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CHAPTER 1

INTRODCUTION

Wavelet methods for the numerical solution of differential equations belong to a
current and very active area of research [72]. There is a growing body of literature
devoted to the analysis as well as the application of these methods. The advantage
of using wavelets, in general, is that they allow representation of a function by a
few significant wavelet expansion coefficients if the function is “locally” smooth.
This property of wavelets is known as “wavelet compression”. A consequence
of this compression property is that coefficient matrices resulting from wavelet
discretization are almost sparse. On the other hand, wavelet coefficient matrices
which arise in partial differential equation (PDE) discretization can be optimally
preconditioned. Omne can combine the advantages of sparseness of the matrix
of coefficients with the optimality of preconditioning to achieve fast and efficient
numerical methods for solving PDEs. There are two types of matrices that arise in
connection with wavelet methods: approximation matrices and wavelet matrices.

The former ones are sparse but not optimally conditioned, while the latter ones



are optimally conditioned but not as sparse. However, a clever combination of
both types achieves both advantages. Accordingly, there was a great deal of effort
devoted to using wavelets to solve differential equations numerically. Wavelet
methods for signal processing became very popular quickly due to the ease and
widespread areas of applications. However, difficulties arise when we try such
methods in solving PDEs numerically. The main difference is that while signals,
originally defined on bounded domains, can be extended, with mild nuisance, to
the whole space, the situation is not the same for PDEs which are defined on
bounded domains {2 where boundary conditions matter. Hence, using wavelets
for solving a differential equation on a bounded domain €2 obviously requires us
to construct wavelets on 2. The breakthrough in this direction was achieved
by Dahmen et al. [28]. In their work, they introduced the construction of the

biorthogonal wavelet systems over the interval with all desirable properties:

1. In the primal multiresolution, we can achieve any degree d of exactness by

spline spaces.

2. In the dual multiresolution, we can achieve any degree d of exactness where d

is such that d + d is even.
3. The associated biorthogonal spline wavelets have d vanishing moments.

4. Fast decomposition and reconstruction algorithms since wavelets and genera-

tors of primal and dual multiresolutions have finite supports.

5. Wavelets form Riez bases for L?(0,1).



Actually, the boundary functions (wavelets) introduced by Dhamen et al. [28]
in the interval [0, 1] required a minimal level of resolution (j, > 4). The value
of jo depended on the order of scaling basis functions used in the discretization
of the problem. This minimal resolution meant that preconditioning is not fully
under control. As a result, stiffness matrices with high condition numbers were
still being produced by the preconditioning wavelet algorithms. This was also a
feature of the so called refinement matrices.

Dhamen et al. [28] tried to improve the resulting refinement matrices condition
numbers by introducing special classes of boundary functions, namely Bernstein
polynomials. Although condition numbers of refinement matrices were greatly
improved, the basic problem of minimal resolution went unaddressed and high
condition numbers of the stiffness matrices were still showing.

For the same reasons, Cerna and Finék [15] refinement matrices were also
inappropriate to obtain a good accuracy of the approximation of the differential
equation.

In this thesis, we tackled this problem by posing the following question: what if
we construct scaling functions inside the interval [0, 1] and allow the dual functions
not to be so restricted? This point of view enabled us to construct our refinement
matrices with lower condition numbers by reaching the resolution level j, = 1.
These refinement matrices are good for solving Dirichlet problems. The results
were interesting and excellent approximation of the solution for the differential

equation were obtained.



The problem now becomes how to handle general boundary value problems
where minimal resolution reachable is still dependent on the order of scaling func-
tion used. To tackle this problem, we constructed a method that begins by solving
a Dirichlet problem and then using it to solve the boundary value problem at hand.
This was achieved with the same order of operations O(N).

Our developed method can be summarized as follows. Given a general bound-

ary value problem of order m:

1. Solve (m + 1) related Dirichlet problems (each is O(N)).

2. Construct boundary functions to carry the boundary conditions of the problem

being considered.

3. Construct the solution for the boundary value problem being considered.

It should be noted that steps 2 and 3 are purely algebraic and require solving only
small algebraic systems.

This research aims at investigating wavelet methods for solving higher or-
der self-adjoint boundary value problems. On the one hand, we constructed a
two-dimensional preconditioned conjugate gradient algorithm to deal with two-
dimensional PDE’s. A two-dimensional self-adjoint PDE has been solved using
this algorithm. On the other hand, all constructions used to build two-dimensional
algorithm can be extended to the n-dimensional counterpart.

As an application of using wavelet methods, we introduce a fault detection
method on a model problem. The model problem is reduced to an eigenvalue
problem, which is then discretized by using a sequence of refinable functions. The

4



resulting eigenvalue problem was treated using Raleigh quotients to find the mini-
mum eigenvalue and its corresponding eigenvector. Using the resultant eigenpair,
the fault is detected by solving an algebraic equation for the coefficient functions
of the model at the so called dyadic points.

This thesis is organized in nine chapters.

In Chapters 1 and 2, we give an introduction and literature review of the use
of wavelets in solving self-adjoint boundary value problems.

In Chapter 3, we provide some preliminary results, definitions and terminology
to be used in this thesis. We address the properties of Haar and linear systems
such as refinability, multiresolution analysis and locality. The general primal
multiresolution analysis on R is introduced. Also we address primal and dual
B-splines that have crucial importance in our work. We present biorthogonal
projections, approximation properties and refinable integrals.

In Chapter 4, we introduce the model problems used in the thesis. For the
ordinary differential equations (ODEs) we address the (2n)™ order self-adjoint
Dirichlet problem, and for PDEs we deal with a two dimensional self-adjoint prob-
lem. The variational formulation, existence and uniqueness, and error estimate
for the wavelet Galerkin method for these model problems are investigated.

In Chapter 5, we propose a novel method to numerically approximate solutions
for general self-adjoint problems. We first solve some related Dirichlet problems.
Then, we construct boundary functions to carry the boundary conditions of the

general problem being considered. The solution for the general boundary value



problem is constructed using the solutions of the Dirichlet problems.

In Chapter 6, we give a full construction of biorthogonal wavelets on the real
line. The construction includes the one-dimensional and the two-dimensional
biorthogonal wavelets. Moreover, we present the conjugate gradient method
with wavelet optimal preconditioning for solving linear systems resulting from
discretization of differential equations. The approach can be generalized to higher
order equations.

In Chapters 7, we use the wavelet Galerkin method to solve self-adjoint Dirich-
let problems. This requires addressing the number of basis functions needed to
form a complete basis for the Dirichlet problems. New basis functions were con-
structed on the boundaries. A novel reduction of order method was introduced to
solve a special class of fourth order Dirichlet problems.

In Chapters 8, we use the wavelet Petrov-Galerkin method to solve self-adjoint
problems. A complete analysis of the method was introduced with trial basis
functions induced by B-splines of order 4 and test basis functions induced by B-
splines of order 2 on a fourth order self-adjoint Dirichlet problem. The method
has a great favorable impact on the condition numbers.

In Chapters 9, we introduce an application of the wavelet Galerkin method
in fault detection of a model problem. The application requires a discus-
sion of wavelet preconditioning for solving the generalized eigenvalue problem
Ax = AMzx. There we minimize Rayleigh quotients via preconditioned conju-

gate gradient method.



CHAPTER 2

LITERATURE REVIEW

The use of wavelets as an orthonormal basis in L?*(R) dates back to Haar in 1910
[43] who introduced what is now called the Haar wavelet. However, it was the
discovery by Daubechies and coworkers in the 80s and 90s of the last century of
rich classes of wavelets that revolutionized signal processing [31-34]. The impor-
tance of wavelets in signal processing lies in the existence of decomposition and
reconstruction techniques which allows us to transform a signal from a single scale
to a multiscale representation. This new representation enables us to modify the
signal for different purposes such as denoising and compression. The key point
of achieving this is the sparse multiscale representation of signals using wavelets
[56, 74].

Wavelets then came to be used in numerical analysis because it was noticed
that certain operators, especially differential operators, have sparse representa-
tion in wavelet bases. A pioneering paper was written by Beylkin et al. [6], who

realized that not only signals but also certain operators have a sparse represen-



tation in terms of wavelets. This was the starting point for many contributions.
Furthermore, wavelets provided a multiresolution platform [27], which meant that
preconditioning could be done irrespective of the size of the matrix [7, §].

The theory of wavelet methods for elliptic problems has been extensively stud-
ied in recent years. The area is still very active in research with prospects for
improving and optimizing algorithms as well as the application of the method to
real world problems. Urban [72] used the refinement matrices constructed in [28]
to solve second order differential equations.

Canuto et al. [11] detailed the general construction for two-dimensional do-
mains and showed how to use the wavelet element method (WEM) for the numer-
ical solution for elliptic PDE’s in an L-shaped domain.

Cohen and Masson [25] proposed a strategy that allowed to append non-
homogeneous boundary conditions in the setting of space refinement (i.e. adap-
tive) discretizations of second order problems. Their method was based on the use
of compatible multiscale decompositions for both the domain and its boundary,
and on the possibility of characterizing various function spaces from the numerical
properties of these decompositions. In particular, this allows the construction of
a lifting operator which is stable for a certain range of smoothness classes, and
preserves the compression of the solution in the wavelet basis.

Cohen et al. [23] constructed wavelet-based adaptive algorithms for the numer-
ical solution for elliptic equations. These algorithms approximated the solution of

the elliptic equation by a linear combination of a finite number of wavelets.



Dahlke et al. [26] developed an adaptive numerical method for elliptic operator
equations. They were interested in discretization schemes based on wavelet frames.
The scheme was based on adaptive steepest descent iterations. They presented
numerical results for the computation of solutions of the Poisson equation with
limited Sobolev smoothness on intervals in 1D and on L-shaped domains in 2D.

There were also other trials to solve differential equations using wavelets. For
example, Dhawan et al. [36] introduced a simplified procedure to solve linear
differential equations using Haar wavelets. Kostadinova et al. [50] used a fourth
order scaling function in the wavelet Galerkin method to solve a nonhomogeneous
differential equation and applied their method to the Van der Pol equation. Cerna
and Finék [14-18] worked on constructing an optimally conditioned cubic spline
wavelets on an interval. For instance, in [15] they constructed spline-wavelet bases
on an interval with a small condition number. In [17] they constructed a stable
cubic spline-wavelet basis on the interval with second order boundary conditions.
In [18] they constructed new cubic spline-wavelet bases, with small supports and
wavelets that have vanishing moments satisfying second order Dirichlet boundary
conditions.

Wavelets have been used in a variety of applications. In acoustical signal
processing, Kobayashi [49] illustrated some examples of using one-dimensional
Wavelet Transform (WT) based acoustic signal processing techniques, the elec-
tronic manipulation of acoustic signals, to detect the faults in automated quality

control mechanism.



In chemical industry, since signal processing is widely used, WT is a useful
tool to work on these signals [2]. Aballe et al. [1] investigated the validity of
wavelet analysis as alternative procedure to process electrochemical noise records.
They measured the energy at different scales or separate two components of the
signal (high coefficients for one component and the remaining for the other one)
by the inverse wavelet transform. Schrotter [67] presented a chemical process sur-
vey by filtering process variables as time series (cubic spline wavelets). Briesen
and Marquardt [10] presented a chemical process modeling by adaptive multigrid
method on the basis of a wavelet Galerkin discretization for the simulation and op-
timization of processes involving complex multicomponent mixtures in petroleum
industry.

In image processing, one of the main applications of WT is image compres-
sion. Wavelet compression algorithm provides better compression/quality than
traditionally used JPEG algorithm. The current international standard for image
compression (JPEG 2000) is largely based on scalar quantization of the coeffi-
cients of a Daubechies WT performed with Daubechies biorthogonal bases. Many
authors have contributed to the field, one can find the forerunners and compre-
hensive papers amongst the following references: [53,57,69,71,77].

As an application of solving a two-dimensional PDE, we developed in our pub-
lished paper [38] an online monitoring system for efficient and accurate detection
of cracks or erosion in a pipe system, whether composite, fiber reinforced poly-

mer (FRP) or steel, from vibration records. The elastodynamic model of such a

10



structure is typically a PDE, which is second order in time and fourth order in
space. Our approach does not require solving a nonlinear system. Instead, a sim-
ple decoupled linear system is to be solved. It does not require the prior buildup
of a database of modal shifts against crack parameters. It has the capability of

zooming-in for more accurate determination of damage location and parameters.

11



CHAPTER 3

PRELIMINARIES

In this chapter, we introduce some terminology and theorems to be used in this
thesis. We follow the notations in Urban [72].

We denote the support of a function f: ) — R by
supp f := closg{z € Q: f(z) # 0}.
A function f: Q — R is called compactly supported if
supp f CC Q2

is compact. Here D CC F means that the set D is compact in E.
For a function f:Q — R, we define f;x(z), the scaled and shifted version of
f; by

Jym(@) =27 f(2e — k), 2 €Q, j €Ny, k € L. (3.1)

12



If f has a compact support; i.e., supp f = [a, b], then

supp fijn =2/ [a+k, b+ k].

In the same manner, we can define the scaled and shifted version of the unit
interval I = [0, 1], by

Liw =277k, k+1].

The set {Ijx}ycro . o1y form a partition for I and

‘ijk’ — 27]'.

Also, for an interval €2 and for an integer value j > 0, we define

and

Fie = Fiwlg-

For j € Ny, we define the grid A; to be the set of all dyadic points of the unit
interval; i.e.,

Aj=1{k27 : k=0,1,...,27}. (3.3)

13



P,, denotes the set of polynomials of degree at most n € Npy; i.e.,

P = {g:R%R:g(m):Zakajk}_
k=0

(3.4)

We will use the abbreviation A < B to indicate that 3 « > 0 such that A < aB,

and A 2 B indicates that 3 v > 0 such that A > vB. Also A ~ B means A < B

and A 2 B.

The standard inner product (-, -)o.q in L?(£2) is given by

<ﬁmmp=/f@ﬂﬁﬂwﬁg€ﬁﬁw

Q

The corresponding norm is defined by

Wﬁm=UJMm:/U®P%f€L%U

Q

For any countable set Z, we use

A(Z) = {e = (erer : llelle@ < oo, llellpg = lal

kel

14
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3.1 Vector-Valued Inner Product

[48] In this thesis,  and y will generally be vector-valued; e.g., x € R™*! y €

R™*! So the inner product

(x,y) = /wyT (3.8)

Q

will often be a (rectangular) matrix, and not a scalar, and the integral is applied
to each entry of the matrix zy” over 2. To show that this is a well-defined inner

product, it is only required that the following conditions holds:

1. Linearity: For @, x; € R™! y € R™*! we have
(a1 + ag®s, y) = ar(x1,y) + ax(xs2,y), a1,a2 € R.
2. Reflexivity: For & € R™*!, y € R™*! we have
(@, y) = (y,z)".
3. Nondegeneracy: For £ € R™*! we have
|z||* = (x, ) = 0 only when « = 0.

By matrix properties, it can easily be shown that (-,-) satisfied the above condi-

tions and it thus a legitimate inner product.
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To introduce the concept of multiresolution analysis on R, we started with

presenting the Haar and hat systems in the following two examples.

3.2 Two Simple Examples

Example 3.1 (The Haar System) We define the Haar function by

1, z€0,1)
x) = = Xpo.1)(2)-

0, otherwise

Then

('0[1]{7;‘]"’( ) - 2j/2§DHaaT(2jZL‘ - k)v YIS R7 j € NO? k € 2.

The support of the function ¢ 15 given by

Haa'r(x)

supp SOHaar — [O, 1) —. [g{[aat)gé]aat)‘

Also Ijieer = supp 140" = 277 [k, k+1] and | I[3"| = 277. For j > 0, the elements

of the set ®Ier = {pliger oo ,gof;arl} = {gplj‘(l)j",wlﬁfr, . go[]]{g] 1} are

supported in the interval [0, 1).

16



Haar | . Haar | . Haar | , Haar | , Haar | , Haar | , Haar | , Haar

80]0 Spj, @]2 90], 80]4 90], (10]() 90],

Figure 3.1: Haar Functions ng““‘”’ k=1{0,1,...,7}.

For a fized j € Ny,

IjHaaT = {0717. ] "Qj _ 1} = {k : ];{kaar g [O, 1]}

For { # k, ]ﬁa“’" N Iﬁ“” 15 at most a singleton. To show this, we have

IO =270, 0+ 1), I50" =277[k, k+1).

Assume { < k, then {+1 < k so that 277 ({+1) < 277k. Therefore, the intersection

Haar Haar

is al most a singleton. Hence ¢;*" and ;" are orthogonal for k # (.

For 7 € Ny, define the “approximation” space SJH‘”” by

i = {g € Cl0,1]: g |pps 125y € Po} = span {@F*"}, (3.9)

17



where k =0,1,...,27 — 1.

The projection Pf1*" - L*(0,1) — S{'*" is defined by

271

PHaarf Z f (pHaar Haar — <f (I)Ham‘> (I)Ham‘. (310)

PjH‘W 18 an orthogonal projection.

Example 3.2 (The Piecewise linear system) Let

1+, x € [—1,0)

@) =912,  zefo,1) =1 RDX1w-

0, otherwise

Then

el (2) = 22" (22 — k), 2 €R, jENo, kEL

The support of the function " (x) is given by

supp " = [—1,1] =: [(het, ¢hat].

Also It = 279[k — 1,k + 1] and |I!¢'| = 2'9. For j > 0, the elements of the set

(I)?at = {w?%ta @?%ta s 780?(;} - {906?5} |[O,1} ) 90[] f]? wﬁaé]v sy 806-?5]'71], 906?57] |[0,1]}

have supports that intersect [0, 1].

18



hat Hat hlat Hat hat hat hat hat Hat
| Pi0  Pi1 P2 Pi3 Pia Pis o Pie Pt Phg |

Figure 3.2: Hat Functions 49, k= {0,1,...,8}.

Also

7} = {0,1,.... 2} = {k: I} € [0, 1]}.

For 7 € Ny, define the “approximation” space Sj}.‘“t by

i ={g € Cl0, 1] : g lpa-s (rs12-s) € P1} = span { "'} (3.11)

The projection P* : L*(0,1) — S} is defined by

Prff= )" gyt =cf o, (3.12)

hat
kte“
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where ¢; is giwen by the Gramian matriz system
hat g hat _ /a&hat
(@7, 5*) ¢ = (25, f) -
Now, we introduce properties of Haar and linear systems.

3.2.1 Refineability of Haar and linear systems

The Haar function ¢ () = x(0.1(z) can be written as
('OHaar(x) _ (,DHaaT(Z’L‘) + (,DHaaT(ZZL‘ . 1)’

so that ¢ is a refinable function with refinement coefficients {hg, h1} = {1,1}.

Also, the hat function ¢"(z) = (1 — |2|)X[-1,1]@z) can be written as
hat 1 hat hat 1 hat
P (2) = 5" 2e + 1) + 0" (22) + 5" (20 — 1),

so that " is also a refinable function with refinement coefficients {h_1,ho,h1} =

{z: L3}

3.2.2 Multiresolution for Haar and linear systems

With the above settings, we obtain for ®; € {®7*" &'} and approximation

spaces S € {SJHaar, that :

(a) The spaces S; are nested; i.e., S; C S;t1, j € No.

20



(b) U S, is dense in L*(0,1).

J€No

(©) NS =5

Jj€Ng
(d) {®;},en, are uniformly stable bases (independent of j); i.e., 30 < o < 3 such
that

2 2
alleillizg, < les®sl* < Bllejliae,, Ve € C(I),

Z;)

where

Ij c {I;-Iaarjzjhat} )

3.2.3 Locality of Haar and linear systems

For the Haar and hat systems we have the following properties:

(a) The bases functions @ff¢e", 4" are locally supported; i.c.,
[ supp @3¢ =277, [supp @] =2"",

Haar

where, supp ¢ = [0, 1] and supp " = [-1,1].

(b) Partition of unity; i.e.,

o 2P () =1 Vo e [0,1], Y 2792 (x) =1 Va € [0,1].

keIHuar kezhut
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(c) The sets @ @"ot are uniformly locally finite; i.e.,

(1 =) #{m € THoor  |[eor ( [Hoor| 5 0} < 1.

(B=) #{m eI |1y NIl >0} S 1.

“Uniformly” here means that the constant o« > 0 in the notation < is inde-

pendent of the parameters (j, k in this case).

Remark 3.3 We can write the refinement relations in vector notation as

Haar __ Haar zyHaar hat __ hat Fhat

where

Haar
Hj

1
= (Jonlity ) T 2k € M= (A, ),

Eh

Actually Hf‘m’" and H?“t are independent of k.

(3.13)

1
(—2hgig‘k) . m € THA g — 2k € M o= {ffle | ghleary,

Note 3.4 Each multiplication H " ®faar or HI " costs M| x |I4q| =

Jj+1

O(|1j41]) operations.
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3.2.4 Multiresolution Analysis on R

Let ¢ be a refinable function with a finite support. Thus, we have a sequence of

refinement coefficients (refinement mask) H = {hy}rez such that

o(r) = Z hip(2x — k). (3.14)

keZ

Equation (3.14) is called the refinement equation or the two-scale relation. For
J,m € Ny, let ©; = {;0,9j1,...,9;2} be the set of all shifted functions of ¢ in

the unit interval. Also, let S; be the “approximation” space defined by

S = {pjr € "o, 1] - ik |[k;2*j,(k+1)2*j) € Py} = span {®;}. (3.15)

Since a piecewise polynomial with respect to the grid A; is also a piecewise poly-

nomial corresponding to the finner grid A ;, then

Sj C Sj+1. (316)

Moreover, since ®; is a basis for S;, and S; C Sji1, there exist coefficients

{hi,m}kelj,mezjﬂ such that

Plik] = Z h?c,mSO[jH,m]'

mGIj+1

23



On the other hand, if (3.14) were satisfied, then

() = 22020 — k) = 27 " hnp(2(2z — k) — m)

meZ

=223 " hyp(2 2 — (m + 2k))
meZ

= 2i1/2 Z P —okp(27 0 — m)
meZ

1
= E Z hm_QkSO[j-i-l,m}(x)‘

meZ
In other words,

®j = H 1P, (3.17)

where the refinement matrix H ;; is given by

1
Hj+1 = E(hm72k)kezj,m€1—j+l' (3-18)

Note that the same refinement relation holds for ¢; (instead of o).

Definition 3.1 (Primal MRA) A sequence S = {S;},y, of spaces S; C L*(R)

is called a primal MRA if:
(1) S; C Sji1, 7 € Ny (nestedness).

(ii) U S; is dense in L*(R).

J€Np

(1r) () S; ={0}.

J€Np

(i) ¢ € L*(R) such that ®; = {¢yn : k € Z} is a uniformly stable basis for
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S; for all j € Ny.
(v) ¢ €S if and only if 19 € Sj+1 Vj € Ny (dilation).
(vi) ¢ € Sy if and only if wor € So, k € Ny (shift invariance).

£
Proposition 3.1 For a refinable function p(x) = > hpp(2x — k) with the nor-
k=t

malization Y, o(x — k) = 1, the following identities hold:
keZ

(i) I{(p(:c)d:c =1.
(i) supp ¢ = [l1, ls].

(iii) The refinement coefficients are normalized

> =2

(i) If the integer translates of ¢ are orthonormal; i.e., (o, (- — k))or = 0ok,

k € Z, we have HjH]T =21 (In particular ) hphogim = 20k0).
m,kEZ

(v) #{k € Z : |supp @or N[0,1]] >0} =¥y — {;.

Proof.
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(i) Since > ¢(z — k) =1, then

kEZ

/ ol)da = kZZ 71g0(x)dx
] oo

kE

(ii) Since ¢ is compactly supported, assume that suppy = [a,b] for a < b.
Note that the translates are locally linearly independent which means that

the nontrivial restrictions of the basis functions to any compact subset are

[
linearly independent. Since ¢(x) = > hpp(2x — k), we obtain by the local
k=01
linear independence
Lo
[a,0] = suppp = | suppp(2- —k)
k=01
B 0 [k +a k+ b]
B 2 7 2
k=0,
. a+ gl b + 62
L2 2

Hence, supp ¢ = [, {5].

26



(iii) Part (i) and the refinement equation give

/ dx—th/ (2 — k)dx

2 keZ
1
— Zﬁhk/go(:v)d:v
kEZ 5
1
keZ

Therefore > hy = 2.

kEZ

(iv) Orthonormality and the refinement equation give

do e = (o, (- — k)>0;R

= <Z hep(2- =), hop(2 - =2k — m)>

LeZ meZL
<Zhw (0 — (2k 4+ m)) th¢>
LeZ MEZ ;R
1
- 5 Z hmh2k+m-
mEZ

Therefore Y hmhogym = 2050-

meZ

(v) Since

#{k €Z:|supp worN[0,1]] >0} =#{k € Z: |/l +k, o+ k]N]0,1]| >0}

T Py Sy
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3.3 B-splines

B-splines are non-orthogonal scaling functions [35] with explicit formulas that are
frequently used in many applications, especially in solving differential equations.

In this section, we introduce the cardinal B-splines and its centralized version.

Definition 3.2 (Cardinal B-spline:) A cardinal B-spline of first order, de-

noted by ¢1(+), is the characteristic function of the interval [0,1); i.e.,

Ni(x) = Xjo,1)(2).

A cardinal B-spline of order m € N, denoted by N,,(x), is defined as a convolution

Ny () = (Nppe1 x Np)(z) = /RNm_l(a: —t)N1(t)dt = /0 Np—1(z — t)dt.

Proposition 3.2 [72] Let Ny be a Cardinal B-spline of order d, then:
(i) Ng is compactly supported with supp Ny = [0, d].
(ii) Ny is nonnegative; i.e., Ng > 0.

(11i) Ny forms a partition of unity; i.e.,
/Nd(x) dr =1, Y Ny(x—k) =1
R

keZ

(Z’U) N, € Cd_Q(]R).
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(v) Ny is refinable with
Nola) = 243" (Z) Na(2z — k). (3.19)

Definition 3.3 (Centralized Cardinal B-spline) A centralized version 4 of

a cardinal B-spline Ny is defined by

ap(x) == Ny (:c + EJ) : (3.20)

where |-| is the floor function.

Proposition 3.3 [72] Let 4p(x) be a centralized cardinal B-spline then:

(i) The support of qp(x) is given by

<[22 452 ][9] <t

where pg = d mod 2, and [-] is the ceiling function.

(ii) ap(z) is symmetric about x = u(d)/2; i.e., about x = 0 if d is even and

about x = 1/2 if d is odd.

(i1i) The refinement mask H = {hy}o,<k<e, 1S given by

hy, = 2174 (k +dL%J)' (3.21)

Proposition 3.4 [35] The cardinal B-spline basis ¢®; := {appjn : k € Z} is
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uniformly stable; i.e.,

Z €L dP[j,k]

keZ

1/2
~ (Z |eky2) (3.22)

kEZ

holds with constants independent of j.

3.3.1 Dual scaling functions associated to B-splines

It was shown in [52] that for a compactly supported refinable function ¢ there

exists a compactly supported refinable function ¢ (dual scaling function) satisfying

<90<' - k)? 5('))0;R = (507]6, ke 7.

This function @ generates a sequence S = {gj}jez of spaces gj C L*(R) which
constitutes a dual MRA, where §j = span{CAISj }jen,- Centralized cardinal B-splines
will be used to generate primal MRAs. A whole variety of scaling functions that
have been constructed in [24] will be used to generate dual MRAs. For any d € N,
a whole family of compactly supported refinable functions N ad € L*(R) indexed
by d such that d + d is even was constructed in [24]. These functions are dual to
Ny; i.e.,

<Nd(- — k), Nd,g>0.R = bor, k €7, (3.23)

and, by shifting to the centralized version , 7,

<d90(- - k),d,g@m = Ok, kE€Z. (3.24)
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Note that for any such c?, the regularity (and support length) increases propor-

tionally to d.
Proposition 3.5 [72] The dual functions have the following properties:

(i) 459 has compact support; namely,
supp d,J@: 0 —d+ 1,05 +d— 1} =: [E,%] :
(it) 479 is refinable with a finitely supported mask H = {%k}é}gkg@ i.e.,

0
22@) =" B2z — k). (3.25)
k=0,

(iii) 4 7P is symmetric.

(iv) 45 is exact of order 07, i.e., all polynomials of degree less than d can be

represented as linear combinations of the translates ; 70(- — k), k € Z.
(v) the reqularity of , 3¢ increases proportionally to d.

Note that, if (3.25) were satisfied, then

~ —~

®; = Hj+1€’j+17 (3.26)

where the refinement matrix f{/jﬂ is given by

1
Hj+1 = ﬁ(hmek)kEZj,mGIﬂ.l' (327)
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Table 3.1 lists scaling B-spline coefficients of orders 2 and 6, and their dual

functions coefficients of orders (2,4, 6) and 8, respectively.
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Table 3.1: Scaling B-spline and dual functions coefficients for d = 2 and 6

d=2,d=2

() =1{5, 1 5}

fabosieo={-1 1 3 } -3)

d=2, d=4

() =1{5 1 5}

{hk}4<k<4:{ 3 _ 6 16 38 90 38 16 6 3 }

64> 64’ 64> 64 64’ 64> 64> 647 64

d=2,d=6

(i} = {3 1 3}

_ 5 10 34 _ 78 123 324
T 5127 5127 5127 5127 5127 5127
{hk}f6§k§6:

700 324 123 _ 78 34 10 _ 5
5127 5127 5127 5127 5127 5127 512

d=6, d=S8

0.020401844366126, 0.020460141643279, —0.111329721612770,
—0.057088943387392, 0.590927877256156, 1.073257603648672,
{hi}—s<k<s =
0.590927877256156, —0.057088943387392, —0.111329721612770,

0.020460141643279, 0.020401844366126

N\~

0.002699495678428, —0.002707209364882, —0.024028393379977,
0.016878024108287,0.070332946625892, —0.109266627411421,

~ —0.133019801255711, 0.595095812677529, 1.168031504540340,

{he}-s<k<s =

0.595095812677529, —0.133019801255711, —0.109266627411421,

0.070332946625892, 0.016878024108287, —0.024028393379977,

—0.002707209364882, 0.0026994956 78428

7 \u
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3.3.2 Cascade Algorithm (Plotting Scaling functions)

We present here a modified version of the cascade algorithm introduced in [72].

It is used to plot a refinable function given its refinement mask.

Algorithm 1: Cascade Algorithm

52 Z2
Result: Plot a scaling function ¢(z) = > hpp(2z — k) with Y hy =2
k=t k=t
Input : A sequence of refinable coefficients (hy)e, <k<e,
Output: The values of ¢(z) at the dyadic points; i.e., (k277), k € Z.

1 Start with a sequence

Mok = 0o ks k € Z.

2 Compute

Njk2—i = Z hi—2m Njma-i, J € No.

mEZ

3 Interpolate the computed values with respect to the dyadic points; i.e.,

QO(/{Q*]) = 1 k27, keZ.

Figure 3.3 and Figure 3.4 illustrate the use of Algorithm 1 to plot the scaling

function 4¢(x) and its dual function 44 (), respectively.
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Figure 3.3: Scaling B-spline 4p(x).

Figure 3.4: Dual B-spline 4 4¢(z).
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3.3.3 Biorthogonal Projectors

Definition 3.4 (Biorthogonality) The collection of functions m = {1}y s

“biorthogonal” to the collection ¢ = {(i},eq if and only if

(n,¢)=1.

Proposition 3.6 (Linear independence from biorthogonality) Let n =
{nk}rez be a collection of functions. If the collection m has a biorthogonal col-

lection ¢ = {(i }rez then {ng}trez is linearly independent.

Proof. Assume that ¢'n = 0. Then

0=1{(¢ )= (¢ nc=1Ic=c

We define the dual projections

P:Q—S;, P:Q— 8

Pif == (f,®,)®;, Pif = (f &;),. (3.28)
Proposition 3.7 The operators P; and ]Bj have the following properties:
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(ii) P;s\P; = P;Pj.y = P; as well as Py, P; = PP,y = P;.
(iii) (P;f.h) = (f, P;h).

Proof. All arguments for E, are completely analogous to those for P;. Thus,

we concentrate on the primal part in the remainder of the proof.

(i) By definition, for any f € L*(Q), we have

(i1) Using the refinement relation, we obtain

PP f = P (Pif) = <<f, ;) ®;, E)j+1> Djt1
= <f7 EI;;> <(I)j7 &)j+1> (I)jﬂ
= (f,®;) <Hj+1q)j+1a E’J’+1> )1
= (f, ;) H s <‘I)j+1> ‘Ej+1> Dji1
= (f, @) Hj 11911

= ([,2;)®; = P;f.

Similarly, we can show that PP, f = P;f.

37



(iii) By definition, for any f,h € L*(Q), we have

(Pif. ) = ((.8,)%;,h)
= (f,®;) (2, D)
= <f7 (h, ®;) 5)]->

= (f, P;h).

3.3.4 Apprximation Properties

The Bramble-Hilbert Lemma bounds the error of an approximation of a function
u by a polynomial of order at most m — 1 in terms of derivatives of u of order m.
Since all spaces {S;}, y, are subspaces of L*(R), but P,(R) is not, we have to

consider

S;-OC = {f = chgpj,k A} € K(Z)} = span{®;}, (3.29)

keZ
where ((Z) is the space of sequences on R labeled over Z. Notice that S1°° ¢ L*(R).
It can be seen that the degree of polynomials contained in S}OC determines the
rate of convergence of the best approximation in S;. In order to formulate this
statement, we pose some assumptions that are satisfied for B-splines and their

duals.

38



Assume that we have the sets of functions
O ={pjn:k €L}, O ={Pix: ke, (3.30)

in L*(Q), where Z; is a suitable set of indexes and Q C R. These sets should

generate biorthogonal MRAs S and S in L2(Q); i.e.,
S; = closp2(q) span{®;}, §j = clos 2 span{EI;j}, (3.31)
and
(0,,8;) = Iz, (3.32)
To be precise, we pose the following assumptions.

Assumption 3.5 [72] Assume that

(a) ©; and EI;j are locally finite; i.e.,

where Ljr=0j,U0jk, ke Z;, 0j) = SUpp Pjk, Ojk = SUPP Pjk-

(b) the size of the support decreases exponentially with the level, independently of
k; ie.,

Tkl 277, ke,
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(c) the L* norm of the translates is uniformly bounded; i.e.,

lojkllon S 1, [[@klloe S 1, k €T

Proposition 3.8 [72] Under Assumption 3.5, we have that ®; and ZI% are uni-

formly stable; i.e.,

le" ®;lloe ~ lellea,), e @jlloa ~ llele,), (3.33)

independent of j.

Proof. Let us first abbreviate

Ij,k = {ﬁ € Ij 105k N O'jf} 7£ 0.

Now, we will show that

le" @il ~ llelle,)- (3.34)
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On the one hand,

) 2
2
||CT<Dj|’0;Uj,k - Z CLpse S Z HCESOJ',EHO;Uj’k
ZEijk 0§0'j,k EEZjvk
2
S X lalliesel,
eGI]’,k
2
S el
Zte,k
5 Z |C€‘27
fGZj,k

where we used the triangle inequality and (c) of Assumption 3.5. We now use (a)

and sum over all £ € Z; to get

"0]l00 S D [l
HC (I)] 0;Q ~ ¢ CI)] 0;05,k
k‘GZj

SN el

k€T, beT;

2
S Z ||C||e2(zj,k)

/‘u‘EIj

2
S ||C”e2(zj) :
On the other hand, let v; = ¢ ®;. Then we have by Assumption 3.5 (a) and (c)

~ 2
lexl® = [{vg, Eiwdoal” < Nvsllos, , -
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Summing over all & € Z; yields

2 2 2
el = S Il S S il S lesliz = et oo
k‘GIj k‘GIj

Proposition 3.9 (Whitney Type Estimate) [21] Let T be an n-dimensional
cube of side length h > 0, and let f : R™ — R be a function such that the derivative

of order m + 1 is in L*(I); i.e.,
fmY e L2(T), 0<m <d,

then

inf || f — plloz S " oz (3.35)
pEPg

Proposition 3.10 (Jackson Inequality or Direct Estimate) [21] Let As-

sumption 3.5 hold. Under the assumption Py_; C SP° we have

inf 1/ = villoe S (27)" 1/l s <d, (3.36)

if f5) € L2(Q).

Proof. Since Py_; C Sy° C S}OC, for any j € Ny, one has for any p € P;_; that
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Pjp = p and then we get by the trinagle inequality

If = Pifllor,. <IIf —pllor,, + I2(f =p)lor,.

< f =pllor;x +{f =1, ®)®)llor,,

<|[f- p||0,rj,,c + Z (f —p, @j,m>o,rj,,€ Pj,m
mte,FjﬂkﬁFj’mfm 071—\j7k
<If=plor,u+ D | (f =2, Pimlor,, | l@imllor,

meZ; L5 kNl m #0

In view of Assumption 3.5, we have by the Cauchy Schwartz inequality that

it 1 = pBimdary, | Ieimlor, S nt 1 = Ploxy, S @71 o,

for s < d, where we have used the Whitney estimate (Proposition 3.9) in the last

step. Thus, we finally have

1f = Piflge S D= Piflor,, S D D15,

kGIj kEIj

< @50

since only a fixed number of I'; ; overlap. |
Using similar arguments applied to derivatives of f gives an analogous estimate

for derivatives of the approximation error.

Proposition 3.11 (Bernstein Inequality or Indirect Estimate) [21] Let

Assumption 3.5 hold. Under the assumption Py—1 C Sy°¢ and for S; € H™(L),
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we have

nf 17 = o)™l S 279 o, s < d. (337)

3.4 Refinable Integrals

In this section we introduce the refinable integral that we use to calculate the

matrix entries of the stiffness matrices resulting from an ODE discretization.

Proposition 3.12 Let p(z) and ¢ (x) be two refinable functions, then there ezists

masks H = {he},cq, and G = {gm } ez Such that,

o(x) = Z hep(2x — 0), ¥(x) = Z gm¥(2x —m), z € R. (3.38)

leZ meZ

Consider the function ﬁn,r : R — R defined by

E,.(z) = / o™ () (t — x) dt, n,r € Ny, (3.39)

then ﬁnw 1s refinable with mask

o =2"""" B G- (3.40)

meZ

Proof. For x € R, the n'* derivative of p(z) and the r** derivative of ¢(x) are

given by

M (x) =2 hept™ (22 — 0), P (2) =27 gutp (22 — m).

LeL meZ
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By (2) = / S (0 (¢ — ) dt

_ onetr Z Z hegm / ™2t — O™ (2t — 22 —m) dt

LET MmEZ

> %hegm/gp(n)(s)lp(n)(s (22— (C—m))) ds, (s=2t—0)

LeZ mEZ

= 2n+7“ Z Z %h&gm ﬁn,r(2x - (f - m))

LeZ mEZ

_ Z (Z 2”+”_1h4+m9m> ﬁnvr(Qx — f), ((6 — m) — £>

LEZ \mEZ

Therefore, ﬁnm is refinable with mask

Cy = 2n+7”—1 Z h€+mgm- (341)

MEZ

Let

Fo.(x)= /go(")(t)gp(’")(t —x) dt, n,r € Ny.

(r)

Liom] (z)dz, we notice that

To compute integrals of the form [ gpfﬁ] ()

/ ol (@)l (x)da = 2720477 / P (2 — 0" (Fx —m)dz
_ 2(n+r)j/90(70(3)90(7")(3 — (m —1¥)) ds, where s = Vg —¢

— gntn)i Fo,.(m—=1),
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which is equivalent to calculating F),, (¢) for ¢ € Z. To compute these values, we
introduce the following (small) eigenvalue-eigenvector problem.
Consider a refinable function G with finite mask G = {gr}, <<, For m € Z,

we have

Lo

Glm) =" gG(2m — k)

2m—~{1

= Z Gom—sG(s), where s =2m — k.

k=2m—/{o

Then we have the eigenvalue problem

v = Av, (3.42)

where v = (G(k))¢, <k<e, is the vector of nonzero integer point values of G, and A
is a r x r matrix with entries (A);; =g, 1 < 1,5 <r, where t =20, +2i —j —1
and r = 2(ly — £1) + 1.

Now, for the function F),,, since its mask is {2"""¢j}rez, the matrix A, ,

corresponding to (3.42) has the form (A, ,);; = 2"*"¢; and (3.42) becomes

2~ i = AUy (3.43)

Hence, v,,, is an eigenvector of A corresponding to the eigenvalue 2~("+") This
means that we can use the same eigenvalue problem to find vy, vy, ..., Vyuy.

It remains to normalize the eigenvectors in (3.43). For this purpose, we intro-
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duce the following proposition.

Proposition 3.13 The values {F,, (M)} reng,mez Satisfy

—(r+n)l, r even and n odd or both odd

> KTE, (k) = . (3.44)

he (r+n)!l, r odd and n even or both even

Proof. Assume that ¢ has polynomial exactness s; i.e., 1, z, ..., 2571 € S.

Take m < s — 1. Now, since ™ € Sy then we can write

Zak,mgo(x —k)=2a", x €R.

keZ

Then

m—1
where the constant 7y = Y (7})k* [ 2™ ‘@(z)dx and since [ §(x)dz = 1.

Therefore,

D (T + k™l — k) = 2™

kEZ
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So that

> ket — (x+ k) = (t—2)" =T

kEZ

Multiplying both sides by ¢ and integrating,

S [ ettt - (@ k= [ (¢ = 0 p(e)it -

kEZ

Differentiate both sides of (3.45) m times with respect to x, we get

S E F =Y km/go(t)go(m)(t (x4 k) dt = m.

kEeZ keZ

Finally, integration by parts implies

—(r+mn)!, r even and n odd or both odd

> K (k) = . (3.46)

keZ (r+mn)!, 7 odd and n even or both even
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3.5 Error Computation

We investigate here how to compute L? and L> Errors. We illustrate this with

the fourth order self-adjoint Dirichlet problem

U(u) = (as()u")" = (ar(x)) + (ag(x)u) = f,
(3.47)

where ag(x) are bounded on [0,1], £ = 0,1, as(x) > as > 0 and ag(z) > 0, k =
0,1. We can use the same procedure for any self-adjoint problem.

Given j > 1, let II; be a uniform partition on (0,1). Let S; C HZ(0,1)
represents the trial and test space at level j and be spanned by of cubic B-splines
on II; which satisfies the Dirichlet boundary conditions. Then the discretized
Galerkin method reads:

Find u; € S; such that

(U(uy),v5) = (f,v;) Vu; €8S} (3.48)

Let ®; be the basis for S; constitutes of a sufficient number of elements.

The Galerkin method gives rise to the Galerkin projection

P7 LA () — S,

defined as follows. For f € L*(), write PjG f = ¢"®;. Taking the inner product

49



with @;, we get

(®,®;)c = (P, P{f)
= <PJ'G<I>jv f>

= (2, f) (3.49)

3.5.1 L? Error Computation

Let y; = ETCIDJ- be the Galerkin approximation of the ODE ¢(u) = f in S; and
y be the exact solution. The error due to this approximation is defined as e; =

PPy — g, Writing PPy = ¢"®;, where c is computed using (3.49), we have

Hej”o;Q = HP]Gy - gj“o;ﬂ

T ~T
=|lc®; —c D,

0;Q
T ~T
— — N,
(c c )P, 00
~ |lef —¢" (3.50)

e’

Therefore, to compute the L? error of approximation, it is enough to compute
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3.5.2 Grid Error Computation

Sometimes there is interest in computing the error due to Galerkin approximation

of the grid points A;. This error is defined as
ef = max (k) — (@)l (3.51)
In this case,

J(zn) = D,

= > Cnim(@in).
melﬁk

We recall that, by assumption

ikl =0 S 1.
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CHAPTER 4

BOUNDARY VALUE

PROBLEMS

In this chapter, we present the model problems that we use in this thesis. For the
ODEs we use the (2n)" order self-adjoint Dirichlet problems, and for the PDEs
we use a two dimensional self-adjoint problem. We investigate here the variational
formulation, existence and uniqueness, and error estimate for the Galerkin method

for these model problems.

Definition 4.1 (Weak Derivative) Let Q C R and let u € L*(Q2). A function

v € L*(Q) is called the weak derivative of u if

/v(m)gb(x) de = — /u(x)gb’(x) dr V¢ € C5°(2). (4.1)

Q Q

where C§°(§2) is the space of infinitely differentiable functions with compact sup-
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port; i.e.,
CyP () ={v e C*(Q) : suppv CC Q}. (4.2)
We will still denote the weak derivative of the function u by u’.

Higher order weak derivatives are defined recursively. Also partial derivatives and

differential operators like V and A are interpreted in an analogous way in a weak

form.
Definition 4.2 (Sobolev Space) Let m € N.

(a) The Sobolev space of order m is defined by
H™Q) = {v e L*Q): o™ € L*(Q),1 < k < m}, (4.3)

where the derivatives are to be understood in the weak sense. A norm on

H™(Q) is defined by

m 1/2
bl = (S 1150) w
k=0

This norm is induced by the inner product

(u,v), o= Z (u®), U(k)>o;g (4.5)
k=0
Moreover, we define the seminorm
bt = ([0 (16)
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(b) The Sobolev space with generalized homogeneous Dirichlet boundary conditions

is defined as

Hg"(€) := closy,, , (C57(€2)). (4.7)

4.1 Variational Problem

Let V be a normed linear space and

a:VxVoR, (4.8)

be a symmetric, positive and bounded bilinear form; i.e.,

a(u,v)=a(v,u), u,veV
a(u,u) >0, ueV, u#0

a(u,v) < Cllully [[olly, u,ve V.

We consider the following variational problem

Find v € V such that

a(u,v)="L(v) YveV, (4.9)

where ¢ : V — R is a bounded linear functional

l(v) = {f,v) €R; (4.10)

o4



ie., £ € V' the dual space of V. The bilinear form

(,):V'xV >R (4.11)

is known as the dual pairing.

Definition 4.3 (V —elliptic) Let V' be a Hilbert space with norm ||-||,,. A bilin-
ear form

a:VxV R, (4.12)

is called V —elliptic if

(1) it is bounded; i.e., there exists a constant o > 0 (the continuity constant) such

that

a(u, )| < allully [llly, w,veV, (4.13)

(2) it is coercive; i.e., there exists a constant B > 0 (the coercivity constant) such
that

a(v,v) > Bllv)?, veV. (4.14)

Theorem 4.1 (Lax-Milgram theorem) let V' be a Hilbert space and let the
bilinear form a : V x V. — R be V—elliptic. Then, the variational problem (4.9)

has a unique solution uw € V' for any £ € V'.
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4.2 Ordinary Differential Equation

4.2.1 Self-adjoint Dirichlet Problems

We consider the following general one-dimensional (2n)" order self-adjoint Dirich-
let problem.

Given f:(0,1) — R, determine u : (0,1) — R such that

k=0 (4.15)
u™(0) =u™(1) =0, m=0,1,...,n—1,

where ag(x) are bounded on [0,1], K = 0,...,n, a,(z) > a, > 0 and ag(x) >

0, k=0,1,...,n— 1.

4.2.2 ODE Variational Formulation

Multiplying both sides of (4.15) with a test function ¢ € C§°(f2) and integrating

over 2 = (0,1) yields

[ t@otw) do =Y [ anwp@)o®(a) da, (4.16)

using integration by parts and the prespecified Dirichlet boundary conditions. We
see that (4.16) is in fact well-defined for functions in the Sobolev space H{(£2),

where



Observe that in H['(€2) the seminorm |ul,.q is a norm equipped to the norm in
H™(Q). Using V := HJ(Q) as the trial and test space, the weak (or variational)
formulation of (4.16) reads:

Find v € V such that

a(u,v)=(f,v)pq Y0EV, (4.17)

where the bilinear form a : V' x V' — R is defined by

n

a(u,v) = Z <aku(k),v(k)>0;ﬂ

and f € L*(0,1).

4.2.3 ODE Existence and Uniqueness

Using Holder’s inequality, we can show that a( -,-) is bounded; i.e.,

a(’U,,U) < a“an,QHUHn,Q (418)

Also, the bilinear form a(-,-) is also coercive; i.e.,

a(u,u) > B ullyq - (4.19)
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Hence af( -,-) is V—elliptic. By Lax-Milgram theorem, there exists a unique solu-

tion for problem (4.17).

4.3 ODE Error Estimate for Galerkin Method

The Galerkin discritizaion of the variational formulation (4.17) uses finite dimen-
sional subspace V; C V with dim V; < co. The discrete version of (4.17) reads:

Find u; € Vj; such that
a’(uja Uj) = <f7 Uj)@;g vUj € V} (4.20)

By the Lax-Milgram theorem again, (4.20) has exactly one solution.

Galerkin orthogonality property: Let u € V be the solution of (4.17) and
u; € V; be the solution for (4.20). Since V; C V/, we can also test (4.17) for v; € V}.
Thus, subtraction of these two equations gives the Galerkin orthogonality relation
for the error, e; = u — u; which is the error between the solution u of (4.17) and

the solution u; of (4.20):
a(ej,vj) = alu—u;v;) =a(u,v;) —alu;,v;) = (f,v5)0.q — ([, Vj)gq = 0.
Theorem 4.2 (Céa Lemma) Let a(-,-) be V—elliptic. Then, we have

Yo
lu = wlly, < = inf flu—wjlly 5 (4.21)

J J
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i.e., the subspace solution u; is “the best” approximation of w in Vj, up to the

constant v/ c.

Proof. Let v; be an arbitrary element in V}, then

wj = Uj — Uj € V; (422)

By Galerkin orthogonality, we have

a(u—uj,w;) =alu—u;,v; —u; ) =0. (4.23)

Then using the boundedness and coercivity of a(-,-) we get

allu =} < alu—uju—u;)
= a(u—uju—v;)+alu—u;v; —u;)
=a(u—u;,u—uv;)

<7~ Hu - uj”v ”u - Uj”v-

Dividing by «a ||u — u,]|,, and taking the infimum over v; € V; on both sides we

get the result of the theorem. I

Note 4.3 The Céa lemma means that, up to the constant v/« the Galerkin so-
lution w; 1s as close to the original solution u as any other vector in V;. In
particular, it will be sufficient to study approzimation by spaces V;, irrespective of

the equation being solved.

59



Definition 4.4 (Continuous Embedding) Let X andY be two normed vector
spaces, with norms ||.||x and ||.|ly, respectively, such that X C Y. If the inclusion
map (identity function)

id: X =Y : z—uzx

is continuous, i.e. if there exists a constant C' > 0 such that
[zlly <Cllzllx Vze X, (4.24)

then X is said to be continuously embedded in 'Y .

Theorem 4.4 (Aubin-Nitsche Trick) Let H be a Hilbert space, V. — H be

continuously imbedded, and V; C' V. Then, we have

1 .
|u —wll ; < Cllu—wuyl[,, sup {— 1nf_|\¢g—vj\!v}, (4.25)
gemvioy Ullglly vievs

where u is the exact weak solution for the boundary value problem, u; € V; is the
Galerkin solution, C' is the continuity constant of a(-,-) and ¢, € V is the dual

solution for a given g € H; i.e., the solution for
a(w,py) =(g,w)y, wel. (4.26)
Proof. By Galerkin orthogonality

a(u—uj,v;) =0, v; €V,
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and by testing (4.26) with w = u —u; € V to obtain by continuity of a(-,-) for

any v; € V; that

(g, u—uj)y = alu—uj ) =alu—uj, o, —v;)

< Cllu=ully lleg = vsly -

Therefore

(g,u = i)y < Cllu—ujlly imf lleg —villy -

Thus we obtain by the standard representation of norms in Hilbert spaces

JU— U
lu—ull, = sup $U—%)
gem(oy gl

1
<Clu-uly sw {o i o, - ol |
TV gemvoy Ullglly vevs 770 Y

If a(-,-) is elliptic on H*(2), then Céa lemma gives
o=l S il vyl (4.27

The regularity and polynomial exactness of the scaling functions: If

Pi1 C S;and ¢, € H(R), then the statement of Proposition 3.11 gives

lu = ujllyn S inf flu—vjllq S (277) " fulse, (4.28)
v; €S}
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for u € H*(Q), t < s < d. By the Aubin-Nitsche trick, since H* < L? one can
obtain an L? estimate

e = wjlloe S (277)ulse, (4.29)

forue H*(QQ), t <s<d.

4.4 Partial Differential Equation

4.4.1 PDE Model Problem

In this thesis, we mainly consider the following two dimensional self-adjoint equa-
tion with a homogeneous Dirichlet boundary condition. Given f : 2 — R, deter-

mine u : 2 — R such that

—Au+cu= fin Q
: (4.30)

u =0 on 0N

where Q = (0,1) x (0,1), and ¢(z,y) >0 Vz,y € Q.

4.4.2 PDE Variational Formulation

With © = (0,1) x (0,1), let C5°(€2) be the space of test functions defined as

Cr(Q)={veC®Q):vCccQ}. (4.31)
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Multiplying both sides of (4.30) with a test function ¢ € C§°(€2) and integrating

over () yields

[ taote) aa= [ Guw.w) - Totey) da+ [[ oo g)otwy) da

(4.32)
using Green’s formula and since u = 0 on 0f).

We see that (4.32) is in fact well-defined for functions in the Sobolev space
Hy(Q) == {v € H(Q) : v(2,0) = v(0,y) = v(z,1) = v(1,y) = 0},

where

ov
ox

ov

HY(Q) = {ve L*Q): By

€ L*(Q), — € L*(Q)}.

The partial derivatives are to be understood in the weak sense. Using V := H}(Q2)
as the trial and test space, the weak (or variational) formulation of (4.30) reads:

Find v € V' such that
b(u,v)="L(v) YveV, (4.33)
where the bilinear form b: V x V — R is defined by
b(u,v) = (Vu, Vu)o.q + (cu, v)q

//VU$y -Vo(z,y) dA+// c(z,y)u(z,y)v(x,y) dA,
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and the bounded linear functional ¢ : V' — R is defined by

4.4.3 PDE Existence and uniqueness

Using Holder’s inequality, we can show that b( -, -) is continuous; i.e.,
u.)] = | ] Vuta,y) - Fotap) + o y)ute,y)ota,y) dA
Q
< [ 19ute.) - Vo(a.w) + el pute etz 4
Q

< [ Wutw)- Vo)l aa+ [t aa

< [IVull 2@ IVl 2@y + [lell oo @ 1l 2o 191l 220

< max{l, ||C||L°°(Q)} ||U||H1(Q)||U||H1(Q)

by Cauchy-Schwarz to go from the third line to the fourth line. Hence, the bilinear

form b( -, ) is continuous. Also, it is coercive; i.e.,

b(v,0) = // IVl + cv?)dA > // IVolPdA > afloldngy,  (4.34)
Q Q

with o = (C?+1)7!, where C'is the Poincaré inequality constant, and since ¢ > 0.
Here the norm || - || is the euclidean norm. All the hypotheses of the Lax-Milgram

theorem are satisfied, therefore there is one and only one solution v € V.
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4.4.4 PDE Regularity

Theorem 4.5 (Regularity theorem, general case) [72] Let a(-,-) be an el-

liptic bilinear form on a Hilbert space X, where

Hy(Q) c X c H(Q),

and Q C R™ is a convex domain. If the coefficient function ¢ in (4.50) is smooth,
then the corresponding solution u of the variational problem (4.33) satisfies u €
H?(Q) provided that f € L*(Q).

Proof. See, e.g. [42,62]. |
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CHAPTER 5

GENERAL PROBLEM

METHOD

In this chapter, we introduce a method to numerically approximate solutions of
general self-adjoint problems. We do this by first solving a self-adjoint Dirichlet
problem. The main reason for introducing this method is to minimize the condi-
tion number of the stiffness matrix through the achievement of the coarsest level
which is available only for Dirichlet problems. Moreover, this method takes care
of the complexity and insufficiency of the methods presented in the literature to
solve these kinds of problems [28,72]. This method also has the ability to handle
higher order problems; a topic which is extremely rare in the literature.

Our developed method can be summarized as follows. Given a (2n)™ order

self-adjoint ODE equipped with general boundary conditions:

1. Solve (2n + 1) related Dirichlet problems (each is O(N)).

2. Construct boundary functions to carry the boundary conditions of the problem
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being considered.

3. Construct the solution for the boundary value problem being considered using

the solutions from steps 1 and 2.

It should be noted that steps 2 and 3 are purely algebraic and require solving only

small algebraic systems.

Let ¢ be the formally self-adjoint expression

Let D be the domain

D ={ue L*0,1): ¢(u) € L*(0,1)}.

Define the “maximal” operator L : D — L%*(0,1) by

Lu = ((u).

Let D; be the domain

Dy ={ueD:u™0)=u"(1)=0, m=0,1,...,n—1}.

Define L, : D; — L*(0,1) by
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L, will be called the Dirichlet operator. Here, we are interested in finding the
solution for the ODE

Lu=f, (5.4)

where L is the self-adjoint operator with domain D obtained from D by imposing

prespecified self-adjoint boundary conditions and where Lu = f(u). We assume,

of course, that the self-adjoint operator L is such that (5.4) is always solvable.
Let uy,us, ..., us, be linearly independent solutions of Lu = 0. The general

solution to Lu = 0 is given by

Up = rUp + oy + -+ -+ TonUay,. (5.5)

The solution for the (2n)%" order non-homogeneous equation Lu = f is given by

U= up + up, (5.6)

where u,, is any particular solution for Lu = f. We choose this particular solution
to be the solution for the Dirichlet problem Lyu = f.

Accordingly, the solution u of Lu= f is given by

U= Uy + Uy + roly + - - + Toplonp. (5.7)
To find the fundamental set of solutions u;, ¢ = 1,...,2n, we proceed as follows.
We first construct the boundary functions 6;, ¢ = 1,...,2n to carry the boundary
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conditions defining D. These 6;’s should not satisfy the Dirichlet boundary con-
ditions. More precisely, 01,05, ..., 0, should be linearly independent modulo D;.

This means that if aq, as, ..., as, are scalars such that

04101 + a202 + -+ agnegn € D17

then a; = as = --- = ay, = 0. This linear independence modulo D; means that

D can be built from Dy; i.e.,

D = D; + span [, . (5.8)

Consequently, the functions 64,6, ..., 0, can be used to construct the domain D
of L. Thus the parameters 1,7, ..., s, in (5.7) will always exist. See [58] for
more details. We construct the first functions 6., k = 1,...,n, to be supported
near 0 and then take 6;(z) = 6,_,(1 —x), j =n+1=1,...,2n. Next, we find

the solutions &;, i = 1,...,2n of the Dirichlet problems
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Finally, we set u; = & — ;. Then

Lu; = L(& — 0;)
= 0(&) — €(0:)

= 1§ — LY,

Furthermore, uy, us, ..., us, are linearly independent modulo Dy, for if

a1Uq + QolUo + - + QopUsy, € Dl,

then

&y + agdo + -+ o — anth — elly — - - — a,bay, € Dy

Since 1€ + anés + -+ - + apéon € Dy, a6y + by + -+ - + ag,b2, € Di. By the
choice 0f01,92,...,02n, 1 = Qg = +++ = (9p, = 0.

To find the values for the constants r;, ¢ = 1,...,2n in (5.7), we apply the
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general boundary conditions defining D. With @ defined by (5.7), we have

Lu=1 (up 4+ rrur + rots + -+ 4 TopUay)
= Eup + rlzul + TQEUQ +---+ TQnZUQn
= Lyuy + 1 L(& — 01) + raL(& — 02) + -+ + ron L(Eap — Ban)
= [ (U&) = €(01)) + 72 (€(&2) — €(02)) + - - - + 20 (€(&2n) — £(020))
= f4+ri(L1& — LOy) + ro(L1&e — Lbs) + -+ - + 19, (L1&op — Lboy,)

= f.

Note that the values of w,, and &;, 7 = 1,...,2n are zeros on the boundaries
up to the n'* derivative. If the boundary conditions defining D contain higher
derivatives, then the numerical computation of these derivatives should be of
the same order of accuracy as the numerical scheme used for approximating the
solution for the differential equation. For example, if the method is of order 4,
we will apply a forward fourth order difference method to find u’ )(0) and fl-(p )(0),
and a backward fourth order difference method to find u (1) and €% (1). The
above discussion is summarized as follows.

To find the solution @ of the self-adjoint problem Lu= f

1. Find &, &, ..., &, such that

ngi:LQi,izl,Q,...,Qn,

where the 6;’s are chosen to be linearly independent modulo D;.
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2. Set U1:51—91,221,2,,2n

3. The solution @ of Lu = f is given by

U= Up+ riuy + rous + - -+ + Toloy,

where u,, is the solution for

Llu = f,

and 11,79, ..., 72, are computed such that u satisfies the boundary conditions

defining D.

In the following example we apply the discussed method to solve a second

order self-adjoint general problem.

Example 5.1 Find the solution for the second order general problem

Lu = —u" + 10u = cos(27z),

(5.10)
w(0) = u(1),u'(0) = u'(1)
Solution: Let u, be the solution for the Dirichlet problem
Lu = —u" + 10u = cos(27z),
(5.11)

We choose the two linearly independent functions #; and 6, such that 6;(x) =

1 + cos(mz) and 6y(x) = 0,(1 — x).
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Let & be the solution for the Dirichlet problem

Llu = L@l, ( )
5.12

To find the sought solution u(z) = u,(x) + rius (x) + roug(x), we need to find the

constants r; and 7. We apply the boundary conditions on .
e u(0) =u(1) gives 1 = rs.

o UW(0)=1u'(1) gives

uy,(1) — 1, (0)

—&(0) + &(0) — & (1) — &(1)

1
To find u;,(0), £1(0) and &5(0) we apply the fourth order forward difference method:

PO =5 (=330 + 470 = 37621 + 5 30) — 1 an) )

To find w;,(1),£1(1) and &(1) we apply the fourth order backward difference

method:

P =3 (33700 = 470 = W+ 370 = 2) = 170 =30 + 111 41)).
Accordingly,
U = uy + ruy + raus.
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CHAPTER 6

BIORTHOGONAL WAVELETS

Up to this point we were obtaining numerical solutions of ODEs in the approx-
imation spaces S;. In this chapter, we give a full construction of biorthogonal
wavelets on the real line. The construction includes the one-dimensional and
two-dimensional biorthogonal wavelets. Moreover, we present the conjugate gra-
dient method with wavelet preconditioning to solve linear systems resulting from
discretization. We will see that wavelet preconditioning is optimal.

The one-dimensional biorthogonal wavelets in L?(R) was discussed in Section
1. Section 2 gives a description of the conjugate gradient method and the precon-
ditioning version of this method. Wavelet transform and inverse wavelet transform
were illustrated in Section 3. In consequence of Sections 2 and 3, Section 4 rep-
resents the wavelet preconditioned conjugate gradient algorithm. In Section 5,
we illustrate the work of Dhamen and his coworkers to construct biorthogonal
wavelets on the unit interval. The wavelet basis and the biorthogonal wavelets in

L*(R?) were shown in Sections 6 and 7, respectively.
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6.1 Omne-dimensional Biorthogonal Wavelets

Recall that the projections associated with two biorthogonal MRAs S = {S;},ez,

S = {S;},ez were defined in Equation (3.28) as
Pif = <f, EIv)j>(I)j7 Pif =(f,®;) ®;. (6.1)

Note that P; is not an orthogonal projection (unless &)j = @;). In Proposition
3.10, we showed that to achieve higher approximation accuracy, we need to use
a higher value of j (increase resolution). However, increasing the resolution will

cause an exponential growing of the number of degrees of freedom because
|Z;| ~ 27

To deal with this difficulty, we discuss how to use the already computed approx-
imation f; = P;f to calculate f;1; = Pj1f without having to redo the whole

calculation. Since S;;; D S5}, we may write
fis1=f; +9;,
or

Pif = PBif + g

Hence,
95 = (Pia— Py f :==Q;f.
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We call g; the detail part of f, and @); the detail operator at level j. Similar

discussion holds for the dual projecrtion ]Bj Thus, we let

Qj =P — P

Proposition 6.1 According to the definitions of P;, ]Sj,Qj and @j, we have:
1. Qj, @j are projections onto W; = Range(Q),), Wj = Range(@j), respectively.

2. Q;P; = PQ; = Q;P; = P,Q; = 0.

~  ~

3. W; LS;, W; LS;.
4. Sj+1 :Sj@vvj', §j+1:§j@ﬁ7}.

Proof.

1. Since

Qf = (Pjs1 — F))* = P}

j i1 — PjPj— PP+ Pj2

= Pj;1 — P, — P; + P; (Proposition 3.7 (i7))

:Qj7

(); is a projection. In the same manner we can show that @j is also a projection.

2. Using the definition of @);,

Pij = j(Pj+1 — P]) = PijJrl — Pj2 = F)J — P] =0 (PI‘OpOSitiOl’l 3.7 (ZZ))
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Similarly, Q; P; = Q;P; = P;Q; = 0.
3. Let feW;, g€ §j C §j+1. Then
(f,9) =(Q;f,9) (since f € W)
= ((Pj+1 = P)/f.9)
= <Pj+1f7 g> - <ij7 g>
= <f, ]5j+1g> — <f, ]ng> (Proposition 3.7 (ii1))

=(f,9) —(f,9)=0.

Therefore, W; L §j. Similarly we can show that Wj 1 5;.

4. S;+W; C Sj;1 is obvious. On the other hand, let f € S;;; then P;f € S; and

Q;f € W;. Furthermore,
Pif +Qif = Pif + (Pjy1 — Pj)f = Pia f = [ since f € Sji1.

Therefore,

f=Pf+Q;f €5+ W,

Hence, Sj11 C S; + Wj.

Proposition 6.2 [72] Let ¢ and & be two refinable functions with finite refine-
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ment masks (hi)e,<k<e, and (}ik)k}gkg}r respectively. Let
g = (=)*hik, G = (=1 has.

Then

V() =D gk o2 — k), P(x) =Y G F(2w — k),

keZ keZ

are such that

U, = {4 : k € Z} is a uniformly stable basis for W,

\le = {QZ[]'M :k € Z} is a uniformly stable basis for fVI7j,
and ¥, \T/j are biorthogonal; i.e.,
(0, 9,) = 1I;.
Note that, if (6.3) were satisfied, then

Uj=Gj1a®j,

U =GP,

where the refinement matrices G, and éjH are given by

1
Gj+1 — (gm—2k)k€@,m€Ij+1v
V2
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~ 1
Gj+1 = ﬁ(gm—Zk)kEJj,mEIﬂrla (6-7)

and \-7_7 = IjJrl \Ij

6.2 The Iterative Conjugate Gradient Method

The conjugate gradient method is an algorithm for the numerical solution of par-
ticular systems of linear equations, namely those whose matrix is symmetric and
positive-definite [65]. The conjugate gradient method is often implemented as an
iterative algorithm, applicable to sparse systems that are too large to be han-
dled by direct methods. Large sparse systems are prominent features of Galerkin

methods.

6.2.1 Description of the Method

Suppose we want to solve the system of linear equations
Az =D, (6.8)

for the vector & where the known n x n matrix A is symmetric (i.e., AT = A),
positive definite (i.e. &’ Az > 0 for all non-zero vectors x in R"), and b is known
as well. We denote the unique solution for this system by «,.

The matrix A defines an inner product on R™ given by

(u,v) 4 = (Au,v) = (u, ATv) = (u, Av) = u” Av.
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Two vectors are conjugate if and only if they are orthogonal with respect to this

inner product. Suppose that

P: {p17p27--.7pn}

is a set of n mutually conjugate vectors with respect to the inner product (-,-) 4.
Then P forms a basis for R" [44], and we may express the solution x, of (6.8) in

this basis; i.e.,

n
i=1

Then
Az, =) o;Ap,
i=1
(Py, Aw.) = Z ai(py, Ap;)

i=1

or
(Py, b) = Py, Di) A"
Therefore,
b
(P, Pr) A

When n is large, if we choose the conjugate vectors p, carefully, then we may not

need all of them to obtain a good approximation to the solution x,. An iterative
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approach that uses the conjugate gradient method minimizes the functional

1
flx) = §CBTA$ —x'b, x € R".

Observe that Vf(x) = Az — b and therefore, f is minimum at Az — b = 0.
Starting with a “guessed solution” &, (we can always guess o = 0 if we have

no reason to guess for anything else), we take p, = ro = b — Axy. The other

vectors in the basis will be conjugate to the gradient, hence the name conjugate

. th

gradient method. Let r; be the residual at the step:

Note that r; is the negative gradient of f at & = xj, so the gradient descent
method [4] would be to move in the direction rj. The directions p, are taken to
be conjugate to each other. This is done by following a Gram-Schmidt orthonor-

malization process, which gives the following expression:

D, = Tk + BkDi_1, (6.11)

where, the best choice of 3, according to Feng and Owen [41], is given by

<7“1<;, Tk) )
<7°k—1, 7°1<;—1)

B = (6.12)
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The next iterate is given by

Tpr1 = T + QpPy,

with

(Py: b)
(P, Pr) A
(Dy, Az + 71)
(Dr, Pr)a
Py, Tr) a4 + (D, Tk)
(P, Pr) A
Py, Tx)

. —

= ———— (Since p, and rj are conjugate
k

Dy, Pr) A
APk BrPr_1, k)
 (ppi)a
ATk i) + Br(Pr_1, k)
N Dy, Pr) A
(re,rr)
 (Pp DA

(Using 6.11)

Also,

Tit1 = b — Az
=b-— A(mk + Oékpk)
=b-— Amk — ozkApk

=T — ozkApk.
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6.2.2 The Conjugate Gradient Algorithm (CG)

The algorithm is detailed below for solving Ax = b where A is a real, symmetric,
and positive-definite matrix. The input vector &, can be an approximate initial

solution or 0. See e.g. [55] for more details.

Algorithm 2: Conjugate Gradient Method (CG)
Result: solving the system Ax = b

Input : A b ,xy =0, ¢ and kmax
Output: Vector x

17179=b— Ax,

2 Po=To

3 for k=0 up to kmax—1 do

4 if ||7x|| < € then

5 EXIT

6 end

T a= ks

8 Tp1 = T + QpPy
9 Tht1 = T — QL AD,
11 Diy1 = Tht1 + Beby
12 end

13 T = Ty
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6.2.3 Preconditioned Conjugate Gradient Method (PCG)

Successful application of the conjugate gradient method to solve a system of linear
equations depends upon the preconditioning techniques [64,65]. Preconditioning
is typically related to reducing a condition number of the problem. The precon-
ditioned problem is then usually solved by an iterative method. Preconditioning
involves replacing the system Ax = b with P~ Az = P~'b, where the precondi-
tioner P is chosen such that P~'A has a smaller condition number.

Preconditioners are useful in iterative methods to solve a linear system Ax = b
for x since the rate of convergence for most iterative linear solvers increases as
the condition number of a matrix decreases as a result of preconditioning.

The preconditioned conjugate gradient method involves replacing the residual
vector v, = Ax — b by the preconditioned vector h; = P~ 'r,. The modified

algorithm is given below.

84



Algorithm 3: Preconditioned Conjugate Gradient Method (PCG)

Result: solving the system Ax = b
Input : A b, xy,=0,tol, kmax and a preconditioner P
Output: Vector

1 7179=b— Ax,

2 hg =P 'rg

3 dy = —hg

4 for k=0 up to kmax—1 do

5 if ||rk| < tol then

6 EXIT
7 end
_ (ri,he)
8 Ak = <dkkydk];A
9 | Tpr1 =Tk — apdy

10

11

12

13

14

15

end

Tip1 = T + i Ady
hi., = P!
E+1 = Tr+1
By = {retihesn)
k (ri,hy)
diy1 = Brdy — i,
L = Tpt1
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6.3 One-dimensional Fast Wavelet Transform

The projection P; of f € L*(2) onto the approximation space S; has two repre-

sentations:

Pif= <f, 5J> ®; (Single Scale Representation)

7—1
= <f, (IJjO> D, + Z <f, \Ijg> U, (Multiscale Representation),

t=jo

where ®;, ®;, U, are given by

Jo>
(I)j = {QOLk : k < I]}, (I)jo = {(;Ojo,k . k € Ijo}’ \Ilg = {w&]f . kf € ‘7g} (614)

Note that the multiscale representation of P;f is a consequence of the fact that

the space S; can be decomposed as
Sj :SjO@WjO@"'@VVj_l. (615)

This decomposition is a direct result of successively applying part (4) of Proposi-

tion 6.1 down to level j,. Furthermore, we have the refinement equations
(I)j—l = qu)ja \lfj_l = qu)ja EI;j—l = ﬁj&sj, and \i]‘_l = é]‘&;j. (616)

These refinement equations were introduced in (3.17), (3.26), (6.4), and (6.5),

respectively.
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6.3.1 1D Wavelet Transform (Decomposition)

Given f € L*(Q), then

Pif =P1f+Qjf
= <f, <A}5];1> Q1+ <fa ‘T’jfl> Wi

= C?flq)jfl + dgllq[jfl-

Where,
Cj_1:= < f, &Dj_1> is the approximation coefficient at level j — 1,
di_y = <f, \Tfj_1> is the detail coefficient at level j — 1.

The coarser level approximation coefficient ¢;_; is obtained form ¢; by

or ¢j_; = H j¢;. Similarly, the coarser level detailed coefficient d;_; is obtained

form ¢; by
£ (1) (16 (1) - o6

or dj—l = éjCj.
Operations count: Suppose ¢; has length N (~ 27). Note that any row of

H ; has at most (Zg — Zl) nonzero coefficients. Therefore, the computation of any

element of ¢;_; requires at most (Zg — Zl) operations. Hence, the computation of

87



cj_1 requires (Zg — Zl)N operations. Similarly for d;_;.

Thus the decomposition

d;_ d;_, e ,
requires 2 (Zg — E) (N + % +- 4 %) < 4 (Zg — Zl) N; i.e., O(N) operations.
Algorithm 4 lists the one-dimensional decomposition (or wavelet transform) algo-

rithm. The input v to this algorithm represents the number of boundary basis

functions to be added to each endpoint 0 and 1. See Chapter 7 for more details.
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Algorithm 4: One-dimensional Wavelet Transform (D;WT)

Input : Vector c of scaling coefficients at level j, v,
dime=2" — (d—1) +2v
Output: Vector ¢, the wavelet transform of ¢
Result: ¢¥ =D;WT(c)
1¢c,=c

2 for k=45 — 1 down to jp do

3 Cr = ﬁk Ci+1
4 dy, = Gy, iy
5 end

6 c' = cj,

7 for k= jo up to 5 — 1 do

Cw

dy

9 end

6.3.2 1D Inverse Wavelet Transform (Reconstruction)

The equation

Pif =P 1f+Q;-1f
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gives

Cf(bj = C;“F_1(I)j—1 + d?_lkpj—l
= ¢, H;®;+d] G,

= (C?_IH]‘ + d?_lGj) q)j.

Therefore,

C; = H?ijl + G?d]’,1

which is used to reconstruct ¢; from ¢;_; and d;_;; i.e.,

This requires 2(¢5 — ¢1)N operations and the reconstruction up to level j

Cjo Cjo+1 Cjo+2 "' Cj-1—7=C
dj, djo 41 a dj-1

requires 2 (0o — 0;) (N + & 4 -+ + &) <4 (6, — £1) N; i.e., O(N) operations.

Algorithm 5 depicts the one-dimensional reconstruction (or inverse wavelet trans-
form) algorithm. The input v to this algorithm represents the number of boundary
basis functions to be added to each endpoint 0 and 1. See Chapter 7 for more

detalils.
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Algorithm 5: One-dimensional Inverse Wavelet Transform (D;IWT)

Input : Vector c¢” of wavelet coefficients at level 7, v,
dime¥ =2/ — (d—1) + 2v

Output: Vector ¢, the scaling coefficients
Result: ¢ = D;IWT(c")

1 ¢ =c(1:20—(d—1)+2v)

2 index =20 — (d—1)+2v +1

3 for k= jy up to 7 — 1 do

4 dy, = ¢ (index : index + 2% — 1)

5 index = index + 2*

6 end

7 for k= jo+ 1 up to j do

8 c,=Hjp ¢+ Groidi—y

9 end

10 c=cC

6.4 Wavelet Preconditioning

Vectors of the approximation space S; are expressed in terms of the basis ®;.

Recall that, by (6.15), the space S; also has the decomposition

S; =S & W,y @@ W, .
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Thus, we can use the basis

\IJJ:(I)JOU\D]OUU\IJJ_l

Accordingly, we do not change trial and test spaces, but we only use a different
basis. This means that we still have the same error estimates discussed in Chapter

4.

The stiffness matrix in the wavelet representation will be denoted as

Ay i=a(0,9), 6,9¢€ i,

This can be expressed in an alternative way as follows. The wavelet representation

of the differential operator reads

A= a’(¢)\7wu)7 )‘7/~L€\77

where J, the collection of all wavelet index sets, is given by

J=UJ7 J=Lu\1, (6.17)

Jj=Jjo

and Z; was defined in (3.2). Hence, A can be interpreted as a (bi-)infinite matrix.
Then letting

J =T, UJ,, U UJ
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denote the wavelet indices up to level 5 — 1, we have

U= {hy: A e T}

The full wavelet basis then reads

Wi Wy 5 > o, k€ Tk = {th: A e T}

With this notation at hand, Ay, is a section of the full (infinite) matrix A; i.e.,

A\I/j:A’ijjj .

Definition 6.1 For an infinite matriz (operator) B : (?(J) — (*(J), the condi-

tion number conds(B) is defined as

condy(B) := ”BHé?(j) “B_lHﬁ(J)’
and || - |27 is the operator norm induced by the sequence norm on (*(J); i.e.,

1By = :
#I) vel?(J) HU||e2(J)

v#£0

Theorem 6.1 [72] Let ¥ be a wavelet basis in L*(Q) such that the following norm
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equivalence holds

1/2

1d" Wl = (D) dipWsnl|  ~ | DD 27 djl?

iZjo k>J; o \izio k>

where D 1s the diagonal operator,

D := 2" (5 10) (). (5" F)eT s

and let

Dj:=Dl|g -

Then, we have

COIldQ(Dj_lA\I;ij_1> - O(1>7 j — OQ;

i.e., D?

7 is an asymptotically optimal preconditioner for Ay, .

= || Dd|| 25y,

Theorem 6.2 Consider the following one-dimensional (2n)™ order self-adjoint

Dirichlet problem.

k=0 (6.18)
u™(0) =u™(1) =0, m=0,1,...,n—1,
where ag(x) are bounded on [0,1], k = 0,...,n, a,(z) > a, > 0 and ax(x) >

0, k=0,1,...,n— 1. Then, the function u € HJ(2) solves Au = f for a given
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fe H™if and only if uw € (*(J) solves

Au = f, (6.19)

where A = D' Ay D™ and

u=d"V, u=Dd, f =D (¥, f)q.

Moreover, the problem (6.19) is well conditioned; i.e. conds(A) < 0.

Proof. Equation (6.19) means

Au=D"'1AyD 'u
=D ' (V,A¥),, D' Dd
=D (U, AV) . d
=D (AV,0) . d
=D (AV.d"V)
=D (¥, Ad")

= D' (7, AU>O;Q = D™ (U, f>0;Q =Tr.

Hence, (¥, Au)O;Q = (¥, f)o.q since D is invertible. This, however, is equivalent
to Au = f. |
Theorem 6.2 means that the problem (6.18) posed in the Sobolev space H{(§2)
can be stated equivalently as a discrete problem in the sequence space £*(7).
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Moreover, the equivalent problem is well-conditioned. Algorithm 6 lists the one-
dimensional wavelet preconditioned conjugate gradient algorithm. Note that only
the residual vector that needs to be preconditioned, and before applying the
wavelet preconditioner P = D™? on the residual vector, we need to transform

it using wavelet transformation.
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6.4.1 1D Wavelet PCG Algorithm

Algorithm 6: One-dimensional Wavelet PCG Algorithm

Result: solving the system Agx = b
Input : Ag,b,xy =0, tol, kmax and a preconditioner P = D>
D := 2 (0k1) k). (5 W)ed
Output: Vector x
17179=b— Ax,
2 hg = DiIWT(PD;WT(ry))
3 dg = —hy
4 for k=0 up to kmax—1 do

5 if ||r|| < tol then

6 EXIT
7 end
(re,he)
8 o = 5kl
k <dk7dk>A¢,
9 Ty = T — apdy,
10 | Ty =Tk + g Agdy

11 thrl = D11WT(PD1WT(7’k+1))

_ {reyihegn)
P = ikl

12
<Tk7h‘k:>

13 dit1 = Brdy — Ry,
14 end

15 & = mk+1
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6.5 Biorthogonal Wavelets on the Unit Interval

Using wavelets for solving a differential equation on a bounded domain {2 ob-
viously requires us to construct wavelets on 2. Dahmen et al. [28] introduced
the construction of the biorthogonal wavelets and the corresponding refinement

matrices over the unit interval [0, 1] with all desirable properties:

(1) In the primal multiresolution, we can achieve any degree d of exactness by

spline spaces.

(2) In the dual multiresolution, we can achieve any degree d of exactness where

d is such that d + d is even.
(3) The associated biorthogonal spline wavelets have d vanishing moments.

(4) Fast decomposition and reconstruction algorithms since wavelets and genera-

tors of primal and dual multiresolutions have finite supports.
(5) They form stable Riez bases for L*(0,1).

Dahmen and his coworkers proposed modifications on the vector of primal basis
functions ®; introduced in Proposition 3.4. Firstly, they kept the basis functions
which lie completely inside the interval [0, 1] and denoted this by CID(;. Next, they
replaced the boundary functions that overlap each of the two boundaries by linear
combinations of these overlapping basis functions. Accordingly, they achieved the
two sets @f and @f. Where <I>JL represented the constructed basis functions on

the left boundary, and (I)f represented the constructed basis functions on the right
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boundary. Therefore, the new set of basis functions ®; was given by
_ &L 0 R

Similarly, they achieved the new set ® of basis functions for the dual multiresolu-

tion. So that ® was given by
&= 5 LT UG

As a result of these constructions, Dahmen et al. introduced the refinement

relations

T = T =
(I)] - Mj,0®j+17 (I)] = Mj70®j+1'

According to [28], “the subsequent construction of compactly supported
biorthogonal wavelets is based on the concept of stable completions”. To achieve
these completions, they started by deriving an initial completions of the spline
spaces where the complement spaces between two successive levels are spanned
by compactly supported splines. These splines form uniformly stable bases on
each level. After that, these initial complements were then projected into the
desired complements spanned by compactly supported biorthogonal wavelets. As
a result and according to refinement relations, Dahmen and his coworkers gave

complete technical details for constructing the matrix M ;1 as a stable completion
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of M ; i.e., if Mj = (M;y, ]\V/ijl) then Mj is invertible and satisfies

- - —~T -«
Moreover, if G; = Mj_l, and M, = (I'%+ — M ;oM )M ;,, then, for a fixed

J > Jjo, the following statements hold:

(1) The matrix M, is a stable completion of M,,. Also, the inverse G, of

M; = (Mj;o, M;,) takes the form

—~T
M.
g,=| | (6.20)
e
(2) Setting
\I/j = leq)j—l-lu {i[j = Gj,la)j+17 (621)
and
Jj=jo Jj=jo

then U, U are biorthogonal Riesz bases for L?(0,1); i.e., for U; 4

(I)jov \Ijjo—l = (bjm

<‘I’j7 LI’j’>(01) = 5j,j/I(2j), 3,9 > jo — 1, (6.23)

and

~ 270§ > gy, (6.24)

) supp ¥ x| ~ 277, ’supp Uk
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(3) Let 7 :=sup{s >0:9 =, 70 € H(R)} then,

2 co 27 2 %
E : g Z Z 2sj s
<U’ ¢J°’k>(o 1) + 2 <U’ %,k>(0 1)
keA, ’ =jo k=1 '

{ ||U||H2(0,1)=5 €10,d]

[0l g-s0,1)+5 8 € (=7,0)

Note 6.3 The refinement matrices M ;o and JT/L-,O introduced in [28] has the

following structure

ML ML

Mj,() = A Mj70 = 2 . (625)

Actually, the refinement matrices constructed in [28] failed to solve ODE prob-
lems. This is because the boundary wavelet functions introduced in the paper
required a minimal level of resolution (jo > 4). The value of j, depended on the
order of scaling basis functions used in the discretization of the problem. This
minimal resolution meant that preconditioning is not fully under control. As a
result, stiffness matrices with high condition numbers were still being produced by
the preconditioning wavelet algorithms. This was also a feature of the refinement

matrices.
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Although the authors introduced a special class of boundary functions, namely
Bernstein polynomials, to improve the condition numbers for the resulting refine-
ment matrices, the basic problem of minimal resolution went unaddressed and
high condition numbers of the stiffness matrices were still showing.

Similar difficulties were encountered in the work of Cerna and Finék [15-18].
They constructed a cubic B-spline ¢, on the boundary of [0, 1]. Using the scaling
function ¢(z) inside the interval [0, 1] with the boundary function ¢,, they have
known structure for the matrices M ;. Also, they defined the mother wavelet ¢ ()
in the form ¢ (z) = —3¢(2z) + ¢(2z — 1) — 3¢(22 — 2). Moreover, they suggested
a boundary wavelet ¢y(x) = ¢(2z) + mo(2z) + ne(2z), with few possibilities
of m and n. As a result, the refinement matrices M ,; have a known structure.
Finally, they exploited the biorthogonal properties of the refinement matrices; i.e.,
M;‘COM]-,I = I; and M;‘Cll\ﬁ/_/fm = 0j, to find the dual refinement matrices ]\fojJ
and M jo- All of these refinement matrices have bounded condition numbers.
However, high condition numbers of stiffness matrices were still showing.

We overcame these difficulties by constructing scaling functions inside the
interval [0, 1] and allow the dual functions not to be so restricted. This enabled us
to construct our refinement matrices with the lower condition numbers by reaching

the resolution level j9 = 1.
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6.6 Wavelet Basis in L*(R?)

In this section, we introduce the tensor product of matrices, and the tensor product
of subspaces with some theorems. These tools will be of a crucial importance in

the construction of the two-dimensional fast wavelet transform.

6.6.1 Tensor product

One of the main advantages of tensor products is the ease of the generalization of

the involved operators to higher dimensions [60].

Definition 6.2 (Tensor Product of Matrices) The tensor product (Kro-
necker product, direct product) of two matrices Apxn and By, denoted by AR B

and has dimension mr X ns, is the block matriz

CLHB algB c. alnB

CLQlB a22B PN agnB
A®B =

B a2 B ... ap,B

Some of the elementary properties of tensor product of matrices are:

(A+B)C=AQC+B®C, A(B+C)=AQB+AQC.

(A B)(C®D)=AC®BD, (A B)'=A"'®B".

For brevity, we do not indicate explicitly the sizes of the matrices involved; we

103



assume throughout that the sizes of matrices and vectors are compatible with the

indicated operations.

Definition 6.3 (Tensor Products of Spaces) For the two subspaces V, W C

L*(R), we define the tensor product space V@ W by
V@W = span{f(z)g(y) : f €V, g€ W} C L*(R?).

Theorem 6.4 Let E = (¢;) be an orthonormal basis for V and F = (n;) be an

orthonormal basis for W, then

is an orthonormal basis for V@ W.

Proof. Since E be an orthonormal basis for V', and F' is an orthonormal basis
for W, then E ® F = (¢;1;) are elements in V' ® W. We need to show that these

elements form an orthonormal basis for V@ W. For i, j,/,m € N, we have

(s i) = // 6:(@); () et(2) () iz

~ [a@et@ds [ nwmdy

R R

= if(sjm~

Therefore, E ® F = (¢;n;) are orthonormal. To show that E ® F' form a basis for
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VeW. Let f €V and g € W, then we can readily show that
f(x)9(y) =’ EY'F = (a®y)"E® F =r"(E® F).
Next, for h € V@ W of the form

hz,y) = Zaifi(x)gi(y) = Z@iTiT(E ®@F)=rk"(E®F).

=1

Therefore, any element in V' ® W can be expressed in terms of E @ F. Hence,
E ® F is an orthonormal basis for V @ W.

A standard procedure can then be used for general h € V @ W. |
Theorem 6.5 Let U, V,W C L*(R), then (U+ V)W =UQW +V W.

Proof. It is trivial to show that (U+ V)@ W C (U® W) + (V ® W) since

(f (@) + g(2)h(y) = f(2)h(y) + g(x)h(y)-
To show that (U@ W)+ (Ve W) C (U+V)® W, it is enough to consider only

elements of the form f(z)g(y) + h(z)p(y)

h(x)p(y) = (0 + h(x))p(y) € U+ V)@ W.

Therefore f(z)g(y) + h(z)py) € (U+V)e W. I

105



Corollary 6.6

U+ eW+Y)=UeaW)+UY)+VeW)+ (VeY).

6.6.2 Two-dimensional Fast Wavelet Transform

The one-dimensional fast wavelet transform with the aid of the tensor product of
subspaces are used here to generate the two-dimensional fast wavelet transform.
The approximation space in L*(R?) is taken as S7 := S; ® S;. For biorthogonal

wavelets, since S; = 5,1 ® W,_q,

S7=5;®5= (Sjm1®W;_1) ® (Sj-1 & W;_1)
= (8,1981) (S0 W) & (W1 ® S5.1) @ (W @ Wyy)

= 5]271 @ Wj2*11 @ ngl @ VV]ZEl == szfl EB W]-Qil,

where, W2 | == W21, @ W2 @ W7,

Therefore, the bases may be taken as

SJ2 Aojppie: (k1) € 7} = {gp?k keZ?) = <I>? =0, ® ;.
532—1 Hejmikpi—1e s (k0 € 7%} = {cp?_Lk keZ?) = CD?_l =d,_ 1 @PD;_;.
W At (k) € 22y = {3l c k€ 22} =03 = 05, @ 0.
W2 A{jawpire s (k0) € 2P} = {47, k€ 2P} =02, =V, @ D).

VV]'QEl A ki1 (R ) € Z2} = {wfilk ik € ZQ} = \If?:il =V, 1 @V;_;.
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The refinement relations are obtained as follows

=000 = Hj 1P @ Hjp1 @)
= (Hj11 @ Hj1) (P41 © ®j41)

@2

o2
o_H ]+1-

Jj+1
In the same manner, we can get
21 . 2 22 . 2 23 . 2 52
\Ilj T (Hj+1 ® Gj+1)(1)j+17 \Ijj = (Gj+1 ® Hj+1)<I>j+1, \Ijj = Gj+1q)j+17

where H 1, and G;;; were introduced in (3.18) and (6.6), respectively.
We similarly deal with the dual spaces §]27 /V[v/]?, their bases and their refinement

relations.

6.7 Biorthogonal Wavelets in L*(R?)

6.7.1 2D Projections

Let ¢ and ¢ generate biorthogonal MRA’s in L?(R). Define the projections
P;: L*(R* — S2, P;: L*(R%) — 52, (6.27)

Q;: L*(R*) —» W2, Q,: L*(R?) — W7, (6.28)
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P;f = (f,82) @, Pyf = (f,02) @,

Qif = (£ U3) W2 Q,f = (£.92) V2.
Proposition 6.3 According to the definitions of P, IBj,Qj and éj, we have:
1. Q;, éj are projections onto VV]-2 = Range(Q;), Wf = Range(éj), respectively.
2. Q;P;=P;Q,=Q,P;=P,Q, =0.

9. W2 LS W2 S,

ISP =SPaW? 52, = S2a W

6.7.2 2D Wavelet Transform (Decomposition)

Given f € L*(R?), then

Pif=P; \f+ Qj—lf
= (L@ e+ (LB (£ e (£ ) e,

_ pT 2 127 1,21 22T +99 23T 1,23

Where,

Ci_1:= <EI/>§71, f > is the approximation coefficient at level j — 1,

’D?l_l = <{Iv/§1_1, f > is the horizontal detail coefficient at level j — 1,
’D?%l = <\T/?31, f > is the vertical detail coefficient at level j — 1,
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’Di?jl = <Ef§§ uf > is the diagonal detail coefficient at level j — 1.

The coarser level approximation coefficient C;_; is obtained from C; by
~, —~2~, —~2 /~, —~2
Cj—l = <(I>j—1af> = <Hj(1>j7f> = Hj <(Djaf> = Hjcj7

72 L 21 22 23 - T
or C;_1 = H,;C;. Similarly D;_,, D;”, and D;”, are obtained from C; by

D2, = (¥, )
(w22, 1)
(¥, 1)

<(ﬁj ® éj)‘5§>f> =(H; ® G)) <‘I’2- f> = (H; ® G;)C;,

D%, (G 0 H).f) = (G e H) (%)= (G, H,)C,

D%, (G@.f) =& (#.1) =G,

Algorithm 7 lists the two-dimensional wavelet transform (decomposition)
algorithm. The input v to this algorithm represents the number of boundary ba-

sis functions to be added to each endpoint 0 and 1. See Chapter 7 for more details.
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Algorithm 7: Two-dimensional Wavelet Transform (DoyWT)

Input : Vector C of scaling vector at level j, v,
dimC = (20 — (d — 1) + 2v)?
Output: Vector C”, the wavelet transform of C; i.e., C* = DoWT(C)

ICj:C

N

for k =5 —1 down to j, do
3 Cr = (ﬁk—l-l & Hk+1) Cit1
4 'Dzl = (ﬁkz-i—l X ék+1> Cit1

5 Dy = <ék+1 ® EkJrl) Cry1

6 'Dig = (ék—H & ék—i—l) Cit1-

7 end
8 C"=Cj,
9 for k= jy up to j — 1 do
cv
21
10 CcY = e
D
Dy
11 end

6.7.3 2D Inverse Wavelet Transform (Reconstruction)

The equation

ij = Pj—lf‘l‘quf
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gives

cre? =cl 02 + DU, + D U2, + DPUP

— (¢l B + DY\(H, © Gj) + D2\ (G;  H) + DX |G?) @,
Therefore,

C,=HYC; +H2GDX, + (G 9 H\D?, + G D?

— ]—1’

which is used to reconstruct C; from C;_; and D;_;.

Algorithm 8 depicts the two-dimensional inverse wavelet transform (or reconstruc-
tion) algorithm. The input v to this algorithm represents the number of boundary
basis functions to be added to each endpoint 0 and 1. See Chapter 7 for more

detalils.
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Algorithm 8: Two-dimensional Inverse Wavelet Transform (DIWT)

Input : Vector C¥ of wavelet vector at level j, v,
dimC"” = (29 — (d — 1) + 2v)?
Output: Vector C, the scaling vector of C¥; i.e., C = DoIWT(C")
1 C;, =C"(1)

2 index = 20 for k = j, up to j — 1 do

3 D), = C”(index : index + 2% — 1)
4 index = index + 22
5 end

6 for k= jo+1 up to 5 do

EN|

C,=HYCp+ (HL 9 GIYD, + (GT @ HT)D2, + G2 D3,
8 end

QC:Cj

Algorithm 9 represents the two-dimensional wavelet preconditioned conjugate
gradient algorithm. The input v to this algorithm represents the number of
boundary basis functions to be added to each endpoint 0 and 1. See Chapter 7

for more details.
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6.7.4 2D Wavelet PCG Algorithm

Algorithm 9: Two-dimensional Wavelet PCG Algorithm

Result: solving the system Ag:ax = b
Input : Ag2, b,y = 0,tol, kmax and a preconditioner P = D% @ D~
D =2 Sk ) (.. (0" k) eT
Output: Vector x
1 7179=b— Agxg
2 hg = DoIWT(PDyWT(7))
3 dyg = —hy
4 for k=0 up to kmax—1 do

5 if ||r|| < tol then

6 EXIT
7 end
_ _(ri.hy)
8 p = ikl
<dk7dk>A®2
9 | @Tpr1 =Xk — apdy
10 Tii1 = T + o Ag2dy

11 hk+1 = DQIWT(PDQWT(rk+1))

_ (reyrhegr)
12| Be= TRy

13 dk+1 = ﬁkdk - hk+17

14 end

15 & = Tpy1
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For ®2 = {@;i(x)@;e(y) - k,0 € {1,2,...,2 =1} and £, m,s,t € {1,2,...,27 — 1},

we have

(A?D)(&m)7(87t) = ((@2’ CI)2>) (6,m),(s,t) = <g0],5(‘r)gpj,m(y)7 SOJ,S(Q:)SOJ,t<y>>

1
/‘PM 2)05m(Y)@js(2) @) (y)drdy
0

I
O\H

1

= /¢j74(x)<pj,s(x)d$/¢j7m<y)¢j,t(y)dy

0

= (A;)es(Af)m.t

(A ®A)€m ),(s,t) -

Therefore A?D =A; QA

Definition 6.4 (Two-dimensional Vector-Valued basis functions) Let
O, ={p;r:ke{l,2,...,27—1}} be a one-dimensional vector of basis functions.

The notation CI>§ stands for the vector of two-dimensional basis functions; i.e.,

2 = {ojn(@)pjely) - k0 e {1,2,...,27 -1},

and the vector-valued inner product <<I>2 <I>2> = A?D is given by the (27 — 1)?
(27 — 1) matriz
A7 =A; @ A, (6.29)

where,
1

(Aj)mm = /@jﬂn(x)gpjm’(z)dl‘? m,n € {17 27 CI 2j - 1} (630)

0
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Moreover, the vector-valued inner product <V<I>?,V(I>J2> = B?D 18 given by the

(27 —1)% x (29 — 1)2 matriz
B’ = A;0 A+ A;© A, (6.31)
where,
Af /wg‘?ﬂ 2)dz, m,n € {1,2,...,29 — 1}, £=0,1.

In the following example, we illustrate the results of solving two-dimensional self-

adjoint problem with Dirichlet boundary conditions.

Example 6.7 (2D self-adjoint problem with Dirichlet boundary condition)

Find the solution for the following two dimensional self-adjoint problem

—Au=finQ
; (6.32)

u =0 on I

where Q = (0,1) x (0,1), and f = 87?sin(2rx)sin(27y). The ezact solution for
the problem 1is given by

u = sin(27z) sin(27y).

Given j > 1, let

I:0<h<2h<---<(Z—-1h<1, h=277 (6.33)
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be a uniform partition of the interval [0, 1].

The Discrete Wavelet Galerkin Method

Given j > 1, let S; ® S; C L*(R?) represent the trial and test space at level j.
For d = 2, S; is the span of linear B-splines on the partition 11; which satisfies
the Dirichlet boundary conditions. The basis ®; for S; is generated by the linear

B-spline 4. For j € N, the basis (ID? for S; ® S; is given by

% = 20 k(x)2pje(y), k0 €{1,2,...,27 — 1},

The discrete Galerkin method reads:

Find U; € S; ® S; such that
(~AULV) = (£.V}) WV, €805, (6.34)
So, the solution U; € S; ® S; is given by
Uj = cT<I>§.
Substituting this in Equation (6.34), we get the matriz equation

(VO VO3 e = (P, f). (6.35)

The matriz equation constitutes of (27 — 1)? linear equations in the (27 — 1)?
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unknowns

€11 Ci2 ... Coi_12i-1
Also
(VO V?) = (0, ®;) @ (), @) + (¥, ") @ (B, ;). (6.36)

J J

To solve this system, we use the two-dimensional wavelet preconditioned conjugate

gradient algorithm (Algorithm 9) with

A= ((Dj, D)) @ (), ) 4 (D), D)) @ (D;,®;)), b= (D7 f), v=0.

Table 6.1 gives the results of solving (6.32).

Table 6.1: Results for solving a two dimensional self-adjoint problem

Level | The L? Error

4 3.9321972e-02

5 9.6859083¢-03

6 2.4125411e-03

7 6.0257835e-04

According to Whitney estimate (3.35) and Jackson’s inequality (3.36), the

results confirm the expected order 2 convergence.

Remark 6.8 All the constructions carried out in 2D can be extended to n-

dimensions, that is L*(R™). The details are rather technical.
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CHAPTER 7

A WAVELET GALERKIN

METHOD (WG)

In this chapter, we use the wavelet Galerkin method to solve self-adjoint problems.
In Section 7.1 we start with an investigation of the number of basis functions re-
quired to solve Dirichlet problems. In Section 7.2 we construct cubic and quintic
B-splines with specific boundary values. The construction is illustrated by ap-
plication to second and fourth order Dirichlet problems. In Section 7.4 a novel
reduction of order method is introduced to solve a class of fourth order self-adjoint
Dirichlet problems. The method reduces a fourth order differential equation into

a system of two second order differential equations.
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7.1 Basis Functions for the Dirichlet Problem on
[0,1]

The difficulty with dealing with a finite interval is that not all B-splines are sup-
ported in that interval. Those splines which overlap the complement of the in-
terval do not satisfy Dirichlet boundary conditions and have to be eliminated.
When d = 2, only one spline overlaps each endpoint and the rest satisfy Dirichlet
boundary conditions and form a complete basis in S;. Consequently, no addi-
tional splines are needed. We simply remove the two unwanted basis functions.
For d > 2, we will need to exclude several B-splines at each endpoint. These
splines are to be replaced with suitable ones to retain completeness of the basis
functions; which we will now discuss.

The weak formulation of the (2n)" order differential equation requires that
the basis functions possess at least n weak derivatives. Hence, it will suffice to
design splines with degree d > n + 1. On the other hand, a complete set of basis
functions for S; with the Dirichlet boundary conditions on [0, 1] consists of one
basis function for each internal dyadic point 277k, k = 1,...,27 — 1. For d even,

recall that

d d
su — - —
PP a¥ 55|
i d d
supp 4 = 270 | =gtk ok, k=02,
d d d
supp apjx C [0,1] fork:§,§+1,_ 727_5_
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This means that we need v = %l — 1 additional basis functions at each endpoint.

For instance,
e when 2n = 2, d > 2. If we take d = 2, then ¥ = 0 and no additional

functions are needed.

e when 2n =4, d > 3. It is customary to take d even. If we take d = 4, then

v = 1 additional basis function at each endpoint.

e when 2n =8, d > 5. If we take d = 6, then v = 2 additional basis functions

are needed and so on.

Of course the number of additional basis functions increases if we require higher
accuracy (higher value of d).

The additional basis functions are designed in one of the two ways:

(1) We take a linear combination of the basis functions overlapping the endpoints

[68]. Then we apply the boundary conditions on these linear combinations.

(2) We design special B-splines d@?,g, ¢ =1,...,v, near 0 endpoint satisfying

Dirichlet conditions

supp 4@}, = 277 [0, d]

a2 (0) =0, k=0,...,n—1

In addition, we require that



It may be necessary to specify conditions on derivatives higher than n in order

to fully specify the B-spline.

At the right endpoint, we take 43 ,(x) = 4@ ,(1 — ).

7.2 Constructing Cubic and Quintic B-splines

Following the discussion in Section 7.1, we construct boundary basis functions
that satisfy Dirichlet boundary conditions. This will give us a complete set of
basis functions at the j* approximation level. Here, we construct B-splines with
specific boundary conditions that can be used to approximate solutions of Dirichlet
problems.

Although we have introduced a formula for a centralized B-spline in (3.20), we
cannot modify this formula in order to achieve B-splines with specific boundary
conditions. Therefore, we build these B-splines form the beginning depending
on B-spline properties introduced in Proposition 3.2. For more details on spline
construction see e.g., [20].

We begin by constructing the C?[0, 1] internal cubic B-splines (d = 4).

(

51:a1x3+b1x2+clx+d1, —2§£C§ —1
Sy = aox® + box® + cox +dy, —1<2<0

53:a3x3+ng2+033:+d3, 0§x§1

S4ICL41’3+b4.Z’2+C4Z'+d4, 1§.§L’§2
\
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For (k =0, 1,2) we apply the following conditions on ¢(x)

oM (=2) = 6™ (2) = 0, (7.1)
2
/gb(x)dw =1, (7.2)
22
to get
(
¥+t +2r+3 —2<z<-1
—3zd —a? + 2 -1<2<0
1p(7) = %xg — 22+ %, 0<z<1 (7.3)
—lpd 42 —204+4 1<a<2
0, Otherwise
\
| | |
—2 —1 0 1 2
Figure 7.1: Cubic B-Spline ¢(z) (¢*)(—2) = ¢ (2) = 0,k =0, 1,2).
Hence, suppsp(z) = [=2,2]. For j > 2 and k = 2,3,...,27 — 2, 40;} I8

supported in [0, 1]. Note that these 2/ — 3 linearly independent elements are not
enough to form a complete basis in S; as discussed in Section 7.1. Therefore, we
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need to construct additional basis functions at each endpoint.

For n = 1, we require, for m = 0,1, that @}, (0) = 0 and (@?:0(0) # 0 and

$71(0) # 0). Changing ¢/(~2) = 0 in (7.1) into ¢/(~2) =

B-spline

6

_4,3_24,2 36, 8
ot T ot T ot T
34 6,.2_ 6 2
7+ 7T TEAREETE

in

23+ 82— L4 2

11 11 117

12

11> we get the cubic

(7.4)

Otherwise

Figure 7.2: Cubic B-Spline ¢y (z) (9}(—2) = 33).

Changing ¢"(—2) = 0 in (7.1) into ¢"(—2) = 4, we get the cubic B-spline

02($)

.3
T3 2.2 2., 2
gl t 527 — 3T+

234 2,2
oL + 3L

0,

16

9

_ 16,2 20,
9L 3L 3L

9

2 2
3T+ 5
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Figure 7.3: Cubic B-Spline ¥q(z) (95(—2) = 4)

Then we may take

1D} o(x) = 2929, (2 — 2) (7.6)

and

1201 () = 229,(2x — 2). (7.7)

Note that 4@}, and 439, are supported in [0,1] for j > 2. Also, they satisfy
the Dirichlet boundary condition 4@9,(0) = 4¢7,(0) = 0, and they are linearly
independent from the other internal basis functions.
For n = 2, we may take 439, (z) = 2//205(27 72— 2). Note that, for j > 2, 437,
is supported in [0, 1], and it satisfies the Dirichlet boundary conditions 4@?71(0) =
o

1495,(0) = 0. Moreover, it is linearly independent from the other internal basis

functions.
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We construct now the internal C*[0, 1] quintic B-spline (d = 6).

\

S1 = a12° + bt + c12® + dia? + erx + fi,
So = asx® 4+ baz? + o + doz® + esx + fo,
Ss = azx® + byz? + ¢33 + d3z® + esx + fs,
Sy = agx® + byt + cax® + dyz® + esx + fa,
S5 = asz® + bsz? + c523 + dsz® + esx + fs,

S = a6$5 + b6l‘4 + 06563 + d6952 + egx + f¢,

For (k=0,1,2,3,4) we apply the following conditions on 1 (x)

to get

W (=3) = ™ (3) = (7.8)
3
/w(a:)dac =1, (7.9)
3
1,4, 3.3, 9.2, 27 81
et + i+t e+ gy, 3<a <2
—+—+—+—+—+— ~2<r<-l
Ex +1x4+;1x2+%, 0<z<1 (7.10)
-3 4 5,..3 —7 72 17
22’ 4+ Zat + 308 + Ta? + Sz + I l<z<2
—-1.5 14—33 9.2 —27 81
ool T+ T+t + e+, 2<2<3
0, Otherwise
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Figure 7.4: Quintic B-Spline ¢ (z) (¢®(=3) = »®(3) =0,k =0,1,2,3,4).

Hence, suppep(z) = [-3,3]. For j > 2 and k = 3,4,...,29 — 3, gpji I8
supported in [0, 1]. Note that these 2/ — 5 linearly independent elements are not
enough to form a complete basis in S; as discussed in Section 7.1. Therefore, we
need additional basis functions at each endpoint.

For n = 1, we require, for m = 0,1,2 that @?m(O) = 0 and ({5?:0(0) £ 0,

6

@91(0) # 0 and 395 (0) # 0). Changing ¢'(—3) = 0 in (7.8) into ¢/(—3) = 2, we

get the quintic B-spline

=35 _ 9,4 _ 27,3 _ 81,2 219, 369 _ _
3200C — 68t T 3l T 3T 68T — 3100 —9ST <2
11,5 4 19,4 4, 29,3 4 31,2 4 5 79 _ _
300 T g 1 3%+ 5707 + 5% + 355 2sr<—1
68 68 34 34 68 340"
o1(z) = (7.11)

9 .5 _ T4, 3.3, 5.2 21 53

g0l — @l Tttt - Tt 0<r<1
1,5, 1.4 _ 4.3 8.2 8 16

ol Tt T+t et g, lSw <2

0, Otherwise

.
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Changing ¢"(—3) = 0 in (7.8) into ¢"(—3) = 1%, we get the quintic B-spline

02()

17,5 _ 17,4 _ 17,3 29,2 121, _ 219

900 60 10 6 20 100°

3.5 91 4 1313 1332 | 47 301
507 T 1% T 902t 902"t 1367 T 500

180

16,5 3.4 ,13.3 1.2 T 6
T° = 55T + g% + 5T T+ 3509

225 180
17,5 3,4 4, 13,3, 1.2 71 61
0L ~ 307 T go?" T % 1507 1 300

—T.5 4 T4 _ 14,3 28,2 28, 56
9001: + QOx 45'T + 45‘1: 45I + 2257

0,
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Changing 4" (—3) = 0 in (7.8) into ¢ (—3) = 152, we get the quintic B-spline

e~ et - Bt - Y, 3o <2
(2) = — J e e SR S e+, 1SS0
03\T) = T1an
1096 %x5_%$4+%x3+%$2_%x+%, 0<zx<1
Zop® 4 Zopt — g3 10,2 100, 4 A0 l<z<2
0, Otherwise
\ (7.13)
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Figure 7.7: Quintic B-Spline g3(x) (04 (—3) = %)-

Then we may take

6%5?,0(35) = 2j/2Q1(2j$ —3), (7.14)

600 (x) = 2912 0y(27x — 3), (7.15)
and

6972 (z) = 2 03(2x — 3). (7.16)

Note that, for j > 2, 639, 629, and 29, are supported in [0, 1], and they satisfy
the Dirichlet boundary condition ¢29,(0) = ¢%9,(0) = ¢&;5(0) = 0. Moreover,
they are linearly independent from the other internal basis functions.

For n = 2, we may take ¢@),, and ¢@),. They satisfy the Dirichlet boundary

conditions 629,(0) = ¢Y,(0) = 0 and ¢9,(0) = §¢%,(0) = 0, and they are

linearly independent from the other internal basis functions.
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7.3 Wavelet Galerkin Method (WG) For Dirich-

let Problems

In this section we are going to introduce some numerical experiments that uses
wavelet Galerkin method to solve second and fourth order Dirichlet problems.

We consider the following general one-dimensional (2n)" order self-adjoint
Dirichlet problem.

Given f:(0,1) — R, determine u : (0,1) — R such that
k=0 (7.17)

where ay(x) are bounded on [0,1], Kk = 0,...,n, a,(z) > a, > 0 and ax(x) >
0, k=0,1,...,n—1.

Given j > 1, let
:0<h<2h<--<(2—-1)h<l, h=2" (7.18)

be a uniform partition.
Multiplying both sides of (7.17) with a test function ¢ € C§°(€2) and integrat-

ing over Q = (0, 1) yields to the weak formulation
1
[ t@o(w) do =Y [ an(wp )6 a) da. (719)
0
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Let S; represents the trial and test space at level j with a basis ®;. S; is the span
of B-splines on the partition II; which satisfies the Dirichlet boundary conditions.
The discrete Galerkin method is given by:

Find u; € S; such that
(U(uz),v5) = (f,v;) Yv; €5;. (7.20)

The solvability of (7.20) was discussed in Section 4.2. The solution u; € S; is
given by

uj = c'P;. (7.21)

Substituting this in (7.20) yields to the following matrix equation

(i (axef?, f1>§’“’>> c={f(x),®;). (7.22)

7.3.1 WG For Second Order Dirichlet Problems (d = 2)

In this subsection, we illustrate the wavelet Galerkin solution for the second order

Dirichlet problem (7.17) with n = 1 using B-splines of order d = 2.

The Discrete Wavelet Galerkin Method

Given j > 1, let S; C Hy(0,1) represent the trial and test space at level j. For
d = 2, S; is the span of linear B-splines on the partition II; which satisfy the

Dirichlet boundary conditions. These are also known as the hat functions. The
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basis for S; is generated by the linear B-splines o5, k =1,2,... 29— 1. We set
®; = {apjn i k=1,2,...,2 =1},

Hence, the matrix equation (7.22) with n = 1 constitutes a set of (2/ — 1)
T

linear equations in the (2/ — 1) unknowns ¢ = ¢ ¢, Since

Coi—1

(U(0jr), pjm) = 0if |k —m| > 1, the bandwidth of the matrix equation is 3.

Example 7.1 (Second Order Dirichlet Problem (Trial d =2, Test d = 2))
In this example we consider problem (7.17) with n = 1, a;(x) = 1, ag(x) = 0.1

and f(x) = cos(2rx). Then the matriz equation (7.22) becomes

J

((cpg, ®) +0.1 (D, D;) >c = (cos(2z), ;) . (7.23)

To solve this system, we apply the one-dimensional wavelet preconditioned conju-

gate gradient algorithm (Algorithm 6) with

Agp = (<(I>;-,<I>’»> +0.1 <<I>j,(I>j>) , b= (cos(2mx),®;), n=1,v=0.

J J

The refinement matrices (See (3.18), (3.27), (6.6), and (6.7)) used in Algorithm

6 are produced using the coefficients for o, ¢p in Table 3.1.

Table 7.1 gives the results of solving (7.23) using linear B-splines for the trial and

test spaces.
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Table 7.1: Results for 2" order Dirichlet Problem Trial(d = 2), Test(d = 2)

Ay Condition #
Level | Iterations | The L? Error
Before Precond. | After Precond.
4 20 1.6079666e-06 102 18
5 20 4.0435768e-07 410 29
6 20 1.0123641e-07 1642 35
7 20 2.5318210e-08 6572 40
8 20 6.3297361e-09 26293 44
9 20 1.5813943e-09 105176 46

According to Whitney estimate (3.35) and Jackson’s inequality (3.36), the
method has the expected order of convergence h?. Figure 7.8 illustrates the bound-
edness of the condition number against the level j. This boundedness ensure the

optimality of the wavelet preconditioning discussed in Section 6.4.
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Figure 7.8: Condition numbers of stiffness matrix Ay after wavelet precondition-

ing with 5, ¢p for different values of j.

7.3.2 WG For Fourth Order Dirichlet Problems (d = 4)

In this subsection, we illustrate the wavelet Galerkin solution for the fourth order
Dirichlet problem (7.17) with n = 2 using B-splines of order d = 4.

The Discrete Wavelet Galerkin Method

Given j > 1, let S; C HZ(0,1) represent the trial and test space at level j.
For d = 4, S; is the span of cubic B-splines on the partition II; which satisfy the
Dirichlet boundary conditions. The basis for S} is generated by the cubic B-splines
ik = a@iks k= 2,...,27 =2, ;1 = 4@, and @; 51 (x) = 45}, (1 — x). Where
4 and 4@?71 are cubic B-splines defined explicitly in (7.3) and (7.7), respectively.
We set

O ={pjr:k=1,2,...,27 —1}.
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Hence, the matrix equation (7.22) with n = 2 constitutes a set of (27 — 1)
T

linear equations in the (2/ — 1) unknowns ¢ = ¢ ¢, Since

Coi—1

(U(0jk), pjm) = 0if |k —m| > 3, the bandwidth of the matrix equation is 7.

Example 7.2 (Fourth Order Dirichlet Problem (Trial d = 4, Test d = 4))
In this example we consider problem (7.17) with n = 2, as(z) = 1, a1(z) = 100,

ap(xz) =1 and f(x) = cos(2wx). Then the matriz equation (7.22) becomes

J

(@), @) + 100 (), @) + (@}, @;) )e = (cos(2ma), ®;) . (7.24)

To solve this system, we apply the one-dimensional wavelet preconditioned conju-

gate gradient algorithm (Algorithm 6) with

Ay = (<<1>;', (ID;-'> + 100 <(I>;-,<I>'»> + (P, (I>j>) , b= {(cos(2mzx),®;), n=2,v=1

J

The refinement matrices (See (3.18), (3.27), (6.6), and (6.7)) used in Algorithm

6 are produced using the coefficients of d = 6, d =8 in Table 3.1.

Table 7.3.2 gives the results of solving (7.24) using B-splines of order 4 for the

trial and test spaces.
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Table 7.2: Results for 4" order Dirichlet Problem Trial(d = 4), Test(d = 4)

Ay Condition #
Level | Iterations | The L? Error
Before Precond. | After Precond.
4 80 5.4933293e-09 402 40
5 80 3.3286719e-10 5430 61
6 80 2.0645050e-11 85791 73
7 80 1.3278952e-12 1.36832e+06 82
8 80 8.5340308e-14 2.18758e+07 87
9 80 5.4356884e-15 3.49943e+08 92

According to Whitney estimate (3.35) and Jackson’s inequality (3.36), the
results has the order of convergence h*. Figure 7.9 illustrates the boundedness of
the condition number against the level 5. This boundedness ensure the optimality

of the wavelet preconditioning discussed in Section 6.4.
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Figure 7.9: Condition numbers of stiffness matrix Ay for different values of j.
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7.4 Reduction of Order Method For a General

Fourth Order Problem

In this section we present a new method to solve the class of fourth order self-

adjoint problem

O(u) = u® — ayu” + agu = f,

(7.25)

where qg is nonnegative and bounded on [0, 1] and a; is constant. Problem (7.25)
is transformed into a system of two second order Dirichlet problems. For this
purpose, we need to use vector wavelet transform, also known as multiwavelet
transform. The goal is to improve the conditioning of the stiffness matrix which
means faster converge. The procedure outlined in Chapter 5 can then be used to
find numerical solutions of any other self-adjoint problem with differential expres-
sion £(u).

To transform (7.25) into a system of two second order Dirichlet problems, we

proceed as follows. Let v = «” and w = u, then

w” 0 1 w 0
- + 7
v —ag aq v f
(7.26)
w w
(0) = (1) =0
v v
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Equation (7.26) can be written as

A(w,v) = (—w" 4+ v, —0" — agw + a1v) = (0, —f).

To develop the wavelet system for this problem, let ¢, ¥, @, @Z be a dual set of
scaling wavelet functions in L*(R). Let S} = S; x S;. A basis for S7 is generated

by @ = (®;,0) and ®? = (0, ®;). Then, the approximation u; € S7 may then be

written as
u; =o' O+ 3707 = (o' 0;, 51D;) . (7.27)
So that,
14’11,‘7 = (—C(T(I);I —+ ﬁT(I)j, —BT(I);/ — aoOéT(I)j + alﬁTCDj) . (728)
Now,

(@], Auj) = —(®;, ®T)a + (D;, D;)3

= (9], ®j)ar + (D5, D)

= | (P, 9)) (D), D)
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Also,

(02, Auj) = —(D;,a0®;)a + (—(@;, DY) + (P;,a19;)) B

= —<<I>j,a0(I>j>a + <<(I>;, q);> + <(I)j,a1q)j>) ﬁ

= | —(Pj,a0®;) (P}, ) + (P, a:Py)
And,
(@, F) =0,
(@3, F) = (@), —f).
Then, we have the block matrix form
(@, 2)) (®;, D;) al 0
—(®,a0®;) (P}, ®)) + (D), a1D;) B — (@, f)

In other words

Aq;.w =b.

Observe that the order of the derivatives is now reduced from 2 to 1. This means

that we can use lower degree of B-splines and hence, lower condition numbers. Our

numerical experiments confirm this statement (See example 7.4) Now, to solve

system (7.29) we proceed to develop vector-valued wavelet transform (Algorithm

10), inverse transform (Algorithm 11) and vector-valued preconditioned conjugate
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gradient algorithm (Algorithm 12).

7.4.1 Vector-Valued Fast Wavelet Transform

The projection P; of f € L2(Q)2 onto sz has two representations:

Pif = <f, ‘i’jl> CI)]I- + <f, CT)§> CD? (Single Scale Representation)

= (1) o5+ (£30)93)

+ Z ( <f7 ‘T’}> U, + <f, \1}3> \I/L%) (Multiscale Representation),

£=jo
where, @} = (®;,0), ®? = (0,®;), ¥}, U2, d!, &2, U}, ¥? are defined similarly.

Note 7.3 For f = (fi, f») € L2(Q)*,

bif

(1) 1)

(1 £2) (@5,0)) (25,0) + ((f1, £2),(0.8,)) (0. )

(1) (1))

For s = 1,2, the refinement equations are

j 1 j—1

where H 4, /HVjH, Gj1, and éjﬂ were introduced in (3.18), (3.27), (6.6), and

(6.7), respectively.
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7.4.2 Vector-Valued Wavelet Transform (Decomposition)

Given f = (f1, f2) € LQ(Q)Qa

Pif =P f+Qjf

= <<f7 &);71> (I)glel + <f7 (5?71> (I)?fl) + (<f> \ijl;l> \Ijglel + <f7 ‘AI/’§71> q’?ﬂ)

T T T T
= (e @), + e 0, ) + (@l e, dl e ),
where, for s =1, 2,

C;,l = <(Ej*17fs> = <Hj&)j7f8> = Hj <&)j7f5> - Hjcj’

dio = (Ui, fo) = (G5, 1) = G5 (85, f.) = Gyes.

Algorithm 10 lists the vector-valued wavelet transform (or decomposition)

algorithm.
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Algorithm 10: Vector-Valued Wavelet Transform (VWT)
Input : Vector c of scaling coefficients at level j, v,

dime = dim(ey, ¢) = (27 — (d — 1) + 2v) x 2
Output: Vector ¢, the vector wavelet transform of ¢; i.e., ¢ = VWT(¢)
1 Cj = C

2 for k=45 — 1 down to jp do

3 Cp = ﬁk’(cllc—l-lv Ci+1)
4 dy = ék(cllc—i—l’ C%ﬂ)
5 end

6 c' = cj,

7 for k= jo up to 5 — 1 do

w

dy

9 end

7.4.3 Vector-Valued Inverse Wavelet Transform (Recon-
struction)

The equation

Pif =P f+Q_1f
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gives

J

o' ool = (el 0l wl ) + (e 02+ at vl )

(B2 + 47,623 ) + (1, H05 + &51,6,5)

(e H; +d\G;) @) + (2 H, + &2, G, ) @

Therefore,

cj = I—I;‘.ch_1 + G;Fdj-_l, s=1,2.

Algorithm 11 depicts the vector-valued inverse wavelet transform (or reconstruc-

tion) algorithm.
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Algorithm 11: Vector-Valued Inverse Wavelet Transform (IVWT)
Input : Vector c¢” of wavelet coefficients at level 7, v,

dime® = (27 — (d — 1) + 2v) x 2

Output: Vector ¢, the scaling coefficients of ¢*; i.e., ¢ = IVWT(c")

1 ¢cj, = Cp(20 — (d—1) 4 2v,:)

2 index = (27° — (d — 1) +2v) + 1

3 for k= jy up to j — 1 do

4 dy, = ¢ (index : index + 2% — 1)
5 index = index + 2*

6 end

7 for k= jo+ 1 up to j do

8 cp = H{ck_l + G;‘de_l

9 end

10 c=cC

Algorithm 12 represents the vector-valued wavelet preconditioned conjugate gra-

dient algorithm.
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7.4.4 Vector-Valued Wavelet PCG Algorithm

Algorithm 12: Vector-Valued Wavelet PCG Algorithm

Result: solving the system Agx = b
D? 0
Input : Ags,b,xy = 0, tol, kmax and P =
0 D

D = 2 (Op k) (). (5" k)T
Output: Vector x

To — b— Aq;CUO

[y

2 hg = IVWT(PVWT(r))
3 d() = —ho
4 for k=0 up to kmax—1 do

5 if ||r|| < tol then

6 EXIT
7 end
(re,he)
8 ap = 5kl
k <dk7dk>A¢,
9 Ty = T — apdy,
10 | Ty = Tr + g Agdy

11 hk+1 = D11VWT<PVWT(Tk+1))

_ ATkg1,hpq1)
12| B= "0

13 dit1 = Brdy — Ry,

14 end

15 © = D1 IVWT (2}, ;)
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In the following example we illustrate the results of solving a fourth order

differential equation using the reduction of order method.

Example 7.4 Find the solution for the following fourth order problem

u™ —100u” + u = cos(2nx),
(7.30)

As we have seen before, the Galerkin method of the problem has the matrixz form

—(®;,®;) (D, D)) + 100 (P}, ;) B — (@}, cos(2mx))

J

To solve this system, we use the one-dimensional vector-valued wavelet precondi-

tioned conjugate gradient algorithm (Algorithm 12) with

(0, @) (@), @) 0

A<I> = ,b = , V= 0.

J

Table 7.3 gives the results of solving (7.30) using reduction of order method with

B-splines of order 2 for the trial and test spaces.
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Table 7.3: Results for 4® Order General Problem by Reduction Method

Ay Condition #
Level | Iterations | The L? Error
Before Precond. | After Precond.
4 40 5.0297e-06 106 31
5 40 1.1524e-06 417 38
6 40 3.1105e-07 1661 42
7 40 6.3400e-08 6637 45
8 40 1.7797e-08 26541 47
9 40 4.0610e-09 1.0616e4-05 49

According to Whitney estimate (3.35) and Jackson’s inequality (3.36), the
results confirm the expected order of convergence h%. Figure 7.10 illustrates the
boundedness of the condition number against the level j. This boundedness ensure

the optimality of the wavelet preconditioning discussed in Section 6.4.
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CHAPTER 8

A WAVELET
PETROV-GALERKIN

METHOD (WPG)

In this chapter, we use a Petrov-Galerkin method to solve self-adjoint Problems.
We give a complete analysis of the method with trial basis functions induced
by B-splines of order 4 and test basis functions induced by B-splines of order 2
on a fourth order self-adjoint Dirichlet problem. The work presented here can be
extended to higher order equations. On consequence, we introduce some examples
to illustrate the use of Chapter 5 method to solve general second and fourth order
self-adjoint problems. What is interesting in the use of Petrov-Galerkin Method
is the improvement of the order of accuracy comparing with the Galerkin method
discussed in the previous Chapter. Also, the band of the stiffness matrices used

here is less than the stiffness matrices in the Galerkin method.
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8.1 Preliminaries and Notations

Definition 8.1 (Linear Independence Modulo a subspace) Given a linear
space H, a subspace M C H and a set of vectors {vy, v, ..., vm} C H/M, we say

that vi,vs, ..., v, are linearly independent modulo M if the inclusion

a1y + Ve + - -+ Uy, € M,

for any set of scalars oy, g, . .., oy, implies that

a1 =g =+ =q,;, =0.

Let £ be the 4" order formal operator defined in (5.1), and D be the domain of
the 4 order maximal operator defined in (5.3), then we introduce the following

definitions:
1. The minimal operator L :
The minimal operator Ly is defined by

D(Lg) = Dy = {u € D : u"(0) = uM(1) = 0,k = 0,1,2,3}, s

Lou = ((u).

Here ulfl is the k' generalised derivative defined by [58]

d
SN B 8.9
T aju (8.2)

[0]

u =, W =/, W = e’
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We also have

L*:LQ

. The self-adjoint Dirichlet operator L:
The Dirichlet operator L is defined by

D(L)=D = {ue D:u"0)=u(1)=0,k=0,1},
(8.3)

~

Lu = {(u).

The boundary conditions defining D will be called the Dirichlet boundary con-

ditions.

. The bilinear form a:

The bilinear form a : H2(0,1) x H}(0,1) — R is defined by

a(u,v) = {(au”, U”>H*1(O,l) + (a1, U,>L2(0,1) + {aou, U>L2(0,1) : (8.4)

We note that, for u,v € H~'(0,1)

1
(u, v) =0y = 7 {lu+ol%y = flu—vl, } (8.5)

We may also note that [76], if u, v € L?(0,1) C H~*(0, 1), then

(U, V) g-1(0,1) = (Un, V) £2(0,1)- (8.6)
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In the sequel, the subscripts on the pairings will be dropped and they should be

understood from the context.
Note 8.1 Note that, as sets,
1) D= H*0,1).

2) Dy = H(0,1).

3) D = H*0,1) N H(0,1).

Also, note that

a(u,v) = aguv']y + (( (u),v) Yue€ D andv € H*0,1) N HL(0,1),  (8.7)

and,

a(u,v) = {(u,l(v)) Yve€D anduc HZ(0,1). (8.8)

Lemma 8.1 The operator L : H2(0,1) — H=2(0,1) is bounded.

Proof. Let u,v € H2(0,1). Using integration by parts and assuming that ag, a

and ay are bounded on [0, 1] we get

<Eu,v> = (agu”, v") + (a1u,v") + {agu, v)
< Myflullolv"[lo + Mol llol1v'llo + Ms[lullollvl,
< Myfullyl[vlly + Ma[ullyf[vll, + Msllullollvfl
< Myl[ullyflvlly + Maflullllv]ly + Msllullyfloll,

< MH““QH“H%
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where M = max{M,, My, M3}. The last inequality gives
|Zull_llelly < (Zu,v) < Mljull, o]l

Hence,

[ Ll 5 < Mjully,

which establishes the continuity of L : HZ(0,1) — H%(0,1). |

As a consequence of Lemma 8.1, the operator L can be extended to

L:H2(0,1) — H2(0,1).

8.2 WPG For Fourth Order Problems (Trial d =

4, Test d = 2)

8.2.1 A Generalized Lax-Milgram Lemma

The following result extends the Lax-Milgram Lemma, and is due to Necas [59].

Theorem 8.2 (Generalized Lax-Milgram Lemma [3]) Let U and V be real
Hilbert spaces, a : UxV — R be a bilinear form, and ¢ € V' be a linear functional.

Assume there are constants M > 0 and o« > 0 such that

1) la(u,v)| < Mul|,|v], YueUwvelV, (8.9)

2) sup alu.v) > allul|, YueU, (8.10)

a(u,
veEVw#0 ||UHV
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3) supa(u,v) >0 YveV,v#0. (8.11)

uelU

Then there exists a unique solution u of the problem

ueU a(u,v)="Luv) YveV. (8.12)

Proof. Let A:U — V be the linear continuous operator defined by the relation

a(u,v) = (Au,v)y Yue U, veV.

Using the condition (8.9), we have

[Aullyllvlly < (Au, v)y = la(u,v)| < Mlully|v]y-

Therefore,

|Aully < Mlully VueU.

Then, problem (8.12) can be written as

ue U, Au=ol(u), (8.13)

where o : V! — V is the Riesz isometric operator; i.e., for each u € V we have

a(u,v) = (Au,v) = (cd Au,v)y Yo € V.

From condition (8.10) and the definition of A, it follows immediately that A is
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injective; i.e.;, Au = 0 for some u € U implies u = 0.
To show that Range(A) is closed, let {u,} C U be a sequence such that {Au,}
converges in V| the limit being denoted by w € V. Using condition (8.10), we

have

1 Alu,, —
i = tially < = sup $ALm = tn), )
Q 0£veV ||U||v

v 1
< —|Au,,, — Auy,||;, .
_aHu UHV

Hence {u,} is a Cauchy sequence in U, and hence have a limit u € U. Moreover,
by the continuity condition (8.9), Au,, — Au = w € V. Thus, Range(A) is closed.

Now, if v € Range(A)*, then
(Au,v)y = a(u,v) =0 Yu e U.

Applying condition (8.11), we conclude v = 0. So Range(A) = {0}. Therefore,
(8.13) and hence also (8.12) has a unique solution. |
Now, we are going to show that the bilinear form a given in (8.4) satisfies the three
conditions in Theorem 8.2 with U = H3(0,1) and V = H}(0,1). Accordingly, the

fourth order self-adjoint problem has a unique solution.

Lemma 8.2 The bilinear form a : H2(0,1) x H}(0,1) — given in (8.4), where

ag, ar, as are bounded on [0, 1], satisfies

1) la(u,v) | < Mllully[loll, Yu € Hg(0,1), v e Hy(0,1). (8.14)

a(u,v)

2)  sup > allull, Vue HF(0,1). (8.15)

vEH} w#0 ||U||1

Proof. To prove (8.14), we note that, for (u,v) € HZ(0,1) x H}(0,1), (u”",0v") €
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L*(0,1) x H71(0,1) € H7(0,1) x H71(0,1). Hence,

where,

a(u,v) =ai(u,v)+a(u,v)+as(u,v),

ai(u,v) = (au” 0", as(u,v) = (a;u',v"), az(u,v) = (agu,v).

Then,

" "
Y
(agu”,v")

{a1u' ")

Similarly

My ||lu”||_, |v"||_, (Since H! is a Hilbert space)

My [|0%ul|_, [|0%]

M ||lully ||v]l, (Since 8 : Hy — H~! is continuous)

My [lully vy,

Mo [ llg 1Vl

My ||ul|, |Jv]l, (Since Hy < L*(Q) is continuously imbeded)

Mo [fully vl -

IN

{aou, v) M [|ully [v]],

< Mgllully o]l -
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To prove (8.15), observe first that, for u € H3(0,1) N HZ(0,1),

(0 (u),u) :/agu"2+/a1u’2+/aou2 > a/u"2 = a||ull;. (8.16)

Therefore,

o lully = (€ (), u) < 1)y llull,.

which shows that

1€ (u)ll 5 = aflull, -

Now, let u € H3(0,1) N HZ(0,1). Then,

sup a(uw,v) > sup a(uww) = sup (C(u),v)
vEH(0,1) vEHZ(0,1) vEHZ(0,1)
llvll,=1 llvll;=1 llv]l ;=1

= @l = 6@y = allul,-

The result follows by a density argument since H3(0,1) N HZ(0,1) is dense in

H2(0,1). |

Next, we are going to show that

sup a(u,v) > 0.
u€HZ2(0,1)

This result is the content of Corollary 8.3 below. It turns out that this result
requires a careful look at the structure of the domain of self-adjoint operators. In

what follows, we undertake this task.
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Let the vector

T
X = |: Z1 R2 23 Z4 :| S D4' (817)

Solve the initial value problems

where,
Wiz)(x) =1 20) ) @) B (2)

¥} is the k' genaralized derivative of the function z (see (8.2)).

Here 2z

Lemma 8.3 The vector x defined in (8.17) is linearly independent modulo D.

Proof. Suppose aly € D for some scalar vector a € R4, Then
L (a"x) =t (a"x) =a’t(x) =0.

In view of the positivity of the operator L (see 8.16), this implies that o’y = 0.
Consequently, a”x(0) = o’ = 0. |

It follows from this lemma that
D = D + span {y}.

Next, we turn to a special construction of D from Dy. For this pupose, we use
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the following lemma from [58], which is restated in a more specific manner here.

Lemma 8.4 Let a € R* be arbitrary and define 6 € R* by

(x,x) 0 = Osq,

where Oy is the symplectic matriz of order 4:

00 0 -1

00 -1 O
Oy =

01 0 O

10 0 O

We let €5 and €4 be the third and fourth standard unit vectors in R* and choose

the vector n = [ G G G G 1 € D* such that its components satisfy

((G) = O x, W(G)(0)=e, W()(1) =0,
0(G) = 03x, W(G)(0)=¢, W(()(1)=0,
0(G) = 05x, W(G)(0)=0, W () (1) =ej,

0(G) = QZXa W (Ga) (0) =0, W (C) (1) = €4T,
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where in the last two lines we used the restatement of Lemma 8.4 with the roles

of 0 and 1 interchanged. In vector form, these equations may be rewritten as

eg 0

T

€1 0
((n)=0"x, W(n)(0)= , Win) (1) = :

0 eg

0 €r

where,

<X,X>@:O4{€3 e € 64} (8.18)

Then 7 € D* since it satisfies the Dirichlet boundary conditions. It is also easy

to see that n is linearly independent modulo Dy. Therefore,
D = Dy + span {n}.

Proposition 8.1 v € H}(0,1) satisfies
a(u,v) =0 Yu € HZ(0,1) (8.19)

if and only if v belongs to the one-dimensional space generated by the function

(1) 2 — 24 (1) 25 e,

v € span{zy (1) 23 — 25 (1) 24},
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where, z3,z4 are the third and fourth components of x.

Proof.  Necessity. Observe that (8.19) is particularly true for all u € Dy.
Therefore,

(Lou,v) = a(u,v) =0 Yu € Dj.

This means that the mapping u — (Lou,v) is continuous on Dy. Hence, v € D

and

(u, Lv) = (Lou,v) =0 Yu € D,.

Since Dy is dense in L? (0,1), Lv = 0. Therefore, there is a vector 3 € R* such

that

v=pFTy.

Since (8.19) is also true for all u € lA), we have, by (8.7),

{an" X'} B+ (), x)B=a(nv) =0,

or

{an”,X'}o B+ 0" (x,x) B =0. (8.20)
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Plugging in the boundary values of 1 and y, we get

0
noon1 0
{an", X'}y = A1) (1) (1) zm)]—

1

0
0 0 0 0 0
0 0 0 0 0

A1) 2 (1) 2 (1) Z (1) 0
0 0 0 0 0
0 -1 0 0
0 0 0 0

A1) 2 (1) 2(1) 2 (1)
0 0 0 0

Furthermore, using (8.18),

o' (x,x) =
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Thus, (8.20) becomes

B=0. (8.21)

Next, we note that 24 (1) and 2} (1) cannot both be zero, for otherwise, a proper
linear combination of z3, z4 will satisfy the Dirichlet boundary conditions, contra-
dicting the statement of Lemma 8.3. Thus, the system (8.21) has a one paramter

family of solutions spanned by the vector
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Then,

BTx =24 (1) 23 — 24 (1) 24,

which proves necessity.

To prove sufficiency, let

v=2)(1) 23 — 25 (1) 24.

Then v € D and

Lv =2z, (1)Lzz — 25 (1) Lzy = 0.

By (8.8), for every u € HZ(0,1),

a(u,v) = (u,l(v)) = (u, Lv) = 0.

Corollary 8.3 v € H}(0,1) satisfies (8.19) if and only if v = 0.

Proof. By Proposition 8.1, v = a (2} (1) 23 — 25 (1) z4). Note that v(0) = 0
and v/ (0) = v/(1) = 0. But since v € H}(0, 1), we also have v (1) = 0. Therefore,

v € D. Since 23, 24 are linearly independent modulo 13, we must have v = 0. I

Corollary 8.4 For any nonzero v € Hj(0,1),

sup a(u,v) > 0.
u€HZ2(0,1)
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8.3 Wavelet Petrov-Galerkin Method (WPG)

For Dirichlet and General Problems

In this section we introduce some numerical experiments that use wavelet Petrov-
Galerkin method to solve the Dirichlet problem (7.17) with n = 1 and n =
2. Furthermore, we will replace the Dirichlet conditions in (7.17) by general
conditions and solve the resulting second and fourth order general problems using
the wavelet Petrov-Galerkin method.

Let S; represents the trial space with basis ®; and 7} represents the test space
with basis 5j at level j. S; and Tj are the spans of B-splines on the partition I1;.
The basis ®; should satisfy the Dirichlet boundary conditions.

The discrete wavelet Petrov-Galerkin method is given by:

Find u; € S; such that

(U(uj),v;) = (f,v;) Yov; € Tj. (8.22)

The solvability of (8.22) was discussed in Section 8.2. The solution u; € S; is
given by

Uj = CTq)j. (823)

Also, we may represent v; € T; by

’Uj = dTEj .
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Substituting in (8.22) yields to the following matrix equation

( Y <ak¢§k)7$§k)>> c={f(z),®;). (8.24)

=0

8.3.1 WPG For Fourth Order Dirichlet Problems (Trial
d=4, Test d =2)

In this subsection, we illustrate the Petrov-Galerkin method to solve fourth order
self-adjoint Dirichlet problem (7.17) with n = 2. The trial space induced by B-
splines of order 4, and the test space induced by B-splines of order 2.
The Discrete Petrov-Galerkin Method
Given j > 1, let S; C HZ(0,1) represents the trial space, and T; C H}(0,1)
represents the test space at level j. For d = 4, S is the span of cubic B-splines
on the partition II; which satisfies the Dirichlet boundary conditions. For d = 2,
T is the span of linear B-splines on II;.

The basis for S; is generated by the B-splines ¢; . = 4pjx, k= 2,3,...,29 —2,
@1 = 4991, and @;0i 1 () = 4@}, (1 — x). Where 4 and 4@}, are cubic B-splines

defined explicitly in (7.3) and (7.7), respectively. We set
O ={pjn:k=1,2...,27 —1}.

The basis for Tj is generated by the linear B-splines p; , = 20j1, k =1,2,..., 2 —
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1. We set

O, ={p;,:k=1,2,...,2 —1}.

Hence, the matrix equation (8.24) constitutes a set of (27 — 1) linear equations
T
in the (2/ — 1) unknowns ¢ = |¢; ¢, ... ¢y | - Since (U(Ljk), i) = 0 if

|k —m| > 2, the bandwidth of the matrix equation is 5.

Example 8.5 (Fourth Order Dirichlet Problem (Trial d = 4, Test d = 2))
In this example we consider problem (7.17) with n = 2, f(x) = cos(2mz),

as(x) =1, ay(z) = 100, and ao(z) = 1. Then the matriz equation (8.24) becomes
((@). @) +100(@,T)) +(2;,8;) Je = (f(2), 8;). (8.25)

To solve this system, we apply the one-dimensional wavelet preconditioned conju-

gate gradient algorithm (Algorithm 6) with

1/

Ag = ((27.3)) +100 (), ) + (9, 8,)) , b= (f(2).B;), v =1, n =2,

The refinement matrices used in Algorithm 6 are produced using the coefficients

of d =6, d =8 in Table 3.1.

Table 8.1 gives the results of solving (8.25) using B-splines of order 4 for the trial

space and B-splines of order 2 for the test space.
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Table 8.1: Results for 4" order Dirichlet Problem Trial(d = 4), Test(d = 2)

Level | The L? Error

4 8.1752451e-07

5 2.0285473e-07

6 5.0618423e-08

7 1.2648698e-08

8 3.1621641e-09

9 8.0059643e-10

The method has the order of convergence hZ.

8.3.2 WPG For Fourth Order Problems (Trial d = 6, Test
d=4)

In this subsection we illustrate the Petrov-Galerkin method to solve fourth order
self-adjoint problems with trial space induced by B-splines of order 6, and test
space induced by B-splines of order 4. We started with a description of the solution
for the fourth order self-adjoint Dirichlet problem. After that, we introduce an
example to solve the fourth order self-adjoint Dirichlet problem, and then two
examples to solve fourth order self-adjoint general problems.

Consider the fourth order self-adjoint Dirichlet problem (7.17) with n = 2.
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The Discrete Petrov-Galerkin Method

Given j > 1, let S; € HZ(0,1) N C*[0,1] represents the trial space, and T; C
HZ(0,1) represent the test space at level j. For d = 6, S; is the span of quintic
B-splines on the partition II; which satisfies the Dirichlet boundary conditions.
For d = 4, Tj is the span of cubic B-splines on II;. The basis for \S; is generated
by the quintic B-splines ;x = ¢@jk, & =3,...,2/ =3, 0j1 = 60}, ©j2 = 6Pra
Pj2i—2(1) = ¢P9,(1 — ), and @; 91 (x) = 6@) (1 — ). The quintic B-splines ¢,
67, and @7, were defined explicitly in (7.10), (7.15), and (7.16), respectively.
We set

O ={pjn:k=1,2,...,27 —1}.

The basis for T} is generated by the cubic B-splines , , = 191, k =2, .. 2 =2,
@1 =497y, and B9 (x) = 499 ,(1 — x). The cubic B-splines 4 and 459, were

defined explicitly in (7.3) and (7.7), respectively. We set

O, ={p,: k=1,2,...,2 —1}.

Hence, the matrix equation (8.24) constitutes a set of (27 — 1) linear equations
T
in the (2/ — 1) unknowns ¢ = |¢; ¢, ... ¢y | - Since ((Ljk), Pjm) = 0 if

|k —m| > 4, the bandwidth of the matrix equation is 9.

Example 8.6 (Fourth Order Dirichlet Problem (Trial d = 6, Test d = 4))

In this example we consider problem (7.17) with n = 2, f(x) = cos(2mz),
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as(x) =1, ay(z) = 100, and ag(z) = 1. Then the matriz equation (8.24) becomes
—n — — —
({@).®) +100(®}, @) + (2, ;) e = (cos(2ma), B;) . (8.26)

To solve this system, we apply the one-dimensional wavelet preconditioned conju-

gate gradient algorithm (Algorithm 6) with

-/ - —_ —
Ay — <<c1>;’,<1>j> +100 <<I>;, <1>j> + <<I>j,<1>j>> b= (cos(2mz),B;), v=2,n=2
The refinement matrices used in Algorithm 6 are produced using the coefficients

of d =6, d=8 in Table 3.1.

Table 8.2 gives the results of solving (8.6) using B-splines of order 6 for the trial

space and B-splines of order 4 for the test space.

Table 8.2: Results for 4" order Dirichlet Problem Trial(d = 6), Test(d = 4)

Level | The L? Error

4 1.7050584e-07

5 3.2057452¢-09

6 8.5167950e-11

7 2.5891240e-12

8 1.6503766e-13

9 1.0520214e-14

The method has the order of convergence h*.
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In the following two examples, we apply Chapter 5 method to solve a fourth

order self-adjoint general problem.

Example 8.7 (1.Fourth Order General Problem (Trial d =6, Test d = 4))

Find the solution for the fourth order general boundary value problem

(8.27)

Solution: Let u, be the solution for the Dirichlet problem (7.17) with n = 2,
f(z) = cos(2mz), as(x) =1, a1(z) = 100, and ap(z) = 1.

Now, we choose 01(z) = 1 — cos(mz + 7) and 03(x) = 6,(1 — x). Also, we
choose 0y(x) = 2 — x* and 04(z) = 0(1 — z).

Fori=1,2, let & be the solution for the Dirichlet problem (7.17) with n = 2,
fz) =0(6,), as(z) =1, ai(x) = 100, and ag(x) = 1.

We can find u,, & and & simultaneously using the Petrov-Galerkin method
discussed in Example 8.6. Let &3 = ff, &= 5%, and u; =& —0; (i=1,2,3,4).

To find the sought solution u(z) = u,(x)+r1u () +rous(x)+raus(z)+rous(z),
we need to find the constants ri,r9,13 and ry. We apply the boundary conditions

on u. Applying the boundary conditions gives

ri=—0.5, ro =4, r3=—1 and ry = 3.
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Accordingly,

N 1
u:up—§u1+4u2—u3+3u4.

Table 8.3 gives the results of solving (8.27) using B-splines of order 6 for the trial

space and B-splines of order 4 for the test space.

Table 8.3: Results for 4" Order General Problem1 Trial(d = 6), Test(d = 4)

Level | The L? Error

4 2.4702455e-04

5 7.8623350e-06

6 3.4939020e-07

7 2.0501813e-08

8 1.2782665e-09

9 3.7389376e-11

The method has the order of convergence h.

Example 8.8 (2. Fourth Order General Problem (Trial d =6, Test d = 4))

Find the solution for the fourth order general boundary value problem

((u) = u™® — 100u” + u = cos(27z),
(8.28)

Solution: Let u, be the solution for the Dirichlet problem (7.17) with n = 2,
f(z) = cos(2mz), as(z) =1, ai(x) = 100, and ao(z) = 1.
Now, we choose 01(x) = 1 — cos(mrx + 7) and O5(x) = 6,(1 — x). Also, we
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choose 0y(z) = 23 — x* and 0,(x) = 0(1 — ).

Fori=1,2, let & be the solution for the Dirichlet problem (7.17) with n = 2,
f(z) =£0(6;), as(z) =1, a1(z) = 100, and ag(z) = 1. We can find u,, & and &
simultaneously using the Petrov-Galerkin method discussed in Example 8.6. Let
G=6 & =€ andu =& — 6, (i = 1,2,3,4).

To find the sought solution u(x) = w,(x)+rius(z)+rous(x)+rsug(z)+riug(x),
we need to find the constants r1,719,r3 and ry. We apply the boundary conditions

on u. Applying the boundary conditions gives r1 =0, r3 =0,

u!/(0) + r€4(0) + 14(€}(0) + 6) = 1, (8.20)
and
u;’(l) +1r9(&5 (1) +6) + 748 (1) = 2. (8.30)

Solving (8.29) and (8.30) to get

260 +6) — €l() — up()(EL0) +6) + (0L 1= u(0) — g (0).
’ (€(1) +6)(£4(0) +6) — &5(0)€; (1) o 7(0) + 6

To find u,)(0),&5(0) and £§(0) we apply the fourth order forward difference method:

107

70 = 55 (210 = e+ 5 2n) = 13766 + 3300 - S50 )

4

To find uy(1),&5(1) and (1) we apply the fourth order backward difference
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method:

£1) =1 (S FQ) = LR B+ 22051 2) ~ 13£(1 — 30)
61 5
S0 —4h) = 2f( - 5h)). (8.31)
Accordingly,

U = Up + Toly + T4y,

Table 8.4 gives the results of solving (8.28) using B-splines of order 6 for the trial

space and B-splines of order 4 for the test space.

Table 8.4: Results for 47" Order General Problem2 Trial(d = 6), Test(d = 4)

Level | The L? Error

4 9.8476660e-04

> 6.1291140e-05

6 4.3447297¢-06

7 3.0868244e-07

8 2.0830066e-08

9 1.3781611e-09

The method has the order of convergence h*.
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8.3.3 WPG For Second Order General Problems (Trial d =
4, Test d = 2)

In this subsection we introduce an example to solve a second order self-adjoint
general differential equation using Chapter 5 method. B-splines of order 4 were
used to induce the trial basis functions, and B-splines of order 2 to induce the
test basis functions. Moreover, the results for Galerkin method used test and trial
spaces of orders 2 and 4. Better results were achieved from the Petrov-Galerkin
method.

In the following example we apply Chapter 5 method to solve a second order

self-adjoint general problem.

Example 8.9 (Second Order General Problem) Find the solution for the

second order general boundary value problem

(8.32)

Solution: Let u, be the solution for the Dirichlet problem (7.17) with n = 1,
f(x) = cos(2nz), a1(x) = 1, and ap(x) = 10.

Now, we choose 01(x) = 1+ cos(mzx) and O2(z) = 61(1 — x).

Let & be the solution for the Dirichlet problem (7.17) withn =1, f(x) = €(61),
a(x) =1, and ag(x) = 10.

We can find u, and & simultaneously using the Petrov-Galerkin method. Let
& = 5%, andu; =& —0; (1 =1,2).
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To find the sought solution U(x) = uy(x) + riui(x) + roug(x), we need to find the
constants r1 and ro. To do this we apply the boundary conditions on u. Applying

the boundary conditions gives r, = —2 and ro = —1.5. Accordingly

U =u, — 2wy — 1.5us.

Table 8.5 gives the results of solving (8.32) using B-splines of order 4 for the trial

space and B-splines of order 2 for the test space.

Table 8.5: Results for 2"¢ Order General Problem Trial(d = 4), Test(d = 2)

Level | The L? Error

4 3.9939696¢-05

5 2.7144791e-06

6 1.7691170e-07

7 1.1290736e-08

8 7.1310291e-10

9 4.4841020e-11

The method has the order of convergence h*.
Table 8.6 gives the results of solving (8.32) using B-splines of order 2 for the trial

and test spaces.
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Table 8.6: Results for 2"¢ Order General Problem Trial(d = 2), Test(d = 2)

Level | The L? Error

4 4.1140973e-03

5 1.0300348e-03

6 2.5732757e-04

7 6.4320578e-05

8 1.6079601e-05

9 4.0198934e-06

According to Whitney estimate (3.35) and Jackson’s inequality (3.36), the

results has the order of convergence h?.
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CHAPTER 9

APPLICATION : A WAVELET

GALERKIN METHOD FOR

FAULT DETECTION

In this chapter we discuss an application of the wavelet Galerkin method for iden-
tifying the position of a fault in, say, mechanical system. The model evolution
problem is reduced to an eigenvalue problem, which is then discretized by using a
sequence of refinable functions. The basis functions consist of translations and di-
lations of the B-spline 5. The wavelet preconditioning for the conjugate gradient
optimization of the Rayleigh quotient was applied to find the smallest eigenvalue
and its corresponding eigenvector of the resultant generalized eigenvalue problem
Ax = AMx. The smallest eigenpair is then used to detect the fault by solving an

algebraic equation for the coefficient functions of the model at the dyadic points.

178



9.1 Model Problem

For simplicity, we consider the model evolution equation

% - %(al(x)g—i) +ap(z)y = F, (9.1)

where a1(z),a9(x) >0,0<z<land 0 <t <T.

We will assume that a;, ag are smooth functions of x under normal operating
conditions. To simulate the occurrence of damage, we will allow a; to change over
a small subinterval 7;(0,1). When we mean to distinguish a damaged model from
a healthy one, we will use a superscript d. The boundary conditions for the simply

supported model are given by

y(0,t) =y(1,t) = 0. (9.2)

We consider here a force free model; i.e., FF = 0. The method of separation of

variables leads to the eigenvalue problem

/
Au(z) — (al(a:)u’(a:)> + ag(a)u(z) = 0 (9.3)
together with the boundary conditions

u(0) = u(1) = 0. (9.4)
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At this point, it is best to use operator notation. Thus, we rewrite (9.3) as

()\I + Ll)U = O,

where

Liu = —(ay(z)u') + ag(z)u.

Here L, is the Dirichlet operator discussed in Chapter 5. General theory of dif-

ferential operator, see e.g., [58] affirm that L; has discrete spectrum.

9.2 Weak Formulation and Discretization

Using V' := HJ(0,1) as the trial and test space, the weak (or variational) formu-
lation of (9.3) reads:

Find A € C and v € V such that

Mu,v) +a(u,v) =0 YveV, (9.5)

where

a(u, v) = {au',v") + {agu,v), u,v € V. (9.6)

To discretize this problem, we let S = {S;};en, be an MRA in L*(0, 1) generated
by a centralized B-spline 5¢p.

The discrete counterpart of (9.5) reads:
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find u; € S; and A; € C such that

Aj(v,u) +a(v,u) =0 YveS;. (9.7)

Writing u; = ¢I'®;, we arrive at the algebraic eigenvalue problem
J 7 =7

)\jMCj + KC]‘ = 0, (98)

where

M = <(I)j,q)j>, K = a( (I)ja(I)j> = <CL1(I)3,(I);> + <a0<I>j,<I)j> . (99)

9.3 Damage detection

To use Equation (9.8) to detect damage, we proceed as follows. Since |[;x| =
27911 for sufficiently large j and appropriately adjusted k, I, will be contained

in the damage interval I;. For sufficiently large 7, we may write

K~ a; <<I>;, (I);> + ag <(I)j,q)j> s

where a; and aq are diagonal matrices with diagonal elements being the values of
the corresponding functions at the dyadic points {2_3[}5:11. These values are to
be identified from Equation (9.8) provided A;, ¢; are given. For this purpose, we
rewrite (9.8) as

)\jAlcj -+ (alAQ + CLOAl) Cj = O, (910)
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where

Al = <(I)j,q)j>, <(I)/ (I)/>

For each given pair ()}, ¢;), Equation (9.10) is a 2/ — 1 dimensional system. Thus,
for example, if we assume that ag is known, in order to determine the unknown
matrix a;, we require one eigenpair (Al,j,clﬁj> to be given, e.g., through mea-
surements. Now, since the k' row of the system (9.10) corresponds to the node
r = 277k on the model, the entries of the k* row of the matrix a; will change
from its healthy values only when damage occurs at the point x = 277k. We
can then construct a profile where the entries of this matrix is plotted against
the corresponding location. Thus, by monitoring this profile, we can detect the
damage location as well as its width |I4|. The numerical experiments to be pre-
sented in the next section reveal that the method gives good indicators, even at
low levels of resolution. It should be mentioned that since the matrix a; is di-
agonal, system (9.10) can be decoupled into components. The result is that, for
each k € {1,...,27 — 1}, a system of two-scalar equations to determine the k"
component in the unknown matrix is obtained.

Note that the matrices A; and A; can be calculated and stored only once,
since they are properties of the basis functions. Before executing this scheme,
we need to discuss first the aspects of computing the eigenelements using wavelet

PCG methods.
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9.4 A Generalized Eigenvalue Problem

In this section we are concerned with computing the smallest eigenvalue and its

corresponding eigenvector of the generalized eigenvalue problem
Ax = \Mx, (9.11)

where A and M are large sparse symmetric positive definite matrices. Due to
the variety of applications on this problem, a great deal of effort was devoted
to the development of efficient and reliable methods to solve such a problem. A
detailed list of references and review of these methods can be found in [41,66].
[terative algorithms based on the optimization of Rayleigh quotient have been
developed [5,54] and a conjugate gradient scheme for the optimization of the
Rayleigh quotient has proven attractive and promising for large sparse eigenvalue

problems [19,47].

9.4.1 Conjugate Gradient Scheme

We are looking for the smallest eigenvalue A\, and its corresponding eigenvector z
of (9.11) such that

Az =AMz, (z,2z),, = 1.

We recall that the eigenvector z is a stationary point of the Rayleigh quotient

o) = <<— (0.12)



Since A and M are positive definite then p(z) is always positive. Moreover, the
minimum of the Rayleigh quotient p(z) corresponding to (9.11) is equal to A; [47]
and is attained at z; i.e.,

min p(x) = min —4& =)\, = — 4. 9.13
m;éop() x40 (T, T) 5 ! (z,2) 0 (9.13)

The idea of transforming the eigenvalue problem (9.11) into a minimum opti-
mization problem, first proposed by Hestenes & Karush [45], open the doors for
evaluation of eigenvalues with the aid of the optimization procedures which have
became well developed in the recent decades.

Several methods such as the steepest descent method [45] and the conjugate
gradient method [5,19, 54,61, 63] were adopted to assess the smallest eigenpair
based on the minimization of the Rayleigh quotient.

Among the methods mentioned above for minimizing the Rayleigh quotient,
the conjugate gradient scheme appears to be the most efficient and robust pro-
viding relatively faster convergence for large sparse eigenvalue problems.

The basic idea of the Rayleigh quotient minimization is to construct a se-
quence {x;} such that p(xri1) < p(xx) for all k. The hope is that the sequence
p(xy) converges to A\; and by consequence the vector sequence {x} towards the
corresponding eigenvector. The procedure is as follows: for any given x; let us

choose a search direction p, so that

Tpi1 = Tk + Py (9.14)
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The parameter «y, is determined such that the Rayleigh quotient of the new iterate

T becomes minimal; i.e.,

p(@yi1) = min p(zy, + apy). (9.15)

We can write the Rayleigh quotient of the linear combination x; + ap, of two

linearly independent vectors x; and p, as

(@, in>A + 204<=’Uk7pk>A + a2<pk7pk>A
Ty, mk>M + 2a<wkapk>M + a2<pkapk>M

<mk7mk>A <wkapk>A 1
1 o

(P Tr)a (PrPr)al |

[1 a] (@i Tr)nr (e Pe)ar| |1

(P wk>M <pk7pk>M o

This is the Rayleigh quotient associated with the generalized 2 x 2 eigenvalue

problem
<513k7513k>A <wk>pk>A U1 <wk,$k>M <mk7pk>M U1
=\ : (9.16)
(P Tk) 4 (Po>Pr)al| |92 (P xi)pr P Pidar | | ¥2

The smaller of the two eigenvalues of (9.16) is the searched value pry1 = p(@x41)
in (9.15) that minimizes the Rayleigh quotient. The corresponding eigenvector is
normalized such that its first component equal to one. The second component of

T
this eigenvector is a = ay. Inserting the solution [1 Oék:| into the second line of
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(9.16) we obtain

(P, (A — pra M) (), + py)) = (Pis 1) = 0. (9.17)

So, the next residual 7, is orthogonal to the actual search direction py.

We have already seen in Section 6.2 how to use the steepest descent method
to choose the search direction p, to solve the system Ax = b. For the eigenvalue
problem (9.11), we proceed similarly by choosing p, to be the negative gradient

of the Rayleigh quotient p; i.e.,

prMz) — Az,

(mk, $k>M

The complete procedure to solve the eigenvalue problem (9.11) is given in Algo-

rithm 13.

9.4.2 1D Wavelet PCG Eigenvalue Problem Algorithm

As in the case of a system of linear equations, successful application of the con-
jugate gradient method to eigenvalue problems depends also upon the precon-
ditioning techniques [39,40]. The aim of this subsection is to apply the wavelet
preconditioning for the conjugate gradient optimization of the Rayleigh quotient to
the generalized eigenvalue problem (9.11). The wavelet preconditioned conjugate

gradient method to solve the eigenvalue problem (9.11) is given in Algorithm 14.
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Algorithm 13: One-dimensional CG Eigenvalue Algorithm

© 00w N O oA W N =

R e =
AW N = O

15

16
17
18
19
20
21

Result: Finding the minimum Eigenvalue and the corresponding

Eigenvector for Ax = AMx

Input : A, M, xy, kmazr and tol

Output: The eigenvalue A, and the corresponding eigenvector

ug = Mz, ¢ = /(To, Uo)
Lo = wo/q, Uy = Uo/q
Vo — Awg
Ao = <SC0,’00> / <330,U0>
for k =0 up to kmax —1 do
Tr = AU — Vg
if ||ry|| < tol then
‘ Exit
end
if k=0then [,=0

Py = Tk + BePr_1

eigenvalue problem

(Pr Vi) <pk7pk>A
a=1y(2)/y(1)
Tpt1 = T + apy

Y2

Tip1 = Tht1/q, W1 = Ukp1/q
Vpy1 = ATpyy

end
T=Tpi1, A= Ayl

else 3, = (Tk,Tk>M/<Tk—1>7°k—1>M

(T, V) (@k, Py 4 } [ h } — [

U1 = Mxpi1, ¢ = \/(Trg1, Wip1)

<wk7 uk> <wk’7pk>M

(Pg, ur)

(Prs Pr) ar

I

Y1
Y2

Ar = min A, and y is the eigenvector corresponding to Ay of the 2 x 2

|
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Algorithm 14: One-dimensional Wavelet PCG Eigenvalue Algorithm

© 00 N O ok W N

R e e = )
Uk W N = O

16

17
18
19
20
21
22

Result: Finding the minimum Eigenvalue and the corresponding
Eigenvector for Ax = AM«x

Input . A, .2\4-7 o, k’max, tol and P = .D_27 D = 2j<5k,k’)(j,k),(j’,k’)ej

Output: The eigenvalue A, and the corresponding eigenvector x

ug = Mxy, ¢ = \/(To, uo)
Lo = C'30/% Up = Uo/q
Vo = Aaﬂg

Ao = (@0, vo) / {0, o)
for £k =0 up to kmax —1 do
T = )\kuk — Vg
rr = D1 IWT(PD{WT(r)) %Wavelet Preconditionneing
if ||rx| < tol then
| Exit
end
if k=0then (,=0
else B, = (7, k) ar/(Th—1, Th1) 01

Dr =Tk + BeDry
Ar = min A, and y is the eigenvector corresponding to Ay of the 2 x 2
eigenvalue problem
(Tk, V) (Tk:Pr) A ] [ 7 } ) [ (@k, k) (@k, Py) pr ] [ v ]
(D, V) (P> Pi) a Y2 (P> uk)  (Prs Pr) s Y2
a=1y(2)/y(1)
Tpt1 = T + apy
Upy1 = MTpi1, ¢ = /(Tpy1, Ut1)
Tpi1 = Tpp1/q; Upy1 = Upy1/q
Vpy1 = ATpq
end
T=Tpi1, A= Npp1
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9.5 Numerical Simulation

The approach discussed in the previous section was applied to a homogeneous
model with the parameters ag = 10 and a; = 1. We simulated the damage by
introducing a jump in the value of a;. That is a; = 1+ x7,. The simulation was
implemented in two steps:

Step 1 (the damage simulation step): We fed the perturbed parameter a;
in Equation (9.8). The eigenvalue problem was solved using Algorithm 14 and
the smallest eigenpair (A ;,¢; ;) was recorded. We applied the one-dimensional

wavelet preconditioned conjugate gradient algorithm (Algorithm 6) with

Ap = Ascrj, b= —(M;l +ag)Aicrj, v=0,n=1.

The refinement matrices used in Algorithm 6 are produced using the coefficients
of d =2, d =6 in Table 3.1.
Step 2 (the damage detection step): The recorded eigenvalue and eigenvector
were used together in Equation (9.10) to recover the matrix a;.

Figure 9.5 shows the profile of the recovered a; corresponding to a uniform

damage in the interval [4/32,8/32].
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Figure 9.1: A uniform damage in one location, using a; coefficients.
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