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Wavelet methods for solving higher order self-adjoint boundary value problems

were investigated. A novel method to numerically approximate solutions for gen-

eral self-adjoint problems was proposed. A method based on vector valued fast

wavelet transform to reduce the condition number of a specific class of fourth order

differential equations was established. Wavelet methods for elliptic partial differ-

ential equations in higher dimensions were investigated. Wavelet preconditioning

for the conjugate gradient optimization of the Rayleigh quotient were applied to

solve the generalized eigenvalue problem Ax = λMx which was used to detect

sudden changes in the coefficients of a model differential equation.
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CHAPTER 1

INTRODCUTION

Wavelet methods for the numerical solution of differential equations belong to a

current and very active area of research [72]. There is a growing body of literature

devoted to the analysis as well as the application of these methods. The advantage

of using wavelets, in general, is that they allow representation of a function by a

few significant wavelet expansion coefficients if the function is “locally” smooth.

This property of wavelets is known as “wavelet compression”. A consequence

of this compression property is that coefficient matrices resulting from wavelet

discretization are almost sparse. On the other hand, wavelet coefficient matrices

which arise in partial differential equation (PDE) discretization can be optimally

preconditioned. One can combine the advantages of sparseness of the matrix

of coefficients with the optimality of preconditioning to achieve fast and efficient

numerical methods for solving PDEs. There are two types of matrices that arise in

connection with wavelet methods: approximation matrices and wavelet matrices.

The former ones are sparse but not optimally conditioned, while the latter ones
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are optimally conditioned but not as sparse. However, a clever combination of

both types achieves both advantages. Accordingly, there was a great deal of effort

devoted to using wavelets to solve differential equations numerically. Wavelet

methods for signal processing became very popular quickly due to the ease and

widespread areas of applications. However, difficulties arise when we try such

methods in solving PDEs numerically. The main difference is that while signals,

originally defined on bounded domains, can be extended, with mild nuisance, to

the whole space, the situation is not the same for PDEs which are defined on

bounded domains Ω where boundary conditions matter. Hence, using wavelets

for solving a differential equation on a bounded domain Ω obviously requires us

to construct wavelets on Ω. The breakthrough in this direction was achieved

by Dahmen et al. [28]. In their work, they introduced the construction of the

biorthogonal wavelet systems over the interval with all desirable properties:

1. In the primal multiresolution, we can achieve any degree d of exactness by

spline spaces.

2. In the dual multiresolution, we can achieve any degree d̃ of exactness where d̃

is such that d+ d̃ is even.

3. The associated biorthogonal spline wavelets have d̃ vanishing moments.

4. Fast decomposition and reconstruction algorithms since wavelets and genera-

tors of primal and dual multiresolutions have finite supports.

5. Wavelets form Riez bases for L2(0, 1).
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Actually, the boundary functions (wavelets) introduced by Dhamen et al. [28]

in the interval [0, 1] required a minimal level of resolution (j0 ≥ 4). The value

of j0 depended on the order of scaling basis functions used in the discretization

of the problem. This minimal resolution meant that preconditioning is not fully

under control. As a result, stiffness matrices with high condition numbers were

still being produced by the preconditioning wavelet algorithms. This was also a

feature of the so called refinement matrices.

Dhamen et al. [28] tried to improve the resulting refinement matrices condition

numbers by introducing special classes of boundary functions, namely Bernstein

polynomials. Although condition numbers of refinement matrices were greatly

improved, the basic problem of minimal resolution went unaddressed and high

condition numbers of the stiffness matrices were still showing.

For the same reasons, Černà and Finěk [15] refinement matrices were also

inappropriate to obtain a good accuracy of the approximation of the differential

equation.

In this thesis, we tackled this problem by posing the following question: what if

we construct scaling functions inside the interval [0, 1] and allow the dual functions

not to be so restricted? This point of view enabled us to construct our refinement

matrices with lower condition numbers by reaching the resolution level j0 = 1.

These refinement matrices are good for solving Dirichlet problems. The results

were interesting and excellent approximation of the solution for the differential

equation were obtained.
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The problem now becomes how to handle general boundary value problems

where minimal resolution reachable is still dependent on the order of scaling func-

tion used. To tackle this problem, we constructed a method that begins by solving

a Dirichlet problem and then using it to solve the boundary value problem at hand.

This was achieved with the same order of operations O(N).

Our developed method can be summarized as follows. Given a general bound-

ary value problem of order m:

1. Solve (m+ 1) related Dirichlet problems (each is O(N)).

2. Construct boundary functions to carry the boundary conditions of the problem

being considered.

3. Construct the solution for the boundary value problem being considered.

It should be noted that steps 2 and 3 are purely algebraic and require solving only

small algebraic systems.

This research aims at investigating wavelet methods for solving higher or-

der self-adjoint boundary value problems. On the one hand, we constructed a

two-dimensional preconditioned conjugate gradient algorithm to deal with two-

dimensional PDE’s. A two-dimensional self-adjoint PDE has been solved using

this algorithm. On the other hand, all constructions used to build two-dimensional

algorithm can be extended to the n-dimensional counterpart.

As an application of using wavelet methods, we introduce a fault detection

method on a model problem. The model problem is reduced to an eigenvalue

problem, which is then discretized by using a sequence of refinable functions. The
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resulting eigenvalue problem was treated using Raleigh quotients to find the mini-

mum eigenvalue and its corresponding eigenvector. Using the resultant eigenpair,

the fault is detected by solving an algebraic equation for the coefficient functions

of the model at the so called dyadic points.

This thesis is organized in nine chapters.

In Chapters 1 and 2, we give an introduction and literature review of the use

of wavelets in solving self-adjoint boundary value problems.

In Chapter 3, we provide some preliminary results, definitions and terminology

to be used in this thesis. We address the properties of Haar and linear systems

such as refinability, multiresolution analysis and locality. The general primal

multiresolution analysis on R is introduced. Also we address primal and dual

B-splines that have crucial importance in our work. We present biorthogonal

projections, approximation properties and refinable integrals.

In Chapter 4, we introduce the model problems used in the thesis. For the

ordinary differential equations (ODEs) we address the (2n)th order self-adjoint

Dirichlet problem, and for PDEs we deal with a two dimensional self-adjoint prob-

lem. The variational formulation, existence and uniqueness, and error estimate

for the wavelet Galerkin method for these model problems are investigated.

In Chapter 5, we propose a novel method to numerically approximate solutions

for general self-adjoint problems. We first solve some related Dirichlet problems.

Then, we construct boundary functions to carry the boundary conditions of the

general problem being considered. The solution for the general boundary value

5



problem is constructed using the solutions of the Dirichlet problems.

In Chapter 6, we give a full construction of biorthogonal wavelets on the real

line. The construction includes the one-dimensional and the two-dimensional

biorthogonal wavelets. Moreover, we present the conjugate gradient method

with wavelet optimal preconditioning for solving linear systems resulting from

discretization of differential equations. The approach can be generalized to higher

order equations.

In Chapters 7, we use the wavelet Galerkin method to solve self-adjoint Dirich-

let problems. This requires addressing the number of basis functions needed to

form a complete basis for the Dirichlet problems. New basis functions were con-

structed on the boundaries. A novel reduction of order method was introduced to

solve a special class of fourth order Dirichlet problems.

In Chapters 8, we use the wavelet Petrov-Galerkin method to solve self-adjoint

problems. A complete analysis of the method was introduced with trial basis

functions induced by B-splines of order 4 and test basis functions induced by B-

splines of order 2 on a fourth order self-adjoint Dirichlet problem. The method

has a great favorable impact on the condition numbers.

In Chapters 9, we introduce an application of the wavelet Galerkin method

in fault detection of a model problem. The application requires a discus-

sion of wavelet preconditioning for solving the generalized eigenvalue problem

Ax = λMx. There we minimize Rayleigh quotients via preconditioned conju-

gate gradient method.
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CHAPTER 2

LITERATURE REVIEW

The use of wavelets as an orthonormal basis in L2(R) dates back to Haar in 1910

[43] who introduced what is now called the Haar wavelet. However, it was the

discovery by Daubechies and coworkers in the 80s and 90s of the last century of

rich classes of wavelets that revolutionized signal processing [31-34]. The impor-

tance of wavelets in signal processing lies in the existence of decomposition and

reconstruction techniques which allows us to transform a signal from a single scale

to a multiscale representation. This new representation enables us to modify the

signal for different purposes such as denoising and compression. The key point

of achieving this is the sparse multiscale representation of signals using wavelets

[56,74].

Wavelets then came to be used in numerical analysis because it was noticed

that certain operators, especially differential operators, have sparse representa-

tion in wavelet bases. A pioneering paper was written by Beylkin et al. [6], who

realized that not only signals but also certain operators have a sparse represen-

7



tation in terms of wavelets. This was the starting point for many contributions.

Furthermore, wavelets provided a multiresolution platform [27], which meant that

preconditioning could be done irrespective of the size of the matrix [7, 8].

The theory of wavelet methods for elliptic problems has been extensively stud-

ied in recent years. The area is still very active in research with prospects for

improving and optimizing algorithms as well as the application of the method to

real world problems. Urban [72] used the refinement matrices constructed in [28]

to solve second order differential equations.

Canuto et al. [11] detailed the general construction for two-dimensional do-

mains and showed how to use the wavelet element method (WEM) for the numer-

ical solution for elliptic PDE’s in an L-shaped domain.

Cohen and Masson [25] proposed a strategy that allowed to append non-

homogeneous boundary conditions in the setting of space refinement (i.e. adap-

tive) discretizations of second order problems. Their method was based on the use

of compatible multiscale decompositions for both the domain and its boundary,

and on the possibility of characterizing various function spaces from the numerical

properties of these decompositions. In particular, this allows the construction of

a lifting operator which is stable for a certain range of smoothness classes, and

preserves the compression of the solution in the wavelet basis.

Cohen et al. [23] constructed wavelet-based adaptive algorithms for the numer-

ical solution for elliptic equations. These algorithms approximated the solution of

the elliptic equation by a linear combination of a finite number of wavelets.
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Dahlke et al. [26] developed an adaptive numerical method for elliptic operator

equations. They were interested in discretization schemes based on wavelet frames.

The scheme was based on adaptive steepest descent iterations. They presented

numerical results for the computation of solutions of the Poisson equation with

limited Sobolev smoothness on intervals in 1D and on L-shaped domains in 2D.

There were also other trials to solve differential equations using wavelets. For

example, Dhawan et al. [36] introduced a simplified procedure to solve linear

differential equations using Haar wavelets. Kostadinova et al. [50] used a fourth

order scaling function in the wavelet Galerkin method to solve a nonhomogeneous

differential equation and applied their method to the Van der Pol equation. Černà

and Finěk [14-18] worked on constructing an optimally conditioned cubic spline

wavelets on an interval. For instance, in [15] they constructed spline-wavelet bases

on an interval with a small condition number. In [17] they constructed a stable

cubic spline-wavelet basis on the interval with second order boundary conditions.

In [18] they constructed new cubic spline-wavelet bases, with small supports and

wavelets that have vanishing moments satisfying second order Dirichlet boundary

conditions.

Wavelets have been used in a variety of applications. In acoustical signal

processing, Kobayashi [49] illustrated some examples of using one-dimensional

Wavelet Transform (WT) based acoustic signal processing techniques, the elec-

tronic manipulation of acoustic signals, to detect the faults in automated quality

control mechanism.
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In chemical industry, since signal processing is widely used, WT is a useful

tool to work on these signals [2]. Aballe et al. [1] investigated the validity of

wavelet analysis as alternative procedure to process electrochemical noise records.

They measured the energy at different scales or separate two components of the

signal (high coefficients for one component and the remaining for the other one)

by the inverse wavelet transform. Schrötter [67] presented a chemical process sur-

vey by filtering process variables as time series (cubic spline wavelets). Briesen

and Marquardt [10] presented a chemical process modeling by adaptive multigrid

method on the basis of a wavelet Galerkin discretization for the simulation and op-

timization of processes involving complex multicomponent mixtures in petroleum

industry.

In image processing, one of the main applications of WT is image compres-

sion. Wavelet compression algorithm provides better compression/quality than

traditionally used JPEG algorithm. The current international standard for image

compression (JPEG 2000) is largely based on scalar quantization of the coeffi-

cients of a Daubechies WT performed with Daubechies biorthogonal bases. Many

authors have contributed to the field, one can find the forerunners and compre-

hensive papers amongst the following references: [53,57,69,71,77].

As an application of solving a two-dimensional PDE, we developed in our pub-

lished paper [38] an online monitoring system for efficient and accurate detection

of cracks or erosion in a pipe system, whether composite, fiber reinforced poly-

mer (FRP) or steel, from vibration records. The elastodynamic model of such a

10



structure is typically a PDE, which is second order in time and fourth order in

space. Our approach does not require solving a nonlinear system. Instead, a sim-

ple decoupled linear system is to be solved. It does not require the prior buildup

of a database of modal shifts against crack parameters. It has the capability of

zooming-in for more accurate determination of damage location and parameters.
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CHAPTER 3

PRELIMINARIES

In this chapter, we introduce some terminology and theorems to be used in this

thesis. We follow the notations in Urban [72].

We denote the support of a function f : Ω→ R by

supp f := closR{x ∈ Ω : f(x) 6= 0}.

A function f : Ω→ R is called compactly supported if

supp f ⊂⊂ Ω

is compact. Here D ⊂⊂ E means that the set D is compact in E.

For a function f : Ω→ R, we define f[j,k](x), the scaled and shifted version of

f , by

f[j,k](x) := 2j/2f(2jx− k), x ∈ Ω, j ∈ N0, k ∈ Z. (3.1)

12



If f has a compact support; i.e., supp f = [a, b], then

supp f[j,k] = 2−j[a+ k, b+ k].

In the same manner, we can define the scaled and shifted version of the unit

interval I = [0, 1], by

Ij,k = 2−j[k, k + 1].

The set {Ij,k}k∈{0,1,...,2j−1} form a partition for I and

|Ij,k| = 2−j.

Also, for an interval Ω and for an integer value j > 0, we define

Ij = {k ∈ Z : Ij,k ⊆ Ω} , (3.2)

and

fj,k = f[j,k]

∣∣
Ω
.

For j ∈ N0, we define the grid ∆j to be the set of all dyadic points of the unit

interval; i.e.,

∆j = {k2−j : k = 0, 1, . . . , 2j}. (3.3)

13



Pn denotes the set of polynomials of degree at most n ∈ N0; i.e.,

Pn =

{
g : R→ R : g(x) =

n∑
k=0

akx
k

}
. (3.4)

We will use the abbreviation A . B to indicate that ∃ α > 0 such that A ≤ αB,

and A & B indicates that ∃ γ > 0 such that A ≥ γB. Also A ∼ B means A . B

and A & B.

The standard inner product 〈·, ·〉0;Ω in L2(Ω) is given by

〈f, g〉0;Ω :=

ˆ

Ω

f(t)g(t) dt, f, g ∈ L2(Ω). (3.5)

The corresponding norm is defined by

‖f‖2
0;Ω := 〈f, f〉0;Ω :=

ˆ

Ω

|f(t)|2 dt, f ∈ L2(Ω). (3.6)

For any countable set I, we use

`2(I) := {c = (ck)k∈I : ‖c‖`2(I) <∞}, ‖c‖2
`2(I) :=

∑
k∈I

|ck|2. (3.7)
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3.1 Vector-Valued Inner Product

[48] In this thesis, x and y will generally be vector-valued; e.g., x ∈ Rn×1, y ∈

Rm×1. So the inner product

〈x,y〉 :=

ˆ

Ω

xyT (3.8)

will often be a (rectangular) matrix, and not a scalar, and the integral is applied

to each entry of the matrix xyT over Ω. To show that this is a well-defined inner

product, it is only required that the following conditions holds:

1. Linearity: For x1,x2 ∈ Rn×1,y ∈ Rm×1 we have

〈a1x1 + a2x2,y〉 = a1〈x1,y〉+ a2〈x2,y〉, a1, a2 ∈ R.

2. Reflexivity: For x ∈ Rn×1,y ∈ Rm×1 we have

〈x,y〉 = 〈y,x〉T .

3. Nondegeneracy: For x ∈ Rn×1 we have

‖x‖2 = 〈x,x〉 = 0 only when x = 0.

By matrix properties, it can easily be shown that 〈 ·, · 〉 satisfied the above condi-

tions and it thus a legitimate inner product.
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To introduce the concept of multiresolution analysis on R, we started with

presenting the Haar and hat systems in the following two examples.

3.2 Two Simple Examples

Example 3.1 (The Haar System) We define the Haar function by

ϕHaar(x) =


1, x ∈ [0, 1)

0, otherwise

= χ[0,1)(x).

Then

ϕHaar[j,k] (x) = 2j/2ϕHaar(2jx− k), x ∈ R, j ∈ N0, k ∈ Z.

The support of the function ϕHaar(x) is given by

suppϕHaar = [0, 1) =: [`Haat1 , `Haat2 ).

Also IHaarj,k := suppϕHaar[j,k] = 2−j[k, k+1] and |IHaarj,k | = 2−j. For j ≥ 0, the elements

of the set ΦHaar
j = {ϕHaarj,0 , ϕHaarj,1 , . . . , ϕHaarj,2j−1} = {ϕHaar[j,0] , ϕ

Haar
[j,1] , . . . , ϕ

Haar
[j,2j−1]} are

supported in the interval [0, 1).
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Figure 3.1: Haar Functions ϕHaaar3,k , k = {0, 1, . . . , 7}.

For a fixed j ∈ N0,

IHaarj := {0, 1, . . . , 2j − 1} = {k : IHaarj,k ⊆ [0, 1]}.

For ` 6= k, IHaarj,` ∩ IHaarj,k is at most a singleton. To show this, we have

IHaarj,` = 2−j[`, `+ 1), IHaarj,k = 2−j[k, k + 1).

Assume ` < k, then `+1 ≤ k so that 2−j(`+1) ≤ 2−jk. Therefore, the intersection

is at most a singleton. Hence ϕHaarj,k and ϕHaarj,` are orthogonal for k 6= `.

For j ∈ N0, define the “approximation” space SHaarj by

SHaarj := {g ∈ C[0, 1] : g |[k2−j ,(k+1)2−j) ∈ P0} = span
{

ΦHaar
j

}
, (3.9)
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where k = 0, 1, . . . , 2j − 1.

The projection PHaar
j : L2(0, 1)→ SHaarj is defined by

PHaar
j f =

2j−1∑
k=0

〈
f, ϕHaarj,k

〉
ϕHaarj,k =

〈
f,ΦHaar

j

〉
ΦHaar
j . (3.10)

PHaar
j is an orthogonal projection.

Example 3.2 (The Piecewise linear system) Let

ϕhat(x) =



1 + x, x ∈ [−1, 0)

1− x, x ∈ [0, 1)

0, otherwise

= (1− |x|)χ[−1,1](x).

Then

ϕhat[j,k](x) = 2j/2ϕhat(2jx− k), x ∈ R, j ∈ N0, k ∈ Z.

The support of the function ϕhat(x) is given by

suppϕhat = [−1, 1] =: [`hat1 , `hat2 ].

Also Ihatj,k = 2−j[k − 1, k + 1] and |Ihatj,k | = 21−j. For j ≥ 0, the elements of the set

Φhat
j = {ϕhatj,0 , ϕ

hat
j,1 , . . . , ϕ

hat
j,2j} = {ϕhat[j,0] |[0,1] , ϕ

hat
[j,1], ϕ

hat
[j,2], . . . , ϕ

hat
[j,2j−1], ϕ

hat
[j,2j ] |[0,1]}

have supports that intersect [0, 1].
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Figure 3.2: Hat Functions ϕhat3,k , k = {0, 1, . . . , 8}.

Also

Ihatj := {0, 1, . . . , 2j} = {k : Ihatj,k ⊆ [0, 1]}.

For j ∈ N0, define the “approximation” space Shatj by

Shatj := {g ∈ C[0, 1] : g |[k2−j ,(k+1)2−j) ∈ P1} = span
{

Φhat
j

}
. (3.11)

The projection P hat
j : L2(0, 1)→ Shatj is defined by

P hat
j f =

∑
k∈Ihatj

cj,kϕ
hat
j,k = cTj Φhat

j , (3.12)
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where cj is given by the Gramian matrix system

〈
Φhat
j ,Φhat

j

〉
cj =

〈
Φhat
j , f

〉
.

Now, we introduce properties of Haar and linear systems.

3.2.1 Refineability of Haar and linear systems

The Haar function ϕHaar(x) = χ[0,1](x) can be written as

ϕHaar(x) = ϕHaar(2x) + ϕHaar(2x− 1),

so that ϕHaar is a refinable function with refinement coefficients {h0, h1} = {1, 1}.

Also, the hat function ϕhat(x) = (1− |x|)χ[−1,1](x) can be written as

ϕhat(x) =
1

2
ϕhat(2x+ 1) + ϕhat(2x) +

1

2
ϕhat(2x− 1),

so that ϕhat is also a refinable function with refinement coefficients {h−1, h0, h1} ={
1
2
, 1, 1

2

}
.

3.2.2 Multiresolution for Haar and linear systems

With the above settings, we obtain for Φj ∈ {ΦHaar
j ,Φhat

j } and approximation

spaces Sj ∈ {SHaarj , Shatj }:

(a) The spaces Sj are nested; i.e., Sj ⊆ Sj+1, j ∈ N0.
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(b)
⋃
j∈N0

Sj is dense in L2(0, 1).

(c)
⋂
j∈N0

Sj = S0.

(d) {Φj}j∈N0
are uniformly stable bases (independent of j); i.e., ∃ 0 < α < β such

that

α‖cj‖2
`2(Ij) ≤ ‖cjΦj‖2 ≤ β‖cj‖2

`2(Ij) ∀cj ∈ `
2(Ij),

where

Ij ∈
{
IHaarj , Ihatj

}
.

3.2.3 Locality of Haar and linear systems

For the Haar and hat systems we have the following properties:

(a) The bases functions ϕHaarj,k , ϕhatj,k are locally supported; i.e.,

| supp ϕHaarj,k | = 2−j, | supp ϕhatj,k | = 21−j,

where, suppϕHaar = [0, 1] and suppϕhat = [−1, 1].

(b) Partition of unity; i.e.,

∑
k∈IHaar

j

2−j/2ϕHaarj,k (x) = 1 ∀x ∈ [0, 1],
∑
k∈Ihatj

2−j/2ϕhatj,k (x) = 1 ∀x ∈ [0, 1].
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(c) The sets ΦHaar
j , Φhat

j are uniformly locally finite; i.e.,

(1 =) #{m ∈ IHaarj : |IHaarj,k ∩ IHaarj,m | > 0} . 1.

(3 =) #{m ∈ Ihatj : |Ihatj,k ∩ Ihatj,m| > 0} . 1.

“Uniformly” here means that the constant α > 0 in the notation . is inde-

pendent of the parameters (j, k in this case).

Remark 3.3 We can write the refinement relations in vector notation as

ΦHaar
j = HHaar

j ΦHaar
j+1 , Φhat

j = Hhat
j Φhat

j+1 (3.13)

where

HHaar
j =

(
1√
2
hHaarm−2k

)
, m ∈ IHaatj+1 ,m− 2k ∈M := {`Haar1 , . . . , `Haar2 },

Hhat
j =

(
1√
2
hhatm−2k

)
, m ∈ Ihatj+1,m− 2k ∈M := {`hat1 , . . . , `hat2 }.

Actually HHaar
j and Hhat

j are independent of k.

Note 3.4 Each multiplication HHaar
j ΦHaar

j+1 or Hhat
j Φhat

j+1 costs |M| × |Ij+1| =

O(|Ij+1|) operations.
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3.2.4 Multiresolution Analysis on R

Let ϕ be a refinable function with a finite support. Thus, we have a sequence of

refinement coefficients (refinement mask) H = {hk}k∈Z such that

ϕ(x) =
∑
k∈Z

hkϕ(2x− k). (3.14)

Equation (3.14) is called the refinement equation or the two-scale relation. For

j, n ∈ N0, let Φj = {ϕj,0, ϕj,1, . . . , ϕj,2j} be the set of all shifted functions of ϕ in

the unit interval. Also, let Sj be the “approximation” space defined by

Sj := {ϕj,k ∈ Cn−1[0, 1] : ϕj,k |[k2−j ,(k+1)2−j) ∈ Pn} = span {Φj} . (3.15)

Since a piecewise polynomial with respect to the grid ∆j is also a piecewise poly-

nomial corresponding to the finner grid ∆j+1, then

Sj ⊂ Sj+1. (3.16)

Moreover, since Φj is a basis for Sj, and Sj ⊂ Sj+1, there exist coefficients

{hjk,m}k∈Ij ,m∈Ij+1
such that

ϕ[j,k] =
∑

m∈Ij+1

hjk,mϕ[j+1,m].
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On the other hand, if (3.14) were satisfied, then

ϕ[j,k](x) = 2j/2ϕ(2jx− k) = 2j/2
∑
m∈Z

hmϕ(2(2jx− k)−m)

= 2j/2
∑
m∈Z

hmϕ(2j+1x− (m+ 2k))

= 2j/2
∑
m∈Z

hm−2kϕ(2j+1x−m)

=
1√
2

∑
m∈Z

hm−2kϕ[j+1,m](x).

In other words,

Φj = Hj+1Φj+1, (3.17)

where the refinement matrix Hj+1 is given by

Hj+1 =
1√
2

(hm−2k)k∈Ij ,m∈Ij+1
. (3.18)

Note that the same refinement relation holds for ϕj,k (instead of ϕ[j,k]).

Definition 3.1 (Primal MRA) A sequence S = {Sj}j∈N0
of spaces Sj ⊂ L2(R)

is called a primal MRA if:

(i) Sj ⊂ Sj+1, j ∈ N0 (nestedness).

(ii)
⋃
j∈N0

Sj is dense in L2(R).

(iii)
⋂
j∈N0

Sj = {0}.

(iv) ∃ϕ ∈ L2(R) such that Φj = {ϕ[j,k] : k ∈ Z} is a uniformly stable basis for
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Sj for all j ∈ N0.

(v) ϕ ∈ Sj if and only if ϕ1,0 ∈ Sj+1 ∀j ∈ N0 (dilation).

(vi) ϕ ∈ S0 if and only if ϕ0,k ∈ S0, k ∈ N0 (shift invariance).

Proposition 3.1 For a refinable function ϕ(x) =
`2∑

k=`1

hkϕ(2x− k) with the nor-

malization
∑
k∈Z

ϕ(x− k) = 1, the following identities hold:

(i)
´
R
ϕ(x)dx = 1.

(ii) suppϕ = [`1, `2].

(iii) The refinement coefficients are normalized

∑
k∈Z

hk = 2.

(iv) If the integer translates of ϕ are orthonormal; i.e., 〈ϕ, ϕ(· − k)〉0;R = δ0,k,

k ∈ Z, we have HjH
T
j = 2I (In particular

∑
m,k∈Z

hmh2k+m = 2δk,0).

(v) #{k ∈ Z : | supp ϕ0,k ∩ [0, 1]| > 0} = `2 − `1.

Proof.
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(i) Since
∑
k∈Z

ϕ(x− k) = 1, then

ˆ

R

ϕ(x)dx =
∑
k∈Z

k+1ˆ

k

ϕ(x)dx

=
∑
k∈Z

1ˆ

0

ϕ(x− k)dx

=

1ˆ

0

∑
k∈Z

ϕ(x− k)dx = 1.

(ii) Since ϕ is compactly supported, assume that suppϕ = [a, b] for a < b.

Note that the translates are locally linearly independent which means that

the nontrivial restrictions of the basis functions to any compact subset are

linearly independent. Since ϕ(x) =
`2∑

k=`1

hkϕ(2x− k), we obtain by the local

linear independence

[a, b] = suppϕ =

`2⋃
k=`1

suppϕ(2 · −k)

=

`2⋃
k=`1

[
k + a

2
,
k + b

2

]

=

[
a+ `1

2
,
b+ `2

2

]
.

Hence, suppϕ = [`1, `2].
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(iii) Part (i) and the refinement equation give

1 =

ˆ

R

ϕ(x)dx =
∑
k∈Z

hk

ˆ

R

ϕ(2x− k)dx

=
∑
k∈Z

1

2
hk

ˆ

R

ϕ(x)dx

=
1

2

∑
k∈Z

hk.

Therefore
∑
k∈Z

hk = 2.

(iv) Orthonormality and the refinement equation give

δ0,k = 〈ϕ, ϕ(· − k)〉0;R

=

〈∑
`∈Z

h`ϕ(2 · −`),
∑
m∈Z

hmϕ(2 · −2k −m)

〉
0;R

=

〈∑
`∈Z

h`ϕ(· − (`− (2k +m))),
∑
m∈Z

hmϕ

〉
0;R

=
1

2

∑
m∈Z

hmh2k+m.

Therefore
∑
m∈Z

hmh2k+m = 2δk,0.

(v) Since

#{k ∈ Z : | supp ϕ0,k ∩ [0, 1]| > 0} = #{k ∈ Z : |[`1 + k, `2 + k] ∩ [0, 1]| > 0}

= #{1− `2, . . . ,−`1} = `2 − `1.
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3.3 B-splines

B-splines are non-orthogonal scaling functions [35] with explicit formulas that are

frequently used in many applications, especially in solving differential equations.

In this section, we introduce the cardinal B-splines and its centralized version.

Definition 3.2 (Cardinal B-spline:) A cardinal B-spline of first order, de-

noted by ϕ1(·), is the characteristic function of the interval [0, 1); i.e.,

N1(x) = χ[0,1)(x).

A cardinal B-spline of order m ∈ N, denoted by Nm(x), is defined as a convolution

Nm(x) = (Nm−1 ∗N1)(x) =

ˆ
R
Nm−1(x− t)N1(t)dt =

ˆ 1

0

Nm−1(x− t)dt.

Proposition 3.2 [72] Let Nd be a Cardinal B-spline of order d, then:

(i) Nd is compactly supported with suppNd = [0, d].

(ii) Nd is nonnegative; i.e., Nd ≥ 0.

(iii) Nd forms a partition of unity; i.e.,

ˆ

R

Nd(x) dx = 1,
∑
k∈Z

Nd(x− k) = 1.

(iv) Nd ∈ Cd−2(R).
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(v) Nd is refinable with

Nd(x) = 21−d
d∑

k=0

(
d

k

)
Nd(2x− k). (3.19)

Definition 3.3 (Centralized Cardinal B-spline) A centralized version dϕ of

a cardinal B-spline Nd is defined by

dϕ(x) := Nd

(
x+

⌊
d

2

⌋)
, (3.20)

where b·c is the floor function.

Proposition 3.3 [72] Let dϕ(x) be a centralized cardinal B-spline then:

(i) The support of dϕ(x) is given by

supp dϕ =

[
−d+ µd

2
,
d+ µd

2

]
=

[
−
⌊
d

2

⌋
,

⌈
d

2

⌉]
=: [`1, `2],

where µd = d mod 2, and d·e is the ceiling function.

(ii) dϕ(x) is symmetric about x = µ(d)/2; i.e., about x = 0 if d is even and

about x = 1/2 if d is odd.

(iii) The refinement mask H = {hk}`1≤k≤`2 is given by

hk = 21−d
(

d

k +
⌊
d
2

⌋). (3.21)

Proposition 3.4 [35] The cardinal B-spline basis dΦj := {dϕ[j,k] : k ∈ Z} is
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uniformly stable; i.e.,

∥∥∥∥∥∑
k∈Z

ek dϕ[j,k]

∥∥∥∥∥
0;R

∼

(∑
k∈Z

|ek|2
)1/2

(3.22)

holds with constants independent of j.

3.3.1 Dual scaling functions associated to B-splines

It was shown in [52] that for a compactly supported refinable function ϕ there

exists a compactly supported refinable function ϕ̃ (dual scaling function) satisfying

〈ϕ(· − k), ϕ̃(·)〉0;R = δ0,k, k ∈ Z.

This function ϕ̃ generates a sequence S̃ = {S̃j}j∈Z of spaces S̃j ⊂ L2(R) which

constitutes a dual MRA, where S̃j = span{Φ̃j}j∈N0 . Centralized cardinal B-splines

will be used to generate primal MRAs. A whole variety of scaling functions that

have been constructed in [24] will be used to generate dual MRAs. For any d ∈ N,

a whole family of compactly supported refinable functions Ñd,d̃ ∈ L2(R) indexed

by d̃ such that d+ d̃ is even was constructed in [24]. These functions are dual to

Nd; i.e., 〈
Nd(· − k), Ñd,d̃

〉
0;R

= δ0,k, k ∈ Z, (3.23)

and, by shifting to the centralized version d,d̃ϕ̃,

〈
dϕ(· − k), d,d̃ϕ̃

〉
0;R

= δ0,k, k ∈ Z. (3.24)
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Note that for any such d̃, the regularity (and support length) increases propor-

tionally to d̃.

Proposition 3.5 [72] The dual functions have the following properties:

(i) d,d̃ϕ̃ has compact support; namely,

supp d,d̃ϕ̃ =
[
`1 − d̃+ 1, `2 + d̃− 1

]
=:
[˜̀

1, ˜̀2] .

(ii) d,d̃ϕ̃ is refinable with a finitely supported mask H̃ = {h̃k}˜̀
1≤k≤˜̀2; i.e.,

d,d̃ϕ̃(x) =

˜̀
2∑

k=˜̀
1

h̃kϕ̃(2x− k). (3.25)

(iii) d,d̃ϕ̃ is symmetric.

(iv) d,d̃ϕ̃ is exact of order d̃; i.e., all polynomials of degree less than d̃ can be

represented as linear combinations of the translates d,d̃ϕ̃(· − k), k ∈ Z.

(v) the regularity of d,d̃ϕ̃ increases proportionally to d̃.

Note that, if (3.25) were satisfied, then

Φ̃j = H̃j+1Φ̃j+1, (3.26)

where the refinement matrix H̃j+1 is given by

H̃j+1 =
1√
2

(h̃m−2k)k∈Ij ,m∈Ij+1
. (3.27)
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Table 3.1 lists scaling B-spline coefficients of orders 2 and 6, and their dual

functions coefficients of orders (2, 4, 6) and 8, respectively.
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Table 3.1: Scaling B-spline and dual functions coefficients for d = 2 and 6

d = 2, d̃ = 2

{hk}−1≤k≤1 =
{

1
2
, 1, 1

2

}
{h̃k}−2≤k≤2 =

{
−1

4
, 1

2
, 3

2
, 1

2
, −1

2

}
d = 2, d̃ = 4

{hk}−1≤k≤1 =
{

1
2
, 1, 1

2

}
{h̃k}−4≤k≤4 =

{
3
64
, − 6

64
, −16

64
, 38

64
, 90

64
, 38

64
, −16

64
, − 6

64
, 3

64

}
d = 2, d̃ = 6

{hk}−1≤k≤1 =
{

1
2
, 1, 1

2

}
{h̃k}−6≤k≤6 =


− 5

512
, 10

512
, 34

512
, − 78

512
, −123

512
, 324

512
,

700
512
, 324

512
,−123

512
, − 78

512
, 34

512
, 10

512
, − 5

512


d = 6, d̃ = 8

{hk}−5≤k≤5 =



0.020401844366126, 0.020460141643279,−0.111329721612770,

−0.057088943387392, 0.590927877256156, 1.073257603648672,

0.590927877256156,−0.057088943387392,−0.111329721612770,

0.020460141643279, 0.020401844366126



{h̃k}−8≤k≤8 =



0.002699495678428,−0.002707209364882,−0.024028393379977,

0.016878024108287, 0.070332946625892,−0.109266627411421,

−0.133019801255711, 0.595095812677529, 1.168031504540340,

0.595095812677529,−0.133019801255711,−0.109266627411421,

0.070332946625892, 0.016878024108287,−0.024028393379977,

−0.002707209364882, 0.002699495678428
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3.3.2 Cascade Algorithm (Plotting Scaling functions)

We present here a modified version of the cascade algorithm introduced in [72].

It is used to plot a refinable function given its refinement mask.

Algorithm 1: Cascade Algorithm

Result: Plot a scaling function ϕ(x) =
`2∑

k=`1

hkϕ(2x− k) with
`2∑

k=`1

hk = 2

Input : A sequence of refinable coefficients (hk)`1≤k≤`2

Output: The values of ϕ(x) at the dyadic points; i.e., ϕ(k2−j), k ∈ Z.

1 Start with a sequence

η0,k = δ0,k, k ∈ Z.

2 Compute

ηj,k2−j =
∑
m∈Z

hk−2m ηj,m2−j , j ∈ N0.

3 Interpolate the computed values with respect to the dyadic points; i.e.,

ϕ(k2−j) = ηj,k2−j , k ∈ Z.

Figure 3.3 and Figure 3.4 illustrate the use of Algorithm 1 to plot the scaling

function 4ϕ(x) and its dual function 4,4ϕ̃(x), respectively.
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Figure 3.3: Scaling B-spline 4ϕ(x).
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Figure 3.4: Dual B-spline 4,4ϕ̃(x).
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3.3.3 Biorthogonal Projectors

Definition 3.4 (Biorthogonality) The collection of functions η = {ηk}k∈Z is

“biorthogonal” to the collection ζ = {ζk}k∈Z if and only if

〈η, ζ〉 = I.

Proposition 3.6 (Linear independence from biorthogonality) Let η =

{ηk}k∈Z be a collection of functions. If the collection η has a biorthogonal col-

lection ζ = {ζk}k∈Z then {ηk}k∈Z is linearly independent.

Proof. Assume that cTη = 0. Then

0 = 〈ζ, cTη〉 = 〈ζ,η〉c = Ic = c.

We define the dual projections

Pj : Ω→ Sj, P̃j : Ω→ S̃j,

by

Pjf := 〈f, Φ̃j〉Φj, P̃jf := 〈f,Φj〉 Φ̃j. (3.28)

Proposition 3.7 The operators Pj and P̃j have the following properties:

(i) P 2
j = Pj, P̃

2
j = P̃j.
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(ii) Pj+1Pj = PjPj+1 = Pj as well as P̃j+1P̃j = P̃jP̃j+1 = P̃j.

(iii) 〈Pjf, h〉 = 〈f, P̃jh〉.

Proof. All arguments for P̃j are completely analogous to those for Pj. Thus,

we concentrate on the primal part in the remainder of the proof.

(i) By definition, for any f ∈ L2(Ω), we have

P 2
j f = Pj(Pjf) =

〈
〈f, Φ̃j〉Φj, Φ̃j

〉
Φj

= 〈f, Φ̃j〉
〈

Φj, Φ̃j

〉
Φj

= 〈f, Φ̃j〉Φj = Pjf.

(ii) Using the refinement relation, we obtain

Pj+1Pjf = Pj+1(Pjf) =
〈
〈f, Φ̃j〉Φj, Φ̃j+1

〉
Φj+1

= 〈f, Φ̃j〉
〈

Φj, Φ̃j+1

〉
Φj+1

= 〈f, Φ̃j〉
〈
Hj+1Φj+1, Φ̃j+1

〉
Φj+1

= 〈f, Φ̃j〉Hj+1

〈
Φj+1, Φ̃j+1

〉
Φj+1

= 〈f, Φ̃j〉Hj+1Φj+1

= 〈f, Φ̃j〉Φj = Pjf.

Similarly, we can show that PjPj+1f = Pjf .
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(iii) By definition, for any f, h ∈ L2(Ω), we have

〈Pjf, h〉 =
〈
〈f, Φ̃j〉Φj, h

〉
= 〈f, Φ̃j〉 〈Φj, h〉

=
〈
f, 〈h,Φj〉 Φ̃j

〉
= 〈f, P̃jh〉.

3.3.4 Apprximation Properties

The Bramble-Hilbert Lemma bounds the error of an approximation of a function

u by a polynomial of order at most m− 1 in terms of derivatives of u of order m.

Since all spaces {Sj}j∈N0
are subspaces of L2(R), but Pn(R) is not, we have to

consider

Sloc
j =

{
f =

∑
k∈Z

ckϕj,k : {ck} ∈ `(Z)

}
= span{Φj}, (3.29)

where `(Z) is the space of sequences on R labeled over Z. Notice that Sloc
j 6⊂ L2(R).

It can be seen that the degree of polynomials contained in Sloc
j determines the

rate of convergence of the best approximation in Sj. In order to formulate this

statement, we pose some assumptions that are satisfied for B-splines and their

duals.
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Assume that we have the sets of functions

Φj = {ϕj,k : k ∈ Ij}, Φ̃j = {ϕ̃j,k : k ∈ Ij}, (3.30)

in L2(Ω), where Ij is a suitable set of indexes and Ω ⊆ R. These sets should

generate biorthogonal MRAs S and S̃ in L2(Ω); i.e.,

Sj = closL2(Ω) span{Φj}, S̃j = closL2(Ω) span{Φ̃j}, (3.31)

and 〈
Φj, Φ̃j

〉
0;Ω

= IIj×Ij . (3.32)

To be precise, we pose the following assumptions.

Assumption 3.5 [72] Assume that

(a) Φj and Φ̃j are locally finite; i.e.,

#{m ∈ Ij : Γj,k ∩ Γj,m 6= ∅} . 1.

where Γj,k = σj,k ∪ σ̃j,k, k ∈ Ij, σj,k = suppϕj,k, σ̃j,k = supp ϕ̃j,k.

(b) the size of the support decreases exponentially with the level, independently of

k; i.e.,

|Γj,k| . 2−j, k ∈ Ij.
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(c) the L2 norm of the translates is uniformly bounded; i.e.,

‖ϕj,k‖0;Ω . 1, ‖ϕ̃j,k‖0;Ω . 1, k ∈ Ij.

Proposition 3.8 [72] Under Assumption 3.5, we have that Φj and Φ̃j are uni-

formly stable; i.e.,

‖cTΦj‖0;Ω ∼ ‖c‖`2(Ij), ‖cT Φ̃j‖0;Ω ∼ ‖c‖`2(Ij), (3.33)

independent of j.

Proof. Let us first abbreviate

Ij,k := {` ∈ Ij : σj,k ∩ σj,`} 6= ∅.

Now, we will show that

‖cTΦj‖0;Ω ∼ ‖c‖`2(Ij). (3.34)
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On the one hand,

∥∥cTΦj

∥∥2

0;σj,k
=

∥∥∥∥∥∥
∑
`∈Ij,k

c`ϕj,`

∥∥∥∥∥∥
2

0;σj,k

.

∑
`∈Ij,k

‖c`ϕj,`‖0;σj,k

2

.

∑
`∈Ij,k

|c`| ‖ϕj,`‖0;σj,k

2

.

∑
`∈Ij,k

|c`|

2

.
∑
`∈Ij,k

|c`|2,

where we used the triangle inequality and (c) of Assumption 3.5. We now use (a)

and sum over all k ∈ Ij to get

∥∥cTΦj

∥∥2

0;Ω
.
∑
k∈Ij

∥∥cTΦj

∥∥2

0;σj,k

.
∑
k∈Ij

∑
`∈Ij,k

|c`|2

.
∑
k∈Ij

‖c‖2
`2(Ij,k)

. ‖c‖2
`2(Ij) .

On the other hand, let vj = cTΦj. Then we have by Assumption 3.5 (a) and (c)

|ck|2 = |〈vj, ϕ̃j,k〉0;Ω|2 . ‖vj‖2
0;σ̃j,k

.
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Summing over all k ∈ Ij yields

‖c‖2
`2(Ij) =

∑
k∈Ij

|ck|2 .
∑
k∈Ij

‖vj‖2
0;σ̃j,k

. ‖vj‖2
0;Ω = ‖cTΦj‖0;Ω.

Proposition 3.9 (Whitney Type Estimate) [21] Let I be an n-dimensional

cube of side length h > 0, and let f : Rn → R be a function such that the derivative

of order m+ 1 is in L2(I); i.e.,

f (m+1) ∈ L2(I), 0 ≤ m ≤ d,

then

inf
p∈Pd

‖f − p‖0;I . hm+1‖f (m+1)‖0;I . (3.35)

Proposition 3.10 (Jackson Inequality or Direct Estimate) [21] Let As-

sumption 3.5 hold. Under the assumption Pd−1 ⊂ Sloc
0 we have

inf
vj∈Sj

‖f − vj‖0;Ω .
(
2−j
)s ‖f (s)‖0;Ω, s ≤ d, (3.36)

if f (s) ∈ L2(Ω).

Proof. Since Pd−1 ⊂ Sloc
0 ⊂ Sloc

j , for any j ∈ N0, one has for any p ∈ Pd−1 that
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Pjp = p and then we get by the trinagle inequality

‖f − Pjf‖0,Γj,k
≤ ‖f − p‖0,Γj,k

+ ‖Pj(f − p)‖0,Γj,k

≤ ‖f − p‖0,Γj,k
+ ‖〈f − p, Φ̃j〉Φj‖0,Γj,k

≤ ‖f − p‖0,Γj,k
+

∥∥∥∥∥∥
∑

m∈Ij ,Γj,k∩Γj,m 6=∅

〈f − p, ϕ̃j,m〉0,Γj,k
ϕj,m

∥∥∥∥∥∥
0,Γj,k

≤ ‖f − p‖0,Γj,k
+

∑
m∈Ij ,Γj,k∩Γj,m 6=∅

| 〈f − p, ϕ̃j,m〉0,Γj,k
| ‖ϕj,m‖0,Γj,k

.

In view of Assumption 3.5, we have by the Cauchy Schwartz inequality that

inf
p∈Pd−1

| 〈f − p, ϕ̃j,m〉0,Γj,k
| ‖ϕj,m‖0,Γj,k

. inf
p∈Pd−1

‖f − p‖0,Γj,k
. (2−j)s‖f (s)‖0;Γj,m

,

for s ≤ d, where we have used the Whitney estimate (Proposition 3.9) in the last

step. Thus, we finally have

‖f − Pjf‖2
0;Ω .

∑
k∈Ij

‖f − Pjf‖2
0,Γj,k

.
∑
k∈Ij

(2−j)2s‖f (s)‖2
0;Γj,k

. (2−j)2s‖f (s)‖2
0;Ω.

since only a fixed number of Γj,k overlap.

Using similar arguments applied to derivatives of f gives an analogous estimate

for derivatives of the approximation error.

Proposition 3.11 (Bernstein Inequality or Indirect Estimate) [21] Let

Assumption 3.5 hold. Under the assumption Pd−1 ⊂ Sloc
0 and for Sj ⊂ Hm(Ω),
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we have

inf
vj∈Sj

‖(f − vj)(m)‖0;Ω . (2−j)s−m‖f (s)‖0;Ω, s ≤ d. (3.37)

3.4 Refinable Integrals

In this section we introduce the refinable integral that we use to calculate the

matrix entries of the stiffness matrices resulting from an ODE discretization.

Proposition 3.12 Let ϕ(x) and ψ(x) be two refinable functions, then there exists

masks H = {h`}`∈Z and G = {gm}m∈Z, such that,

ϕ(x) =
∑
`∈Z

h`ϕ(2x− `), ψ(x) =
∑
m∈Z

gmψ(2x−m), x ∈ R. (3.38)

Consider the function F̃n,r : R→ R defined by

F̃n,r(x) =

ˆ
ϕ(n)(t)ψ(r)(t− x) dt, n, r ∈ N0, (3.39)

then F̃n,r is refinable with mask

c` = 2n+r−1
∑
m∈Z

h`+mgm. (3.40)

Proof. For x ∈ R, the nth derivative of ϕ(x) and the rth derivative of ψ(x) are

given by

ϕ(n)(x) = 2n
∑
`∈Z

h`ϕ
(n)(2x− `), ψ(r)(x) = 2r

∑
m∈Z

gmψ
(r)(2x−m).
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Now,

F̃n,r(x) =

ˆ
ϕ(n)(t)ψ(r)(t− x) dt

= 2n+r
∑
`∈Z

∑
m∈Z

h`gm

ˆ
ϕ(n)(2t− `)ψ(r)(2t− 2x−m) dt

= 2n+r
∑
`∈Z

∑
m∈Z

1

2
h`gm

ˆ
ϕ(n)(s)ψ(n)(s− (2x− (`−m))) ds, (s = 2t− `)

= 2n+r
∑
`∈Z

∑
m∈Z

1

2
h`gm F̃n,r(2x− (`−m))

=
∑
`∈Z

(∑
m∈Z

2n+r−1h`+mgm

)
F̃n,r(2x− `),

(
(`−m)→ `

)

Therefore, F̃n,r is refinable with mask

c` = 2n+r−1
∑
m∈Z

h`+mgm. (3.41)

Let

Fn,r(x) =

ˆ
ϕ(n)(t)ϕ(r)(t− x) dt, n, r ∈ N0.

To compute integrals of the form
´
ϕ

(n)
[j,`](x)ϕ

(r)
[j,m](x)dx, we notice that

ˆ
ϕ

(n)
[j,`](x)ϕ

(r)
[j,m](x)dx = 2j2(n+r)j

ˆ
ϕ(n)(2jx− `)ϕ(r)(2jx−m)dx

= 2(n+r)j

ˆ
ϕ(n)(s)ϕ(r)(s− (m− `)) ds, where s = 2jx− `

= 2(n+r)j Fn,r(m− `),
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which is equivalent to calculating Fn,r(`) for ` ∈ Z. To compute these values, we

introduce the following (small) eigenvalue-eigenvector problem.

Consider a refinable function G with finite mask G = {gk}`1≤k≤`2 . For m ∈ Z,

we have

G(m) =

`2∑
k=`1

gkG(2m− k)

=

2m−`1∑
k=2m−`2

g2m−sG(s), where s = 2m− k.

Then we have the eigenvalue problem

v = Av, (3.42)

where v = (G(k))`1≤k≤`2 is the vector of nonzero integer point values of G, and A

is a r × r matrix with entries (A)i,j = gt, 1 ≤ i, j ≤ r, where t = 2`1 + 2i− j − 1

and r = 2(`2 − `1) + 1.

Now, for the function Fn,r, since its mask is {2n+rck}k∈Z, the matrix An,r

corresponding to (3.42) has the form (An,r)i,j = 2n+rct and (3.42) becomes

2−(n+r)vn+r = Avn+r. (3.43)

Hence, vn+r is an eigenvector of A corresponding to the eigenvalue 2−(n+r). This

means that we can use the same eigenvalue problem to find v0, v1, . . . , vn+r.

It remains to normalize the eigenvectors in (3.43). For this purpose, we intro-
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duce the following proposition.

Proposition 3.13 The values {Fn,r(m)}n,r∈N0,m∈Z satisfy

∑
k∈Z

kr+nFr,n(k) =


−(r + n)!, r even and n odd or both odd

(r + n)!, r odd and n even or both even

. (3.44)

Proof. Assume that ϕ has polynomial exactness s; i.e., 1, x, . . . , xs−1 ∈ S0.

Take m ≤ s− 1. Now, since xm ∈ S0 then we can write

∑
k∈Z

αk,mϕ(x− k) = xm, x ∈ R.

Then

αk,m = 〈xm, ϕ̃0,k〉 =

ˆ
xmϕ̃(x− k) dx

=

ˆ
(x+ k)mϕ̃(x) dx

=

ˆ m∑
`=0

(
m

`

)
k`xm−`ϕ̃(x)dx

=
m−1∑
`=0

(
m

`

)
k`
ˆ
xm−`ϕ̃(x)dx+ km

ˆ
ϕ̃(x)dx

= T1 + km,

where the constant T1 =
m−1∑̀

=0

(
m
`

)
k`
´
xm−`ϕ̃(x)dx and since

´
ϕ̃(x)dx = 1.

Therefore, ∑
k∈Z

(T1 + km)ϕ(x− k) = xm.
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So that ∑
k∈Z

kmϕ(t− (x+ k)) = (t− x)m − T1.

Multiplying both sides by ϕ and integrating,

∑
k∈Z

km
ˆ
ϕ(t)ϕ(t− (x+ k))dt =

ˆ
(t− x)mϕ(t)dt− T1

=

ˆ m∑
`=0

(−1)m
(
m

`

)
t`xm−`ϕ(t)dt− T1

= (−1)mxm +
m∑
`=1

(−1)m
(
m

`

)
xm−`

ˆ
t`ϕ(t)dt− T1

(3.45)

Differentiate both sides of (3.45) m times with respect to x, we get

∑
k∈Z

kmF0,m =
∑
k∈Z

km
ˆ
ϕ(t)ϕ(m)(t− (x+ k)) dt = m!.

Finally, integration by parts implies

∑
k∈Z

kr+nFr,n(k) =


−(r + n)!, r even and n odd or both odd

(r + n)!, r odd and n even or both even

. (3.46)
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3.5 Error Computation

We investigate here how to compute L2 and L∞ Errors. We illustrate this with

the fourth order self-adjoint Dirichlet problem

`(u) = (a2(x)u′′)
′′ − (a1(x)u′)

′
+ (a0(x)u) = f,

u(m)(0) = u(m)(1) = 0, m = 0, 1,

(3.47)

where ak(x) are bounded on [0, 1], k = 0, 1, a2(x) ≥ a2 > 0 and ak(x) ≥ 0, k =

0, 1. We can use the same procedure for any self-adjoint problem.

Given j ≥ 1, let Πj be a uniform partition on (0, 1). Let Sj ⊂ H2
0 (0, 1)

represents the trial and test space at level j and be spanned by of cubic B-splines

on Πj which satisfies the Dirichlet boundary conditions. Then the discretized

Galerkin method reads:

Find uj ∈ Sj such that

〈`(uj), vj〉 = 〈f, vj〉 ∀vj ∈ Sj. (3.48)

Let Φj be the basis for Sj constitutes of a sufficient number of elements.

The Galerkin method gives rise to the Galerkin projection

PG
j : L2(Ω)→ Sj,

defined as follows. For f ∈ L2(Ω), write PG
j f = cTΦj. Taking the inner product
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with Φj, we get

〈Φj,Φj〉c = 〈Φj, P
G
j f〉

= 〈PG
j Φj, f〉

= 〈Φj, f〉 (3.49)

3.5.1 L2 Error Computation

Let ŷj = ĉTΦj be the Galerkin approximation of the ODE `(u) = f in Sj and

y be the exact solution. The error due to this approximation is defined as ej =

PG
j y − ŷj. Writing PG

j y = cTΦj, where c is computed using (3.49), we have

‖ej‖0;Ω =
∥∥PG

j y − ŷj
∥∥

0;Ω

=
∥∥∥cTΦj − ĉTΦj

∥∥∥
0;Ω

=
∥∥∥(cT − ĉT )Φj

∥∥∥
0;Ω

∼
∥∥∥cT − ĉT∥∥∥

`2
. (3.50)

Therefore, to compute the L2 error of approximation, it is enough to compute∥∥∥cT − ĉT∥∥∥
`2

.
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3.5.2 Grid Error Computation

Sometimes there is interest in computing the error due to Galerkin approximation

of the grid points ∆j. This error is defined as

egj = max
k∈Ij
|y(xj,k)− ŷ(xj,k)| . (3.51)

In this case,

ŷ(xj,k) = ĉTΦj

=
∑
m∈Ij,k

ĉmϕj,m(xj,k).

We recall that, by assumption

|Ij,k| = σj,k . 1.
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CHAPTER 4

BOUNDARY VALUE

PROBLEMS

In this chapter, we present the model problems that we use in this thesis. For the

ODEs we use the (2n)th order self-adjoint Dirichlet problems, and for the PDEs

we use a two dimensional self-adjoint problem. We investigate here the variational

formulation, existence and uniqueness, and error estimate for the Galerkin method

for these model problems.

Definition 4.1 (Weak Derivative) Let Ω ⊂ R and let u ∈ L2(Ω). A function

v ∈ L2(Ω) is called the weak derivative of u if

ˆ

Ω

v(x)φ(x) dx = −
ˆ

Ω

u(x)φ′(x) dx ∀φ ∈ C∞0 (Ω). (4.1)

where C∞0 (Ω) is the space of infinitely differentiable functions with compact sup-
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port; i.e.,

C∞0 (Ω) = {v ∈ C∞(Ω) : supp v ⊂⊂ Ω}. (4.2)

We will still denote the weak derivative of the function u by u′.

Higher order weak derivatives are defined recursively. Also partial derivatives and

differential operators like ∇ and ∆ are interpreted in an analogous way in a weak

form.

Definition 4.2 (Sobolev Space) Let m ∈ N.

(a) The Sobolev space of order m is defined by

Hm(Ω) := {v ∈ L2(Ω) : v(k) ∈ L2(Ω), 1 ≤ k ≤ m}, (4.3)

where the derivatives are to be understood in the weak sense. A norm on

Hm(Ω) is defined by

‖u‖m;Ω :=

(
m∑
k=0

∥∥v(k)
∥∥2

0;Ω

)1/2

. (4.4)

This norm is induced by the inner product

〈u, v〉m;Ω :=
m∑
k=0

〈
u(k), v(k)

〉
0;Ω
. (4.5)

Moreover, we define the seminorm

|u|m;Ω :=
∥∥v(m)

∥∥
0;Ω
. (4.6)
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(b) The Sobolev space with generalized homogeneous Dirichlet boundary conditions

is defined as

Hm
0 (Ω) := clos‖·‖m;Ω

(C∞0 (Ω)). (4.7)

4.1 Variational Problem

Let V be a normed linear space and

a : V × V → R, (4.8)

be a symmetric, positive and bounded bilinear form; i.e.,

a(u, v ) = a( v, u ), u, v ∈ V

a(u, u ) > 0, u ∈ V, u 6= 0

a(u, v ) ≤ C ‖u‖V ‖v‖V , u, v ∈ V.

We consider the following variational problem

Find u ∈ V such that

a(u, v ) = `(v) ∀v ∈ V, (4.9)

where ` : V → R is a bounded linear functional

`(v) = 〈f, v〉 ∈ R; (4.10)
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i.e., ` ∈ V ′, the dual space of V . The bilinear form

〈·, ·〉 : V ′ × V → R (4.11)

is known as the dual pairing.

Definition 4.3 (V−elliptic) Let V be a Hilbert space with norm ‖·‖V . A bilin-

ear form

a : V × V → R, (4.12)

is called V−elliptic if

(1) it is bounded; i.e., there exists a constant α > 0 (the continuity constant) such

that

|a(u, v )| ≤ α ‖u‖V ‖v‖V , u, v ∈ V, (4.13)

(2) it is coercive; i.e., there exists a constant β > 0 (the coercivity constant) such

that

a( v, v ) ≥ β ‖v‖2
V , v ∈ V. (4.14)

Theorem 4.1 (Lax-Milgram theorem) let V be a Hilbert space and let the

bilinear form a : V × V → R be V−elliptic. Then, the variational problem (4.9)

has a unique solution u ∈ V for any ` ∈ V ′.
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4.2 Ordinary Differential Equation

4.2.1 Self-adjoint Dirichlet Problems

We consider the following general one-dimensional (2n)th order self-adjoint Dirich-

let problem.

Given f : (0, 1)→ R, determine u : (0, 1)→ R such that

`(u) =
n∑
k=0

(−1)k
(
ak(x)u(k)

)(k)
= f,

u(m)(0) = u(m)(1) = 0, m = 0, 1, . . . , n− 1,

(4.15)

where ak(x) are bounded on [0, 1], k = 0, . . . , n, an(x) ≥ an > 0 and ak(x) ≥

0, k = 0, 1, . . . , n− 1.

4.2.2 ODE Variational Formulation

Multiplying both sides of (4.15) with a test function φ ∈ C∞0 (Ω) and integrating

over Ω = (0, 1) yields

1ˆ

0

f(x)φ(x) dx =
n∑
k=0

1ˆ

0

ak(x)u(k)(x)φ(k)(x) dx, (4.16)

using integration by parts and the prespecified Dirichlet boundary conditions. We

see that (4.16) is in fact well-defined for functions in the Sobolev space Hn
0 (Ω),

where

Hn
0 (Ω) :=

{
v ∈ Hn(Ω) : v(m)(0) = v(m)(1) = 0, m = 0, 1, . . . , n− 1

}
.
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Observe that in Hn
0 (Ω) the seminorm |u|n;Ω is a norm equipped to the norm in

Hn(Ω). Using V := Hn
0 (Ω) as the trial and test space, the weak (or variational)

formulation of (4.16) reads:

Find u ∈ V such that

a(u, v ) = 〈f, v〉0;Ω ∀v ∈ V, (4.17)

where the bilinear form a : V × V → R is defined by

a(u, v ) :=
n∑
k=0

〈
aku

(k), v(k)
〉

0;Ω

=
n∑
k=0

1ˆ

0

ak(x)u(k)(x)v(k)(x) dx,

and f ∈ L2(0, 1).

4.2.3 ODE Existence and Uniqueness

Using Hölder’s inequality, we can show that a( ·, · ) is bounded; i.e.,

a(u, v ) ≤ α ‖u‖n;Ω ‖v‖n;Ω · (4.18)

Also, the bilinear form a( ·, · ) is also coercive; i.e.,

a(u, u ) ≥ β ‖u‖2
n;Ω . (4.19)
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Hence a( ·, · ) is V−elliptic. By Lax-Milgram theorem, there exists a unique solu-

tion for problem (4.17).

4.3 ODE Error Estimate for Galerkin Method

The Galerkin discritizaion of the variational formulation (4.17) uses finite dimen-

sional subspace Vj ⊂ V with dimVj <∞. The discrete version of (4.17) reads:

Find uj ∈ Vj such that

a(uj, vj ) = 〈f, vj〉0;Ω ∀vj ∈ Vj. (4.20)

By the Lax-Milgram theorem again, (4.20) has exactly one solution.

Galerkin orthogonality property: Let u ∈ V be the solution of (4.17) and

uj ∈ Vj be the solution for (4.20). Since Vj ⊂ V , we can also test (4.17) for vj ∈ Vj.

Thus, subtraction of these two equations gives the Galerkin orthogonality relation

for the error, ej = u− uj which is the error between the solution u of (4.17) and

the solution uj of (4.20):

a( ej, vj ) = a(u− uj, vj ) = a(u, vj )− a(uj, vj ) = 〈f, vj〉0;Ω − 〈f, vj〉0;Ω = 0.

Theorem 4.2 (Céa Lemma) Let a( ·, · ) be V−elliptic. Then, we have

‖u− uj‖V ≤
γ

α
inf
vj∈Vj

‖u− vj‖V ; (4.21)
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i.e., the subspace solution uj is “the best” approximation of u in Vj, up to the

constant γ/α.

Proof. Let vj be an arbitrary element in Vj, then

wj = vj − uj ∈ Vj. (4.22)

By Galerkin orthogonality, we have

a(u− uj, wj ) = a(u− uj, vj − uj ) = 0. (4.23)

Then using the boundedness and coercivity of a( ·, · ) we get

α ‖u− uj‖2
V ≤ a(u− uj, u− uj )

= a(u− uj, u− vj ) + a(u− uj, vj − uj )

= a(u− uj, u− vj )

≤ γ ‖u− uj‖V ‖u− vj‖V .

Dividing by α ‖u− uj‖V and taking the infimum over vj ∈ Vj on both sides we

get the result of the theorem.

Note 4.3 The Céa lemma means that, up to the constant γ/α, the Galerkin so-

lution uj is as close to the original solution u as any other vector in Vj. In

particular, it will be sufficient to study approximation by spaces Vj, irrespective of

the equation being solved.
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Definition 4.4 (Continuous Embedding) Let X and Y be two normed vector

spaces, with norms ‖.‖X and ‖.‖Y , respectively, such that X ⊆ Y . If the inclusion

map (identity function)

id : X ↪→ Y : x 7→ x

is continuous, i.e. if there exists a constant C ≥ 0 such that

‖x‖Y ≤ C ‖x‖X ∀x ∈ X, (4.24)

then X is said to be continuously embedded in Y .

Theorem 4.4 (Aubin-Nitsche Trick) Let H be a Hilbert space, V ↪→ H be

continuously imbedded, and Vj ⊂ V . Then, we have

‖u− uj‖H ≤ C ‖u− uj‖V sup
g∈H\{0}

{
1

‖g‖H
inf
vj∈Vj

‖ϕg − vj‖V

}
, (4.25)

where u is the exact weak solution for the boundary value problem, uj ∈ Vj is the

Galerkin solution, C is the continuity constant of a( ·, · ) and ϕg ∈ V is the dual

solution for a given g ∈ H; i.e., the solution for

a(w,ϕg ) = 〈g, w〉H , w ∈ V. (4.26)

Proof. By Galerkin orthogonality

a(u− uj, vj ) = 0, vj ∈ Vj,
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and by testing (4.26) with w = u − uj ∈ V to obtain by continuity of a( ·, · ) for

any vj ∈ Vj that

〈g, u− uj〉H = a(u− uj, ϕg ) = a(u− uj, ϕg − vj )

≤ C ‖u− uj‖V ‖ϕg − vj‖V .

Therefore

〈g, u− uj〉H ≤ C ‖u− uj‖V inf
vj∈Vj

‖ϕg − vj‖V .

Thus we obtain by the standard representation of norms in Hilbert spaces

‖u− uj‖H = sup
g∈H\{0}

〈g, u− uj〉
‖g‖H

≤ C ‖u− uj‖V sup
g∈H\{0}

{
1

‖g‖H
inf
vj∈Vj

‖ϕg − vj‖V

}
.

If a( ·, · ) is elliptic on H t(Ω), then Céa lemma gives

‖u− uj‖t;Ω . inf
vj∈Sj

‖u− vj‖t;Ω . (4.27)

The regularity and polynomial exactness of the scaling functions: If

Pd−1 ⊂ Sj and ϕj,k ∈ H t(R), then the statement of Proposition 3.11 gives

‖u− uj‖t;Ω . inf
vj∈Sj

‖u− vj‖t;Ω . (2−j)s−t|u|s;Ω, (4.28)
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for u ∈ Hs(Ω), t < s ≤ d. By the Aubin-Nitsche trick, since Hs ↪→ L2 one can

obtain an L2 estimate

‖u− uj‖0;Ω . (2−j)s|u|s;Ω, (4.29)

for u ∈ Hs(Ω), t < s ≤ d.

4.4 Partial Differential Equation

4.4.1 PDE Model Problem

In this thesis, we mainly consider the following two dimensional self-adjoint equa-

tion with a homogeneous Dirichlet boundary condition. Given f : Ω→ R, deter-

mine u : Ω→ R such that


−∆u+ cu = f in Ω

u = 0 on ∂Ω

, (4.30)

where Ω = (0, 1)× (0, 1), and c(x, y) ≥ 0 ∀x, y ∈ Ω.

4.4.2 PDE Variational Formulation

With Ω = (0, 1)× (0, 1), let C∞0 (Ω) be the space of test functions defined as

C∞0 (Ω) = {v ∈ C∞(Ω) : v ⊂⊂ Ω}. (4.31)
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Multiplying both sides of (4.30) with a test function φ ∈ C∞0 (Ω) and integrating

over Ω yields

¨

Ω

f(x, y)φ(x, y) dA =

¨

Ω

∇u(x, y) · ∇φ(x, y) dA+

¨

Ω

c(x, y)u(x, y)φ(x, y) dA,

(4.32)

using Green’s formula and since u = 0 on ∂Ω.

We see that (4.32) is in fact well-defined for functions in the Sobolev space

H1
0 (Ω) := {v ∈ H1(Ω) : v(x, 0) = v(0, y) = v(x, 1) = v(1, y) = 0},

where

H1(Ω) := {v ∈ L2(Ω) :
∂v

∂x
∈ L2(Ω),

∂v

∂y
∈ L2(Ω)}.

The partial derivatives are to be understood in the weak sense. Using V := H1
0 (Ω)

as the trial and test space, the weak (or variational) formulation of (4.30) reads:

Find u ∈ V such that

b(u, v ) = `(v) ∀v ∈ V, (4.33)

where the bilinear form b : V × V → R is defined by

b(u, v ) := 〈∇u,∇v〉0;Ω + 〈cu, v〉0;Ω

=

¨

Ω

∇u(x, y) · ∇v(x, y) dA+

¨

Ω

c(x, y)u(x, y)v(x, y) dA,
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and the bounded linear functional ` : V → R is defined by

`(v) = 〈f, v〉0;Ω .

4.4.3 PDE Existence and uniqueness

Using Hölder’s inequality, we can show that b( ·, · ) is continuous; i.e.,

|b(u, v )| =

∣∣∣∣∣∣
¨

Ω

∇u(x, y) · ∇v(x, y) + c(x, y)u(x, y)v(x, y) dA

∣∣∣∣∣∣
≤
¨

Ω

|∇u(x, y) · ∇v(x, y) + c(x, y)u(x, y)v(x, y)| dA

≤
¨

Ω

|∇u(x, y) · ∇v(x, y)| dA+

¨

Ω

|c(x, y)u(x, y)v(x, y)| dA

≤ ‖∇u‖L2(Ω)‖∇v‖L2(Ω) + ‖c‖L∞(Ω)‖u‖L2(Ω)‖v‖L2(Ω)

≤ max
{

1, ‖c‖L∞(Ω)

}
‖u‖H1(Ω)‖v‖H1(Ω)

by Cauchy-Schwarz to go from the third line to the fourth line. Hence, the bilinear

form b( ·, · ) is continuous. Also, it is coercive; i.e.,

b( v, v ) =

¨

Ω

(‖∇v‖2 + cv2)dA ≥
¨

Ω

‖∇v‖2dA ≥ α ‖v‖2
H1(Ω) , (4.34)

with α = (C2 +1)−1, where C is the Poincaré inequality constant, and since c ≥ 0.

Here the norm ‖ · ‖ is the euclidean norm. All the hypotheses of the Lax-Milgram

theorem are satisfied, therefore there is one and only one solution u ∈ V.
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4.4.4 PDE Regularity

Theorem 4.5 (Regularity theorem, general case) [72] Let a( ·, · ) be an el-

liptic bilinear form on a Hilbert space X, where

H1
0 (Ω) ⊂ X ⊂ H−1(Ω),

and Ω ⊂ Rn is a convex domain. If the coefficient function c in (4.30) is smooth,

then the corresponding solution u of the variational problem (4.33) satisfies u ∈

H2(Ω) provided that f ∈ L2(Ω).

Proof. See, e.g. [42, 62].

65



CHAPTER 5

GENERAL PROBLEM

METHOD

In this chapter, we introduce a method to numerically approximate solutions of

general self-adjoint problems. We do this by first solving a self-adjoint Dirichlet

problem. The main reason for introducing this method is to minimize the condi-

tion number of the stiffness matrix through the achievement of the coarsest level

which is available only for Dirichlet problems. Moreover, this method takes care

of the complexity and insufficiency of the methods presented in the literature to

solve these kinds of problems [28,72]. This method also has the ability to handle

higher order problems; a topic which is extremely rare in the literature.

Our developed method can be summarized as follows. Given a (2n)th order

self-adjoint ODE equipped with general boundary conditions:

1. Solve (2n+ 1) related Dirichlet problems (each is O(N)).

2. Construct boundary functions to carry the boundary conditions of the problem
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being considered.

3. Construct the solution for the boundary value problem being considered using

the solutions from steps 1 and 2.

It should be noted that steps 2 and 3 are purely algebraic and require solving only

small algebraic systems.

Let ` be the formally self-adjoint expression

`(u) =
n∑
k=0

(−1)k
(
ak(x)u(k)

)(k)
. (5.1)

Let D be the domain

D = {u ∈ L2(0, 1) : `(u) ∈ L2(0, 1)}. (5.2)

Define the “maximal” operator L : D → L2(0, 1) by

Lu = `(u).

Let D1 be the domain

D1 = {u ∈ D : u(m)(0) = u(m)(1) = 0, m = 0, 1, . . . , n− 1.}. (5.3)

Define L1 : D1 → L2(0, 1) by

L1u = `(u).
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L1 will be called the Dirichlet operator. Here, we are interested in finding the

solution for the ODE

L̂u = f, (5.4)

where L̂ is the self-adjoint operator with domain D̂ obtained from D by imposing

prespecified self-adjoint boundary conditions and where L̂u = `(u). We assume,

of course, that the self-adjoint operator L̂ is such that (5.4) is always solvable.

Let u1, u2, . . . , u2n be linearly independent solutions of Lu = 0. The general

solution to Lu = 0 is given by

uh = r1u1 + r2u2 + · · ·+ r2nu2n. (5.5)

The solution for the (2n)th order non-homogeneous equation L̂u = f is given by

û = uh + up, (5.6)

where up is any particular solution for Lu = f . We choose this particular solution

to be the solution for the Dirichlet problem L1u = f .

Accordingly, the solution û of L̂u = f is given by

û = up + r1u1 + r2u2 + · · ·+ r2nu2n. (5.7)

To find the fundamental set of solutions ui, i = 1, . . . , 2n, we proceed as follows.

We first construct the boundary functions θi, i = 1, . . . , 2n to carry the boundary
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conditions defining D̂. These θi’s should not satisfy the Dirichlet boundary con-

ditions. More precisely, θ1, θ2, . . . , θ2n should be linearly independent modulo D1.

This means that if α1, α2, . . . , α2n are scalars such that

α1θ1 + α2θ2 + · · ·+ α2nθ2n ∈ D1,

then α1 = α2 = · · · = α2n = 0. This linear independence modulo D1 means that

D can be built from D1; i.e.,

D = D1 + span [θi]
2n
i=1 . (5.8)

Consequently, the functions θ1, θ2, . . . , θ2n can be used to construct the domain D̂

of L̂. Thus the parameters r1, r2, . . . , r2n in (5.7) will always exist. See [58] for

more details. We construct the first functions θk, k = 1, . . . , n, to be supported

near 0 and then take θj(x) = θj−n(1 − x), j = n + 1 = 1, . . . , 2n. Next, we find

the solutions ξi, i = 1, . . . , 2n of the Dirichlet problems

L1u = Lθi. (5.9)
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Finally, we set ui = ξi − θi. Then

Lui = L(ξi − θi)

= `(ξi)− `(θi)

= L1ξi − Lθi

= 0, i = 1, 2, . . . , 2n.

Furthermore, u1, u2, . . . , u2n are linearly independent modulo D1, for if

α1u1 + α2u2 + · · ·+ α2nu2n ∈ D1,

then

α1ξ1 + α2ξ2 + · · ·+ α2nξ2n − α1θ1 − α2θ2 − · · · − α2nθ2n ∈ D1.

Since α1ξ1 + α2ξ2 + · · · + α2nξ2n ∈ D1, α1θ1 + α2θ2 + · · · + α2nθ2n ∈ D1. By the

choice of θ1, θ2, . . . , θ2n, α1 = α2 = · · · = α2n = 0.

To find the values for the constants ri, i = 1, . . . , 2n in (5.7), we apply the
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general boundary conditions defining D̂. With û defined by (5.7), we have

L̂u = L̂ (up + r1u1 + r2u2 + · · ·+ r2nu2n)

= L̂up + r1L̂u1 + r2L̂u2 + · · ·+ r2nL̂u2n

= L1up + r1L̂(ξ1 − θ1) + r2L̂(ξ2 − θ2) + · · ·+ r2nL̂(ξ2n − θ2n)

= f + r1 (`(ξ1)− `(θ1)) + r2 (`(ξ2)− `(θ2)) + · · ·+ r2n (`(ξ2n)− `(θ2n))

= f + r1(L1ξ1 − Lθ1) + r2(L1ξ2 − Lθ2) + · · ·+ r2n(L1ξ2n − Lθ2n)

= f.

Note that the values of up, and ξi, i = 1, . . . , 2n are zeros on the boundaries

up to the nth derivative. If the boundary conditions defining D̂ contain higher

derivatives, then the numerical computation of these derivatives should be of

the same order of accuracy as the numerical scheme used for approximating the

solution for the differential equation. For example, if the method is of order 4,

we will apply a forward fourth order difference method to find u
(p)
p (0) and ξ

(p)
i (0),

and a backward fourth order difference method to find u
(p)
p (1) and ξ

(p)
i (1). The

above discussion is summarized as follows.

To find the solution û of the self-adjoint problem L̂u = f

1. Find ξ1, ξ2, . . . , ξ2n such that

L1ξi = Lθi, i = 1, 2, . . . , 2n,

where the θi’s are chosen to be linearly independent modulo D1.
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2. Set ui = ξi − θi, i = 1, 2, . . . , 2n.

3. The solution û of L̂u = f is given by

û = up + r1u1 + r2u2 + · · ·+ r2nu2n,

where up is the solution for

L1u = f,

and r1, r2, . . . , r2n are computed such that û satisfies the boundary conditions

defining D̂.

In the following example we apply the discussed method to solve a second

order self-adjoint general problem.

Example 5.1 Find the solution for the second order general problem

Lu = −u′′ + 10u = cos(2πx),

u(0) = u(1), u′(0) = u′(1).

(5.10)

Solution: Let up be the solution for the Dirichlet problem

Lu = −u′′ + 10u = cos(2πx),

u(0) = u(1) = 0.

(5.11)

We choose the two linearly independent functions θ1 and θ2 such that θ1(x) =

1 + cos(πx) and θ2(x) = θ1(1− x).
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Let ξ1 be the solution for the Dirichlet problem

L1u = Lθ1,

u(0) = u(1) = 0.

(5.12)

Let ui = ξi − θi (i = 1, 2).

To find the sought solution û(x) = up(x) + r1u1(x) + r2u2(x), we need to find the

constants r1 and r2. We apply the boundary conditions on û.

• û(0) = û(1) gives r1 = r2.

• û′(0) = û′(1) gives

r1 =
u′p(1)− u′p(0)

ξ′1(0) + ξ′2(0)− ξ′1(1)− ξ′2(1)
.

To find u′p(0), ξ′1(0) and ξ′2(0) we apply the fourth order forward difference method:

f ′(0) =
1

h

(
−25

12
f(0) + 4f(h)− 3f(2h) +

4

3
f(3h)− 1

4
f(4h)

)
.

To find u′p(1), ξ′1(1) and ξ′2(1) we apply the fourth order backward difference

method:

f ′(1) =
1

h

(
25

12
f(1)− 4f(1− h) + 3f(1− 2h)− 4

3
f(1− 3h) +

1

4
f(1− 4h)

)
.

Accordingly,

û = up + r1u1 + r2u2.
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CHAPTER 6

BIORTHOGONAL WAVELETS

Up to this point we were obtaining numerical solutions of ODEs in the approx-

imation spaces Sj. In this chapter, we give a full construction of biorthogonal

wavelets on the real line. The construction includes the one-dimensional and

two-dimensional biorthogonal wavelets. Moreover, we present the conjugate gra-

dient method with wavelet preconditioning to solve linear systems resulting from

discretization. We will see that wavelet preconditioning is optimal.

The one-dimensional biorthogonal wavelets in L2(R) was discussed in Section

1. Section 2 gives a description of the conjugate gradient method and the precon-

ditioning version of this method. Wavelet transform and inverse wavelet transform

were illustrated in Section 3. In consequence of Sections 2 and 3, Section 4 rep-

resents the wavelet preconditioned conjugate gradient algorithm. In Section 5,

we illustrate the work of Dhamen and his coworkers to construct biorthogonal

wavelets on the unit interval. The wavelet basis and the biorthogonal wavelets in

L2(R2) were shown in Sections 6 and 7, respectively.
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6.1 One-dimensional Biorthogonal Wavelets

Recall that the projections associated with two biorthogonal MRAs S = {Sj}j∈Z,

S̃ = {S̃j}j∈Z were defined in Equation (3.28) as

Pjf =
〈
f, Φ̃j

〉
Φj, P̃jf = 〈f,Φj〉 Φ̃j. (6.1)

Note that Pj is not an orthogonal projection (unless Φ̃j = Φj). In Proposition

3.10, we showed that to achieve higher approximation accuracy, we need to use

a higher value of j (increase resolution). However, increasing the resolution will

cause an exponential growing of the number of degrees of freedom because

|Ij| ∼ 2j.

To deal with this difficulty, we discuss how to use the already computed approx-

imation fj = Pjf to calculate fj+1 = Pj+1f without having to redo the whole

calculation. Since Sj+1 ⊃ Sj, we may write

fj+1 = fj + gj,

or

Pj+1f = Pjf + gj.

Hence,

gj = (Pj+1 − Pj)f := Qjf.
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We call gj the detail part of f , and Qj the detail operator at level j. Similar

discussion holds for the dual projecrtion P̃j. Thus, we let

Q̃j = P̃j+1 − P̃j.

Proposition 6.1 According to the definitions of Pj, P̃j, Qj and Q̃j, we have:

1. Qj, Q̃j are projections onto Wj = Range(Qj), W̃j = Range(Q̃j), respectively.

2. QjPj = PjQj = Q̃jP̃j = P̃jQ̃j = 0.

3. Wj ⊥ S̃j, W̃j ⊥ Sj.

4. Sj+1 = Sj ⊕Wj, S̃j+1 = S̃j ⊕ W̃j.

Proof.

1. Since

Q2
j = (Pj+1 − Pj)2 = P 2

j+1 − Pj+1Pj − PjPj+1 + P 2
j

= Pj+1 − Pj − Pj + Pj (Proposition 3.7 (ii))

= Qj,

Qj is a projection. In the same manner we can show that Q̃j is also a projection.

2. Using the definition of Qj,

PjQj = Pj(Pj+1 − Pj) = PjPj+1 − P 2
j = Pj − Pj = 0 (Proposition 3.7 (ii)).
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Similarly, QjPj = Q̃jP̃j = P̃jQ̃j = 0.

3. Let f ∈ Wj, g ∈ S̃j ⊂ S̃j+1. Then

〈f, g〉 = 〈Qjf, g〉 (since f ∈ Wj)

= 〈(Pj+1 − Pj)f, g〉

= 〈Pj+1f, g〉 − 〈Pjf, g〉

=
〈
f, P̃j+1g

〉
−
〈
f, P̃jg

〉
(Proposition 3.7 (iii))

= 〈f, g〉 − 〈f, g〉 = 0.

Therefore, Wj ⊥ S̃j. Similarly we can show that W̃j ⊥ Sj.

4. Sj +Wj ⊂ Sj+1 is obvious. On the other hand, let f ∈ Sj+1 then Pjf ∈ Sj and

Qjf ∈ Wj. Furthermore,

Pjf +Qjf = Pjf + (Pj+1 − Pj)f = Pj+1f = f since f ∈ Sj+1.

Therefore,

f = Pjf +Qjf ∈ Sj +Wj.

Hence, Sj+1 ⊂ Sj +Wj.

Proposition 6.2 [72] Let ϕ and ϕ̃ be two refinable functions with finite refine-
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ment masks (hk)`1≤k≤`2 and (h̃k)˜̀
1≤k≤˜̀2, respectively. Let

gk = (−1)kh̃1−k, g̃k = (−1)kh1−k. (6.2)

Then

ψ(x) =
∑
k∈Z

gk ϕ(2x− k), ψ̃(x) =
∑
k∈Z

g̃k ϕ̃(2x− k), (6.3)

are such that

Ψj = {ψ[j,k] : k ∈ Z} is a uniformly stable basis for Wj,

Ψ̃j = {ψ̃[j,k] : k ∈ Z} is a uniformly stable basis for W̃j,

and Ψj, Ψ̃j are biorthogonal; i.e.,

〈
Ψj, Ψ̃j

〉
= Ij.

Note that, if (6.3) were satisfied, then

Ψj = Gj+1Φj+1, (6.4)

Ψ̃j = G̃j+1Φ̃j+1, (6.5)

where the refinement matrices Gj+1 and G̃j+1 are given by

Gj+1 =
1√
2

(gm−2k)k∈Jj ,m∈Ij+1
, (6.6)
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G̃j+1 =
1√
2

(g̃m−2k)k∈Jj ,m∈Ij+1
, (6.7)

and Jj = Ij+1 \ Ij.

6.2 The Iterative Conjugate Gradient Method

The conjugate gradient method is an algorithm for the numerical solution of par-

ticular systems of linear equations, namely those whose matrix is symmetric and

positive-definite [65]. The conjugate gradient method is often implemented as an

iterative algorithm, applicable to sparse systems that are too large to be han-

dled by direct methods. Large sparse systems are prominent features of Galerkin

methods.

6.2.1 Description of the Method

Suppose we want to solve the system of linear equations

Ax = b, (6.8)

for the vector x where the known n × n matrix A is symmetric (i.e., AT = A),

positive definite (i.e. xTAx > 0 for all non-zero vectors x in Rn), and b is known

as well. We denote the unique solution for this system by x∗.

The matrix A defines an inner product on Rn given by

〈u,v〉A = 〈Au,v〉 = 〈u,ATv〉 = 〈u,Av〉 = uTAv.
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Two vectors are conjugate if and only if they are orthogonal with respect to this

inner product. Suppose that

P = {p1,p2, . . . ,pn}

is a set of n mutually conjugate vectors with respect to the inner product 〈·, ·〉A.

Then P forms a basis for Rn [44], and we may express the solution x∗ of (6.8) in

this basis; i.e.,

x∗ =
n∑
i=1

αipi.

Then

Ax∗ =
n∑
i=1

αiApi,

〈pk,Ax∗〉 =
n∑
i=1

αi〈pk,Api〉

or

〈pk, b〉 = αk〈pk,pk〉A·

Therefore,

αk =
〈pk, b〉
〈pk,pk〉A

· (6.9)

When n is large, if we choose the conjugate vectors pk carefully, then we may not

need all of them to obtain a good approximation to the solution x∗. An iterative
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approach that uses the conjugate gradient method minimizes the functional

f(x) =
1

2
xTAx− xTb, x ∈ Rn.

Observe that ∇f(x) = Ax− b and therefore, f is minimum at Ax− b = 0.

Starting with a “guessed solution” x0 (we can always guess x0 = 0 if we have

no reason to guess for anything else), we take p0 = r0 = b − Ax0. The other

vectors in the basis will be conjugate to the gradient, hence the name conjugate

gradient method. Let rk be the residual at the kth step:

rk = b−Axk. (6.10)

Note that rk is the negative gradient of f at x = xk, so the gradient descent

method [4] would be to move in the direction rk. The directions pk are taken to

be conjugate to each other. This is done by following a Gram-Schmidt orthonor-

malization process, which gives the following expression:

pk = rk + βkpk−1, (6.11)

where, the best choice of βk according to Feng and Owen [41], is given by

βk =
〈rk, rk〉
〈rk−1, rk−1〉

· (6.12)
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The next iterate is given by

xk+1 = xk + αkpk, (6.13)

with

αk =
〈pk, b〉
〈pk,pk〉A

=
〈pk,Axk + rk〉
〈pk,pk〉A

=
〈pk,xk〉A + 〈pk, rk〉

〈pk,pk〉A

=
〈pk, rk〉
〈pk,pk〉A

(Since pk and rk are conjugate)

=
〈rk + βkpk−1, rk〉
〈pk,pk〉A

(Using 6.11)

=
〈rk, rk〉+ βk〈pk−1, rk〉

〈pk,pk〉A

=
〈rk, rk〉
〈pk,pk〉A

·

Also,

rk+1 = b−Axk+1

= b−A(xk + αkpk)

= b−Axk − αkApk

= rk − αkApk.
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6.2.2 The Conjugate Gradient Algorithm (CG)

The algorithm is detailed below for solving Ax = b where A is a real, symmetric,

and positive-definite matrix. The input vector x0 can be an approximate initial

solution or 0. See e.g. [55] for more details.

Algorithm 2: Conjugate Gradient Method (CG)

Result: solving the system Ax = b

Input : A, b,x0 = 0, ε and kmax

Output: Vector x

1 r0 = b−Ax0

2 p0 = r0

3 for k = 0 up to kmax−1 do

4 if ‖rk‖ < ε then

5 EXIT

6 end

7 αk = 〈rk,rk〉
〈pk,pk〉A

8 xk+1 = xk + αkpk

9 rk+1 = rk − αkApk

10 βk = 〈rk+1,rk+1〉
〈rk,rk〉

11 pk+1 = rk+1 + βkpk

12 end

13 x = xk+1
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6.2.3 Preconditioned Conjugate Gradient Method (PCG)

Successful application of the conjugate gradient method to solve a system of linear

equations depends upon the preconditioning techniques [64, 65]. Preconditioning

is typically related to reducing a condition number of the problem. The precon-

ditioned problem is then usually solved by an iterative method. Preconditioning

involves replacing the system Ax = b with P−1Ax = P−1b, where the precondi-

tioner P is chosen such that P−1A has a smaller condition number.

Preconditioners are useful in iterative methods to solve a linear systemAx = b

for x since the rate of convergence for most iterative linear solvers increases as

the condition number of a matrix decreases as a result of preconditioning.

The preconditioned conjugate gradient method involves replacing the residual

vector rk = Axk − b by the preconditioned vector hk = P−1rk. The modified

algorithm is given below.
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Algorithm 3: Preconditioned Conjugate Gradient Method (PCG)

Result: solving the system Ax = b

Input : A, b,x0 = 0, tol, kmax and a preconditioner P

Output: Vector x

1 r0 = b−Ax0

2 h0 = P−1r0

3 d0 = −h0

4 for k = 0 up to kmax−1 do

5 if ‖rk‖ < tol then

6 EXIT

7 end

8 αk = 〈rk,hk〉
〈dk,dk〉A

9 xk+1 = xk − αkdk

10 rk+1 = rk + αkAdk

11 hk+1 = P−1rk+1

12 βk = 〈rk+1,hk+1〉
〈rk,hk〉

13 dk+1 = βkdk − hk+1,

14 end

15 x = xk+1
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6.3 One-dimensional Fast Wavelet Transform

The projection Pj of f ∈ L2(Ω) onto the approximation space Sj has two repre-

sentations:

Pjf =
〈
f, Φ̃j

〉
Φj (Single Scale Representation)

=
〈
f, Φ̃j0

〉
Φj0 +

j−1∑
`=j0

〈
f, Ψ̃`

〉
Ψ` (Multiscale Representation),

where Φj, Φj0 , Ψ` are given by

Φj = {ϕj,k : k ∈ Ij}, Φj0 = {ϕj0,k : k ∈ Ij0},Ψ` = {ψ`,k : k ∈ J`}. (6.14)

Note that the multiscale representation of Pjf is a consequence of the fact that

the space Sj can be decomposed as

Sj = Sj0 ⊕Wj0 ⊕ · · · ⊕Wj−1. (6.15)

This decomposition is a direct result of successively applying part (4) of Proposi-

tion 6.1 down to level j0. Furthermore, we have the refinement equations

Φj−1 = HjΦj, Ψj−1 = GjΦj, Φ̃j−1 = H̃jΦ̃j, and Ψ̃j−1 = G̃jΦ̃j. (6.16)

These refinement equations were introduced in (3.17), (3.26), (6.4), and (6.5),

respectively.
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6.3.1 1D Wavelet Transform (Decomposition)

Given f ∈ L2(Ω), then

Pjf = Pj−1f +Qj−1f

=
〈
f, Φ̃j−1

〉
Φj−1 +

〈
f, Ψ̃j−1

〉
Ψj−1

= cTj−1Φj−1 + dTj−1Ψj−1.

Where,

cj−1 :=
〈
f, Φ̃j−1

〉
is the approximation coefficient at level j − 1,

dj−1 :=
〈
f, Ψ̃j−1

〉
is the detail coefficient at level j − 1.

The coarser level approximation coefficient cj−1 is obtained form cj by

cTj−1 =
〈
f, Φ̃j−1

〉
=
〈
f, H̃jΦ̃j

〉
=
〈
f, Φ̃j

〉
H̃

T

j = cTj H̃
T

j ,

or cj−1 = H̃jcj. Similarly, the coarser level detailed coefficient dj−1 is obtained

form cj by

dTj−1 =
〈
f, Ψ̃j−1

〉
=
〈
f, G̃jΦ̃j

〉
=
〈
f, Φ̃j

〉
G̃
T

j = cjG̃
T

j ,

or dj−1 = G̃jcj.

Operations count: Suppose cj has length N (∼ 2j). Note that any row of

H̃j has at most (˜̀2 − ˜̀1) nonzero coefficients. Therefore, the computation of any

element of cj−1 requires at most (˜̀2 − ˜̀1) operations. Hence, the computation of
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cj−1 requires (˜̀2 − ˜̀1)N operations. Similarly for dj−1.

Thus the decomposition

cj //

!!

cj−1

dj−1

requires 2(˜̀2 − ˜̀1)N operations and the decomposition down to level j0

cj //

!!

cj−1
//

##

cj−2 · · · cj0−1
//

""

cj0

dj−1 dj−2 · · · dj0−1 dj0

requires 2
(˜̀

2 − ˜̀1) (N + N
2

+ · · ·+ N
2j

)
< 4

(˜̀
2 − ˜̀1)N ; i.e., O(N) operations.

Algorithm 4 lists the one-dimensional decomposition (or wavelet transform) algo-

rithm. The input ν to this algorithm represents the number of boundary basis

functions to be added to each endpoint 0 and 1. See Chapter 7 for more details.
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Algorithm 4: One-dimensional Wavelet Transform (D1WT)

Input : Vector c of scaling coefficients at level j, ν,

dim c = 2j − (d− 1) + 2ν

Output: Vector cw, the wavelet transform of c

Result: cw = D1WT(c)

1 cj = c

2 for k = j − 1 down to j0 do

3 ck = H̃k ck+1

4 dk = G̃k ck+1

5 end

6 cw = cj0

7 for k = j0 up to j − 1 do

8 cw =

 cw
dk


9 end

6.3.2 1D Inverse Wavelet Transform (Reconstruction)

The equation

Pjf = Pj−1f +Qj−1f
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gives

cTj Φj = cTj−1Φj−1 + dTj−1Ψj−1

= cTj−1HjΦj + dTj−1GjΦj

=
(
cTj−1Hj + dTj−1Gj

)
Φj.

Therefore,

cj = HT
j cj−1 +GT

j dj−1

which is used to reconstruct cj from cj−1 and dj−1; i.e.,

cj−1
// cj

dj−1

==

This requires 2(`2 − `1)N operations and the reconstruction up to level j

cj0 // cj0+1
// cj0+2 · · · cj−1

// cj

dj0

<<

dj0+1

;;

· · · dj−1

==

requires 2 (`2 − `1)
(
N + N

2
+ · · ·+ N

2j

)
< 4 (`2 − `1)N ; i.e., O(N) operations.

Algorithm 5 depicts the one-dimensional reconstruction (or inverse wavelet trans-

form) algorithm. The input ν to this algorithm represents the number of boundary

basis functions to be added to each endpoint 0 and 1. See Chapter 7 for more

details.

90



Algorithm 5: One-dimensional Inverse Wavelet Transform (D1IWT)

Input : Vector cw of wavelet coefficients at level j, ν,

dim cw = 2j − (d− 1) + 2ν

Output: Vector c, the scaling coefficients

Result: c = D1IWT(cw)

1 cj0 = cw(1 : 2j0 − (d− 1) + 2ν)

2 index = 2j0 − (d− 1) + 2ν + 1

3 for k = j0 up to j − 1 do

4 dk = cw(index : index + 2k − 1)

5 index = index + 2k

6 end

7 for k = j0 + 1 up to j do

8 ck = Hk−1ck−1 +Gk−1dk−1

9 end

10 c = cj

6.4 Wavelet Preconditioning

Vectors of the approximation space Sj are expressed in terms of the basis Φj.

Recall that, by (6.15), the space Sj also has the decomposition

Sj = Sj0 ⊕Wj0 ⊕ · · · ⊕Wj−1.
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Thus, we can use the basis

Ψj = Φj0 ∪Ψj0 ∪ · · · ∪Ψj−1.

Accordingly, we do not change trial and test spaces, but we only use a different

basis. This means that we still have the same error estimates discussed in Chapter

4.

The stiffness matrix in the wavelet representation will be denoted as

AΨj := a( θ, ϑ ), θ, ϑ ∈ Ψj.

This can be expressed in an alternative way as follows. The wavelet representation

of the differential operator reads

A := a(ψλ, ψµ ), λ, µ ∈ J ,

where J , the collection of all wavelet index sets, is given by

J :=
⋃
j≥j0

Jj, Jj = Ij+1 \ Ij, (6.17)

and Ij was defined in (3.2). Hence, A can be interpreted as a (bi-)infinite matrix.

Then letting

J j := Ij0 ∪ Jj0 ∪ · · · ∪ Jj−1
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denote the wavelet indices up to level j − 1, we have

Ψj := {ψλ : λ ∈ J j}.

The full wavelet basis then reads

Ψ := {Ψj,k : j ≥ j0, k ∈ Jj} = {ψλ : λ ∈ J }.

With this notation at hand, AΨj is a section of the full (infinite) matrix A; i.e.,

AΨj = A |J j×J j .

Definition 6.1 For an infinite matrix (operator) B : `2(J )→ `2(J ), the condi-

tion number cond2(B) is defined as

cond2(B) := ‖B‖`2(J )

∥∥B−1
∥∥
`2(J )

,

and ‖ · ‖`2(J ) is the operator norm induced by the sequence norm on `2(J ); i.e.,

‖B‖`2(J ) = sup
v∈`2(J )
v 6=0

‖Bv‖`2(J )

‖v‖`2(J )

.

Theorem 6.1 [72] Let Ψ be a wavelet basis in L2(Ω) such that the following norm
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equivalence holds

‖dTΨ‖n;Ω =

∥∥∥∥∥∥
∑
j≥j0

∑
k≥Jj

dj,kΨj,k

∥∥∥∥∥∥
n;Ω

∼

∑
j≥j0

∑
k≥Jj

22nj|dj,k|2
1/2

= ‖Dd‖`2(J ),

where D is the diagonal operator,

D := 2nj(δk,k′)(j,k),(j′,k′)∈J ,

and let

Dj := D |J j ·

Then, we have

cond2(D−1
j AΨjD−1

j ) = O(1), j →∞;

i.e., D2
j is an asymptotically optimal preconditioner for AΨj .

Theorem 6.2 Consider the following one-dimensional (2n)th order self-adjoint

Dirichlet problem.

Au =
n∑
k=0

(−1)k
(
aku

(k)
)(k)

= f,

u(m)(0) = u(m)(1) = 0, m = 0, 1, . . . , n− 1,

(6.18)

where ak(x) are bounded on [0, 1], k = 0, . . . , n, an(x) ≥ an > 0 and ak(x) ≥

0, k = 0, 1, . . . , n − 1. Then, the function u ∈ Hn
0 (Ω) solves Au = f for a given
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f ∈ H−n if and only if u ∈ `2(J ) solves

Au = f , (6.19)

where A = D−1AΨD
−1 and

u = dTΨ, u = Dd, f = D−1 〈Ψ, f〉0;Ω .

Moreover, the problem (6.19) is well conditioned; i.e. cond2(A) <∞.

Proof. Equation (6.19) means

Au = D−1AΨD
−1u

= D−1 〈Ψ, AΨ〉0;ΩD
−1Dd

= D−1 〈Ψ, AΨ〉0;Ω d

= D−1 〈AΨ,Ψ〉0;Ω d

= D−1
〈
AΨ,dTΨ

〉
0;Ω

= D−1
〈
Ψ, AdTΨ

〉
0;Ω

= D−1 〈Ψ, Au〉0;Ω = D−1 〈Ψ, f〉0;Ω = f .

Hence, 〈Ψ, Au〉0;Ω = 〈Ψ, f〉0;Ω since D is invertible. This, however, is equivalent

to Au = f .

Theorem 6.2 means that the problem (6.18) posed in the Sobolev space Hn
0 (Ω)

can be stated equivalently as a discrete problem in the sequence space `2(J ).
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Moreover, the equivalent problem is well-conditioned. Algorithm 6 lists the one-

dimensional wavelet preconditioned conjugate gradient algorithm. Note that only

the residual vector that needs to be preconditioned, and before applying the

wavelet preconditioner P = D−2 on the residual vector, we need to transform

it using wavelet transformation.
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6.4.1 1D Wavelet PCG Algorithm

Algorithm 6: One-dimensional Wavelet PCG Algorithm

Result: solving the system AΦx = b

Input : AΦ, b,x0 = 0, tol, kmax and a preconditioner P = D−2

D := 2nj(δk,k′)(j,k),(j′,k′)∈J

Output: Vector x

1 r0 = b−Ax0

2 h0 = D1IWT(PD1WT(r0))

3 d0 = −h0

4 for k = 0 up to kmax−1 do

5 if ‖rk‖ < tol then

6 EXIT

7 end

8 αk = 〈rk,hk〉
〈dk,dk〉AΦ

9 xk+1 = xk − αkdk

10 rk+1 = rk + αkAΦdk

11 hk+1 = D1IWT(PD1WT(rk+1))

12 βk = 〈rk+1,hk+1〉
〈rk,hk〉

13 dk+1 = βkdk − hk+1,

14 end

15 x = xk+1
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6.5 Biorthogonal Wavelets on the Unit Interval

Using wavelets for solving a differential equation on a bounded domain Ω ob-

viously requires us to construct wavelets on Ω. Dahmen et al. [28] introduced

the construction of the biorthogonal wavelets and the corresponding refinement

matrices over the unit interval [0, 1] with all desirable properties:

(1) In the primal multiresolution, we can achieve any degree d of exactness by

spline spaces.

(2) In the dual multiresolution, we can achieve any degree d̃ of exactness where

d̃ is such that d+ d̃ is even.

(3) The associated biorthogonal spline wavelets have d̃ vanishing moments.

(4) Fast decomposition and reconstruction algorithms since wavelets and genera-

tors of primal and dual multiresolutions have finite supports.

(5) They form stable Riez bases for L2(0, 1).

Dahmen and his coworkers proposed modifications on the vector of primal basis

functions Φj introduced in Proposition 3.4. Firstly, they kept the basis functions

which lie completely inside the interval [0, 1] and denoted this by Φ0
j . Next, they

replaced the boundary functions that overlap each of the two boundaries by linear

combinations of these overlapping basis functions. Accordingly, they achieved the

two sets ΦL
j and ΦR

j . Where ΦL
j represented the constructed basis functions on

the left boundary, and ΦR
j represented the constructed basis functions on the right
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boundary. Therefore, the new set of basis functions Φj was given by

Φj = ΦL
j ∪ Φ0

j ∪ ΦR
j .

Similarly, they achieved the new set Φ̃ of basis functions for the dual multiresolu-

tion. So that Φ̃ was given by

Φ̃j = Φ̃L
j ∪ Φ̃0

j ∪ Φ̃R
j .

As a result of these constructions, Dahmen et al. introduced the refinement

relations

Φj = MT
j,0Φj+1, Φ̃j = M̃

T

j,0Φ̃j+1.

According to [28], “the subsequent construction of compactly supported

biorthogonal wavelets is based on the concept of stable completions”. To achieve

these completions, they started by deriving an initial completions of the spline

spaces where the complement spaces between two successive levels are spanned

by compactly supported splines. These splines form uniformly stable bases on

each level. After that, these initial complements were then projected into the

desired complements spanned by compactly supported biorthogonal wavelets. As

a result and according to refinement relations, Dahmen and his coworkers gave

complete technical details for constructing the matrix M̌ j,1 as a stable completion
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of M j,0; i.e., if M̌ j = (M j,0,M̌ j,1) then M̌ j is invertible and satisfies

‖M̌ j‖, ‖M̌−1
j ‖ = O(1), j ≥ j0.

Moreover, if Ǧj = M̌−1
j , and M j,1 := (I |∆j+1|−M j,0M̃

T

j,0)M̌ j,1, then, for a fixed

j ≥ j0, the following statements hold:

(1) The matrix M j,1 is a stable completion of M j,0. Also, the inverse Gj of

M j = (M j,0,M j,1) takes the form

Gj =

 M̃
T

j,0

Ǧj,1

 . (6.20)

(2) Setting

Ψj := MT
j,1Φj+1, Ψ̃j := Ǧj,1Φ̃j+1, (6.21)

and

Ψ := Φj0 ∪
⋃
j≥j0

Ψj, Ψ̃ := Φ̃j0 ∪
⋃
j≥j0

Ψ̃j, (6.22)

then Ψ, Ψ̃ are biorthogonal Riesz bases for L2(0, 1); i.e., for Ψj0−1 :=

Φj0 , Ψ̃j0−1 := Φ̃j0 ,

〈
Ψj, Ψ̃j′

〉
(0,1)

= δj,j′I
(2j), j, j′ ≥ j0 − 1, (6.23)

and ∣∣∣ suppψj,k

∣∣∣ ∼ 2−j,
∣∣∣supp ψ̃j,k

∣∣∣ ∼ 2−j, j ≥ j0. (6.24)
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(3) Let γ̃ := sup{s > 0 : ϕ̃ = d,d̃ϕ̃ ∈ Hs(R)} then,

∑
k∈∆j0

∣∣∣∣〈v, φ̃j0,k〉
(0,1)

∣∣∣∣2 +
∞∑
j=j0

2j∑
k=1

22sj

∣∣∣∣〈v, ψ̃j,k〉
(0,1)

∣∣∣∣2
 1

2

∼

{
‖v‖H2(0,1), s ∈ [0, d]

‖v‖H−s(0,1)∗ , s ∈ (−γ̃, 0)

.

Note 6.3 The refinement matrices M j,0 and M̃ j,0 introduced in [28] has the

following structure

M j,0 :=

ML

Aj

MR

, M̃ j,0 :=

M̃L

Ãj

M̃R

. (6.25)

Actually, the refinement matrices constructed in [28] failed to solve ODE prob-

lems. This is because the boundary wavelet functions introduced in the paper

required a minimal level of resolution (j0 ≥ 4). The value of j0 depended on the

order of scaling basis functions used in the discretization of the problem. This

minimal resolution meant that preconditioning is not fully under control. As a

result, stiffness matrices with high condition numbers were still being produced by

the preconditioning wavelet algorithms. This was also a feature of the refinement

matrices.
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Although the authors introduced a special class of boundary functions, namely

Bernstein polynomials, to improve the condition numbers for the resulting refine-

ment matrices, the basic problem of minimal resolution went unaddressed and

high condition numbers of the stiffness matrices were still showing.

Similar difficulties were encountered in the work of Černà and Finěk [15-18].

They constructed a cubic B-spline φb on the boundary of [0, 1]. Using the scaling

function φ(x) inside the interval [0, 1] with the boundary function φb, they have

known structure for the matricesM j,0. Also, they defined the mother wavelet ψ(x)

in the form ψ(x) = −1
2
φ(2x) + φ(2x− 1)− 1

2
φ(2x− 2). Moreover, they suggested

a boundary wavelet ψb(x) = φb(2x) + mφ(2x) + nφ(2x), with few possibilities

of m and n. As a result, the refinement matrices M j,1 have a known structure.

Finally, they exploited the biorthogonal properties of the refinement matrices; i.e.,

MT
j,0M̃ j,1 = Ij and MT

j,1M̃ j,0 = 0j, to find the dual refinement matrices M̃ j,1

and M̃ j,0. All of these refinement matrices have bounded condition numbers.

However, high condition numbers of stiffness matrices were still showing.

We overcame these difficulties by constructing scaling functions inside the

interval [0, 1] and allow the dual functions not to be so restricted. This enabled us

to construct our refinement matrices with the lower condition numbers by reaching

the resolution level j0 = 1.
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6.6 Wavelet Basis in L2(R2)

In this section, we introduce the tensor product of matrices, and the tensor product

of subspaces with some theorems. These tools will be of a crucial importance in

the construction of the two-dimensional fast wavelet transform.

6.6.1 Tensor product

One of the main advantages of tensor products is the ease of the generalization of

the involved operators to higher dimensions [60].

Definition 6.2 (Tensor Product of Matrices) The tensor product (Kro-

necker product, direct product) of two matrices Am×n and Br×s, denoted by A⊗B

and has dimension mr × ns, is the block matrix

A⊗B =



a11B a12B . . . a1nB

a21B a22B . . . a2nB

...
...

...

am1B am2B . . . amnB


.

Some of the elementary properties of tensor product of matrices are:

(A+B)⊗C = A⊗C +B ⊗C, A⊗ (B +C) = A⊗B +A⊗C.

(A⊗B)(C ⊗D) = AC ⊗BD, (A⊗B)−1 = A−1 ⊗B−1.

For brevity, we do not indicate explicitly the sizes of the matrices involved; we
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assume throughout that the sizes of matrices and vectors are compatible with the

indicated operations.

Definition 6.3 (Tensor Products of Spaces) For the two subspaces V, W ⊆

L2(R), we define the tensor product space V ⊗W by

V ⊗W = span{f(x)g(y) : f ∈ V, g ∈ W} ⊆ L2(R2).

Theorem 6.4 Let E = (εi) be an orthonormal basis for V and F = (ηj) be an

orthonormal basis for W , then

E ⊗ F = (εiηj) (6.26)

is an orthonormal basis for V ⊗W .

Proof. Since E be an orthonormal basis for V , and F is an orthonormal basis

for W , then E ⊗ F = (εiηj) are elements in V ⊗W . We need to show that these

elements form an orthonormal basis for V ⊗W . For i, j, `,m ∈ N, we have

〈εiηj, ε`ηm〉 =

¨

R2

εi(x)ηj(y)ε`(x)ηm(y)dydx

=

ˆ

R

εi(x)ε`(x)dx

ˆ

R

ηj(y)ηm(y)dy

= δi`δjm.

Therefore, E⊗F = (εiηj) are orthonormal. To show that E⊗F form a basis for
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V ⊗W . Let f ∈ V and g ∈ W , then we can readily show that

f(x)g(y) = αTEγTF = (α⊗ γ)TE ⊗ F = rT (E ⊗ F ).

Next, for h ∈ V ⊗W of the form

h(x, y) =
s∑
i=1

αifi(x)gi(y) =
s∑
i=1

αir
T
i (E ⊗ F ) = κT (E ⊗ F ).

Therefore, any element in V ⊗W can be expressed in terms of E ⊗ F . Hence,

E ⊗ F is an orthonormal basis for V ⊗W .

A standard procedure can then be used for general h ∈ V ⊗W .

Theorem 6.5 Let U, V,W ⊆ L2(R), then (U + V )⊗W = U ⊗W + V ⊗W .

Proof. It is trivial to show that (U + V ) ⊗W ⊆ (U ⊗W ) + (V ⊗W ) since

(f(x) + g(x))h(y) = f(x)h(y) + g(x)h(y).

To show that (U ⊗W ) + (V ⊗W ) ⊆ (U + V )⊗W , it is enough to consider only

elements of the form f(x)g(y) + h(x)p(y)

f(x)g(y) = (f(x) + 0)g(y) ∈ (U + V )⊗W,

h(x)p(y) = (0 + h(x))p(y) ∈ (U + V )⊗W.

Therefore f(x)g(y) + h(x)p(y) ∈ (U + V )⊗W .
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Corollary 6.6

(U + V )⊗ (W + Y ) = (U ⊗W ) + (U ⊗ Y ) + (V ⊗W ) + (V ⊗ Y ).

6.6.2 Two-dimensional Fast Wavelet Transform

The one-dimensional fast wavelet transform with the aid of the tensor product of

subspaces are used here to generate the two-dimensional fast wavelet transform.

The approximation space in L2(R2) is taken as S2
j := Sj ⊗ Sj. For biorthogonal

wavelets, since Sj = Sj−1 ⊕Wj−1,

S2
j = Sj ⊗ Sj = (Sj−1 ⊕Wj−1)⊗ (Sj−1 ⊕Wj−1)

= (Sj−1 ⊗ Sj−1)⊕ (Sj−1 ⊗Wj−1)⊕ (Wj−1 ⊗ Sj−1)⊕ (Wj−1 ⊗Wj−1)

= S2
j−1 ⊕W 21

j−1 ⊕W 22
j−1 ⊕W 23

j−1 = S2
j−1 ⊕W 2

j−1,

where, W 2
j−1 := W 21

j−1 ⊕W 22
j−1 ⊕W 23

j−1.

Therefore, the bases may be taken as

S2
j : {ϕj,kϕj,` : (k, `) ∈ Z2} := {ϕ2

j,k : k ∈ Z2} := Φ2
j = Φj ⊗ Φj.

S2
j−1 : {ϕj−1,kϕj−1,` : (k, `) ∈ Z2} := {ϕ2

j−1,k : k ∈ Z2} := Φ2
j−1 = Φj−1 ⊗ Φj−1.

W 21
j−1 : {ϕj−1,kψj−1,` : (k, `) ∈ Z2} := {ψ21

j−1,k : k ∈ Z2} := Ψ21
j−1 = Φj−1 ⊗Ψj−1.

W 22
j−1 : {ψj−1,kϕj−1,` : (k, `) ∈ Z2} := {ψ22

j−1,k : k ∈ Z2} := Ψ22
j−1 = Ψj−1 ⊗ Φj−1.

W 23
j−1 : {ψj−1,kψj−1,` : (k, `) ∈ Z2} := {ψ23

j−1,k : k ∈ Z2} := Ψ23
j−1 = Ψj−1 ⊗Ψj−1.
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The refinement relations are obtained as follows

Φ2
j = Φj ⊗ Φj = Hj+1Φj+1 ⊗Hj+1Φj+1

= (Hj+1 ⊗Hj+1)(Φj+1 ⊗ Φj+1)

:= H2
j+1Φ2

j+1.

In the same manner, we can get

Ψ21
j := (Hj+1 ⊗Gj+1)Φ2

j+1, Ψ22
j := (Gj+1 ⊗Hj+1)Φ2

j+1, Ψ23
j := G2

j+1Φ2
j+1,

where Hj+1 and Gj+1 were introduced in (3.18) and (6.6), respectively.

We similarly deal with the dual spaces S̃2
j , W̃

2
j , their bases and their refinement

relations.

6.7 Biorthogonal Wavelets in L2(R2)

6.7.1 2D Projections

Let ϕ and ϕ̃ generate biorthogonal MRA’s in L2(R). Define the projections

P j : L2(R2)→ S2
j , P̃ j : L2(R2)→ S̃2

j , (6.27)

Qj : L2(R2)→ W 2
j , Q̃j : L2(R2)→ W̃ 2

j , (6.28)
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by

P jf =
〈
f, Φ̃2

j

〉
Φ2
j , P̃ jf =

〈
f,Φ2

j

〉
Φ̃2
j ,

Qjf =
〈
f, Ψ̃2

j

〉
Ψ2
j , Q̃jf =

〈
f,Ψ2

j

〉
Ψ̃2
j .

Proposition 6.3 According to the definitions of P j, P̃ j,Qj and Q̃j, we have:

1. Qj, Q̃j are projections onto W 2
j = Range(Qj), W̃ 2

j = Range(Q̃j), respectively.

2. QjP j = P jQj = Q̃jP̃ j = P̃ jQ̃j = 0.

3. W 2
j ⊥ S̃2

j , W̃
2
j ⊥ S2

j .

4. S2
j+1 = S2

j ⊕W 2
j , S̃

2
j+1 = S̃2

j ⊕ W̃ 2
j .

6.7.2 2D Wavelet Transform (Decomposition)

Given f ∈ L2(R2), then

P jf = P j−1f +Qj−1f

=
〈
f, Φ̃2

j−1

〉
Φ2
j−1 +

〈
f, Ψ̃21

j−1

〉
Ψ21
j−1 +

〈
f, Ψ̃22

j−1

〉
Ψ22
j−1 +

〈
f, Ψ̃23

j−1

〉
Ψ23
j−1

= CTj−1Φ2
j−1 + D12T

j−1Ψ21
j−1 + D22T

j−1Ψ22
j−1 + D23T

j−1Ψ23
j−1.

Where,

Cj−1 :=
〈

Φ̃2
j−1, f

〉
is the approximation coefficient at level j − 1,

D21
j−1 :=

〈
Ψ̃21
j−1, f

〉
is the horizontal detail coefficient at level j − 1,

D22
j−1 :=

〈
Ψ̃22
j−1, f

〉
is the vertical detail coefficient at level j − 1,
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D23
j−1 :=

〈
Ψ̃23
j−1, f

〉
is the diagonal detail coefficient at level j − 1.

The coarser level approximation coefficient Cj−1 is obtained from Cj by

Cj−1 =
〈

Φ̃2
j−1, f

〉
=
〈
H̃

2

j Φ̃
2
j , f
〉

= H̃
2

j

〈
Φ̃2
j , f
〉

= H̃
2

jCj,

or Cj−1 = H̃
2

jCj. Similarly D21
j−1, D22

j−1 and D23
j−1 are obtained from CTj by

D12
j−1 =

〈
Ψ̃21
j−1, f

〉
=
〈

(H̃j ⊗ G̃j)Φ̃
2
j , f
〉

= (H̃j ⊗ G̃j)
〈

Φ̃2
j , f
〉

= (H̃j ⊗ G̃j)Cj,

D22
j−1 =

〈
Ψ̃22
j−1, f

〉
=
〈

(G̃j ⊗ H̃j)Φ̃
2
j , f
〉

= (G̃j ⊗ H̃j)
〈

Φ̃2
j , f
〉

= (G̃j ⊗ H̃j)Cj,

D23
j−1 =

〈
Ψ̃23
j−1, f

〉
=
〈
G̃

2

j Φ̃
2
j , f
〉

= G̃
2

j

〈
Φ̃2
j , f
〉

= G̃
2

jCj.

Algorithm 7 lists the two-dimensional wavelet transform (decomposition)

algorithm. The input ν to this algorithm represents the number of boundary ba-

sis functions to be added to each endpoint 0 and 1. See Chapter 7 for more details.
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Algorithm 7: Two-dimensional Wavelet Transform (D2WT)

Input : Vector C of scaling vector at level j, ν,

dimC = (2j − (d− 1) + 2ν)2

Output: Vector Cw, the wavelet transform of C; i.e., Cw = D2WT(C)

1 Cj = C

2 for k = j − 1 down to j0 do

3 Ck =
(
H̃k+1 ⊗ H̃k+1

)
Ck+1

4 D21
k =

(
H̃k+1 ⊗ G̃k+1

)
Ck+1

5 D22
k =

(
G̃k+1 ⊗ H̃k+1

)
Ck+1

6 D23
k =

(
G̃k+1 ⊗ G̃k+1

)
Ck+1.

7 end

8 Cw = Cj0

9 for k = j0 up to j − 1 do

10 Cw =



Cw

D21
k

D22
k

D23
k


11 end

6.7.3 2D Inverse Wavelet Transform (Reconstruction)

The equation

P jf = P j−1f +Qj−1f
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gives

CTj Φ2
j = CTj−1Φ2

j−1 + D21T

j−1Ψ21
j−1 + D22T

j−1Ψ22
j−1 + D23T

j−1Ψ23
j−1

=
(
CTj−1H

2
j + D21T

j−1(Hj ⊗Gj) + D22T

j−1(Gj ⊗Hj) + D23T

j−1G
2
j

)
Φ2
j .

Therefore,

Cj = H2T

j Cj−1 + (HT
j ⊗GT

j )D21
j−1 + (GT

j ⊗HT
j )D22

j−1 +G2T

j D23
j−1,

which is used to reconstruct Cj from Cj−1 and Dj−1.

Algorithm 8 depicts the two-dimensional inverse wavelet transform (or reconstruc-

tion) algorithm. The input ν to this algorithm represents the number of boundary

basis functions to be added to each endpoint 0 and 1. See Chapter 7 for more

details.
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Algorithm 8: Two-dimensional Inverse Wavelet Transform (D2IWT)

Input : Vector Cw of wavelet vector at level j, ν,

dimCw = (2j − (d− 1) + 2ν)2

Output: Vector C, the scaling vector of Cw; i.e., C = D2IWT(Cw)

1 Cj0 = Cw(1)

2 index = 2j0 for k = j0 up to j − 1 do

3 Dk = Cw(index : index + 22k − 1)

4 index = index + 22k

5 end

6 for k = j0 + 1 up to j do

7 Ck = H2T

k Ck−1 + (HT
k ⊗GT

k )D21
k−1 + (GT

k ⊗HT
k )D22

k−1 +G2T

k D23
k−1

8 end

9 C = Cj

Algorithm 9 represents the two-dimensional wavelet preconditioned conjugate

gradient algorithm. The input ν to this algorithm represents the number of

boundary basis functions to be added to each endpoint 0 and 1. See Chapter 7

for more details.
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6.7.4 2D Wavelet PCG Algorithm

Algorithm 9: Two-dimensional Wavelet PCG Algorithm

Result: solving the system AΦ2x = b

Input : AΦ2 , b,x0 = 0, tol, kmax and a preconditioner P = D−2 ⊗D−2

D := 2j(δk,k′)(j,k),(j′,k′)∈J

Output: Vector x

1 r0 = b−AΦ2x0

2 h0 = D2IWT(PD2WT(r0))

3 d0 = −h0

4 for k = 0 up to kmax−1 do

5 if ‖rk‖ < tol then

6 EXIT

7 end

8 αk = 〈rk,hk〉
〈dk,dk〉A

Φ2

9 xk+1 = xk − αkdk

10 rk+1 = rk + αkAΦ2dk

11 hk+1 = D2IWT(PD2WT(rk+1))

12 βk = 〈rk+1,hk+1〉
〈rk,hk〉

13 dk+1 = βkdk − hk+1,

14 end

15 x = xk+1
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For Φ2
j = {ϕj,k(x)ϕj,`(y) : k, ` ∈ {1, 2, . . . , 2j−1} and `,m, s, t ∈ {1, 2, . . . , 2j−1},

we have

(
A2D
j

)
(`,m),(s,t)

=
(
〈Φ2

j ,Φ
2
j〉
)

(`,m),(s,t)
= 〈ϕj,`(x)ϕj,m(y), ϕj,s(x)ϕj,t(y)〉

=

1ˆ

0

1ˆ

0

ϕj,`(x)ϕj,m(y)ϕj,s(x)ϕj,t(y)dxdy

=

1ˆ

0

ϕj,`(x)ϕj,s(x)dx

1ˆ

0

ϕj,m(y)ϕj,t(y)dy

= (Aj)`,s(Aj)m,t

= (Aj ⊗Aj)(`,m),(s,t).

Therefore A2D
j = Aj ⊗Aj.

Definition 6.4 (Two-dimensional Vector-Valued basis functions) Let

Φj = {ϕj,k : k ∈ {1, 2, . . . , 2j− 1}} be a one-dimensional vector of basis functions.

The notation Φ2
j stands for the vector of two-dimensional basis functions; i.e.,

Φ2
j = {ϕj,k(x)ϕj,`(y) : k, ` ∈ {1, 2, . . . , 2j − 1},

and the vector-valued inner product
〈
Φ2
j ,Φ

2
j

〉
= A2D

j is given by the (2j − 1)2 ×

(2j − 1)2 matrix

A2D
j = Aj ⊗Aj, (6.29)

where,

(Aj)m,n =

1ˆ

0

ϕj,m(x)ϕj,n(x)dx, m, n ∈ {1, 2, . . . , 2j − 1}. (6.30)
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Moreover, the vector-valued inner product
〈
∇Φ2

j ,∇Φ2
j

〉
= B2D

j is given by the

(2j − 1)2 × (2j − 1)2 matrix

B2D
j = Aj ⊗A′j +A′j ⊗Aj, (6.31)

where,

(
A

(`)
j

)
m,n

=

1ˆ

0

ϕ
(`)
j,m(x)ϕ

(`)
j,n(x)dx, m, n ∈ {1, 2, . . . , 2j − 1}, ` = 0, 1.

In the following example, we illustrate the results of solving two-dimensional self-

adjoint problem with Dirichlet boundary conditions.

Example 6.7 (2D self-adjoint problem with Dirichlet boundary condition)

Find the solution for the following two dimensional self-adjoint problem


−∆u = f in Ω

u = 0 on ∂Ω

, (6.32)

where Ω = (0, 1) × (0, 1), and f = 8π2 sin(2πx) sin(2πy). The exact solution for

the problem is given by

u = sin(2πx) sin(2πy).

Given j ≥ 1, let

Πj : 0 < h < 2h < · · · < (2j − 1)h < 1, h = 2−j (6.33)
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be a uniform partition of the interval [0, 1].

The Discrete Wavelet Galerkin Method

Given j ≥ 1, let Sj ⊗ Sj ⊂ L2(R2) represent the trial and test space at level j.

For d = 2, Sj is the span of linear B-splines on the partition Πj which satisfies

the Dirichlet boundary conditions. The basis Φj for Sj is generated by the linear

B-spline 2ϕ. For j ∈ N, the basis Φ2
j for Sj ⊗ Sj is given by

Φ2
j = 2ϕj,k(x)2ϕj,`(y), k, ` ∈ {1, 2, . . . , 2j − 1}.

The discrete Galerkin method reads:

Find Uj ∈ Sj ⊗ Sj such that

〈−∆Uj, Vj〉 = 〈f, Vj〉 ∀Vj ∈ Sj ⊗ Sj. (6.34)

So, the solution Uj ∈ Sj ⊗ Sj is given by

Uj = cTΦ2
j .

Substituting this in Equation (6.34), we get the matrix equation

〈
∇Φ2

j ,∇Φ2
j

〉
c =

〈
Φ2
j , f
〉
. (6.35)

The matrix equation constitutes of (2j − 1)2 linear equations in the (2j − 1)2
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unknowns

c =

[
c1,1 c1,2 . . . c2j−1,2j−1

]T
.

Also 〈
∇Φ2

j ,∇Φ2
j

〉
= 〈Φj,Φj〉 ⊗

〈
Φ′j,Φ

′
j

〉
+
〈
Φ′j,Φ

′
j

〉
⊗ 〈Φj,Φj〉 . (6.36)

To solve this system, we use the two-dimensional wavelet preconditioned conjugate

gradient algorithm (Algorithm 9) with

A = (〈Φj,Φj〉 ⊗
〈
Φ′j,Φ

′
j

〉
+
〈
Φ′j,Φ

′
j

〉
⊗ 〈Φj,Φj〉), b =

〈
Φ2
j , f
〉
, ν = 0.

Table 6.1 gives the results of solving (6.32).

Table 6.1: Results for solving a two dimensional self-adjoint problem

Level The L2 Error

4 3.9321972e-02

5 9.6859083e-03

6 2.4125411e-03

7 6.0257835e-04

According to Whitney estimate (3.35) and Jackson’s inequality (3.36), the

results confirm the expected order 2 convergence.

Remark 6.8 All the constructions carried out in 2D can be extended to n-

dimensions, that is L2(Rn). The details are rather technical.
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CHAPTER 7

A WAVELET GALERKIN

METHOD (WG)

In this chapter, we use the wavelet Galerkin method to solve self-adjoint problems.

In Section 7.1 we start with an investigation of the number of basis functions re-

quired to solve Dirichlet problems. In Section 7.2 we construct cubic and quintic

B-splines with specific boundary values. The construction is illustrated by ap-

plication to second and fourth order Dirichlet problems. In Section 7.4 a novel

reduction of order method is introduced to solve a class of fourth order self-adjoint

Dirichlet problems. The method reduces a fourth order differential equation into

a system of two second order differential equations.
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7.1 Basis Functions for the Dirichlet Problem on

[0,1]

The difficulty with dealing with a finite interval is that not all B-splines are sup-

ported in that interval. Those splines which overlap the complement of the in-

terval do not satisfy Dirichlet boundary conditions and have to be eliminated.

When d = 2, only one spline overlaps each endpoint and the rest satisfy Dirichlet

boundary conditions and form a complete basis in Sj. Consequently, no addi-

tional splines are needed. We simply remove the two unwanted basis functions.

For d > 2, we will need to exclude several B-splines at each endpoint. These

splines are to be replaced with suitable ones to retain completeness of the basis

functions; which we will now discuss.

The weak formulation of the (2n)th order differential equation requires that

the basis functions possess at least n weak derivatives. Hence, it will suffice to

design splines with degree d ≥ n+ 1. On the other hand, a complete set of basis

functions for Sj with the Dirichlet boundary conditions on [0, 1] consists of one

basis function for each internal dyadic point 2−jk, k = 1, . . . , 2j − 1. For d even,

recall that

supp dϕ =

[
−d

2
,
d

2

]
,

supp dϕj,k = 2−j
[
−d

2
+ k,

d

2
+ k

]
, k = 0, . . . , 2j,

supp dϕj,k ⊂ [0, 1] for k =
d

2
,
d

2
+ 1, . . . , 2j − d

2
.
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This means that we need ν = d
2
− 1 additional basis functions at each endpoint.

For instance,

• when 2n = 2, d ≥ 2. If we take d = 2, then ν = 0 and no additional

functions are needed.

• when 2n = 4, d ≥ 3. It is customary to take d even. If we take d = 4, then

ν = 1 additional basis function at each endpoint.

• when 2n = 8, d ≥ 5. If we take d = 6, then ν = 2 additional basis functions

are needed and so on.

Of course the number of additional basis functions increases if we require higher

accuracy (higher value of d).

The additional basis functions are designed in one of the two ways:

(1) We take a linear combination of the basis functions overlapping the endpoints

[68]. Then we apply the boundary conditions on these linear combinations.

(2) We design special B-splines dϕ̂
0
j,`, ` = 1, . . . , ν, near 0 endpoint satisfying

Dirichlet conditions

supp dϕ̂
0
j,` = 2−j [0, d] ,

dϕ̂
0(k)

j,` (0) = 0, k = 0, . . . , n− 1.

In addition, we require that

dϕ̂
0(k)

j,` (0) 6= 0.
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It may be necessary to specify conditions on derivatives higher than n in order

to fully specify the B-spline.

At the right endpoint, we take dϕ̂
1
j,`(x) = dϕ̂

0
j,`(1− x).

7.2 Constructing Cubic and Quintic B-splines

Following the discussion in Section 7.1, we construct boundary basis functions

that satisfy Dirichlet boundary conditions. This will give us a complete set of

basis functions at the jth approximation level. Here, we construct B-splines with

specific boundary conditions that can be used to approximate solutions of Dirichlet

problems.

Although we have introduced a formula for a centralized B-spline in (3.20), we

cannot modify this formula in order to achieve B-splines with specific boundary

conditions. Therefore, we build these B-splines form the beginning depending

on B-spline properties introduced in Proposition 3.2. For more details on spline

construction see e.g., [20].

We begin by constructing the C2[0, 1] internal cubic B-splines (d = 4).

φ(x) =



S1 = a1x
3 + b1x

2 + c1x+ d1, −2 ≤ x ≤ −1

S2 = a2x
3 + b2x

2 + c2x+ d2, −1 ≤ x ≤ 0

S3 = a3x
3 + b3x

2 + c3x+ d3, 0 ≤ x ≤ 1

S4 = a4x
3 + b4x

2 + c4x+ d4, 1 ≤ x ≤ 2
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For (k = 0, 1, 2) we apply the following conditions on φ(x)

φ(k)(−2) = φ(k)(2) = 0, (7.1)

2ˆ

−2

φ(x)dx = 1, (7.2)

to get

4ϕ(x) =



1
6
x3 + x2 + 2x+ 4

3
, −2 ≤ x ≤ −1

−1
2
x3 − x2 + 2

3
, −1 ≤ x ≤ 0

1
2
x3 − x2 + 2

3
, 0 ≤ x ≤ 1

−1
6
x3 + x2 − 2x+ 4

3
, 1 ≤ x ≤ 2

0, Otherwise

(7.3)

−2 −1 0 1 2

0

0.2

0.4

0.6

Figure 7.1: Cubic B-Spline φ(x) (φ(k)(−2) = φ(k)(2) = 0, k = 0, 1, 2).

Hence, supp 4ϕ(x) = [−2, 2]. For j ≥ 2 and k = 2, 3, . . . , 2j − 2, 4ϕj,k is

supported in [0, 1]. Note that these 2j − 3 linearly independent elements are not

enough to form a complete basis in Sj as discussed in Section 7.1. Therefore, we
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need to construct additional basis functions at each endpoint.

For n = 1, we require, for m = 0, 1, that ϕ̂0
j,m(0) = 0 and (ϕ̂0′

j,0(0) 6= 0 and

ϕ̂0′′
j,1(0) 6= 0). Changing φ′(−2) = 0 in (7.1) into φ′(−2) = 12

11
, we get the cubic

B-spline

ϑ1(x) =



− 4
11
x3 − 24

11
x2 − 36

11
x− 8

11
, −2 ≤ x ≤ −1

6
11
x3 + 6

11
x2 − 6

11
x+ 2

11
, −1 ≤ x ≤ 0

− 2
11
x3 + 6

11
x2 − 6

11
x+ 2

11
, 0 ≤ x ≤ 1

0, Otherwise

(7.4)

−2 −1 0 1 2

0

0.2

0.4

0.6

0.8

Figure 7.2: Cubic B-Spline ϑ1(x) (ϑ′1(−2) = 12
11

).

Changing φ′′(−2) = 0 in (7.1) into φ′′(−2) = 4, we get the cubic B-spline

ϑ2(x) =



−11
9
x3 − 16

3
x2 − 20

3
x− 16

9
, −2 ≤ x ≤ −1

7
9
x3 + 2

3
x2 − 2

3
x+ 2

9
, −1 ≤ x ≤ 0

−2
9
x3 + 2

3
x2 − 2

3
x+ 2

9
, 0 ≤ x ≤ 1

0, Otherwise

(7.5)
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−2 −1 0 1 2

0

0.2

0.4

0.6

0.8

Figure 7.3: Cubic B-Spline ϑ2(x) (ϑ′′2(−2) = 4)

Then we may take

4ϕ̂
0
j,0(x) = 2j/2ϑ1(2jx− 2) (7.6)

and

4ϕ̂
0
j,1(x) = 2j/2ϑ2(2jx− 2). (7.7)

Note that 4ϕ̂
0
j,0 and 4ϕ̂

0
j,1 are supported in [0, 1] for j ≥ 2. Also, they satisfy

the Dirichlet boundary condition 4ϕ̂
0
j,0(0) = 4ϕ̂

0
j,1(0) = 0, and they are linearly

independent from the other internal basis functions.

For n = 2, we may take 4ϕ̂
0
j,1(x) = 2j/2ϑ2(2−jx−2). Note that, for j ≥ 2, 4ϕ̂

0
j,1

is supported in [0, 1], and it satisfies the Dirichlet boundary conditions 4ϕ̂
0
j,1(0) =

4ϕ̂
0′
j,1(0) = 0. Moreover, it is linearly independent from the other internal basis

functions.
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We construct now the internal C4[0, 1] quintic B-spline (d = 6).

ψ(x) =



S1 = a1x
5 + b1x

4 + c1x
3 + d1x

2 + e1x+ f1, −3 ≤ x ≤ −2

S2 = a2x
5 + b2x

4 + c2x
3 + d2x

2 + e2x+ f2, −2 ≤ x ≤ −1

S3 = a3x
5 + b3x

4 + c3x
3 + d3x

2 + e3x+ f3, −1 ≤ x ≤ 0

S4 = a4x
5 + b4x

4 + c4x
3 + d4x

2 + e4x+ f4, 0 ≤ x ≤ 1

S5 = a5x
5 + b5x

4 + c5x
3 + d5x

2 + e5x+ f5, 1 ≤ x ≤ 2

S6 = a6x
5 + b6x

4 + c6x
3 + d6x

2 + e6x+ f6, 2 ≤ x ≤ 3

For (k = 0, 1, 2, 3, 4) we apply the following conditions on ψ(x)

ψ(k)(−3) = ψ(k)(3) = 0, (7.8)

3ˆ

−3

ψ(x)dx = 1, (7.9)

to get

6ϕ(x) =



1
120
x5 + 1

8
x4 + 3

4
x3 + 9

4
x2 + 27

8
x+ 81

40
, −3 ≤ x ≤ −2

−1
24
x5 + −3

8
x4 + −5

4
x3 + −7

4
x2 + −5

8
x+ 17

40
, −2 ≤ x ≤ −1

1
12
x5 + 1

4
x4 + −1

2
x2 + 11

20
, −1 ≤ x ≤ 0

−1
12
x5 + 1

4
x4 + −1

2
x2 + 11

20
, 0 ≤ x ≤ 1

1
24
x5 + −3

8
x4 + 5

4
x3 + −7

4
x2 + 5

8
x+ 17

40
, 1 ≤ x ≤ 2

−1
120
x5 + 1

8
x4 + −3

4
x3 + 9

4
x2 + −27

8
x+ 81

40
, 2 ≤ x ≤ 3

0, Otherwise

(7.10)
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−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

Figure 7.4: Quintic B-Spline ψ(x) (ψ(k)(−3) = ψ(k)(3) = 0, k = 0, 1, 2, 3, 4).

Hence, supp 6ϕ(x) = [−3, 3]. For j ≥ 2 and k = 3, 4, . . . , 2j − 3, 6ϕj,k is

supported in [0, 1]. Note that these 2j − 5 linearly independent elements are not

enough to form a complete basis in Sj as discussed in Section 7.1. Therefore, we

need additional basis functions at each endpoint.

For n = 1, we require, for m = 0, 1, 2 that ϕ̂0
j,m(0) = 0 and (ϕ̂0′

j,0(0) 6= 0,

ϕ̂0′′
j,1(0) 6= 0 and ϕ̂0′′′

j,2 (0) 6= 0). Changing ψ′(−3) = 0 in (7.8) into ψ′(−3) = 6
17

, we

get the quintic B-spline

%1(x) =



−3
340
x5 − 9

68
x4 − 27

34
x3 − 81

34
x2 − 219

68
x− 369

340
, −3 ≤ x ≤ −2

11
340
x5 + 19

68
x4 + 29

34
x3 + 31

34
x2 + 5

68
x+ 79

340
, −2 ≤ x ≤ −1

−3
68
x5 − 7

68
x4 + 3

34
x3 + 5

34
x2 − 21

68
x+ 53

340
, −1 ≤ x ≤ 0

9
340
x5 − 7

68
x4 + 3

34
x3 + 5

34
x2 − 21

68
x+ 53

340
, 0 ≤ x ≤ 1

−1
170
x5 + 1

17
x4 − 4

17
x3 + 8

17
x2 − 8

17
x+ 16

85
, 1 ≤ x ≤ 2

0, Otherwise

(7.11)
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−3 −2 −1 0 1 2 3

0

0.1

0.2

0.3

0.4

0.5

Figure 7.5: Quintic B-Spline %1(x) (%′1(−3) = 6
17

).

Changing ψ′′(−3) = 0 in (7.8) into ψ′′(−3) = 8
15

, we get the quintic B-spline

%2(x) =



−17
900
x5 − 17

60
x4 − 17

10
x3 − 29

6
x2 − 121

20
x− 219

100
, −3 ≤ x ≤ −2

3
50
x5 + 91

180
x4 + 131

90
x3 + 133

90
x2 + 47

180
x+ 301

900
, −2 ≤ x ≤ −1

−16
225
x5 − 3

20
x4 + 13

90
x3 + 1

6
x2 − 71

180
x+ 61

300
, −1 ≤ x ≤ 0

17
450
x5 − 3

20
x4 + 13

90
x3 + 1

6
x2 − 71

180
x+ 61

300
, 0 ≤ x ≤ 1

−7
900
x5 + 7

90
x4 − 14

45
x3 + 28

45
x2 − 28

45
x+ 56

225
, 1 ≤ x ≤ 2

0, Otherwise

(7.12)
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−3 −2 −1 0 1 2 3

0

0.2

0.4

Figure 7.6: Quintic B-Spline %2(x) (%′′2(−3) = 8
15

).

Changing ψ′′′(−3) = 0 in (7.8) into ψ′′′(−3) = 180
137

, we get the quintic B-spline

%3(x) =
1

1096



−45
1096

x5 − 675
1096

x4 − 1905
548

x3 − 4995
548

x2 − 5476
511

x− 1004
247

, −3 ≤ x ≤ −2

109
1096

x5 + 865
1096

x4 + 1175
548

x3 + 1165
548

x2 + 575
1096

x+ 473
1096

, −2 ≤ x ≤ −1

−105
1096

x5 − 205
1096

x4 + 105
548
x3 + 95

548
x2 − 495

1096
x+ 259

1096
, −1 ≤ x ≤ 0

51
1096

x5 − 205
1096

x4 + 105
548
x3 + 95

548
x2 − 495

1096
x+ 259

1096
, 0 ≤ x ≤ 1

−5
548
x5 + 25

274
x4 − 50

137
x3 + 100

137
x2 − 100

137
x+ 40

137
, 1 ≤ x ≤ 2

0, Otherwise

(7.13)
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−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

Figure 7.7: Quintic B-Spline %3(x) (%′′′3 (−3) = 180
137

).

Then we may take

6ϕ̂
0
j,0(x) = 2j/2%1(2jx− 3), (7.14)

6ϕ̂
0
j,1(x) = 2j/2%2(2jx− 3), (7.15)

and

6ϕ̂
0
j,2(x) = 2j/2%3(2jx− 3). (7.16)

Note that, for j ≥ 2, 6ϕ̂
0
j,0, 6ϕ̂

0
j,1 and 6ϕ̂

0
j,2 are supported in [0, 1], and they satisfy

the Dirichlet boundary condition 6ϕ̂
0
j,0(0) = 6ϕ̂

0
j,1(0) = 6ϕ̂

0
j,2(0) = 0. Moreover,

they are linearly independent from the other internal basis functions.

For n = 2, we may take 6ϕ̂
0
j,1, and 6ϕ̂

0
j,2. They satisfy the Dirichlet boundary

conditions 6ϕ̂
0
j,1(0) = 6ϕ̂

0′
j,1(0) = 0 and 6ϕ̂

0
j,2(0) = 6ϕ̂

0′
j,2(0) = 0, and they are

linearly independent from the other internal basis functions.
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7.3 Wavelet Galerkin Method (WG) For Dirich-

let Problems

In this section we are going to introduce some numerical experiments that uses

wavelet Galerkin method to solve second and fourth order Dirichlet problems.

We consider the following general one-dimensional (2n)th order self-adjoint

Dirichlet problem.

Given f : (0, 1)→ R, determine u : (0, 1)→ R such that

`(u) =
n∑
k=0

(−1)k
(
ak(x)u(k)

)(k)
= f,

u(m)(0) = u(m)(1) = 0, m = 0, 1, . . . , n− 1,

(7.17)

where ak(x) are bounded on [0, 1], k = 0, . . . , n, an(x) ≥ an > 0 and ak(x) ≥

0, k = 0, 1, . . . , n− 1.

Given j ≥ 1, let

Πj : 0 < h < 2h < · · · < (2j − 1)h < 1, h = 2−j (7.18)

be a uniform partition.

Multiplying both sides of (7.17) with a test function φ ∈ C∞0 (Ω) and integrat-

ing over Ω = (0, 1) yields to the weak formulation

1ˆ

0

f(x)φ(x) dx =
n∑
k=0

1ˆ

0

ak(x)u(k)(x)φ(k)(x) dx. (7.19)
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Let Sj represents the trial and test space at level j with a basis Φj. Sj is the span

of B-splines on the partition Πj which satisfies the Dirichlet boundary conditions.

The discrete Galerkin method is given by:

Find uj ∈ Sj such that

〈`(uj), vj〉 = 〈f, vj〉 ∀vj ∈ Sj. (7.20)

The solvability of (7.20) was discussed in Section 4.2. The solution uj ∈ Sj is

given by

uj = cTΦj. (7.21)

Substituting this in (7.20) yields to the following matrix equation

(
n∑
k=0

〈
akΦ

(k)
j ,Φ

(k)
j

〉)
c = 〈f(x),Φj〉 . (7.22)

7.3.1 WG For Second Order Dirichlet Problems (d = 2)

In this subsection, we illustrate the wavelet Galerkin solution for the second order

Dirichlet problem (7.17) with n = 1 using B-splines of order d = 2.

The Discrete Wavelet Galerkin Method

Given j ≥ 1, let Sj ⊂ H1
0 (0, 1) represent the trial and test space at level j. For

d = 2, Sj is the span of linear B-splines on the partition Πj which satisfy the

Dirichlet boundary conditions. These are also known as the hat functions. The
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basis for Sj is generated by the linear B-splines 2ϕj,k, k = 1, 2, . . . , 2j − 1. We set

Φj = {2ϕj,k : k = 1, 2, . . . , 2j − 1}.

Hence, the matrix equation (7.22) with n = 1 constitutes a set of (2j − 1)

linear equations in the (2j − 1) unknowns c =

[
c1 c2 . . . c2j−1

]T
. Since

〈`(ϕj,k), ϕj,m〉 = 0 if |k −m| ≥ 1, the bandwidth of the matrix equation is 3.

Example 7.1 (Second Order Dirichlet Problem (Trial d = 2, Test d = 2))

In this example we consider problem (7.17) with n = 1, a1(x) = 1, a0(x) = 0.1

and f(x) = cos(2πx). Then the matrix equation (7.22) becomes

( 〈
Φ′j,Φ

′
j

〉
+ 0.1 〈Φj,Φj〉

)
c = 〈cos(2πx),Φj〉 . (7.23)

To solve this system, we apply the one-dimensional wavelet preconditioned conju-

gate gradient algorithm (Algorithm 6) with

AΦ =
(〈

Φ′j,Φ
′
j

〉
+ 0.1 〈Φj,Φj〉

)
, b = 〈cos(2πx),Φj〉 , n = 1, ν = 0.

The refinement matrices (See (3.18), (3.27), (6.6), and (6.7)) used in Algorithm

6 are produced using the coefficients for 2ϕ, 6ϕ̃ in Table 3.1.

Table 7.1 gives the results of solving (7.23) using linear B-splines for the trial and

test spaces.
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Table 7.1: Results for 2nd order Dirichlet Problem Trial(d = 2),Test(d = 2)

Level Iterations The L2 Error
AΨ Condition #

Before Precond. After Precond.

4 20 1.6079666e-06 102 18

5 20 4.0435768e-07 410 29

6 20 1.0123641e-07 1642 35

7 20 2.5318210e-08 6572 40

8 20 6.3297361e-09 26293 44

9 20 1.5813943e-09 105176 46

According to Whitney estimate (3.35) and Jackson’s inequality (3.36), the

method has the expected order of convergence h2. Figure 7.8 illustrates the bound-

edness of the condition number against the level j. This boundedness ensure the

optimality of the wavelet preconditioning discussed in Section 6.4.
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Figure 7.8: Condition numbers of stiffness matrix AΨ after wavelet precondition-

ing with 2ϕ, 6ϕ̃ for different values of j.

7.3.2 WG For Fourth Order Dirichlet Problems (d = 4)

In this subsection, we illustrate the wavelet Galerkin solution for the fourth order

Dirichlet problem (7.17) with n = 2 using B-splines of order d = 4.

The Discrete Wavelet Galerkin Method

Given j ≥ 1, let Sj ⊂ H2
0 (0, 1) represent the trial and test space at level j.

For d = 4, Sj is the span of cubic B-splines on the partition Πj which satisfy the

Dirichlet boundary conditions. The basis for Sj is generated by the cubic B-splines

ϕj,k = 4ϕj,k, k = 2, . . . , 2j − 2, ϕj,1 = 4ϕ̂
0
j,1 and ϕj,2j−1(x) = 4ϕ̂

0
j,1(1 − x). Where

4ϕ and 4ϕ̂
0
j,1 are cubic B-splines defined explicitly in (7.3) and (7.7), respectively.

We set

Φj = {ϕj,k : k = 1, 2, . . . , 2j − 1}.
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Hence, the matrix equation (7.22) with n = 2 constitutes a set of (2j − 1)

linear equations in the (2j − 1) unknowns c =

[
c1 c2 . . . c2j−1

]T
. Since

〈`(ϕj,k), ϕj,m〉 = 0 if |k −m| ≥ 3, the bandwidth of the matrix equation is 7.

Example 7.2 (Fourth Order Dirichlet Problem (Trial d = 4, Test d = 4))

In this example we consider problem (7.17) with n = 2, a2(x) = 1, a1(x) = 100,

a0(x) = 1 and f(x) = cos(2πx). Then the matrix equation (7.22) becomes

( 〈
Φ′′j ,Φ

′′
j

〉
+ 100

〈
Φ′j,Φ

′
j

〉
+ 〈Φj,Φj〉

)
c = 〈cos(2πx),Φj〉 . (7.24)

To solve this system, we apply the one-dimensional wavelet preconditioned conju-

gate gradient algorithm (Algorithm 6) with

AΦ =
(〈

Φ′′j ,Φ
′′
j

〉
+ 100

〈
Φ′j,Φ

′
j

〉
+ 〈Φj,Φj〉

)
, b = 〈cos(2πx),Φj〉 , n = 2, ν = 1.

The refinement matrices (See (3.18), (3.27), (6.6), and (6.7)) used in Algorithm

6 are produced using the coefficients of d = 6, d̃ = 8 in Table 3.1.

Table 7.3.2 gives the results of solving (7.24) using B-splines of order 4 for the

trial and test spaces.
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Table 7.2: Results for 4th order Dirichlet Problem Trial(d = 4),Test(d = 4)

Level Iterations The L2 Error
AΨ Condition #

Before Precond. After Precond.

4 80 5.4933293e-09 402 40

5 80 3.3286719e-10 5430 61

6 80 2.0645050e-11 85791 73

7 80 1.3278952e-12 1.36832e+06 82

8 80 8.5340308e-14 2.18758e+07 87

9 80 5.4356884e-15 3.49943e+08 92

According to Whitney estimate (3.35) and Jackson’s inequality (3.36), the

results has the order of convergence h4. Figure 7.9 illustrates the boundedness of

the condition number against the level j. This boundedness ensure the optimality

of the wavelet preconditioning discussed in Section 6.4.
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Figure 7.9: Condition numbers of stiffness matrix AΨ for different values of j.
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7.4 Reduction of Order Method For a General

Fourth Order Problem

In this section we present a new method to solve the class of fourth order self-

adjoint problem

`(u) = u(4) − a1u
′′ + a0u = f,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

(7.25)

where a0 is nonnegative and bounded on [0, 1] and a1 is constant. Problem (7.25)

is transformed into a system of two second order Dirichlet problems. For this

purpose, we need to use vector wavelet transform, also known as multiwavelet

transform. The goal is to improve the conditioning of the stiffness matrix which

means faster converge. The procedure outlined in Chapter 5 can then be used to

find numerical solutions of any other self-adjoint problem with differential expres-

sion `(u).

To transform (7.25) into a system of two second order Dirichlet problems, we

proceed as follows. Let v = u′′ and w = u, then

 w′′

v′′

 =

 0 1

−a0 a1


 w

v

+

 0

f

 ,
 w

v

 (0) =

 w

v

 (1) = 0.

(7.26)
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Equation (7.26) can be written as

A(w, v ) = (−w′′ + v,−v′′ − a0w + a1v) = (0,−f) .

To develop the wavelet system for this problem, let ϕ, ψ, ϕ̃, ψ̃ be a dual set of

scaling wavelet functions in L2(R). Let S2
j = Sj × Sj. A basis for S2

j is generated

by Φ1
j = (Φj, 0) and Φ2

j = (0,Φj). Then, the approximation uj ∈ S2
j may then be

written as

uj = αTΦ1
j + βTΦ2

j =
(
αTΦj, β

TΦj

)
. (7.27)

So that,

Auj =
(
−αTΦ′′j + βTΦj,−βTΦ′′j − a0α

TΦj + a1β
TΦj

)
. (7.28)

Now,

〈Φ1
j ,Auj〉 = −〈Φj,Φ

′′
j 〉α + 〈Φj,Φj〉β

= 〈Φ′j,Φ′j〉α + 〈Φj,Φj〉β

=

[
〈Φ′j,Φ′j〉 〈Φj,Φj〉

] α

β

 .
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Also,

〈Φ2
j ,Auj〉 = −〈Φj, a0Φj〉α +

(
−〈Φj,Φ

′′
j 〉+ 〈Φj, a1Φj〉

)
β

= −〈Φj, a0Φj〉α +
(
〈Φ′j,Φ′j〉+ 〈Φj, a1Φj〉

)
β

=

[
−〈Φj, a0Φj〉 〈Φ′j,Φ′j〉+ 〈Φj, a1Φj〉

] α

β

 .

And,

〈Φ1
j , F 〉 = 0,

〈Φ2
j , F 〉 = 〈Φj,−f〉.

Then, we have the block matrix form


〈
Φ′j,Φ

′
j

〉
〈Φj,Φj〉

− 〈Φj, a0Φj〉
〈
Φ′j,Φ

′
j

〉
+ 〈Φj, a1Φj〉


 α

β

 =

 0

−〈Φj, f〉

 .

In other words

AΦx = b. (7.29)

Observe that the order of the derivatives is now reduced from 2 to 1. This means

that we can use lower degree of B-splines and hence, lower condition numbers. Our

numerical experiments confirm this statement (See example 7.4) Now, to solve

system (7.29) we proceed to develop vector-valued wavelet transform (Algorithm

10), inverse transform (Algorithm 11) and vector-valued preconditioned conjugate
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gradient algorithm (Algorithm 12).

7.4.1 Vector-Valued Fast Wavelet Transform

The projection Pj of f ∈ L2(Ω)
2

onto S2
j has two representations:

Pjf =
〈
f, Φ̃1

j

〉
Φ1
j +

〈
f, Φ̃2

j

〉
Φ2
j (Single Scale Representation)

=
(〈

f, Φ̃1
j0

〉
Φ1
j0

+
〈
f, Φ̃2

j0

〉
Φ2
j0

)
+

j−1∑
`=j0

(〈
f, Ψ̃1

`

〉
Ψ1
` +

〈
f, Ψ̃2

`

〉
Ψ2
`

)
(Multiscale Representation),

where, Φ1
j = (Φj, 0), Φ2

j = (0,Φj), Ψ1
j , Ψ2

j , Φ̃1
j , Φ̃2

j , Ψ̃1
j , Ψ̃2

j are defined similarly.

Note 7.3 For f = (f1, f2) ∈ L2(Ω)
2
,

Pjf =
〈
f, Φ̃1

j

〉
Φ1
j +

〈
f, Φ̃2

j

〉
Φ2
j

=
〈

(f1, f2) , (Φ̃j, 0)
〉

(Φj, 0) +
〈

(f1, f2), (0, Φ̃j)
〉

(0,Φj)

=
(〈
f1, Φ̃j

〉
Φj,
〈
f2, Φ̃j

〉
Φj

)
.

For s = 1, 2, the refinement equations are

Φs
j−1 = HjΦ

s
j−1, Φ̃s

j−1 = H̃jΦ̃
s
j−1, Ψs

j−1 = GjΨ
s
j−1, Ψ̃s

j−1 = G̃jΨ̃
s
j−1,

where Hj+1, H̃j+1, Gj+1, and G̃j+1 were introduced in (3.18), (3.27), (6.6), and

(6.7), respectively.
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7.4.2 Vector-Valued Wavelet Transform (Decomposition)

Given f = (f1, f2) ∈ L2(Ω)
2
,

Pjf = Pj−1f +Qj−1f

=
(〈

f, Φ̃1
j−1

〉
Φ1
j−1 +

〈
f, Φ̃2

j−1

〉
Φ2
j−1

)
+
(〈

f, Ψ̃1
j−1

〉
Ψ1
j−1 +

〈
f, Ψ̃2

j−1

〉
Ψ2
j−1

)
=
(
c1T

j−1Φ1
j−1 + c2T

j−1Φ2
j−1

)
+
(
d1T

j−1Ψ1
j−1 + d2T

j−1Ψ2
j−1

)
,

where, for s = 1, 2,

csj−1 =
〈

Φ̃j−1, fs

〉
=
〈
H̃jΦ̃j, fs

〉
= H̃j

〈
Φ̃j, fs

〉
= H̃jc

s
j ,

dsj−1 =
〈

Ψ̃j−1, fs

〉
=
〈
G̃jΦ̃j, fs

〉
= G̃j

〈
Φ̃j, fs

〉
= G̃jc

s
j .

Algorithm 10 lists the vector-valued wavelet transform (or decomposition)

algorithm.
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Algorithm 10: Vector-Valued Wavelet Transform (VWT)

Input : Vector c of scaling coefficients at level j, ν,

dim c = dim(c1, c2) = (2j − (d− 1) + 2ν)× 2

Output: Vector cw, the vector wavelet transform of c; i.e., cw = VWT(c)

1 cj = c

2 for k = j − 1 down to j0 do

3 ck = H̃k(c
1
k+1, c

2
k+1)

4 dk = G̃k(c
1
k+1, c

2
k+1)

5 end

6 cw = cj0

7 for k = j0 up to j − 1 do

8 cw =

 cw
dk


9 end

7.4.3 Vector-Valued Inverse Wavelet Transform (Recon-

struction)

The equation

Pjf = Pj−1f +Qj−1f
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gives

c1T

j Φ1
j + c2T

j Φ2
j =

(
c1T

j−1Φ1
j−1 + d1T

j−1Ψ1
j−1

)
+
(
c2T

j−1Φ2
j−1 + d2T

j−1Ψ2
j−1

)
=
(
c1T

j−1HjΦ
1
j + d1T

j−1GjΦ
1
j

)
+
(
c2T

j−1HjΦ
2
j + d2T

j−1GjΦ
2
j

)
=
(
c1T

j−1Hj + d1T

j−1Gj

)
Φ1
j +

(
c2T

j−1Hj + d2T

j−1Gj

)
Φ2
j .

Therefore,

cj = HT
j c

s
j−1 +GT

j d
s
j−1, s = 1, 2.

Algorithm 11 depicts the vector-valued inverse wavelet transform (or reconstruc-

tion) algorithm.
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Algorithm 11: Vector-Valued Inverse Wavelet Transform (IVWT)

Input : Vector cw of wavelet coefficients at level j, ν,

dim cw = (2j − (d− 1) + 2ν)× 2

Output: Vector c, the scaling coefficients of cw; i.e., c = IVWT(cw)

1 cj0 = Cw(2j0 − (d− 1) + 2ν, :)

2 index = (2j0 − (d− 1) + 2ν) + 1

3 for k = j0 up to j − 1 do

4 dk = cw(index : index + 2k − 1)

5 index = index + 2k

6 end

7 for k = j0 + 1 up to j do

8 ck = HT
k ck−1 +GT

j dk−1

9 end

10 c = cj

Algorithm 12 represents the vector-valued wavelet preconditioned conjugate gra-

dient algorithm.
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7.4.4 Vector-Valued Wavelet PCG Algorithm

Algorithm 12: Vector-Valued Wavelet PCG Algorithm

Result: solving the system AΦx = b

Input : AΦ, b,x0 = 0, tol, kmax and P =

 D−2 0

0 D−2


D := 2j(δk,k′)(j,k),(j′,k′)∈J

Output: Vector x

1 r0 = b−AΦx0

2 h0 = IVWT(PVWT(r0))

3 d0 = −h0

4 for k = 0 up to kmax−1 do

5 if ‖rk‖ < tol then

6 EXIT

7 end

8 αk = 〈rk,hk〉
〈dk,dk〉AΦ

9 xk+1 = xk − αkdk

10 rk+1 = rk + αkAΦdk

11 hk+1 = D1IVWT(PVWT(rk+1))

12 βk = 〈rk+1,hk+1〉
〈rk,hk〉

13 dk+1 = βkdk − hk+1,

14 end

15 x = D1IVWT(xΨ
k+1)
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In the following example we illustrate the results of solving a fourth order

differential equation using the reduction of order method.

Example 7.4 Find the solution for the following fourth order problem

u(4) − 100u′′ + u = cos(2πx),

u(0) = u(1) = u′′(0) = u′′(1) = 0.

(7.30)

As we have seen before, the Galerkin method of the problem has the matrix form


〈
Φ′j,Φ

′
j

〉
〈Φj,Φj〉

− 〈Φj,Φj〉
〈
Φ′j,Φ

′
j

〉
+ 100 〈Φj,Φj〉


 α

β

 =

 0

−〈Φj, cos(2πx)〉

 .

To solve this system, we use the one-dimensional vector-valued wavelet precondi-

tioned conjugate gradient algorithm (Algorithm 12) with

AΦ =


〈
Φ′j,Φ

′
j

〉
〈Φj,Φj〉

− 〈Φj,Φj〉
〈
Φ′j,Φ

′
j

〉
+ 100 〈Φj,Φj〉

 , b =

 0

−〈Φj, cos(2πx)〉

 , ν = 0.

Table 7.3 gives the results of solving (7.30) using reduction of order method with

B-splines of order 2 for the trial and test spaces.
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Table 7.3: Results for 4th Order General Problem by Reduction Method

Level Iterations The L2 Error
AΨ Condition #

Before Precond. After Precond.

4 40 5.0297e-06 106 31

5 40 1.1524e-06 417 38

6 40 3.1105e-07 1661 42

7 40 6.3400e-08 6637 45

8 40 1.7797e-08 26541 47

9 40 4.0610e-09 1.0616e+05 49

According to Whitney estimate (3.35) and Jackson’s inequality (3.36), the

results confirm the expected order of convergence h2. Figure 7.10 illustrates the

boundedness of the condition number against the level j. This boundedness ensure

the optimality of the wavelet preconditioning discussed in Section 6.4.

147



3 4 5 6 7 8 9 10

20

40

60

80

Level j

C
on

d
it

io
n

N
u
m

b
er

Figure 7.10: Condition numbers of stiffness matrixAΨ after vector-valued wavelet

preconditioning with 2ϕ, 6ϕ̃ for different values of j.
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CHAPTER 8

A WAVELET

PETROV-GALERKIN

METHOD (WPG)

In this chapter, we use a Petrov-Galerkin method to solve self-adjoint Problems.

We give a complete analysis of the method with trial basis functions induced

by B-splines of order 4 and test basis functions induced by B-splines of order 2

on a fourth order self-adjoint Dirichlet problem. The work presented here can be

extended to higher order equations. On consequence, we introduce some examples

to illustrate the use of Chapter 5 method to solve general second and fourth order

self-adjoint problems. What is interesting in the use of Petrov-Galerkin Method

is the improvement of the order of accuracy comparing with the Galerkin method

discussed in the previous Chapter. Also, the band of the stiffness matrices used

here is less than the stiffness matrices in the Galerkin method.
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8.1 Preliminaries and Notations

Definition 8.1 (Linear Independence Modulo a subspace) Given a linear

space H, a subspaceM⊂ H and a set of vectors {v1, v2, . . . , vm} ⊂ H/M, we say

that v1, v2, . . . , vm are linearly independent modulo M if the inclusion

α1v1 + α2v2 + · · ·+ αmvm ∈M,

for any set of scalars α1, α2, . . . , αm implies that

α1 = α2 = · · · = αm = 0.

Let ` be the 4th order formal operator defined in (5.1), and D be the domain of

the 4th order maximal operator defined in (5.3), then we introduce the following

definitions:

1. The minimal operator L0:

The minimal operator L0 is defined by

D(L0) = D0 = {u ∈ D : u[k](0) = u[k](1) = 0, k = 0, 1, 2, 3},

L0u = `(u).

(8.1)

Here u[k] is the kth generalised derivative defined by [58]

u[0] = u, u[1] = u′, u[2] = a2u
′′, u[3] =

d

dx
u[2] − a1u

[1]. (8.2)
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We also have

L∗ = L0

2. The self-adjoint Dirichlet operator L̂:

The Dirichlet operator L̂ is defined by

D(L̂) = D̂ = {u ∈ D : u[k](0) = u[k](1) = 0, k = 0, 1},

L̂u = `(u).

(8.3)

The boundary conditions defining D̂ will be called the Dirichlet boundary con-

ditions.

3. The bilinear form a:

The bilinear form a : H2
0 (0, 1)×H1

0 (0, 1)→ R is defined by

a(u, v) = 〈a2u
′′, v′′〉H−1(0,1) + 〈a1u

′, v′〉L2(0,1) + 〈a0u, v〉L2(0,1) . (8.4)

We note that, for u, v ∈ H−1(0, 1)

〈u, v〉H−1(0,1) =
1

4

{
‖u+ v‖2

−1 − ‖u− v‖
2
−1

}
. (8.5)

We may also note that [76], if u, v ∈ L2(0, 1) ⊂ H−1(0, 1), then

〈u, v〉H−1(0,1) = 〈un, v〉L2(0,1). (8.6)
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In the sequel, the subscripts on the pairings will be dropped and they should be

understood from the context.

Note 8.1 Note that, as sets,

1) D = H4(0, 1).

2) D0 = H4
0 (0, 1).

3) D̂ = H4(0, 1) ∩H2
0 (0, 1).

Also, note that

a(u, v ) = a2u
′′v′]

1
0 + 〈` (u) , v〉 ∀u ∈ D and v ∈ H2(0, 1) ∩H1

0 (0, 1), (8.7)

and,

a(u, v ) = 〈u, ` (v)〉 ∀v ∈ D and u ∈ H2
0 (0, 1). (8.8)

Lemma 8.1 The operator L̂ : H2
0 (0, 1)→ H−2(0, 1) is bounded.

Proof. Let u, v ∈ H2
0 (0, 1). Using integration by parts and assuming that a0, a1

and a2 are bounded on [0, 1] we get

〈
L̂u, v

〉
= 〈a2u

′′, v′′〉+ 〈a1u
′, v′〉+ 〈a0u, v〉

≤M1‖u′′‖0‖v
′′‖0 +M2‖u′‖0‖v

′‖0 +M3‖u‖0‖v‖0

≤M1‖u‖2‖v‖2 +M2‖u‖1‖v‖1 +M3‖u‖0‖v‖0

≤M1‖u‖2‖v‖2 +M2‖u‖2‖v‖2 +M3‖u‖2‖v‖2

≤M‖u‖2‖v‖2,
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where M = max{M1,M2,M3}. The last inequality gives

‖L̂u‖−2‖v‖2 ≤
〈
L̂u, v

〉
≤M‖u‖2‖v‖2.

Hence,

‖L̂u‖−2 ≤M‖u‖2,

which establishes the continuity of L̂ : H2
0 (0, 1)→ H−2(0, 1).

As a consequence of Lemma 8.1, the operator L̂ can be extended to

L̂ : H2
0 (0, 1)→ H−2(0, 1).

8.2 WPG For Fourth Order Problems (Trial d =

4, Test d = 2)

8.2.1 A Generalized Lax-Milgram Lemma

The following result extends the Lax-Milgram Lemma, and is due to Nečas [59].

Theorem 8.2 (Generalized Lax-Milgram Lemma [3]) Let U and V be real

Hilbert spaces, a : U×V → R be a bilinear form, and ` ∈ V ′ be a linear functional.

Assume there are constants M > 0 and α > 0 such that

1) |a(u, v ) | ≤M‖u‖U‖v‖V ∀u ∈ U, v ∈ V, (8.9)

2) sup
v∈V,v 6=0

a(u, v )

‖v‖V
≥ α‖u‖U ∀u ∈ U, (8.10)
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3) sup
u∈U

a(u, v ) > 0 ∀v ∈ V, v 6= 0. (8.11)

Then there exists a unique solution u of the problem

u ∈ U, a(u, v) = `(v) ∀v ∈ V. (8.12)

Proof. Let A : U → V be the linear continuous operator defined by the relation

a(u, v ) = 〈Au, v〉V ∀u ∈ U, v ∈ V.

Using the condition (8.9), we have

‖Au‖V ‖v‖V ≤ 〈Au, v〉V = |a(u, v )| ≤M‖u‖U‖v‖V .

Therefore,

‖Au‖V ≤M‖u‖U ∀u ∈ U.

Then, problem (8.12) can be written as

u ∈ U, Au = σ`(u), (8.13)

where σ : V ′ → V is the Riesz isometric operator; i.e., for each u ∈ V we have

a(u, v ) = 〈Au, v〉 = 〈σAu, v〉V ∀v ∈ V.

From condition (8.10) and the definition of A, it follows immediately that A is
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injective; i.e., Au = 0 for some u ∈ U implies u = 0.

To show that Range(A) is closed, let {un} ⊂ U be a sequence such that {Aun}

converges in V , the limit being denoted by w ∈ V . Using condition (8.10), we

have

‖um − un‖U ≤
1

α
sup

06=v∈V

〈A(um − un), v〉V
‖v‖V

≤ 1

α
‖Aum − Aun‖V .

Hence {un} is a Cauchy sequence in U , and hence have a limit u ∈ U . Moreover,

by the continuity condition (8.9), Aun → Au = w ∈ V . Thus, Range(A) is closed.

Now, if v ∈ Range(A)⊥, then

〈Au, v〉V = a(u, v ) = 0 ∀u ∈ U.

Applying condition (8.11), we conclude v = 0. So Range(A) = {0}. Therefore,

(8.13) and hence also (8.12) has a unique solution.

Now, we are going to show that the bilinear form a given in (8.4) satisfies the three

conditions in Theorem 8.2 with U = H2
0 (0, 1) and V = H1

0 (0, 1). Accordingly, the

fourth order self-adjoint problem has a unique solution.

Lemma 8.2 The bilinear form a : H2
0 (0, 1) × H1

0 (0, 1) → given in (8.4), where

a0, a1, a2 are bounded on [0, 1], satisfies

1) |a(u, v ) | ≤M‖u‖2‖v‖1 ∀u ∈ H
2
0 (0, 1), v ∈ H1

0 (0, 1). (8.14)

2) sup
v∈H1

0 ,v 6=0

a(u, v )

‖v‖1

≥ α‖u‖2 ∀u ∈ H
2
0 (0, 1). (8.15)

Proof. To prove (8.14), we note that, for (u, v) ∈ H2
0 (0, 1)×H1

0 (0, 1), (u′′, v′′) ∈
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L2(0, 1)×H−1(0, 1) ⊂ H−1(0, 1)×H−1(0, 1). Hence,

a(u, v ) = a1(u, v ) + a2(u, v ) + a3(u, v),

where,

a1(u, v ) = 〈a2u
′′, v′′〉 , a2(u, v ) = 〈a1u

′, v′〉 , a3(u, v ) = 〈a0u, v〉 .

Then,

〈a2u
′′, v′′〉 ≤ M1 ‖u′′‖−1 ‖v

′′‖−1 (Since H−1 is a Hilbert space)

= M1

∥∥∂2u
∥∥
−1

∥∥∂2v
∥∥
−1

≤ M1 ‖u‖1 ‖v‖1 (Since ∂2 : H1
0 → H−1 is continuous)

≤ M1 ‖u‖2 ‖v‖1 ,

〈a1u
′, v′〉 ≤ M2 ‖u′‖0 ‖v

′‖0

= M2 ‖u‖1 ‖v‖1 (Since H1
0 ↪→ L2(Ω) is continuously imbeded)

≤ M2 ‖u‖2 ‖v‖1 .

Similarly

〈a0u, v〉 ≤ M3 ‖u‖0 ‖v‖0

≤ M3 ‖u‖2 ‖v‖1 .
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To prove (8.15), observe first that, for u ∈ H3(0, 1) ∩H2
0 (0, 1),

〈` (u) , u〉 =

ˆ
a2u

′′2 +

ˆ
a1u

′2 +

ˆ
a0u

2 ≥ α

ˆ
u′′2 = α ‖u‖2

2 . (8.16)

Therefore,

α ‖u‖2
2 = 〈` (u) , u〉 ≤ ‖` (u)‖−2 ‖u‖2 ,

which shows that

‖` (u)‖−2 ≥ α ‖u‖2 .

Now, let u ∈ H3(0, 1) ∩H2
0 (0, 1). Then,

sup
v∈H1

0 (0,1)
‖v‖1=1

a(u, v ) ≥ sup
v∈H2

0 (0,1)
‖v‖1=1

a(u, v ) = sup
v∈H2

0 (0,1)
‖v‖1=1

〈` (u) , v〉

= ‖` (u)‖−1 ≥ ‖` (u)‖−2 ≥ α ‖u‖2 .

The result follows by a density argument since H3(0, 1) ∩ H2
0 (0, 1) is dense in

H2
0 (0, 1).

Next, we are going to show that

sup
u∈H2

0 (0,1)

a(u, v ) > 0.

This result is the content of Corollary 8.3 below. It turns out that this result

requires a careful look at the structure of the domain of self-adjoint operators. In

what follows, we undertake this task.
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Let the vector

χ =

[
z1 z2 z3 z4

]T
∈ D4. (8.17)

Solve the initial value problems

` (χ) = 0,

W (χ) (0) = I,

where,

W (z) (x) =

[
z[0] (x) z[1] (x) z[2] (x) z[3] (x)

]
.

Here z[k] is the kth genaralized derivative of the function z (see (8.2)).

Lemma 8.3 The vector χ defined in (8.17) is linearly independent modulo D.

Proof. Suppose αTχ ∈ D̂ for some scalar vector α ∈ R4. Then

L̂
(
αTχ

)
= `

(
αTχ

)
= αT ` (χ) = 0.

In view of the positivity of the operator L̂ (see 8.16), this implies that αTχ = 0.

Consequently, αTχ(0) = αT = 0.

It follows from this lemma that

D = D̂ + span {χ} .

Next, we turn to a special construction of D̂ from D0. For this pupose, we use
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the following lemma from [58], which is restated in a more specific manner here.

Lemma 8.4 Let α ∈ R4 be arbitrary and define θ ∈ R4 by

〈χ, χ〉 θ = O4α,

where O4 is the symplectic matrix of order 4:

O4 =



0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0


.

Then, there exists v ∈ D satisfying

` (v) = θTχ, W (v) (0) = αT , W (v) (1) = 0.

We let ε3 and ε4 be the third and fourth standard unit vectors in R4 and choose

the vector η =

[
ζ1 ζ2 ζ2 ζ4

]
∈ D4 such that its components satisfy

` (ζ1) = θT1 χ, W (ζ1) (0) = εT3 , W (ζ1) (1) = 0,

` (ζ2) = θT2 χ, W (ζ2) (0) = εT4 , W (ζ2) (1) = 0,

` (ζ3) = θT3 χ, W (ζ3) (0) = 0, W (ζ3) (1) = εT3 ,

` (ζ4) = θT4 χ, W (ζ4) (0) = 0, W (ζ4) (1) = εT4 ,
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where in the last two lines we used the restatement of Lemma 8.4 with the roles

of 0 and 1 interchanged. In vector form, these equations may be rewritten as

` (η) = ΘTχ, W (η) (0) =



εT3

εT4

0

0


, W (η) (1) =



0

0

εT3

εT4


,

where,

〈χ, χ〉Θ = O4

[
ε3 ε4 ε3 ε4

]
. (8.18)

Then η ∈ D̂4 since it satisfies the Dirichlet boundary conditions. It is also easy

to see that η is linearly independent modulo D0. Therefore,

D̂ = D0 + span {η} .

Proposition 8.1 v ∈ H1
0 (0, 1) satisfies

a(u, v ) = 0 ∀u ∈ H2
0 (0, 1) (8.19)

if and only if v belongs to the one-dimensional space generated by the function

z′4 (1) z3 − z′3 (1) z4; i.e.,

v ∈ span {z′4 (1) z3 − z′3 (1) z4} ,
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where, z3, z4 are the third and fourth components of χ.

Proof. Necessity. Observe that (8.19) is particularly true for all u ∈ D0.

Therefore,

〈L0u, v〉 = a(u, v ) = 0 ∀u ∈ D0.

This means that the mapping u 7→ 〈L0u, v〉 is continuous on D0. Hence, v ∈ D

and

〈u, Lv〉 = 〈L0u, v〉 = 0 ∀u ∈ D0.

Since D0 is dense in L2 (0, 1) , Lv = 0. Therefore, there is a vector β ∈ R4 such

that

v = βTχ.

Since (8.19) is also true for all u ∈ D̂, we have, by (8.7),

{aη′′, χ′}1
0 β + 〈` (η) , χ〉 β = a( η, v ) = 0,

or

{aη′′, χ′}1
0 β + ΘT 〈χ, χ〉 β = 0. (8.20)
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Plugging in the boundary values of η and χ, we get

{aη′′, χ′}1
0 =



0

0

1

0


[
z′1 (1) z′2 (1) z′3 (1) z′4 (1)

]
−



1

0

0

0


[

0 1 0 0

]

=



0 0 0 0

0 0 0 0

z′1 (1) z′2 (1) z′3 (1) z′4 (1)

0 0 0 0


−



0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0



=



0 −1 0 0

0 0 0 0

z′1 (1) z′2 (1) z′3 (1) z′4 (1)

0 0 0 0


.

Furthermore, using (8.18),

ΘT 〈χ, χ〉 =



0 −1 0 0

−1 0 0 0

0 −1 0 0

−1 0 0 0


.
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Thus, (8.20) becomes



0 −2 0 0

−1 0 0 0

z′1 (1) z′2 (1)− 1 z′3 (1) z′4 (1)

−1 0 0 0


β = 0. (8.21)

The row echlon form of the matrix above is



1 0 0 0

0 1 0 0

0 0 z′3 (1) z′4 (1)

0 0 0 0


.

Next, we note that z′3 (1) and z′4 (1) cannot both be zero, for otherwise, a proper

linear combination of z3, z4 will satisfy the Dirichlet boundary conditions, contra-

dicting the statement of Lemma 8.3. Thus, the system (8.21) has a one paramter

family of solutions spanned by the vector

β =



0

0

z′4 (1)

−z′3 (1)


.
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Then,

βTχ = z′4 (1) z3 − z′3 (1) z4,

which proves necessity.

To prove sufficiency, let

v = z′4 (1) z3 − z′3 (1) z4.

Then v ∈ D and

Lv = z′4 (1)Lz3 − z′3 (1)Lz4 = 0.

By (8.8), for every u ∈ H2
0 (0, 1),

a(u, v ) = 〈u, ` (v)〉 = 〈u, Lv〉 = 0.

Corollary 8.3 v ∈ H1
0 (0, 1) satisfies (8.19) if and only if v = 0.

Proof. By Proposition 8.1, v = α (z′4 (1) z3 − z′3 (1) z4). Note that v(0) = 0

and v′ (0) = v′(1) = 0. But since v ∈ H1
0 (0, 1), we also have v (1) = 0. Therefore,

v ∈ D̂. Since z3, z4 are linearly independent modulo D̂, we must have v = 0.

Corollary 8.4 For any nonzero v ∈ H1
0 (0, 1),

sup
u∈H2

0 (0,1)

a(u, v ) > 0.
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8.3 Wavelet Petrov-Galerkin Method (WPG)

For Dirichlet and General Problems

In this section we introduce some numerical experiments that use wavelet Petrov-

Galerkin method to solve the Dirichlet problem (7.17) with n = 1 and n =

2. Furthermore, we will replace the Dirichlet conditions in (7.17) by general

conditions and solve the resulting second and fourth order general problems using

the wavelet Petrov-Galerkin method.

Let Sj represents the trial space with basis Φj and Tj represents the test space

with basis Φj at level j. Sj and Tj are the spans of B-splines on the partition Πj.

The basis Φj should satisfy the Dirichlet boundary conditions.

The discrete wavelet Petrov-Galerkin method is given by:

Find uj ∈ Sj such that

〈`(uj), vj〉 = 〈f, vj〉 ∀vj ∈ Tj. (8.22)

The solvability of (8.22) was discussed in Section 8.2. The solution uj ∈ Sj is

given by

uj = cTΦj. (8.23)

Also, we may represent vj ∈ Tj by

vj = dTΦj.
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Substituting in (8.22) yields to the following matrix equation

(
n∑
k=0

〈
akΦ

(k)
j ,Φ

(k)

j

〉)
c =

〈
f(x),Φj

〉
. (8.24)

8.3.1 WPG For Fourth Order Dirichlet Problems (Trial

d = 4, Test d = 2)

In this subsection, we illustrate the Petrov-Galerkin method to solve fourth order

self-adjoint Dirichlet problem (7.17) with n = 2. The trial space induced by B-

splines of order 4, and the test space induced by B-splines of order 2.

The Discrete Petrov-Galerkin Method

Given j ≥ 1, let Sj ⊂ H2
0 (0, 1) represents the trial space, and Tj ⊂ H1

0 (0, 1)

represents the test space at level j. For d = 4, Sj is the span of cubic B-splines

on the partition Πj which satisfies the Dirichlet boundary conditions. For d = 2,

Tj is the span of linear B-splines on Πj.

The basis for Sj is generated by the B-splines ϕj,k = 4ϕj,k, k = 2, 3, . . . , 2j − 2,

ϕj,1 = 4ϕ̂
0
j,1, and ϕj,2j−1(x) = 4ϕ̂

0
j,1(1−x). Where 4ϕ and 4ϕ̂

0
j,1 are cubic B-splines

defined explicitly in (7.3) and (7.7), respectively. We set

Φj = {ϕj,k : k = 1, 2, . . . , 2j − 1}.

The basis for Tj is generated by the linear B-splines ϕj,k = 2ϕj,k, k = 1, 2, . . . , 2j−
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1. We set

Φj = {ϕj,k : k = 1, 2, . . . , 2j − 1}.

Hence, the matrix equation (8.24) constitutes a set of (2j − 1) linear equations

in the (2j − 1) unknowns c =

[
c1 c2 . . . c2j−1

]T
. Since

〈
`(ϕj,k), ϕj,m

〉
= 0 if

|k −m| ≥ 2, the bandwidth of the matrix equation is 5.

Example 8.5 (Fourth Order Dirichlet Problem (Trial d = 4, Test d = 2))

In this example we consider problem (7.17) with n = 2, f(x) = cos(2πx),

a2(x) = 1, a1(x) = 100, and a0(x) = 1. Then the matrix equation (8.24) becomes

(〈
Φ′′j ,Φ

′′
j

〉
+ 100

〈
Φ′j,Φ

′
j

〉
+
〈
Φj,Φj

〉 )
c =

〈
f(x),Φj

〉
. (8.25)

To solve this system, we apply the one-dimensional wavelet preconditioned conju-

gate gradient algorithm (Algorithm 6) with

AΦ =
(〈

Φ′′j ,Φ
′′
j

〉
+ 100

〈
Φ′j,Φ

′
j

〉
+
〈
Φj,Φj

〉)
, b =

〈
f(x),Φj

〉
, ν = 1, n = 2.

The refinement matrices used in Algorithm 6 are produced using the coefficients

of d = 6, d̃ = 8 in Table 3.1.

Table 8.1 gives the results of solving (8.25) using B-splines of order 4 for the trial

space and B-splines of order 2 for the test space.
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Table 8.1: Results for 4th order Dirichlet Problem Trial(d = 4),Test(d = 2)

Level The L2 Error

4 8.1752451e-07

5 2.0285473e-07

6 5.0618423e-08

7 1.2648698e-08

8 3.1621641e-09

9 8.0059643e-10

The method has the order of convergence h2.

8.3.2 WPG For Fourth Order Problems (Trial d = 6, Test

d = 4)

In this subsection we illustrate the Petrov-Galerkin method to solve fourth order

self-adjoint problems with trial space induced by B-splines of order 6, and test

space induced by B-splines of order 4. We started with a description of the solution

for the fourth order self-adjoint Dirichlet problem. After that, we introduce an

example to solve the fourth order self-adjoint Dirichlet problem, and then two

examples to solve fourth order self-adjoint general problems.

Consider the fourth order self-adjoint Dirichlet problem (7.17) with n = 2.
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The Discrete Petrov-Galerkin Method

Given j ≥ 1, let Sj ⊂ H2
0 (0, 1) ∩ C4[0, 1] represents the trial space, and Tj ⊂

H2
0 (0, 1) represent the test space at level j. For d = 6, Sj is the span of quintic

B-splines on the partition Πj which satisfies the Dirichlet boundary conditions.

For d = 4, Tj is the span of cubic B-splines on Πj. The basis for Sj is generated

by the quintic B-splines ϕj,k = 6ϕj,k, k = 3, . . . , 2j − 3, ϕj,1 = 6ϕ̂
0
j,1, ϕj,2 = 6ϕ̂

0
j,2,

ϕj,2j−2(x) = 6ϕ̂
0
j,2(1− x), and ϕj,2j−1(x) = 6ϕ̂

0
j,1(1− x). The quintic B-splines 6ϕ,

6ϕ̂
0
j,1 and 6ϕ̂

0
j,2 were defined explicitly in (7.10), (7.15), and (7.16), respectively.

We set

Φj = {ϕj,k : k = 1, 2, . . . , 2j − 1}.

The basis for Tj is generated by the cubic B-splines ϕj,k = 4ϕj,k, k = 2, . . . , 2j−2,

ϕj,1 = 4ϕ̂
0
j,1, and ϕj,2j−1(x) = 4ϕ̂

0
j,1(1− x). The cubic B-splines 4ϕ and 4ϕ̂

0
j,1 were

defined explicitly in (7.3) and (7.7), respectively. We set

Φj = {ϕj,k : k = 1, 2, . . . , 2j − 1}.

Hence, the matrix equation (8.24) constitutes a set of (2j − 1) linear equations

in the (2j − 1) unknowns c =

[
c1 c2 . . . c2j−1

]T
. Since

〈
`(ϕj,k), ϕj,m

〉
= 0 if

|k −m| ≥ 4, the bandwidth of the matrix equation is 9.

Example 8.6 (Fourth Order Dirichlet Problem (Trial d = 6, Test d = 4))

In this example we consider problem (7.17) with n = 2, f(x) = cos(2πx),
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a2(x) = 1, a1(x) = 100, and a0(x) = 1. Then the matrix equation (8.24) becomes

(〈
Φ′′j ,Φ

′′
j

〉
+ 100

〈
Φ′j,Φ

′
j

〉
+
〈
Φj,Φj

〉 )
c =

〈
cos(2πx),Φj

〉
. (8.26)

To solve this system, we apply the one-dimensional wavelet preconditioned conju-

gate gradient algorithm (Algorithm 6) with

AΦ =
(〈

Φ′′j ,Φ
′′
j

〉
+ 100

〈
Φ′j,Φ

′
j

〉
+
〈
Φj,Φj

〉)
, b =

〈
cos(2πx),Φj

〉
, ν = 2, n = 2.

The refinement matrices used in Algorithm 6 are produced using the coefficients

of d = 6, d̃ = 8 in Table 3.1.

Table 8.2 gives the results of solving (8.6) using B-splines of order 6 for the trial

space and B-splines of order 4 for the test space.

Table 8.2: Results for 4th order Dirichlet Problem Trial(d = 6),Test(d = 4)

Level The L2 Error

4 1.7050584e-07

5 3.2057452e-09

6 8.5167950e-11

7 2.5891240e-12

8 1.6503766e-13

9 1.0520214e-14

The method has the order of convergence h4.
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In the following two examples, we apply Chapter 5 method to solve a fourth

order self-adjoint general problem.

Example 8.7 (1.Fourth Order General Problem (Trial d = 6, Test d = 4))

Find the solution for the fourth order general boundary value problem

`(u) = u(4) − 100u′′ + u = cos(2πx),

u(0) = 1, u(1) = 2, u′(0) = 3, u′(1) = 4.

(8.27)

Solution: Let up be the solution for the Dirichlet problem (7.17) with n = 2,

f(x) = cos(2πx), a2(x) = 1, a1(x) = 100, and a0(x) = 1.

Now, we choose θ1(x) = 1 − cos(πx + π) and θ3(x) = θ1(1 − x). Also, we

choose θ2(x) = x3 − x4 and θ4(x) = θ2(1− x).

For i = 1, 2, let ξi be the solution for the Dirichlet problem (7.17) with n = 2,

f(x) = `(θi), a2(x) = 1, a1(x) = 100, and a0(x) = 1.

We can find up, ξ1 and ξ2 simultaneously using the Petrov-Galerkin method

discussed in Example 8.6. Let ξ3 = ξ
l
1, ξ4 = ξ

l
2, and ui = ξi − θi (i = 1, 2, 3, 4).

To find the sought solution û(x) = up(x)+r1u1(x)+r2u2(x)+r3u3(x)+r4u4(x),

we need to find the constants r1, r2, r3 and r4. We apply the boundary conditions

on û. Applying the boundary conditions gives

r1 = −0.5, r2 = 4, r3 = −1 and r4 = 3.
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Accordingly,

û = up −
1

2
u1 + 4u2 − u3 + 3u4.

Table 8.3 gives the results of solving (8.27) using B-splines of order 6 for the trial

space and B-splines of order 4 for the test space.

Table 8.3: Results for 4th Order General Problem1 Trial(d = 6),Test(d = 4)

Level The L2 Error

4 2.4702455e-04

5 7.8623350e-06

6 3.4939020e-07

7 2.0501813e-08

8 1.2782665e-09

9 3.7389376e-11

The method has the order of convergence h4.

Example 8.8 (2. Fourth Order General Problem (Trial d = 6, Test d = 4))

Find the solution for the fourth order general boundary value problem

`(u) = u(4) − 100u′′ + u = cos(2πx),

u(0) = 1, u(1) = 2, u′′(0) = 1, u′′(1) = 2.

(8.28)

Solution: Let up be the solution for the Dirichlet problem (7.17) with n = 2,

f(x) = cos(2πx), a2(x) = 1, a1(x) = 100, and a0(x) = 1.

Now, we choose θ1(x) = 1 − cos(πx + π) and θ3(x) = θ1(1 − x). Also, we
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choose θ2(x) = x3 − x4 and θ4(x) = θ2(1− x).

For i = 1, 2, let ξi be the solution for the Dirichlet problem (7.17) with n = 2,

f(x) = `(θi), a2(x) = 1, a1(x) = 100, and a0(x) = 1. We can find up, ξ1 and ξ2

simultaneously using the Petrov-Galerkin method discussed in Example 8.6. Let

ξ3 = ξ
l
1, ξ4 = ξ

l
2, and ui = ξi − θi (i = 1, 2, 3, 4).

To find the sought solution û(x) = up(x)+r1u1(x)+r2u2(x)+r3u3(x)+r4u4(x),

we need to find the constants r1, r2, r3 and r4. We apply the boundary conditions

on û. Applying the boundary conditions gives r1 = 0, r3 = 0,

u′′p(0) + r2ξ
′′
2 (0) + r4(ξ′′4 (0) + 6) = 1, (8.29)

and

u′′p(1) + r2(ξ′′2 (1) + 6) + r4ξ
′′
4 (1) = 2. (8.30)

Solving (8.29) and (8.30) to get

r2 =
2(ξ′′4 (0) + 6)− ξ′′4 (1)− u′′p(1)(ξ′′4 (0) + 6) + u′′p(0)ξ′′4 (1)

(ξ′′2 (1) + 6)(ξ′′4 (0) + 6)− ξ′′2 (0)ξ′′4 (1)
, r4 =

1− u′′p(0)− r2ξ
′′
2 (0)

ξ′′4 (0) + 6
·

To find u′′p(0), ξ′′2 (0) and ξ′′4 (0) we apply the fourth order forward difference method:

f ′′(0) =
1

h2

(
15

4
f(0)− 77

6
f(h) +

107

6
f(2h)− 13f(3h) +

61

12
f(4h)− 5

6
f(5h)

)
.

To find u′′p(1), ξ′′2 (1) and ξ′′4 (1) we apply the fourth order backward difference
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method:

f ′′(1) =
1

h2

(15

4
f(1)− 77

6
f(1− h) +

107

6
f(1− 2h)− 13f(1− 3h)

61

12
f(1− 4h)− 5

6
f(1− 5h)

)
. (8.31)

Accordingly,

û = up + r2u2 + r4u4.

Table 8.4 gives the results of solving (8.28) using B-splines of order 6 for the trial

space and B-splines of order 4 for the test space.

Table 8.4: Results for 4th Order General Problem2 Trial(d = 6),Test(d = 4)

Level The L2 Error

4 9.8476660e-04

5 6.1291140e-05

6 4.3447297e-06

7 3.0868244e-07

8 2.0830066e-08

9 1.3781611e-09

The method has the order of convergence h4.
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8.3.3 WPG For Second Order General Problems (Trial d =

4, Test d = 2)

In this subsection we introduce an example to solve a second order self-adjoint

general differential equation using Chapter 5 method. B-splines of order 4 were

used to induce the trial basis functions, and B-splines of order 2 to induce the

test basis functions. Moreover, the results for Galerkin method used test and trial

spaces of orders 2 and 4. Better results were achieved from the Petrov-Galerkin

method.

In the following example we apply Chapter 5 method to solve a second order

self-adjoint general problem.

Example 8.9 (Second Order General Problem) Find the solution for the

second order general boundary value problem

`(u) = −u′′ + 10u = cos(2πx),

u(0) = 4, u(1) = 3.

(8.32)

Solution: Let up be the solution for the Dirichlet problem (7.17) with n = 1,

f(x) = cos(2πx), a1(x) = 1, and a0(x) = 10.

Now, we choose θ1(x) = 1 + cos(πx) and θ2(x) = θ1(1− x).

Let ξ1 be the solution for the Dirichlet problem (7.17) with n = 1, f(x) = `(θ1),

a1(x) = 1, and a0(x) = 10.

We can find up and ξ1 simultaneously using the Petrov-Galerkin method. Let

ξ2 = ξ
l
1, and ui = ξi − θi (i = 1, 2).
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To find the sought solution û(x) = up(x) + r1u1(x) + r2u2(x), we need to find the

constants r1 and r2. To do this we apply the boundary conditions on û. Applying

the boundary conditions gives r1 = −2 and r2 = −1.5. Accordingly

û = up − 2u1 − 1.5u2.

Table 8.5 gives the results of solving (8.32) using B-splines of order 4 for the trial

space and B-splines of order 2 for the test space.

Table 8.5: Results for 2nd Order General Problem Trial(d = 4),Test(d = 2)

Level The L2 Error

4 3.9939696e-05

5 2.7144791e-06

6 1.7691170e-07

7 1.1290736e-08

8 7.1310291e-10

9 4.4841020e-11

The method has the order of convergence h4.

Table 8.6 gives the results of solving (8.32) using B-splines of order 2 for the trial

and test spaces.
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Table 8.6: Results for 2nd Order General Problem Trial(d = 2),Test(d = 2)

Level The L2 Error

4 4.1140973e-03

5 1.0300348e-03

6 2.5732757e-04

7 6.4320578e-05

8 1.6079601e-05

9 4.0198934e-06

According to Whitney estimate (3.35) and Jackson’s inequality (3.36), the

results has the order of convergence h2.

177



CHAPTER 9

APPLICATION : A WAVELET

GALERKIN METHOD FOR

FAULT DETECTION

In this chapter we discuss an application of the wavelet Galerkin method for iden-

tifying the position of a fault in, say, mechanical system. The model evolution

problem is reduced to an eigenvalue problem, which is then discretized by using a

sequence of refinable functions. The basis functions consist of translations and di-

lations of the B-spline 2ϕ. The wavelet preconditioning for the conjugate gradient

optimization of the Rayleigh quotient was applied to find the smallest eigenvalue

and its corresponding eigenvector of the resultant generalized eigenvalue problem

Ax = λMx. The smallest eigenpair is then used to detect the fault by solving an

algebraic equation for the coefficient functions of the model at the dyadic points.
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9.1 Model Problem

For simplicity, we consider the model evolution equation

∂y

∂t
− ∂

∂x

(
a1(x)

∂y

∂x

)
+ a0(x)y = F, (9.1)

where a1(x), a0(x) ≥ 0, 0 ≤ x ≤ 1 and 0 ≤ t ≤ T .

We will assume that a1, a0 are smooth functions of x under normal operating

conditions. To simulate the occurrence of damage, we will allow a1 to change over

a small subinterval Id(0, 1). When we mean to distinguish a damaged model from

a healthy one, we will use a superscript d. The boundary conditions for the simply

supported model are given by

y(0, t) = y(1, t) = 0. (9.2)

We consider here a force free model; i.e., F = 0. The method of separation of

variables leads to the eigenvalue problem

λu(x)−
(
a1(x)u′(x)

)′
+ a0(x)u(x) = 0 (9.3)

together with the boundary conditions

u(0) = u(1) = 0. (9.4)
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At this point, it is best to use operator notation. Thus, we rewrite (9.3) as

(λI + L1)u = 0,

where

L1u = −(a1(x)u′)′ + a0(x)u.

Here L1 is the Dirichlet operator discussed in Chapter 5. General theory of dif-

ferential operator, see e.g., [58] affirm that L1 has discrete spectrum.

9.2 Weak Formulation and Discretization

Using V := H1
0 (0, 1) as the trial and test space, the weak (or variational) formu-

lation of (9.3) reads:

Find λ ∈ C and u ∈ V such that

λ〈u, v〉+ a(u, v) = 0 ∀v ∈ V, (9.5)

where

a(u, v) = 〈a1u
′, v′〉+ 〈a0u, v〉 , u, v ∈ V. (9.6)

To discretize this problem, we let S = {Sj}j∈N0 be an MRA in L2(0, 1) generated

by a centralized B-spline 2ϕ.

The discrete counterpart of (9.5) reads:
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find uj ∈ Sj and λj ∈ C such that

λj〈v, uj〉+ a( v, uj ) = 0 ∀v ∈ Sj. (9.7)

Writing uj = cTj Φj, we arrive at the algebraic eigenvalue problem

λjMcj +Kcj = 0, (9.8)

where

M = 〈Φj,Φj〉 , K = a( Φj,Φj ) =
〈
a1Φ′j,Φ

′
j

〉
+ 〈a0Φj,Φj〉 . (9.9)

9.3 Damage detection

To use Equation (9.8) to detect damage, we proceed as follows. Since |Ij,k| =

2−j+1, for sufficiently large j and appropriately adjusted k, Ij,k will be contained

in the damage interval Id. For sufficiently large j, we may write

K ≈ a1

〈
Φ′j,Φ

′
j

〉
+ a0 〈Φj,Φj〉 ,

where a1 and a0 are diagonal matrices with diagonal elements being the values of

the corresponding functions at the dyadic points {2−j`}2j−1
`=1 . These values are to

be identified from Equation (9.8) provided λj, cj are given. For this purpose, we

rewrite (9.8) as

λjA1cj + (a1A2 + a0A1) cj = 0, (9.10)
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where

A1 := 〈Φj,Φj〉 , A2 :=
〈
Φ′j,Φ

′
j

〉
.

For each given pair (λj, cj), Equation (9.10) is a 2j−1 dimensional system. Thus,

for example, if we assume that a0 is known, in order to determine the unknown

matrix a1, we require one eigenpair
(
λ1,j, c1,j

)
to be given, e.g., through mea-

surements. Now, since the kth row of the system (9.10) corresponds to the node

x = 2−jk on the model, the entries of the kth row of the matrix a1 will change

from its healthy values only when damage occurs at the point x = 2−jk. We

can then construct a profile where the entries of this matrix is plotted against

the corresponding location. Thus, by monitoring this profile, we can detect the

damage location as well as its width |Id|. The numerical experiments to be pre-

sented in the next section reveal that the method gives good indicators, even at

low levels of resolution. It should be mentioned that since the matrix a1 is di-

agonal, system (9.10) can be decoupled into components. The result is that, for

each k ∈ {1, . . . , 2j − 1}, a system of two-scalar equations to determine the kth

component in the unknown matrix is obtained.

Note that the matrices A1 and A2 can be calculated and stored only once,

since they are properties of the basis functions. Before executing this scheme,

we need to discuss first the aspects of computing the eigenelements using wavelet

PCG methods.
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9.4 A Generalized Eigenvalue Problem

In this section we are concerned with computing the smallest eigenvalue and its

corresponding eigenvector of the generalized eigenvalue problem

Ax = λMx, (9.11)

where A and M are large sparse symmetric positive definite matrices. Due to

the variety of applications on this problem, a great deal of effort was devoted

to the development of efficient and reliable methods to solve such a problem. A

detailed list of references and review of these methods can be found in [41, 66].

Iterative algorithms based on the optimization of Rayleigh quotient have been

developed [5, 54] and a conjugate gradient scheme for the optimization of the

Rayleigh quotient has proven attractive and promising for large sparse eigenvalue

problems [19,47].

9.4.1 Conjugate Gradient Scheme

We are looking for the smallest eigenvalue λ1 and its corresponding eigenvector z

of (9.11) such that

Az = λ1Mz, 〈z, z〉M = 1.

We recall that the eigenvector z is a stationary point of the Rayleigh quotient

ρ(x) =
〈x,x〉A
〈x,x〉M

· (9.12)
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Since A and M are positive definite then ρ(x) is always positive. Moreover, the

minimum of the Rayleigh quotient ρ(x) corresponding to (9.11) is equal to λ1 [47]

and is attained at z; i.e.,

min
x6=0

ρ(x) = min
x6=0

〈x,x〉A
〈x,x〉M

= λ1 =
〈z, z〉A
〈z, z〉M

· (9.13)

The idea of transforming the eigenvalue problem (9.11) into a minimum opti-

mization problem, first proposed by Hestenes & Karush [45], open the doors for

evaluation of eigenvalues with the aid of the optimization procedures which have

became well developed in the recent decades.

Several methods such as the steepest descent method [45] and the conjugate

gradient method [5, 19, 54, 61, 63] were adopted to assess the smallest eigenpair

based on the minimization of the Rayleigh quotient.

Among the methods mentioned above for minimizing the Rayleigh quotient,

the conjugate gradient scheme appears to be the most efficient and robust pro-

viding relatively faster convergence for large sparse eigenvalue problems.

The basic idea of the Rayleigh quotient minimization is to construct a se-

quence {xk} such that ρ(xk+1) < ρ(xk) for all k. The hope is that the sequence

ρ(xk) converges to λ1 and by consequence the vector sequence {xk} towards the

corresponding eigenvector. The procedure is as follows: for any given xk let us

choose a search direction pk so that

xk+1 = xk + αkpk. (9.14)
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The parameter αk is determined such that the Rayleigh quotient of the new iterate

xk+1 becomes minimal; i.e.,

ρ(xk+1) = min
α
ρ(xk + αpk). (9.15)

We can write the Rayleigh quotient of the linear combination xk + αpk of two

linearly independent vectors xk and pk as

ρ(xk + αpk) =
〈xk,xk〉A + 2α〈xk,pk〉A + α2〈pk,pk〉A
〈xk,xk〉M + 2α〈xk,pk〉M + α2〈pk,pk〉M

=

[
1 α

]〈xk,xk〉A 〈xk,pk〉A

〈pk,xk〉A 〈pk,pk〉A


1

α


[
1 α

]〈xk,xk〉M 〈xk,pk〉M

〈pk,xk〉M 〈pk,pk〉M


1

α


·

This is the Rayleigh quotient associated with the generalized 2 × 2 eigenvalue

problem

〈xk,xk〉A 〈xk,pk〉A

〈pk,xk〉A 〈pk,pk〉A


y1

y2

 = λ

〈xk,xk〉M 〈xk,pk〉M

〈pk,xk〉M 〈pk,pk〉M


y1

y2

 . (9.16)

The smaller of the two eigenvalues of (9.16) is the searched value ρk+1 = ρ(xk+1)

in (9.15) that minimizes the Rayleigh quotient. The corresponding eigenvector is

normalized such that its first component equal to one. The second component of

this eigenvector is α = αk. Inserting the solution

[
1 αk

]T
into the second line of
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(9.16) we obtain

〈pk, (A− ρk+1M)(xk + αkpk)〉 = 〈pk, rk+1〉 = 0. (9.17)

So, the next residual rk+1 is orthogonal to the actual search direction pk.

We have already seen in Section 6.2 how to use the steepest descent method

to choose the search direction pk to solve the system Ax = b. For the eigenvalue

problem (9.11), we proceed similarly by choosing pk to be the negative gradient

of the Rayleigh quotient ρ; i.e.,

pk = −rk =
ρkMxk −Axk
〈xk,xk〉M

· (9.18)

The complete procedure to solve the eigenvalue problem (9.11) is given in Algo-

rithm 13.

9.4.2 1D Wavelet PCG Eigenvalue Problem Algorithm

As in the case of a system of linear equations, successful application of the con-

jugate gradient method to eigenvalue problems depends also upon the precon-

ditioning techniques [39, 40]. The aim of this subsection is to apply the wavelet

preconditioning for the conjugate gradient optimization of the Rayleigh quotient to

the generalized eigenvalue problem (9.11). The wavelet preconditioned conjugate

gradient method to solve the eigenvalue problem (9.11) is given in Algorithm 14.
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Algorithm 13: One-dimensional CG Eigenvalue Algorithm

Result: Finding the minimum Eigenvalue and the corresponding
Eigenvector for Ax = λMx

Input : A,M ,x0, kmax and tol
Output: The eigenvalue λ, and the corresponding eigenvector x

1 u0 = Mx0, q =
√
〈x0,u0〉

2 x0 = x0/q, u0 = u0/q
3 v0 = Ax0

4 λ0 = 〈x0,v0〉 / 〈x0,u0〉
5 for k = 0 up to kmax −1 do
6 rk = λkuk − vk
7 if ‖rk‖ < tol then
8 Exit
9 end

10 if k = 0 then βk = 0
11 else βk = 〈rk, rk〉M/〈rk−1, rk−1〉M
12

13 pk = rk + βkpk−1

14 λk = minλ, and y is the eigenvector corresponding to λk of the 2× 2
eigenvalue problem

15

[
〈xk,vk〉 〈xk,pk〉A
〈pk,vk〉 〈pk,pk〉A

] [
y1

y2

]
= λ

[
〈xk,uk〉 〈xk,pk〉M
〈pk,uk〉 〈pk,pk〉M

] [
y1

y2

]
α = y(2)/y(1)

16 xk+1 = xk + αpk
17 uk+1 = Mxk+1, q =

√
〈xk+1,uk+1〉

18 xk+1 = xk+1/q, uk+1 = uk+1/q
19 vk+1 = Axk+1

20 end
21 x = xk+1, λ = λk+1
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Algorithm 14: One-dimensional Wavelet PCG Eigenvalue Algorithm

Result: Finding the minimum Eigenvalue and the corresponding
Eigenvector for Ax = λMx

Input : A,M ,x0, kmax, tol and P = D−2, D := 2j(δk,k′)(j,k),(j′,k′)∈J
Output: The eigenvalue λ, and the corresponding eigenvector x

1 u0 = Mx0, q =
√
〈x0,u0〉

2 x0 = x0/q, u0 = u0/q
3 v0 = Ax0

4 λ0 = 〈x0,v0〉 / 〈x0,u0〉
5 for k = 0 up to kmax −1 do
6 r = λkuk − vk
7 rk = D1IWT(PD1WT(r)) %Wavelet Preconditionneing
8 if ‖rk‖ < tol then
9 Exit

10 end
11 if k = 0 then βk = 0
12 else βk = 〈rk, rk〉M/〈rk−1, rk−1〉M
13

14 pk = rk + βkpk−1

15 λk = minλ, and y is the eigenvector corresponding to λk of the 2× 2
eigenvalue problem

16

[
〈xk,vk〉 〈xk,pk〉A
〈pk,vk〉 〈pk,pk〉A

] [
y1

y2

]
= λ

[
〈xk,uk〉 〈xk,pk〉M
〈pk,uk〉 〈pk,pk〉M

] [
y1

y2

]
α = y(2)/y(1)

17 xk+1 = xk + αpk
18 uk+1 = Mxk+1, q =

√
〈xk+1,uk+1〉

19 xk+1 = xk+1/q, uk+1 = uk+1/q
20 vk+1 = Axk+1

21 end
22 x = xk+1, λ = λk+1
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9.5 Numerical Simulation

The approach discussed in the previous section was applied to a homogeneous

model with the parameters a0 = 10 and a1 = 1. We simulated the damage by

introducing a jump in the value of a1. That is a1 = 1 + χId . The simulation was

implemented in two steps:

Step 1 (the damage simulation step): We fed the perturbed parameter a1

in Equation (9.8). The eigenvalue problem was solved using Algorithm 14 and

the smallest eigenpair (λ1,j, c1,j) was recorded. We applied the one-dimensional

wavelet preconditioned conjugate gradient algorithm (Algorithm 6) with

AΦ = A2c1,j, b = −(λ1,jI + a0)A1c1,j, ν = 0, n = 1.

The refinement matrices used in Algorithm 6 are produced using the coefficients

of d = 2, d̃ = 6 in Table 3.1.

Step 2 (the damage detection step): The recorded eigenvalue and eigenvector

were used together in Equation (9.10) to recover the matrix a1.

Figure 9.5 shows the profile of the recovered a1 corresponding to a uniform

damage in the interval [4/32, 8/32].
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Figure 9.1: A uniform damage in one location, using a1 coefficients.
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