactoring tasks according to the ”goal-oriented” preferences

of the developer. For programmers, according to Pinto and Kamei [2], the pro-

grammers expect ”good” refactoring tools to provide ”optimal” refactoring rec-

ommendations.

The maintenance and improvement of large-scale software projects are chal-

lenging tasks and optimizing their time requirements is highly desirable. Refac-

toring recommendation systems, based on specific quality preferences, would as-

sist developers in managing efficiently their time and to ensure that the mainte-

nance/improvement goals are met within the time constraints.

Refactoring recommendation systems, without prioritization, focused on im-

proving certain aspects of system quality, more likely to produce a large num-

ber of general refactoring tasks whose overall effects might be difficult to assess.

3



Moreover, it might affect developers to decrease their desire for maintaining and

improving software that seems to have ”no ends”. Therefore, once the refac-

toring tasks are prioritized, with estimated trade-offs between different mainte-

nance/improvement goals, developers will be able to clearly identify where to focus

their efforts to achieve their quality objectives.

1.3 Research Objectives

The main objectives of the research work, carried out in this thesis, are:

• Formulate the refactoring prioritization as an RL problem where refactoring

automation can be achieved.

• Propose different RL-based algorithms to automatize refactoring prioritiza-

tion.

• Analyze the effects of the proposed RL-based solution on the refactoring

automation process.

1.4 Research Methodology

The refactoring process is characterized by, at least, two distinct phases: 1) de-

tection of bad smells and 2) application of identified refactoring tasks. While the

first phase has been investigated extensively in the literature [3], the phase related

to identifying the appropriate refactoring tasks and their sequencing has not been

the focus of thorough research and investigation. In this thesis, our main focus

4



is geared towards developing intelligent and optimized methods for automated

refactoring processes. To ensure equal foot comparison between the refactoring

processes, all empirical studies, reported in this thesis, are based on Java open

source projects. The source code of these projects will form the basis for the

proposed modeling where this source code is used as an input to the proposed

refactoring model as transitioning states in a dynamic environment. More specif-

ically, this dynamic environment is formulated using an MDP framework and RL

algorithms. Along with the source code, the proposed models are fed with software

quality preferences to produce optimal sequences of refactoring tasks to achieve

the software developers’ goals in terms of maintenance time and software quality

measures.

1.5 Research Contributions

The main contributions of this thesis are listed below:

• A novel formulation of the automated refactoring sequencing problem using

RL-based representation.

• An automated tool developed based on methods proposed.

• Empirical evaluation of proposed methods based on cases studies and dif-

ferent experimental settings.

5



1.6 Thesis Outline

The remaining of the thesis is organized as follows: The second chapter discusses

the required background and theoretical aspects of the thesis work where soft-

ware bad smells, refactoring and MDP/RL concepts are introduced with basic

definitions and examples. Then, the literature review is laid out in Chapter 3

where we highlight existing research work. The proposed methods to automate

and prioritize software refactoring are discussed in Chapter 4 where we show the

formulation of the refactoring problem as an MDP process. The rationale behind

such formulation is provided therein. Chapter 5 provides a detailed description of

the software tools used to implement the proposed solutions where we introduce,

RefMark, the plugin implementation of these solutions for the Eclipse integrated

development environment (IDE). The experimental design for the empirical eval-

uation of the proposed solutions and the RefMark tool is outlined in Chapter 6

along with the standard procedures adopted in the empirical evaluation. This

chapter concludes with the hypothesis testing and research questions addressed

in this thesis. Detailed analysis and discussions of the results attained by the

proposed MDP/RL-based solutions are given in Chapter 7. Cautionary notes on

the recommendations, formulated in this thesis, are provided at the end of this

chapter. Finally, Chapter 8 concludes this thesis where conclusions are drawn,

a brief summary of the work is given and possible extensions to the work are

summarized.
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CHAPTER 2

BACKGROUND

Over the last decades, software practitioners have gained more insights on main-

taining and improving large scale software projects where patterns of ”proper”

software source code organization and design emerged. For example, the object-

oriented programming paradigms (OOPP) include the substitution principle, the

responsibility-driven design, the law of diameter concept, and the open-closed

principle. Most of these principles and concepts led a generation of software engi-

neers to create design pattern-based test cases and regularly refactor their software

projects [4].

During their evolution, software projects, especially the large ones, undergo

changes and improvements to become more efficient and optimized. The same

time, more software developers, embarking on the development teams of these

projects, need to communicate and understand code written by others. As indi-

cated by Lehman and Belady, the continuous software evolution is tightly con-

nected to its success [5]. This evolution emphasizes the importance of flexible,
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maintainable and easy-to-communicate software design. These desirable features

of successful software projects lay the floor for the following inevitable questions:

1. How can these attributes be detected and identified in software design?

2. What are the main properties of such software design?

It is must be admitted that the answers to these questions are not an easy

matter since they cannot be merely based on simple quantitative attributes as

they require software projects to adapt to design patterns, be modularized, include

a detailed documentation, follow the adopted architecture.

Researchers, in the field of software engineering, have exerted commensurate

efforts to detect obsolete and inadequate components in software systems. To

successfully detect these components, different measurements and software metrics

are proposed to capture the inherent software design properties. In fact, these

efforts resulted in a plethora of software metrics and standardized design patterns

where design violations are quantified using the concept of bad smells.

The widely accepted software metrics, typical bad smells, and recovery from

design pattern violations (i.e., refactoring) are introduced and discussed later in

this chapter. Following the discussion on manual refactoring, automated refactor-

ing is introduced along with justifications for its usefulness.

Finally, the work presented in this thesis consists of applying emerging

decision-based machine learning algorithms to the automated software refactoring

problem, machine learning concepts related to Markov decision processes (MDPs)

and reinforcement learning (RL), necessary to our work, are outlined in the re-
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maining sections of this chapter.

2.1 Bad Smells

Thanks to the bad smells, software developers quantify code states that are tightly

connected to code anomalies and bad practices during the software development

cycle. As such, these bad smells represent design flaws and programming practices

that do not strictly follow the adopted development paradigm. For instance,

mixing between different programming approaches such as procedural thinking

in an OOPP-based code constitutes a deviation from the adopted development

paradigm. In the literature, bad smells have been also known as anomalies [1],

code smells, design flaws [6] and anti-patterns [7]. Design flaws and code smells

are related to the design and code, respectively. As indicated by their name,

bad smells are only ”smells” that usually do not cause direct program failures.

However, they are strong indicators that software bugs are likely to happen in the

future which may cause heavy burdens on software maintenance and reusability.

Despite, bad smells were initially specified using other programming

paradigms, most of those reported in the literature are related to the OOPP

one [8]. Fowler et al., among the first to work on bad smells, identified 22 sets

of symptoms related to code smells and listed possible solutions to improve each

of the identified smells [1]. Following the pioneering work of Fowler et al., novel

methods to detect bad smells are attributed to different authors [9, 10, 11, 11, 12].

In addition to the proposed detection methods, the effects of bad smells on soft-
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ware defects [13, 14] and effort [15] were empirically investigated.

In general, bad smells are often addressed by restructuring and reorganizing

the source code following a formal software refactoring process as discussed in the

next section.

2.2 Software Refactoring

Software refactoring aims at mitigating the negative effects of bad smells by chang-

ing the internal structure of the software source code without changing its external

behavior [1].

Pioneered by Opdyke, in his 1992 Ph.D. thesis, refactoring is proposed as

a notion of reorganizing the source code for possible future improvements and

restructuring [16]. These code improvements and restructuring tend to extend the

software expected lifetime by increasing the software quality in terms of reusability,

maintainability, and portability.

In its initial formulation, software refactoring is executed using manual, semi-

automated and automated approaches. Prior to applying refactoring, code com-

ponents, eligible for refactoring, must be detected/identified first. Then, a suitable

set of refactoring tasks must be proposed to improve the identified code compo-

nents. These two common refactoring steps are graphically depicted in Figure

2.1. However, finding the appropriate set of refactoring tasks represents a major

challenge that most software engineering practitioners must undertake given the

astronomical number of the possible refactoring combinations to be tried.
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Figure 2.1: Refactoring Process.

In this thesis, we propose a new approach for automating software refactoring

using machine learning formulations based on MDP and RL concepts. These con-

cepts, encompassed by the ML field, are introduced below along with a technical

background on the required ML models and frameworks.

2.3 Machine Learning

Machine learning enables computational machines to learn from the surrounding

environments using the following paradigms:

1. Supervised learning.

2. Unsupervised (or semi-supervised) learning.

3. Reinforcement learning.
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Figure 2.2: Machine Learning Paradigms.

Figure 2.2 depicts the main types of ML algorithms given above. It is clear

that the behavior and implementation of a specific ML rely heavily on the type

of ”target” attributes that the ML algorithm tries to achieve or replicate.

An ML process or pipeline is sketched in 2.3 where the main pipeline steps

are given. Data selection and modeling are crucial to a successful deployment of

the ML pipeline. In this thesis, this step is crucial in the MDP formulation of the

refactoring process.
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Figure 2.3: ML Process/Pipeline Summary.

2.4 Reinforcement Learning

RL is a category of ML algorithms that is inspired by physiological theory of

human reactions to immediate stimuli. It consists of a family of algorithms that

are based on similar concepts of immediate response (either positive or negative)

from an environment on actions taken.

2.4.1 Fundamentals

Learning from Interaction

Instead of exposing an agent (the common name for the learning entity) to correct

relations in data to be able to predict from it in the next possible occurrence,

the RL agent is learning from direct interaction with environment following its

immediate reward and cost. An agent can be a robot, player or any entity aims

to plan or learn from the domain while environment can represent a real world,

a game or any domain an agent operates in. Getting an immediate answer from
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the environment, in terms of reward or cost, the goal of the agent is to maximize

its cumulative reward while interacting with the environment. For example, after

a time step t, and n actions, agent obtained reward:

Rt = rt+1 + rt+2 + rt+2 +... +rt+n (2.1)

This is the most basic case of agent’s cumulative reward calculation where knowing

the number of steps and its immediate reward we simply calculate the sum of

rewards gained. More often, the reality of environment requires more detailed

and more complex representation with more information to consider. In next

lines, we will introduce more core ingredients of RL techniques.

Markov Property

The success of RL is based on good interaction with the environment and quick

absorption of knowledge it gives us at each step. To maximize its learning experi-

ence, from each step, an agent wants to be able to use all of its gain from previous

steps taken to decide the best possible action for next step. This requires that

agent memorize all of its history passed in a certain environment. From this his-

tory, reward and next state reached is of the particular interest to quickly learn

environment and its response. Having all history of agent, letting him decide,

based on it, before each step taken, may be wonderful and perfect way of learning

experience, but usually it is not win-win solution when it comes to reality and

efficiency of the same agent. Markov property allows the agent to retain all past
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experience in a single, current state in very convenient and compact form and let

him decide for next step by a simple consideration of its current state.

Markov Decision Processes (MDPs)

After understanding RL basic philosophy and concepts of agent’s interactive learn-

ing from the environment, its desire to retain all gained experience in a current

state, we need a solid formal framework to represent our RL technique. A Markov

Decision Process (MDP) is defined as a formal representation of RL that meets

Markov Property.

Commonly, MDP is defined as a tuple [17]:

MDP =
{

S,A, P (s, s
′

, a), R(s, s
′

, a)
}

(2.2)

where:

S: State space to ”encode” the agent world or environment.

A: Set of all possible actions that the agent can take at any state to end up in

the same or different state.

P (s, s
′

, a): State transition probability function is given by:

P
(

s, s
′

, a
)

= P
(

st+1 = s
′

| st = s, at = a
)

(2.3)

Eq. 2.3 defines the probability of ending up in state s
′

while being at state s

and taking action a.
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R
(

s, s
′

, a)
)

: Reward obtained while being at state s, taking action a and landing

in state s
′

. In simple MDP formulations, the reward function, R, is independent

of the action taken a.

γ: A discount factor to enable the mathematical tractability of the MDP

formulation and influence the MDP valuation of the future rewards.

Various approaches in each of these MDP parts generate different algorithms.

How specific problem is addressed and translated into these categories is crucial

for its successful RL story.

Finite and Infinite Horizon

Looking closer at the definition of an MDP, we found that MDP has the state

probability function. The logical question is why do we need probability distri-

bution to calculate the sum of reward gained in n steps of agent interaction with

environment?! The truth is that RL instance of any real problem to be solved

rarely has a perfect environment with all possible information available including

possible actions, their expected outcome, states, number of steps, etc.

If the number of steps is known in advance for certain environment, we have

a case of the so-called finite horizon, where we know that after certain steps, no

change will happen by any action and life of the agent ends. Furthermore, if

the time is considered, environment with limited timestep is also an environment

with a finite horizon. If the number of steps is not known in advance, or no

time limit is set for the life of the agent in a certain environment, we have so-
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called infinite horizon RL model. Infinite horizon instances of RL gained a lot of

attention in practice and variety of algorithms and improvements were proposed

in the literature. Our particular interest, in this thesis, is in the MDP infinite

horizon environment with discounted reward. Formally defined, discounted reward

function represents:

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · (2.4)

where γ is a discount factor with values between 0 and 1 inclusive to favor

immediate over future rewards. Setting γ to zero will result in a ”future-myopic”

preferences that ignore any future reward regardless of its value. On the other

hand, γ = 1 ensures that the resulting preference does not differentiate between

current and future rewards that are deemed equally preferable regardless when

they are achieved. Usually, γ is set to 0.9 in most instances such that near rewards

gained are preferred over rewards gained in the remote future. In addition, such

values allow achieving ”natural preferences” of human beings whose attitudes tend

to value current rewards more than those achieved in the future [17].

The state probability function also addresses state-action pair by its likeness

of occurrence and suitable probability for that pair.

Under probability function is also counted stochastic nature of the environment

where the agent possibly not always executes ”the right” action or not always

reaches the same state from its current state using the same action. If that is the

case, we have non-deterministic MDP environment where, with some percentage,
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the agent is considered a not reliably predictable entity. If the agent always

executes intended actions, without failures, or next state can be reliably predicted

given the current state and action taken, we have the deterministic environment.

Once discounted factor entered reward function and having stochastic nature,

our reward function is defined as expected discounted cumulative reward:

E(Rt) = E (
∞
∑

i=0

γirt+i+1) (2.5)

A careful look at the formula, we may note that the number of actions goes to

infinity, but with discount factor infinite horizon has finite value where discount

factor diminishes ”a far” rewards taken basically making them near-to-zero values.

Fortunately, discount factor allows infinite horizon being treated as a finite.

Discounted infinite horizon environment is of interest in this thesis and the

finite horizon is out of its scope.

The expected cumulative reward for a certain state in the environment gave

as its value function or simply the desirability of a certain state. Next, to the

state-value function, we have also action-value function, denoted by Q(s, a) where

the utility is defined for the state considering it with the action taken from that

state. Formally, state-value function:

V (s) = E{
∞
∑

i=0

γirt+i+1 | st = s} (2.6)
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Action-value function:

Q(s, a) = E{

∞
∑

i=0

γirt+i+1 | st = s, at = a} (2.7)

The complete solution of an MDP is in a finding for the agent the correct action

for every possible state of the environment. This complete solution or a map of

action-state pairs represents policy, π. Formally: π : S → Π(A) policy maps

between all states and its probability distributions over the set of actions. π(s, a)

- probability that the agent selects action a in state s [18]. Policy, in our case

with Markov Property preserved, is a stationary as an action solely depends on a

current state. Non-stationary policies define different actions for the same state

depending on a time step as an environment considered is with finite horizon.

The agent objective is to maximize its reward on each state. The policy that

contains maximum expected reward in every state is named optimal policy, π∗.

Consecutively, the policy contains optimal value function, V ∗ for each state, and

satisfies:

V π∗

(s) ≥ V π(s) ∀π∀sǫS (2.8)

Optimal policy based on action-value functions, Q∗: Q∗(s, a) = maxπ Q
π(s, a)

Optimal action-value function is the function that maximizes action-value function

for each state-action pair. Finding the optimal policy requires finding optimal

values for state-value function (or action-value function) for each state, means,

that we have traversed all possible combinations. The core of solution for an
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MDP laid down in a Bellman Equation that uses a recursive approach to update

value function till its convergence, the optimal value. Bellman Equation for value

function is represented as:

V π(s) =
∑

aǫA

π(s, a)
∑

s
′
ǫS

P (s, a, s
′

) [Ra

ss
′ + γV π(s

′

)] (2.9)

Where MDP is defined as tuple (S,A, P (), R), s is current state, S is set of all

states, π is a policy and P (s, a, s
′

) is a probability that agent, starting from state

s and taking action a will land in the next state s
′

.

As mentioned earlier, Bellman Equation is a recursive approach where the

current state is updated based on its next state, as can be seen from the equation.

The formula also gives us an insight of possible expensive and computationally

high requirement of dependency on the calculation of each state value on all next

state values till the last state. Also, P (s, s
′

, a), in the equation tells us that model

of the environment and transition probabilities are known before we want to find

the optimal solution, that is rarely the case. In reality, very few instances have

clearly defined knowledge of dynamics of the environment and if the model of the

environment is not completely known, finding optimal values may not be accu-

rate with the Bellman Equation. If the accurate model of an environment is not

available, dynamics of the environment depends on an estimation hence we have

estimated value functions. Having all estimations learned by an agent interact-

ing with an environment is one of the leading force behind the development of

different RL techniques. All of these techniques have a goal, based on estima-
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tions, to found an optimal policy. In the next paragraphs, we summarize different

approaches and algorithms for each approach that tries to solve an MDP.

2.4.2 Solving an MDP

Depending on the model availability, the majority of the algorithms for solving an

MDP instance fall into two broad categories, planning-based and learning-based

algorithms. Each of the categories has several algorithms with different variations

and improvements considered.

Planning-based Methods

Planning-based methods for solving an MDP require that dynamics (a model) of

the environment is known in advance. Once the model is available, dynamic pro-

gramming approach is used to recursively calculate the optimal value. Previously

discussed the solution of an MDP, Bellman Equation, is in the heart of dynamic

programming techniques. The same drawbacks discussed are encountered in all

other planning-methods since all of them are based on dynamic programming

approach and its Bellman Equation. Admitting its disadvantages and fails in ad-

dressing real world problems, its well-defined theoretical background, soundness

and concepts are crucial for grasping and comprehension of all RL-based tech-

niques (planning and learning-based). Since the Bellman Equation calculating

the value based on updates calculated from the all next states, varying the object

of update we have different algorithms generated.
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Policy Iteration Policy iteration algorithm uses an iterative approach to im-

prove a complete policy, at each step, based on updating a current policy. Arbi-

trary policy is defined at the beginning as a start point and with each update, all

policy improvements are noted and its actions are updated accordingly.

π(s) = argmax
aǫA

(Ra

s
+
∑

s
′
ǫS

P (s, a, s
′

)γV (s
′

)) (2.10)

For even a simple problems, this is a very expensive approach where every single

action requires a full policy to be updated and saved for the next action.

Value Iteration Addressing a policy iteration expensive update step, Value

Iteration algorithm updates state-value function of the current state based on the

next state improvement only. This sounds familiar? Our first solution for an

MDP where Bellman Equation was introduced, in the previous action, was Value

Iteration algorithm. Now, we will add a formal representation of its update rule:

Vi+1(s) = max
aǫA

(Ra

s
+
∑

s
′
ǫS

P (s, a, s
′

)γVi(s
′

)) (2.11)

Value Iteration algorithm needs a termination criterion to stop its further update

of the state-value function. Usually, it is the improvement rate or difference

between current and updated value function that can be used for the decision

to stop an algorithm. For example, if the difference between two consecutive
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value functions is not greater than ǫ than algorithm stops.

max
sǫS

|Vi(s)− Vi+1(s)| ≤ ǫ (2.12)

ǫ can be chosen to be a small value, and Value Iteration algorithm usually produces

desirable results that are near the optimal solution.

Algorithm 1 Value Iteration: Learn Value Function V : S → R

Require:
States S
Actions A
Reward Function: R() : S × A → R

Transition Probabilities: P (s, a, s
′

)
Discount Factor: γ ∈ (0, 1)

1: procedure Value Iteration(S,A,R, P, γ)
2: V(s) = 0
3: repeat
4: δ = 0
5: for s ∈ S do
6: v = V (s)
7: V (s) = maxa∈A(R

a
s
+
∑

s
′
∈S

P (s, a, s
′

)γVi(s
′

))
8: δ = max(δ, | v − V (s) |)
9: end for
10: until converged or δ ≤ ǫ

11: for s ∈ S do
12: π(s) = argmaxa∈A(R

a
s
+
∑

s
′
ǫS
P (s, a, s

′

)γV (s
′

))
13: end for
14: return V, π
15: end procedure

Learning-based Methods

Planning-based methods require a full model of an environment to calculate a

policy for an MDP instance. On the other hand, we have a set of algorithms that

learn a model or its estimate based on the interaction with the environment. An
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agent is allowed, for the certain number of steps, to interact with the environment

and based on its interaction to decide the best action to take in a particular

state. Based on the number of steps taken for each estimation, based on different

preferences for an agent in choosing the best action, we have different learning-

based algorithms for solving an MDP instance. The common dilemma for all

learning-based RL algorithms is in the relation between agent’s usage of current

knowledge and exploration of a new knowledge of an environment because both

cannot be done at the same time. This central dilemma is known as Exploration

vs. Exploitation dilemma. If the agent in his common learning path choose always

the maximum expected action-value assuming that it will lead to the optimal

value in the long term. This approach of only exploitation is called a greedy

approach and, usually, it doesn’t yield optimal policy. In the long term, every

time exploiting the knowledge without exploration of possible higher values hidden

behind current low values will not guarantee a good or near-optimal solution. A

better approach to learning algorithms is in a choosing appropriate ratio between

the time of exploitation and exploration, and different methods exist to address

this crucial part of successful RL learning algorithm. ǫ-greedy and Softmax are

one of the most famous selection approaches for exploitation and exploration ratio.

ǫ-greedy As already mentioned that allowing an agent to only exploit what

already it knows from the environment by taking only the highest values will not

lead to the optimal solution and this all-time greedy approach has fast convergence

rates with poor overall performance. ǫ-greedy approach alters all-time greedy
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approach by allowing an agent to acts greedily most of the time, but on occasion

to choose randomly between non-greedy actions. This occasion is defined by an

ǫ. More precisely, an agent acts greedily with the probability 1 - ǫ where ǫ is

defined in the range (0 < ǫ < 1), while acts non-greedily with the probability of ǫ.

When the agent acts non-greedily, it chooses randomly from the set of all actions

(including the greedy one).

Softmax ǫ-greedy method approaches non-greedily actions by randomly choos-

ing between all actions not looking in their estimations. If the environment gener-

ates estimations of the wide range of values, this may lead to sub-optimal policies

far from the optimal. Softmax method is addressing this possible ǫ-greedy weak-

ness by weighting the non-greedy actions based on their current estimations of

action-value functions (Q-values). Furthermore, the weighting of non-greedy ac-

tions can be done on many ways, by arranging them based on some distribution

(for example Gibbs distribution), by sorting them simply by their values assign-

ing to each probability based on its Q-value estimation, by employing search

algorithms [19], etc. Selecting appropriate method (in literature called action-

selection methods) for Exploitation and Exploration is a crucial in RL learning-

based methods (it is obvious that RL planning-based methods contain a model and

no estimation is required, hence no exploration) and not rarely suitable method

depends on the nature of the problem and no best action-selection method exists

until it meets certain problem and proves its efficiency.
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Monte Carlo

The Monte Carlo (MC) learning-based approach on RL instance is a group of

related algorithms that are inspired by Monte Carlo randomized concepts. In

general, MC approach divides agent’s learning experience into episodes, and, at

the end of each episode, averages gained and employs different techniques for

updating current values (state-value or action-value (Q) functions) gained within

the episode. By changing the time of MC step (averaging) we create an additional

category of MC algorithms. For example, every-visit MC averages the discounted

rewards across all steps within the episode. On the other hand, first-visit MC

averages only discounted rewards of the first steps within the episode. The famous

MC inspired algorithms for solving an MDP are MC Policy Evaluation and MC

Control.

Temporal Difference

Combining the benefits of both dynamic programming and Monte Carlo ap-

proaches, the temporal difference (TD) algorithm creates another family of RL

learning-based method for solving MDP problems. Taking the advantage of dy-

namic programming, its update function is based on the all next states while

allowing the agent to learn from immediate interaction with the environment.

The TD algorithm generates improved algorithms that were successfully applied

in many real-world problems [17]. Based on the update phase where the current

MDP policy is refined, different TD algorithms are possible. In this thesis, our

26



attention is restricted to TD algorithms where the update takes place after each

step taken.

T(0) is a TD-based algorithm where the MC method is combined with pol-

icy evaluation. T(0) updates the value function based on successor states while

employing gains (rewards) with a learning rate using the following update rule:

V (st) := V (st) + α[rt+1 + γV (st+1)− V (st)] (2.13)

where α is a learning rate with values between 0 and 1. Faster learning is

possible using values of α close to 1 at the expense of higher residual error. On

the other hand, α, with values close to 0, allows reaching lower residual errors

but at the cost of longer training times. In most practical implementations, α is

decreased gradually throughout the learning phase as a trade-off between learning

speed and accuracy.

Q-Learning Unlike TD(0) that incorporates the state-value function for one-

step update, the Q-learning algorithm updates the maximum expected action-

values (called q-values) of the next state. The Q-learning updates its q-values

using:

Q(st, at) = Q(st, at) + α

[

rt+1 + γmax
a
′
ǫA

Q(st+1, a
′

)−Q(st, at)

]

(2.14)

Pseudo-code for the q-learning is listed in Algorithm 2.
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Algorithm 2 Q-Learning Algorithm: Learn Q Function Q : S → {R,A}

Require:
States S
Actions A
Reward Function: R : S × A → R

Discount Factor: γ ∈ (0, 1)
Learning Rate: α ∈ (0, 1)
Transition Probabilities learned by agent

1: procedure Q-learning(S,A,R, γ, α)
2: Q(s) = 0 (initialization)
3: repeatafter each episode
4: for each step in episode do
5: choose action a

6: execute action a, observe interaction, reward r, s
′

7: Q(s, a) = Q(s, a) + α[r + γmax
a
′
∈A

Q(s
′

, a
′

)−Q(s, a)]
8: s = s

′

9: end for
10: until Q converged or certain number of iterations achieved
11: for s ∈ S do
12: π(s) = argmaxa∈A Q(s, a)
13: end for
14: return V, π
15: end procedure

28



Sarsa The state-actionrewardstateaction algorithm (aka Sarsa) is another TD

one-step algorithm created from the modified version of the q-learning algorithm

using an approach of TD(0). Sarsa updates the a-values as a q-learning but does

not take the maximum expected value of the improvement of next state, it rather

directly updates on any improvement on next state, as it is the case in TD(0).

The update of the q-values is given by:

Q(st, at) = Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)] (2.15)

Algorithm 3 Sarsa: Learn Q Function Q : S → R,A

Require:
States S
Actions A
Reward Function: R() : S × A → R

Discount Factor: γ ∈ (0, 1)
Learning Rate: α ∈ [0, 1]
Transition Probabilities learned by agent

1: procedure Q-learning(S,A,R, γ, α)
2: Q(s) = 0 (initialization of Q arbitrarily)
3: repeatafter each episode
4: for each step in episode do

choose action a

execute action a, observe interaction, reward r, s
′

Q(s, a) = Q(s, a) + α[r + (s
′

, a
′

)−Q(s, a)]
s = s

′

5: end for
6: until Q converged or certain number of iterations achieved
7: for s ∈ S do
8: π(s) = argmaxa∈A Q(s, a)
9: end for
10: return V, π
11: end procedure

Pseudo-code for the Sarsa is listed in Algorithm 3. It is worth to mention that

TD methods are one of the most common due to their simple and yet powerful
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generation of model-free experience from the interactive actions. From the TD

methods, the discovery of Q learning is recognized as the most valuable for success

and respect of RL-based methods they enjoy now. There exist other different

approaches for solving RL instances (for example, Dyna-Q and Q-Planning), but

our main concentration, in this thesis, will be on the algorithms presented till

now, particularly the VI, Q-Learning and Sarsa algorithms.
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CHAPTER 3

LITERATURE SURVEY

3.1 Refactoring

Refactoring related-topics have taken extensive research effort in the last decade

from the different perspectives. For illustration, last three years we found several

systematic literature surveys and reviews on refactoring from the different aspects

[20, 21, 22, 23, 24, 25, 26].

In general, one of the first literature surveys on refactoring was conducted a

more than a decade ago [27]. It was considered one of the main resource for re-

lated work of refactoring. Authors perform the state-of-the-art survey of research

work done till 2004 and discussed their impact based on different criteria. For

instance, activities supported, techniques and patterns used in these activities,

parts of software being refactored, etc. The survey was also followed by open

discussion and advice, to take into consideration, for refactoring tools and the

process itself. Rather more general with lack of more detailed concentration of
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each work presented found in standard systematic literature reviews (the term of

SLR in software engineering came long after (2009) by work of Kitchenham et al.

[28]), this survey covered the wide range of topics related with refactoring.

With motivation that review of research about code smells and refactoring

will help in better understanding of effects of refactoring on software quality,

Wangberg’s [29] revised published sources till 2009 with the wide range of topics

discussed. The main findings were related to the facts that very small portion

of the work included empirical studies(24 %). Most of the work (22 out 28) was

concern about detection of the code smells and reviewers admitted a significant

increase in the number of publication on code smells and refactoring since 2005

[29].

Published sources till 2009 were again analyzed by Zhang et al. [30] with the

aim to examine empirically the usage of code smells and refactoring in improving

software quality. They found that Duplicated Code was the most analyzed bad

smell among researchers and that most of the contributions of research society

were in developing techniques to detect bad smells and only a few authors were

concern about quantifying its relation with software quality on empirical base.

Although in overall this review suggests that there is little evidence currently

available to justify using code-smells [30], their detailed discussion tries to confirm

that software engineers may believe that bad smells and its philosophy behind

software quality improvements are common-sense and do not require any empirical

evidence.
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Al Dallal [21] reviewed object-oriented code-related refactoring opportunities

in published sources ignoring all ’non-code’ refactoring (for example, model-based

or refactoring to service or aspect-oriented code refactoring). Furthermore, only

studies reporting empirical evaluations were considered. The author found that

Extract Class, Move Method, and Extract method were refactoring tasks used in

most approaches. According to this SLR, around 40 % of the work reviewed did

not define their refactorings. Moreover, this SLR presents empirical proof that

most common practice in evaluation of refactoring success was intuition or it was

closely related to human involvement (with 48.9% of all evaluation approaches).

Although published in 2015, this SLR includes published sources till 2013 and we

found it failing to recognize and classify AI-based approaches as a separate and

important shift in empirical refactoring approach.

While Al Dallal’s SLR concentrate on code-based refactoring only, model-based

(UML) refactoring was the main interest of SLR conducted by Misbhauddin and

Alshayeb [22]. SLR analyzed 94s publication sources with different criteria and

its effect on model quality.

Recently, Rasool et al. [20] conducted SLR on code-smells mining techniques

on research published till March 2015. Results include that Feature Envy, Data

Class, Large Class, Long Method and Long Parameter List code smells acquired

the maximum attention of researchers. According to authors, lack of formal defi-

nitions of code-smells and lack of standardized benchmark system for evaluation

of detection/refactoring techniques are gaps that should be addressed by code-
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smells’ research community. Also, most of the tools (92 -95 %) for code-smells

detection/refactoring are for Java programming language-based code and most of

the datasets used for evaluation are open-sourced. Authors recognized AI-based

refactoring works (namely, search-based and Machine Learning-based) listing its

resourced and commenting on its dependency on search-space and training data.

Additionally, for search-based techniques, authors mentioned additional effort in

tuning parameters and possible drawback with the generality of the approach.

As we can see, refactoring and concept of bad-smells, in general, are part of

active research and in the next section, we present, in more detail, what has been

done on its prioritization.

3.2 Prioritization of Refactoring Tasks

Liu et al [31] addressed the problem of prioritizing refactoring based on conflicts.

Different conflicts among refactorings are detected and prioritizing model is pro-

posed. The main objective of the proposed model is to improve software quality

while resolving the problem of scheduling conflicted refactorings.

Work in [32] is one of the first attempts to formally (mathematically) de-

fine prioritizing refactoring problem as a Multiobjective Entity Refactoring Set

Selection Problem (MOERSSP). While the formulation includes in its name mul-

tiobjective, the two objective functions were combined into single optimization

problem by aggregation with weighted coefficients. As one of the early attempts

to use evolutionary algorithms into prioritizing the set of refactorings, the work
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lacks automation and it is manually tuned based on ’trial-and-error’ fashion. Also,

empirical evaluation is done on a single project without further evaluation.

Authors in [33] manually analyzed (in a pairwise manner) different smells and

their priority of refactoring. Results of pair-wise analysis between smells were

represented in graph-manner with priority denoted by an arrow between each

smell. This graph is later used as a base for topological sorting to find the optimal

refactoring sequence of bad smells. This work takes into account only developers’

time effort as an objective to minimize. It is a semi-automated method with high

dependence on human-interaction for analysis and evaluation. Refactoring tasks

are performed on source-code and ’quantity’ of the code (code smell) was one of

the main reason for prioritizing its severity (’longer’ code smell more severe).

Meananeatra [34] focused on prioritizing refactoring with respect to maintain-

ability. For authors, maintainability is achieved by its four criteria (analyzability,

changeability, stability, testability). The prototype developed requires from devel-

oper manual preferences of these four criteria. After developers’ preferences, the

second optimization objective is to reduce the number of smells that will achieve

developers goal chosen. The main algorithm for presenting refactoring process is

graph-based where root node represents the source code and its children are the

different output of refactoring tasks. Using predefined criteria and preferable out-

come, graph transformations are used to find the optimal sequence of refactorings.

As a result, formulation of final selection can be seen as maximizing the number of

removed bad smells and maintainability while minimizing the size of refactorings
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in refactoring sequence and the number of program elements to modify. Authors

proposed the solution but no evaluation of real projects is found. Since, as authors

stated (2012), it was prototype and development was in progress, till now (2016)

no trace for its application and evaluation.

Mining documented defect examples, authors in [35] created detection rules

based on defects regularities. Genetic Programming (GP) is used to automat-

ically extract these rules. After detection, these rules were used to denote the

minimized number of detected defects that maximize code quality in refactoring

process. Maximizing code quality, as a first objective, is combined with minimiz-

ing the effort needed to apply refactoring operations [35] creating multi-objective

approach. Non-dominated Sorting Genetic Algorithm (NSGA-II) [36] was em-

ployed to solve a multi-objective problem with finding a set of solutions (Pareto

Front).

Mkaouer et al. [37] designed a tool (DINAR) that requires developers interac-

tion to dynamically prioritize refactoring tasks. NSGA-II optimization algorithm

is used to optimize three objectives: improve software quality, reduce the number

of refactorings and increase semantic coherence. After developers’ feedback, local

search is performed to update the refactoring recommendations. The novelty of

this approach, next to proposed tool, is an analysis and exploration of Pareto

Front in the interactive manner that includes direct developers’ feedback. This

work is built on previous work of the same group where they used defect reposito-

ries to ”mine regularities about defect manifestations that can be translated into
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detection rules” [38].

Moreover, the same group of authors [39] taken in account dynamic environ-

ment of software development to model refactoring based on the uncertainties

related to the class importance and code smell severity. Robust optimization [40]

is used to design the code refactoring problem and NSGA-II multiple-objective

approach algorithm is employed to find trade-offs between software quality (mini-

mizing the number of code smells) and the robustness of the refactoring solutions

in relation to uncertainty in the severity level of the code smells and in the impor-

tance of the classes that contain the code smells [39]. Results obtained were first

compared to Random Search as a basic comparison. After, NSGA-II is compared

with MOPSO(multi-objective PSO) and Mono-Objective Evolutionary Algorithm

(Genetic Algorithm). In most open-source projects evaluated, proposed approach

outperforms others approaches.

Ali Ouni, in his Ph.D. thesis [41], collected what he has done, being part

of refactoring research group, for code-smells detection and software refactoring.

For software refactoring, next to separately published work [35, 3] author came

with two other approaches for prioritization of refactoring. The first approach

has four objectives: 1)to fix the code smells, 2)reduce the number of modifica-

tions/adaptations needed to apply refactorings, 3) preserve the semantic coher-

ence of the refactored program, and 4) maintain the consistency with develop-

ment/maintenance history [41]. NSGA-II heuristic is used to explore search space

and results, with metrics defined for each objective, were reported with the com-
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parison to other heuristic algorithms (MOGA, Random Search) and JDeodorant.

This study rises, among others, an importance of semantic coherence preservation

and with, on average, 80% of semantically feasible achievement of applied method,

this is a significant improvement in comparison with other approaches evaluated.

NSGA-II outperforms significantly MOGA, random-search, and mono-objective

algorithm in terms of code-smells correction ratio (CCR), semantics preservation

(RP), and code changes reduction [41]. In the second approach, multi-objective

recommendation refactoring system is developed with emphasizing on introducing

design patterns and fixing anti-patterns. Tool MORE ((Multi-Objective REfac-

toring) is developed to support proposed approach and empirical study is con-

ducted with a quantitative and qualitative evaluation including developers and

common open-source projects. Based on metrics for evaluations (code-smells cor-

rection ratio (CCR), the number of newly designed pattern instances (NP), quality

gain (QG)) and authors defined metric (refactoring meaningfulness(RM)) in com-

parison with the state-of-the-art approaches, authors denote that their proposed

method outperforms others work.

Malhotra et al. [42] prioritize four types of code-smells Feature Envy, Long

Method, God Class and Type Checking on the class level based on time con-

straints for their refactoring. Chidamber and Kamerer metric suite is used with

different combination to identify highly affected classes for immediate refactor-

ing. This approach is only based on software metrics (C&K) for determining

software quality and its work is based on source-code refactoring. Recently pub-
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lished work [3] on prioritizing emphasizes the riskiest code-smells to be refactored

first. They used, for the first time in software refactoring problem, Chemical

Reaction Optimization (CRO) scheme to find the best combination that outputs

optimal refactoring sequence improving overall quality with a minimized number

of detected code-smells. Authors used open-source projects for evaluation (with

well-known smells and required refactorings). Common datasets allowed com-

parison with other metaheuristic approaches and authors denoted uniqueness of

CRO and its promising results. Some good properties of CRO revealed in their

optimization problems (such as its advantage on both, GA and SA algorithm)

were shown useful in this work to tackle refactoring problem. One of the main

goals of the work was to ensure that the riskiest code-smells are fixed first [3].

Authors stated that ’the riskiest’ code-smells, in terms of developers’ preferences,

are concerned. But, we also find the usage of ’common-sense’ in determining

the riskiest code-smells stating some well-known preferences between code-smells

(for instance, taking for a grant that blob class has a higher risk than functional

decomposition). In comparison with other approaches without prioritization(in

terms of ratios of importance, risk, severity, and precision) authors reported sig-

nificant outperform. In addition, comparison of CRO with other metaheuristics

(GA, SA, and PSO) is performed and authors report that CRO is a much better

solution in terms of refactoring ratios (importance, risk, severity, and precision)

on average of all experiments. The main drawback of this approach might lay

down in its lack of generalization and its prior requirement of the history of code
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changes applied to the system during its life-cycle [3]. Moreover, all evaluations

were done on the well-known open-source projects with well-studied code-smells

and their effects. While it is an advantage for studying improvement of approach

and its replicability; for generalization, shifts from standard datasets may reveal

other aspects of approach applied. Summary of related work with prioritization

of refactoring is presented in Table 3.1.

3.3 Refactoring and Machine Learning Tech-

niques

Authors in [43] applied LSSVM with some preprocessing (Wilcoxon test, PCA)

and smoothing techniques (SMOTE) to predict refactoring classes based on soft-

ware metrics using datasets of 7 open source projects [44]. From 120 software

metrics, 31 of them were chosen as a more relevant discriminant of refactored

and non-refactored classes based on mean value and statistical test. Refactored

and non-refactored classes are from different consecutive versions of the same sys-

tem. PCA was used to reduce 31 software metrics to 6 PCs and imbalanced data

of refactored and non-refactored classes were addressed by SMOTE technique.

LSSVM binary classifiers, with different kernels, were used and high results were

reported in prediction/classification part ((the highest of 0.96 AUC). The inter-

esting part of our topic is that cohesion metric (LCOM) did not pass the first

step of this framework since they were not chosen as a consideration after the first
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Ref. Algorithm Level Dataset Smell Objective

(Liu et al. 2007) graph-based Code-based
private:

PMMT 
NN

Maximize

Quality

(Meananeatra 2012) graph-based Code-based NN Long Method

Maximize

Removed Smells

Maintainability

Minimize

Refactoring Sequence

Elements to Modify

(Liu et al. 2012) graph-based Code-based

public:

Java Source Metrics

Thout Reader

Duplicated Code

Long Method

Large Class

Long Parameter List

Feature Envy

Primitive Obsession

Useless Field

Useless Method

Useless Class

Minimize

Time Effort

(Malhotra et al.  2015) meric-based Code-based
public:

OrDrumbox

Blob

Feature Envy

Long Method

Type Checking

Maximize

Quality

(Chisalita 2009)
metaheuristic-based:

GA
Code-based

public:

Simulation of LAN 
NN

Minimize

Cost

(Kessentini et al. 2011)
metaheuristic-based:

GP,GA
Code-based

public:

Xereces-J

GhanttProject

Quick UML

ArgoUML

Blob

Spaghetti Code

Functional Composition

Minimize

Detected Defects

(Ouni et al. 2013)
metaheuristic-based:

GP, NSGA-II
Code-based

public:

Xereces-J

GhanttProject

Quick UML

AZUREUS

LOG4J

ArgoUML

Blob

Spaghetti Code

Functional Composition

Maximize

Quality

Maintability

Minimize

Effort

(Mkaouer et al. 2014a)
metaheuristic-based:

Local Search, NSGA-II
Code-based

public:

Xerces-J

JFreeChart

GanttProject

JHotDraw

private: 

JDI-Ford

Blob

Spaghetti Code

Functional Composition

Maximize

Quality

Semantic Coherence

Minimize

Refactorings

(Mkaouer et al. 2014b)
metaheuristic-based:

NSGA-II, MOPSO, GA
Code-based

public:

Xereces-J

JFreeChart

GhanttProject

JHotDraw

ApacheAnt

Rhino

Blob

Spaghetti Code

Functional Composition

Data Class

Maximize

Quality and Rrobustness

(Ouni et al. 2015)
metaheuristic-based:

CRO, GS, SA, PSO
Code-based

public:

Xereces-J

JFreeChart

GhanttProject

JHotDraw

ArtOfIllussion

Blob

Spaghetti Code

Functional Composition

Data Class

Schizophrenic Class

Shotgun Surgery

Feature Envy

Maximize

Number of Prioritized (Riskiest) 

Corrected Smells

(Ouni 2015)

metaheuristic-based:

NSGA-II, MOGA, Random 

Search, GA

Code-based

public:

Xerces-J

JFreeChart

GanttProject

JHotDraw

ApacheAnt

Rhino

Blob

Spaghetti Code

Functional Composition

Data Class

Shotgun Surgery

Feature Envy

Maximize:

Fixed Smells

Semantic Coherence

Consistency with 

Development/Maintenance 

History

Minimize

Modifications/Adaptations

(Ouni 2015)

metaheuristic-based: 

NSGA-II, MOGA, Random 

Search

Code-based

public:

Xerces-J

GanttProject

JHotDraw

ApacheAnt

Blob

Spaghetti Code

Data Class

Feature Envy

Maximize:

Introducing Design Patterns

Fixed Smells

Design Quality.

Table 3.1: Refactoring Prioritization Related Work.
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statistical test. On the other hand, coupling metrics (RFC, for example) were

one of the 31 metrics considered in feature selection and PCA feature extrac-

tion. This is reasonable in refactoring, since refactoring tasks more often address

highly coupled classes and any approach to reorganize and ”simplify” the system

by refactoring affects more coupling than cohesion, on average. Improvement of

coupling metrics (with RFC one of them) in refactored classes is found in the

previous studies and might represent a common fact among relation of software

metrics and refactoring [43, 45, 46].

3.4 Summary

After literature survey, we can see that no reinforcement learning-based method

is proposed in the literature to address refactoring automation problem. More-

over, a majority of proposed techniques are simulation-based, transferring source-

code to the meta-representation and then applying automation techniques on this

meta-representation aiming to reach refactoring sequence. At the end, refactoring

sequence is applied on the source-code. While this might be an efficient approach,

transferring source-code to meta-model might also create more noise and affect

the accuracy of proposed techniques. Furthermore, with meta-representations, we

lose direct relation with the source-code, where, in reality, refactoring happen.

Reinforcement learning methods might fill this gap with direct interaction with

the source-code learning how to optimize refactoring sequence.
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CHAPTER 4

PROPOSED METHOD

For a better understanding of the proposed method, we begin with a simple ex-

ample of Reinforcement Learning application. This example might serve as a

motivation behind the proposed method. For example, the proposed method is

presented with its several phases discussed with more details.

4.1 Reinforcement Learning: A Simple Example

Before we begin discussion and explanation of the proposed method, let us consider

a layout map depicted in Figure 4.1. The map represents a flat where the cleaning

robot lives for a while. Flat’s world is divided into twelve rooms numbered from 1

to 12. The robot has a daily task to start from the room number 1 and reach the

room it needs to clean. Actions are the side directions the robot moves (north,

south, east, west) and after each move, the robot is expecting to be in a different

room. Each move costs the robot few percentages of battery drain and his owner

gave it the instruction to clean the room number 12 (the owner’s room) and doing
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it will give the robot full battery recharge plus additional benefits. Otherwise, if

the robot does not reach the room 12 and its battery got drained, its owner will

”punish” him by not recharging its battery for 3 days plus the robot will be ”sad”

because it was late 3 days to clean the owner’s room (let us imagine that the robot

is conscious). Furthermore, the robot knows that the room 6 is closed and trying

to enter it will just a drain his battery without any progress. Moreover, the owner

knows that his robot is not 100% reliable and rational, because not always it takes

an intentional move. Sometimes the robot displays that it is moving north but it

ends moving in other directions.

His owner wants to help it and gave it a sequence of the directions that will

lead it to the owner’s room. Without much thinking the owner orders the robot

to move [east - east - south - south - east] and it will reach the room number 12.

After the month of observations, the owner was not very happy with his robot not

always cleaning his room, even after he gave it the right sequence of moves. On

the other side, the robot was sad that it cannot reach the room number 12 every

time it starts with the room number 1. Most of the time the owner will find it in

another room.

After a while, the owner realized that battery drains sometimes pushed the

robot to stop. Sometimes its unreliable nature prevented it to take the right

directions and it took its additional battery drains. The owner was thinking in

the direction to calculate the percentage of battery drain for each move but then

realized that the battery, by every recharge, requires another recalculation of the

44



drain-per-move variable. Lastly, he realized that he will need a general and easy

strategy to recalculate the optimal sequence based on the state of the robot and

his battery level on the long-term maximizing its benefits.

Figure 4.1: Robot World.

What is the best overall policy for the robot? What will maximize overall

happiness of its owner?

Luckily, the owner remembered his friend who had courses in AI (a friend owns

a degree in computer science). A friend explained to him that once the robot is

unreliable, he has to represent its moves with the probabilities of every direction.

Observing the robot for the past month gave him insights that 80% of the time

the robot is reliable and 20% of the time it acts randomly. Furthermore, a friend

told him that battery drains were, for him, clearly negative rewards (or costs)

for moves the robot takes. Pairing the probability with the directions, adding

a negative reward and room number to it, they created a utility function. His

friend also gave him a tip that the maximum he can get from his robot, in the

long term, is to maximize this utility function for each room. The direction with

the maximum utility function is the best direction for the robot to take in that

room. The owner, feeling enlightened with the explanations of his friend, started
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to calculate these utility functions for every possibility in his twelve rooms map.

Starting from the room number 1, to get its maximum utility function, he needs

to calculate utility function for every direction and multiple it with the maximum

utility function of the next room. It could be the either room number 2 or 5. To

easily track his calculations, he organized it in a tree-like structure.

After a while, he gave up realizing that it might take him a lot of time to

calculate maximum utility function for each room. For example, to calculate it

for the room number 2, he needs also the maximum utility for the room number 3

that needs the maximum utility for the room number 4 and the room number 7,

and so on, for every direction (a friend obviously did not want to explain the owner

every detail that could lead him to solution easily, but wanted him to understand

it gradually with a little effort).

The next meeting with the friend he understood that he had to calculate 16

777 216 utility functions to cover all twelve rooms (without closing the doors of

the room number 6). Every room with all directions gave him 412 possibilities.

The owner realized that the problem was with the maximum operator and no

other way, except for the calculation of all possibilities then taking the maximum,

will lead to the optimal solution. Moreover, a friend explained to him that his and

similar examples can be represented with a simple, yet powerful framework called

Markov Decision Processes (MDP) that can be addressed with many successful

algorithms. This framework has rewards, states, actions, probabilities, discount

factor, map and an agent that wants to reach some position on the map. The
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solution is a policy that gives the action for each state agent can enter. The

optimal policy is the one that gives the optimal action for each state in the long

term. One of the algorithms that can find the optimal solution is to assign for each

state some value for a utility function, they discussed previously, and then update

it in an iterative manner till no change on these utility functions is observed. A

friend gave him a small program that automates calculations for him. Finally,

it was not hard for the owner to realize that his robot is an agent, negative

rewards are battery drains, states are the owner’s rooms and actions are robot’s

directions. A discount factor was a new concept for him, but soon he recognized

that the agent prefers rewards that he get sooner over the rewards he gets latter,

and discount factor is there to achieve this preference. The solution, the owner is

searching for, was calculated using the friend’s small program, to save his time of

manual calculations. After a month, the owner was able to place the robot in any

room and give it an order to clean any other room with the policy he had already

calculated, being satisfied with its maximization of the robot’s performance.

This toy example of Reinforcement Learning and sequential decision problems

gave us an idea of the MDP application in the real case scenarios.

What if our agent is a developer who is maintaining large project having a lot

of refactoring tasks to execute optimizing the source code. Yet, every refactoring

task takes developer’s time and effort and not always he takes the right task. His

stakeholders appreciate his current output and developer wants to maximize it by

optimizing the sequence of refactoring tasks to execute. Can we help developers
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and other software project’s stakeholders by transferring refactoring sequencing

problem to an MDP instance and solving it efficiently? Can we automate refac-

toring sequence process by having its MDP instance being solved by optimizing a

certain part of software quality measures? Can we properly automate refactoring

sequence process minimizing developers’ effort reducing the number of refactoring

task manually executed?

Searching for an answer to these and other questions is the main motivation

behind the thesis. In the next sections we discuss proposed method, formally

define refactoring MDP instance and algorithms to solve it.

4.2 Proposed Method

In this section, we propose an automated approach for optimizing coupling and

cohesion values of class refactoring sequence. The method is based on MDP and

reinforcement learning. The method consists of eight phases depicted in Figure

4.2. These phases are summarized in the next paragraphs and next sections come

with more details of each phase:

• Phase 1: Input is the class with its metric values.

• Phase 2: Metric values (two metrics in our case) of the class are used

to create a 2-dimensional world (map). This world has an entrance in its

default class values and the goal on the diagonal end of the map.

• Phase 3: Rewards, discount factor, and terminal function are defined.
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Figure 4.2: Proposed Method.

• Phase 4: Input (class) is analyzed for possible action generations. In our

case, we search for all correct MM, DM and EM tasks.

• Phase 5: All feasible tasks generated from the Phase 4 are grouped and

presented as an ”actions” in MDP instance. Phase 5, with the phases 2

and 3 together, represents an MDP instance definition of the refactoring

problem.

• Phase 6: With the previous phase, MDP definition of the refactoring se-

quencing problem is completed. This phase employs different algorithms to

solve an MDP and find the optimal policy.

• Phase 7: The optimal policy is found as a result of the previous phase.

• Phase 8: Final output is the optimized class with tasks applied according

to the optimal policy.

Next sections address these phases with more details.
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4.3 Phase 1 - Input

The proposed method has a goal to optimize coupling and cohesion values on

a class level. As an input, we have a Java class with its source code. Values

for coupling and cohesion are calculated as part of input and next phases are

employing these values for the further processing. It is worth to mention that

the proposed method is general and that optimization goal depends on software

quality measures calculated in this phase. Our approach exploits coupling and

cohesion values, if other quality measures were used, the objective optimization

differs.

4.4 Phase 2 - Environment representation

S - state function (environment of an MDP) in the refactoring is defined as a 2-

dimensional world, where first-dimension represents a class lack of cohesion value

and its second-dimension class coupling value. A specific value of coupling and

cohesion represents the detailed state, position, on this world/map. As one of our

objectives of the refactoring automation is to find the ”optimal” ratio between

coupling and cohesion, this state space representation is reasonable and suitable.

Let us consider it more concretely, in Figure 4.3, we have a 2d map, with coupling

and cohesion dimensions. If we know that many software practitioners believe

that the class has to be loosely coupled and highly cohesive, in the most cases the

goal of the class is to reduce its coupling while improving its cohesion. Moreover,
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having lack of cohesion value, the goal is to reduce both quality measures. This

rationalization leads that the optimal places on the map could be on the diagonal

line to the opposite end of the map. The diagonal line gives the shortest distance

to the opposite end, means, the less number of refactoring tasks, while achieving

the highest reduction rate for both quality measures. The states far from the

diagonal line will reduce one of the two metrics while increasing or unchanging

the other. This is the reason why the goal state is on the opposite side of the

start value. motivating the agent to strive for that location with the least number

of actions taken. Moreover, defining the goal state in this way aids to generalize

representation of the environment for all classes in the project.

Figure 4.3: Refactoring MDP Environment.

4.5 Phase 3 - MDP Components

After the world definition, the rest parts of the MDP environment are defined in

this phase (except actions and its stochastic nature that are defined in the next

phases).
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R() - reward function, as an immediate reward for the execution of refactoring

task, was presented as a cost ”that is paid” to execute each refactoring task. Every

refactoring task requires an effort from the developer and it costs his time and his

morale. The reward for each refactoring task has to try to manifest instant charge

that developer pays while executing a certain refactoring task without counting

its overall satisfaction of the refactoring process (that is addressed later by value

and Q-value functions). So, any refactoring task is a negative experience and cost

for the developer.

γ - discount factor, in a simple word, current refactoring task execution reward is

a more valued than the same reward after several or more refactoring tasks. Nat-

urally, people tend to value more what they get today then what they would/will

get after a month even if the numbered value is the same.

Terminal Function - refactoring sequence stops when no change in the improve-

ment of the utility function is observed for several consecutive actions.

4.6 Phase 4 - Actions Extraction

Only actions, in refactoring, that allow moving to the different states are refac-

toring tasks (in our case: Move Method (MM), Extract Method (EM) and Delete

Method (DM)). Actions for the MDP environment are generated in the two phases.

Phase 4 analyzes a class for all possible refactoring tasks and Phase 5 integrates

actions found. In our case, we search for MM, DM and EM tasks. For each kind

of task, the analysis is performed to eliminate all tasks that could produce any
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compilation or semantic error. Each analysis generates a pool of tasks that are

eligible for actions in MDP environment. Next to actions, transition probabili-

ties have to be assign. The state transition probability (P ()) function requires

some prior knowledge about refactoring tasks and the system since it plays one of

the main roles in the success of the automation process. We assume based on a

manual inspection, that MM and DM refactoring tasks have a much higher prob-

abilities to occur than EM refactoring task. Moreover, MM probability should be

twice higher than its DM counterpart. This knowledge has to be incorporated in

transition probabilities. It would be a common to define the highest probability

for the MM, the second highest for the DM and the rest for the EM. However,

we decided that all refactoring tasks are equiprobable. This might be surprising

after all knowledge gathered from the manual inspection, but we have to take into

consideration a rigorous analysis prior automated refactoring, especially for the

EM analysis part, where any error produced could lead to the discarding of the

complete EMPool. After manual refactoring and analysis part inquiry, equiprob-

able refactoring tasks most probably, we believe, will generate the same effects of

the manual refactoring.

Actions are also defined as stochastic was agent 80% of time executes intended

actions while 20% of time acts randomly, choosing from the rest of actions.

Note: The number of actions is an infinite, but due to the nature of the

problem, all refactoring actions are required to produce ”compile-error-free” code.

Therefore, the number of actions will be reduced as shown in Section 6.5.

53



Figure 4.4: Actions Extraction and Integration.

4.7 Phase 5 - Actions Integration

Phase 4 analyzed all feasible refactoring tasks. Every kind of task produced the

pool. This phase integrates these pools into actions for the MDP environment.

With this phase, the definition of the MDP instance is complete and with the

next phase we start to solve this MDP instance.

4.8 Phase 6 - Solving the MDP

Figure 4.5: Solving the MDP Instance.

As explained in the background chapter of this thesis, an MDP instance is the

main input for the RL-based machine learning that can be solved using different

approaches. Two of them are followed (planning and learning-based approaches)
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in this thesis with overall three algorithms employed (VI, Q-learning, and Sarsa).

In general, all these algorithms are iterative in nature, calculating and improving

utility function from the agent-environment interaction. This general iterative

approach is depicted in Figure 4.5. The agent chooses the action, interacts with

the environment and outputs its observation with some kind of update on utility

function and policy. The way the utility function is calculated, presented and

updated generates different algorithms for finding the solution. While the theo-

retical background is discussed in Chapter 2, next sections extend its discussion

with algorithms used to solve refactoring-based MDP instance.

Value Iteration

Value Iteration (VI) is the only planning-based RL algorithm used for solving

refactoring MDP instance in this thesis. Its mandatory input requires a complete

model of the refactoring environment (transition probabilities have to be prede-

fined with actions). VI updates value function (utility function) of the current

state based on improvement on the next state only. For refactoring MDP in-

stance, VI algorithm updated utility function after each change in coupling and

cohesion values with refactoring task (action) executed. Pseudocode is depicted

in Algorithm 1.

Q Learning

The first learning-based RL algorithm applied on the refactoring MDP instance is

a Q-learning. Q-learning agent started with the arbitrary Q-values equal to zero
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and then, in an iterative manner, improved Q-value for each state by executing

and sequencing different tasks.

Sarsa

The second learning-based RL algorithm utilized to solve a refactoring MDP in-

stance is Sarsa. The modified version of Q-learning, it directly improves Q-value

of the current state based on improved in the next state.

4.9 Phase 7 - Policy Output

The results generated from the previous phase are the policy and maximized utility

function related to each state. The policy contains suitable refactoring task for

coupling/cohesion state. With the policy, desired refactoring sequence is found by

extracting refactorings from the policy and presenting reached coupling/cohesion

values (state). In the best case scenario, the last state with refactoring task

mapped is the optimal solution for the class in terms of coupling and cohesion.

Furthermore, the policy presentation of refactoring states mapped to the state

of coupling and cohesion allows the developer to choose different scenarios for

refactoring sequence. If a number of refactoring tasks is limited, a developer can,

for example, consult the policy for an only limited number of refactoring task that

will give him exact tasks to execute.
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Figure 4.6: Policy Output.

4.10 Phase 8 - Class Output

After the policy generation, in the best case scenario, the Java class is considered

optimized. The automated approach takes the output of class with the last state

reached in the previous phase. That means that all refactoring tasks presented in

the policy are applied to the class.

57



CHAPTER 5

TOOL SUPPORT

There are various tools proposed for bad-smells detection and refactoring in soft-

ware engineering community. Some of them are open-source and free, while some

other are commercial. To validate our reinforcement learning approach, we have

used different tools on different stages of our experimental evaluation. For bad-

smell detection, inFusion was our choice since it is based on software metrics and

it is highly stable. Its base on software metrics will give us more confident in val-

idation of our RL-based approach. After detection of bad-smells, ckjm-tool was

used for coupling and cohesion metrics calculation. Eclipse platform (JDT, PDE,

and LTK) was the base for emerging ckjm with our new tool developed and, in

the next sections, we explain these and other tools with more details.

5.1 Detection and Metric Tools

Various bad smell detection tools are proposed in the literature. Some of them

are proprietary while some are still research prototypes. These tools detect bad
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smells based on metrics, analysis of the program, machine learning approaches or

specially designed specification. In the next paragraphs, we discuss some of these

tools and their range of bad smells detection. Moreover, a metric tool used in this

thesis is also presented and discussed.

5.1.1 JDeodorant

JDeodorant [47] is bad smells detection tool developed as an Eclipse-plugin. Next

to detection, it offers automated refactoring tasks to perform with each of bad

smells detected. Next to admirable refactoring task suggestion, a developer has

to be careful with its execution. It works with Java projects and offer extension

and changed and presented threshold values.

5.1.2 PMD

PMD [48] is another detection tool that can detect, next to Duplicate Code, bad

smells related to a large amount of code in a single entity(Large Class, Method,

Parameter List). It allows an extension to the existed rules and developer defini-

tion of different threshold values for bad smells detection.

5.1.3 CheckStyle

CheckStyle tool [49] offers static analysis of code and, having predefined code

rules, tries to convince a developer to develop unified coding style and conventions.

Built as a jar file, can be executed standalone inside Java VM, as an Ant task,
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and can be part of IDE (Eclipse). It is mainly working on Java projects while

extensions for other languages do exist (PHP, for example). Related to bad smells,

it detects Duplicate Code, Large Class, Large Method and Large Parameter List.

CheckStyle is extensible with customized rules possible defined by the developer.

While concentrating on the syntax of code and possible smells, it doesn’t prioritize

nor suggest refactoring tasks to improve addressed bad smells.

5.1.4 inFusion

inFusion was a proprietary software built by Intooitus. The tool was a result of

improvements in the previous tool (iPlasma) and well-studied research on software

metrics, bad smells and object-oriented programming paradigm also published in

the book called Object-Oriented Metrics in Practice [50]. According to one of its

creator, with a plan to ”put your development team in control of the quality of

your project’s architecture and design. It is designed to make quality assurance

of multi-million LOC projects practical and effective” [51], inFusion wanted to

tackle development companies and help them address their software complexity,

maintainability, and other quality measures by visualizing relation between classes

with an identification of bad smells and possible programming drawbacks. inFu-

sion detects and prioritizes, with severity score, bad smells and classes affected

based on software metrics and suggest possible solutions with explanation what

might cause founded software drawback. Its structural, code and polymetric views

address quality of software dimensions in various ways and provide insights about
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each dimension. With tutorial-like guides, it helps beginners to overcome most

of ”unknown” terms and its behinds. The same team offered the lighter version

of inFusion, called inCode [52], for smaller teams and developers, as a fully in-

tegrated into Eclipse [51]. inCode followed a similar approach as inFusion with

support for the smaller project (limited to 100 000 lines of code). inFusion tool

was able to analyze Java, C and C++ projects. Unfortunately, company Intooitus

doesn’t exist anymore and their tools are no more available.

Next to presented bad smell detection tools, there are other various tools pro-

posed by researches and interested reader my check tools: JSpIRIT [53], DECOR

[10], CodeNose [54], Stench Blossom [55], jCOSMO [56], SMURF [57], JCodeCa-

nine [58], JCodeOdor and DFMC4J [59], SCOOP [60], BSDT Eclipse Plugin [61],

CodeVizard [62], EvoOnt [63], Anti-Pattern Scanner [64].

5.1.5 ckjm

Ckjm tool [65] calculates Chidamber and Kemerer OO metrics. It processes com-

piled Java class calculating following metrics:

• WMC: Weighted methods per class

• DIT: Depth of Inheritance Tree

• NOC: Number of Children

• CBO: Coupling between object classes

• RFC: Response for a Class
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Figure 5.1: Java Elements Hierarchy.

• LCOM: Lack of cohesion in methods

• Ca: Afferent couplings

• NPM: Number of public methods

It’s headless, fast and yet reliable calculation makes it a good choice for integration

with other tools. Our main concern regarding the choice of metric tool was related

to precision, consistency and time consumption. Ckjm was the fastest, consistently

giving the same values for the same classes. Furthermore, headless and open source

solution was easy to incorporate into a tool.

5.2 Eclipse Platform

Eclipse is an open source project maintained by the community of developers. It

is the best known as a Java IDE but it supports a wide range of programming
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languages, platforms, frameworks and tools through to its extensions and plugins.

Its extensibility and openness made it a suitable tool for fast prototyping. This

is especially true for software engineering research where Eclipse founds its full

potential and support. In this thesis, we are interested in Eclipse Java develop-

ment support, extensibility and underline refactoring structure. Next paragraphs

Eclipse Java support is discussed following with its source code analysis and refac-

toring.

Eclipse offers support for Java programming language through the Java De-

veloping Tool (JDT) project. It is a top-level project of Eclipse Platform and

it provides full support for Java development experience. JDT consists of many

sub-parts, from its core packages to graphical user interface experience and its

perspective in Eclipse. Of our particular interest are parts related to source code

analysis and refactorings. JDT source code analysis of actual Java project is

processed on the two levels:

1. The first level consists of modeling Java project with a representation of

each of its part as a model element. This model is a light-weight represen-

tation of Java project and every part of Java source code (packages, classes,

methods, fields, etc.) is modeled with suitable handles. The whole Java pro-

gram is represented on class-base with a tree-like structure. These handles

(elements) are explained in Table 5.1. Its hierarchy is depicted in Figure 5.1

[66]. Since it is a model, the actual existence of the modeled elements has

to be checked with the predefined method exists().

63



2. Actual Java source code analysis and manipulation in JDT are handled in a

compiler-alike manner, where the code is analyzed and parsed to create Ab-

stract Syntax Tree (AST) of Java class. The class is divided into tokens by

the scanner (lexer) then tokens serve as an input for the parser. The parser

analyzes the tokens and verifies its consistency with the grammar of the lan-

guage. The output is an AST, a heavy-weight actual representation of Java

source code that contains detailed information of every element of Java class.

AST hierarchy is presented in Figure 5.2 [66]. ASTNode is Eclipse abstract

superclass that holds all information related to AST manipulation. Every

AST node acts as a child of ASTNode inheriting all of its functionalities.

Considering heavy-weight nature of AST and its actual code representation,

careful and effective AST operation are crucial for successful code manipula-

tion. Usually, there are some unwritten rules that developers have to adhere

when dealing with AST in Eclipse. One of these rules demands that no more

than one AST is open in the whole Eclipse workspace. The efficient travers-

ing of the AST is crucial for computationally feasible code manipulation

and JDT facilitates different design patterns for this purpose (ASTVisitor,

ASTRequester, etc.). For example, AST Visitor, following Visitor pattern

[67], allows every AST node to be visited by its visit() method opening

gradually its children nodes for traversing. If parent nodes indicate (by its

visit method) that it was not traversed, its children are unreachable for

traversing and analysis stops saving intentionally time and space of analysis
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Figure 5.2: Eclipse AST Hierarchy.

procedure. Next to prefix traversal (of visit() method), ASTVisitor offers

postfix traversal (with endVist() method), where child node is visited first

then its parent node.

5.2.1 Refactoring in Eclipse

Eclipse Platform provides essential refactoring support through to general,

language-independent, framework. The Language Toolkit framework (LTK) offers

abstract classes for refactoring creation, execution and user interface.

Eclipse refactoring comes with a detailed life cycle:

• Refactoring is initiated by the user (or script) with detailed information -

Refactoring subclass is created with suitable refactoring action that ad-

dresses user’s (script’s) preferences.

• Initial conditions are checked - checkInitialCondition(...) method of
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Element Description
IJavaModel the root Java element, corresponding to the workspace.
IJavaProject a Java project in the workspace. (Child of IJavaModel)
IPackageFragmentRoot a set of package fragments
IPackageFragment a portion (or entire) of the package
ICompilationUnit a Java source (.java) file.
IPackageDeclaration a package declaration in a compilation unit.
IImportContainer the collection of package import declarations in the unit.
IImportDeclaration a single package import declaration
IType a source type (of unit), or a binary type (of class)
IField a field inside a type
IMethod a method or constructor inside a type
IInitializer a static or instance initializer inside a type.
IClassFile a compiled (binary) type.
ITypeParameter a type parameter.
ILocalVariable a local variable in a method or an initializer.

Table 5.1: Java Elements.

Refactoring class is executed checking that refactoring action is possible

in context issued. If passed, next step is following, otherwise, refactoring is

aborted with RefactoringStatus#FATAL status.

• Depends on nature of refactoring task, more information is gathered from

the user for the continuation of refactoring action.

• After passing initial conditions, checkFinalCondition(...) method is exe-

cuted with detailed precondition checks. Furthermore, this method attains

most of the necessary information for complete refactoring execution and

generation of change. If passed, change information is generated in terms of

change descriptors for actual change creation in the next step.

• Refactoring task is executed by createChange(IProgressMonitor) re-

turning Change class object. Change class objects contains all information
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for possible undo operation and maintenance of refactoring history. With

proper execution of refactoring task, the life cycle of refactoring is finished.

This thesis uses automated refactoring tasks without user interaction. In the next

chapter, we describe how different tools explained in this chapter are incorporated

into reinforcement learning methods to automate refactoring tasks generating a

suitable sequence.
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CHAPTER 6

REFMARK - AUTOMATED

REFACTORING FRAMEWORK

By an automated-refactoring, we are pointing to the fully automated system that

doesn’t require any interaction with the developer except for the pointing to the

class to be refactored. Automated-refactoring outputs a class with, in the best

case, all resolved deficiencies (bad-smells, etc). A general framework, for an au-

tomated refactoring, considered in this thesis is depicted in Figure 6.1. The first

part of the framework is related to the input, a class, to be refactored. A devel-

oper is asked to provide a class to be optimized and refactored. After pointing to

the class, a framework continues with processing and refactoring execution. As

can be seen in Figure 6.1, processing part of the framework has three sub-parts:

refactoring tasks, metrics, and methods. Each part defines the subset of depen-

dent variables to be used for processing and complete automation. Variations of

these three parts lead to different automated approaches and techniques. Refac-
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Figure 6.1: Automated Refactoring Framework.

toring tasks may include one or many different refactoring tasks chosen from the

catalog of refactoring. Processing and automation can focus on an improvement

of the class based on a single metric or it can be multi-objective where automa-

tion tries to optimize the class based on many (possibly contradicting) metrics.

Third sub-part of a processing is related to the method chosen for optimization

of these metrics using tasks. The method can range from simple naive method

till more involved and complex methods ranging from search-based to machine

learning methods. After the definition of each sub-part of processing framework

and its utility, system outputs refactored and optimized class. With the output,

automation is finished and class resulted is (at the best case scenario) the desired

solution for the proposed processing details. In the next sections, we present a

RefMark tool that implements general automated refactoring framework following

the details discussed in the proposed method chapter.
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6.1 Introduction

Figure 6.2: Optimized RefMark Flowchart.

RefMark tool is an Eclipse-based plugin that follows the root canal refactoring

approach, where a complete system is refactored in one phase in the contrast to

the floss refactoring where refactoring of the system, is conducted on a long-term,

in small steps [68]. Through the development of RefMark tool, it passed different

stages and improvements. In general, we differentiate between two major RefMark

versions, the first we consider as an initial prototype and the second as a more

optimized version. Optimized RefMark flowchart is depicted in Figure 6.2. Next

paragraphs discuss both versions.
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6.2 Initial RefMark

RefMark solely depends on Eclipse mechanism for checking preconditions, final

condition, and execution. Initial RefMark was considering all refactoring tasks

possibilities (no matter valid or invalid), without analysis or previous filtering,

allowing the agent to learn blindly. This was leading to a generation of a huge

number of unfeasible solution scenarios and high expense in computational time

and space requirements. For example, from several hours until a day of con-

tinuous execution sometimes were not enough to found refactoring sequence for

an even a simple class. In optimized RefMark, we address this by analysis part

as an optimization of procedure to reduce its complexity with assumptions and

considerations that:

• not all tasks will preserve semantic behavior

• not all tasks will affect coupling and cohesion values

• not all tasks, executed by Eclipse, will be valid [69, 70]

Initial RefMark started with the simplest method that does not consider effects

of executed task on the metrics involved and just executes a predefined number

of tasks on a random base. Random Method is useful for comparison and to

describe the usefulness of more sophisticated methods (that are more often much

more expensive in the terms of computation complexity for time and space) and

their utility and justification. Simply, if Random method outperforms more so-

phisticated method than more sophisticated method has questionable effects and

71



usually does not justify its additional requirements of resource used (human and

computer resources) and has to be considered as a waste. RefMark tool’s only

parameter in the random method is its limit on a number of randomly executed

tasks. After the limit is reached, the Random method outputs its sequence of

tasks. Even its name points that it is random, discussion behind truly random

methods, distribution behind random function, expected value and other theoret-

ical topics are behind the scope of this work and we consider the implementation

of Java random function (either SecureRandom or its older predecessor, Random)

on ”as it is” base. Our main satisfaction with ”any” random implementation lie

down in the main point that does not require any extra effort or guidance and

it does not depend on metrics chosen. Greedy Method is the second method

that was employed by the first version of RefMark tool. Greedy algorithm prefers

task that, at each execution step, has more improvement effect than other (two)

tasks. For instance, each step greedy (reflex) algorithm executes task available

and examines its results (by saving its improvements/degradation) then return

system to its starting position and execute next, different, task and again process

it (examines and returns to its starting position) and so on till every different

task is executed once. After execution of all tasks, greedy method choose the one

with the highest positive improvement, executes it and continues with the same

process on the next step. The process is continued until the limit of a number of

tasks is reached or till no more improvement is observed for 3 consecutive steps

(algorithm converged). Beside Random and Greedy method, Value Iteration
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was used as the only reinforcement learning approach in initial RefMark. In op-

timized RefMark, random and greedy method were not anymore supported, and

learning-based RL methods are employed (Q-Learning and Sarsa).

MDP environment of the initial RefMark was normalized and quantized to

10x10 map. For a generalization of each class, to be represented by ”the same”

map, coupling and cohesion values are normalized and quantized on 10x10 state

map, starting from (0,0) to (1,1) with 0.1 increments on both dimensions. Figure

6.3 depicts the initial MDP Environment. Normalization and quantization phase

was later omitted when it is realized that exact values of coupling and cohesion

will better represent differences of nature of classes and their shapes.
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Figure 6.3: Initial MDP Environment.
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6.3 Optimized RefMark

After relatively basic methods for an automation in the initial version, optimized

RefMark addedReinforcement Learning-based (RL)methods while automat-

ing the process of the refactoring. Random and Greedy methods do not benefit

from their experience and ”easily” forget what they faced in the past actions,

hence algorithms that do not remember their history are doomed to repeat it.

In short, reinforcement learning approaches allowed an agent to learn from its

environment. With obvious disadvantages of random and greedy methods in their

memory-less activity, the RL-based agent tries to interact with the environment

by executing refactoring tasks and observing their immediate effects. While ex-

ecuting refactoring tasks, RL-based agent reinforces its experience by instance

reward and overall quality of sequence. Based on our knowledge, this is the first

attempt to address refactoring automation problem with this part of a machine

learning algorithms. Initial RefMark experiments were very costly, as explained.

Before optimized RefMark analysis layer was introduced, experiments have taken

a lot of time and space resources. Next to this layer, the terminal function of

RefMark domain was changed adding the condition that no agent can stay in

the environment for more than a certain time (we choose it to be sixty seconds).

Based on manual inspections of results of several experiments conducted with and

without an analysis layer, we realized that each algorithm converges very fast and

within first 40-50 steps. This means that limiting the time of execution will give
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better overall execution time and space requirements with the same results.

6.4 Eclipse Preferences and Parsing Projects in

RefMark

For the RefMark better performance and more accurate refactoring tasks, auto-

format option for Java code has to be disabled in Eclipse. This also addresses

different coding style ”issues” in an analysis and decreases possible code-errors

due to ”auto-format” option. From our observation, we found that Eclipse auto-

format could be the reason for the compilation errors between different automated

refactoring tasks. For example, if automated approach required execution of refac-

toring tasks then their reverts, in-between, auto-correct could corrupt starting and

end positions of these refactoring changes and simple undo operation will create

compilation errors.

RefMark has to meet all general requirements stated for the refactoring in

the previous chapters. Next to it, it has to meet some runtime requirements.

By runtime requirements we mean conditions that are met before refactoring

processing is considered:

• J2SE JDK (1.5 and higher) - project has to be on standard J2SE Runtime

Environment

• Eclipse 3.5 or higher - IDE where RefMark plugin will reside. (The work

was tested on Eclipse Neon and Eclipse Oxygen)
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Figure 6.4: RefMark Plugin - RefMark View.

Runtime requirements also addressed what has to be mentioned for the input

of automated refactoring framework and its implementation in RefMark, to point

out, RefMark input has to be Java class and part of Java project. Java project has

to be in the workspace (JAVA NATURE) and build and compiled automatically,

by Eclipse, with no compilation errors. Maven (or Ant) and tools with a similar

purpose are not guaranteed to work, projects are exhaustively tested with Eclipse

Java project nature only. The project must be imported to Eclipse workspace

before RefMark view is open.

6.5 RefMark Analysis Layer

After unfeasible all refactoring tasks consideration in initial RefMark, as already

mentioned, analysis layer was the main optimization part of the second version of

RefMark. This layer is divided into three parts, one for every kind of refactoring
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tasks. Next subsections discuss more each kind of refactoring task and its filtering

by analysis layer.

Figure 6.5: RefMark View - Analysis.

6.5.1 Move Method Analysis

Move method analysis aims to find all possible MM tasks within the class. It starts

with checking the correct state of the class by its compilation. After confirmation

that class is in a solid and error-free state, all methods are saved into the pool

for consideration of its methods. Next, one by one method is tried to be moved

and every successful refactoring tasks candidate is added to the specially created

pool for automation. It is worth to mention that class is compiled before and

after execution of every task to ensure that generate candidates will not create

any compilation error. The output of MM analysis is a pool of possible MM

candidates. MM analysis flowchart is depicted in Figure 6.6.

6.5.2 Delete Method Analysis

In the same manner, as MM analysis, DM analysis generates possible candidates

for DM refactoring tasks. For both analysis is crucial that tasks do not generate

any error and that output pool contains only atomic, error-free actions. DM

analysis flowchart is represented in Figure 6.7.
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Figure 6.6: MM Analysis Flowchart.

6.5.3 Extract Method Analysis

Finding the candidates for an EM, in the analysis, is based on a brute-force search

on all methods in the class. Every method is parsed and analyzed for a possible

blocks, methods, return values and invocations that can represent method by-

itself. Information is extracted and refactoring is performed for the checking of

possible compilation errors, if passed, EM action is added to EMPool where its

refactoring details are saved. If an EM analysis fails, we completely ignore an

entire EM refactoring pool. From our experience and tests performed, a sequence
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Figure 6.7: DM Analysis Flowchart.

of EM actions may overlap, creating a new method from an already extracted

method, then two actions are not anymore independent and atomic (they are

composite). Executing single EM action would not be possible anymore without

breaking a code and compromising all consecutive tasks leading to an unpracti-

cal and incorrect refactoring sequencing wasting computational time and space

resources. On the other hand, Move Method and Delete Method Analyses do

not have scenarios similar to this since all MM/DM actions are independent and

atomic. This is rather a radical approach, but for the sake of time and complete-
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Figure 6.8: EM Analysis Flowchart.

ness, addressing deeper EM refactoring issues is out of the scope of this thesis.

EM-related issues require more dedicated and detailed approach, an interesting

reader may refer to [70] for more information. EM analysis flowchart is depicted

in Figure 6.8. The name chosen for a newly extracted method is with a for-

mat: createMethodName number. The number is generated by a counter that

increases with each EM execution. This is to overcome possible obstacles with

similar method name already existed in the class, that could create compilation

error.
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6.6 RefMark Automated Refactoring

After parsing Java project and choosing the aimed class to be optimized, analysis

layer filters reliable refactoring tasks dividing them into the different pools based

on their kind (MM, DM or EM). Automated refactoring sequencing is solved by the

employment of planning-based (Value Iteration) and learning-based RL methods

(Q-Learning and Sarsa). RefMark interface for these algorithms is built to provide

flexibility to the software teams in deciding each variable for algorithms used. For

example, negative reward (cost of executing refactoring) defined by software teams

might depend based on the actual cost of developers’ hour in their region (the price

of an hour of developer might not be the same in the US, for example, and China).

A discount factor might vary based on time-space allocated for maintaining phase.

If the phase has extended the time period, then heavily discounting the cost of

refactoring execution might not be appropriate, but if the period is short, then

the current cost might be more valued. The same reasoning might be applied

to the number of iterations for each algorithm. It has to be noted also, that

after refactoring task analysis is performed, automated and manual refactoring

execution of any task will pick randomly from the pool of correct refactoring

tasks found. This is because the concentration of this work is on a different kind

of refactoring tasks and for us it matters to differentiate between Move Method,

Delete Method and Extract Method, what are the object of these tasks is related

with a certain class but not with overall analysis and experience.
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Figure 6.9: RefMark View - Automated Refactoring.

6.7 RefMark Metrics Monitor

Figure 6.10: RefMark View - Metrics Monitor.

Displaying metrics, in RefMark, is addressed with Metrics Monitor (Figure

6.10) where the initial value for coupling and cohesion is shown in the second

column of the table. The third column is reserved for the current values of metrics

when tasks are manually triggered (manual refactoring part). This third column

is aimed to address direct inspection of tasks’ pools and their direct effects on the

metrics used.

Figure 6.11: RefMark View - Manual Refactoring.

6.8 Manual Refactoring

The last part of the RefMark tool is reserved for the manual refactoring. Based on

analysis of different refactoring tasks and their output saved in the pools, developer
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can manually examine the effects of every task. Metrics Monitor (Figure 6.10),

as mentioned, will display immediate effects of triggered task on the third column

stating current coupling and cohesion values.
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CHAPTER 7

EXPERIMENTAL DESIGN

RefMark automated framework is empirically evaluated and reported following

well-defined software engineering practices [71]. Goals of experiments are defined

based on thesis research objectives with an identified experimental material, units,

and procedure. Validation continues with hypotheses, experimental design and

analysis and discussion. In this and next chapter we present complete empirical

evaluation.

7.1 Goals

Based on our general research objectives in this thesis, our goals are related to

the effective representation of refactoring sequencing as a Markov Decision Process

(MDP) instance. This effective representation has to use all benefits of RL-based

approach and be valuable input for different RL-based algorithms. After this rep-

resentation, employment of different RL-based algorithms is the next step followed

by analysis and discussion.

84



1. Effective representation of refactoring sequencing as a Markov Decision Pro-

cess (MDP) instance. This effective representation has to use all benefits of

RL-based approach and be valuable input for different RL-based algorithms.

2. When effective MDP instance is defined, next goal is to employ different

RL-based algorithms to solve this instance in efficient way in terms of com-

putational time and space requirements.

3. Analysis of these different algorithms is our last goal where possible conclu-

sions can be drawn from different insights gained with different settings and

quantization of trade-offs.

7.2 Experimental Material, Units, and Proce-

dure

For empirical evaluation of proposed method and tool developed, initial checks

for suitable representatives of Java projects are performed for case study eval-

uation. After initial checks on datasets available, their structure, analysis, and

information; currently available public datasets did not contain information that

could meet our objectives of reinforcement learning approach employed. Most of

the current datasets present refactoring information established on the analysis

of projects’ refactoring tasks based on the changes between different consecu-

tive versions using some of the tools (Ref-Finder [72, 73], for example), manual

inspection or combining both. Having in mind this information, knowing that
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developers more often do not follow design patterns, software engineering recom-

mended practices [74] and that these automated tools usually are not able to find

all refactoring tasks (for example, Extra Class cannot be easily detected by tools),

we decided that proposed method requires specially designed data to validate its

concept and appropriateness. This data has to have the refactored project that

specifically:

• follows the best practices to the maximum extent possible (avoiding bad

smells)

• is optimized for a certain software quality aspects (in our case, coupling,

and cohesion)

• represents the well-coded mid-range project.

As explained, in Chapter 5, inFusion is able to detect different bad smells

in software, on a class, package and project level. For our proposed framework,

where we address an improvement in coupling and cohesion of class, our con-

centration was on the indicators of bad practices in terms of these two software

quality measures. Initial pointers were leading to the bad smells. For that partic-

ular purpose, all bad smells, detected by the inFusion, were analyzed. Table 7.1

summarizes bad smells, detected by inFusion, and points to the bad smells that

were used in our data creation. It has to be mention that our main concentration

is on the refactoring tasks that optimize class coupling and cohesion ratios. Since

we are focusing on Java-based projects, we are interested in an object-oriented
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(OOP) paradigm, class level, and bad smells that affect both, coupling and cohe-

sion values. Bad smells used for a creation of data validation were only indicators.

After data is created, a concrete relation of bad smells and results is not examined

nor validated. After narrowing bad smells in inFusion (refer to Table 7.2), the

log4j project was used as a sample for the validation process. These bad smells

were found, by inFusion, in around 20 classes of log4j project. After manual exam-

ination, configuration classes were intentionally ignored due to well-known high

coupling and cohesion values that are hard to avoid. They are not considered as a

malformed nor do contain any bad smell. After exclusion of configuration classes,

11 regular classes were left for experimental evaluation. The author performed

refactoring tasks required to address these bad smells and after an exhaustive

trail-and-error process of manual refactoring sequencing, the optimal number of

refactoring tasks (minimum number of required refactoring tasks to address bad

smell in a certain class) is found for each class. Statistics are drawn at the last

stage, where we assume that refactoring tasks are refined and optimal. Table 7.5

and 7.3 present this statistic of log4j classes and refactoring tasks applied. To

conclude, our experimental material includes a log4j Java project and its regular

classes that jeopardize good software practices negatively affecting coupling and

cohesion. These classes represent experimental units and each class is the object

of independent case study and evaluation. The summary of all classes with their

manual refactoring tasks is depicted in Table 7.5.
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Smell Coupling Cohesion Paradigm Entity
Blob Class Yes Yes oop class
Blob Module Yes Yes p module
Blob Oper. No No oop, p operation
Cyclic Dependency Yes No oop, p subsystem
Data Class Yes Yes oop class
Data Clumps Yes No oop, p operation
Data Module Yes Yes p module
Distorted Hierarchy No No oop class
External Duplic. Yes No oop, p operation
Feature Envy Yes Yes oop, p operation
God Class Yes Yes oop class
God Module Yes Yes p module
Intensive Coupling Yes No oop, p operation
Internal Duplic. No No oop, p operation
Message Chains Yes No oop operation
Refused Parent Bequest No Yes oop class
Stable Abstraction Breaker Yes No oop subsystem
Schizophrenic Class Yes Yes oop class
Schizophrenic Module Yes Yes p module
Shotgun Surgery Yes No oop, p operation
Sibiling Duplic. Yes No oop operation
Tradition Breaker Yes Yes oop class
Underutilized Interface No Yes p module
Unstable Dependency Yes No oop, p subsystem

Table 7.1: Bad Smells Detection - inFusion.

7.3 Hypotheses

Our hypotheses are designed to address defined goals and research objectives.

While our first two objectives are related to effective representation and utiliza-

tion of different algorithms, the third objective aims to quantify and analyze this

representation. In that direction, we have four hypotheses that validate proposed

method and evaluate its different settings.

Null Hypothesis 1 Proposed automated methods are not able to meet optimal

88



No. Bad Smell
1 God Class
2 Data Class
3 Feature Envy
4 Schizophrenic Class
5 Blob Class
6 Tradition Breaker

Table 7.2: Coupling and Cohesion Related Bad Smells.

Task Abbr.
Delete Class DCl
Delete Field DF
Delete Method DM
Extract Class EC
Encapsulate Field EF
Extract Method EM
Move Class MC
Move Method MM
Temp to Local TtL

Table 7.3: Refactoring Tasks Abbreviations.

manual refactoring in terms of number and kind of refactoring tasks.

Alternative Hypothesis 1 Proposed automated methods are able to meet opti-

mal manual refactoring in terms of number and kind of refactoring tasks.

Null Hypothesis 2 Proposed methods are not able to improve coupling and co-

hesion on class-level.

Alternative Hypothesis 2 Proposed methods are able to improve coupling and

cohesion on class-level.

Null Hypothesis 3 Planning-based RL algorithm has faster converge rate com-

paring to learning-based algorithms.

89



refactoring Task #Instances
Delete Class 1
Delete Field 1
Delete Method 36
Encapsulate Field 9
Extract Class 1
Extract Method 1
Move Class 1
Move Method 56
Temp to Local 2

Table 7.4: Log4j: Refactoring Tasks Applied.

Class
Refa toring Tasks

DCl DF DM EC EF EM MC MM TtL
EventDetails

LogRe ord

TTCCLayout

LevelRangeFilter

AdapterLogRe ord

JDBCAppender

LogBrokerMonitor

Hierar hy

XMLLayout
SyslogAppender

MyTa leModel
SUM:

Table 7.5: Classes and Refactoring Tasks Executed.

Alternative Hypothesis 3 Planning-based RL algorithm does not have faster

converge rate comparing to learning-based algorithms.

Null Hypothesis 4 Planning-based RL algorithm requires less number of steps

for complete execution comparing to learning-based algorithms.

Alternative Hypothesis 4 Planning-based RL algorithm requires more number

of steps for complete execution comparing to learning-based algorithms.
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7.3.1 Variables and Software Quality Measures

Refactoring process, in general, has two key players that affect complete process:

refactoring task and quality measures affected by these tasks. For the experimental

part, these two players represent independent and dependent variables.

Independent Variables - Refactoring Tasks

From the refactoring tasks applied, Table 7.4, we can conclude that Move method,

Delete Method, Encapsulate Field, and Extract Method are the most used refac-

toring tasks. From these four refactoring tasks, three of them are related to the

method-based refactoring and one is related to the field (variable). This is impor-

tant to notice since for the automated refactoring we have to choose refactoring

tasks that are concentrated on a similar level to minimize, as much as possible, the

distance between different refactoring tasks, maximizing their overall effect on the

class. To sum up, Move Method, Delete Method and Extract Method are chosen

for an automated refactoring tasks and their effects are examined. There are sev-

eral reasons behind why proposed method automates only these three refactoring

tasks:

• The first reason is related with comparability with manual refactoring

output since they are one of the most used refactoring tasks.

• The second reason is related to a class-based optimization where proposed

method improvement is related to a class and these three refactorings have

the main effect on the class optimization.
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• The third reason is related to practicability, in terms that the refactoring

tasks chosen are with the maximum possible effects on the quality measures

used with a minimal number of used operations.

• The fourth reason is related to the complexity of the proposed automated

system. Complexity in terms of computational time and space of the pro-

posed solution. Any refactoring task added to the framework exposes the

system to an extra degree (exponentially) of its computational complexity.

With a more combination added, more time is required by the system to

execute them, more space is needed to save their execution. Knowing refac-

toring AST-related execution of a code manipulation, a considerable amount

of time and space is needed for each refactoring task added. Complexity is

also one of the main reason why three refactoring tasks are only used for

an automation. Simply, limiting refactoring tasks assure feasibility of the

automation. And authors believe that these three refactoring tasks are a

good base for an evaluation of automated refactoring approach, and, if im-

provement is recognized, after its tests, adding more refactoring tasks might

be a part future work path.

Dependent Variables - Quality Measures

Quality measures used by any automated refactoring tool have been self-

discriminative and have to be affected by the refactoring tasks executed. Next to

these requirements, metrics have to be widely used, accepted and acknowledged by
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the software developing practitioners. Many software metrics are proposed in the

literature and many of them have complex formulas that aim to address a certain

software qualities. Our main goal of automated software refactoring is related

to improving a coupling and cohesion of a certain class. Beside improvements,

the ratio between a coupling and cohesion that suits the best certain purposes is

another objective of the proposed method. For these, and other reasons, authors

decided that standard Chidamber and Kemerer Metrics (CK) [75] related with a

coupling and cohesion of the class will be the strong base for the proposed auto-

mated approach. Specifically, ckjm tool was used [65] with its RFC and LCOM

software metrics calculation. Authors admit that CK metrics are well-studied and

many drawbacks have been stated and analyzed with other metrics’ suites pro-

posed [76, 77, 78, 79, 80], but their simplicity, and yet descriptiveness make them

suitable prototyping mean. Path of the future work can include consideration of

other software metrics.

CBO coupling metric was initially used for a class coupling calculation. After

several experiments, discriminative power of CBO was very low in the comparison

with the cohesion metric used (LCOM). For example, we could execute many

refactoring tasks that highly affect cohesion value while coupling changes were

minimal. This was leading to diminishing effects of single refactoring task on a

coupling. After several experiments, analysis, and different coupling metrics, we

found that RFC coupling metric would be a better counterpart for our cohesion

metric used (LCOM). After deploying RFC metric, our coupling and cohesion
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have almost similar discriminative power and every single refactoring task would

affect both, no matter how that refactoring task was small in the amount of code

changed.

Next to the main dependent variables, we have another measure required for

meaningful analysis of the results of proposed methods.

For the measuring of the general success of particular algorithm in its ability

to reach the end without producing an error on class-level, we have the measure

called: Level of Success. Level of Success calculates ratio or percentage of success-

fully completed executions of the certain algorithm on the batch of case studies:

LoS - number of successful executions

nE - successful executions

%LoS =
LoS

nE
∗ 100% (7.1)

For accuracy of proposed methods, we need a suitable measure that will deter-

mine the similarity of results between proposed methods and manual refactoring.

For that purpose we use Cosine Similarity:

cosineSimilarity(xxx,yyy) =
xxx · yyy

||xxx|| · ||yyy||
(7.2)

Cosine Similarity has shown successful in text-based similarity calculations.

Moreover, it is length agnostic and provides very efficient measure regardless of

the length of its input.

94



Improvement of coupling and cohesion is measured by the difference between

its default and achieved values:

Cp - starting coupling value

CCp - convergence coupling value

ICp - improvement coupling value

ICp = Cp− CCp (7.3)

Ch - starting cohesion value

CCh - convergence cohesion value

ICh - improvement cohesion value

ICh = Ch− CCh (7.4)

Here convergence points to values achieved after exact solution with refactoring

tasks applied and compile-error-free class. In the case that class achieved certain

coupling and cohesion values but the class was not compile-error-free we consider

only coupling and cohesion values till the class was maintaining compile-error-free

state and rest of tasks are not considered into solution but are listed in table

results (in Refactoring Tasks part, column Other with X added notation to task

name).

For the efficiency measurement of proposed methods, a number of steps was

a relevant indicator. We differentiate between a number of steps required for

convergence and the end of execution.

95



Conv - number of steps required for convergence of method

Exec - number of steps required for overall execution of method

With the assumption of normal distribution of data, standard statistics is used

to quantify the significance of given results and its confirmation or rejection of

null hypotheses.

7.4 Design

Our experiments were divided into case studies (one for each unit of experimental

material). Each case study consisted of manual refactoring part, analysis, and

automated refactoring part. Automated refactoring part was divided based on

the algorithm used for automation. In the next subsections, parts of the case

study are discussed with an explanation of results presentation.

7.4.1 Case Study Class Description

A general description of the nature of the object of the case study is given with the

coupling and cohesion values presented. Also, UML Class Diagram (or shortly:

class diagram) is drawn. It is worth to mention that UML relationships (depen-

dency, association, generalization, and realization) are shown for the classes that

are created within the project of the case study class. That means that rela-

tionships with well-known Java classes (for example, from java.* packages) are

not included in the UML diagram. This simplifies the presentation of UML di-

agram and gives a space for analyzing only relationships that are tightly related
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with refactoring sequence. In case that any well-known Java class is crucial for

analysis, its relationship will be included in a diagram shown.

7.4.2 Manual Refactoring

Manual refactoring includes the results of an inFusion analysis of the object of

a case study following the manual inspection of the required refactoring tasks to

optimize coupling and cohesion values. Default values are presented in a tabular

form for further analysis and comparison. Manual refactoring tasks are executed

and post-analysis is done with the presentation of the results and conclusion of

manual refactoring.

Refactoring Tasks Steps Coupling Cohesion
Class Name: MM DM EM Other Conv All Corr. End Corr. End

Manual Refactoring

Automated Refactoring

Analysis
VI
Q Learning
Sarsa

Table 7.6: Results Sample.

7.4.3 Automated Refactoring

After inFusion and manual inspection, different RL algorithms were used to solve

an RL-based instance of the refactoring problem, as explained in the previous

chapters. Different parts of an automated analysis are divided into different

subsections and discussed individually. Automated analysis is done for suitable

refactoring task’s candidates and then each algorithm is employed to find the best-

refactoring tasks for optimization of class coupling and cohesion values. There-
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after, the results are presented for each of the algorithms with suitable analysis.

Each algorithm outputs the results that are divided into refactoring tasks’ column,

Variable Value
P() .33
Stochastic 80% — 20%
R -10 — +100
γ .9
#iter 10

Table 7.7: VI Preferences.

steps’ column and coupling and cohesion values’ column.

1. Refactoring tasks’ column represents the number of instances of each

refactoring task sequenced with the algorithm used.

2. Steps’ column outputs the sum of the steps (actions, in terms of RL in-

stance) for the algorithm that reached the certain point. We differentiate

between:

• the number of steps till algorithm converged to the solution (the last

step where the difference in a sequencing of refactoring tasks’ optimiza-

tion results occurred)

• the number of all steps in the execution of an algorithm, even after no

difference in the results is observed.

3. Coupling and cohesion column, also, based on the convergence of algo-

rithm, differentiates between coupling and cohesion values till convergence

and at the end of execution of an algorithm.

98



Variable Value
Stochastic 80% — 20%
initQ 0
γ .9
#episodes 10
#iter 10

Table 7.8: Q-learning Preferences.

All results, for every case study(class), are gathered in a table, for more appro-

priate presentation and comparison. The sample can be found in Table 7.6. For

hypothesis testing purposes, parts of this table from all case studies are extracted

and grouped together to confirm or rebut certain null hypothesis. Transition prob-

abilities are defined for each refactoring task (1/3 probability for each task to be

executed) with stochastic nature (80% of time intended action is executed, 20% of

the time the agent goes with the random action). Developer’s cost for execution

of refactoring task is presented as a -10 with the goal reward +100. A discount

factor was equal to .9 and it was consistent through all iterations. VI executed

with 10 iterations for each case study. VI settings are also depicted in Table 7.7.

Q-learning agent learned the model of each case study (class) with discount fac-

tor equals to .9, executing 10 iterations after 10 episodes of learning. Q-learning

details are also denoted in Table 7.8. The same preferences of the Q-learning

were used for Sarsa except that Sarsa agent was learning the environment in 50

episodes.
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CHAPTER 8

ANALYSIS AND DISCUSSION

After manually refactored dataset, RefMark plugin was used to automatically

refactor the same dataset again and results are presented in the next sections,

with the analysis and the discussion.

8.1 Analysis

Our experimental design described case study based experiments. In next para-

graph, we present a case study of EventDetails as one of the 11 case studies

performed. EventDetails case study presents the results with detailed explana-

tions. Results are generated in tables, as explained in experimental design. The

rest of case studies, we present their results only while a detailed explanation is

left to avoid redundancy of information.
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8.1.1 Case Study - EventDetails

EventDetails is a small class in the log4j project (LOC: 121, Coupling: 18, Co-

hesion: 29). Relatively small class with highly coupled methods and very low

cohesion.

Figure 8.1: EventDetails Class Diagram.

Manual Refactoring

Detailed analysis of this class, by inFusion, followed with manual inspection, led

to the conclusion that this class doesn’t justify its existence and it suffers from the
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several design issues. As can be seen from the class diagram depicted in Figure 8.1,

all EventDetails class methods are actually ”get” methods that collect data from

the other classes that are coupled with it. This class only absorbs what has been

offered from the other classes without active interaction (extending or offering a

new functionality to the system). This is the classical example of Data Class bad

smell where a class acts as a parasite absorbing what has been offered by others

only without any active role inside its methods or in an overall design. Regarding

Refactoring Tasks Steps Coupling Cohesion
Class Name: EventDetails MM DM EM Other Conv All Corr. End Corr. End

Manual Refactoring 8 - - 1 x DCl 18 29

Automated Refactoring

Analysis 8 8 0 -
VI 6 2 0 - 20 27010 10 1
Q Learning 3 5 0 - 22 14351 10 1
Sarsa 1 7 0 - 26 24468 10 1

Table 8.1: EventDetails Results.

our main objective related to a coupling and cohesion improvement, EventDetails

has very low cohesion and very high coupling value. To improve its cohesion part

and reduce coupling, we have to bring its accessed data to this class from other

classes. Looking more precisely at its coupled classes and data, this does not

seem to be an appropriate approach where all coupled classes are well-designed

with appropriate overall function and good coupling and cohesion balance. If data

accessed by EventDetails is moved to it, there is a high probability that coupled

classes will be highly affected creating a sequence of other issues and breaking

all its design principles. A better approach was to move all methods to coupled

classes, near to data they are accessing, improving the cohesion of coupled classes

and reducing EventDetails coupling. Since all EventDetails methods are getters,
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all of them should be moved to their respective classes from where they accessed

data. Indeed, by manual refactoring, all methods were moved and the class was

deleted. Details of manual refactoring task are presented in Table 8.1.

Automated Refactoring

The automated refactoring analysis is divided into analysis and algorithms sec-

tions.

Analysis

Move Method (MM) analysis found that 8 methods were represented as valid can-

didates for MM refactoring tasks. Delete Method (DM) analysis found also that

8 methods could be safe candidates for DM refactoring tasks. Extract Method

(EM) analysis did not find any suitable candidate for EM refactoring tasks. So

automated refactoring was used to run on MM and DM refactoring tasks sequenc-

ing.

Value Iteration

Value Iteration (VI) was the first RL algorithm used to try to find the opti-

mal refactoring tasks for an EventDetails. As introduced in the second chapter,

section Reinforcement Learning, Vi is planning-based RL method for solving an

MDP instance and as a such, it requires the model of the environment. The

model, explained in the previous chapters, defined transitions probabilities for

each refactoring task. The actions (refactoring tasks) also included a stochastic
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environment with 20% of time randomly executing an unintended action.

Reward Function was uniform; for each action, it was the cost of -10. This

severe cost was combined with the reward of the goal state, +100, and the point

of this high cost for each action was for the agent to make his living in the domain

painful so that the agent quickly tries to find the goal or to quickly finish his

refactoring tasks’ sequencing. A discount factor was equal to .9 and this relaxed

the agent’s future cost experience. Due to high expenses in a timely execution of

a real automated refactoring, VI was executed with the 10 iterations. This was

enough time and iterations, for all case studies, except one, to converge to an

exact solution.

VI found that EventDetails has to be refactored with moving the six of its

method and deleting the rest (two) methods. It converged to the solution in the

first 20 actions executed while the algorithm was ended with the overall 27010

steps in all 10 iterations. Since algorithm converged without producing any error,

converged and end of execution generated the same optimized, coupling and co-

hesion, values. Coupling was reduced to 10, and the lack of cohesion was reduced

to 1.

VI approached moved six of EventDetails’ methods and deleted the rest 2

methods, if we know that no method is left in the class, why the coupling is

still high?! EventDetails constructors are the main consumers of others’ class

information and automated refactoring approach did not include constructors in

a moving or deleting refactoring tasks, they are intentionally skipped.
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On the overall, VI optimized the class with the remarkable reduction of its

coupling and lack of cohesion values. According to this algorithm, EventDetails

suitable values are 10 for the coupling and 1 for the lack of cohesion value. Results

are also presented in Table 8.1.

Q-learning

The second, RL-based, algorithm used for an automated refactoring sequence is

Q-learning. As discussed in the previous chapters, this learning-based RL method

doesn’t require a model and instead allowed the agent to learn a model from the

interaction with the environment. Due to time constraints and high complexity

of real-time refactoring, the agent was learning in not more than 10 episodes the

environment with initial Q values set to zero. A discount factor was the same as

the one used with VI, 0.9, and algorithm was executing in 10 iterations.

Q-learning optimized the class with moving three methods and deleting the

rest five methods. It converged in 22 steps and the overall running algorithm

was executing for 14351 steps. As the case of VI algorithms, since no mistake

was found in an automated refactoring, converged and the end values for coupling

and cohesion are the same, 10 and 1, respectively. Q-learning converged at a

slower rate than VI (with the difference of 2 steps only), but its overall execution

required significantly less number of steps to end the execution than it was the case

of VI. In that case, Q-learning was a much cheaper solution in terms of the time

complexity. As all RL method depends on the same analysis of class, q-learning

also did not refactor constructors and their access to coupled classes remained
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what can be seen from the same results produced. Results are also presented in

Table 8.1.

Sarsa

Sarsa is the third algorithm used for an automated approach. It is another

learning-based approach that allows an agent to learn the model from an in-

teraction with the environment. The same settings used for Q-learning were used

for Sarsa (initial Q values equal to zero, discount factor equals 0.9, 10 iterations)

except that Sarsa was allowed 50 episodes to learn the environment. This number

of episodes were chosen by default following the nature of Sarsa that it doesn’t

take the maximum expected Q-value of the next state, but its discounted return,

(refer to the formula of Sarsa in the background chapter) and it can require more

episodes till learning the model in an efficient way. Sarsa achieved convergence

after 26 steps with overall 24468 actions executed. If we have in mind that 50

episodes were used for learning, this huge number of steps did not surprise where

Q-learning with 10 learning episodes have 14351 overall steps. Results are also

presented in Table 8.1.

It is worth to mention that EventDetails, indeed, was just a part of ”workover”

done by the developers to overcome some compile errors of accessing LoggingEvent

and it was not intentionally designed as a part of the Log4J project. This makes

the more clear situation of this poorly designed class in a well-design project coded

by experienced programmers. The results of other case studies are presented in

their tables in this chapter, while their UML diagrams can be found in appendices.
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8.1.2 Hypothesis Testing

Null Hypothesis 1 Proposed automated methods are not able to meet optimal

manual refactoring in terms of number and kind of refactoring tasks.

Alternative Hypothesis 1 Proposed automated methods are able to meet opti-

mal manual refactoring in terms of number and kind of refactoring tasks.

For the analysis of the first hypothesis, related to the validation of proposed

methods, we analyzed results of all methods in terms of their accuracy. Accuracy

here represents to what extent results match the optimal combination of refactor-

ing tasks. For that purpose, we use Cosine similarity measure to determine the

similarity of each case study for every method proposed. Next to average similar-

ity, the calculation of a number of case studies with accuracy greater than 50%

is considered. Final results are depicted in 8.2. Moreover, methods are divided

into planning-based and learning-based and its results are denoted in Table 8.3.

It is worth to mention, in terms of the success of proposed methods, two cases

studies (out of eleven) did not succeed to finish execution without error. For the

sake of reliability, these two case studies were not counted in analysis related to

refactoring tasks.

Null Hypothesis 2 Proposed methods are not able to improve coupling and co-

hesion on class-level.

Alternative Hypothesis 2 Proposed methods are able to improve coupling and

cohesion on class-level.
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ClassName VI-cosSim Q-cosSim Sarsa-cosSim

EventDetails

VI

0.949

Q
-L

ea
rn

in
g

0.514

Sa
rs

a

0.141
LogRecord 0.408 0.807 0.560
TTCCLayout 1.000 1.000 0.000
LevelRangeFilter 0.949 1.000 0.894
AdapterLogRecord 0.894 0.949 0.707
JDBCAppender 0.077 NN 0.000
XMLLayout 0.447 0.800 0.894
SysLogAppender 0.949 0.447 0.447
MyTableModel 0.000 NN 1.000

Average 0.63 0.79 0.52
Standard Deviation 0.40 0.23 0.39

>=.5 5 6 5
<.5 4 1 4

Table 8.2: Accuracy of Proposed Methods.

Planning-Based Learning-Based
Average 0.63 0.64
Standard Deviation 0.40 0.35

>=.5 5 11
<.5 4 5

Table 8.3: Planning-Based vs Learning-Based Overall Accuracy.

The second hypothesis examines to what extent proposed methods were able

to improve coupling and cohesion. For that purpose, convergence results of cou-

pling and cohesion of all case studies were analyzed. Next to convergence results,

improvements are calculated with emphasizing average improvement of each al-

gorithm. Table 8.7 presents the output of all results.

Null Hypothesis 3 Planning-based RL algorithm has faster converge rate com-

paring to learning-based algorithms.

Alternative Hypothesis 3 Planning-based RL algorithm does not have faster

converge rate comparing to learning-based algorithms.

Null Hypothesis 4 Planning-based RL algorithm requires less number of steps

for complete execution comparing to learning-based algorithms.
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Starting Values Convergence
ClassName Cp Ch

VI

VI - CCp VI - CCh

Q
-L

ea
rn

in
g

Q - CCp Q - CCh

Sa
rs

a

Sarsa - CCpSarsa - CCh

EventDetails 18 29 10 1 10 1 10 1
LogRecord 49 306 13 13 14 15 19 48
TTCCLayout 25 0 24 0 24 0 24 0
LevelRangeFilter 12 4 8 0 8 0 8 0
AdapterLogRecord 24 22 10 0 10 4 23 20
JDBCAppender 54 177 38 27 NN NN 38 27
XMLLayout 35 6 34 5 32 4 32 4
SysLogAppender 67 105 57 39 66 87 66 98
MyTableModel 68 66 67 46 NN NN 66 73

Improvement
ClassName

VI

VI - ICp VI - ICh

Q
-L

ea
rn

in
g

Q - ICp Q - ICh

Sa
rs

a

Sarsa - ICp Sarsa - ICh
EventDetails 8 28 8 28 8 28
LogRecord 36 293 35 291 30 258
TTCCLayout 1 0 1 0 1 0
LevelRangeFilter 4 4 4 4 4 4
AdapterLogRecord 14 22 14 18 1 2
JDBCAppender 16 150 NN NN 16 150
XMLLayout 1 1 3 2 3 2
SysLogAppender 10 66 1 18 1 7
MyTableModel 1 20 NN NN 2 -7

AVG 10.1 64.9 9.4 51.6 7.3 49.3
STD 11.2 97.8 12.2 106.1 9.8 92.2

LoS 9 9 7 7 9 9
%LoS 81.82% 81.82% 63.64% 63.64% 81.82% 81.82%

Planning-Based Learning-Based
ICp ICh ICp ICh

AVG 10.1 64.9 8.4 50.5

LoS 9 16
%LoS 81.82% 72.73%

Table 8.4: Overall Coupling and Cohesion Results.

Alternative Hypothesis 4 Planning-based RL algorithm requires more number

of steps for complete execution comparing to learning-based algorithms.

The last two hypotheses are related to the efficiency. By the efficiency, we

mean a number steps required for the method to converge to an exact solution.

Next to convergence steps (Conv), efficiency is also depicted with the all steps

taken to the end of execution of the method (Exec). The difference is a simple,

converge steps are steps required to reach the final state of coupling and cohesion
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while maintaining compile-error-free class. On the other hand, execution steps

are all steps taken to the end of execution, regardless of the state of the class.

Based on convergence and execution steps we are able to differentiate efficiency

of different algorithms. Results are presented in Table 8.5. Next to efficiency, we

analyze how the number of tasks correlates with convergence and execution steps.

The result is depicted in Table 8.6.

Analysis Tasks

VI

Value Iteration

Q
-L

ea
rn

in
g

Q-Learning

Sa
rs

a

Sarsa
ClassName MM DM EM max() CSteps AllSteps CSteps AllSteps CSteps AllSteps

EventDetails 8 8 0 8 20 27010 22 14351 26 24468
LogRecord 26 22 5f 26 67 58549 226 14780 80 10159
TTCCLayout 8 6 0 8 21 23848 39 15051 22 18284
LevelRangeFilter 7 6 0 7 26 17940 19 39803 19 28697
AdapterLogRecord 7 6 3f 7 30 17981 44 25443 37 31373
JDBCAppender 22 13 0 22 40 39920 83 9981 35 42471
LogBrokerMonitor 103 19 39f 103 NN 711 NN 122 NN 135
Hierarchy 25 5 10f 25 119 5968 117 7087 135 7551
XMLLayout 7 4 0 7 24 6406 18 29765 12 23813
SysLogAppender 19 8 12f 19 77 8253 70 9361 52 9270
MyTableModel 17 12 3f 17 42 9014 42 7467 47 11981

AVG 46.6 19600 68 15,746 46.5 18927.5
STD 32.0 17221.4 63.9 11,551 36.8 12492.4

LoS 10 11 10 11 10 11
%LoS 90.91% 100.00% 90.91% 100.00% 90.91% 100.00%

Planning-Based Learning-Based
Conv Exec Conv Exec

AVG 46.6 19600 57.3 17,337
STD 32.0 17221.4 51.9 11853.4
LoS 10 11 20 22
%LoS 90.91% 100.00% 90.91% 100.00%

Table 8.5: Overall Convergence and Execution Results.

Convergence

Tasks/VI-Conv Tasks/Q-Conv Tasks/Sarsa-Conv
Correlation 0.805 0.824 0.785

t-value -1.8388 -2.14806 -1.68944
p-value 0.081628 0.044818 0.107478

Execution

Tasks/VI-Exec Tasks/Q-Exec Tasks/Sarsa-Exec
Correlation -0.261 -0.600 -0.578

t-value -3.77034 -4.51468 -5.01906
p-value 0.000601 0.000106 0.000033

Table 8.6: Convergence and Execution Correlation with Tasks Results.
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8.2 Discussion

In the next paragraphs, we discuss the results and possible rejections of null

hypotheses.

8.2.1 H1 and Accuracy Implications of Proposed Methods

In the first hypothesis, we are examining the radius of similarity between the

proposed method and optimal solution (manual refactoring). Summary of the

results is shown in Table 8.2.

Value Iteration algorithm has, on average, .63 similarity with the optimal so-

lution. Five out of its nine case studies have above .5 similarity levels. Q-learning

achieved .79 with six case studies with above .5 similarity. Sarsa had .52 with

five out of nine case studies with above .5 similarity level. The highest results

of accuracy are achieved with Q-learning, but its LoS is the lowest (7 out of 9,

63.64%). The highest results might be due to nature of Q-learning and calcula-

tion of improvement of the current state. From its six case studies with above

.5, two of them have 1 similarity, one is .949, two of them are .8 and only one

is with .514 similarity. These are remarkable results achieved in only 10 learning

episodes. The lower value of LoS might undermine high accuracy results for Q-

Learning, to reduce this effect, we want to compare the accuracy achieved with

Q-Learning with other algorithms on the same case studies. To do that, we rank

accuracy results for each case study based on algorithms. After the ranking, we
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take the average of these rankings algorithm-wise, the lowest average will point

to the highest accuracy results (obviously pointing to the highest number of the

best results, first positions). According to results, LoS had no effect on the over-

all accuracy of algorithms and Q-learning was again achieving the highest accu-

racy levels. The careful reader might point that relation between planning-based

and learning-based comparison changed from slightly favoring learning-based to

equal, and two methods are the same now. On the first look, this might be true

observation, but if we further consider standard deviation that is higher in the

planning-based algorithm, we are still in favor of learning-based algorithms and

as conclusion no change on overall accuracy results. With these results, we reject

the null-hypothesis and confirm its alternative hypothesis and state that proposed

automated methods are able to meet manual refactoring in terms of number and

kind of refactoring tasks.

ClassName VI Q Sarsa

EventDetails 1 2 3
LogRecord 3 1 2
TTCCLayout 1 1 2
LevelRangeFilter 2 1 3
AdapterLogRecord 2 1 3
XMLLayout 3 2 1
SysLogAppender 1 2 2

Average (lower better) 1.86 1.43 2.29
Standard Deviation 0.90 0.53 0.76

Planning-Based Learning-Based
Average 1.86 1.86
Standard Deviation 0.90 0.77

Table 8.7: Ranking Accuracy Levels of Algorithms Based on Successful Q-
Learning Case Studies.

112



(a) VI (b) Q-Learning (c) Sarsa

(d) Overall

Figure 8.2: Histogram of Accuracy of Proposed Methods.
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(a) Coupling

(b) Cohesion

Figure 8.3: Coupling and Cohesion Improvements.

8.2.2 H2 and Quality Measures Improvement of Proposed

Methods

According to Table 8.7 majority of values achieved after applied methods are

improved compared to its starting values. In Figure 8.3 we see, from the results

plotted, to what extent each class improved. While the majority of classes were

improved, Sarsa failed in the improvement of cohesion in MyTableModel class.

Improvement ratio of 49:1 give us high confidence to reject null-hypothesis and

state that proposed methods are able to improve coupling and cohesion on class-

level.
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(a) Default (b) VI

(c) Q-Learning (d) Sarsa

Figure 8.4: Distribution of Coupling and Cohesion Before and After Proposed
Methods.

(a) Coupling (b) Cohesion

Figure 8.5: Comparison of Coupling and Cohesion Distributions.
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8.2.3 H3 and Convergences of Proposed Methods

After the accuracy and improvement discussion of proposed method, next, we are

interested in the efficiency of automated approaches. As defined, the first efficiency

is related to the convergence steps of the exact solution of proposed methods. From

Table 8.5 we can see that all methods require, on average, not more than 70 steps

to converge. Sarsa achieved the best results requiring the lowest number of steps

on average to converge (46.5). Value Iteration was the next with the average of

46.6. Q-learning requires the highest number of steps to converge, on average

(68). When the algorithms are analyzed based on their category, the planning-

based algorithm performs better then learning-based algorithms with, on average,

46.6 and 57.3 steps, respectively. These results are confirming our null hypothesis

and we state that planning-based RL algorithm has faster converge rate comparing

to learning-based algorithms.

Level of Success (LoS) is very high for all algorithms (the lowest is 90.91%).

The only failed case study to converge is LogBrokerMonitor. Unfortunately, this

is the largest class (in terms of LOC and number of tasks) in our experiments

conducted and it might point us that MDP environment limitation for agent

spending only sixty seconds in the environment might not be suitable for extra

large classes to converge to an exact solution. As a part of future work, we

might concentrate more on examining the relationship between extremely large

classes and terminal function (the time required for the agent to converge) in

MDP environment.
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After the rejection of the null hypothesis, we want to see is there any correlation

between the number of tasks and convergence steps. In particular, this is very

important for possible extension of the automated framework and what we might

expect if more number of tasks is to be considered. To quantify this relation,

we first need to address tasks and what they represent. If we take summation of

all tasks (MM, DM, EM) this might point us to the wrong conclusion, especially

when there is a high overlapping rate between MM and DM refactoring tasks.

To avoid misleading and overlapping tasks, we consider the maximum number

of tasks of single kind of refactoring in analysis part of the automated approach

appropriate representation. For example, if the analysis found: 10MM, 7DM, and

1 EM, our number of tasks is a 10 since it is the maximum value of single kind of

refactoring tasks. In Table 8.5, the third column depicts tasks value for each case

study. Pearson correlation [81] is used to calculate the correlation between tasks

and convergence steps. Furthermore, the t-test is performed with the calculation

of p-value for each test. From the results (Table 8.6 ), we can see that there is

a high positive linear correlation between convergence steps and the number of

tasks. At p-value 0.05, the results are significant only for Q-learning convergence

steps. Other p values are not greater than .11 and if we relax our significance level

till .1 or .15, which is reasonable with the limited number of case studies, all results

of correlation become significant. This leads us to the conclusion that increasing

the number of tasks will increase the number of steps required for convergence,

hence increasing time and space complexity of automated framework.
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(a) Convergence Steps (b) Tasks and Convergence Steps

Figure 8.6: Convergence Rates.

8.2.4 H4 and Execution Rates of Proposed Methods

Our last hypothesis is related to the execution rates and the way of testing it is very

similar to the previous hypothesis except that instead of convergence steps, we con-

sider execution steps. On the contrary to the results of convergence steps, Value

Iteration required the highest number of steps to finish execution. Q-learning was

with the lowest number of execution steps (Table 8.5). All algorithms were fully

successful in finishing execution (LoS = 100%). If we categorize the results to

planning and learning-based, learning-based methods outperform planning-based

method (17.337 vs 19.600 required steps, on average). With these results, we reject

the null hypothesis and confirm that planning-based RL algorithm requires more

number of steps for complete execution comparing to learning-based algorithms.

Next to rejection of the null hypothesis, the relationship between tasks and ex-

ecution steps is analyzed in the same manner as with convergence steps (Table

8.6) Execution steps have a negative linear correlation with the tasks. In the case

of Q-Learning and Sarsa, this negative correlation is relatively high compared to

low negative correlation in Value Iteration. All results are statistically significant
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(a) Execution Steps
(b) Tasks and Execution Steps

Figure 8.7: Execution Rates.

(at p < .05). The results might seem surprising knowing that convergence steps

had opposite effects, but they are very reasonable considering the limitation of

time for agent and nature of real-time refactoring. We have to remember that

agent has limited time to spend in the environment (sixty seconds) and real-time

refactoring requires a time for each existed task to be executed. This reduces the

number of effective steps and takes more time for the agent to execute actions.

More tasks mean more time to spend on the execution of refactoring decreasing

the number of ”empty” steps from the agent leading to a negative linear correla-

tion between tasks and execution steps. More real refactorings to sequence lead

to more convergence steps resulting in the less number of overall execution steps.

8.2.5 Algorithms’ Implications on Results

Empirical evaluation of the proposed methods has shown that RefMark automated

framework, in general, is efficient with reliable accuracy results. Next to the

hypothesis testing, we are further interested in the relationship between results

and particular algorithm used. For that purpose, we summarize and rank all
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results based on algorithms employed (Table 8.8 and Table 8.9, respectively).

Value Iteration

Planning-based RL method has shown notable results in improvement of coupling

and cohesion outperforming other methods used. Its accuracy of 63% is accept-

able and might represent to what extent the model provided and its transition

probabilities meet the reality of case studies. LoS was the highest achievable in

the improvement and efficiency parts. VI was the second, after Sarsa, in the con-

vergence efficiency rate and the last in the execution efficiency rate. VI was the

best in overall ranking representing the best choice for overall performance. VI

is the best choice also for improvement, and this has to be taken into account

in the development cycle. If the goal of developer team is to have the highest

improvement in quality measures regardless of its precision and accuracy, VI is

the best choice.

Q-Learning

The first learning-based RL method used shows extremely beneficial in high accu-

rate refactoring sequencing. The q-learning agent was able to learn environment

in 10 learning episodes and achieve the accuracy of 78.82%. This might be due to

the nature of Q-Learning update step of Q-value function where it takes the max-

imum expectation of the improvement of all next states. As an offline method,

this might seem very expensive but it paid off in accuracy results achieved (later,

we will see that Sarsa did not reach this accuracy level with less expensive update
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step of Q-values). On the overall, Q-Learning had the second best performance,

after VI. On the accuracy alone, Q-Learning represents the best choice and this

has to be taken into account when maintaining the phase of the software develop-

ment requires the highest accuracy results regardless of the price in terms of time

and space.

Sarsa

Second learning-based RL method used achieved the best results in efficiency

(convergence steps). For the improvement rate and accuracy, Sarsa has shown

poor performance. Even with 50 episodes of learning (Q-Learning had only 10

episodes), Sarsa was not able to catch good model of the environment and achieve

more accurate results with higher improvements. This might be also due to its

nature as an online method and its update of Q-values based on any improvement

of the next state. Besides efficiency, comparing to Q-Learning, Sarsa dominates

only in LoS of improvement part, where it was able to succeed in 81.82% of the

time (Q-Learning succeeded in 63.64% of the time). Any further usage of Sarsa

in refactoring sequencing requires relaxation of a number of learning episodes

allowing the agent to better learn environment. On overall ranking, Sarsa was the

worst choice.
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VI Q-Learning Sarsa
Accuracy 63.03% 78.82% 51.61%

Average CCp CCh CCp CCh CCp CCh
Improvement 10.1 64.60 9.40 51.60 7.30 49.30

%LoS 81.82% 63.64% 81.82%

Efficiency
Conv Exec Conv Exec Conv Exec
46.6 19600 68 15746.5 46.5 18927.5

%LoS 90.91% 100.00% 90.91% 100.00% 90.91% 100.00%

Table 8.8: Summary of All Results Based on Algorithms Used.

VI Q-Learning Sarsa Precedence Results
Accuracy 2 1 3 Q-VI-Sarsa

Improvement
CCp CCh CCp CCh CCp CCh Coupling Cohesion

1 1 2 2 3 3 VI-Q-Sarsa VI-Q-Sarsa
%LoS 1 2 1 VI/Sarsa-Q

Efficiency
Conv Exec Conv Exec Conv Exec Convergence Execution

2 3 3 1 1 2 Sarsa-VI-Q Q-Sarsa-VI
%LoS 1 1 1 1 1 1 NoDiff

1s 5 1s 4 1s 4
2s 2 2s 3 2s 1
3s 1 3s 1 3s 3

Overall Rank 1st 2nd 3rd
Planning-Based Learning-Based
1s 5 1s 4
2s 2 2s 2
3s 1 3s 2

Overall Rank 1st 2nd

Table 8.9: Overall Methods Ranking Results.
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Refactoring Tasks Steps Coupling Cohesion
Class Name: LogRecord MM DM EM Other Conv All Corr. End Corr. End

Manual Refactoring 2 1 1 6Ef,1MC 49 306

Automated Refactoring

Analysis 26 22 5f -
VI 0 22 0 67 58549 13 13
Q Learning 10 14 0 2XMM,3XDM 226 14780 14 3 15 1
Sarsa 2 10 0 6XMM,5XDM 80 10159 19 3 48 1

Table 8.10: LogRecord Results.

Refactoring Tasks Steps Coupling Cohesion
Class Name: TTCCLayout MM DM EM Other Conv All Corr. End Corr. End

Manual Refactoring 3 0 0 0 25 0

Automated Refactoring

Analysis 8 6 0 -
VI 1 0 0 4XMM,1XDM 21 23848 24 9 0 4
Q Learning 1 0 0 5XMM,2XDM 39 15051 24 9 0 4
Sarsa 0 1 0 3XMM,3XDM 22 18284 24 9 0 4

Table 8.11: TTCCLayout Results.

Refactoring Tasks Steps Coupling Cohesion
Class Name: LevelRangeFilter MM DM EM Other Conv All Corr. End Corr. End

Manual Refactoring 0 5 0 0 12 4

Automated Refactoring

Analysis 7 6 0 -
VI 1 3 0 3XDM 26 17940 8 4 0 1
Q Learning 0 3 0 1XMM,3XDM 19 39803 8 4 0 1
Sarsa 1 2 0 2XMM,2XDM 19 28697 8 4 0 1

Table 8.12: LevelRangeFilter Results.
Refactoring Tasks Steps Coupling Cohesion

Class Name: AdapterLogRecord MM DM EM Other Conv All Corr. End Corr. End
Manual Refactoring 5 5 0 0 10 24 22

Automated Refactoring

Analysis 7 6 3f 7+7+7
VI 1 3 0 2XMM 30 17981 10 7 0 3
Q Learning 1 2 0 3XMM;2XDM 44 25443 10 7 4 3
Sarsa 0 1 0 1XMM,5XDM 37 31373 23 7 20 3

Table 8.13: AdapterLogRecord Results.
Refactoring Tasks Steps Coupling Cohesion

Class Name: JDBCAppender MM DM EM Other Conv All Corr. End Corr. End
Manual Refactoring 4 0 0 54 177

Automated Refactoring

Analysis 22 13 0
VI 1 13 0 40 39920 38 27
Q Learning 0 0 0 8XMM,12XDM 83 9981 7 6
Sarsa 0 13 0 0 35 42471 38 27

Table 8.14: JDBCAppender Results.
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Refactoring Tasks Steps Coupling Cohesion
Class Name: LogBrokerMonitor MM DM EM Other Conv All Corr. End Corr. End

Manual Refactoring 28 0 0 1Df,1EC,3Ef 327 4796

Automated Refactoring

Analysis 103 19 39f
VI 0 0 0 58XMM,17XDM - 711 - 7 - 15
Q Learning 0 1 0 29XMM,22XDM - 122 326 164 4697 1290
Sarsa 0 0 0 25XMM,28XDM - 135 - 165 - 1239

Table 8.15: LogBrokerMonitor Results.
Refactoring Tasks Steps Coupling Cohesion

Class Name: Hierarchy MM DM EM Other Conv All Corr. End Corr. End
Manual Refactoring 1 16 0 74 241

Automated Refactoring

Analysis 25 5 10f
VI 0 0 0 17XMM,5XDM 119 5968 - 27 - 190
Q Learning 0 0 0 15XMM,7XDM 117 7087 - 27 - 190
Sarsa 0 0 0 16XMM,7XDM 135 7551 - 27 - 190

Table 8.16: Hierarchy Results.
Refactoring Tasks Steps Coupling Cohesion

Class Name: XMLLayout MM DM EM Other Conv All Corr. End Corr. End
Manual Refactoring 1 2 0 35 6

Automated Refactoring

Analysis 7 4 0
VI 1 0 0 2XMM,2XDM 24 6406 34 7 5 6
Q Learning 2 1 0 1XMM,2XDM 18 29765 32 7 4 6
Sarsa 0 4 0 1XMM 12 23813 32 7 4 6

Table 8.17: XMLLayout Results.
Refactoring Tasks Steps Coupling Cohesion

Class Name: SysLogAppender MM DM EM Other Conv All Corr. End Corr. End
Manual Refactoring 4 2 0 2Ttl 67 105

Automated Refactoring

Analysis 19 8 12f
VI 3 3 0 8XMM,2XDM 77 8253 57 7 39 15
Q Learning 0 1 0 7XMM,9XDM 70 9361 66 7 87 15
Sarsa 0 1 0 12XMM,4XDM 52 9270 66 7 98 15

Table 8.18: SysLogAppender Results.
Refactoring Tasks Steps Coupling Cohesion

Class Name: MyTableModel MM DM EM Other Conv All Corr. End Corr. End
Manual Refactoring 0 7 0 68 66

Automated Refactoring

Analysis 17 12 3f
VI 1 0 0 10XMM,5XDM 42 9014 67 17 46 8
Q Learning 0 0 0 5XMM,10XDM 42 7467 - 17 - 8
Sarsa 0 1 0 11XMM,4XDM 47 11981 66 17 73 8

Table 8.19: MyTableModel Results.
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CHAPTER 9

CONCLUSION AND FUTURE

WORK

With this chapter, we conclude this thesis and summarize what has been done to

meet proposed objectives, contributions, threats to validity and possible extension

and future work directions.

9.1 Summary

This thesis represents a research on refactoring and reinforcement learning meth-

ods combined in an automated framework that resulted in the RefMark plugin.

Some refactoring tasks (Extract Method, Move Method, Delete Method) were

used as a driving force to improve coupling and cohesion values on a class-level.

Coupling and cohesion values of the class were used as leading factors representing

the current state of the system. Model environment, as an MDP, was an input for

RL-based algorithms. Designed as a 2d map with coupling and cohesion values
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as coordinate points, the environment became suitable MDP instance. Afore-

mentioned tasks were used as actions in this environment and transition model

(probabilities) is defined based on an initial experience and possible distribution

between tasks. Model environment (states), actions and transitions were used to

solve MDP instance with VI, Q-Learning and Sarsa algorithms giving state-value

and Q-value function for each state and policy to follow if the desired effect of

coupling and cohesion improvement was a goal to achieve. Incorporating dis-

counted rewards to better represents desirability of the current effects of tasks

over effects of the future tasks, next to stochastic environment, the solution of

VI, Q-learning and Sarsa algorithms is represented. The proposed method and

these algorithms are integrated into automated framework RefMark represent-

ing a complete solution for an automated refactoring approach. As a prototype,

automated framework shows potential usability for a further research. RefMark

uses concrete refactoring tasks as actions making the system interacts directly

with the source code. The initial prototype was developed considering all possi-

ble refactoring tasks. After its initial tests and high complexity in time and space

requirements, optimized version added additional analysis layer that filtered error-

prone refactoring tasks and proceeded with reliable, error-free, refactoring tasks.

The optimized version of RefMark was empirically evaluated and its accuracy,

improvement ratios, and efficiency have shown promising results. RefMark poten-

tial place, in a real software development cycle, can be seen as a supportive tool

where developers want to quantify to which extent they can improve certain parts
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of the software quality measures using the limited number of tasks in a limited

time frame.

9.2 Threats to Validity

This thesis is an attempt to look at a refactoring prioritization problem from

the other than its common SE perspective. This new perspective (reinforcement

learning) has well-established theory and background and well-known successful

application in different fields. Matching SE representation and this perspective in

a successful story is not an easy task and many factors are playing the key roles

in its success. As a first attempt, with time-constrained thesis work, there are

some threats that might undermine our work. In the next paragraphs we discuss

identified threats and what we did to minimize its possible negative effects.

• Threats to construct validity explain what is the magnitude of theory and

observation in our empirical study.

– The main threat to construct validity in our work is related to a soft-

ware quality measures used for a coupling and cohesion. Are RFC

and LCOM good indicators of coupling and cohesion on a class-level

as a structural software metrics? Will their semantic counterparts (for

instance, CCBC and CE) lead to the same results? These questions

might be properly answered after the same framework is tested with

these different quality measures. With the limited scope, we tried our
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best to concentrate on coupling and cohesion metrics that are well-

understood, with its ”pros and cons”, and yet have stable and consis-

tent tool for faster calculation avoiding additional time complexity to

our framework. C&K [65] metric suit was the only candidate that fits

these conditions.

• Threats to conclusion validity define the magnitude between the way of

treatment of information and its outcome.

– The first threat to conclusion validity is related to behavior preserva-

tion of software projects used for refactoring. We solely depend on

Eclipse internal checks for refactoring execution. This might not be

enough to preserve the correct semantic behavior of the project. While

more appropriate way might be to provide the complete set of unit tests

to cover complete project behavior, for our automated framework this

was not feasible at this stage of development. We are exploring tech-

niques that optimize coupling and cohesion on the class-level following

automated approach based on reinforcement learning using real-time

refactoring. Having execution of the complete set of unit tests after

each refactoring task will simply make complete approach impracti-

cal and unfeasible. For this stage of development of the automated

framework, Eclipse implementations of checking refactoring conditions

with additional analysis layer of RefMark were tolerable elements. For

future, unit tests might be employed for complete system behavior
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preservation checks.

– The second threat to conclusion validity might be related to values used

for the cost of refactoring, discount factor and number of iterations in

solving MDP instance. To minimize this effect, we were trying to follow

common MDP values (for example, .9 for discount factor) and the

common ratio between the goal state and reward (cost of refactoring

tasks). The common ratio between the goal state and reward was

given after rationalization of a number of tasks used and the size of

the environment. We were trying to balance by penalizing execution

of the refactoring agent in the proper way for the agent to motivate it

to sequence refactoring tasks while still maintaining its desire to reach

the goal. If a penalty was more severe for the agent, it might not

try to sequence refactoring tasks and it would prefer to stay in place,

simply, for an agent, moving will cost more than it might get reaching

the goal state. A number of iterations were chosen by trial-and-error

with concern to allow enough time for the agent and the algorithm to

converge while still have reasonable time execution.

• Threats to internal validity explain possible circumstances that could influ-

ence our observation.

– As a prototype, there are many threats to internal validity, starting

to beginning decisions to follow Eclipse platform and its JDT library

for a Java. As an open source, community-driven, platform with a
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good, but not perfect, documentation and support, our plugin imple-

mentation depends on different external plugins that are developed on

different Eclipse versions. The first threat can be seen that these differ-

ent plugins (for UI, for example) may not behave the same on different

Eclipse distributions due to different dependencies, changed Eclipse

source, etc. We tried to minimize this threat by building our solutions

on a well-known and stable dependency that reached maturity and are

well-accepted in the Eclipse community. For example, the interface is

built based on standard SWT Eclipse plugin, metrics are calculated

using matured ckjm software metrics suite.

• Threats to external validity explain possible generalization concerns of this

research.

– Due to nature of reinforcement learning, the choice to go with real

refactoring tasks applied while iterating all possible paths, the main

threat to external validity concerns the fact that the limited number

of classes were used for testing proposed automated framework. With

the limited timeline of thesis research, we tried to minimize this threat

by testing automated framework on a different range of classes.
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9.3 Contributions

• To the best of our knowledge, this is the first attempt to define refactoring

automation problem as a Markov Decision Processes and Reinforcement

Learning.

• Empirical evaluation of different RL-based solutions for refactoring MDP

instance

• The main contribution of this thesis is in the proposed method and its mate-

rialization as a complete automated refactoring framework that is extensible

and flexible for further advances.

9.4 Future Work

Possible future improvements can be divided into three directions:

1. Software Engineering (improvements related to general refactoring process):

• First future consideration has to be related to the more rigorous as-

surance of semantic preservation of projects refactored. This might be

achieved with a suitable set of tests. The more changeable part is how

these tests, that cover complete system, can be efficiently incorporated

in the automated RefMark tool while maintaining practicability and ac-

cepted time and space complexity. One of the ways might be to include

these tests after generation of refactoring tasks’ pools and to further
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filter only these refactoring tasks based on semantic preservation. This

would generate new pools of refactoring tasks that preserve semantic

behavior.

• One of the possible future paths can be an extension of the current

approach to simulation-based refactoring automation. This might open

a possibility for larger projects but also might force us to a trade-off

between real-time refactoring benefits (high accuracy, minimized noise)

and simulation-based fast automation.

• Detection of bad smells related to quality measures incorporated in

a current tool might be our future focus. Moreover, its detection of

these bad smells are metric-based, this might be even easier to follow

since current tool already employs metric suite for quality measures

calculation.

• Limiting the number of refactoring tasks to prioritize can also be con-

sidered as a future improvement.

• Another, possible contradicting, software quality measures might be

used for optimization. For example, we might address refactoring pri-

oritization improving reusability and maintainability while maintaining

optimal coupling and cohesion ratio.

• Package-based and system-based improvements might be more appro-

priate than current class-level optimization. This might be our future

direction.

132



2. Development

• RefMark is developed as an Eclipse plugin, our future direction might

be to transfer RefMark plugin to Eclipse RCP application, providing

great benefits of the fully-packaged standalone application without con-

straints and additional requirements that current plugin-based solution

requires.

3. Reinforcement Learning

• Reformulating refactoring automation process as a partially-observable

MDP (POMDP) instance might be our next future direction. POMDP

instance requires another set of algorithms to be employed for a solution

but might more precisely address nature of new developers in software

teams, with less knowledge about software projects maintained.

• If the number of refactoring tasks are to be limited, MDP instance has

to be considered with a finite horizon, requiring different algorithms

to be used for the appropriate solution. This might be other future

directions and might represent addressing real situation were software

projects have limited time frame for the maintenance phase. The lim-

ited time frame might also be addressed, as mentioned earlier, with

adjusting discount factor, but focusing on a limited number of refac-

toring tasks might better address refactoring from SE point of view.

• Terminal function of refactoring MDP instance might be relaxed more
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to address extremely large classes. Furthermore, more detailed analysis

of the relation between the time allocated for an agent to spend in the

environment and the size of the class might be performed.
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Appendix

Figure 9.1: LogRecord Class Diagram.

Figure 9.2: TTCCLayout Class Diagram.
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Figure 9.3: LevelRangeFilter Class Diagram.

Figure 9.4: AdapterLogRecord Class Diagram.

Figure 9.5: JDBCAppender Class Diagram.
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Figure 9.6: LogBrokerMonitor Class Diagram.

Figure 9.7: Hierarchy Class Diagram.

Figure 9.8: XMLLayout Class Diagram.
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Figure 9.9: SysLogAppender Class Diagram.

Figure 9.10: MyTableModel Class Diagram.

138



REFERENCES

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, “Refactoring:

improving the design of existing code. 1999,” ISBN: 0-201-48567-2.

[2] G. H. Pinto and F. Kamei, “What programmers say about refactoring tools?:

An empirical investigation of stack overflow,” in Proceedings of the 2013 ACM

workshop on Workshop on refactoring tools. ACM, 2013, pp. 33–36.

[3] A. Ouni, M. Kessentini, S. Bechikh, and H. Sahraoui, “Prioritizing code-

smells correction tasks using chemical reaction optimization,” Software Qual-

ity Journal, vol. 23, no. 2, pp. 323–361, 2015.

[4] L. Martin, A. Giesl, and J. Martin, “Dynamic component program visualiza-

tion,” in Reverse Engineering, 2002. Proceedings. Ninth Working Conference

on. IEEE, 2002, pp. 289–298.

[5] M. M. Lehman and L. A. Belady, Program evolution: processes of software

change. Academic Press Professional, Inc., 1985.

139



[6] R. Marinescu, “Detection strategies: Metrics-based rules for detecting design

flaws,” in Software Maintenance, 2004. Proceedings. 20th IEEE International

Conference on. IEEE, 2004, pp. 350–359.

[7] W. H. Brown, R. C. Malveau, and T. J. Mowbray, “Antipatterns: refactoring

software, architectures, and projects in crisis,” 1998.

[8] T. M. T. T. F. Munoz, “Beyond the refactoring browser: Advanced tool

support for software refactoring,” 2003.

[9] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “A bayesian
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[19] B. H. Abed-alguni, “Action-selection method for reinforcement learning based

on cuckoo search algorithm,” Arabian Journal for Science and Engineering,

pp. 1–15, 2017.

141



[20] G. Rasool and Z. Arshad, “A review of code smell mining techniques,” Jour-

nal of Software: Evolution and Process, vol. 27, no. 11, pp. 867–895, 2015.

[21] J. Al Dallal, “Identifying refactoring opportunities in object-oriented code: A

systematic literature review,” Information and software Technology, vol. 58,

pp. 231–249, 2015.

[22] M. Misbhauddin and M. Alshayeb, “Uml model refactoring: a systematic

literature review,” Empirical Software Engineering, vol. 20, no. 1, pp. 206–

251, 2015.

[23] S. Rochimah, S. Arifiani, and V. F. Insanittaqwa, “Non-source code refac-

toring: A systematic literature review,” International Journal of Software

Engineering and Its Applications, vol. 9, no. 6, pp. 197–214, 2015.

[24] M. Abebe and C.-J. Yoo, “Trends, opportunities and challenges of software

refactoring: A systematic literature review,” structure, vol. 8, no. 6, 2014.

[25] G. Vale, E. Figueiredo, R. Abilio, and H. Costa, “Bad smells in software

product lines: A systematic review,” in Software Components, Architectures

and Reuse (SBCARS), 2014 Eighth Brazilian Symposium on. IEEE, 2014,

pp. 84–94.
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