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TITLE  : Prediction of Capillary Pressure for Arabian Oil 

Carbonate Reservoirs using Artificial Intelligence 

 

MAJOR FIELD : Petroleum Engineering 

DATE OF DEGREE : December 2017 

 

Capillary pressure data is one of the most critical parameters used in reservoir characterization and 

initialization stage of simulation models. Many reservoirs do not have enough data for a 

comprehensive evaluation. This method utilizes a small core dataset to derive models that can be 

used to predict capillary pressure in reservoirs that lack these measurements.  

 

Several types of Artificial Intelligence (AI) techniques were utilized to predict capillary pressure 

in carbonate oil reservoirs with complex morphologies. To develop AI models that predict 

capillary pressure, a training dataset is used in this study that comprises of mercury injection 

drainage capillary pressure data.  The training data included a set of 70% of 202 core samples that 

included porosity, permeability. and grain density measurements from conventional core analysis 

tests.  Models were developed using this data to predict capillary pressure vs. saturation curves. 

Using an error estimation routine, a comparison between the predicted results and laboratory 

measurements was plotted and tabulated to show the validity of this analysis. The model was tested 

against a new dataset, the remaining 30% of the 202 core samples, that was not included in the 

training phase.  This process was performed on uni-modal, bi-modal, and combined modal 

datasets. The analysis of the AI models used in this study showed that AI has promising potential 

to solve this complicated problem. 
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The proposed approach has three advantages: (i) it saves time and money; (ii) it does not require 

core samples for new spots in the same area; and (iii) it uses the available results to their maximum 

potential from previously destroyed core samples. While previous work did not address the 

prevalent bimodality of the carbonate rock, this study addresses specifically the AI application to 

the different rock modals using Thomeer methodology. 
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 ملخص الرسالة

 اسم اللطالب  : ياسر رضا بوصالح

 

 عنوان الرسالة : باستخدام الذكاء الاصطناعيللصخور الكربونية العربية  التنبؤ بالضغط الاسموزي 

 التخصص : هندسة البترول

 تاريخ التخرج : هـ 1439 ربيع أول

 

في  ضغط الشعيرات الأسموزية هي واحدة من أهم المعالم المستخدمة في توصيف المكامن ومرحلة التهيئة من نماذج المحاكاة.

 السابق، لم يكن لدينا بيانات كافية لإجراء تقييم شامل للعديد من الخزانات النفطية. 

الشعيرات الأسموزية في مكامن النفط ضغط  عنتنبؤ للالذكاء الاصطناعي تقنيات عدة أنواع من استخدمت في هذه الدراسة 

الأسموزي، يتم استخدام مجموعة  الضغط الشعري علىلتطوير نماذج التنبؤ  .والمعقدة التضاريسالأشكال  الكربونية المتعددة

في  .المعملالعينة الصخرية لحساب ضغط الشعيرات الأسموزية في في حقن الزئبق ر اختبابيانات تدريب للبيانات التي تضم 

 الحبيبات الترابيةشملت قياسات المسامية والنفاذية وكثافة  عينة 202٪ من 70تدريب مجموعة من هذه الدراسة، تضمنت بيانات ال

باستخدام  .الشعيرات الأسموزيةضغط  عنوقد وضعت نماذج استخدام هذه البيانات للتنبؤ  من اختبارات التحليل الأساسية التقليدية.

من خلال الجداول  خطأ، تم استخدام المقارنة بين النتائج المتوقعة والقياسات المعملية لإظهار صحة هذا التحليلال تقليصطريقة 

، التي لم تكن مدرجة في مرحلة عينة 202٪ المتبقية من 30، تم اختبار النموذج على مجموعة بيانات جديدة .والرسوم البيانية

جميع المنحنيات في سجل ثنائية، والجمع بين مجموعات المنحنيات ال، يةحادالمنحنيات الأتم تنفيذ هذه العملية على  التدريب.

المستخدمة ضغط الشعيرات الأسموزية في مكامن النفط الكربونية  عن تقنيات الذكاء الاصطناعي للتنبؤتحليل نماذج  البيانات.

لتطوير طرق أخرى ومع ذلك، لا يزال هناك مجال  .لحل هذه المسألة المعقدة مكانات واعدةلديها إفي هذه الدراسة، أظهرت أن 

 .لحساب الضعط الشعري الأسموزي

 

ضغط الشعيرات  عنستخلاص النماذج التي يمكن استخدامها للتنبؤ مجموعة صغيرة لامن لبيانات الأساسية هذه الطريقة تستخدم ا

ديه ثلاث مزايا: يوفر الوقت والمال، لا تتطلب لهذا النهج المقترح  التي تفتقر إلى هذه القياسات. النفطية في الخزاناتالأسموزية 

بينما الأعمال السابقة  مرت سابقا.إمكاناتها من عينات د  جديدة في نفس المنطقة، ويستخدم النتائج المتوفرة إلى أقصى العينات للبقع 
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، فإن هذه ومؤشر جودة الصخور تدفق المنطقةصخور الكربونية من خلال استخدام مؤشر في ال ةالسائد تعدد المنحنياتلم تتناول 

 ."ثمير"من خلال منهج  ةت في عين الاعتبار تعدد المنحنيات السائدأخذ الدراسة

 

 لعلومدرجة ماجستير ا

 جامعة الملك فهد للبترول والمعادن

 المملكة العربية السعودية –الظهران 

 هـ 1439 ربيع أولالتاريخ: 
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CHAPTER 1 

Introduction 

When two immiscible different fluids in a tube contact each other, a curvature shape will occur 

on their touching surfaces due to the pressure difference between them because of their different 

interfacial tensions. This pressure difference is called Capillary Pressure. 

 

Capillary Pressure is one of the most important properties of reservoir rocks due to its strong effect 

in controlling reservoir fluids distribution when two or more immiscible fluids co-exist on pore 

spaces. Late 1950’s, reservoir simulation engineers started incorporating the capillary pressure 

curves into their models to account for this effect which makes a clear difference in the results. 

Misuse of capillary pressure in reservoir simulation models can result in wrong water cut ratios 

and hydrocarbon recovery. As a result, capital investments might be jeopardized. 

 

Initially when oil reservoirs started forming, water was filling all reservoir pore spaces, and then 

oil (non-wetting phase) started to migrate from source rock into the reservoir creating a process 

called drainage. During oil production, water (wetting phase) comes back again to fill oil-filled 

pore spaces creating a process called imbibition. 

 

Capillary pressure curves can be obtained from core samples using one of several laboratory 

measurements such as mercury injection, centrifuge, and porous plate methods. There are also 

some mathematical models to normalize and evaluate capillary pressure such as Leverett J-

function, Thomeer model, and Brooks and Corey model. 
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Regardless of which method is used to obtain capillary pressure, the basic physical equation given 

as: 

𝑃𝑐 =
2𝜎 cos 𝜃

𝑟𝑐
 …………………………………………….(1) 

which express the relationship between capillary pressure (𝑃𝑐), pore throat radius (𝑟𝑐), interfacial 

tension between fluids (σ), and fluid contact angle with the surface of the tube (θ). To calculate it 

for two fluids in contact, this equation is used: 

𝑃𝑐 = 𝑃𝑓1 − 𝑃𝑓2 = (𝜌𝑓1 − 𝜌𝑓2)𝑔ℎ ……………………………….(2) 

To use the above equation (2) with field units: 

𝑃𝑐 = (
ℎ

144
) 𝛥𝜌 …………………………………………..(3) 

Where: 

• ρ = fluid density, lb/ft3 

• g = gravity acceleration, ft/s2 

• h = hight of the heavier fluid in the tube, ft 

The details of the above parameters are illustrated in figure (1). 

 

Figure 1: Capillary tube 
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A typical capillary pressure curve vs. saturation is shown in figure (2). This figure shows the 

drainage and imbibition curves. It also shows the end point of the drainage curve which is the 

connate water saturation (𝑆𝑤𝑐) which is the water saturation in the pore spaces that could not be 

drained by oil during the drainage process. Another important point is the end point of the 

imbibition curve which is the irreducible oil saturation (𝑆𝑜𝑖) which is the minimum oil saturation 

in the pore spaces that could not be flushed by water during the imbibition process. 

 

Figure 2: Capillary pressure curve and saturation height column 

 

Another important parameter needs to be mentioned here is the displacement pressure (𝑃𝑑). This 

is the first point of the drainage curve at which water saturation is less than 100%. This is the 

minimum required pressure for the oil to drain the water. 

The capillary pressure can be used to calculate the water height in the reservoir at any point (Figure 

2). The point at which water saturation is 100% is called the Free Water Level (FWL) and at 

which the water saturation is equal to the connate water saturation is the Oil-Water Contact level 

(OWC). The area in between is a transition zone where a mix of oil and water can be found. 
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Comparison between different capillary pressure curves gives an idea about the reservoir rock 

properties. A major property is the permeability which therefore provides an information about the 

thickness of the transition zone. As figure (3) illustrates, the higher the curve, the less the 

permeability and the lower the curve, the higher the permeability. 

 

Figure 3: Capillary pressure, water saturation, and permeability 

 

Another comparison can be made is between different oil APIs. The higher the API, the lower the 

density. The lower the density, the higher the density difference between oil and water. The higher 

the density difference, the lower the transition zone and vice versa. 

Utilization of Artificial Intelligence (AI) techniques to solve large scale problems has been used 

in several industries such as medical, mechanical and petroleum engineering. It has gained a wide 

acceptance as it showed very good results that could not be easily achieved by classical physics or 

engineering concepts. This study focuses on developing new models for several AI techniques to 

predict the capillary pressure. These models are: 
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• Artificial neural network (ANN) 

• Fuzzy logic (FL) 

• Fuzzy logic type-2 (FL-2) 

• Decision tree (DT) 

• Support vector machine (SVM) 

• Functional network (FN) 

• Nearest Neighbor Curve Prediction (NNCP) 

This thesis is comprised of six chapters. Chapter 2 describes the approaches of capillary pressure 

determination and evaluation and the use of Artificial Intelligence in the petroleum industry. Scope 

of the problem and the solution are presented in Chapter 3. In Chapter 4, the basic concepts of the 

AI techniques used in this study are described. The results and discussion of analysis are discussed 

in detail in chapter 5, and finally, in Chapter 6, the conclusions and recommendations are stated.  
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CHAPTER 2 

Literature review 

Due to the importance of capillary pressure in reservoir engineering studies, several attempts were 

made to calculate it using laboratory methods and mathematical models. Below is a brief of the 

commonly used laboratory methods and mathematical models in addition to the review of a paper 

discussing applying Artificial Intelligence in the field of capillary pressure. 

2.1 Laboratory methods 

Mercury injection method 

In this method, rock samples must be cleaned and dried before placing it in an evacuated chamber 

(Dr. Paul Glover Notes). Two tests can be carried out here: 

• Pressure-controlled Porosimetry: mercury is injected at several pressure increments and 

then cumulative mercury volumes are measured. 

• Volume-controlled Porosimetry: mercury is introduced at fixed volumetric rates and then 

pressures are recorded. This procedure is preferred because it gives more information 

about pore structure (Pedro et. al. 1994). 

The following basic formula shows the relationship between capillary pressure, contact angle, 

interfacial tension and pore throat radius. This formula is the basis of this method and is also 

used to convert between different fluid systems. 

𝑃𝑐 =
2𝜎 cos 𝜃

𝑟𝑐
 ………………………………………………(4) 

𝑃𝑐 = capillary pressure measured, psi. 

𝜎 = Interfacial tension, dyne/cm. 
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𝜃 = contact angle, degrees. 

𝑟𝑐 = radius of pore throats, cm. 

To convert from air-mercury to brine-hydrocarbon, the following conversion is used. 

𝑃𝑐(𝑏𝑟𝑖𝑛𝑒−ℎ𝑦𝑑𝑟𝑜𝑐𝑎𝑟𝑏𝑜𝑛) = 𝑃𝑐(𝑎𝑖𝑟−𝑚𝑒𝑟𝑐𝑢𝑟𝑦)
𝜎(𝑏𝑟𝑖𝑛𝑒−ℎ𝑦𝑑𝑟𝑜𝑐𝑎𝑟𝑏𝑜𝑛) cos 𝜃(𝑏𝑟𝑖𝑛𝑒−ℎ𝑦𝑑𝑟𝑜𝑐𝑎𝑟𝑏𝑜𝑛)

𝜎(𝑎𝑖𝑟−𝑚𝑒𝑟𝑐𝑢𝑟𝑦) cos 𝜃(𝑎𝑖𝑟−𝑚𝑒𝑟𝑐𝑢𝑟𝑦)
 ………..(5) 

𝑃𝑐(𝑏𝑟𝑖𝑛𝑒−ℎ𝑦𝑑𝑟𝑜𝑐𝑎𝑟𝑏𝑜𝑛) = capillary pressure in the brine-hydrocarbon system of the reservoir, psi. 

𝑃𝑐(𝑎𝑖𝑟−𝑚𝑒𝑟𝑐𝑢𝑟𝑦) = capillary pressure of the air-mercury system, psi. 

𝜎(𝑏𝑟𝑖𝑛𝑒−ℎ𝑦𝑑𝑟𝑜𝑐𝑎𝑟𝑏𝑜𝑛) = interfacial tension of brine-hydrocarbon, dyne/cm. 

𝜎(𝑎𝑖𝑟−𝑚𝑒𝑟𝑐𝑢𝑟𝑦) = interfacial tension of air-mercury, dyne/cm. 

𝜃(𝑏𝑟𝑖𝑛𝑒−ℎ𝑦𝑑𝑟𝑜𝑐𝑎𝑟𝑏𝑜𝑛) = contact angle of brine-hydrocarbon-solid, degrees. 

𝜃(𝑎𝑖𝑟−𝑚𝑒𝑟𝑐𝑢𝑟𝑦) = contact angle of air-mercury-solid, degree. 

Although this method is commonly used, there are some limitations and disadvantages: 

1. The tested sample can’t be used again in any test because it gets destructed. 

2. Low implied connate water saturation can occur due to the collapse coating minerals 

covering grains surfaces and the fact that the core sample has to be dried before use. 

3. Mercury vapor is toxic which requires special safety precautions. 

4. It takes time and money to make this test. 

5. Any fault with the test can result in losing the money, time, results and the sample itself. 
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Centrifuge method 

A brine-saturated sample is placed inside a holder in the centrifuge machine where it is surrounded 

by lighter fluid (oil). When the centrifuge machine is started with a low revolution per minute 

(RPM), the brine is expelled gradually into a measuring tube. Recorded RPMs and water amounts 

are converted to drainage capillary pressure versus saturation. The following equation is used to 

calculate Pc from RPM (Dr. Paul Glover Notes). 

𝑃𝑐 = 7.9 × 10−8 𝑅𝑃𝑀2 (𝜌1 − 𝜌2)(𝑟𝑏
2 − 𝑟𝑡

2) ………………………….(6) 

𝑃𝑐 = capillary pressure measured, psi. 

RPM = number of revolutions per minute. 

𝜌1 and 𝜌2 = densities of the phases used in the experiment, g/cm3. 

𝑟𝑏 and 𝑟𝑡 = bottom (b) and top (t) radii of the rotation of the core, respectively, cm. 

7.9 × 10−8 = conversion factor. 

The main disadvantage of this method is that at low pressures, overstated saturation gradient will 

occur due to applied capillary pressure gradient. 

Porous plate method 

The sample in this method should be fully saturated with brine. This sample is placed on a porous 

desk, with a special membrane in between, that has uniform small pores with entry pressure greater 

than the maximum capillary pressure of the sample. During the drainage test, the pressure of the 

displacing fluid, e.g. oil, is increased in small steps. The volume of the brine getting out of the 

sample is monitored and measured during each step until each step reaches equilibrium. Then 

produced brine and pressure steps are used to draw the drainage capillary pressure.  

The main advantages of this method that overcome the limitations of the mercury injection method 

are: 
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1. The ability to mimic reservoir fluids. 

2. The ability to conduct the test on sleeved cores. 

On the other hand, the only limitation of this method is that obtaining the highest capillary pressure 

depends on the maximum entry pressure of the membrane. 

2.2 Mathematical models 

Leverett J-function model 

Leverett and his coworkers (1940) developed the following equation after evaluating gas/water 

capillary pressure data for unconsolidated sands. 

𝑗(𝑆𝑤) =
𝑃𝑐𝑔𝑤

𝜎𝑔𝑤
√

𝑘

𝜑
 ………………………………………(7) 

𝑗(𝑆𝑤) = Leverett J-function, dimensionless. 

𝑆𝑤 = saturation increments, fraction. 

𝑃𝑐𝑔𝑤 = capillary pressure between gas and water, psi.  

𝜎𝑔𝑤 = surface tension between gas (air in this case) and water, dyne/cm. 

𝜑 = porosity, in fraction. 

𝑘 = permeability, mD. 

This dimensionless model covers for drainage and imbibition phenomena and is called the J-

function. This model serves well in developing a common curve of 𝑃𝑐, however it has two 

limitations when providing more details: 

1. The value of the permeability depends on the direction of choice, either 𝑘𝑥 or 𝑘𝑦 which 

are different in their values. Thus, 𝑃𝑐 value will be different for each direction.  

2. This model does not account for rock type difference. Therefore, classification of rock 

samples has to be done prior to developing 𝑃𝑐. 
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Thomeer model 

Thomeer (1960) developed the following model which depends on the bulk mercury saturation, 

threshold pressure, displacement pressure and pore geometric factor (G). Bulk mercury saturation 

is more appropriate for irregular shape samples. 

(𝑉𝑏)𝑃𝑐

(𝑉𝑏)𝑃∞

= 𝑒
−𝐺 (𝑙𝑜𝑔(

𝑃𝑐
𝑃𝑑

))⁄
 …………..………………………(8) 

where 

(𝑉𝑏)𝑃𝑐
 = fractional bulk volume occupied by mercury at 𝑃𝑐. 

(𝑉𝑏)𝑃∞
= fractional bulk volume occupied at infinite pressure. 

G = pore geometric factor. 

𝑃𝑐 = capillary pressure, psi.  

𝑃𝑑 = extrapolated displacement pressure, psi. 

Brooks and Corey model 

Brooks and Corey (1964) suggested that the residual oil saturation is a major factor that affects 

the capillary pressure.  The saturatoin has a range from 8 to 40%. Pore size distribution and 

threshold pressure also contribute to the magnitude of capillary pressure. 

𝑃𝑐 = 𝑃𝑐𝑡 (
1−𝑆𝑜𝑟

𝑆𝑜−𝑆𝑜𝑟
)

1 𝜆⁄

 …………………………………..(9) 

where 

𝑃𝑐 = capillary pressure, psi.  

𝑃𝑐𝑡 = threshold (entry) pressure, psi. 

𝑆𝑜𝑟 = residual oil saturation in fraction. 

𝑆𝑜 = oil saturation in fraction. 

𝜆 = pore size distribution. 
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This model has the advantage of accounting for the difference in threshold pressure coefficients 

in different porous media which captures the barrier effect. 

2.3 Artificial Intelligence approach 

Artificial Intelligence (AI) has proved to be highly efficient in solving different petroleum 

engineering problems. However, limited number of papers were published discussing the use of 

AI in prediction of capillary pressure. Here is a review of a few papers that have dealt with the use 

of AI to predict capillary pressure data. 

Ali Abedini et. al. (2013) used data of 37 core samples from a Middle Eastern oil reservoir 

including porosity (∅), permeability (𝑘), normalized porosity (∅𝑧), rock quality index (RQI) and 

flow zone indicator (FZI) to predict the capillary pressure of each saturation point. Capillary 

pressure curves of all 37 core samples were drawn and classified by different rock index values. 

Two Artificial Neural Network (ANN) models were developed using feed-forward back-

propagation method with one hidden layer. The first model predicts the rock index and the second 

one predicts the capillary pressure by inclusion of the rock index and water saturation as inputs 

into the second model. Data of 16 core samples were used in the training phase, 8 in the validation 

phase and 13 in the testing phase. The statistical results of the second model are shown in the table 

below. 

Table 1: Error data in predictions for Ali Abedini’s ANN model. 

 Mean square 

Error 

Average relative 

error 

Average absolute 

relative error 
Standard deviation 

Training 0.12 -0.21 0.10 0.11 

Validation 0.11 -0.13 0.18 0.16 

Testing 0.16 -0.10 0.15 0.12 

 

The limitation in this study is that the author used cores from different rock types which makes it 
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difficult for the ANN model to be trained especially that the number of samples is too low. In 

addition, the publication does not contain plots of predicted vs. measured capillary pressure; 

therefore, their work is not described properly and can not be evaluated.   

Hasan Nooruddin et. al. (2013) used a dataset of more than 200 core samples collected from 

mercury injection tests in addition to their corresponding air porosities and uncorrected air 

permeabilities. The data used from the mercury injection test were: porosity, displacement 

pressure, Purcell integration, Swanson, Winland, Dastidar and Pittman parameters. In the feed-

forward neural network model to predict permeability from mercury injection capillary pressure 

data, they used 70% of the data for the training phase, 15% for the validation phase and 15% for 

the testing phase. Comparing the output against the mathematical models of Purcell, Winland, 

Swanson, Pittman and Dastidar el. al., they found that the absolute relative error (ARE) was 0.93% 

using AI while for Winland, the ARE was 31.5%. Similar observation was noticed when other 

error measurements were used such as average absolute relative error (AARE), root mean square 

(R2), standard deviation (SD), and relative mean square error (RMSE). 

They also discussed the use of Thomeer parameters, air porosity and grain density to predict 

corrected air permeability using AI (2014). Thomeer parameters were shape factor, permeability, 

capillary pressure, entry pressure, percent bulk volume of macro-pores, percent bulk volume 

occupied by mercury, and percent bulk volume occupied by mercury at infinite capillary pressure. 

80% of the data was used for training and 20% was used for validation and testing. The comparison 

was between actual permeability and predicted permeability using different AI techniques, 

namely; functional network (FN), support vector machine (SVR), feed-forward neural network 

(FFNN), generalized regression neural network (GRNN), radial basis function network (RBFN) 

and adaptive network fuzzy inference system (ANFIS). The best AI model was FFNN based on 
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Least Average Relative Error (LARE), Absolute Average Relative Error (AARE), Standard 

Deviation (SD) and coefficient of Determination (R2). 
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CHAPTER 3 

Scope of the Problem and Approach to the Solution 

3.1 Statement of the problem 

In a typical laboratory test, expensive rock samples extracted from reservoirs have to be destroyed 

after completion of capillary pressure test by mercury injection method. In addition, the cost of 

rock sample extraction from the well during drilling operation, cost of laboratory test including 

labor and laboratory machines, and time spent on the preparation for the test, the test itself and the 

analysis of the outcome to obtain the results makes the whole process very expensive. Therefore, 

the need for an economical and quick tool to provide such an essential information for new 

spots/cores across the reservoir has been increasing especially that important impromptu decisions 

are highly expected be made. 

3.2 Objective 

The objective of this study is to develop a model using artificial intelligence to predict drainage 

capillary pressure for Arabian carbonate reservoirs from conventional core analysis data. The 

conventional core analysis test is done fast and provides essential information about the core 

sample. This study covers a wide range of parameters that directly affect capillary pressure such 

as porosity, permeability, grain density, and wetting phase saturation. It will also address the 

identification of rock modality i.e. uni-modal and bi-modal, identify rock types based on flow units 

methods, and then the prediction of capillary pressure curves of each rock type. 

3.3 Advantages 

Successful implementation of this study will result in the following advantages: 

1. Saving time and money of coring, transportation, testing, …etc. 
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2. Preservation of original core samples so it does not need to be destroyed. This makes it 

available for future studies. 

3. Less error than mathematical models which until now are not able to directly obtain 

capillary pressure curves. 

3.4 Approach 

The following approach were used to achieve the objective of the study: 

1. Collect mercury injection capillary pressure data for carbonate core samples of Arabian 

carbonate reservoirs. More than one sample was collected from the same well at different 

depths. The benefit of this is the samples are assured to be distinct from each other and the 

whole dataset covers a wide range of values for the different parameters.  

2. Quality-check all collected data and remove outliers. It is important to have a wide range 

of values for all parameters to cover a wide range of the capillary pressures and rock 

sample. However, curves that seem to be a straight line that do not fall under uni-modal or 

bi-modal should be elemenated for this study. In addition, core samples that contain 

fractures should also be eleninated from this study. 

All data of each parameter should have the same unit. In other words,  

a. All saturation values and porosity values should be in fraction not in percentage. 

b. All permeability values should be in millidarcy not in Darcy. 

c. All grain density values should be in gm/cc. 

d. Similarly, all capillary pressure values should be in psi.  

This is to make sure that interpreted data in not used wrongly. 

Another quality check is making sure that only drainage capillary pressure values are used 

and imbibition values are not included in this study. 
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Finally, it is very important to make sure that each value of saturation corresponds to one 

value of capillary pressure. In otherwords, since MS Excel rounds the fraction values to 

the nearst double digit or triple digit value, it is important to omit repeated values of 

saturation that correspond to multiple capillary pressure values. Otherwise, the results of 

the artificial intelligence models are not going to be promising. 

3. Classify the data into different modalities. Capillary pressure curves should either uni-

modal or bi-modal behavoir. Each core sample should fall either under uni-modal class or 

bi-modal class. This is essential to make sure each class with similar behavoir is studies 

seperately.  

4. Classify the data into different rock types based on the unit flow zone. This is done based 

on the Rock Quality Index (RQI) and Flow Zone Indicator (FZI) method. This is done 

using he following steps: 

a. Calculate the normalized porosity, 𝜑𝑧, using equation (10) 

𝜑𝑧 =
𝜑

1−𝜑
 ……………..…………………………(10) 

b. Calculate the Rock Quality Index, RQI, using equation (11) 

𝑅𝑄𝐼 =  √
𝑘

𝜑
………………………………………...(11) 

c. Calculate the Flow Zone indicator, FZI, using equation (12) 

𝐹𝑍𝐼 =
𝑅𝑄𝐼

𝜑𝑧
………………………………………...(12) 

d. Plot 𝜑𝑧 vs. RQI on a log-log scale. Then draw unit lines with slope of (1) to cover 

the most points possible. Draw as many lines are needed. Each line represents a 

flow unit. Points falling on these lines are grouped and called “core samples of that 

flow unit” 
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5. Based on the above classification techniques, different sets are going to be generated to 

make sure that core samples with similar behavoir are studies together.  

6. 70% of the data in each set is going to be used for training and 30% is going to be used for 

testing while applying differnet artificial intelligence methods. 

7. Evaluate the best artificial intelligence method graphically and statistically. In order to 

identify the best method, results need to be compared with laboratory data. Graphical 

comparison was used by plotting cross plots of the measured capillary pressure vs. the 

predicted capillary pressure for each method ones for the training stage and ones for the 

testing stage. Futhermore, the best models need to eb tested by plotting both the measure 

and the peridicted capillary pressure curves vs. saturation. This extra step ensures the 

validity of the artifiacial intelligence model. In addition, statistical comparision using 

statistical measures of the error is very important: 

a. Standard Deviation (SD): is a value used to quantify the degree of difference of the 

dataset values. If the value of the standard deviation is low, this indicates that the 

data points are close to the mean of this dataset. However, If the value of the 

standard deviation is low, this indicates that the data points are close to the mean 

of this dataset values are speard out over a wide range. Equation (13) is used to 

calculate the value of the standard deviation. 

𝑆𝐷 =
1

𝑁
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1 …………………………………(13) 

Where: 

N = the numnder of points in the dataset. 

i = is a counter indicating the index number of the data point in the dataset. 

x = is the value of the data point is the dataset. 
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μ = the mean of the dataset 

b. Mean Absolute Error (MAE): is a value that indicates how close the prediction is 

to the measured value. Absolute value of the error is used since predicted values 

could be lower or higher than the measured value. The intreset here is to measue 

how close the predicted value is to the measure one. Then, an average of the whole 

points iducted the average of the error for the whole dataset. Equation (14) is used 

to calculate the Mean Absolute Error. 

𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑥𝑖|𝑁

𝑖=1

𝑁
 …………………………………(14) 

Where: 

y = the measured value 

x = the predicted value 

N = the number of values 

c. Root Mean Square Error (RMSE): is a common statistical comparision measure 

that provides a general predictive measure of the residuals which punishs the large 

residuals. A residual is individual difference between the measured and the 

predicated value. Equation (15) is used to calculate the Root Mean Square Error. 

𝑅𝑀𝑆𝐸 = √∑ (𝑥𝑖−𝑦𝑖)2𝑁
𝑖=1

𝑁
 ……………………………….(15) 

d. Coefficient of Determination, R2: is a very common statistical comparision 

measure that shows how accurate the model is. If the value of the R2 is 0, then the 

model cannot predict the measured value. However, if the R2 is 1, then the model 

can predict the measured value with no error. If the value of R2 is between 0 and 1, 

then the model can predict the measured value with partial error. Equation (16) can 

be used to calculate the Coefficient of Determination. 
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𝑅2 =
∑ (�̂�𝑖−�̅�)2𝑁

𝑖=1

∑ (𝑦𝑖−�̅�)2𝑁
𝑖=1

………………………………....(16) 

  �̂�𝑖= the regression value 

𝑦𝑖= the value of the dataset 

�̅�= the average of the dataset 

 

CHAPTER 4 

Artificial Intelligence 

The utilization of AI techniques to solve large scale problems has been used in different 

applications, including petroleum engineering. It has gained a wide acceptance as it showed 

excellence in solving different problems, showing very good results that could not be easily 

achieved by using classical physics or engineering concepts alone. 

Joost N. Kok et al. defines AI in several ways. One of which is: 

“An area of study in the field of computer science. Artificial intelligence is concerned with 

the development of computers able to engage in human-like thought processes such as 

learning, reasoning and self-correction” 

This study focuses on developing new models for several AI techniques to predict the capillary 

pressure.  
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Applied techniques  

The following AI techniques were applied in this study. One of the reasons behind selecting these 

techniques is because of the nature of the problem. i.e. four input parameters and one output 

parameter. In addition, for each core sample, three input parameters are fixed (grain density, 

porosity, and permeability) and one input parameter is changing (saturation) along with the output 

parameter (capillary pressure). 

1. Artificial Neural Network (ANN): is a computational model similar to the biological 

neural network structure and functions. It consists of an input layer of neurons, hidden 

neurons and output neurons. When a neuron learns from the flow of information through 

the network, signals travel from the input layer to the output layer.  The structure of the 

ANN changes to adapt to this information. At the input layer, between the input parameter 

values are presented and sent to the hidden layer. At the hidden layer, weight and bias are 

adjusted to produce an output as close as possible to the observed output data. Figure (4) 

shows a typical artificial neural network. The main advantage of ANN is that it can learn 

from observing datasets to adjust the weights and biases.  

 

Figure 4: A typical artificial neural network 
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 There are several algorithms of this technique. The following are the ones used in this 

study: 

Trainlm: This is the most commonly used algorithm and it produces very good results. It 

is recommended to be used as a first choice although it requires more computer memory 

than other algorithms. It is named after Levenberg-Marquardt who came up with a 

mathematical optimization technique to solve non-linear least square curve fitting 

problems.  Trainlm uses Levenberg-Marquardt approach to update weights and biases 

during the learning process. 

Trainbr: This algorithm uses the Bayesian Regularization to update weight and bias during 

the learning process. 

Trainscg: This algorithm is useful for transfer functions that have derivative functions. It 

is based on supervised learning approach and uses scaled conjugate gradient method to 

update weights and biases during the learning process. 

Trainoss: This algorithm uses one-step secant method to update weights and biases during 

the learning process. The process works on finding the roof of a function by using the roots 

of the lines.   

Traingd: For proposed functions that have derivatives, this algorithm can be employed for 

efficient results. It uses gradient descent backpropagation with momentum method to 

update weights and biases during the learning process. 

Traingdx: This is another algorithm that is good for transfer functions that have derivative 

functions.  It combines adaptive learning rate with momentum training.  

The above algorithms have standard parameters that can be changes manually, 

automatically, or kept at their default values. These parameters are: maximum number of 
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epochs to train, performance goal, learning rate, ratio to increase learning rate, ratio to 

decrease learning rate, maximum validation failures, maximum performance increase, 

momentum constant, minimum performance gradient, epochs between displays, generate 

command-line output, show training GUI, and maximum time to train in seconds. Training 

of the algorithm stops when one of the following conditions is met: 

- Maximum number of epochs is reached. 

- Maximum amount of time is exceeded. 

- Performance is minimized to the goal. 

- Performance gradient falls below minimum. 

- Validation performance has increased to more than the maximum. 

2. Fuzzy Logic: As the name suggests, it is a model that is based on logic operations to make 

decisions. The output is in the form of (0) and (1). (1) means the truth and (0) means the 

false, and in between is the degree of membership (partial truth) where fuzzy logic operates. 

A typical example of this technique is what figure (5) shows. A distance of 4 meters has a 

membership of 0.7 for the function representing “small” and of 0.2 for the function 

representing “medium.”  This means the distance of 4 meters is more “small” than 

“medium” with a ratio of (0.7:0.2). 

 

Figure 5: Example of fuzzy logic 
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Fuzzy logic programming involves the following steps: 

a. Fuzzify the input values to fuzzy membership functions. 

b. Excute the user-selected rules to compute fuzzy output functions. 

c. De-fuzzify the output to obtain real values. 

There are two types of this technique: 

Cluster radius: This is a clustering technique used to specify the group to which each data 

point belongs. Originaly, the fuzzy logic tool starts with a random cluster center which is 

generally incorrect. Then the tool starts to give a membership degree for each data point. 

As the cluster centers are updated with every iteration, the membership degrees are also 

updated.  This process goes on until a minimum distance is achieved between the datapoints 

and the centers of their assigned clusters. 

Grid partitioning: This approach generates membership functions for input data by 

regularly partitioning the input variable range and creates a single output Sugeno fuzzy 

system. The fuzzy rule contains one rule for each input membership function. 

3. Fuzzy Logic type-2: It generalizes the fuzzy logic by adding an uncertainty parameter to 

the input itself.  This uncertainty parameter is added to the system because of the difficulty 

of assigning exact membership grades due to noise in the input data. This technique is 
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similar to the fuzzy logic technique in terms of the overall approach. It includes a fuzzifier, 

a rule base with an inference engine, and an output processer.  

 

Figure 6: Example of fuzzy logic type 2 

As shown in figure (6), the red line represents the exact membership assignment for the 

input data while the green area is the uncertainty added to the data.  

4. Decision Tree:  It is a model that predicts the output based on a branching series of Boolean 

tests, like a tree. This model uses the target as a specific fact to predict the output in a 

generalized form.  Each decision point of the tree has the nodes, actions, and choices as 

components, and paths as rules. These components transfer from one node to another until 

the target is reached. 

 

Figure 7: Example of dicision tree 
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Figure (7) shows a typical example of the decision tree. Squares respresent decision nodes, 

circles represent chance nodes, and traingles represent end nodes. 

5. Support Vector Machine (SVM): SVM engages in supervised learning by modifying 

certain parameters in the models to develop a non-probabilistic classifier. Figure (8) shows 

a simple example of the sccater in the dataset in a two-dimensional space and the linear 

regression line, in red, created by this technique. 

 

Figure 8: An example of support vector machine 

  

6. Functional Network (FN):  This approach provides a linear combination of the inputs and 

neuron (coefficient) parameters. The transfer functions in these networks linked with 

neurons are not fixed. They are learned from the data. Moreover, there is no need to include 

weighs to links among the neurons since their effect is taken care of by the neural functions. 

7. Nearest Neighbor Curve Prediction: This technique will be discussed later in details as 

it is a new technique. 
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CHAPTER 5 

Results and Discussion 

5.1 Data acquisition 

The most common laboratory technique used in the industry to evaluate capillary pressure is the 

mercury injection test (MICP).  All available data of the core samples used in this study for a 

specific oil carbonate reservoir were obtained using MICP.  

5.2 Data processing and filtering 

The workflow involved the following steps: 

1. All available mercury injection test data were fitted to Thomeer parameters.  

2. Imbibition data was removed and only drainage data was kept. 

3. All units for data columns were unified to field units as follows: 

a. Porosity, fraction 

b. Permeability, mD 

c. Grain density, lb/ft3 

d. Saturation, fraction 

e. Capillary pressure, psig 

4. The available data for each core sample are porosity, permeability, grain density and at 

least 50 points of differnet capillary pressures and their corresponding saturations. 

5. Based on Thomeer concept, data were classified based on modality. Out of the total 

samples, 66 were found to exhibit uni-modal behavior while the remaining 136 were found 

to exhibit bi-modal behavior.  Figure (9) shows the difference between the two types of 

behavior, namely, uni-modal and bi-modal.  
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6. The classification of these datasets was saved in a separate sheet. At the end of this data 

preparation phase, three datasets were prepared:   

a. For uni-modal data,  

b. For bi-modal data, and 

c. For both modals combined together. 

 

Figure 9: Different Modalities of Capillary Pressure 

 

5.3 Number of data points 

As mentioned earlier, data of 202 core samples was obtained in the laboratory using mercury 

injection test.  Each one’s capillary pressure vs. saturation curve is made of at least 50 points. 

Appendix-A shows a sample of the data. 

5.4 Input parameters 

The input parameters are the porosity, permeability, grain density, and wetting phase saturation. 
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5.5 Target parameter 

The target parameter is the capillary pressure. The capillary pressure values range from zero to 

60,000 psi in the database used in this study. 

5.6 Data statistics 

Tables (2-4) show the statistics of the used datasets after classification. The correlation coefficient 

values show that there is a relationship between the input parameters and the target parameter. 

Relationship might not be linear among these parameters; non-linear relationship might exist. 

 

Table 2: Uni-modal statistics 

Parameter Capillary Pressure Grain Density Permeability Porosity Saturation 

Correlation Coefficient 

with respect to Pc 
1 -0.234 0.139 0.021 0.238 

Minimum 0.511 2.439 0.001 0.003 0 

Maximum 59909 2.834 1192 0.322 1 

Mean 4453 2.744 178 0.142 0.824 

Median 1768 2.747 4.536 0.147 0.971 

Standard Deviation 8509 0.063 312 0.072 0.294 

Skewness 3.965 -2.098 1.923 0.172 -1.817 

Kurtosis 17.478 8.417 2.905 -0.518 1.889 

 

Table 3: Bi-modal statistics 

Parameter Capillary Pressure Grain Density Permeability Porosity Saturation 

Correlation Coefficient 

with respect to Pc 
1 -0.195 0.057 -0.170 0.330 

Minimum 0.812 2.469 0.114 0.026 0 

Maximum 58736 2.884 2900 0.288 1 

Mean 4076 2.726 356 0.172 0.734 

Median 1218 2.726 160 0.191 0.912 

Standard Deviation 8638 0.047 517 0.070 0.324 

Skewness 3.971 0.057 2.548 -0.477 -1.069 

Kurtosis 17.367 3.848 8.063 -0.892 -0.268 
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Table 4: Combined modal statistics 

Parameter Capillary Pressure Grain Density Permeability Porosity Saturation 

Correlation Coefficient 

with respect to Pc 
1 -0.201 0.066 -0.119 0.306 

Minimum 0.511 2.439 0.001 0.003 0 

Maximum 59909 2.884 2900 0.322 1 

Mean 4180 2.731 307 0.164 0.759 

Median 1378 2.728 80 0.177 0.939 

Standard Deviation 8604 0.053 476 0.072 0.318 

Skewness 3.967 -0.832 2.673 -0.291 -1.237 

Kurtosis 17.375 5.867 9.347 -0.935 0.112 

 

5.7 Artificial Intelliengence Models 

All models were employed with a focus on proper prediction of capillary pressure.  Some of them 

had to be tweaked to produce better results. Here are the parameters that needed to be modified for 

each AI model. 

1. Artificial neural network (ANN): Regardless of which model of ANN is used, the main 

parameters that can be tweaked are the number of layers, number of neurons and the 

stratification of data. 

2. Fuzzy logic: In the Matlab programming code, grid partitioning is referred to as “genfis1” 

and cluster radius as “genfin2”. The main parameters to modify here for the first type are 

number of membership functions and membership type. In the other type, the radius of 

cluster is the parameter to be tuned. 

3. Fuzzy logic type-2: In this approach, the degree of uncertainty about the input parameters 

is incorporated into the program.  

4. Decision tree: This type of AI tool is a function of the maximum number of branch node 

splits to generate a deep or shallow tree. 
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5. Support vector machine: In this approach, a number of parameters can be adjusted, viz., 

kernel option, kernel type, C, lambda, epsilon and verbose. 

6. Functional network: The model here works by choosing a specific function type.  

7. Nearest Neighbor Curve Prediction (NNCP): This technique depends on the distance 

between the input parameters in a multip-dimensional space. Since a curve is defined by a 

number of points, a normalized curve is being generated and used for the training of this 

model. The parameter tuned is the number of points used for the normalized capillary 

pressure vs. saturation during the normalization process. 

5.8 Statistical results 

As mentioned above, three different datasets were used which were classified according to uni-

modal or bi-modal behavior. Tables 5-7 show the statistical comparison for the first six methods 

for each dataset. 

Method No. 7, Nearest Neighbor Curve Prediction, is not compared with the rest of the methods 

in these tables.  It will be discussed in detail in a separate section. 

Table 5: Uni-modal statistical analysis. 

Statistical 

Parameter 
Standard Deviation 

Mean Absolute 

Error 

Root Mean 

Squared Error 

Coefficient of 

Determination 

Set Training Testing Training Testing Training Testing Training Testing 

ANN - trainbr 3153 34922 1349 10189 3152 35648 0.90 0.60 

ANN - trainlm 3576 35357 1453 16291 3576 36583 0.87 0.55 

ANN - trainscg 7968 6149 4704 3169 7970 6158 0.33 0.02 

ANN - trainoss 7793 3889 4333 2496 7794 3981 0.36 0.42 

Decision Tree 353 4567 110 2145 353 4604 1.00 0.35 
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Support Vector 

Machine 
4453 4928 1079 2460 4529 5119 0.85 0.03 

Fuzzy Logic –  

Grid Partitioning 
5704 5630 2864 2851 5703 5628 0.56 0.54 

Fuzzy Logic –  

Cluster Radius 
6569 6354 3092 3008 6568 6352 0.42 0.41 

 

Statistical comparison in Table-5 for the six AI models for a uni-modal dataset shows that the 

Decision Tree model has the least Standard Deviation (SD) among all techniques, in training and 

testing at 353 and 4567, respectively (figure 10). 

The lowest Mean Absolute Error (MAE) for the Decision Tree model in training and testing at 

110 and 2145, respectively. While the highest was for trainscg in training and trainlm in 6esting 

at 4704 and 16291, respectively (figure 11). 

The lowest Root Mean Square Error (RMSE) was for the Decision Tree model in training and 

trainoss for testing at 353 and 3981, respectively. Similar to the MAE, the highest RMSE was for 

trainscg in training and trainlm in testing at 7970 and 36583, respectively (figure 12). 

The highest Coefficient of Determination (R2) for training was from the Decision Tree model at 

1.00, but for the testing was for trainbr at 0.6. The Decision tree was not good for the testing, 

which suggests that the model was memorizing the input. The trainbr for training model shows 

0.9, which suggests that this is an acceptable model (figure 13). 

On the other hand, trainscg, trainoss, fuzzy logic using cluster radius, and fuzzy logic using 

grid partitioning produced the worst results in the training and testing with MAE of 4704, 4333, 

3092, and 2864 in the training, respectively, and 3169, 2496, 3008 and 2851 in the testing, 
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respectively. Their coefficient of determination in the training was 0.33, 0.36, 0.42 and 0.56 

respectively and in the testing was 0.02, 0.42, 0.41, and 0.54, respectively. 

Support vector machine yieled a coefficient of determination of 0.85 in training but 0.03 in testing 

and its standard deviation was 4453 in training and 4928 in testing.  This implies that the model 

had memorized the training data. RMSE also proves this point where it showed an RMSE value 

of 4529 in training and 5119 in testing. 

 

Table 6: Bi-modal statistical analysis 

Statistical Parameter 
Standard 

Deviation 

Mean Absolute 

Error 

Root Mean 

Squared Error 

Coefficient of 

Determination 

Set Training Testing Training Testing Training Testing Training Testing 

ANN - trainbr 4360 2633 1869 1278 4360 2633 0.81 0.50 

ANN - trainlm 3857 3207 1717 1993 3857 3216 0.85 0.43 

ANN - trainscg 6832 2948 3594 2116 6833 3056 0.54 0.39 

ANN - trainoss 5826 2631 2745 1766 5827 2689 0.67 0.44 

Decision Tree 767 5041 113 1523 767 5049 0.99 0.27 

Support Vector 

Machine 
4735 2589 1255 1950 4830 2630 0.84 0.00 

Fuzzy Logic –  

Grid Partitioning 
5511 5557 2811 2825 5510 5556 0.59 0.59 

Fuzzy Logic –  

Cluster Radius 
5198 5256 2378 2389 5198 5255 0.64 0.64 

 

Table 6 summarizes the statistical comparison between the six different AI models for bi-modal 

dataset. Similar to Table 5, Table 6 shows that the Decision Tree training run model has the least 
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SD among all techniques at 767, but the Support Vector Machine has the least for testing at 2589 

(figure 10). 

MAE for the Decision Tree model in training and testing was 113 and 1523, respectively. While 

the highest was for trainscg in training and Fuzzy Logic – Grid Partitioning in testing at 3594 

and 2825, respectively (figure 11). 

The lowest RMSE was for the Decision Tree model in training, and the Support Vector Machine 

for testing at 767 and 2630, respectively. The highest RMSE was for trainscg in training and the 

Decision Tree in testing at 6833 and 5049, respectively (figure 12). 

The R2 for training was from the Decision Tree model at 0.99 but for the testing was for Fuzzy 

Logic – Cluster Radius at 0.64. The Decision tree was not good for the testing, which suggests 

that the model was memorizing the output. The trainbr for training and testing model shows 0.81 

and 0.5, respectively, which suggests that this is an acceptable model (figure 13). 

On the other hand, trainscg, trainoss, fuzzy logic – culter radius and fuzzy logic – grid 

partitioning produced the worst results in the training and testing with MAE of 3594, 2745, 2378, 

and 2811 in the training respectively and 2116, 1766, 2389 and 2825 in the testing respectively. 

Their coefficient of determination in the training was 0.54, 0.67, 0.64 and 0.59 respectively and in 

the testing was 0.39, 0.44, 0.64, and 0.59 respectively. 

Support vector machine’s coefficient of determination was 0.84 in training but 0.00 in testing and 

its standard deviation was 4735 in training and 2589 in testing which means the the model was 

force fitted on the training data. RMSE also proves this point where it showed 4830 in training and 

2630 in testing. 
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Table 7: Combined modals statistical analysis 

Statistical Parameter 
Standard 

Deviation 

Mean Absolute 

Error 

Root Mean 

Squared Error 

Coefficient of 

Determination 

Set Training Testing Training Testing Training Testing Training Testing 

ANN - trainbr 4754 2029 2243 1118 4754 2052 0.78 0.59 

ANN - trainlm 4360 5204 2011 1739 4360 5248 0.81 0.31 

ANN - trainscg 5828 3452 2732 1709 5828 3533 0.67 0.32 

ANN - trainoss 5437 3615 2533 1733 5437 3742 0.71 0.39 

Decision Tree 476 3609 96 1362 476 3648 1.00 0.41 

Support Vector 

Machine 
Model did not work 

Fuzzy Logic –  

Grid Partitioning 
5809 5907 2992 3014 5809 5906 0.54 0.53 

Fuzzy Logic –  

Cluster Radius 
6068 6177 3002 3025 6068 6177 0.50 0.49 

 

Statistical comparison in Table-7 between used AI models for combined-modal dataset shows that 

the Decision Tree model has the least Standard Deviation (SD), among all techniques, at 476 for 

training, but trainbr shows the least for testing at 2029 (figure 10). 

The lowest Mean Absolute Error (MAE) for the Decision Tree model in training and testing at 96 

and 1362, respectively. While the highest was for Fuzzy Logic – Cluster Radius in training and 

testing at 3002 and 3025, respectively (figure 11). 

The lowest Root Mean Square Error (RMSE) was for the Decision Tree model in training and 

trainoss for testing at 476 and 2052, respectively. Similar to the bi-modal dataset, the highest 

RMSE was for Fuzzy Logic – Cluster Radius in training and at 6068 and 6177, respectively 

(figure 12). 
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The highest Coefficient of Determination (R2) for training was from the Decision Tree model at 

1.0, but for the testing was for trainbr at 0.59. The Decision tree was not good for the testing, 

which suggests that the model was memorizing the output. The trainbr for training model shows 

0.78 for the training, which suggests that this is an acceptable model (figure 13). 

On the other hand, trainscg, trainoss, fuzzy logic – culter radius and fuzzy logic – grid 

partitioning produced the worst results in the training and testing with MAE of 5828, 5437, 6068, 

and 5809 in the training respectively and 3452, 3615, 6177 and 5907 in the testing respectively. 

Their coefficient of determination in the training was 0.67, 0.71, 0.50 and 0.54 respectively and in 

the testing was 0.32, 0.39, 0.49, and 0.53 respectively. 

Support vector machine model did not finish running which suggest that it could not reach to a 

conversion point to produce results. This happen when the model cannot find a solution for the 

data. 
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Figure 10: Standard Deviation Comparison of capillary pressure values. 

 

Figure 11: Mean Absolute Error Comparison of capillary pressure values. 
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Figure 12: Root Mean Square Error Comparison of capillary pressure values. 

  

Figure 13: Coefficient of Determination Comparison of capillary pressure values. 
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5.9 Graphical results 

Since each technique has is own algorithm of solving problems, not all of them show the same 

answer. Some of them showed excellent results while some others showed poor results. ANN 

trainlm with 2-layers showed excellent results in training and testing for uni-modal, bi-modal and 

combined modals.  

Figures (14-15) show a crossplot of the measured vs. predicted capillary pressure in training and 

testing for uni-modal data. The accuracy of this model was 85% in training and 55% in testing. 

Figure (16) shows laboratory capillary pressure vs. saturation and predicted capillary pressure vs. 

saturation in a log-log scale plot. It shows how inaccurate the prediction was for this testing sample. 

However, in figure (17), where the same results are ploted in a cartesian scale plot, the curves look 

close to each other. However, the predicted plot is not behaving in a uni-modal behavior. 

 

Figure 14: Predicted vs. measured values using ANN – trainlm 2-layer alogrithm (Training). 
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Figure 15: Predicted vs. measured values using ANN – trainlm 2-layer algorithm (Testing). 

  

 

Figure 16: A sample of uni-modal data using ANN - trainlm 2-layer algorithm in semi-log scale plot 

1

10

100

1000

10000

100000

0.00.20.40.60.81.0

C
ap

ill
ar

y 
P

re
ss

u
re

, 
P

c

Saturation

Pc_Lab Pc_ANN_trainlm 2L



40 
 

 

Figure 17: A sample of uni-modal data using ANN - trainlm 2-layer algorithm in cartesian scale plot 

 

Figures (18-19) show a crossplot of the measured vs. predicted capillary pressure in training and 

testing for bi-modal data. The accuracy of this model was 85% in training and 43% in testing. 

Figure (20) shows laboratory capillary pressure vs. saturation and predicted capillary pressure vs. 

saturation in a semi-log scale plot. It shows how inaccurate the prediction was for this testing 

sample. However, in figure (21), where the same results are ploted in a cartesian scale plot, the 

curves look close to each other. However, the predicted plot is not behaving in a bi-modal 

behavior. 
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Figure 18: Predicted vs. measured values using ANN – trainlm 2-layer algorithm (Training). 

 

Figure 19: Predicted vs. measured values using ANN – trainlm 2-layer algorithm (Testing). 
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Figure 20: A sample of bi-modal sata using ANN - trainlm 2-layer algorithm in log-log scale plot 

 

 

Figure 21: A sample of bi-modal sata using ANN - trainlm 2-layer algorithm in cartesian scale plot 
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Figures (22-23) show a crossplot of the measured vs. predicted capillary pressure in training and 

testing for combined modals data. The accuracy of this model was 81% in training and 31% in 

testing. 

 

Figure 22: Predicted vs. measured values using ANN – trainlm 2-layer algorithm (Training). 
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Figure 23: Predicted vs. measured values using ANN – trainlm 2-layer algorithm (Testing). 

Figures (24-25) show a crossplot of the measured vs. predicted capillary pressure in training and 

testing for uni-modal data. The accuracy of this model was 100% in training and 35% in testing 

using decision tree technique. Figure (26) shows laboratory capillary pressure vs. saturation and 

predicted capillary pressure vs. saturation in a log-log scale plot. It shows how inaccurate but very 

close the prediction was for this testing sample. However, in figure (27), where the same results 

are ploted in a cartesian scale plot, the curves look close to each other. However, the predicted plot 

is not behaving in a uni-modal behavior. 
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Figure 24: Predicted vs. measured values using Decision tree algorithm (Training). 

 

 

Figure 25: Predicted vs. measured values using Decision tree algorithm (Testing). 
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Figure 26: A sample of uni-modal sata using decision tree algorithm in log-log scale plot 

 

 

Figure 27: A sample of uni-modal sata using decision tree algorithm in cartesian scale plot 
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Figures (28-29) show a crossplot of the measured vs. predicted capillary pressure in training and 

testing for bi-modal data the accuracy of this model was 99% in training and 27% in testing using 

decision tree technique. Figure (30) shows laboratory capillary pressure vs. saturation and 

predicted capillary pressure vs. saturation in a log-log scale plot. It shows how inaccurate the 

prediction was for this testing sample. However, in figure (31), where the same results are ploted 

in a cartesian scale plot, the curves look close to each other. However, the predicted plot is not 

behaving in a bi-modal behavior. 

 

 

Figure 28: Predicted vs. measured values using Decision tree algorithm (Training). 
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Figure 29: Predicted vs. measured values using Decision tree algorithm (Testing). 

 

 

 

Figure 30: A sample of bi-modal sata using decision tree algorithm in log-log scale plot 
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Figure 31: A sample of bi-modal sata using decision tree algorithm in cartesian scale plot 

 

Figures (32-33) show a crossplot of the measured vs. predicted capillary pressure in training and 

testing for combined modals data the accuracy of this model was 100% in training and 41% in 

testing using decision tree technique. 
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Figure 32: Predicted vs. measured values using Decision tree alogrithm (Training). 

 

Figure 33: Predicted vs. measured values using Decision tree alogrithm (Testing). 
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Cross plots of the results for training and testing for the rest of the techniques for uni-modal, bi-

modal and combined modals cases are provided in Appendix-B. 

5.10 Nearest Neighbor Curve Prediction (NNCP) 

Using the above methods to predict the capillary pressure problem is one way to solve this problem 

which showed good results for some tehniques.  However, it was noticed that the results were not 

satifactory when individual curves were plotted.  Another way to solve this problem is by using 

the Nearest Neighbor Curve Prediction (NNCP) method.  The approach has yielded promising 

results and is under patenting process.  As mentioned earlier, the objective of this study is to predict 

capillary pressure curves of untested core samples. The input data is a set obtained from 

conventional core analysis and consists of porosity, permeability, and grain density data.  

202 core samples with corresponding capillary pressure vs saturation curves were used in this 

study. Each porosity, permeability, and grain density set corresponds to a 50-point capillary 

pressure vs saturation curve. 

A more logical approach to tackle this problem is to make the program learn the target curves with 

their corresponding input sets and then predict the curve for new input data within the range of the 

training parameters. 

Due to different measurement conditions during MICP tests, generated capillary pressure vs 

saturation curves do not have the same number of points; i.e. test sample # 1 has 50 points of 

capillary pressure vs. saturation but test sample # 2 has 72 points of capillary pressure vs. 

saturation. This issue creates a difficuly in comparing statistically between results generated from 
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the lab and results generated from the NNCP technique.  Therefore, an interpolation routine was 

used to estimate the error between the predicted curve and the actual curve. 

In the proposed model (Figure 34), randomly selected 70% of the samples is considered for training 

and the remaining is used for testing.  It may be noted that in case of NNCP, the training data is 

basically a reference data with no specific training involved.  Each training sample corresponds to 

a Capillary Pressure (Pc) curve against Mercury Saturation (S). It has been observed that saturation 

points, S, are different for each sample. Therefore, to ensure portraying the Pc curve in a fixed S 

scale, that saturation points are standardized and the corresponding Pc is computed either by 

interpolation or extrapolation. 

In the next phase, the nearest sample is selected from the training dataset which has minimum 

distance with respect to the test sample (Figure 34).  The standardized Pc curve corresponding to 

the nearest sample is selected and drawn against the actual standardized Pc curve of the target 

sample.  The errors and other other checks are carried out to test the performance of this method. 

 

Figure 34. Capillary pressure curve prediction based on the nearest datapoint 
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5.11 Data Classification 

In order to use this method correctly and to produce the best results, classification of the data has 

to be done based on a certain criterion. 

Modality: Rock modality identifies the number of porosity systems a core sample possesses. 

Amongst the available data, 65 core samples showed uni-modal behavior and 137 core samples 

showed bi-modal behavior. 

Flow Zone Units:  Using this classification method, each sample is assigned to a class representing 

a flow zone unit. Amongst the available data, uni-modal group had three classes and bi-modal 

group had 5 classes. Figures (35) and (36) show the data points with respect to flow zones for both 

uni-modal and bi-modal groups. As these figures show, uni-modal data can be classified into three 

classes of flow units and bi-modal data into five classes of flow units. 

 

Figure 35: Flow Zone Units for Uni-modal group 
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Figure 36: Flow Zone Units for Bi-modal group 

 

Table 8 shows the number of core samples under each class for the two modal groups.  

Table 8: Number of core samples in each flow zone 

Modal Uni-modal Bi-modal 

Flow Zone 1 6 15 

Flow Zone 2 19 27 

Flow Zone 3 33 35 

Flow Zone 4 - 24 

Flow Zone 5 - 35 

% of data used in training 70 70 

% of data used in testing 30 30 

 

1 2 

3 

4 

5 
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5.12 J-function Approach 

J-function is a mathematical averaging method representing samples having different porosities 

and permeabilities within a given formatoin.  In this study, J-function is used to create an average 

capillary pressure equation for each flow zone for each modal behavior. For a given range of FZI 

values, each core sample refers to a J-function curve. Tables (9) and (10) show the ranges of FZI 

values for each J-function group for the uni-modal data and the bi-modal data, respectively. 

 

Table 9: FZI range of each J-function group for uni-modal data 

J-function Group FZI Range 

1 (691 – 2337) 

2 (64 – 483) 

3 (9 – 45) 

 

Table 10: FZI range of each J-function group for bi-modal data 

J-function Group FZI Range 

1 (42 –142) 

2 (12 – 34) 

3 (4 – 10) 

4 (1.4 – 3) 

5 (0.5 – 1.3) 

 

Figures (37-39) show the J-function values for each class for the uni-modal dataset.  Figure (40) 

shows the J-function curves of each group vs. saturation for the uni-modal data for each FZI range. 
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It may be noted that these curves are obtained by averaging the relevant values in each class.  These 

curves show a uni-modal behavior as their original curves did.  

 

 

Figure 37: J-function values for uni-modal class # 1 samples 
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Figure 38: J-function values for uni-modal class # 2 samples 

 

Figure 39: J-function values for uni-modal class # 3 samples 
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Figure 40: J-function curves based on ranges of FZI for uni-modal data 

 

Figures (41-45) show the J-function values for the bi-modal dataset for classes 1 through 5, 

respectively.   Figure (46) shows J-function curves of each group vs. saturation for the bi-modal 

data for each FZI range.  It can be seen from the figure that these curves do not show bi-modal 

behavior as their original curves did. Therefore, applying these curves to predict capillary pressure 

of new samples will not generate bi-modal curves. Thus, it will not be used to predict the capillary 

pressure using this method as it will generate non-bi-modal results.  It may be noted here that the 

J-function curves were generated by averaging curves that fall under the same class. These curves 

have different porosity systems. These systems do not have the same volume for all the core 

samples in that class. At some point in the averaging process, small and large systems are mixed 

up together. Hence, averaging at this stage generates non-uniform J-curves. Consequently, 

produced J-function in not going to be a bi-modal curve that represents an average for bi-modal 

capillary pressure curves. 
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Figure 41: J-function values for bi-modal class # 1 samples 

 

 

Figure 42: J-function values for bi-modal class # 2 samples 
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Figure 43: J-function values for bi-modal class # 3 samples 

 

 

Figure 44: J-function values for bi-modal class # 4 samples 
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Figure 45: J-function values for bi-modal class # 5 samples 

 

 

 

Figure 46: J-function curves based on ranges of FZI for bi-modal data 
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5.13 Discussion of Results from NNCP and J-function approach 

Uni-modal class # 1: According to the flow zone unit classification technique, only six samples 

fall under uni-modal class 1 group. 4 samples were used for training and 2 for testing. Figures (47-

48) show the comparison between the NNCP and J-function predictions with the laboratory date 

for the uni-modal class # 1 samples. The results from the NNCP model are the closest curve 

presented in blue and the average of the closest three curves presented in green. The J-function 

result is presented in purple and the laboratory curve is presented in red. As shown in figure (47) 

and table (11), the average of the colosest three curves and the J-function methods produced the 

worst results with error values of 3.04% and 84.59%, respectively, for test sample # 1.  However, 

the NNCP produced the colsest curve to the target data with an error of 1.77%. 

 

Figure 47: Comparison of NNCP, the average of the closest three curves and J-function to predict the 

capillary pressure with the laboratory data for testing sample # 1 in class 1 

 

For test sample # 2, all three methods produced bad results with J-function being close to the lab 

curve with an error of 120%. The NNCP prediction failed for this sample due to the low number 
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of training data. The NNCP closest curve showed an error of 184% while the average of the three 

closest curves showed an error of 235%, Figure (48) and table (11). 

 

Figure 48: Comparison of NNCP, the average of the closest three curves, and J-function to predict the 

capillary pressure with the laboratory data for testing sample # 2 in class 1 

 

Table 11: Average error of NNCP and J-function methods versus laboratory data for class 1 

Sample # 
NNCP average 

error, % 

Average error of 

average of closest 3 

curves, % 

J-function average 

error, % 

1 1.77 3.04 84.59 

2 184 235 120 

 

Uni-modal class # 2: Similar to uni-modal calss # 1, the flow zone unit classification technique 

shows that 19 samples fall under uni-modal class 2 group. 13 samples were used for training and 

6 samples were used for testing. Figures (49-54) show the results of the uni-modal for class # 2 

comparing the NNCP and J-function predictions to the laboratory data. In this group, the J-function 

and the NNCP methods have similar results. Some of them were good with an error range of (1.97 

– 5.2) and some of them were poor with an error range of (16.85 – 89.79). 
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Test sample # 1 shows that the J-function was the furthest curve from the lab results with an error 

of 76.27% while the NNCP showed excellent results with a low error of 1.93% and 1.65% for the 

closest curve and the three closest curves, respectively. Figure (49) and table (12). 

 

Figure 49: Comparison of NNCP, the average of the closest three curves, and J-function to predict the 

capillary pressure with the laboratory data for testing sample # 1 in class 2 

 

Figure 50: Comparison of NNCP, the average of the closest three curves, and J-function to predict the 

capillary pressure with the laboratory data for testing sample # 2 in class 2 
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Test sample # 2 shows all methods produced close curves with low error of 5.2%, 4.99% and 

3.35% for the NNCP closest curve, the closest three curves, and the J-function, respectively. Figure 

(50) and table (12). 

Test sample # 3 also shows that all methods produced close curves with fair error of 16.85%, 

16.5% and 16.5% for the NNCP closest curve, the closest three curves, and the J-function, 

respectively. Figure (51) and table (12). 

 

 

Figure 51: Comparison of NNCP, the average of the closest three curves, and J-function to predict the 

capillary pressure with the laboratory data for testing sample # 3 in class 2 

 

Test sample # 4 shows that the J-function method produced closer curve to the lab curve than the 

NNCP method with and error of 57.4%. while the error from the NNCP method was 79.04% and 

77.31% for the closest curve and the closest three curves, respectively. Figure (52) and table (12). 
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Figure 52: Comparison of NNCP, the average of the closest three curves, and J-function to predict the 

capillary pressure with the laboratory data for testing sample # 4 in class 2 

 

Test sample # 5 also shows that the J-function method produced closer curve to the lab curve than 

the NNCP method with and error of 35.6%. while the error from the NNCP method was 48.83% 

and 47.66% for the closest curve and the closest three curves, respectively. Figure (53) and table 

(12). 
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Figure 53: Comparison of NNCP, the average of the closest three curves, and J-function to predict the 

capillary pressure with the laboratory data for testing sample # 5 in class 2 

Test sample # 6 also shows that the J-function method produced closer curve to the lab curve than 

the NNCP method with and error of 54.45%. while the error from the NNCP method was 89.79% 

and 87.6% for the closest curve and the closest three curves, respectively. Figure (54) and table 

(12). 

 

Figure 54: Comparison of NNCP, the average of the closest three curves, and J-function to predict the 

capillary pressure with the laboratory data for testing sample # 6 in class 2 
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Table (12) shows the average error of the NNCP and J-function methods compared to laboratory 

data for class 2 test samples. 

Table 12: Average error of NNCP and J-function methods versus laboratory data for class 2 

Sample # 
NNCP average 

error, % 

Average error of 

average of closest 3 

curves, % 

J-function average 

error, % 

1 1.93 1.65 76.27 

2 5.2 4.99 3.35 

3 16.85 16.5 16.5 

4 79.04 77.31 57.4 

5 48.83 47.66 35.6 

6 89.79 87.6 54.45 

 

Uni-modal class # 3: similar to uni-modal calss # 1 & 2, the flow zone unit classification technique 

shows 33 samples fall under uni-modal class 3 group. 23 samples were used for training and 10 

samples were used for testing. Figures (55-64) show the results of the uni-modal for class 3 

comparing the NNCP and J-function predictions to the laboratory data. In this class, all of the 

methods showed good match to the lab curve, however; the NNCP had the least error (1.45 – 7.6). 

Test sample # 1 shows that the J-function was the furthest curve from the lab results with an error 

of 51.07% while the NNCP showed excellent results with a low error of 1.95% and 2.03% for the 

closest curve and the three closest curves, respectively. Figure (55) and table (13). 
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Figure 55: Comparison of NNCP, the average of the closest three curves, and J-function to predict the 

capillary pressure with the laboratory data for testing sample # 1 in class 3 

 

Similar to test sample # 1, test sample # 2 shows that the J-function was the furthest curve from 

the lab results with an error of 22.98% while the NNCP showed excellent results with a low error 

of 2.07% and 2.27% for the closest curve and the three closest curves, respectively. Figure (56) 

and table (13). 
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Figure 56: Comparison of NNCP, the average of the closest three curves, and J-function to predict the 

capillary pressure with the laboratory data for testing sample # 2 in class 3 

 

Also test sample # 3 shows that the J-function was the furthest curve from the lab results with an 

error of 50.58% while the NNCP showed excellent results with a low error of 2.01% and 2.14% 

for the closest curve and the three closest curves, respectively. Figure (57) and table (13). 
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Figure 57: Comparison of NNCP, the average of the closest three curves, and J-function to predict the 

capillary pressure with the laboratory data for testing sample # 3 in class 3 

Test sample # 4 shows that the J-function was the furthest curve from the lab results with an error 

of 20.73% while the NNCP showed excellent results with a low error of 1.45% and 1.37% for the 

closest curve and the three closest curves, respectively. Figure (58) and table (13). 

 

Figure 58: Comparison of NNCP, the average of the closest three curves, and J-function to predict the 

capillary pressure with the laboratory data for testing sample # 4 in class 3 
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Test sample # 5 shows that the J-function was the furthest curve from the lab results with an error 

of 42.96% while the NNCP showed excellent results with a low error of 2.07% and 2.21% for the 

closest curve and the three closest curves, respectively. Figure (59) and table (13). 

  

Figure 59: Comparison of NNCP, the average of the closest three curves, and J-function to predict the 

capillary pressure with the laboratory data for testing sample # 5 in class 3 

 

Test sample # 6 shows that the J-function was the furthest curve from the lab results with an error 

of 43.04% while the NNCP showed excellent results with a low error of 2.08% and 2.21% for the 

closest curve and the three closest curves, respectively. Figure (60) and table (13). 
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Figure 60: Comparison of NNCP, the average of the closest three curves, and J-function to predict the 

capillary pressure with the laboratory data for testing sample # 6 in class 3 

 

Test sample # 7 shows that the J-function was the furthest curve from the lab results with an error 

of 48.09% while the NNCP showed excellent results with a low error of 2.06% and 2.13% for the 

closest curve and the three closest curves, respectively. Figure (61) and table (13). 
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Figure 61: Comparison of NNCP, the average of the closest three curves, and J-function to predict the 

capillary pressure with the laboratory data for testing sample # 7 in class 3 

 

Test sample # 8 shows that the J-function was the furthest curve from the lab results with an error 

of 44.56% while the NNCP showed excellent results with a low error of 4.97% and 4.77% for the 

closest curve and the three closest curves, respectively. Figure (62) and table (13). 
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Figure 62: Comparison of NNCP, the average of the closest three curves, and J-function to predict the 

capillary pressure with the laboratory data for testing sample # 8 in class 3 

 

Test sample # 9 shows that the J-function was the furthest curve from the lab results with an error 

of 34.03% while the NNCP showed excellent results with a low error of 1.58% and 1.69% for the 

closest curve and the three closest curves, respectively. Figure (63) and table (13). 
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Figure 63: Comparison of NNCP, the average of the closest three curves, and J-function to predict the 

capillary pressure with the laboratory data for testing sample # 9 in class 3 

 

Test sample # 10 shows that the J-function was the furthest curve from the lab results with an error 

of 49.80% while the NNCP showed excellent results with a low error of 7.6% and 7.44% for the 

closest curve and the three closest curves, respectively. Figure (64) and table (13). It is evident that 

the more samples fall under this flow unit, the better the results from NNCP. 
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Figure 64: Comparison of NNCP, the average of the closest three curves, and J-function to predict the 

capillary pressure with the laboratory data for testing sample # 10 in class 3 

 

Table (13) shows the average error of the NNCP and J-function methods compared to laboratory 

data for class 3 test samples. 

Table 13: Average error of NNCP and J-function methods versus laboratory data for class 3 

Sample # 
NNCP average error, 

% 

Average error of average 

of closest 3 curves, % 

J-function average 

error, % 

1 1.95 2.03 51.07 

2 2.07 2.27 22.98 

3 2.01 2.14 50.58 

4 1.45 1.37 20.73 

5 2.07 2.21 42.96 

6 2.08 2.21 43.04 

7 2.06 2.13 48.09 

8 4.97 4.77 44.56 

9 1.58 1.69 34.03 

10 7.6 7.44 49.80 

Bi-modal class # 1: the flow zone unit classification technique shows 15 samples fall under bi-

modal class 1 group. 10 samples were used for training and 5 samples were used for testing. Since 

we have already discussed the difficulty of applying J-function on bi-modal data, it is not going to 
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be part of the comparision between the differnet methods below, however; for the sake of trying it 

and to show its limitation, it is going to discussed in bi-modal class # 5. Figures (65-69) show the 

results of the bi-modal for class 1 comparing the NNCP predictions to the laboratory data. 

Test sample # 1 shows that the NNCP for the closest curve and the NNCP closest three curves 

produced close curves to the lab curve with low error of 2.01% and 2.19%, respectively. Figure 

(65) and table (14). 

 

Figure 65: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 1 in class 1 

 

Similarly, test sample # 2 shows that the NNCP for the closest curve and the NNCP closest three 

curves produced close curves to the lab curve with low error of 4.8% and 4.78%, respectively. 

Figure (66) and table (14). 
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Figure 66: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 2 in class 1 

 

Test sample # 3 shows excellent match between the NNCP closest curve and the closest three 

curvess with respect to lab curves with a very low error of 0.18% and 0.2%, respectively. Figure 

(67) and table (14). 
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Figure 67: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 3 in class 1 

 

Test sample # 4 shows poor match between the NNCP closest curve and the closest three curves 

with respect to lab curve with a very high error of 205.31% and 228.82%, respectively. Figure (68) 

and table (14). 
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Figure 68: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 4 in class 1 

 

Test sample # 5 shows good match between the NNCP closest curve and the closest three curves 

with respect to lab curve with a very high error of 23.11% and 20.95%, respectively. Figure (69) 

and table (14). 
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Figure 69: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 5 in class 1 

 

Table 14 shows the average error of the NNCP method compared to laboratory data for class 1 test 

samples. 

Table 14: Average error of NNCP method versus laboratory data for class 1 

Sample # 
NNCP average error, 

% 

Average error of average of 

closest 3 curves, % 

1 2.01 2.19 

2 4.8 4.78 

3 0.18 0.2 

4 205.31 228.82 

5 23.11 20.95 

 

Bi-modal class # 2: similar to previous classes, according the flow zone unit classification 

technique, 27 samples fall under bi-modal class 2 group. 18 samples were used for training and 9 

samples were used for testing. Figures (70-78) show the results of the bi-modal for class 2 

comparing the NNCP predictions to the laboratory data. 
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Test sample # 1 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 85.2% and 142.06%, respectively. Figure (70) and 

table (15). 

 

Figure 70: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 1 in class 2 

 

Test sample # 2 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 16.33% and 15.97%, respectively. Figure (71) and 

table (15). 
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Figure 71: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 2 in class 2 

Test sample # 3 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 1.16% and 1.37%, respectively. Figure (72) and table 

(15). 

 

Figure 72: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 3 in class 2 

 

Test sample # 4 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 29.61% and 59.95%, respectively. Figure (73) and 

table (15). 
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Figure 73: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 4 in class 2 

Test sample # 5 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 9.1% and 9.61%, respectively. Figure (74) and table 

(15). 

 

Figure 74: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 5 in class 2 
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Test sample # 6 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 11.44% and 11.49%, respectively. Figure (75) and 

table (15). 

 

Figure 75: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 6 in class 2 

Test sample # 7 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 8.54% and 9.1%, respectively. Figure (76) and table 

(15). 
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Figure 76: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 7 in class 2 

 

Test sample # 8 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 68.2% and 115.83%, respectively. Figure (77) and 

table (15). 

 

Figure 77: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 8 in class 2 
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Test sample # 9 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 9.19% and 18.56%, respectively. Figure (78) and 

table (15). 

 

Figure 78: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 9 in class 2 

 

Table 15 shows the average error of the NNCP method compared to laboratory data for class 2 test 

samples. 

Table 15: Average error of NNCP method versus laboratory data for class 2 

Sample # 
NNCP average error, 

% 

Average error of average of 

closest 3 curves, % 

1 85.2 142.06 

2 16.33 15.97 

3 1.16 1.37 

4 29.61 59.95 

5 9.1 9.61 

6 11.44 11.49 

7 8.54 9.1 

8 68.2 115.83 

9 9.19 18.56 
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Bi-modal class # 3: according to the flow zone unit classification technique, 35 samples fall under 

bi-modal class 3 group. 24 samples were used for training and 11 samples were used for testing. 

Figures (79-89) show the results of the bi-modal for class 3 comparing the NNCP predictions to 

the laboratory data. 

Test sample # 1 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 24.56% and 25.36%, respectively. Figure (79) and 

table (16). 

 

Figure 79: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 1 in class 3 

 

Test sample # 2 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 16.58% and 21.91%, respectively. Figure (80) and 

table (16). 
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Figure 80: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 2 in class 3 

 

Test sample # 3 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 17.47% and 12.74%, respectively. Figure (81) and 

table (16jhk). 
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Figure 81: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 3 in class 3 

 

Test sample # 4 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 12.75% and 15.6%, respectively. Figure (82) and 

table (16). 

 

Figure 82: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 4 in class 3 
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Test sample # 5 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 12.11% and 14.59%, respectively. Figure (83) and 

table (16). 

 

Figure 83: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 5 in class 3 

Test sample # 6 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 17.37% and 18.2%, respectively. Figure (84) and 

table (16). 
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Figure 84: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 6 in class 3 

 

Test sample # 7 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 51.14% and 25.82%, respectively. Figure (85) and 

table (16). 

 

Figure 85: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 7 in class 3 
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Test sample # 8 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 50.91% and 53.91%, respectively. Figure (86) and 

table (16). 

 

Figure 86: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 8 in class 3 

 

Test sample # 9 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 21.73% and 25.97%, respectively. Figure (87) and 

table (16). 
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Figure 87: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 9 in class 3 

Test sample # 10 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 14.94% and 31.52%, respectively. Figure (88) and 

table (16). 

 

Figure 88: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 10 in class 3 
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Test sample # 11 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 13.78% and 23.9%, respectively. Figure (89) and 

table (16). 

 

Figure 89: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 11 in class 3 

Table 16 shows the average error of the NNCP method compared to laboratory data for class 3 test 

samples. 

Table 16: Average error of NNCP method versus laboratory data for class 3 

Sample # 
NNCP average error, 

% 

Average error of average of 

closest 3 curves, % 

1 24.56 25.36 

2 16.58 21.91 

3 17.47 12.74 

4 12.75 15.6 

5 12.11 14.59 

6 17.37 18.2 

7 51.14 25.82 

8 50.91 53.91 

9 21.73 25.97 

10 14.94 31.52 

11 13.78 23.9 
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Bi-modal class # 4: flow zone unit classification technique shows 24 samples fall under bi-modal 

class 4 group. 16 samples were used for training and 8 samples were used for testing. Figures (90-

97) show the results of the bi-modal for class 4 comparing the NNCP predictions to the laboratory 

data. Test sample # 1 shows that NNCP closest curve method produced closer results to the lab 

curve than the closest three curves with an error of 9.55% and 10.35%, respectively. Figure (90) 

and table (17). 

 

Figure 90: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 1 in class 4 

 

Test sample # 2 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 17.38% and 15.43%, respectively. Figure (91) and 

table (17). 
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Figure 91: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 2 in class 4 

 

Test sample # 3 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 8.3% and 9.03%, respectively. Figure (92) and table 

(17). 

 

Figure 92: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 3 in class 4 
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Test sample # 4 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 14.79% and 11.67%, respectively. Figure (93) and 

table (17). 

 

Figure 93: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 4 in class 4 

Test sample # 5 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 10.49% and 6.08%, respectively. Figure (94) and 

table (17). 

 

Figure 94: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 5 in class 4 
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Test sample # 6 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 22.87% and 22.8%, respectively. Figure (95) and 

table (17). 

 

Figure 95: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 6 in class 4 

Test sample # 7 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 5.99% and 6.08%, respectively. Figure (96) and table 

(17). 
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Figure 96: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 7 in class 4 

 

Test sample # 8 shows that NNCP closest curve method produced closer results to the lab curve 

than the closest three curves with an error of 6.08% and 4.74%, respectively. Figure (97) and table 

(17). 

 

Figure 97: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 8 in class 4 

Table 17 shows the average error of the NNCP method compared to laboratory data for class 4 test 

samples. 
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Table 17: Average error of NNCP method versus laboratory data for class 4 

Sample 

# 

NNCP average error, 

% 

Average error of average of 

closest 3 curves, % 

1 9.55 10.35 

2 17.38 15.43 

3 8.3 9.03 

4 14.79 11.67 

5 10.49 6.08 

6 22.87 22.8 

7 5.99 6.08 

8 6.08 4.74 

 

 

Bi-modal class # 5: according to flow zone unit classification technique, 35 samples fall under bi-

modal class 5 group. 24 samples were used for training and 11 samples were used for testing. 

Figures (98-108) show the results of the bi-modal for class 5 comparing the NNCP predictions to 

the laboratory data. In this class, we incorporated the results from J-function averaging technique 

to show that it does not produce desired output due to its limitation inaveriging bi-modal curves. 

Test sample # 1 shows that NNCP closest curve method and the closest three curves produced 

close results to the lab curve with an error of 1.95% and 2%, respectively. However, the J-function 

showed an error of 248.16%. Figure (98) and table (18). 
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Figure 98: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 1 in class 5 

 

Test sample # 2 shows that NNCP closest curve method and the closest three curves produced 

close results to the lab curve with an error of 2.84% and 3.32%, respectively. However, the J-

function showed an error of 129.64%. Figure (99) and table (18). 
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Figure 99: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 2 in class 5 

 

Test sample # 3 shows that NNCP closest curve method and the closest three curves produced 

close results to the lab curve with an error of 1.63% and 1.59%, respectively. However, the J-

function showed an error of 258.62%. Figure (100) and table (18). 

 

Figure 100: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 3 in class 5 
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Test sample # 4 shows that NNCP closest curve method and the closest three curves produced 

close results to the lab curve with an error of 1.81% and 1.77%, respectively. However, the J-

function showed an error of 505.37%. Figure (101) and table (18). 

 

Figure 101: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 4 in class 5 

Test sample # 5 shows that NNCP closest curve method and the closest three curves produced 

close results to the lab curve with an error of 4.24% and 3.71%, respectively. However, the J-

function showed an error of 627.69%. Figure (102) and table (18). 
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Figure 102: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 5 in class 5 

 

Test sample # 6 shows that NNCP closest curve method and the closest three curves produced 

close results to the lab curve with an error of 0.81% and 0.84%, respectively. However, the J-

function showed an error of 158.12%. Figure (103) and table (18). 

 

Figure 103: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 6 in class 5 
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Test sample # 7 shows that NNCP closest curve method and the closest three curves produced 

close results to the lab curve with an error of 5.31% and 4.84%, respectively. However, the J-

function showed an error of 191.14%. Figure (104) and table (18). 

 

Figure 104: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 7 in class 5 

 

Test sample # 8 shows that NNCP closest curve method and the closest three curves produced 

close results to the lab curve with an error of 3.08% and 2.29%, respectively. However, the J-

function showed an error of 213.69%. Figure (105) and table (18). 
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Figure 105: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 8 in class 5 

Test sample # 9 shows that NNCP closest curve method and the closest three curves produced 

close results to the lab curve with an error of 2.66% and 1.96%, respectively. However, the J-

function showed an error of 267.9%. Figure (106) and table (18). 

 

Figure 106: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 9 in class 5 
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Test sample # 10 shows that NNCP closest curve method and the closest three curves produced 

close results to the lab curve with an error of 3.3% and 2.83%, respectively. However, the J-

function showed an error of 209.57%. Figure (107) and table (18). 

 

Figure 107: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 10 in class 5 

Test sample # 11 shows that NNCP closest curve method and the closest three curves produced 

close results to the lab curve with an error of 4.6% and 4.49%, respectively. However, the J-

function showed an error of 95.18%. Figure (108) and table (18). 
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Figure 108: Comparison of NNCP, the average of the closest three curves to predict the capillary pressure 

compared to laboratory data for testing sample # 11 in class 5 

 

Table 18 shows the average error of the NNCP method compared to laboratory data for class 5 test 

samples. 

Table 18: Average error of NNCP method versus laboratory data for class 5 

Sample # 
NNCP average 

error, % 

Average error of 

average of closest 3 

curves, % 

J-function average 

error, % 

1 1.95 2 248.16 

2 2.84 3.32 129.64 

3 1.63 1.59 258.62 

4 1.81 1.77 505.37 

5 4.24 3.71 627.69 

6 0.81 0.84 158.12 

7 5.31 4.84 191.14 

8 3.08 2.29 213.69 

9 2.66 1.96 267.90 

10 3.3 2.83 209.57 

11 4.6 4.49 95.18 
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CHAPTER 6 

Conclusions and Recommendations 

6.1 Conclusions 

Conclusion of this study could be summaried in the points below:  

• This study shows an attempt of using artificial intelligence technology to predict the 

capillary pressure. Very few studies are reported in the literature on this topic. 

• This study investigated the use of different artificial intelligence techniques to predict 

drainage capillary pressure of oil carbonate reservoir core samples. The techniques applied, 

especially ANN - trainlm algorithm and decision tree showed good potential in training 

and testing with fair accuracy when applied on uni-modal and bi-modal datasets separately 

rather than combined modals dataset. 

• The study also presented a new technique (NNCP) to solve capillary pressure prediction 

problem by analyzing the training data in terms of similarity. The tesing data is then fitted 

on the nearest training data point.  The new technique showed excellent results in solving 

this problem eapecially after applying the two-step classification approach.  The NNCP 

technique was found to give better results than those given by the standard J-function 

method. 

6.2 Recommendations 

• A further work to this study could be done by applying different rock classification 

methods using the NNCP technique. 

• More work needs to be done to come up with a way to statistically compare the new 

technique to the lab data especially when the number of the x-axis points are not similar. 
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• There is still room for improvement if curve points are to be predicted when other artificial 

intelligence and rock classification techniques are implemented. 

• Although the number of samples used in this study is good, the more available data, the 

better the results. 

• Explore the strength of different AI techniques especially when more data is available.  
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Sample # Grain Density Permeability Porosity Saturation Capillary 

Pressure 

1 2.6503904 676.6309 0.044747409 0 152.5525665 

1 2.6503904 676.6309 0.044747409 0.001823765 171.3418427 

1 2.6503904 676.6309 0.044747409 0.003602834 192.9680176 

1 2.6503904 676.6309 0.044747409 0.005471565 216.3983002 

1 2.6503904 676.6309 0.044747409 0.007347654 242.6000519 

1 2.6503904 676.6309 0.044747409 0.010488121 272.9809265 

1 2.6503904 676.6309 0.044747409 0.014362828 308.6576233 

1 2.6503904 676.6309 0.044747409 0.021241719 344.7563171 

1 2.6503904 676.6309 0.044747409 0.034951561 388.8425293 

1 2.6503904 676.6309 0.044747409 0.060657574 436.0651245 

1 2.6503904 676.6309 0.044747409 0.10361403 490.3520508 

1 2.6503904 676.6309 0.044747409 0.156026659 550.4271851 

1 2.6503904 676.6309 0.044747409 0.212578598 621.4475708 

1 2.6503904 676.6309 0.044747409 0.277849994 697.4008789 

1 2.6503904 676.6309 0.044747409 0.343274762 782.1536865 

1 2.6503904 676.6309 0.044747409 0.399073343 878.6734009 

1 2.6503904 676.6309 0.044747409 0.446163441 988.862915 

1 2.6503904 676.6309 0.044747409 0.484376593 1110.485718 

1 2.6503904 676.6309 0.044747409 0.51257091 1247.059814 

1 2.6503904 676.6309 0.044747409 0.53367272 1402.666748 

1 2.6503904 676.6309 0.044747409 0.553083499 1575.34082 

1 2.6503904 676.6309 0.044747409 0.571419153 1771.114014 

1 2.6503904 676.6309 0.044747409 0.588737638 1989.464844 

1 2.6503904 676.6309 0.044747409 0.605366687 2235.90332 

1 2.6503904 676.6309 0.044747409 0.621747266 2512.853516 

1 2.6503904 676.6309 0.044747409 0.637384878 2824.039795 

1 2.6503904 676.6309 0.044747409 0.652953733 3173.408203 

1 2.6503904 676.6309 0.044747409 0.668482283 3566.118164 

1 2.6503904 676.6309 0.044747409 0.684170132 4008.406738 

1 2.6503904 676.6309 0.044747409 0.700313559 4501.570313 

1 2.6503904 676.6309 0.044747409 0.717139259 5060.717773 

1 2.6503904 676.6309 0.044747409 0.734593134 5686.730957 

1 2.6503904 676.6309 0.044747409 0.75282317 6391.120117 

1 2.6503904 676.6309 0.044747409 0.772283661 7182.38916 

1 2.6503904 676.6309 0.044747409 0.792755057 8072.173828 

1 2.6503904 676.6309 0.044747409 0.814869901 9072.478516 

1 2.6503904 676.6309 0.044747409 0.838232005 10196.22168 

1 2.6503904 676.6309 0.044747409 0.862817331 11458.72754 

1 2.6503904 676.6309 0.044747409 0.887732134 12876.69727 

1 2.6503904 676.6309 0.044747409 0.912966974 14471.52051 
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1 2.6503904 676.6309 0.044747409 0.93711363 16264.65039 

1 2.6503904 676.6309 0.044747409 0.958881693 18278.37695 

1 2.6503904 676.6309 0.044747409 0.976674873 20543.21484 

1 2.6503904 676.6309 0.044747409 0.988235349 23087.84766 

1 2.6503904 676.6309 0.044747409 0.9952145 25947.125 

1 2.6503904 676.6309 0.044747409 0.998153283 29160.48438 

1 2.6503904 676.6309 0.044747409 0.999001669 32772.77344 

1 2.6503904 676.6309 0.044747409 0.999474956 36825.03516 

1 2.6503904 676.6309 0.044747409 0.999755876 41376.70703 

1 2.6503904 676.6309 0.044747409 0.999890579 46500.78516 

1 2.6503904 676.6309 0.044747409 0.99996031 52258.66016 

1 2.6503904 676.6309 0.044747409 1 58712.1875 

2 2.657290913 738.8592 0.106782226 0 5.781690121 

2 2.657290913 738.8592 0.106782226 0.003017064 6.495548248 

2 2.657290913 738.8592 0.106782226 0.006996085 7.302698135 

2 2.657290913 738.8592 0.106782226 0.014035902 8.207427025 

2 2.657290913 738.8592 0.106782226 0.02212513 9.227519989 

2 2.657290913 738.8592 0.106782226 0.034455737 10.36242104 

2 2.657290913 738.8592 0.106782226 0.051450533 11.64920807 

2 2.657290913 738.8592 0.106782226 0.077467668 13.09979153 

2 2.657290913 738.8592 0.106782226 0.113906319 14.72163391 

2 2.657290913 738.8592 0.106782226 0.154884799 16.59445 

2 2.657290913 738.8592 0.106782226 0.201321319 18.64051056 

2 2.657290913 738.8592 0.106782226 0.249630854 20.93984795 

2 2.657290913 738.8592 0.106782226 0.300192459 23.53160477 

2 2.657290913 738.8592 0.106782226 0.353100366 26.43277168 

2 2.657290913 738.8592 0.106782226 0.403450529 29.71369553 

2 2.657290913 738.8592 0.106782226 0.449196157 32.77413559 

2 2.657290913 738.8592 0.106782226 0.490203277 37.28495789 

2 2.657290913 738.8592 0.106782226 0.527234743 41.91374969 

2 2.657290913 738.8592 0.106782226 0.560226105 47.23648071 

2 2.657290913 738.8592 0.106782226 0.588632161 53.1113205 

2 2.657290913 738.8592 0.106782226 0.613157928 59.22639084 

2 2.657290913 738.8592 0.106782226 0.63848431 66.085495 

2 2.657290913 738.8592 0.106782226 0.660186346 74.90632629 

2 2.657290913 738.8592 0.106782226 0.681299529 84.54078674 

2 2.657290913 738.8592 0.106782226 0.700180547 94.76128387 

2 2.657290913 738.8592 0.106782226 0.716628005 106.9395523 

2 2.657290913 738.8592 0.106782226 0.732460666 120.2393875 

2 2.657290913 738.8592 0.106782226 0.746694537 134.6430359 

2 2.657290913 738.8592 0.106782226 0.759393153 151.3357239 



121 
 

2 2.657290913 738.8592 0.106782226 0.771061186 170.3102722 

2 2.657290913 738.8592 0.106782226 0.781491945 191.9442139 

2 2.657290913 738.8592 0.106782226 0.790671176 215.8517303 

2 2.657290913 738.8592 0.106782226 0.798680248 243.0192719 

2 2.657290913 738.8592 0.106782226 0.805900091 272.8860168 

2 2.657290913 738.8592 0.106782226 0.812268594 306.4613037 

2 2.657290913 738.8592 0.106782226 0.817954282 343.5313416 

2 2.657290913 738.8592 0.106782226 0.823098902 387.3198547 

2 2.657290913 738.8592 0.106782226 0.827926916 435.3630981 

2 2.657290913 738.8592 0.106782226 0.832350803 488.7467651 

2 2.657290913 738.8592 0.106782226 0.83702467 549.1375732 

2 2.657290913 738.8592 0.106782226 0.84135063 618.1936035 

2 2.657290913 738.8592 0.106782226 0.845363413 693.4348145 

2 2.657290913 738.8592 0.106782226 0.849604487 781.2393799 

2 2.657290913 738.8592 0.106782226 0.854504177 876.4094238 

2 2.657290913 738.8592 0.106782226 0.860110436 985.258728 

2 2.657290913 738.8592 0.106782226 0.866278906 1108.531982 

2 2.657290913 738.8592 0.106782226 0.873408538 1245.171875 

2 2.657290913 738.8592 0.106782226 0.881205942 1401.491699 

2 2.657290913 738.8592 0.106782226 0.889585233 1573.675415 

2 2.657290913 738.8592 0.106782226 0.897857591 1768.852905 

2 2.657290913 738.8592 0.106782226 0.905968624 1988.601074 

2 2.657290913 738.8592 0.106782226 0.914259723 2234.063477 

2 2.657290913 738.8592 0.106782226 0.922280336 2510.894775 

2 2.657290913 738.8592 0.106782226 0.930309386 2822.197998 

2 2.657290913 738.8592 0.106782226 0.937652623 3172.262451 

2 2.657290913 738.8592 0.106782226 0.944568264 3564.365234 

2 2.657290913 738.8592 0.106782226 0.95122707 4005.474121 

2 2.657290913 738.8592 0.106782226 0.957642879 4502.405273 

2 2.657290913 738.8592 0.106782226 0.964138481 5057.769043 

2 2.657290913 738.8592 0.106782226 0.970311377 5684.839844 

2 2.657290913 738.8592 0.106782226 0.976158528 6389.143066 

2 2.657290913 738.8592 0.106782226 0.981603307 7181.583984 

2 2.657290913 738.8592 0.106782226 0.98655099 8070.617676 

2 2.657290913 738.8592 0.106782226 0.990606664 9071.518555 

2 2.657290913 738.8592 0.106782226 0.993829647 10193.76855 

2 2.657290913 738.8592 0.106782226 0.995982195 11455.58887 

2 2.657290913 738.8592 0.106782226 0.997499097 12875.71094 

2 2.657290913 738.8592 0.106782226 0.998037193 14468.91309 

2 2.657290913 738.8592 0.106782226 0.998381492 16262.38281 

2 2.657290913 738.8592 0.106782226 0.998660395 18276.24414 
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2 2.657290913 738.8592 0.106782226 0.998868988 20540.71094 

2 2.657290913 738.8592 0.106782226 0.999011513 23085.46289 

2 2.657290913 738.8592 0.106782226 0.999100663 25944.74219 

2 2.657290913 738.8592 0.106782226 0.999201017 29158.61133 

2 2.657290913 738.8592 0.106782226 0.999350448 32770.13672 

2 2.657290913 738.8592 0.106782226 0.999439457 36827.54297 

2 2.657290913 738.8592 0.106782226 0.999593066 41384.50391 

2 2.657290913 738.8592 0.106782226 0.999750968 46501.85938 

2 2.657290913 738.8592 0.106782226 1 58733.45313 
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APPENDIX-B 

(Results from Methods # 1- 5 technique)  
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B1. Artificial neural network  

Uni-modal capillary pressure curve 

 

Figure 109: Predicted vs. measured values using ANN – trainb alogrithm (Training). 
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Figure 110.  Predicted vs. measured values using ANN – trainb alogrithm (Testing). 

 

Figure 111.  Predicted vs. measured values using ANN – trainbfg alogrithm (Training). 
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Figure 112.  Predicted vs. measured values using ANN – trainbfg alogrithm (Testing). 

 

Figure 113.  Predicted vs. measured values using ANN – traingd alogrithm (Training). 
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Figure 114.  Predicted vs. measured values using ANN – traingd alogrithm (Testing). 

 

Figure 115.  Predicted vs. measured values using ANN – traingdx alogrithm (Training). 
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Figure 116.  Predicted vs. measured values using ANN – traingdx alogrithm (Testing). 

 

Figure 117.  Predicted vs. measured values using ANN – trainlm alogrithm (Training). 
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Figure 118.  Predicted vs. measured values using ANN – trainlm alogrithm (Testing). 

 

Figure 119.  Predicted vs. measured values using ANN – trainoss alogrithm (Training). 
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Figure 120.  Predicted vs. measured values using ANN – trainoss alogrithm (Testing). 

Bi-modal capillary pressure curve 

 

Figure 121.  Predicted vs. measured values using ANN – trainb alogrithm (Training). 

 

Figure 122.  Predicted vs. measured values using ANN – trainb alogrithm (Testing). 



131 
 

 

Figure 123.  Predicted vs. measured values using ANN – trainbfg alogrithm (Training). 

 

Figure 124.  Predicted vs. measured values using ANN – trainbfg alogrithm (Testing). 
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Figure 125.  Predicted vs. measured values using ANN – traingd alogrithm (Training). 

 

Figure 126.  Predicted vs. measured values using ANN – traingd alogrithm (Testing). 
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Figure 127.  Predicted vs. measured values using ANN – traingdx alogrithm (Training). 

 

Figure 128.  Predicted vs. measured values using ANN – traingdx alogrithm (Testing). 
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Figure 129.  Predicted vs. measured values using ANN – trainlm alogrithm (Training). 

 

Figure 130.  Predicted vs. measured values using ANN – trainlm alogrithm (Testing). 
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Figure 131.  Predicted vs. measured values using ANN – trainoss alogrithm (Training). 

 

Figure 132.  Predicted vs. measured values using ANN – trainoss alogrithm (Testing). 
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Combined modals capillary pressure curve 

 

Figure 133.  Predicted vs. measured values using ANN – trainb alogrithm (Training). 

 

Figure 134.  Predicted vs. measured values using ANN – trainb alogrithm (Testing). 
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Figure 135.  Predicted vs. measured values using ANN – trainbfg alogrithm (Training). 

 

Figure 136.  Predicted vs. measured values using ANN – trainbfg alogrithm (Testing). 
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Figure 137.  Predicted vs. measured values using ANN – traingd alogrithm (Training). 

 

Figure 138.  Predicted vs. measured values using ANN – traingd alogrithm (Testing). 
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Figure 139.  Predicted vs. measured values using ANN – traingdx alogrithm (Training). 

 

Figure 140.  Predicted vs. measured values using ANN – traingdx alogrithm (Testing). 
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Figure 141.  Predicted vs. measured values using ANN – trainlm alogrithm (Training). 

 

Figure 142.  Predicted vs. measured values using ANN – trainlm alogrithm (Testing). 



141 
 

 

Figure 143.  Predicted vs. measured values using ANN – trainoss alogrithm (Training). 

 

Figure 144.  Predicted vs. measured values using ANN – trainoss alogrithm (Testing). 
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B2. Fuzzy logic 

Uni-modal capillary pressure curve 

 

Figure 145.  Predicted vs. measured values using Fuzzy Logic – Grid Partitioning alogrithm (Training). 

  

Figure 146.  Predicted vs. measured values using Fuzzy Logic – Grid Partitioning alogrithm (Testing). 
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Figure 147.  Predicted vs. measured values using Fuzzy Logic – Cluster Radius alogrithm (Training). 

 

Figure 148.  Predicted vs. measured values using Fuzzy Logic – Cluster Radius alogrithm (Testing). 
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Bi-modal capillary pressure curve 

 

Figure 149.1 Predicted vs. measured values using Fuzzy Logic – Grid Partitioning alogrithm (Training). 

 

Figure 150.  Predicted vs. measured values using Fuzzy Logic – Grid Partitioning alogrithm (Testing). 
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Figure 151.  Predicted vs. measured values using Fuzzy Logic – Cluster Radius alogrithm (Training). 

 

Figure 152.  Predicted vs. measured values using Fuzzy Logic – Cluster Radius alogrithm (Testing). 
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Combined modals capillary pressure curve  

 

Figure 153: Predicted vs. measured values using Fuzzy Logic – Grid Partitioning alogrithm (Training). 

 

Figure 154.  Predicted vs. measured values using Fuzzy Logic – Grid Partitioning alogrithm (Testing). 
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Figure 155.  Predicted vs. measured values using Fuzzy Logic – Cluster Radius alogrithm (Training). 

 

Figure 156.  Predicted vs. measured values using Fuzzy Logic – Cluster Radius alogrithm (Testing). 
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B3. Fuzzy logic type-2 

Uni-modal capillary pressure curve  

 

Figure 157.  Predicted vs. measured values using Fuzzy Logic type-2 alogrithm (Training). 

 

Figure 158.  Predicted vs. measured values using Fuzzy Logic type-2 alogrithm (Testing). 
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Bi-modal capillary pressure curve  

 

Figure 159.  Predicted vs. measured values using Fuzzy Logic type-2 alogrithm (Training). 

 

Figure 160.  Predicted vs. measured values using Fuzzy Logic type-2 alogrithm (Testing). 
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Combined modals capillary pressure curve  

 

Figure 161.  Predicted vs. measured values using Fuzzy Logic type-2 alogrithm (Training). 

 

Figure 162.  Predicted vs. measured values using Fuzzy Logic type-2 alogrithm (Testing). 

 

No results could be obtained 

No results could be obtained 
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B4. Support vector machine 

Uni-modal capillary pressure curve  

 

Figure 163.  Predicted vs. measured values using support vector machine alogrithm (Training). 

 

Figure 164.  Predicted vs. measured values using support vector machine alogrithm (Testing). 
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Bi-modal capillary pressure curve  

 

Figure 165.  Predicted vs. measured values using support vector machine alogrithm (Training). 

 

Figure 166.  Predicted vs. measured values using support vector machine alogrithm (Testing). 
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Combined modals capillary pressure curve  

 

Figure 167.  Predicted vs. measured values using support vector machine alogrithm (Training). 

 

Figure 168.  Predicted vs. measured values using support vector machine alogrithm (Testing). 

No results could be obtained 

No results could be obtained 
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B5. Functional Network 

Uni-modal capillary pressure curve  

 

Figure 169.  Predicted vs. measured values using functional network alogrithm (Training). 

 

Figure 170.  Predicted vs. measured values using functional network alogrithm (Testing). 
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Bi-modal capillary pressure curve  

 

Figure 171.  Predicted vs. measured values using functional network alogrithm (Training). 

 

Figure 172.  Predicted vs. measured values using functional network alogrithm (Testing). 
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Combined modals capillary pressure curve  

 

Figure 173.  Predicted vs. measured values using functional network alogrithm (Training). 

 

Figure 174.  Predicted vs. measured values using functional network alogrithm (Testing). 
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