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The concept of the microgrid in the electrical distribution system is gaining tremendous 

interest in recent decades to the researchers, governments, and utilities due to its 

advantages over conventional distribution networks. Moreover, integration of renewable 

energy into microgrid results in global reduction of carbon footprint. However, the 

intermittency of solar photovoltaic (PV) and wind energy has made them a challenge in 

terms of integration and utilization on the distribution side. In this regard, hybridization 

in the microgrid, particularly including solar PV, wind energy, energy storage and small-

scale diesel generator, is creating a great possibility for highly reliable and dispatchable 

energy system. Therefore, this thesis has proposed an algorithm based on an improved 

binary genetic algorithm (IBGA) for managing outages in a hybrid microgrid. 

This algorithm also optimizes the output of diesel generator to be integrated into the 

network and finds optimal locations for connecting distributed generators (DGs) and 

appropriate demand side management (DSM) implementation. Four operational 

constraints, namely – radiality, priority list, bus voltage and branch power flow, are 

considered in the optimization. Three objective functions, energy not supplied (ENS), 

system average interruption frequency index (SAIFI), and system average interruption 

duration index (SAIDI), are converted to a single objective function format as a 

minimization problem. In order to maintain practicality, DGs and loads are modeled 
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stochastically and an intelligent priority list is proposed. The output of DGs, load values, 

and priority list are made ready before including them in the restoration algorithm. All 

simulations are conducted in MATLAB environment where MATPOWER6 software is 

linked with MATLAB to test power flow constraints. The proposed algorithm has been 

implemented on IEEE 33 bus distribution system and the obtained results validate the 

effectiveness of the proposed algorithm. 
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 ملخص الرسالة

 
 نتحامحمد إلياس حسن بالاسم الكامل: 

 
 الذكية للإرجاع الذكي للشبكات المصغرة ةالتقنيعنوان الرسالة: 

 
 الكهربائية الطاقةالتخصص: 

 
 ٢٠١٧ديسمبر تاريخ الدرجة العلمية: 

 
الأخيرة من إن مفهوم الميكروغريد )الشبكة المصغرة( في نظام التوزيع الكهربائي يكتسب اهتماماً هائلاً في العقود 

قبل الباحثين والحكومات والشركات بسبب مزاياه على شبكات التوزيع التقليدية. علاوةً على ذلك، فإن دمج مصادر 

ع الطاقة  الطاقة المتجددة في الميكروغريد سيساهم في الحد من انبعاثات الكربون العالمية. ومع ذلك، فإن تقطُّ

ناحية التوزيع. في هذا  نهما تحدياً من حيث الدمج والاستفادة منالشمسية الكهروضوئية وطاقة الرياح يجعل م

الصدد، فإن التهجين في الميكروغريد، بما في ذلك الطاقة الشمسية الكهروضوئية، و طاقة الرياح، وتخزين الطاقة، 

ع. لذلك، تقدم هذه ومولدات الديزل الصغيرة، سيخلق إمكانيةً كبيرةً لنظام طاقةٍ موثوقٍ بها للغاية و قابلةٍ للتوزي

( لإدارة انقطاعات الكهرباء في IBGAالأطروحة خوارزميةً تقوم على الخوارزمية الجينية الثنائية المعدلة )

 بإعادة التشكيل طوبولوجياً. الميكروغريد الهجين وهي طريقة تحسينٍ أمثل

وتحديد المواقع المثلى لربط المولدات تعمل هذه الخوارزمية على تحسين إنتاج مولدات الديزل ليتم دمجها في الشبكة 

(. يتم النظر في أربعة قيودٍ تشغيليةٍ في خوارزمية DSMالطلب على الطاقة ) وتنفيذٍ مناسب لإدارة (DGالموزعة )

الشعاعية، و قائمة الأولوية، والجهد الكهربائي، وتدفق الطاقة الفرعية. يتم تحويل ثلاث دوالٍ  التحسين الأمثل،وهي:

مؤشر معدل مدة  ، و(SAIFI)مؤشر معدل تكرار انقطاع النظام  ، و(ENS)الطاقة غير المزودة  و هي:هدفيةٍ 

إلى دالة هدفٍ واحدةٍ لتشكل معادلة تصغيرٍ أمثل. من أجل الحفاظ على التطبيق العملي، تم  (SAIDI) انقطاع النظام

ُ واقتراح قائمة  مخرجات المولدات الموزعة، وقيم  أولويةٍ ذكيةٍ.نمذجة المولدات الموزعة و الأحمال عشوائيا

. رجاعالأحمال، وقائمة الأولويات تجهز عن طريق إجراء محاكاة لمرحلة التخطيط قبل تضمينها في خوارزمية الإ

مع  MATPOWER6( حيث يُربط برنامج MATLABيتم إجراء جميع عمليات المحاكاة في بيئة ماتلاب )

، والنتائج التي IEEE 33لطاقة. وقد تم تطبيق الخوارزمية المقترحة على نظام توزيع ا تدفقماتلاب لاختبار قيود 

 تم الحصول عليها تُؤكد فعالية الخوارزمية المقترحة.



1 

 

CHAPTER 1 

INTRODUCTION 

1.1 Electric Microgrid 

The demand of electric power is in a fast-increasing mode in recent decades has caused the 

power system more increasingly complex interconnected grid to transmit the power to the 

load side. This complex grid system has brought the challenges in the security issue and 

enforced to operate as more sustainable, reliable and controllable scheme of energy systems. 

Therefore, the governments and responsible power entities are seeking solutions in 

microgrids in the distribution area – the building blocks for the ultimate smart grid in future. 

The distribution network, essentially known as the microgrid, is a consortium of distributed 

generators; wind turbines, solar photovoltaic (PV) power, biomass, geothermal and other 

renewable sources and energy storage with conventional small-scale fossil fuel generators in 

the distribution area. 

It also facilitates the power balancing capability function between demand and supply for 

the both – loads and utility, comprehended as a single entity [1]–[4]. The microgrid also 

allows the bidirectional power flow to and from the main grid through a communication for 

proper controlling and supplying more reliable power to the consumers [4]. One of the 

important features of the microgrid is to operate in two modes – grid connected or islanded 

mode in which automatic controlling and communication schemes enable to operate in an 

islanded mode in any unusual condition of the main grid by disconnecting from the utility 
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[3], [5]. This standalone mode operation increases the microgrid’s power availability and 

reliability. In addition, the utility can monitor the loads from distance in microgrid system 

owing to its highly controlling and communication schemes. All the aforementioned 

features conceptualize the microgrids making it enough smart in power operation – the 

smart grid in a broader view. 

1.2 Motivation 

The main challenge of the power utility organizations is to supply sustainable and reliable 

power to the consumers. Therefore, the balancing between supply and demand must be 

gained at all the time to overcome this challenge that perceives the electricity as a fresh 

commodity. In the year 2002 in the US, the revenue of total retailer electricity was $249 

billion whereas the total estimated outage cost was $79 billion in the same year that is equal 

to 31.7 % of the revenue [6]. An outage costs comparison is made between North America 

and Europe in reference [7]. 

There are some reasons which make today’s conventional power grid less reliable – the 

manual communication between customers and utility during outage periods which causes 

delay in restoration of the system, utility’s unavailability to detect the system’s instability 

prior to going into outage condition and, lack of proper load prioritization with demand side 

management during outage periods and peak load condition. These problems can be solved 

with the use of microgrid in the distribution area. Since the advanced information 

technological infrastructure, advanced metering infrastructure (AMI) and automatic control 

scheme are implemented in the microgrid which provide prior fault information, enable load 

side management, remote monitoring and controlling and, self-healing automation rather 

than manual restoration. Furthermore, microgrid uses the renewable energy sources as 
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distributed generations which are green sources of energy and, as a result, the carbon 

footprint owing to fossil fuels emission is reduced. As in reality, the load demands can never 

be constant at all the times but the generation of dispatchable swing units can ramp up and 

down to balance the load demands which is the conventional power operational scheme.  

In microgrids, some renewable distributed generators are integrated into the system to 

increase the reliability in case of any fault or unavailability of dispatchable units. But, 

uncontrollable and intermittent nature of most of the renewable energy sources, especially 

solar and wind energies, make them costly. Both the sources depend on the time of the day, 

seasons and unpredictable weather conditions. Sometimes they generate more than the 

demand that is required at that time and sometimes it is less which does not mean the lack of 

total solar and wind energies to meet the load demands – hence the storage system can 

overcome the unpredictability of solar and wind energy generation by storing energy at 

excess generation periods and meeting deficiency at less or no generation periods. 

In some cases, outages may cause a larger amount of deviation between demand and supply. 

As a result, solar and wind energies with storage system cannot meet the demand integrating 

the interrupted supply system. In this case, pick clipping (PC) demand side management 

(DSM) and diesel generator can be integrated into the supply system to increase the 

reliability of the distribution systems. Also, the optimal priority list of the loads is an 

important measurement for shedding the loads in case of any necessity which can also 

improve the reliability of the distribution systems supplying more important loads rather to 

less important loads at the outage time. 
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In order to synchronize the generated power with load demands at all the time, parameters 

of the distributed generators (DGs), such as sizing and sitting, must be optimized for making 

effective and efficient smart grid. In this case, the system will be able to supply sustainable 

and reliable power to the customers at minimum cost. Moreover, in case of emergencies and 

outages, a strategic self-healing restoration technique must be incorporated in a most 

optimized way considering DSM implementation and optimized load priority list. The quest 

what motivates for this thesis is all the aforementioned optimization fleet. 

1.3 Objectives 

The objectives are summarized below: 

❖ To model the energy storage system (DG) and renewable DGs – solar 

photovoltaic and wind turbine – and analyze the reliability impact of these DGs 

on power distribution system. 

❖ To propose a dynamic and intelligent load priority list model for microgrid based 

on the effect of DSM programs, criticality of loads, load point reliability indices 

and cost of interruption of each load at different hours. Fuzzy decision-making 

technique is proposed to obtain the overall numeric priority value from different 

priority indicator parameters for each load. 

❖ To develop a smart load restoring optimization technique using improved binary 

Genetic Algorithm (IBGA) for microgrid system based on type, size and location 

of DGs and, supply availability, stochastic load demand, dynamic priority list, 

and integration of DSM program at proper position(s). 

❖ To analyze the reliability indices of the re-configured microgrid system. 
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1.4 Contribution of this Thesis 

The contributions of this thesis are summarized below: 

❖ Time series based forecasting equation is modified and fuzzy time series-Markov 

chain technique is used to forecast temperature, wind speed and solar radiation. 

❖ This thesis has proposed a new state transition matrix where the fixed zeros of 

the diagonal entries are replaced by a quantitative probability keeping 

compatibility with the assumption of discrete state of charge (SOC) which is 

ignored in the literature. 

❖ Multi-objective clustering and fuzzy decision making (FDM) techniques are 

proposed for properly sizing the storage system instead of using conventional 

way. 

❖ Dynamic priority list model is developed to optimize numeric priority value for 

each load using intelligent technique and implemented in load shedding using 

proposed algorithm during load restoring optimization. 

❖ To propose an algorithm for restoring maximum amount of loads after occurring 

fault in distribution networks based on improved binary Genetic Algorithm 

(IBGA). 

1.5 Thesis Organization 

Literature related to this thesis work is reviewed in chapter 2. This includes the pros and 

cons reviewing of integrating distributed generators (DGs) and demand side management 

(DSM) during network reconfiguration. Literature related to integrating the priority list 
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during network reconfiguration is also presented in this chapter. In chapter 3, forecasting 

technique and mathematical models of DGs are discussed. This chapter also includes the 

evaluation of DG models. 

Chapter 4 summarizes the objective functions and constraints. A brief discussion about 

Genetic Algorithm is also presented in this chapter. Simulation results of network 

reconfiguration based on the proposed algorithm considering fault in IEEE 33 bus 

distribution system is presented in the fifth chapter. Finally, the last chapter includes the 

concluding paragraphs and proposes some possible future works. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Impact of Distributed Generators on Distribution Networks 

With the change of living style of people around distribution area in recent days due to using 

technologically developed equipment, the aspects of distribution networks are also being 

changed towards highly reliable power supply to the consumers, especially for the critical 

load consumers. The conventional power operational systems are becoming more 

sophisticated and interconnected grid system to transmit bulk amount power to the load 

center in several paths from distant plants to reduce generation costs. This power 

management scheme draws the disadvantages at the time of any outage owing to natural 

calamity or any other major accidents resulting disconnection of a large number of 

consumers [8] – hence the solution is interconnected microgrid system in the distribution 

area. 

The microgrid is considered as an interconnected system that consists some micro power 

sources those can be the single type or varieties, with loads as a single entity where the PV 

panels and wind generators of capability mostly less than 500kW are the typical types of 

micro sources [9], [10]. Furthermore, environmental effects will be reduced owing to using 

renewable DGs in the distribution areas which will also increase the system’s reliability 

[11]. In references [12]–[15], some studies were conducted on reliability indices based on 

distributed generators. In reference [16], the authors mainly focused the effect on price in 

the retail markets due to the integration of distributed generators. 
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In this case, it was shown that the power loss in the distribution network is reduced and 

voltage profile is improved owing to using DGs. The proposed observation was 

implemented in IEEE-33 bus distribution system using genetic algorithm (GA). 

Investigation on the integration of maximum allowable DG output in the distribution 

network for connecting the maximum load and reducing power losses with best network 

topology was done using modified GA where few locations for connecting DGs were 

considered [17]. 

Research is going on to improve the performance and reliability of the distribution networks 

using different intelligent optimization techniques. In this regard, DGs can play an important 

role. Researchers are especially concerned in improving voltage profile, reduction of power 

losses – active and reactive – increasing the loadability of the system, decreasing the line 

flows, and improving the reliability indices etc. by penetrating the DGs in the networks and 

optimizing the best topology to supply power to the customers. In this case, Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), multi-objective optimization of 

different types etc. were used in the literature [18]–[22]. Though most of the cases multi-

objective optimization was considered that is the usual scenario for distribution network 

reconfiguration, sometimes single objective was also considered. The minimum number of 

switching operations and the maximum number of loads to be restored according to the load 

priority sequence after isolation the fault following the current, voltage and radial network 

topology constraints were investigated for balanced and unbalanced networks considering 

both cases – with and without DG connection [23]. The proposed method was tested in the 

IEEE-33 bus system and shown the significantly improved voltage profile when DGs were 

connected to the network. Authors in [24] conducted a survey on the IEEE-33 bus system 
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and Tai-Power system to reduce the power losses of the systems and achieve the better load 

balancing using Artificial Ant Colony (AAC) algorithm for two cases – with and without 

DGs in the topology. Results shown an improvement when DGs were connected to the 

topology. But still, the research of the impact of distributed generators on distribution 

networks is insufficient. It is because that most of the cases the authors didn’t consider the 

type of DGs rather only taken a certain amount of power in one or more buses to evaluate 

the effect of DGs on distribution networks. 

Although few papers evaluated the effects of DGs on distribution networks considering its 

types, especially for renewable energies (RE) – PV and wind types, they excluded the 

intermittent and uncontrollable nature of renewable energy taking only the deterministic 

values. But the PV and wind power are fully dependent on nature. Also, the loads in power 

system are volatile in nature that could be modeled probabilistically rather considering 

deterministic value which was ignored in the literature. 

Distribution systems must be maintained in balanced way in case of load demand and 

available supply which can be achieved taking into account storage systems and back up 

diesel power units in the distribution networks (DN) since the load, PV and wind power all 

are volatile in nature and have no control over PV and wind power generation. Therefore, 

the effect of DGs on distribution systems must be evaluated considering all the 

aforementioned features at the same time – that is not done yet in the literature in 

accordance with author’s knowledge. In this case, evaluated distribution systems including 

aforementioned features can be considered as a perfect microgrid. It can also be mentioned 

that both the controlling schemes – grid connected and islanded mode are possible to 
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implement in microgrid (MG) which will increase the reliability of the system – the ultimate 

target in near future. 

2.2 Demand Side Management 

The influence to the consumers to use the energy at the proper time and suitable amount by 

some specific kinds of planning, implementation, and evaluation was comprehended as 

demand side management (DSM) program [25]. DSM has an effect on load to match with 

the generation by proper shaping which results in a reduction of generation cost. In case of 

consumer’s point of view, consumers can get benefits from the utility due to timely using 

energy that causes the reduction of price per kWh of them and more sustained power supply. 

Several research works were made in the past using DSM on the reliability of distribution 

systems [26]–[29]. Two ways demand side management was handled by four Spanish 

Universities and this DSM was accomplished using Physically-Based Load Models (PBLM) 

of loads [30]. In reference [31], quality control for customer’s satisfaction maintaining 

demand side management was achieved by including diesel generator, solar PV, and energy 

storage in IEEE 13 bus system and converting it to islanded mode microgrid. The authors 

also implemented the technique in real time simulator, OPAL-RT simulator, and in 

microcontroller based system. Distribution networks were dispatched as a microgrid scheme 

by including demand side management and energy storage system in [32], and the 

effectiveness was tested in a real system that consists of buildings and roof-top PV system. 

Demand side management was focused to reduce the overall operational costs and the cost 

of customer’s utility usage in [33]–[37] to make the distribution systems smart.  

Some authors optimized the locations and size of the storage system of microgrid including 

two objectives – giving some incentive to the customers owing to shifting loads and 
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reduction of line loss. In addition, communication was included in the smart distribution 

system for exchanging information between the utility company and customers in 

participating demand management following dual objectives – price based and reward 

based. This method was implemented in IEEE 37 bus distribution system. However, in some 

cases, load shifting and peak clipping both were included in demand side management by 

including customer’s participation in microgrid for a day ahead cost reduction operation 

planning through investigation of power loss and voltage deviation. The authors in reference 

[38] evaluated the impact of load shifting from one hour to other hours on the performance 

of power transmission to find the optimal DSM. This model was tested using IEEE 9 bus 

transmission system and 295 bus generic distribution networks. A technique for managing 

demand response in distribution systems was proposed making it flexible to three phase grid 

in [39]. Demand side management using electric vehicles based on extended optimal power 

flow was proposed to accumulate power from different non-dispatchable renewable energy 

sources [40]. The algorithm investigated that how to reduce the extra costs by not upgrading 

the existing distribution network in the UK taking power from electric vehicles. Domestic 

energy consumption was managed by shifting loads from peak hours to off-peak hours using 

storage media so that demand of customers becomes responsive according to the needs of 

the utility company. In this case, charging and discharging factors were considered for 

analyzing the cost of the system [41]. To evaluate the model, the authors chose a UK 

household load profile.  

But there is still a lack in research on reliability combining multiple effects with the 

stochastic mode, like the inclusion of renewable (RE) DGs, diesel DGs, storage and DSM 

programs, as the renewable sources – PV power and wind energy, are full of uncontrollable 
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and probabilistic in nature. Few papers evaluated the microgrids considering multiple effects 

[42], [43] but no work is done yet according to author’s knowledge including all types of 

DGs with DSM programs and in case of necessity, load shedding action implementation in 

accordance with priority sequence. 

2.3 Placement and Sizing of DG for Reliability Improvement 

The investigation was made for proper placement of DGs in case of reliability improvement 

of the distribution networks in references [44]–[49]. Mainly DGs placements and capacity 

were evaluated in these pieces of literature. Though they analyzed the DGs capacity, the 

reliability of the microgrids was extensively affected owing to the variability of PV and 

wind energies. Some of them considered the cost effect for the case of sizing of DG. 

Obviously, to overcome the output variability problem, whenever the storage system will be 

considered, cost of storage system must be considered at the same time for optimizing the 

parameters. 

Ant Colony Optimization (ACO) technique was implemented to dispatch the generation of 

renewable energy sources (RES) with cost optimization excluding the storage systems to 

overcome the variability of output [50]. Reliability, cost of energy, and power loss were 

analyzed in reference [51] for sitting and sizing of different types of DGs using multi-

objective optimization without considering the storage systems. Model for locating and 

sizing of the solar farm was developed using multi-objective Bee optimization (MBO) to 

minimize the costs and emission of generation considering solar radiation [52]. Though they 

found the clustered Pareto set of solutions and fuzzy best-compromised solution, they didn’t 

consider the variability of solar output which will change its reliability. Without considering 
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the storage systems, Markov chain rules were implemented to dispatch the PV plant output 

for analyzing the reliability in real time distribution networks in Egypt [53]. 

Though in [54], Artificial Bee Colony (ABC) based multi-objective optimization was 

implemented to increase the reliability of distribution system considering both, DGs and 

battery, they didn’t give emphasize on charging and discharging procedure of battery which 

may result in over-sizing and costs. 

The references [55], [56] focused the summation of all the time intervals within a certain 

time period for reliability analyzing when the demand of load exists but the storage systems 

can’t meet the load demands. This strategy will provide an expected amount of estimated 

time when the loads are not powered by the DG system, but it does not give the probability 

of meeting the load demands by the DG system. Authors in [57] investigated the reliability 

by reconfiguring the distribution networks but still, they didn’t consider the kinds of DGs – 

like PV panel and wind turbine. To overcome the output variability, availability was 

analyzed using the battery sizing concept to compensate the unavailability of power sources 

to power the load demands [58], [59]. Because of following simple method for analyzing the 

reliability, over or under sizing may cause which will increase the system cost or may cause 

the large variations of system loads successively. 

The investigation was conducted in offline mode for a year to find out the optimal size and 

locations of DGs from some specific locations to reduce ENS and power loss and achieved 

optimal network configuration for improving the reliability of the system using Non-

dominated Sorting Genetic Algorithm (NSGA) where the constant load was considered [60]. 

A similar analysis was done but includes more reliability indices with load modeling using 



14 

 

GA and PSO techniques in [19]. Non-dominated Sorting Genetic Algorithm (NSGA-II) was 

used for simultaneously reconfiguring the distribution network with proper placement of not 

only DGs but also capacitor bank considering three objectives – power loss minimization, 

voltage profile improvement and minimizing current loadability of the topology [20]. The 

authors claimed that their proposed method can be implemented in both phases – planning 

and operations – examined their algorithm considering some outage cases of the capacitor 

and distributed generators.  

Most of the authors included the minimization of power loss and improvement of voltage 

profile in their optimization fleet following operational constraints and finding optimal 

locations and size of DGs for optimal network configuration. In some cases, it was found in 

the literature to be evaluated the number of DGs and its locations either in IEEE-33 bus test 

system or IEEE-69 bus system or both using artificial intelligence keeping total penetration 

constant [21], [61], [62]. But still, lack in research owing to not to be included the renewable 

energies with the probabilistic model which is one of the important features of the future 

microgrids to make the distribution network (DN) environmentally green. Moreover, very 

few papers considered the storage system to overcome the problem due to including the 

intermittent and uncontrollable weather dependent PV and wind power in the analysis but 

excluded the sizing of the storage system at the same time which may lead oversizing or 

under sizing of it. 

2.4 Network Reconfiguration Technique 

In literature [63], a multi-objective heuristic technique based on branch exchange was 

applied for reconfiguring the distribution networks in planning phase without considering 

any fault in the system to minimize the power losses and maximum branch current 
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maintaining operational constraints. Although the technique provided Pareto Front of 

switching sequences, still lacks in including some features like DGs consideration, priority 

list maintaining etc. The distribution system was reconfigured after initiating single fault to 

minimize power losses as a single objective function using improved Genetic Algorithm 

(IGA) where the uniform crossover was made in the reproduction process and shown a 

better result than GA in reference [64]. In this regard, the fault was initiated using Monte 

Carlo Simulation (MCS) and implemented in IEEE-69 bus system where the radiality 

constraint was maintained opening the number of branches exactly equal to the number of 

tie lines. Network reconfiguration after any disturbance needs to be within shortest possible 

time whilst technical aspects are maintained. 

The past work conducted in reference [65] focused to reduce the computational burden 

while tri-objectives optimization problem was formulated considering power losses, outage 

areas and switching operations to be minimized maintaining all technical aspects. In this 

regard, penalty strategy was hybridized with normal GA to reduce the search space and 

shown better result compared to GA. They claimed that their method is applicable for online 

operation and tested in IEEE-33 bus system but didn’t mention the technical constraints and 

its ranges those were maintained. Also, the reference didn’t follow any probabilistic load 

model that is very practical as the load in power system is fully volatile in nature and 

ignored the DSM programs for an emergency. The Strength Pareto Evolutionary Algorithm 

2 (SPEA 2) was used to solve the bi-objective optimization problem considering total loads 

to be restored and time required for reconfiguring the network after occurring any single or 

multiple faults in [66]. They said that owing to using a sub-permutation technique in the 

SPEA 2 algorithm, search space was reduced and less time was required to terminate the 
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program whilst five technical constraints were followed and it was almost order of few 

minutes for a large practical system. They excluded the consideration of all the types of DGs 

and any DSM program to be implemented to the distribution system with any load shedding 

schedule following a specific way in case of necessity. Therefore, the inclusion of all these 

features in the algorithm will definitely increase the simulation time that may make the 

method unfeasible for online operation as they claimed. Also, the reference proposed the 

priority sequence will not be valid when two or more clients will be interrupted for their 

maximum allowed duration.  

Genetic Algorithm was used to reconfigure the microgrid considering RE generations and 

storage system following a priority sequence after fault occurrence in [67]. Although the 

method was tested in Real Time Digital Simulator (RTDS) software which was real-time 

implementation and they claimed satisfactory results, they didn’t stochastically model the 

load and RE generations which is weather dependent and volatile in nature. They chose 

deterministic value rather optimizing the sizes and locations of DGs and storage system and 

changed the structure of the topology to minimize the disconnected loads. The algorithm 

offered the islanded mode operation of the network which is a vital feature of microgrid but 

didn’t take into account the DSM programs in case of necessity. In the past work [68], four 

objective functions were optimized simultaneously using Genetic Algorithm following 

priority sequence without any other extra features to reconfigure the distribution network 

after fault occurrence. 

In the recent days, the technological development has changed the vision of the power 

clients to receive electricity from uninterrupted and highly reliable source for making a safe 

coherence between their life and the technologies that are using. This is because the utility 
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companies are also trying to supply electricity to their customers fulfilling the customer’s 

satisfaction level. Also, the deregulated concept in the electricity market has increased the 

competition among the utility companies that results in an increase of awareness of the 

companies towards the reliable supply electricity to their customers. As a result, different 

artificial intelligent techniques are being used for both mode of operations – online or 

offline – to improve the distribution topology by reconfiguring and restoring the maximum 

number of loads after any fault. In this case, reducing the simulation burden, minimizing 

power losses and switching operations after reconfiguration, considering priority sequence, 

sizing, and locating of DGs are considered to be optimized following operational constraints 

which make the system multi-objectives and multi-constraints type of problem. The 

techniques those were included in the literature in optimizing these fleet of objectives were 

the binary PSO [69], NSGA [60], hybrid PSO and Tabu search [70], GA [21], [71]–[73], 

NSGA-II [74], Invasive Weed Optimization Algorithm [61], Harmony Search Algorithm 

(HSA) [22], Ant Colony Algorithm (ACA) [24], Evolutionary Programming (EP) [75], 

Combination of Fuzzy-Genetic Algorithm [76] and Improved Genetic Algorithm (IGA) [77] 

etc. 

2.5 Restoration Priority Listing 

A proficient power restoration technique has become a necessity in recent days to improve 

the reliability of distribution networks for synchronizing the society’s need in case of 

reducing the interruption costs and supplying secured and sustainable power to them. One of 

the aspects of the efficient restoration process is the prioritizing the load importance from 

the critical label to normal loads, even for the loads, those can be curtailed by paying 

penalty whenever an outage occurs. Importance of the loads is expressed as a numerical 
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value by assigning their weights and ranked according to their weighted values what are 

considered as the input of power restoration process. 

But, the importance of load is dynamic in nature (i.e. time-dependent) that will be updated 

with time. For instance, the feeder that connects some institutions must get higher priority 

during the daytime whereas at nighttime the scenario will be reversed. This importance 

depends on several factors – the number of connected customers; can be represented by 

SAIFI and SAIDI, the amount of energy consumed by the loads which can be represented 

by ENS and cost of interruptions. Besides, this load prioritizing procedure considers the 

criticality of loads and demand side management (DSM) programs by positively or 

negatively adding some weights with original numerical importance and similarly some 

other factors.  

The customers who are defined as priority customers (PCs) – include hospitals, fire services, 

information center, banks, security departments, large factories and so on, cannot be 

alleviated their loss at the time of power failure. Therefore, it is necessary to restore those 

customers as shortest time as possible. These customers are commonly connected to the 

microgrid systems. In case of criticality, priority is given regardless the amount of power 

consumed or the number of customers is connected. For instance, a hospital will get more 

preference to be restored with power connection within quickest possible time than any 

other loads either consuming a large amount of power or a large number of customers are 

connected. Obviously, priority classification will consider the importance of that 

corresponding load; definitely the information center will be more preferred than the banks 

although both are priority type customers. Again, the governmental offices will get more 
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preference during weekdays than the weekend or office hours will be considered the more 

preferred time to restore immediately than when it is not the office hours (i.e. nighttime). 

Currently, the restoration process is made based on operator judgment prioritization which 

is not dynamic prioritization process and the resulted decisions may have a negative impact 

on the distribution networks in case of reliability or may cause a big loss. Some past works 

were conducted considering only simple importance level. Multi-objective service 

restoration technique was proposed considering priority customers (PCs) which was tested 

in small real-time Brazilian distribution system [78]. Artificial Neural Networks (ANN) 

based restoration problem was proposed, tested, and examined on a 162-bus system [79]. 

Although its real-time implementation made the proposed approach significant, the method 

still has a lack of precision owing to not implementing the priority list in it. 

In reference [80]–[82], all the priority listed consumers were considered as the same level of 

important loads and put a single higher priority group for differentiating them from others 

where criticality was neglected for any of the loads. Risk priority based transformer 

replacement or repairing was conducted in reference [83] where only a single type of risk – 

number of customers out of service – was considered for the restoration process. In addition, 

multi-priority levels were considered for priority listing based restoration process in [84], 

[85]. Arguably the restoration process considering priority list was better than without 

priority list; still, it has lack of being fully precise and dynamical priority list.  

Therefore, most of the aforementioned priority listing based restoration algorithm 

implemented the multi-objective evolutionary technique for making it a self-healing 

restoration process. In this case, one of the objectives was the priority customer listing 
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which lacked its precision due to less reflection of dynamical behavior. In this work, a 

priority listing approach is proposed including several levels of importance which is more 

than three with demand side management programs and level of criticality. 

Moreover, time of the power consumption is considered in several categories – weekdays, 

weekend, office hours, off-period office hours, vacations for the institutional loads and 

seasonal effects, to make the list full of dynamic using one-hour time frame. In this case, the 

fuzzy compromised approach is implemented to assign a numerical membership value for 

each load considering four objectives – SAIFI, SAIDI, ENS and hourly cost of interruptions 

for a year mission time. 

Although the past literature focused to increase the reliability of distribution networks 

through the implementation of different artificial intelligent (AI) techniques in optimizing 

the different objective functions, – such as sizing and sitting of DGs including renewable 

energies, load shedding schedule, reconfiguring topological structure, minimizing 

simulation time, switching operations, SAIFI, SAIDI, ENS, costs and power losses etc. – 

still, there is a lack of research. Because, according to the author’s knowledge, no previous 

work evaluated the combined effect of at least the crucial objectives so that the DN can be 

considered as a perfect microgrid – the smart grid in a broader view. 

It is already mentioned that the distribution network reconfiguration is a multi-objective and 

multi-constraint optimization problem. Therefore, this work has been formulated as a tri-

objectives optimization problem in scalar form and Improved Binary Genetic Algorithm 

(IBGA) is used to optimize this problem. The work has considered four types of DGs – PV, 

wind turbine, storage system, and diesel generator – to be connected with the reconfigured 
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topology while the diesel DG is considered to be connected with the network in case of 

unavailability of total supply. The peak clipping (PC) DSM schedule and priority sequence 

have been included in this work where the priority list problem is formulated using 

intelligent technique considering five factors – SAIFI, SAIDI, ENS, interruption costs and 

DSM effect at each load point. In the final stage, one or more loads are shedded in needs 

according to the hourly priority list while all the operational constraints are fulfilled. Loads 

are modeled stochastically considering its volatile nature using standard deviation and 

historical mean values. Solar radiation, wind speed, and temperature are forecasted using 

Fuzzy Time Series-Markov Chain model based on historical value while a one-hour 

resolution is taken over one-year simulation period. Then the PV power is calculated using 

De Soto’s 5-Parameter model [86] whereas the wind power is calculated using simple wind 

power model [44].  Moreover, the storage system is sized intelligently depending on how 

much percent of total load will be supplied using the solar system and wind turbine for 

ensuring a specific level of reliability (i.e. 0.99 or 0.999 …).  

Though the full capacity supply is considered for RE DGs, the diesel generator output is 

optimized in between the minimum and maximum capacity. For the case of the storage 

system, if the sum of total initial lost units during the considered outage period is less than 

the size of the storage, then the amount of storage output will be supplied at each hour to the 

network which is equal to the total lost load for that corresponding hour. Meanwhile, if the 

sum of total initial lost units during the considered outage period is more than the size of the 

storage, then the power from the storage will be supplied to the network at each hour during 

the outage period according to the hourly total post-fault lost load.  
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Finally, locations are also optimized for all DGs and DSM implementation. So far the 

author’s knowledge, no past works have taken into account all the features together those 

are considered in this research to reconfigure the distribution networks to make it perfect 

microgrid – the ultimate smart grid in future. 
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CHAPTER 3 

SYSTEM MODELING AND MODEL EVOLUTION 

3.1 Forecasting Technique Modeling 

Storage-based PV-Wind power sources will be more dispatchable for improved reliability in 

accordance with increasing the accuracy of forecasting the data, e.g., temperature data, solar 

radiation data, wind speed and load data. To achieve this goal, researchers are interested in 

the fuzzy time series technique for time series data rather than using the conventional 

technique for forecasting precisely that was first proposed by Song and Chissom [87]. In 

this case, the fuzzy logic theory is implemented in time series data known as fuzzy time 

series for forecasting a wide range of data categories more accurately as a linguistic value. 

In reference [88], authors have implemented the first order fuzzy time series to predict the 

enrollments of the University of Alabama, USA, whereas [89] predicts the temperature and 

Taiwan Future Exchanges (TAIFEX) using the same method and shows the method’s 

accuracy. The same method on a higher level is used to forecast the temperature and Taiwan 

Future Exchanges in [90].  

On the other hand, fuzzy time series is combined with the Markov chain model to forecast 

the data to increase its feasibility and accuracy in references [91]–[93]. Their primary focus 

was to forecast the temperature. But reference [94] utilizes a first order fuzzy time series-

Markov chain to forecast the exchange rate between Taiwan and US Dollars, where the 

authors have compared and shown the lowest error (MAPE is 1.4042%) of this method. 
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Also, it is a free data pattern forecasting technique that is necessary for other forecasting 

techniques, i.e., Weibull, Ryleigh, exponential distributions, etc. 

Because of the wide usability and accuracy of the proposed modified fuzzy time series-

Markov chain-based forecasting technique, temperature, wind speed and solar radiation are 

predicted using this technique for reliability improvement analysis. A brief theoretical 

overview of this forecasting technique is discussed below. 

3.1.1 Fuzzy Time Series-Markov Chain Model 

Let 𝑈(𝑡) (𝑡 = ⋯ ,0, 1, 2, 3, … . ) be a universe of discourse which is a subset of real number 

R. Assume that the universe of discourse 𝑈(𝑡) defines 𝑔𝑖(𝑡) (𝑖 = 1,2, … ) and 𝐺(𝑡) consists 

of 𝑔𝑖(𝑡) (𝑖 = 1,2, … ). Then 𝐺(𝑡) is known as a fuzzy time series of 𝑈(𝑡) (𝑡 =

. . ,0, 1, 2, 3, . . ). In this case, 𝐺(𝑡) = 𝐺(𝑡 − 1)°𝑅(𝑡, 𝑡 − 1), where 𝑅(𝑡, 𝑡 − 1) is the fuzzy 

relationship and ‘ᴼ’ is known as the max-min composition operator; then 𝐺(𝑡) is caused by 

𝐺(𝑡 − 1) and it is written as 𝐺(𝑡 − 1) → 𝐺(𝑡), where 𝐺(𝑡 − 1) & 𝐺(𝑡) are the fuzzy sets. 

If the data are time-invariant as this work has dealt with, in this case, the relationship can be 

written as: 𝐺(𝑡) = 𝐺(𝑡 − 1). If time series data 𝐺(𝑡) is represented by 𝐵𝑖 and 𝐺(𝑡 − 1) is 

represented by 𝐵𝑗 where 𝑘𝑡ℎ data is included in the fuzzy relationship group and 𝐵𝑗 and 

(𝑘 + 1)𝑡ℎ are included in 𝐵𝑖, then the fuzzy logical relationship within the universe of 

discourse can be written as "𝐵𝑗 → 𝐵𝑖". In case of these two fuzzy logical relationship 

groups, 𝐵𝑗 is considered the current state of the Markov chain transition diagram and 𝐵𝑖 is 

the next state of the Markov chain transition diagram, where 𝑖 , 𝑗 = 1, 2, 3, … . . 𝑛. According 

to the fuzzy relationship, if a state 𝐵3 makes transitions to the other states within the 



25 

 

universe of discourse, like 𝐵3 → 𝐵3, 𝐵3 → 𝐵4, 𝐵3 → 𝐵5, … .. then it can be written as 𝐵3 →

𝐵3, 𝐵4, 𝐵5, … .. for the data are included within the groups. 

Let us now explain how we can define the universe of discourse and fuzzy group of 

intervals for all the historical data within the universe. If 𝐷𝑚𝑎𝑥  and  𝐷𝑚𝑖𝑛 are the maximum 

and minimum values for specific historical data respectively, then the universal discourse 

for this historical data type can be defined as [(𝐷𝑚𝑖𝑛 − 𝐷1),    (𝐷𝑚𝑎𝑥 +𝐷2)], where 

𝐷1 and 𝐷2 are small positive values including zero but depending on the historical data type. 

Now we can partition the universal discourse, U, into several equal intervals which actually 

represent the fuzzy logical groups with the maximum and minimum limits of each group. In 

this case, it can be written as 𝑘 =  [(𝐷𝑚𝑎𝑥 + 𝐷2) − (𝐷𝑚𝑖𝑛 − 𝐷1) ]/𝑁, where N is the 

number of intervals. Therefore, the partitioned intervals for the universe are obtained as: 

𝑚1 = [(𝐷𝑚𝑖𝑛 −𝐷1),   (𝐷𝑚𝑖𝑛 − 𝐷1 + 𝑘)], 

𝑚2 = [(𝐷𝑚𝑖𝑛 − 𝐷1 + 𝑘),   (𝐷𝑚𝑖𝑛 − 𝐷1 + 2𝑘)], 

……………………………………….. 

𝑚𝑁 = [(𝐷𝑚𝑖𝑛 − 𝐷1 + (𝑁 − 1)𝑘),   (𝐷𝑚𝑎𝑥 + 𝐷2)]. 

As this work has considered a one-step first-order fuzzy time series-Markov chain model, 

therefore, fuzzy logical relationship groups can be written in terms of fuzzy intervals for 

fuzzification as: 

𝐵1 ≡ 𝑚1, 𝐵2 ≡ 𝑚2, … . . , 𝐵𝑁  ≡ 𝑚𝑁. 
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Let a dataset have the “Z” number of data points collected considering a fixed resolution 

time period within a period of discourse. If "𝑛1" numbers of data points at different time 

positions among “Z” data points are included in fuzzy logical interval group 𝐵𝑖 state, all the 

"𝑛1" data points transit to the next time positions from their current time positions. 

The data points of the next time positions are included in three fuzzy logical group states, 

e.g., 𝐵(𝑖+2), 𝐵𝑖 &  𝐵(𝑖+3) among all fuzzy logical group states (𝐵𝑁) and "𝑛2" numbers of the 

next time position’s data points among "𝑛1" data points of the next time positions are 

included in 𝐵(𝑖+2). Similarly, "𝑛3"  and "𝑛4" data points of the next time positions are 

included in 𝐵𝑖 and  𝐵(𝑖+3) logical group states respectively, where 𝑛1 = 𝑛2 + 𝑛3 + 𝑛4. Then 

the transition probability from fuzzy logical state 𝐵𝑖 to fuzzy logical state 𝐵(𝑖+2) in a 

Markov chain logical state transition diagram is 𝑃𝑖,(𝑖+2) =
𝑛2

𝑛1⁄ . Similarly, the other two 

transition probabilities can be written as 𝑃𝑖,𝑖 =
𝑛3

𝑛1⁄  and  𝑃𝑖,(𝑖+3) =
𝑛4

𝑛1⁄  since the total 

number of transitions from state 𝐵𝑖 are "𝑛1". In the case of transiting from 𝐵𝑖 state to other 

states, the Markov chain logical state transition diagram is shown in figure 3.1.  

 

Figure 3.1: Fuzzy Time Series-Markov Chain State Transition Diagram 
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Therefore, the transition probabilities from state 𝐵𝑖 to all other logical states are zero (i.e., 

𝑁 − 3 states have zero transition probabilities). The transitions from other states in figure 

3.1 will occur accordingly. Now the state transition matrix can be represented for the whole 

system of fuzzy time series-Markov chain state transition diagram thusly: If the total 

number of transitions from 𝑖𝑡ℎ state to all other states are 𝑇𝑖 and individual state transitions 

from 𝑖𝑡ℎ state to 𝑗𝑡ℎ state are 𝑇𝑖,𝑗  𝑎𝑛𝑑  𝑖, 𝑗 = 1, 2, 3, …., then the fuzzy logical Markov chain 

transition probability matrix can be written as: 

𝑃 =  

[
 
 
 
 
𝑃11    𝑃12    𝑃13  ……𝑃1𝑁
𝑃21    𝑃22    𝑃23… …𝑃2𝑁
………………… . .
………………… . .

𝑃𝑁1   𝑃𝑁2   𝑃𝑁3 . . … . 𝑃𝑁𝑁]
 
 
 
 

                         (3.1) 

where 

𝑃𝑖𝑗 = 
𝑇𝑖𝑗

𝑇𝑖
 , 𝑖, 𝑗 = 1, 2, 3, … .𝑁 

Data are forecasted using this technique based on historical data in two steps. 

Step 1: If time series data 𝐺(𝑡 − 1) is included in logical state 𝐵𝑖 and there is no transition 

from this state (It is only possible for the last state but not strictly always) to any other state, 

then it can be represented as: 𝐺(𝑡 − 1) ≡ 𝐵𝑖 →  ∅, an empty state. In this case, forecasting 

of data for the next time position is defined as: 

𝐺(𝑡) =  ℎ𝑖,        𝑖 = 1, 2, … ,𝑁        (3.2) 

where 

ℎ𝑖 is the mid-point of fuzzy logical interval group 𝐵𝑖. 
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Step 2: If time series data 𝐺(𝑡 − 1) is included in logical state 𝐵𝑖 and makes the transition, 

then it can be represented as: 𝐺(𝑡 − 1) ≡ 𝐵𝑖. In this case, two cases are considered and the 

row vector of the fuzzy logical Markov chain transition probability matrix, 

[𝑃𝑖1    𝑃𝑖2    𝑃𝑖3  …… . 𝑃𝑖𝑁], is used to forecast the next time position data 𝐺(𝑡). 

Case 1: If the transition occurs from fuzzy logical interval group 𝐵𝑖 as a one-to-one 

condition (e.g., 𝐵𝑖 → 𝐵𝑗 with 𝑃𝑖𝑗 = 1 𝑎𝑛𝑑 𝑃𝑖𝑟 = 0 𝑓𝑜𝑟 𝑗 ≠ 𝑟, as the sum of each row of the 

probability matrix is always unity), then the forecasting of data of the next time position is 

defined as: 

𝐺(𝑡) = ℎ𝑗𝑃𝑖𝑗 = ℎ𝑗                                                (3.3) 

where 

ℎ𝑗  is the mid-point of fuzzy logical interval group 𝐵𝑗. 

Case 2: If the transitions occur from fuzzy logical interval group 𝐵𝑖 as a one-to-many 

condition (e.g., 𝐵𝑖 → 𝐵1, 𝐵2,. . 𝐵𝑁 , meaning that at least two states exist among “N” states 

and 𝑖 = 1, 2, . . 𝑁), then the forecasting of data for the next time position is defined 

according to the proposed modified equation as: 

𝐺(𝑡) = ℎ1𝑃𝑖1` + ℎ2𝑃𝑖2 +⋯+ ℎ𝑖−1𝑃𝑖(𝑖−1) + (
𝑈(𝑡−1)+𝑈(𝑡)

2
)𝑃𝑖𝑖 + ℎ𝑖+1𝑃𝑖(𝑖+1) +⋯+ ℎ𝑁𝑃𝑖𝑁        (3.4) 

where 

ℎ1, ℎ2, … . . , ℎ𝑁 are the mid-points of fuzzy logical interval groups 𝐵1, 𝐵2, … , 𝐵𝑁. 

In this case, this equation is modified to use the diagonal element of the fuzzy logical 

Markov chain transition probability matrix by replacing ℎ𝑖 with the average of the historical 
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data of the current time position and the next time position instead of using only the 

historical data of the current time position. It thus reflects a more accurate prediction, as we 

have considered each fuzzy logical interval group as a state instead of considering each time 

position data as a state. 

Since there may occur some transitions between two-time positions data of different values, 

both the time positions data are included in same fuzzy logical interval group, which will 

translate transition in the same state. The example in table 3.1 will clarify the forecasting 

process. 

Table 3.1: Sample Historical Values & Fuzzification 

Time Time Series Data & 

Fuzzification 

Universal Discourse & Fuzzy 

Groups 

1 5 (B1)  

D1=1, D2=1 

U = [(5-1)  (15+1)] = [4   16] 

k = (16-4)/(N=6) = 2; 

m1 = [4   6] 

m2 = [6   8] 

m3 = [8     10] 

m4 = [10   12] 

m5 = [12   14] 

m6 = [14   16] 

2 6 (B1) 

3 6 (B1) 

4 7 (B2) 

5 9 (B3) 

6 12 (B4) 

7 6 (B1) 

8 6 (B1) 

9 14 (B5) 

10 15 (B6) 

 

According to the example in table 3.1, the fuzzy logical relationship for the first state 𝐵1 is 

𝐵1 → 𝐵1, 𝐵1, 𝐵1, 𝐵2, 𝐵5. Now, if we want to forecast at time 2, then it will be  
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𝐺(2) =  (
5 + 6

2
) ∗

3

5
+ 7 ∗

1

5
+ 0 + 0 + 13 ∗

1

5
= 7.3 

where 

the total number of transitions from state one is five. 

3.1.2 Implementation of Fuzzy Time Series-Markov Chain Model 

For forecasting the temperature, solar radiation and wind speed, hourly historical data are 

collected for 365 days. In this case, length of all data categories was the same, as one of the 

objectives of this study is to discover the charging-discharging process of the battery. The 

right histogram in figure 3.2 approximates the histogram of the forecasted temperature of 

365 days, and the historical temperature is shown in the left side in figure 3.2, with mean 

square error (MSE) 169.37% using the proposed technique, whereas the other methods (i.e., 

Weibull, Ryleigh, exponential distributions) show the MSE at more than 1100%. 

Though the temperature has a seasonal effect, this study has considered the seasonal effect 

only for predicting the solar radiation where four seasons are considered consecutively 

starting from January 1. After predicting the radiation of all the seasons, it is combined to 

make a complete year (365 days) of solar radiation data, where the algorithms are fitted to 

make the unity probability for predicting the radiation at nighttime (13 hours) always equal 

zero, which is the practical scenario. 

The left two figures in figure 3.3 and figure 3.4 show the histograms of historical solar 

radiation data for season 1 and the whole year respectively, whereas the right ones in figure 

3.3 and figure 3.4 approximate them respectively and are almost identical to the historical 

data. 
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Figure 3.2: Histogram of Hourly Daytime & Nighttime Temperature of One Year 

 

Figure 3.3: Histogram of Hourly Daytime & Nighttime Radiation of 1st Season (91 Days)  
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Figure 3.4: Histogram of Hourly Daytime & Nighttime Radiation of One Year 

The left histogram in figure 3.5 shows the actual wind speed, whereas the histogram of the 

forecasted wind speed is shown in the right.  

Since the fuzzy time series-Markov chain technique is a free data pattern forecasting 

technique, the histogram on the right side in figure 3.5 approximates an almost identical 

histogram on the left side that is the histogram of historical wind speed data. As a result, 

error due to forecasting using this technique is lower than the error due to using the other 

forecasting techniques (i.e., Ryleigh and exponential distributions, and even Weibull 

distribution). 
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Figure 3.5: Histogram of Hourly Wind Speed of One Year 

3.2 Photovoltaic (PV) DG Model 

We know that the PV power depends not only on solar radiation and PV cell characteristics 

but also on the temperature that makes hot cells, which results in a reduction of PV power 

generation from same amount of radiation that generates PV power from cool cells. 

Temperature also reduces the efficiency of PV panels. In the literature, it is mentioned that 

the voltage of a PV panel is reduced typically by 0.35%-0.5% for each degree Celsius of 

temperature increase [95]. 

As the effect of changing the temperature on currents is very low, it can be assumed that PV 

power is reduced typically by 0.35%-0.5% due to increasing each degree Celsius of 

temperature. Effect of temperature on solar PV power generation is shown in reference [96], 

where it is claimed that performance of solar PV cells is better on cold and sunny days than 
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on sunny and hot days. Therefore, to make an effective microgrid system, temperature effect 

is effectively included in the reliability analysis of the distribution network (DN) through 

extracting PV power considering De Soto’s 5-Parameter model [86], which was not taken 

into account in past works for reliability analysis of the DN. In this case, the manufacturers 

provided data, and fuzzy time series-Markov chain-based forecasted solar radiation and 

temperature are used. This model considers the effect of a hot or cold sunny day, including 

the PV cell temperature effect, to extract PV power under different ambient conditions. The 

solar PV model is characterized using five parameters proposed by De Soto, whose 

equivalent circuit is shown in below: 

 

Figure 3.6: 5-Parameter Model Equivalent Circuit 

The voltage-current relation of this model is given by equation (3.5): 

𝐼𝐴 = 𝐼𝐿 − 𝐼𝑜 [𝑒
(𝑉𝐴+𝐼𝐴𝑅𝑠)

𝑎 − 1] −
𝑉𝐴+𝐼𝐴𝑅𝑠

𝑅𝑝
           (3.5) 

where 

𝐼𝑜 is the reverse saturation current for the diode, 𝐼𝐿 is light current, 𝑅𝑝 is the shunt 

resistance, 𝑅𝑠 is the series resistance of the Solar photovoltaic (PV) model, and 𝑎 is ideality 

factor. After obtaining the five parameters (𝐼𝐿 , 𝐼𝑜 , 𝑎, 𝑅𝑠, 𝑅𝑝), normally under standard test 
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conditions (STC), I-V characteristic curve and P-V characteristic curve can then be 

obtained. To obtain these two curves at other radiations and temperatures, it is necessary to 

calculate the parameters at the corresponding ambient conditions that relate to the changing 

of STC condition, which are expressed by the equations (3.6)-(3.11) [97]: 

𝐼𝐿 = (
𝐺

𝐺0
) [𝐼𝐿0 + 𝛼𝐼,𝑠𝑐(𝑇𝑐 − 𝑇𝑐0)]                (3.6) 

𝐼𝑜 = 𝐼𝑜0 (
𝑇𝑐

𝑇𝑐0
)
3

𝑒
[
𝐸𝑔0

𝐾𝑇𝑐0
−
𝐸𝑔

𝐾𝑇𝑐
]
             (3.7) 

𝐸𝑔 = 1.17 − 4.73 × 10
−4 (

𝑇𝑐
2

𝑇𝑐+636
)            (3.8) 

𝑅𝑝

𝑅𝑝0
=

𝐺0

𝐺
                     (3.9) 

𝑅𝑠 = 𝑅𝑠0                   (3.10) 

𝑎

𝑎0
=

𝑇𝑐

𝑇𝑐0
                   (3.11) 

where 

𝑅𝑝0 & 𝑅𝑠0 are the shunt and series resistances of the solar PV model under STC 

successively, 𝐺0 is the total solar irradiance under STC, 𝐺 is the total solar irradiance under 

other conditions, 𝛼𝐼,𝑠𝑐 is temperature coefficient for the short circuit current, 𝐼𝐿0 is light 

current under STC, 𝐼𝑠𝑐0 is the short circuit current under STC, 𝐼𝑜0 is the reverse saturation 

current for the diode under STC, 𝐸𝑔0 is band gap energy of the material under STC,  𝐸𝑔 is 

band gap energy of the material under other conditions, 𝑇𝑐0 is the cell temperature under 

STC and 𝑇𝑐 is the cell temperature under other conditions. 
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Information provided by the manufacturers is used with equations (3.12)-(3.18) to calculate 

all five parameters under STC. 

0 = 𝐼𝐿0 − 𝐼𝑜0 [𝑒
𝑉𝑜𝑐0
𝑎0 − 1   ] −

𝑉𝑜𝑐0

𝑅𝑝0
          (3.12) 

𝐼𝑠𝑐0 = 𝐼𝐿0 − 𝐼𝑜0 [𝑒
𝐼𝑠𝑐0𝑅𝑠0
𝑎0 − 1   ] −

𝐼𝑠𝑐0𝑅𝑠0

𝑅𝑝0
         (3.13) 

𝐼𝑚𝑝0 = 𝐼𝐿0 − 𝐼𝑜0 [𝑒
(𝑉𝑚𝑝0+𝐼𝑚𝑝0𝑅𝑠0)

𝑎0 − 1   ] −
𝑉𝑚𝑝0+𝐼𝑚𝑝0𝑅𝑠0

𝑅𝑝0
        (3.14) 

𝐼𝑚𝑝0

𝑉𝑚𝑝0
=

𝐼𝑜0
𝑎0
𝑒

(𝑉𝑚𝑝0+𝐼𝑚𝑝0𝑅𝑠0)

𝑎0 +
1

𝑅𝑝0

1+
𝐼𝑜0𝑅𝑠0
𝑎0

𝑒

(𝑉𝑚𝑝0+𝐼𝑚𝑝0𝑅𝑠0)

𝑎0 + 
𝑅𝑠0
𝑅𝑝0

          (3.15) 

𝛽𝑇 =
𝜕𝑉𝑜𝑐

𝜕𝑇
=

𝑉𝑜𝑐−𝑉𝑜𝑐0

𝑇𝑐−𝑇𝑐0
            (3.16) 

𝑉𝑜𝑐 = 𝑉𝑜𝑐0 + 𝛽𝑇( 𝑇𝑐 − 𝑇𝑐0)                      (3.17) 

0 = 𝐼𝐿 − 𝐼𝑜 [𝑒
𝑉𝑜𝑐
𝑎 − 1   ] −

𝑉𝑜𝑐

𝑅𝑝
           (3.18) 

where 

𝐼𝑚𝑝0 and 𝑉𝑚𝑝0 are the maximum power point current and voltage under STC respectively. 

𝛽𝑇 is the temperature coefficient of the open circuit voltage, 𝑉𝑜𝑐. The temperature range for 

equation (3.16) is taken between 𝑇𝑐 = 𝑇𝑐0 − 17 and 𝑇𝑐 = 𝑇𝑐0 + 25. Equations (3.19) and 

(3.20) are used to obtain the maximum power point (MPP) current and voltage under any 

ambient condition, whereas equation (3.21) gives the cell temperature based on normal 

operating cell temperature (NOCT), ambient temperature, 𝑇𝑎𝑚𝑏, and irradiance level. 
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𝐼𝑚𝑝 = 𝐼𝐿 − 𝐼𝑜 [𝑒
(𝑉𝑚𝑝+𝐼𝑚𝑝𝑅𝑠)

𝑎 − 1   ] −
𝑉𝑚𝑝+𝐼𝑚𝑝𝑅𝑠

𝑅𝑝
        (3.19) 

𝐼𝑚𝑝

𝑉𝑚𝑝
=

𝐼𝑜
𝑎
𝑒
(𝑉𝑚𝑝+𝐼𝑚𝑝𝑅𝑠)

𝑎 +
1

𝑅𝑝

1+
𝐼𝑜𝑅𝑠
𝑎
𝑒
(𝑉𝑚𝑝+𝐼𝑚𝑝𝑅𝑠)

𝑎 + 
𝑅𝑠
𝑅𝑝

           (3.20) 

𝑇𝑐 = 𝑇𝑎𝑚𝑏 + 𝐺 (
𝑁𝑂𝐶𝑇−20

0.8
)           (3.21) 

After obtaining the forecasted temperature and solar radiation data, the 5-parameter model is 

used to calculate the PV output power for a specific PV panel model. In this case, the 

specification of this panel is provided by the manufacturer. To characterize the solar DG 

model, Canadian Solar Max Power CS6X-320P solar panel has been considered in this 

study. A comparison of 5-parameter model output with manufacturer’s specified output at 

two operating conditions – SRC and NOCT – is shown in table 3.2. 

Table 3.2: 5-Parameter Model Output and CS6X-320P Datasheet Specification [98] 

Operating Point Parameters 320P Datasheet Model 

 Pmax (W) 320 318.97 

SRC Vmpp (V) 36.8 36.79 

1000 W/m2 Impp (A) 8.69 8.67 

25oC VOC (V) 45.3 45.33 

 ISC (A) 9.26 9.27 

 Pmax (W) 232 234.91 

NOCT Vmpp (V) 33.6 33.80 

800 W/m2 Impp (A) 6.91 6.95 

47oC VOC (V) 41.6 42.24 

 ISC (A) 7.50 7.48 
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As the 5-parameter model is flexible enough to learn the PV power output at different 

operating conditions, hourly MPP PV power samples are calculated at other ambient 

conditions for the whole year, using two main equations, (3.19) and (3.20). Then the 

necessary number is multiplied with the output to obtain the desired level of PV power for 

this study to evaluate the reliability of DN. A year output profile of the solar PV power is 

shown in figure 3.7. 

 

Figure 3.7: Hourly PV Power Output for a Year Using 5-Parameter Model 

3.3 Wind DG Model 

Wind turbine output power mainly depends on wind speed, expressed by equation (3.22) 

[44]. 

𝑃𝑜𝑢𝑡(𝑣) = {

0,                                 𝑣 ≤ 𝑣𝑐𝑖 ∪ 𝑣 ≥ 𝑣𝑐𝑜

    𝑃𝑅
𝑣3−𝑣𝑐𝑖

3

𝑣𝑅
3−𝑣𝑐𝑖

3 ,                    𝑣𝑐𝑖 < 𝑣 < 𝑣𝑅             

     𝑃𝑅 ,                               𝑣 ≥ 𝑣𝑅                        

        (3.22) 
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where 

For a specific wind turbine, 𝑣𝑐𝑖 is the minimum speed for wind power – cut-in speed, 𝑣𝑐𝑜 is 

the maximum speed for wind power – cut-out speed, 𝑣𝑅 is the rated wind speed, 𝑃𝑅 is the 

rated wind power, 𝑃𝑜𝑢𝑡 is the output power of that wind turbine and v is the wind speed. 

As the wind power is volatile in nature and this work is conducted considering all stochastic 

conditions, following this practical situation, wind speed is forecasted using the Fuzzy Time 

Series-Markov Chain forecasting model.  

The appropriate parameters for the selected wind turbine are specified and represented in 

table 3.3. 

Table 3.3: Wind Turbine Parameters 

𝑣𝑐𝑖 1.2 m/s 

𝑣𝑅 9 m/s 

𝑣𝑐𝑜 25 m/s 

𝑃𝑅 11 kW 

 

After obtaining the forecasted wind speed, wind power is calculated using equation (3.22). 

Similar to the consideration of PV power, a desired value of wind power is also considered 

to evaluate the reliability of DN. A year output profile of the wind power per unit is shown 

in figure 3.8. 



40 

 

 

Figure 3.8: Hourly Wind Power Output for a Year 

3.4 Load Model 

Sequential hourly load for a year will be modeled in this work following the load modeling 

mechanism explicitly illustrated in reference [99]. According to this approach, historical 

hourly mean values of the day, daily mean values of the week and weekly mean values of 

the year are used to form hourly load for the whole year. In this study, seven categories of 

load are assumed in the IEEE-33 bus distribution system to include the diversity effect (i.e., 

priority sequence) in the reliability analysis: residential, commercial, industrial, government 

office, institution, hospital and fire service loads. The hourly mean load values for a year 

can then be obtained by the following model equation: 

𝑀𝑒𝑎𝑛𝑘(𝑡) =  𝑃𝑤 ∗ 𝑃𝑑 ∗ 𝑃ℎ           (3.23) 
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where 

𝑀𝑒𝑎𝑛𝑘(𝑡) is the historical mean value of 𝑘𝑡ℎ load at 𝑡𝑡ℎ hour,  𝑃𝑤 , 𝑃𝑑  𝑎𝑛𝑑 𝑃ℎ represent the 

historical mean values for weeks of year (1,2, … 52), days of week (1,2,…7) and hours of 

day (1,2,…24) successively.  

After obtaining hourly historical mean values at each load point for a year, the uncertainty 

of load demand is included, generating mean values of all load points randomly using 

corresponding historical mean values based on normal distribution function. To comprehend 

the error between forecasted and actual values in long-term load forecasting that is referred 

to as about 15% in the literature [100]–[102], 15% of the mean is set equal to the three 

standard deviations. It does mean that the maximum deviation from mean value can then be 

no more than 15% if this mean value and standard deviation (SD) are used to generate 

random samples based on normal distribution function. Equations (3.24) - (3.25) are used to 

generate hourly random load samples for a year at each load point. 

3𝜕𝑘(𝑡) = 15% ∗ 𝑀𝑒𝑎𝑛𝑘(𝑡)           (3.24) 

𝐿𝑘(𝑡) = 𝑛𝑜𝑟𝑚𝑟𝑛𝑑(𝑀𝑒𝑎𝑛𝑘(𝑡), 𝜕𝑘(𝑡))         (3.25) 

where 

𝜕𝑘(𝑡) is the historical SD of 𝑘𝑡ℎ load at 𝑡𝑡ℎ hour, 𝐿𝑘(𝑡) is the randomly generated load 

sample of 𝑘𝑡ℎ load at 𝑡𝑡ℎ hour and “normrnd” is the MATLAB command for generating the 

random value based on normal distribution function.  

According to this load modeling technique, total residential load profile and overall load 

profile for IEEE-33 bus DN are represented in figures 3.9 and 3.10 successively. 
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Figure 3.9: Hourly Total Residential Load for a Year on Distribution Network 

 

Figure 3.10: Hourly Overall Load for a Year on Distribution Network 
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3.5 Storage System Model 

3.5.1 Modeling Charging-Discharging Procedure of Storage 

The probability of storage system charging and discharging for PV-wind-storage combined 

system power plant depends on the power generated by PV panels and wind turbines and the 

load required within a specified period of time with the probable conditions of a fully 

charged and fully discharged storage system. To maintain the charging or discharging mode 

of the storage system of the PV-wind-storage combined power plant means that the 

combined system is able to supply the load for this condition. Out of these two conditions, 

the storage system has the probability of maintaining more three conditions those conditions 

will determine the availability of the combined system. The PV-wind-storage combined 

power plant may maintain the condition when the battery is fully charged but the total PV 

and wind power is more than the load, or it may maintain the condition when the battery is 

either fully charged or fully discharged or in between but the total PV and wind-generated 

power is equal to the load power, or it may maintain the condition when the battery is fully 

discharged but the PV and the wind generate no power. Though these three conditions will 

not maintain any charging or discharging of the battery, the first two conditions will be able 

to supply the load whereas the last one will not power the load. 

In these conditions, the availability (A) can be defined as the probability (P) of supplying 

the load (L) by the combined generated PV and wind power or by the storage system or by 

both within a specified period of time. Therefore, the availability can be represented by 

equation (3.26). 

𝐴 = 𝑃((𝑃𝑉 +𝑊𝑖𝑛𝑑) ≥ 𝐿) ∪ 𝑃(𝑆𝑡𝑜𝑟𝑎𝑔𝑒 ≥ 𝐿) ∪ 𝑃((𝑃𝑉 +𝑊𝑖𝑛𝑑 + 𝑆𝑡𝑜𝑟𝑎𝑔𝑒) ≥ 𝐿)           (3.26) 



44 

 

𝐴 = 𝑃1 ∪ 𝑃2 ∪ 𝑃3              (3.27) 

where 

 𝑃1, 𝑃2, and 𝑃3 are the respective sequential probabilities used in equation (3.26). 

Considering the fully charged and fully discharged conditions of the battery, this availability 

definition reflects more justified charging or discharging condition of the battery than the 

availability definition used in [103]. The output of this availability equation will be 

calculated based on the transferred power between load and PV-wind power generation in 

the next section. In this case, the full charge of the battery will be partitioned into N discrete 

states and each state of the battery is defined by the state of charge (SOC). The energy 

between two adjacent states is separated by an amount of energy ∆ as here a one-hour power 

transferring period is considered for each observation, which will make it easy to represent 

the battery size and its units in “watt-hours”. As we have considered that the SOC between 

two adjacent states is separated by ∆, so the energy of any non-integer multiple of ∆ 

including only “0” integer will not cause a transition to the next or previous state for 

charging or discharging respectively. For example, if ∆ = 0.002 (pu) and energy transfer 

needed from a state is 0.005 or 0.001 (pu), then for 0.005, it will transit two times of ∆, 

which is equal to 0.004 and the rest of the energy, 0.001, will not cause a transit to the next 

state, as it is a non-integer of ∆. And in the case of 0.001, it will transit in the same state for 

the same cause. But in practice, there is always an instantaneous change for charging or 

discharging except in the full balanced PV-wind power generation with load and the fully 

charged and discharged conditions which have been mentioned earlier. Because of this 

complexity due to instantaneous state changing, we have considered discrete states. In this 
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case, making the choice of the value of ∆ as small as possible will closely reflect the 

instantaneous nature of state changing which has been considered in our availability 

analysis, as shown in figure 3.11.  

 

Figure 3.11: Markov-Chain Based Battery Charging-Discharging Transition Diagram 

In this case, if we need a larger size of storage for reliability-cost analysis, we can increase 

the number of states rather choosing the larger ∆.  

On the other hand, [103] has considered a discrete number of states but an instantaneous 

change of state between full charge and full discharge states, which makes all the diagonal 

elements equal to zero between fully charged and fully discharged states and contradicts its 

assumption. Because of this, they have made strictly equal the first two elements of the first 

column and last two elements of the last column of the Markov chain matrix. There may be 

some conditions when power transfer is less than |∆| or zero or near zero, but in all of these 

cases, they have considered a transition, though their assumption is discrete states for their 

reliability analysis, which is shown in figure 3.12. As the researchers are looking for 

availability up to five nines level, they must consider even the balanced PV power 

generation with the load, though its probability is very low. 
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Figure 3.12: Markov-Chain Based Battery Charging-Discharging Transition Diagram [103] 

Therefore, after some modifications in case of transiting in the same state, the state space of 

the charging-discharging storage model for PV-wind-storage system plant can be 

represented according to discussion and reference [103] as: 

𝑆 = [−𝑀∆,−(M − 1)∆,… ,−2∆,−∆, 0, ∆, 2∆,… , (M − 1)∆, M∆]                  (3.28) 

where 

The negative sign means that discharging is needed and the positive sign is the opposite 

case, whereas “0” means that no charging or discharging is necessary – the load and 

generation are balanced. The storage capacity can then be defined as [103]: 

𝐶 = (𝑁 − 1)∆T             (3.29) 

where 

T is the energy exchanging period for which 1 hour is chosen for simplicity. 

According to the state transition diagram in figure 3.11, 𝑘11 and  𝑘𝑁𝑁 are the probabilities 

of staying in state-1 and state-N respectively after the transition in the next time step, which 
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are the full discharged and charged states. When the battery is in state-1 and the transferring 

of energy to or from the battery is needed, less than |∆| or equal to -∆ or -2∆ …or - M∆ or 

even more than -M∆ will result in staying in state-1 in the next time step and the same case 

will occur for 𝑘𝑁𝑁 but for the opposite condition. 

On the other hand, transition in the same state except first and last states will occur when the 

transferring of energy is less than |∆|. As a result, the probability of transiting in the same 

state in the next time step for all states except first and last states will be same and it can be 

written for figure 3.11 as  

𝑆22 = 𝑆33 = ⋯… = 𝑆(𝑁−1)(𝑁−1) = 𝑄              (3.30) 

In accordance with the Markov-chain based battery charging-discharging state transition 

diagram in figure 3.11, the probability of charging energy between any two adjacent states 

(e.g. probability of charging energy (E) between the ranges 𝑃(∆≤ 𝐸 < 2∆)) is represented 

by 𝑝1; similarly, 𝑝2 = 𝑃(2∆≤ 𝐸 < 3∆). . 𝑝𝑀−1 = 𝑃((𝑀 − 1)∆≤ 𝐸 < 𝑀∆) and 𝑝𝑀 =

𝑃(𝐸 ≥ 𝑀∆). Meanwhile, the probability of discharging for the same cases are denoted as  

𝑝−1, 𝑝−2, … . , 𝑝−(𝑀−1), 𝑝−𝑀,     &  𝑀 = 𝑁 − 1. 

According to the state transition diagram, state of charge (SOC) of a battery can be changed 

from any of the N states to any of the other states or it can stay in the same state for either 

charging or discharging within a specified period of time (1 hour for our case). Therefore, 

the sum of all probabilities for changing SOC from batteries in any state always must be 

one. The probabilities of energy transferring cause the transition from any of the N states to 

any of the other states or the same state, whose “State Space” can be written as: 
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𝑃𝑆 = [𝑝−𝑀, 𝑝−(𝑀−1), … . , 𝑝−2, 𝑝−1 , 𝑄, 𝑝1, 𝑝2, … . , 𝑝(𝑀−1), 𝑝𝑀]        (3.31) 

Therefore, the identity can be written for the probability of transition from any state which 

represents each row of the transition matrix (N rows for N states) as: 

𝑝−𝑀 + 𝑝−(𝑀−1) + …+ 𝑝−2 + 𝑝−1 +  𝑄 + 𝑝1 + 𝑝2 +⋯+ 𝑝(𝑀−1) + 𝑝𝑀 = 1      (3.32) 

Therefore, 𝑁 × 𝑁 order transition probability matrix can be represented by equation (3.33) 

for the charging-discharging model of the battery where the first column represents the SOC 

when the battery will enter into fully discharged condition. Then, each ∆ amount of energy 

will be added successively with the current SOC to represent the next SOC till the fully 

charged state (𝑁𝑡ℎ state) is obtained, which represents the last column of the transition 

matrix. 

𝑃 =

[
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑝−𝑀 + 𝑝−(𝑀−1) + …+ 𝑝−2 + 𝑝−1 +  𝑄

𝑝−𝑀 + 𝑝−(𝑀−1) + …+ 𝑝−2 + 𝑝−1
𝑝−𝑀 + 𝑝−(𝑀−1) + …+ 𝑝−2

……… .
…………

𝑝−𝑀 + 𝑝−(𝑀−1)
𝑝−𝑀 ]

 
 
 
 
 
 

    

[
 
 
 
 
 
 

𝑝1
𝑄
𝑝−1
…
…

𝑝−(𝑀−2)
𝑝−(𝑀−1)]

 
 
 
 
 
 

     

[
 
 
 
 
 
 

𝑝2
𝑝1
𝑄
…
…

𝑝−(𝑀−3)
𝑝−(𝑀−2)]

 
 
 
 
 
 

… …

[
 
 
 
 
 
 
𝑝𝑀−2
𝑝𝑀−3
…
…
𝑄
𝑝−1
𝑝−2 ]

 
 
 
 
 
 

     

[
 
 
 
 
 
 
𝑝𝑀−1
𝑝𝑀−2
…
…
𝑝1
𝑄
𝑝−1 ]

 
 
 
 
 
 

     

[
 
 
 
 
 
 

𝑝𝑀
𝑝(𝑀−1) + 𝑝𝑀

…
…

𝑝2 +⋯+ 𝑝(𝑀−1) + 𝑝𝑀
𝑝1 + 𝑝2 +⋯+ 𝑝(𝑀−1) + 𝑝𝑀

 𝑄 + 𝑝1 + 𝑝2 +⋯+ 𝑝(𝑀−1) + 𝑝𝑀]
 
 
 
 
 
 

]
 
 
 
 
 
 
 

                    (3.33) 

Therefore, equation (3.33) can be written in the following form of equation (3.34): 

11 1 2 1

1 1 2 1

2 1 3 2

( 2) ( 3) 1 2

( 1) ( 2) 1 1

( 1) 2 1

... ... ...

... ... ...

... ... ...

... .. .. .. .. .. .. ...

... .. .. .. .. .. .. ...

... ... ...

... ... ...

... ... ...

M M

M M

M M

M M

M M

M M NN

k p p p p

g Q p p g

g p Q p g

P

g p Q p g

g p p Q g

p p p p p



  

   

   

    

    











 (3001 3001)

(3.34)
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where 

𝑘11 = 1 − ∑ 𝑝𝑖
𝑀
𝑖=1       (3.35) 

𝑘𝑁𝑁 = 1 − ∑ 𝑝−𝑖
𝑀
𝑖=1      (3.36) 

𝑔−𝑗 = 1 − (∑ 𝑝−𝑖
𝑗−1
𝑖=1 + 𝑄 + ∑ 𝑝𝑖

𝑀
𝑖=1 )   (3.37) 

𝑔𝑗 = 1 − (∑ 𝑝𝑖
𝑗−1
𝑖=1 + 𝑄 + ∑ 𝑝−𝑖

𝑀
𝑖=1 )   (3.38) 

where 

𝑝𝑖, 𝑝−𝑖  &  𝑄 will be calculated using energy transferring profile.  

According to the Markov chain property, in steady state condition, the limiting probabilities 

can be obtained using the relation [103]: 

𝜋 = 𝜋𝑃                          (3.39) 

Limiting probabilities indicate the Markov chain based charging-discharging procedure to 

be balanced (fixed) at those probabilities for the corresponding state. These limiting 

probabilities are used to calculate the loss of load probability (LOLP). The LOLP is the 

probability of the PV-wind-storage system’s unavailability to meet the load, which results in 

the transition of the battery into fully discharged state within a specified time period. 

Therefore, the probability of a PV-wind-storage power plant being unable to power the load 

can then be represented by [103]: 

𝑝𝑢 = ∑ [𝑝−𝑖 ∑ 𝜋𝑘𝑘≤𝑖 ]𝑀
𝑖=1              (3.40) 
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where 

𝑝𝑢 represents the probability of the situation of the PV-wind-storage system when it does 

not meet the load. If we change the size of the storage by varying either the number of states 

or ∆ or both at the same time this will change the parameters of the equation (3.40). As a 

result, the probability of unavailability (𝑝𝑢) will also be changed. 

3.5.2 Fuzzy Decision-Making Technique 

If the 𝑘𝑡ℎ Pareto solution of the 𝑖𝑡ℎ objective function, 𝐹𝑘𝑖 is represented by the membership 

function, 𝛽𝑘𝑖, then it is defined as  

𝛽𝑘𝑖 =

{
 

 
1,                              𝐹𝑘𝑖 = 𝐹𝑘𝑖

𝑚𝑖𝑛

𝐹𝑘𝑖
𝑚𝑎𝑥−𝐹𝑘𝑖

𝐹𝑘𝑖
𝑚𝑎𝑥−𝐹𝑘𝑖

𝑚𝑖𝑛   ,      𝐹𝑘𝑖
𝑚𝑖𝑛 < 𝐹𝑘𝑖 < 𝐹𝑘𝑖

𝑚𝑎𝑥   

       0,                             𝐹𝑘𝑖 = 𝐹𝑘𝑖
𝑚𝑎𝑥       

        (3.41) 

where 

𝑘 = 1, 2, … ,𝑁𝑜. 𝑜𝑓 𝑃𝑎𝑟𝑒𝑡𝑜 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 and 𝑖 = 1, 2, … ,𝑁𝑜𝑏𝑗. 𝐹𝑘𝑖
𝑚𝑖𝑛  and 𝐹𝑘𝑖

𝑚𝑎𝑥 are 

the minimum and maximum value of the 𝑖𝑡ℎ objective function among the Pareto optimal 

solutions respectively, and 𝑁𝑜𝑏𝑗 is the number of objective functions. Therefore, the 

normalized membership function of the 𝑘𝑡ℎ Pareto optimal solution is written as below: 

𝛼𝑘 =
∑ 𝛽𝑘𝑖
𝑁𝑜𝑏𝑗
𝑖=1

∑ ∑ 𝛽𝑘𝑖
𝑁𝑜𝑏𝑗
𝑖=1

𝑀
𝑘=1

             (3.42) 

where 

M is the number of Pareto optimal solutions. 
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3.5.3 Calculation of Transition Probabilities 

Based on the predicted data, we calculate the transferred energy at each hour per unit that 

will fix the transition mode of the battery. In this study, 2.5% of the total predicted hourly 

load of the IEEE-33 bus DN is considered to be supplied by the PV-wind-storage system 

whenever an outage will occur whose average at each hour is 60.624 per unit. Therefore, we 

have considered a PV-wind power plant that generates an average of 123.92 per unit of 

energy at each hour when looking at 24 hours in each day, but 11 hours are considered to be 

generated in PV power each day. 

The transition probabilities depend on how much power is transferred in each hour and how 

many times the SOC of storage is changed due to the same amount of power transfer. 

Transferring of power can then be obtained by subtracting the load from PV-wind power 

generation for 24 hours in a day. The transferred power can be positive or negative, 

depending on the amount of power generated by the PV-wind system. The lagging of the 

PV-wind system is fulfilled by the battery till it becomes fully discharged. 

 𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝑃(𝑃𝑉+𝑤𝑖𝑛𝑑) − 𝑃𝐿𝑜𝑎𝑑           (3.43) 

In this case, if transferred power is negative then the battery goes into the discharging mode 

or the fully discharged mode and if transferred power is positive then the battery goes into 

the charging mode or the fully charged mode. But for finding the charging-discharging 

mode of the battery, reference [103] has combined the daytime and nighttime loads, which 

is not realistic. In addition, the referenced study didn’t consider the wind power. However, 

the histogram of transferred power in figure 3.13 will be used to find the transition 

probabilities for constructing the state transition matrix in equation (3.34). 
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Figure 3.13: Histogram of Power Transfer for 8760 Samples 

For instance, if the power transfer takes place in the range ∆≤ 𝑝𝑜𝑤𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 < 2∆ 54 

times out of a total 8760 times of power transferring, then the transition probability, 𝑝1, will 

be 54/8760 =  0.0062. In this work, 𝑁 = 3001 states have been considered. Table 3.3 

shows the transition probabilities for this work. 

Table 3.4: Transition Probability 

Probability of transition in same state, Q = 0.00034247 

Charging Transition Probabilities (𝑝𝑖) Discharging Transition Probabilities (𝑝−𝑖) 

𝒑𝟏 0 𝑝−1 0.0003 

𝒑𝟐 0 𝑝−2 0.0001 

………………. 

……………………….. 

………………. 

……………………….. 

𝒑𝟐𝟗𝟗𝟗 0.0001 𝑝−2999 0 

𝒑𝟑𝟎𝟎𝟎 0.0207 𝑝−3000 0 
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3.5.4 Transition Matrix and Limiting Probabilities 

After obtaining the transition probabilities, the transition matrix can be determined using 

equations (3.35) – (3.38), which is represented by equation (3.44). 

(3001 3001)

0.5523 0 0 ... 0 0.0001 0.0207

0.5519 0.0003 0 ... 0 0 0.0208

0.5516 0.0003 0.0003 ... 0 0 0.0208

... ... ... ... ... ... ...

0 0 0 ... 0.0003 0 0.4477

0 0 0 ... 0.0003 0.0003 0.4477

0 0 0 ... 0.0001 0.0003 0.4481

P



 
 
 
 
 

  
 
 
 
 
 

(3.44)

 

Whenever we have the transition matrix, we can determine the steady state limiting 

probabilities using the relation (3.39). In MATLAB, limiting probabilities can be found by 

increasing the power of the transition matrix till all the rows of the output matrix of the 

powered transition matrix become the same. Then any row of this output matrix represents 

the limiting probabilities and any 𝑁𝑡ℎ element of a row represents the limiting probability of 

that corresponding SOC. For the best-compromised solution, the limiting probabilities 

obtained in this work are shown as follows: 

𝜋 = [0.0195  0.0000……  0.0002  0.3507]1×3001          (3.45) 

According to the principle of limiting probability mentioned earlier, limiting probability 

𝜋3001 = 0.3507 means that at steady state, the probability of the fully charged level of 

battery would be 0.3507 in the Markov chain diagram for the best-compromised solution. 
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3.5.5 Availability Calculation 

According to the definition of availability, it can be written following equation (3.40) as: 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝑝𝑢       (3.46) 

In this reliability analysis, availability and storage capacity are found for the best-

compromised case to be 0.9547 and 301.721 per unit using equations (3.46) and (3.29) 

respectively where the time period was 1 hour. 

3.5.6 Storage Sizing 

In choosing a storage system, decision makers should make an optimal decision between the 

capacity of the storage and its availability. In this regard, decision makers can vary the 

parameters of (3.29) to search for their optimal choice. But they may make a mistake in 

discovering the most compromised solution from many non-dominated possible outcomes. 

The objective of storage sizing is to reduce the costs of the PV-wind-storage system power 

plant while simultaneously reducing the unavailability of the DN, which is a multi-objective 

optimization problem. As the parameters of equation (3.29) are linearly related to each 

other, it is possible to obtain the non-dominated Pareto set outcomes, but only a few. The 

resolution of this possibility will be very high if we increase the number of SOC and 

decrease the value of power transfer between adjacent states for availability analysis. 

Change in ∆, even in very small amounts, will have a very high probability of changing at 

least two state transition probabilities, as the number of states is many. As a result, transition 

matrix and limiting probabilities will also be changed, which will change the availability as 

well. That’s why this work has chosen the number of SOC as 3001, with 100 small random 

values of ∆. However, there will still be many possibilities to obtain a few dominated 
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solutions out of 100 outcomes. However, for simplicity, implementing the complete multi-

objective optimization technique with many iterations to find the Pareto front of exact non-

dominated solutions rather 100 outcomes obtained in one iteration, which is shown in figure 

3.14, is avoided. 

 

Figure 3.14: Pareto Set of 100 Solutions 

Therefore, an assumption is made in this case that all of these outcomes will fulfill the 

domination conditions as follows: If 𝑥1 and 𝑥2 are two solutions, then there can be two 

possibilities: one dominates the other or none dominates the other. Maintaining the 

generality, solution 𝑥1 will dominate solution 𝑥2 if and only if the following two conditions 

are satisfied: 

1.   ∀𝑖 ∈ {1, 2, … ,𝑁𝑜𝑏𝑗}: 𝑓𝑖(𝑥
1) ≤ 𝑓𝑖(𝑥

2) 

2.   ∃𝑗 ∈ {1, 2, … ,𝑁𝑜𝑏𝑗}: 𝑓𝑗(𝑥
1) < 𝑓𝑗(𝑥

2) 
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To find the best-compromised solution from this Pareto set, we have adopted two multi-

objective concepts to avoid the possibility of a mistake due to choosing in a conventional 

way. 

First, we have implemented the clustering technique to make the Pareto set a manageable 

size and to increase the possibility of discarding the dominated solutions. A hierarchical 

clustering algorithm is employed that works iteratively by joining the adjacent clusters until 

the required number of clusters is obtained based on average linkage technique [104]. The 

centroid technique is used to find the representatives of the clusters which are the reduced 

Pareto optimal set, as shown in figure 3.15. 

 

Figure 3.15: Reduced Pareto Optimal Set of Battery Size-Loss of Load Probability (LOLP) 

Second, we have implemented the fuzzy decision-making (FDM) technique to find the best-

compromised solution from the reduced Pareto optimal set. According to the fuzzy decision-

making technique, the best-compromised solution is that having the maximum value of the 
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normalized membership function, 𝛼𝑘, which is shown in figure 3.15 and figure 3.16 as 

circled in magenta, for battery size with respect to LOLP and availability respectively. 

 

Figure 3.16: Reduced Pareto Optimal Set of Battery Size-Availability 
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CHAPTER 4 

PROBLEM FORMULATION AND METHOD 

As the DN reconfiguration problem is a multi-objective, multi-constraints optimization 

problem, three main objectives in the case of microgrid and four constraints are considered 

in this optimization fleet to be minimized. Improved Binary Genetic Algorithm (IBGA) is 

used to solve this problem. In this regard, a single objective function is made, adding 

weighted values of the three objectives to minimize it using IBGA: Energy Not Supplied 

(ENS), System Average Interruption Frequency Index (SAIFI) and System Average 

Interruption Duration Index (SAIDI). The constraints are described as follows: 

4.1 Objective Function Formulation 

 

❖ Minimization of Energy Not Supplied (ENS) 

The equation used to calculate the ENS at the end of simulation period is   

written as follows: 

 𝐸𝑁𝑆 =  ∑ ∑ 𝐵𝑖
𝑛
𝑖=1 ∗ 𝐵𝑢𝑠𝐿𝑜𝑎𝑑𝑖 ∗ (𝑆𝑃 − 𝑘 + 𝑅𝑒𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛)

𝑆𝑃
𝑘=𝑅𝑒𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 ∗ 𝐵𝑢𝑠𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑖  +

 ∑ ∑ (1 − 𝐵)𝑚
𝑟=1 ∗ 𝐵𝑢𝑠𝐷𝑆𝑀𝐴𝑚𝑜𝑢𝑛𝑡𝑟 ∗ 𝑅𝑒𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛

𝑆𝑃
𝑘=𝑅𝑒𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛    (4.1) 

where 

𝐵𝑖 = {
1 ;  𝐼𝑓 𝑙𝑜𝑎𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ𝑖𝑠 𝑧𝑒𝑟𝑜        

0 ; 𝐼𝑓 𝑙𝑜𝑎𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑖𝑠 𝑛𝑜𝑡 𝑧𝑒𝑟𝑜
 

𝐵𝑢𝑠𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑖 = {
1;  𝐼𝑓 𝑖𝑡ℎ𝑏𝑢𝑠 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝑓𝑜𝑟 𝐸𝑁𝑆 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

0;  𝐼𝑓 𝑖𝑡ℎ𝑏𝑢𝑠 𝑖𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝑓𝑜𝑟 𝐸𝑁𝑆 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛         
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‘SP’ is the simulation period or faulted period. ‘𝐵𝑢𝑠𝐿𝑜𝑎𝑑𝑖’ is the amount of forecasted load 

at the 𝑖𝑡ℎ bus, ‘n’ is the total number of buses, and ‘Resolution’ is the simulation gap time in 

the hour between successive simulations. ‘𝐵𝑢𝑠𝐷𝑆𝑀𝐴𝑚𝑜𝑢𝑛𝑡𝑟’ is the amount of load 

considered for DSM implementation at 𝑟𝑡ℎ bus, meaning that this amount of load will be 

shed in need owing to paying to those corresponding customers, and ‘m’ is the number of 

DSM buses. 

❖ Minimization of System Average Interruption Frequency Index (SAIFI) 

The equation used to calculate the SAIFI at the end of simulation period can be 

written as follows: 

𝑆𝐴𝐼𝐹𝐼 =  
∑ 𝐵𝑖
𝑛
𝑖=1 ∗𝑁𝑖

𝑁𝑡
      (4.2) 

where 

𝐵𝑖 = {
1 ;  𝐼𝑓 𝑙𝑜𝑎𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ𝑖𝑠 𝑧𝑒𝑟𝑜        

0 ; 𝐼𝑓 𝑙𝑜𝑎𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑖𝑠 𝑛𝑜𝑡 𝑧𝑒𝑟𝑜
 

‘𝑁𝑡’ is the total number of customers in the DN, and ‘𝑁𝑖’ is the number of customers 

connected at bus ‘i’. 

❖ Minimization of System Average Interruption Duration Index (SAIDI) 

The equation used to calculate the SAIDI at the end of simulation period can be 

written as follows: 

𝑆𝐴𝐼𝐷𝐼 =  
∑ 𝑈𝑖
𝑛
𝑖=1 ∗𝑁𝑖

𝑁𝑡
      (4.3) 
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where 

‘𝑁𝑡’ is the total number of customers in the DN, ‘𝑁𝑖’ is the number of customers 

connected at bus ‘i’ and ‘𝑈𝑖’ is the outage time faced by the customers at bus ‘i’ after 

any fault in the DN. 

In this case, this outage time can be maximum up to the assumed fault period during 

which the network is reconfigured. After calculating the individual objective functions 

value, these values are added after multiplying specific weights to be minimized as a 

single objective function using IBGA. The equation can be written as follows: 

𝑀𝑖𝑛:  𝑓(𝐸𝑁𝑆, 𝑆𝐴𝐼𝐹𝐼, 𝑆𝐴𝐼𝐷𝐼) =  𝑊1 ∗ 𝐸𝑁𝑆 + 𝑊2 ∗ 𝑆𝐴𝐼𝐹𝐼 + 𝑊3 ∗ 𝑆𝐴𝐼𝐷𝐼  (4.4) 

where 

∑𝑊1,𝑊2,𝑊3 = 1 

4.2 Constraints 

 

❖ Radial Topological structure must be maintained. 

❖ Power flow through each branch must maintain the maximum limit. 

𝑃𝑗 ≤ 𝑃𝑗
𝑚𝑎𝑥            (4.5) 

where 

𝑃𝑗
𝑚𝑎𝑥 is the maximum capacity of power flow through the 𝑗𝑡ℎ branch and 𝑃𝑗 is the amount 

of power flowing through the 𝑗𝑡ℎ branch. 
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❖ Bus voltage must lie within the voltage range. 

𝑉𝑗
𝑚𝑖𝑛 ≤ 𝑉𝑗 ≤ 𝑉𝑗

𝑚𝑎𝑥      (4.6) 

where 

𝑉𝑗
𝑚𝑖𝑛 and 𝑉𝑗

𝑚𝑎𝑥 are the minimum and maximum permissible voltages of the 𝑗𝑡ℎ bus 

successively and 𝑉𝑗 is the voltage of the 𝑗𝑡ℎ bus. 

❖ DN must supply to the customers following the priority list. 

To make this priority list, Monte Carlo Simulation (MCS) is conducted for each branch of 

IEEE 33 bus DN considering a one-year (8760 hrs) time frame with one-hour resolution 

time to find the ENS, SAIFI, and SAIDI at each bus. The following figure shows the 

algorithm of MCS. 

 

Figure 4.1: Algorithm for Monte Carlo Simulation (MCS) 
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In this regard, the output of logical ‘and’ for the tie-set of each bus point decides the ‘on’ or 

‘off’ state of that corresponding bus point. 

4.3 Genetic Algorithm 

Improved Binary Genetic Algorithm (IBGA) is used to solve the restoration problem after 

any fault in the DN where the objective function is minimized following necessary 

operational constraints. The algorithm has three main operators, which are briefly explained 

below, to obtain a new child. 

4.3.1 Selection 

Selection is a process where two parents are selected from many parent solutions for 

crossover to generate new populations. Two main selection processes are implemented in 

this study to show the robustness of the technique for solving outage management problem 

of DN: the random selection and tournament selection. 

4.3.2 Crossover 

The objective of implementing crossover between two parents is to swap the information 

and to generate new offspring. After that, depending on the objective function and 

operational constraints, the better two are selected from the parents and offspring for 

forwarding to the next, and this procedure ensures the optimal solution. Obvious crossover 

is always performed in three ways in this work: single point, double point, and uniform 

crossover, depending on the selected probability of the methods to make it more diversified 

for convergence. 

In this case, single point and double point crossovers are performed by choosing the 

crossover position(s) randomly; the uniform crossover is performed in a special way 
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confirming the sum of probabilities of all three crossover methods equal to unity. If ‘alpha’ 

is the randomly generated chromosome of the same size parent and ‘x1’ and ‘x2’ are the two 

parents then the following equations ensure the uniform crossover to generate two offspring, 

‘y1’ and ‘y2’. 

𝑎𝑙𝑝ℎ𝑎 = 𝑟𝑎𝑛𝑑𝑖([0 1], 𝑠𝑖𝑧𝑒(𝑥1))     (4.7) 

𝑦1 = 𝑎𝑙𝑝ℎ𝑎.∗ 𝑥1 + (1 − 𝑎𝑙𝑝ℎ𝑎).∗ 𝑥2    (4.8) 

𝑦2 = 𝑎𝑙𝑝ℎ𝑎.∗ 𝑥2 + (1 − 𝑎𝑙𝑝ℎ𝑎).∗ 𝑥1    (4.9) 

where 

‘randi’ and ‘size’ are MATLAB commands and ‘.*’ is used in MATLAB for element-by-

element multiplication of two matrices. 

4.3.3 Mutation 

Mutation is performed by flipping one or more gens of a chromosome to increase the 

biological diversity of that corresponding chromosome. In addition, it sometimes helps to 

retrieve the lost information. In this study, the one-bit mutation with 100% probability is 

used but the best one is taken from the mutated and non-mutated ones following objective 

function values and operational constraints. 
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CHAPTER 5 

RESULTS AND CONCLUSION 

5.1 Test System 

In order to evaluate the proposed IBGA for restoration service of DN, the following IEEE 

33 bus distribution system is considered as a base radial system. 

 

Figure 5.1: IEEE 33 bus distribution system 

Following logically, it is assumed that the sectionalizing and tie switches will form different 

backbone structures of DN in different situations connecting all bus points and maintaining 

radiality. But the load in each bus is shed, activating the corresponding bus point (BP) 

circuit breaker so that all bus points are always connected to the substation to maintain the 

main backbone of the 33-bus system. For this reason, the load of a bus is simply made zero 

without affecting the connection of that corresponding bus point with the substation in case 
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of necessity during the restoration process of DN, which is made possible through the circuit 

breaker activation. In this study, a single fault is considered in case of the branch only when 

all other possible faults due to the components in other positions (i.e., CBs) are excluded. 

These faults don’t affect the backbone structure of DN to supply power to the customers at 

healthy bus points through the bus point(s) where the customers are interrupted owing to 

these excluded faults. 

5.2 Type and Number of Consumers 

Seven types of consumers are taken into account for this work, where each BP connects a 

unique consumer type. The types of consumers are mentioned in the table below, with their 

connecting BPs and number of customers. 

Table 5.1: Consumer Types, Numbers and Connecting Bus Information 

Consumer Type Connected Bus (Number of Customers) 

Residential load 
14(150), 15(150), 17(150), 18(150), 26(200), 27(200), 

28(200), 30(220), 31(240), 32(210) 

Commercial load 5(15), 6(15), 7(15), 8(15), 10(10), 11(10), 12(10) 

Industrial load 2(1), 3(1), 4(1), 19(1), 23(1), 24(1), 25(1) 

Government office 20(1), 21(1), 22(1) 

Institutional load 16(2), 29(1), 33(1) 

Fire service 9(1) 

Hospital 13(2) 

 

In addition, four buses, 4, 13, 14 and 23, are selected as DSM paying buses, meaning that 

customers of these buses pay extra money to the utility company to ensure higher reliability, 

whereas buses, 12, 17 and 25 are considered for the opposite case of DSM, meaning that 
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they will receive extra money from the company for losing some reliability. In this case, 5% 

of the historical bus load is taken as the DSM value for that bus. 

5.3 Proposed Algorithm for Distribution Network Restoration 

To restore the DN after any fault, the proposed algorithm in figure 5.2 is used for 

implementing the IBGA so that the objective function becomes minimum, maintaining the 

operational constraints. 
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Figure 5.2: Proposed Algorithm for Restoring Loads – the Ultimate Microgrid 
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According to the flowchart, there are five possibilities to be terminated from the program, 

ensuring optimal restored DN. For the first case of ending the program, PV power, wind 

power, and storage system will be enough to restore the DN where no load shedding will 

occur. In this case, each DG can be connected with a bus out of two bus options; those are 

13 and 14, 31 and 32 and 13 and 31 for PV, wind, and battery respectively. If the diesel DG 

is needed in the optimizing fleet to restore the DN, it can also be connected with one of two 

bus options, 18 or 23. Thus, the algorithm can restore the faulty network, fulfilling any of 

the terminating criteria, but sequentially. 

5.4 Case Studies 

It has already been stated that this thesis work is conducted based on complete probabilistic 

data considering a one-year mission time for the simulation, with one-hour resolution. 

Therefore, in order to accumulate the main features of proposed service restoration 

technique, four cases are considered where the results are obtained at two different hours out 

of the one-year mission time (MT). In order to optimize the branch status of the DN after 

fault occurrence, two hours’ fault period is chosen in this study. The cases which are 

tabulated in table 5.2 are described below: 

Table 5.2: List of Case Study 

Cases Solar PV Wind Storage Diesel DG DSM 
Load 

Shedding 

Case 1 Included Included Included Not 

Included 

Not 

Included 

Not 

Included 

Case 2 Included Included Included Included Included Not 

Included 

Case 3 Included Included Included Included Included Included 

Case 4 Not 

Included 

Included Included Included Included Included 
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5.4.1 Case 1 

In case one, the scenario that is considered for analyzing the effectiveness of the proposed 

algorithm is to restore the distribution network using only three types of DGs – PV, wind, 

and battery. Since this scenario has no need to include DSM or load shedding features for 

reconfiguring DN, the value of the objective function will be the minimum, which is zero. 

For case 1, the fault is taken in branch 21 at the 753rd hour of the year; therefore, 

continuous optimization is conducted for the 753rd and 754th hours to reconfigure DN for 

supplying the forecasted loads. Loads at each bus during the outage period are presented in 

table 5.3. 

Table 5.3: Load Values of 33 Buses at 753th & 754th Hours 

Bus No. 
Load(kW) 

(753th hour) 

Load (kW) 

(754th hour) 
Bus No. 

Load (kW) 

(753th hour) 

Load (kW) 

(754th hour) 

1 0 0 18 83.90 86.60 

2 97.06 90.84 19 87.89 77.24 

3 89.46 85.32 20 89.23 85.08 

4 116.46 107.77 21 89.94 80.58 

5 54.35 62.53 22 83.45 90.35 

6 60.77 57.01 23 90.17 80.55 

7 197.41 192.43 24 402.05 429.32 

8 193.77 196.14 25 393.26 416.45 

9 56.00 56.89 26 51.59 54.63 

10 52.79 55.30 27 60.28 55.43 

11 44.74 47.21 28 56.89 52.88 

12 51.61 48.29 29 125.59 114.54 

13 56.61 56.15 30 193.22 193.68 

14 107.53 103.31 31 150.00 133.21 

15 55.64 55.43 32 192.62 195.42 

16 52.84 56.47 33 55.24 55.00 

17 57.20 57.60 Total 3549.6 3529.6 
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To supply this amount of load throughout the faulty period, a simultaneous optimization is 

conducted to find out the common status of sectionalizing and tie branches for each hour of 

the faulty period. Similarly, a single bus is optimized for each DG to be connected with it 

throughout the faulty period, which is practical in theory, but the actual values of the DGs 

can be different each hour. The results are summarized in table 5.4. 

Table 5.4: Results of IEEE 33 Bus Using Tournament Selection 

Nth Hour 753 754 Connected Bus 

PV Output (kW) 332.9 411.8 PV 13 

Wind Output (kW) 4.2 3.3 Wind 31 

Battery Output (kW) 83.4 90.4 Battery 13 

Substation Output (kW) 3290.0 3180 ……. 

Line Loss (kW) 160.0 153 ……. 

Branches Opened 12, 20, 21, 32, 37 Faulted Branch: 21 

 

Objective 

Function 

 

Type 

Actual 

ENS  

(kWh) 

Actual 

SAIFI 

(Unit 

less) 

Actual 

SAIDI 

(hrs) 

Weighted 

Sum of all 

Obj. 

Value 0 0  0 0 

 

It is observed from table 5.4 that the values of all objective functions are optimized to zero 

while {12, 20, 21, 32, 37} branches are opened to restore loads where branch 21 is 

considered to be faulty. In this case, PV and battery are connected with bus point 13; 

meanwhile, wind DG is connected with bus 31. To restore the total load of 3549.6kW at the 

753rd hour, the total contribution of 420.5kW comes from the DGs where PV, wind, and 

battery are separately supplying 332.9kW, 4.2kW and 83.4kW respectively and the rest of 

the loads are restored by the substation itself. 
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It is assumed for all the times that the storage will supply power only when a fault occurs in 

the system, but PV and wind will supply power to the DN with its full capacity whenever 

they have availability, as these sources are free of cost. Similarly, for the next hour, part of 

the load is supplied by PV, wind, and storage, whose amounts are 411.8kW, 3.3kW and 

90.4kW respectively. The line losses for a specific resistance of each branch are quantified 

for this optimal topology in the amount of 160kW and 153kW at the 753rd and 754th hours 

respectively via load flow analysis. To analyze the superiority and robustness of the 

proposed algorithm, it is again simulated using a random selection method rather than 

tournament selection for the same input variable and obtaining the same optimized objective 

function value but with different connection status. The simulation time for both the 

selection methods was less than one minute. The results are presented in table 5.5. 

Table 5.5: Results of IEEE 33 Bus Using Random Selection 

Nth Hour 753 754 Connected Bus 

PV Output (kW) 332.9 411.8 PV 13 

Wind Output (kW) 4.2 3.3 Wind 31 

Battery Output (kW) 83.4 90.4 Battery 13 

Substation Output (kW) 3330.0 3220 ……. 

Line Loss (kW) 200.0 193 ……. 

Branches Opened 9, 21, 24, 33, 36 Faulted Branch: 21 

 

Objective 

Function 

 

Type 

Actual 

ENS  

(kWh) 

Actual 

SAIFI 

(Unit less) 

Actual 

SAIDI 

(hrs) 

Weighted 

Sum of all 

Obj. 

Value 0 0 0 0 
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Comparing tables 5.4 and 5.5, it can be concluded that the same amount of load can be 

restored by different network configurations. Therefore, the main target of this algorithm is 

to minimize the objective function globally and restore the maximum loads possible using 

any network configuration from many possibilities within the shortest possible time, which 

is achieved by this algorithm, proving its robustness. 

5.4.2 Case 2 

The scenario that is considered for case 2 is to reconfigure the DN, taking the output from 

all DGs – PV, wind, battery, and diesel – with DSM effect only. In this case, the fault is 

taken again at the same hour as in case 1 but the faulted branch in this instance is branch 

number 17. It is already stated in case 1 that all the connection status (i.e., Branch, PV, 

Wind, and Storage) will be same for the whole faulty period. Similarly, the DSM and the 

diesel DG are also integrated into the system, considering a common connection status 

throughout the faulty period. This means that whenever the DSM and diesel DG are 

considered for specific buses, the effect will continue for the whole simulation period, but 

the diesel generator can change the output up to the maximum value for reconfiguring 

optimization. The results for case 2 are summarized in table 5.6. 

It is seen from table 5.6 that buses 13, 31, 13 and 18 are optimized for PV, wind, storage, 

and diesel respectively, whereas the DSM is applied in bus 12 to reconfigure the network for 

the faulted period while no load shedding is required. Since the DSM comes in optimization 

fleet for reconfiguring DN, there must be a value of the weighted objective function that is 

optimized to 0.002. 



73 

 

Table 5.6: Results of IEEE 33 Bus Using Tournament Selection 

Nth Hour 753 754 Connected/Applied Bus 

PV Output (kW) 332.9 411.8 PV 13 

Wind Output (kW) 4.2 3.3 Wind 31 

Battery Output (kW) 83.9 86.6 Battery 13 

DSM Value (kW) 3 3 DSM 12 

Diesel Output (kW) 200 200 Diesel 18 

Substation Output (kW) 3070 2960 ……. 

Line Loss (kW) 150 140 ……. 

Branches Opened 11, 17, 20, 34, 37 Faulted Branch: 17 

 

Objective 

Function 

 

Type 

Actual 

ENS 

(kWh) 

Actual 

SAIFI 

(Unit less) 

Actual 

SAIDI 

(hrs) 

Weighted 

Sum of all 

Obj. 

Value 6 0 0 0.002 

 

In case of the separate actual value of each objective function, ENS is optimized to 6kWh, 

while SAIFI and SAIDI are zero as no load shedding is required. In the flow of algorithm, 

the sequence of the contribution of DGs and DSM for reconfiguring the DN is that PV, wind 

and storage will be activated at first with the main substation, and the insufficient support of 

these DGs is caused to implement the DSM, and the diesel DG after that, and finally the 

load shedding. Although the three buses, {12, 17 and 25} are fixed for implementation of 

DSM, it is activated only at bus 12, which is an amount of 3kW at each hour, and then the 

simulation flow turns to the next sequence, which is the inclusion of diesel DG. This is 

because whenever the total DSM is not sufficient to reconfigure the DN, the diesel generator 

is taken into account with minimum output and gradually increased to the maximum value. 

Those values are 200kW and 500kW respectively for this work. Unless any of the diesel DG 

output with maximum possible DSM can reconfigure the network maintaining all 
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constraints, the load shedding will be required. Whenever a combination of maximum DSM 

and a specific diesel DG output becomes able to reconfigure the network, the diesel DG 

output is no longer increased and then an attempt is made to minimize the DSM value, but at 

least a minimum value of DSM must be implemented, which is an assumption of proposed 

algorithm, so that ENS becomes minimum. Thus, the network is optimally reconfigured by 

opening the branches {11, 17, 20, 34, 37} with 3kW of DSM value, but this is the minimum 

DSM value chosen for this work, with 200kW of diesel DG output while the PV and wind 

turbine supply their full capacity. In this case, the output of the battery is 83.9kW and 

86.6kW during the outage period successively. Using the power flow solution, line losses 

are quantified to 150kW and 140kW successively for this topology during the outage period. 

Again, the topology is simulated with same input but changing the selection method of 

IBGA, and the obtained results are tabulated in table 5.7. 

Table 5.7: Results of IEEE 33 Bus Using Random Selection 

Nth Hour 753 754 Connected/Applied Bus 

PV Output (kW) 332.9 411.8 PV 13 

Wind Output (kW) 4.2 3.3 Wind 31 

Battery Output (kW) 83.9 86.6 Battery 13 

DSM Value (kW) 3 3 DSM 12 

Diesel Output (kW) 200 200 Diesel 18 

Substation Output (kW) 3110 3010 ……. 

Line Loss (kW) 190 181 ……. 

Branches Opened 12, 17, 20, 24, 33 Faulted Branch: 17 

 

Objective 

Function 

 

Type 

Actual 

ENS 

(kWh) 

Actual 

SAIFI 

(Unit less) 

Actual 

SAIDI 

(hrs) 

Weighted 

Sum of all 

Obj. 

Value 6 0 0 0.002 
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Similar to case 1, it is again observed from table 5.7 that the algorithm is robust and superior 

to find any of the possible optimal topologies. In addition, the same amount of diesel DG 

output and DSM are optimized for both selection methods. 

5.4.3 Case 3 

In this case study, the scenario that is considered is to reconfigure the DN when all the DGs, 

DSM effect and load shedding are needed owing to an interruption in branch 5 at the 3585th 

hour. To investigate the effectiveness of this algorithm for restoring loads, loads at each bus 

during the faulted period are forecasted and are presented in table 5.8. 

Table 5.8: Load Values of 33 Buses at 3585th & 3586th Hours 

Bus No. 
Load(kW) 

(3585th hour) 

Load (kW) 

(3586th hour) 
Bus No. 

Load (kW) 

(3585th hour) 

Load (kW) 

(3586th hour) 

1 0 0 18 86.05 78.83 

2 96.23 89.55 19 80.31 85.84 

3 85.05 93.89 20 82.19 83.36 

4 120.33 109.84 21 91.97 87.27 

5 56.47 56.94 22 89.29 84.57 

6 57.95 56.80 23 83.28 87.46 

7 180.63 191.22 24 381.07 376.08 

8 185.32 215.26 25 397.82 390.84 

9 55.47 59.46 26 53.89 55.88 

10 54.12 57.25 27 56.79 54.26 

11 47.36 41.60 28 56.89 52.88 

12 57.66 53.48 29 125.59 114.54 

13 54.25 61.14 30 193.22 193.68 

14 111.44 116.51 31 150.00 133.21 

15 61.85 59.62 32 192.63 195.42 

16 52.80 56.76 33 55.24 55.00 

17 57.19 51.90 Total 3510.3 3500.3 
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To assess the performance of the proposed algorithm when allocation of all DGs in specific 

locations and implementation of DSM can’t fulfill the operational constraints to find an 

optimal reconfigured candidate topology for the forecasted loads in table 5.8, simultaneous 

simulation is conducted, including a load shedding feature. Then the optimal reconfigured 

candidate topology is obtained and a summary provided in table 5.9. 

Table 5.9: Results of IEEE 33 Bus Using Tournament Selection 

Nth Hour 3585 3586 Connected/Applied Bus 

PV Output (kW) 400.4 424.6 PV 13 

Wind Output (kW) 53.9 40.4 Wind 31 

Battery Output (kW) 156.5 156.5 Battery 13 

DSM Value (kW) 0 0 DSM -- 

Diesel Output (kW) 500 500 Diesel 23 

Substation Output (kW) 440 400 ……. 

Line Loss (kW) 90 87 ……. 

 

Shed Buses 

2, 3, 4, 5, 

6, 7, 8, 10, 

11, 12, 19, 

23, 24, 25, 

26, 27, 28 

2, 3, 4, 5, 

6, 7, 8, 10, 

11, 12, 19, 

23, 24, 25, 

26, 27, 28 

 

……. 

Branches Opened 5, 7, 8, 11, 35 Faulted Branch: 5 

 

Objective 

Function 

 

Type 

Actual 

ENS 

(kWh) 

Actual 

SAIFI 

(Unit less) 

Actual 

SAIDI 

(hrs) 

Weighted 

Sum of all 

Obj. 

Value 4120.24 0.353 0.705 1.75 

 

Simulating the DN simultaneously using the proposed algorithm throughout the faulted 

period, the optimal reconfigured candidate topology is found by opening branches {5, 7, 8, 
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11, 35} and connecting the DGs, PV, wind, storage and diesel at buses {13, 31, 31, 23} 

successively. The algorithm has shown successful optimization of the value of DSM, which 

is zero in this case, and the optimal DG connection buses for this optimal candidate 

network. One of the constraints that is maintained for reconfiguring DN is priority sequence. 

Whenever the bus(es) needs to be shed in the reconfiguration simulation, the bus which is 

shed first is the bus of lowest priority and next ones accordingly. In this work, the priority 

list is made on an hourly basis for the buses. 

To maintain a priority list for this work, an assumption is made that whenever a fault occurs 

in the network at a specific hour, the priority list for that specific hour will be followed for 

the whole faulty period to reconfigure the network. For instance, since the fault is taken at 

the 3585th hour, the priority list of the 3585th hour will be maintained at hours 3585 and 

3586, for shedding the bus(es) to reconfigure DN. The priority list for the 3585th hour is 

listed in table 5.10, where the priority is decreased from left to right. 

Table 5.10: Priority List for Buses 

Bus No. 13 16 29 9 33 21 20 22 32 31 18 30 14 17 15 25 → 

 → 27 26 11 3 28 24 8 10 2 12 19 6 5 4 23 7  

 

The strategy of shedding the buses is considered in this work is that whenever a bus is shed, 

it is continued for the whole faulty period, as the customers will not prefer a frequent on/off 

from the utility. This is why it is seen from table 5.9 that the total 17 common buses are 

shed in each hour during the outage period when the priority sequence is maintained. In this 

case, the diesel DG supplies its maximum capacity, 500kW, to reduce the number of the 

shed buses. The other DGs – PV, wind and storage – meanwhile supply power to the 
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network at the 3585th and 3586th hours which, amounts to {400.4kW, 53.9kW and 

156.5kW} and {424.6kW, 40.4kW and 156.5kW} successively. The line losses for this 

topology are simulated to 90kW and 87kW successively during the faulted period. The 

optimal topology is shown in figure 5.3. 

 

Figure 5.3: Optimal Reconfigured Microgrid Network for Case 3 

In this topology, ENS, SAIFI, and SAIDI are optimized to 4120.24kWh, 0.353, and 

0.705hrs successively, whereas the weighted scalar objective function that is actually 

optimized by the algorithm is 1.75. 

5.4.4 Case 4 

To investigate the effect of the microgrid (MG) concept in DN, case 4 is considered as a 

reflection of case 3, with similarity of all the input variables apart from PV output, which is 

forcedly made zero in both hours of the faulty period and its output evaluated. In this case, 

some comparisons are made with case 3.  



79 

 

Therefore, it is assumed that the fault occurs at the 3585th hour in branch 5. The results 

obtained using the proposed algorithm are provided in table 5.11. 

Table 5.11: Results of IEEE 33 Bus Using Tournament Selection 

Nth Hour 3585 3586 Connected/Applied Bus 

PV Output (kW) 0 0 PV 13 

Wind Output (kW) 53.9 40.4 Wind 31 

Battery Output (kW) 156.5 156.5 Battery 13 

DSM Value (kW) 0 0 DSM -- 

Diesel Output (kW) 500 500 Diesel 23 

Substation Output (kW) 580 800 ……. 

Line Loss (kW) 60 70 ……. 

 

 

Shed Buses 

2, 3, 4, 5, 

6, 7, 8, 10, 

11, 12, 14, 

15, 17, 19, 

23, 24, 25, 

26, 27, 28 

2, 3, 4, 5, 

6, 7, 8, 10, 

11, 12, 14, 

15, 17, 19, 

23, 24, 25, 

26, 27, 28 

 

 

……. 

Branches Opened 5, 6, 11, 35, 36 Faulted Branch: 5 

 

Objective 

Function 

 

Type 

Actual 

ENS  

(kWh) 

Actual 

SAIFI 

(Unit less) 

Actual 

SAIDI 

(hrs) 

Weighted 

Sum of all 

Obj. 

Value 4578.75 0.58 1.16 2.131 

 

Buses optimized for connecting DGs in case 4 are {13, 31, 13 and 23} for PV, wind, battery, 

and diesel DG successively. The wind and battery output are same as in case 3, and the 

output of the diesel DG is optimized to 500kW for the same reason as in case 3; meanwhile, 

the DSM value is optimized to zero.  
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It is seen from table 5.11 that 20 common buses are shed in both hours to find the optimal 

reconfigured candidate topology whose five open branches are {5, 6, 11, 35, 36}. The 

topology for case 4 is depicted in figure 5.4. 

 

Figure 5.4: Optimal Reconfigured Network for Case 4 

It can be noticed from the figure that the five branches are always opened for maintaining 

the radiality of the network. However, buses for the DSM implementation are automatically 

ignored, as all the DSM implementation buses have already been included in the shed buses. 

Using the power flow simulation, the line losses for case 4 are quantified to 60kW and 

70kW successively during the faulted period.  

One of the important features of DN to be considered a MG is to include the distributed 

source(s) (i.e., PV, wind, etc.) in the network to improve its service. This MG feature can be 

investigated from tables 5.8, 5.9 and 5.11. ENS for case 3 is 4120.24kWh, whereas the ENS 

for case 4 is 4578.75kWh and the large difference of ENS, 458.51kWh, between these two 

cases is due to not supplying the power by PV source throughout the faulty period. It is 
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because the unavailability of PV power results in more buses to be shed, though the 

substation had the capacity of an equivalent amount of lost PV power to optimize a 

reconfigured candidate topology. In this case, it can be said that an 11.13% increase in 

performance is possible by including the microgrid concept in DN. Similarly, reliability will 

also be improved in DN due to converting it to a microgrid network in case of SAIFI and 

SAIDI that is seen from tables 5.9 and 5.11. 

It is worthwhile to mention that there is always a dilemma in iterative method between 

simulation time and converging exactly in the optimal location. This means that when the 

number of iterations is increased, the simulated solution will come very close to the exact 

optimal solution or be the exact optimal solution and vice versa. However, the time required 

to optimize these reconfigured networks is less than one minute. 

Finally, it can be stated from the above discussion that the proposed algorithm can handle 

the installation of all types of DGs and implementation of DSM with proper sizing and 

siting and the scheduling of load shedding in a proper way by optimizing a reconfigured 

candidate network for a specific fault period. The algorithm also optimally proves the 

importance of converting the DN to a microgrid network to increase the network’s 

reliability. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

Microgrid has a great impact on providing reliable service to the customers via reducing the 

indices, ENS, SAIFI, and SAIDI. But an algorithm needs to be developed to manage the 

energy of distributed sources and conventional power from the substation among loads of 

microgrid after occurring outages in the network via an optimal reconfigured topology of 

the microgrid. In this case, least or zero amount of DSM energy and/or the minimum 

number of bus(s) or no buses to be shedded are optimized for fulfilling the constraints. 

Therefore, an improved binary genetic algorithm (IBGA) based optimization technique has 

been developed in this work. Four types of DGs – PV, wind, storage, and diesel generator 

have been considered to improve the reliability of microgrid. As this work is completely 

based on stochastic data, three DGs – PV, wind and storage, and load are modeled 

stochastically whereas some sample values are considered as the output of diesel DG. 

However, the flow of this proposed algorithm is considered in such a way that it first tries to 

mitigate fault in the network via an optimal reconfiguration using PV, wind, and storage. In 

case of failing to find an optimal configuration using these three DGs, the algorithm 

includes DSM and similarly the diesel DG after that. Finally, the proposed algorithm 

gradually sheds the busloads in needs following priority list till an optimal reconfiguration is 

obtained. Though this restoration problem is a multi-objective, multi constraints problem, 

specific weights are multiplied with objectives and then the objectives are summed together 
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to make a scalar form minimization problem. Sizing and siting of DGs and DSM both are 

considered in minimizing objective function to find optimal topology ensuing full capacity 

supply from PV and wind DGs. The algorithm shows superiority to optimize reconfigured 

topology after fault via minimizing multi-objectives in scalar form. 

6.2 Future Work 

The suggestions for the future work are given below: 

❖ Following four constraints, three objectives are indexed as a standard for optimally 

reconfiguring microgrid (MG) to improve reliability but power loss. Hence, power 

loss can be included as an additional objective or constraint. 

❖ Although the locations and sizes of DGs are optimized to manage power properly 

among the buses of MG, each DG is treated as a single unit that limits the number of 

locations for connecting DGs with many buses and variation of DG outputs. 

Therefore, further improvement is possible considering a number of units of 

different size for each DG to be connected with many buses. 

❖ The feature of reducing the number of switching operations in case of connecting 

DGs, changing branch statuses, implementation of DSM can be included which will 

reduce the time for changing the old configuration to the new one at all. 

❖ The proposed algorithm can be simulated in the real-time digital simulator (RTDS) 

that will be the previous step of stepping into the real system. 
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APPENDIX A 

Branch Number Failure Rate Repair Rate 

1 0.0005/8760 480/8760 

2 0.0009/8760 480/8760 

3 0.001/8760 469/8760 

4 0.0012/8760 470/8760 

5 0.002/8760 450/8760 

6 0.0026/8760 455/8760 

7 0.0011/8760 460/8760 

8 0.0006/8760 365/8760 

9 0.0015/8760 440/8760 

10 0.0028/8760 442/8760 

11 0.0015/8760 430/8760 

12 0.0015/8760 335/8760 

13 0.0028/8760 345/8760 

14 0.0029/8760 431/8760 

15 0.003/8760 430/8760 

16 0.0017/8760 433/8760 

17 0.001/8760 329/8760 

18 0.0018/8760 340/8760 

19 0.0022/8760 356/8760 

20 0.0025/8760 450/8760 

21 0.003/8760 341/8760 

22 0.003/8760 378/8760 

23 0.0034/8760 380/8760 

24 0.0032/8760 400/8760 

25 0.0011/8760 401/8760 

26 0.0014/8760 411/8760 

27 0.0028/8760 370/8760 

28 0.0029/8760 392/8760 

29 0.0026/8760 396/8760 

30 0.0026/8760 382/8760 

31 0.0021/8760 360/8760 

32 0.0027/8760 367/8760 
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APPENDIX B 

Tie Set Calculation of Each Bus point of IEEE 33 Bus Distribution Network 

(On State of All Branch Number of a Tie Set Results That Bus On State, Off State of One or More 

Branches of a Tie Set Results That Bus Off State) 

Tie Set Number Branch Number 

Tie Set for Bus 2 [1] 

Tie Set for Bus 3 [1, 2] 

Tie Set for Bus 4 [1, 2, 3] 

Tie Set for Bus 5 [1, 2, 3, 4] 

Tie Set for Bus 6 [1, 2, 3, 4, 5] 

Tie Set for Bus 7 [1, 2, 3, 4, 5, 6] 

Tie Set for Bus 8 [1, 2, 3, 4, 5, 6, 7] 

Tie Set for Bus 9 [1, 2, 3, 4, 5, 6, 7, 8] 

Tie Set for Bus 10 [1, 2, 3, 4, 5, 6, 7, 8, 9] 

Tie Set for Bus 11 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

Tie Set for Bus 12 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] 

Tie Set for Bus 13 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12] 

Tie Set for Bus 14 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] 

Tie Set for Bus 15 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] 

Tie Set for Bus 16 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] 

Tie Set for Bus 17 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] 

Tie Set for Bus 18 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] 

Tie Set for Bus 19 [1, 18] 

Tie Set for Bus 20 [1, 18, 19] 

Tie Set for Bus 21 [1, 18, 19, 20] 

Tie Set for Bus 22 [1, 18, 19, 20, 21] 

Tie Set for Bus 23 [1, 2, 22] 

Tie Set for Bus 24 [1, 2, 22, 23] 

Tie Set for Bus 25 [1, 2, 22, 23, 24] 

Tie Set for Bus 26 [1, 2, 3, 4, 5, 25, 26, 27] 

Tie Set for Bus 27 [1, 2, 3, 4, 5, 25, 26, 27, 28] 

Tie Set for Bus 28 [1, 2, 3, 4, 5, 25, 26, 27, 28] 

Tie Set for Bus 30 [1, 2, 3, 4, 5, 25, 26, 27, 28, 29] 

Tie Set for Bus 31 [1, 2, 3, 4, 5, 25, 26, 27, 28, 29, 30] 

Tie Set for Bus 32 [1, 2, 3, 4, 5, 25, 26, 27, 28, 29, 30, 31] 

Tie Set for Bus 33 [1, 2, 3, 4, 5, 25, 26, 27, 28, 29, 30, 31, 32] 

 


