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The Penalized Linear Regression (PLR) is one of the tools that provide reg-

ularization and variable selection for the coefficient estimates of regression

model. The PLR usually consists of the loss function, such as the Ordinary

Least Squares (OLS), plus the penalized regularization term. The OLS method is

hardly useful in real data interpretation. The Mean Square Error (MSE), which

consists of the sum of variance error and bias-squared error, can be high for

OLS, even though there is no bias-squared error. The PLR, such as the ridge

regression, the lasso, and the elastic net, adds a bias-squared error, which may

reduce the variance error, thereby, reducing the total less MSE. Some methods

of the PLR that have L1-penalty regularization term, such as the lasso and the

elastic net, can give a sparse solution. In statistical learning, sparsity is critical
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in terms of interpretation as well as selection of the effective features in the

regression model. In this thesis, a novel method called as the fixed-shape elastic

net will be introduced. It supersedes the limitations of the ordinary elastic net

by exploiting all the combinations of the L1-norm and L2-norm. Moreover, in

this thesis, another novel family of the regularization terms will be introduced

called as the exponential norms. Specifically, an extensive study will be conducted

on the L1-exponential norm, and its applicability in the PLR. The coordinate

descent algorithm will be designed to solve for the fixed-shape elastic net and

the L1-exponential norm. Numerical examples and simulation studies will be

presented to highlight the performance of the novel methods.

Keywords: Penalized linear regression; Regularization; Variable selection;

Ordinary least squares; Statistical learning; Sparsity; Ridge regression; Lasso;
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 ملخص الرسالة

 
 

 عبدالرحمن محي الدين محمود خان :الاسم الكامل
 

 واختيار المتغيرات عبر الشبكة المرنة ذات الشكل الثابت والمعيار الأسّي الطبيعيتنظيم  :عنوان الرسالة
 

 هندسة نظم صناعية التخصص:
 

 2015مايو  :تاريخ الدرجة العلمية
 

م )ا.خ.م( هو الخطّي الانحدار المقدّرة لنموذج  للمعاملات بالنسبة المتغيرات واختيار تنظيم توفر التي الأدوات أحد المُغرَّ

م، التنظيم بالإضافة لحدّ ( م.ص.م) المألوفة الصغرى المربعات مثل الخسارة دالة من الانحدار، ا.خ.م يتكوّن  م.ص.م المُغرَّ

 وخطأ التباين خطأ مجموع من يتكوّن الذي -( م.خ.م) المربعات خطأ معدل الحقيقية، البيانات تفسير في نافعا يكون بالكاد

 الخطي الانحدار المربع، الانحياز خطأ وجود عدم من بالرغم( م.ص.م) لـ عاليا يكون أن الممكن من – المربع الانحياز

م والتي ربما  المربع الانحياز خطأ تضيف( نت إلاستك) المرنة والشبكة ،(لاسو) الصيد وحبل ،(رِدْج) القمة انحدار مثل المُغرَّ

 والشبكة الصيد حبل مثل 1ل-حد تنظيم غرامة التي فيها ا.خ.م طرق بعض ،(م.خ.م) تقلل محصلة التباين، وبذلك، خطأ تقلل

 فقط المؤثرة المزايا وكذلك اختيار التفسير نواحي من مهم التناثر الإحصائي؛ التعلم في متناثرا، حلا تعطي أن المرنة تستطيع

 المرنة الشبكة قيود تتجاوز الثابت، الشكل ذات المرنة الشبكة تسمى جديدة طريقة ستقُدّم الرسالة؛ هذه في نموذج الانحدار، في

 الأسّية المعايير تسُمى حدود التنظيم من جديدة أسرة ستقُدّم أيضا؛ ،2ل-ومعيار 1ل-معيار أمزجة جميع باستغلال المألوفة

 وتطبيقه في ا.خ.م، 1ل-سوف تجُرى دراسة موسعة لمعيار الأس الطبيعي ، بشكل خاص،(نورمز إكسبوننّْشَل) الطبيعية

 محاكاة ودراسات أمثلة ،1ل-الطبيعي ومعيار الأس الثابت الشكل ذات المرنة للشبكة سيصمم لحل الإحداثي خوارزم التناقص

 .الجديدتين الطريقتين ستقُدم لتسلط الضوء على أداء
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CHAPTER 1

INTRODUCTION

In the 14th century, the philosopher William Ockham proposed the law of

parsimony [1]. The law states that “plurality should not be posited without

necessity.” In other words, “entities are not to be multiplied beyond necessity.”

The necessity of such a law is becoming obvious every day, especially in this

era of various applications with large amounts of data and high computing and

storing capacities.

An active field of research “statistical learning with sparsity” [2] applies Ockham’s

law, also called as Ockham’s razor. Statistical Learning consists of a set of tools

that facilitates understanding a certain dataset [3]. It overlaps with machine

learning in computer science. Some of these tools are regression, classification,

and clustering. Moreover, statistical learning offers some sparse methods that

simplify a model expression by selecting some parameters or features and

eliminating others, by zeroing them. Thus, statistical learning with sparsity offers
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a more explainable model expression than the non-sparse methods.

Regression is a tool that estimates the relationship between a single dependent

variable, and one or more independent variables. There are many methods to

estimate the coefficients of the independent variables (or predictors) in order to

reflect that into the dependent variable (or response). In multiple linear regres-

sion, the Ordinary Least Square (OLS) method estimates the coefficients with the

minimum residual sum of squares. Let y ∈ RN be a vector with N observations

containing the response, and let X ∈ RN×p be a matrix of p predictors for the N

observations. Let xj ∈ RN be the jth column of X ∀ j = 1, . . . , p. Let β ∈ Rp be

a vector of unknown coefficients, and let ε ∈ RN be a vector of errors. The linear

regression model can be written as:

y = Xβ + βI1N + ε, (1.1)

where 1N ∈ RN is an all-one vector, and βI is the intercept or the bias term.

1.1 Data Standardization

Elements of X are typically standardized before solving the regression model. This

is done in order to have solutions that are independent from different measured

units (like gram, kilogram or pound). Moreover, elements of y are centered to

2



make βI = 0. By standardizing X and centering y, one dimension of the model

is reduced (i.e., from p + 1 to p), and later it will be seen that this reduction is

convenient to solve Penalized Linear Regression (PLR) models. Standardization

and centering can be done as follows:

xij,std =
xij − x̄j
σxj

, ∀ i = 1, . . . , N & j = 1, . . . , p, (1.2)

yi,std = yi − ȳ ∀ i = 1, . . . , N, (1.3)

where xij,std denotes the standardized ith element of xj, and xij denotes the original

ith element of xj. x̄j denotes the mean and σxj denotes the standard deviation

of the elements of xj. yi,std denotes the centered ith element of y, ȳ denotes the

mean of the elements of y, and yi denotes the original ith element of y. The

standardization will result the following:

1

N

N∑
i=1

xij = 0,
1

N

N∑
i=1

x2ij = 1,
1

N

N∑
i=1

yi = 0 ∀ j = 1, 2, . . . p. (1.4)

Let β̂j be a coeffecient estimate for predictor j. Let β̂j,std be a standardaized

coeffecient estimate for predictor j. The transformed linear regression model and

the original linear regression model will be related as:

β̂j =
β̂j,std
σxj

∀ j (1.5)

β̂I = ȳ −
p∑
j=1

β̂jx̄j. (1.6)
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In the following part of the thesis, all coeffecient estimates β̂j are assumed to be

standardized, (i.e., X is standardized & y is centered).

Let β̂o be a vector of coeffecient estimates found by OLS method. In order to

linearly fit the readings, OLS solves the model by minimizing the sum of squared

errors, described as follows:

min
β∈Rp

S(β) = min
β∈Rp

1

2
(y −Xβ)T (y −Xβ), (1.7)

where S(β) denotes the objective function of OLS method. Consider the hessian

of the above function:

∇2S(β) = XTX, (1.8)

the hessian matrix is always positive semi-definite, hence the function is convex

and the local optimum is the global optimum. Since the objective function is

convex, the following should be true at optimality:

∇S(β) = 0, (1.9)

−XTy + XTXβ = 0, (1.10)

XTXβ = XTy. (1.11)
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If (XTX) is invertible, then OLS coefficient estimates will be:

β̂o = (XTX)
−1

XTy. (1.12)

1.2 OLS Drawbacks

There are two criteria that measure the goodness of any regression method:

Prediction accuracy and Interpretability. Prediction accuracy is measured in

terms of Mean Squared Error (MSE). A low value of MSE indicates higher

prediction accuracy. MSE consists of two types of error: variance error and

bias-squared error. Interpretability is inversely proportional to the number

of nonzero coefficients. The less the number of nonzero coefficient estimates,

the easier to interpret the model. For a dataset that has a high number of

predictors, setting some of the coefficient estimates to zero will make the model

more interpretable. This parsimonious characteristic, i.e. setting some coefficient

estimates to zero, is called “sparsity”.

Unfortunately, OLS behaves poorly in terms of prediction accuracy and/or

interpretability. It is true that bias-squared error in OLS is zero, but variance

error can potentially be high with more predictors and observations. The

unbiased characteristic of OLS does not allow us to reduce MSE by trading off

between bias-squared error and variance error. The uniqueness of the solution

of OLS for N > p case does not provide flexibility in finding other alternatives.

5



Moreover, OLS does not give a sparse solution, which can make the model very

hard to interpret.

In order to overcome the above issues, biased estimates are used. Some of

the well-known biased estimate methods are the ridge regression [4], the Least

Absolute Shrinkage and Selection Operator (LASSO) [5], and the elastic net [6]

methods. By compromising between bias-squared error and the variance error,

the total prediction error can be reduced. Moreover, by reducing some estimates

to zero, the model can be more interpretable. There is no method that can

generally perform better than other methods for a given dataset. Therefore, we

have to compare between many regression methods for a given dataset, and based

on the two critical criteria, we might decide which method performs better.

1.3 Thesis Organization

Chapter 2 will present a literature review on the regression methods, like biased

PLR, the ridge regression, lasso, and elastic net methods. A special case of the

orthogonal data will also be used to analyze the PLR, ridge regression, lasso and

elastic net. The last section of Chapter 2 will demonstrate the optimal selection

of the tuning parameters for the PLR.

Chapter 3 will illustrate the methods to solve the PLR by the coordinate
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descent algorithm in detail for the ridge regression, lasso, and elastic net with

different types of updates. Chapter 4 will introduce a novel method called as

the fixed-shape elastic net, which is a modification of the elastic net that utilizes

the full capacity of the elastic net. Chapter 5 will introduce a novel family of

regularization terms for the PLR, called as the exponential norms.

Chapter 6 will depict the performance of the proposed methods and compare

with the existing methods. A numerical study will be carried out to compare the

prediction accuracy of the proposed and existing methods. The discussion and

conclusion will be presented in Chapter 7.
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CHAPTER 2

LITERATURE REVIEW

There are numerous biased estimate methods in the literature for multiple linear

regression. One class of the biased estimate methods are known as PLR methods.

They have a general formulation that can be written as:

min
β∈Rp

f(β) = min
β∈Rp

S(β) + λP (β), (2.1)

where P (β) is denoted as the penalized regularization term, and f(β) is denoted as

the unconstrained objective function of the PLR. λ denotes the penalty parameter.

The constrained form can be written as follows:

min
β∈Rp

S(β) s.t. g(β) = P (β)− θ ≤ 0, (2.2)

where g(β) is the constraint set, and θ is any constant term. Next, well-known

PLR methods will be presented.
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2.1 The Ridge Regression

Typically, the OLS estimate, β̂o gives unsatisfactory MSE in multiple linear regres-

sion with high number of predictors. To overcome this issue, Hoerl and Kennard

[4] proposed the ridge regression method which deals with the high correlation

among the predictors, i.e., when XTX 6= NIp, and very ill-conditioned. The idea

can be mathematically written as:

β̂ridge = (XTX + λIp)
−1

XTy, (2.3)

or alternatively:

β̂ridge = (I + λ(XTX)−1)−1β̂o, (2.4)

where λ ≥ 0, and β̂ridge denotes the vector of coefficient estimates found by

the ridge regression. The range of β̂ridge will be from OLS estimate β̂o until

β̂ridge = 0. When λ ≥ 0, a bias-squared error is added to MSE. However,

when bias-squared error is added, the variance error may reduce as may the

MSE. By shrinking coefficient estimates, the ridge regression trades off between

bias-squared and variance errors to get coefficient estimates that provide the

minimum MSE.

Ridge regression can be stated as a constrained or penalized Non-Linear Program-
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ming (NLP) problem, described as:

min
β∈Rp

1

2
(y −Xβ)T (y −Xβ) s.t.

1

2

p∑
j=1

β2
j ≤

1

2
t2, (2.5)

where t ≥ 0 is a tuning parameter, such that when t = 0, β̂j,ridge will be zero ∀ j,

where β̂j,ridge denotes the jth element of β̂ridge. When t ≥ to where t2o =
∑p

j=1 β̂
2
oj,

then the constraint will be redundant and β̂j,ridge will be the same as β̂oj ∀ j (See

Figure (2.1)), where β̂oj denotes the jth element of β̂o. The constrained NLP

problem can be equivalently formulated in a penalized form as follows:

min
β∈Rp

1

2
(y −Xβ)T (y −Xβ) +

λ

2

p∑
j=1

β2
j , (2.6)

where λ ≥ 0 is a penalty parameter, such that when λ → ∞, β̂j,ridge will be

zero ∀ j. When λ = 0, β̂j,ridge will be the same as β̂oj ∀ j. For every value

of λ, there exists a constant t such that both formulations will result in the

same solution. However, no direct mapping exists between λ and t for the PLR [7].

Although the ridge regression performs well when there is a high correlation be-

tween predictors, it has a drawback that it lacks interpretability (by not providing

a sparse solution). In other words, it may excel in only one of the two criteria

that measure the goodness of any regression method, i.e. prediction accuracy. In

fact, when t → 0, the squared norm tends to equalize the coefficient estimates,

which makes it more difficult to interpret.
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Figure 2.1: For two predictors, the elliptical contours are the objective function of
the OLS (the center of the contours is the optimal solution of OLS) . The shaded
area is the norm constraint of the ridge regression.
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Figure 2.2: Trace plot of Boston dataset by the ridge regression. The x-axis is the
tuning parameter t. The y-axis indicates the values of the coefficient estimates.

The PLR provides a range of solutions for t ∈ [0, to] that can be visually summa-

rized in a trace plot (See Figure (2.2)). There are no zero coefficient estimates for

t > 0 except at one passing point when some coefficient estimate changes the sign.

After solving for the whole range of λ or t, the optimal λ∗ or t∗ will be selected.

The selection of the optimal tuning parameter λ∗ or t∗ will be discussed in detail

in Section 2.6.
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2.2 The Lasso

The lasso method was proposed by Tibshiriani [5] to overcome the drawback of

the interpretability of the ridge regression, and the drawback of the high predic-

tion error of the subset selection. Breiman [8] pointed that the subset selection

has a high variability because it is a discrete process. It uses a hard thresholding

approach for sparsity. On the other hand, the lasso exploits a flexibility of shrink-

ing the coefficient estimates by using a soft thresholding approach. The similarity

between the lasso and the ridge regression is that both have the same objective

function of OLS. However, instead of using L2-norm as a constraint, the lasso uses

L1-norm (See Figure (2.3)). To find the lasso estimate β̂lasso, the problem can be

formulated as:

min
β∈Rp

1

2
(y −Xβ)T (y −Xβ) s.t.

p∑
j=1

|βj| ≤ t, (2.7)

where t ≥ 0 is a tuning parameter, such that when t = 0, all β̂j,lasso will be

zero ∀ j, where β̂j,lasso denotes the jth element of β̂lasso. When t ≥ to, where

to =
∑p

j=1 |β̂oj|, then the constraint will be redundant, and β̂j,lasso will be the

same as β̂oj ∀ j. The constrained NLP problem can be equivalently formulated in

a penalized form as follows:

min
β∈Rp

1

2
(y −Xβ)T (y −Xβ) + λ

p∑
j=1

|βj|, (2.8)

where λ > 0, is the penalty parameter, such that when λ → ∞, β̂j,lasso will be
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zero ∀ j, and when λ = 0, β̂j,lasso will be the same as β̂oj ∀ j. In addition to that,

for every value of λ, there exists a constant t that both the formulations will give

the same solution.

Figure (2.3) geometrically shows the reason that the lasso can set some estimates

to 0. Due to the fact that the corners of the norm are not smooth, and usually

exposed to the objective function, some of the coefficient estimates are set to

0. For example, the trace plot of the lasso in Figure (2.4) indicates, how the

coefficient estimates are set to zero at some t > 0.

2.2.1 Comparing the Lasso and the Non-negative Garrote

Tibshiriani [5] compared the lasso with the non-negative garrote method [9]. To

find the non-negative garrote estimate β̂non, the problem can be formulated as:

min
u∈Rp

1

2

N∑
i=1

(y +

p∑
j=1

ujβ̂oj)
2 + λ

p∑
j=1

uj, s.t. uj ≥ 0, ∀j. (2.9)

Let β̂j,non denotes the jth element of non-negative garrote coefficient estimate

β̂non, then it can be shown that β̂j,non = ujβ̂oj.

The drawback of the non-negative garrote method is that it is directly affected by
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Figure 2.3: For two predictors, the elliptical contours are the objective function of
the OLS (the center of the contours is the optimal solution of OLS) . The shaded
area is the norm constraint of the lasso.
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Figure 2.4: Trace plot of Boston dataset by the lasso. The x-axis is the tuning
parameter t. The y-axis indicates the values of the coefficient estimates.

the sign and magnitude of OLS estimates. When β̂oj is large the shrinkage will

be less. For example, the diamond in Figure (2.3) would be stretched towards

the larger OLS coefficient estimate. The lasso method avoids the direct use of

OLS estimates as in Equation (2.9).

2.2.2 Comparing the Lasso and the Ridge Regression

With high correlated predictors, the lasso tends to randomly select one variable

from one group and ignore the other variables. In such cases, the ridge regression

usually performs better than the lasso by a high margin. Another limitation of

the lasso is for p � N case, where the lasso cannot select more than N nonzero

coefficient estimates. The ridge regression, on the other hand, will have p nonzero
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coefficient estimates for p� N case.

2.2.3 Generalization with the Bridge Regression

Frank and Friedman [10] introduced the bridge regression, which can be considered

as a generalization to both the lasso and ridge regression. If we add a λ
∑p

j=1 |βj|
q

term to the OLS objective function, then the resultant formulation will be called

as the bridge regression. When q = 1, the bridge regression boils down to the

lasso, and when q = 2, the bridge regression boils down to the ridge regression.

Figure (2.5) shows a variety of different Lq-norms. The lasso has the minimum

norm in which the feasible set is convex. When the bridge regression has a strictly

convex norm, i.e. q > 1, the coefficient estimates will not be set to 0 (proved by

Fan and Li [11]). Thus, these norms are not good alternatives for the lasso in

terms of sparsity.

2.3 The Elastic Net

Zou and Hastie [6] proposed the elastic net method. It has a regularization term

that is a weighted combination between both L1-norm and L2-norm. In the same

paper, Zou and Hastie also introduced what they called as the naive elastic net.
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Figure 2.5: For two predictors, four different norms of the bridge regression with
q = 0.5, 1, 2, and 4, respectively, starting from inside.
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To find the naive elastic net estimate, β̂nnet, the problem can be formulated as:

min
β∈Rp

1

2
(y −Xβ)T (y −Xβ) s.t.

p∑
j=1

(
α|βj|+

1− α
2

β2
j

)
≤ αt+

1− α
2

t2,

(2.10)

where t ≥ 0 controls the size of the norm, such that the maximum value any

|β̂j,nnet| can reach is t, where β̂j,nnet denotes the jth element of β̂nnet. The

parameter α ∈ [0, 1] denotes the weight of the combination between L1-norm and

L2-norm, such that if α = 1, then the problem will be the same as the lasso; and

if α = 0, then the problem will be the same as the ridge regression. In a similar

manner to the lasso and ridge regression, let to be the minimum value, such that

the above constraint is redundant. if t ≥ to, then the constraint will be sim-

ilar to solving OLS problem. If t = 0, then all coefficient estimates will be set to 0.

The equivalent penalized form can be written as:

min
β∈Rp

1

2
(y −Xβ)T (y −Xβ) + λ

p∑
j=1

(
α|βj|+

1− α
2

β2
j

)
, (2.11)

where λ ≥ 0 is the penalty parameter. If λ = 0, then the problem will be similar

to OLS problem. If λ→∞, then all coefficient estimates will be set to 0.

The elastic net is just a rescaling of the naive elastic net to avoid the double

amount of shrinkage, since the method uses two different norms. More detail will

be provided in Section 2.5.
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Figure 2.6: For two predictors, the elliptical contours are the objective function of
the OLS (the center of the contours is the optimal solution of OLS) . The shaded
area is the norm constraint of the elastic net.

20



The elastic net is always convex, since it is a non-negative weighted sum of two

convex functions (See Figure (2.6)). The elastic net overcomes the issue of high

correlated variables that cannot be handled by the lasso. In addition to that, it

can do variable selection that cannot be performed by the ridge regression. The

elastic net has another advantage over the lasso for p� N case, i.e., it overcomes

the limitation of the lasso, and can have more thanN nonzero coefficient estimates.

2.4 Other Generalizations of The PLR

There are other generalizations of the PLR which incorporates the L1-penalty

in different forms. For example, Yuan and Lin [12] introduced the group lasso

where there are ρ groups; Gτ , for τ = 1, 2, . . . , ρ, such that Gτ =
∑

j∈Gτ

√
β2
j .

The penalized term is λ
∑ρ

τ=1Gτ , such that when ρ = p, the problem boils

down to the lasso method. The group lasso method lets coefficient estimates

under one group go simultaneously to zero. Puig et al. [13] and Simon et al.

[14] extended the group lasso by adding a weighted lasso penalty as follows:

λ
(∑ρ

τ=1 (1− α)Gτ +
∑p

j=1 α|βj|
)
. This method is called the sparse-group

lasso which allows sparsity within the group. Jacob et al. [15] introduced the

overlap group lasso by allowing coefficient estimates to be in more than one group.

Another generalization by Tibshiriani et al. [16] is the fused lasso where it

21



has two constraints: the first is the ordinary lasso constraint
∑p

j=1 |βj| ≤ t1

and the second is the difference between two successive coefficient estimates∑p
j=2 |βj − βj−1| ≤ t2. The first constraint as it is known encourages sparsity

for some coefficient estimates, and the second one encourages sparsity of some

differences between two coefficient estimates.

Zou [17] introduced the adaptive lasso, which can have a sparser characteristic

than the ordinary lasso, where the penalty is λ
∑p

j=1wj|βj| and wj is some weight

that can be selected as wj = |β̂oj|−v, v > 0. The non-negative garrote can be

considered as a specific case of the adaptive lasso. There are other methods for

the PLR that have a nonconvex penalty, such as Smoothly Clipped Absolute

Deviation (SCAD) by Fan and Li [11], Minimax Concave (MC+) by Zhang [18],

and Seamless L− 0-Penalty (SELO) by Dicker et al. [19].

Meinshausen [20] introduced the relaxed lasso method. It is a two-stage method:

the first stage is solving the problem as the ordinary lasso. The second stage is

re-solving only for the non-zero coefficient estimates as an OLS problem. This

will help in removing the shrinkage effect on the nonzero coefficient estimates,

which might improve the prediction accuracy, since nonzero coefficient estimates

are usually shrunk. This relaxation can be applied to any shrinking sparse

method like the elastic net and the novel proposed methods (see Chapter 4 & 5).
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Figure 2.7: The x-axis is for the OLS estimate for orthogonal case. The continuous
line is for OLS, the dashed line is for ridge, and the dot-line is for the lasso.

There are other generalizations related to the objective function like the LAD-

lasso by Wang et al. [21] which uses L1-norm loss function instead of L2-norm.

LAD stands for “Least Absolute Deviation”. It is less sensitive to the outliers.

2.5 Orthogonal Case

A special case of the PLR is when the predictors are orthogonal (See Figure (2.7)),

i.e. XTX = NIp. The OLS coefficient estimates, in this case, can be written as:

β̂o =
1

N
XTy (2.12)
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The PLR for the orthogonal case can be written as:

β̂ = argmin
β∈Rp

{
S(β) + λP (β)

}
, (2.13)

= argmin
β∈Rp

{
1

2
(y −Xβ)T (y −Xβ) + λP (β)

}
(2.14)

= argmin
β∈Rp

{
1

2
yTy − βTXTy +

1

2
βTXTXβ + λP (β)

}
(2.15)

From the above, the orthogonal case, every βj ∀ j = 1, 2, . . . , p when βj 6= 0

is separable, and can be solved independently. In general, the solution can be

obtained as:

∂

∂βj

(
S(β) + λP (β)

)∣∣∣∣
βj=β̂j

= 0 (2.16)

−Nβ̂oj +Nβ̂j + λ
∂P (β)

∂βj

∣∣∣∣
βj=β̂j

= 0 (2.17)

β̂j = β̂oj −
λ

N

∂P (β)

∂βj

∣∣∣∣
βj=β̂j

(2.18)

For the ridge regression, the solution will be:

β̂j,ridge = β̂oj −
λ

N
β̂j,ridge (2.19)

β̂j,ridge =
β̂oj

1 + λ
N

(2.20)

For the lasso, the solution will be:

β̂j,lasso = β̂oj −
λ

N
sign(β̂j,lasso) (2.21)
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Now, if β̂j,lasso > 0, then say β̂+
j,lasso will be:

β̂+
j,lasso = β̂oj −

λ

N
. (2.22)

Note that, in order to have β̂j,lasso > 0, then β̂oj >
λ
N

. And if β̂j,lasso < 0, then

say β̂−j,lasso will be:

β̂−j,lasso = β̂oj +
λ

N
. (2.23)

Note that, in order to have β̂j,lasso < 0, then β̂oj <
−λ
N

. Otherwise, β̂j,lasso = 0.

The general formula for all the cases will be:

β̂j,lasso = sign(β̂oj)

(
|β̂oj| −

λ

N

)
+

, (2.24)

where (β)+ denotes max{0, β}.

For a single predictor, the orthogonal case for the lasso becomes the exact soft

thresholding proposed in Donoho and Johnson [22], and Donoho et al. [23] for

signal recovery by de-noising the wavelet coefficients.

For the naive elastic net, the solution will be:

β̂j,nnet = β̂oj −
λα

N
sign(β̂j,nnet)−

λ(1− α)

N
β̂j,nnet (2.25)
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Now, if β̂j,nnet > 0, then say β̂+
j,nnet will be:

β̂+
j,nnet =

β̂oj − λα
N

1 + λ(1−α)
N

(2.26)

Note that, in order to have β̂j,nnet > 0, then β̂oj >
λα
N

. Now, if β̂j,nnet < 0, then

say β̂−j,nnet will be:

β̂−j,nnet =
β̂oj + λα

N

1 + λ(1−α)
N

(2.27)

Note that, in order to have β̂j,nnet < 0, then β̂oj <
λα
N

. Otherwise, β̂j,nnet = 0. The

general formula for all the cases will be:

β̂j,nnet =

sign(β̂oj)

(
|β̂oj| − λα

N

)
+

1 + λ(1−α)
N

(2.28)

The elastic net estimate β̂j,net is a rescaling of the naive elastic net to avoid “double

shrinkage”, which can be obtained as:

β̂j,net =

(
1 + (1− α)

λ

N

)
β̂j,nnet ∀ j. (2.29)

The orthogonal case gives us a good idea about the reason for which the lasso

and elastic net have the sparse characteristic, while the ridge does not. The ridge

regression is a rescaling of the OLS estimate, and thus the ridge regression will

never be set estimate to 0 (unless the OLS estimate is equal to 0). The lasso and

elastic net have a subtraction of the thresholds λ
N

and λα
N

, respectively. For the

lasso, if |β̂oj| < λ
N

, then β̂j,lasso will automatically be set to 0. For the elastic net,
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if |β̂oj| < λα
N

, then, β̂j,net will automatically be set to 0. Furthermore, the naive

elastic net has the rescaling characteristic as the ridge regression.

2.6 Tuning Parameter Selection

The PLR can give a range of coefficient estimates, which vary from OLS estimates

until all of them are set to 0. The choice of the values of tuning parameters t or

λ, and α for the elastic net, is based on certain values of the tuning parameters

that can give the highest prediction accuracy, i.e. the minimum prediction error.

Cross validation is conducted on the dataset to find the parameter value that

corresponds to the minimum prediction error. It is an effective tool that was

originally used for multiple linear regression.

The parameters can be searched through resampling methods, such as cross val-

idation and bootstrap methods. K-fold cross validation is one of the popular

procedures used for the parameter selection. The key idea of the K-fold cross

validation can be described as: the dataset is divided randomly into almost equal

K folds. Fold k, where k = 1, . . . , K, will be once considered as a validation set

and the remaining larger dataset (all folds except fold k) K∼k will be considered

as a training set. For a certain tuning parameter t or λ, K-fold cross-validation is

applied as follows:

1. Find the coefficient estimates for the training set β̂j,K∼k ∀ j.
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2. Find the cross validation error mean for fold k with nk observations,

CVk =
1

nk

∑
i∈k

(
yi −

p∑
j=1

xijβ̂j,K∼k

)2

(2.30)

3. Repeat steps 1 and 2 for all K folds.

4. Find the cross validation error by taking the mean of all CVks as:

ĈV =
1

K

K∑
k=1

CVk (2.31)

5. Find standard deviation of all cross validations:

σCV =

√√√√ 1

K

K∑
k=1

(CVk − ĈV )2 (2.32)

6. Find the standard error:

ŜE =
σCV√
K

(2.33)

7. Repeat all the above for each t or λ grids. In case of the elastic net, the

cross validation process will be two dimensional, by fixing α, say α = 0.1,

and cross validating all grids of t or λ, then fixing α to another value, say

α = 0.2, and cross validating all grids of t or λ and continue so forth for all

grid points of α.

8. Choose the tuning parameter(s) that has the minimum value of CV, and

solve for the whole dataset.
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9. One standard error rule: one can choose parameters to have sparser and

more robust [24] results within one standard error range as follows:

ĈV ≤ CV ≤ ĈV + ŜE (2.34)

Sometimes, the performance of different methods, (e.g. lasso or ridge), is

compared by their minimum cross validation errors (CV ). On the other hand,

the performance is measured by comparing the Mean Prediction Squared Error

(MSPE). For the MSPE comparison, a testing dataset is required.

The minimum number of folds that can be obtained is K = 2, and the maximum

is K = N , which is, in this case called, leave-one-out cross validation. If K = 2,

then the bias error will be high for the total prediction error. If K = N , then the

validation is unbiased, but the variance error will be high. The trade-off between

bias-squared and variance errors is related to the choice of K. Typically, fivefold

or tenfold cross validation is used (K = 5 or K = 10).
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CHAPTER 3

SOLUTION ALGORITHM

3.1 Optimality Conditions

The OLS objective function is convex, and the regularization term
∑p

j=1 |βj|q is

convex when q ≥ 1. Hence, the sublevel set constraint is convex [25] for q ≥ 1.

Therefore, lasso, ridge regression, and elastic net are convex optimization prob-

lems. Thus, the KKT conditions are necessary and sufficient. For the constrained

case, when the problem is differentiable (like the ridge regression), the optimality

condition can be written as:

∇S(β) + λ∇P (β) = 0 (3.1)

In case of non-differentiable constraint, the optimality condition can be written

as [26]:

0 ∈ ∇S(β) + λ∂P (β), (3.2)
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where ∂ denotes for a subgradient, and 0 is a zero vector.

The primal feasibility condition can be written as:

g(β) = P (β)− θ ≤ 0, (3.3)

where θ is any constant term (that has no variable βj) and does not exist in the

penalized form. For example, θ = αt +
1− α

2
t2 for the elastic net, and θ = t for

the lasso. The dual feasibility condition can be written as:

λ ≥ 0, (3.4)

And the complimentary slackness can be written as,

λ g(β) = 0. (3.5)

3.2 Solution Approach

The regularization term
∑p

j=1 |βj| is non-smooth and non-differentiable. To

equivalently express the constraint
∑p

j=1 |βj| ≤ t as a linear form, it requires

2p constraints, with a permutation between the signs of coefficient estimates.

Solving a quadratic problem with 2p linear constraints is not practical when p is

large.
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Efficient algorithms were proposed to solve the lasso, such as, the “homotopy

method” by Osborne et al. [27], and a closely related method called the

“Least Angle Regression” (LARS) by Efron et al. [28]. Zou and Hastie [6]

applied LARS on the elastic net, and called it as “LAR-EN”. It can be ob-

served that the LARS algorithm may not perform well for the large scale problem.

Fu [29] and Daubechies et al. [30] suggested the coordinate descent algorithm on

the bridge regression. Kooij et al. [31] applied this algorithm to solve for the

elastic net. The coordinate descent algorithm can be considered a very efficient

algorithm and competitive with LARS. The focus will be on this algorithm for

the rest of the thesis.

3.3 Coordinate Descent Algorithm

Consider the following optimization problem: min f(β) | β ∈ Rp, where f(β) is

differentiable (like OLS and the ridge regression), the gradient descent algorithm

can be expressed as:

βr+1 = βr − γ∇f(βr), (3.6)

for 0 < γ < γo, for some γo > 0. Let d = (d1, . . . , dp)
T be a non zero direction

vector and let F be the cone of improving directions at β̄, defined as:

F = {d : f(β̄ + γd) < f(β̄) ∀γ ∈ (0, γo)} (3.7)
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When the function f() at any point in its domain can be approximated by first

order representation, then the cone of improving direction can also be expressed

as:

F = {d : ∇f(β̄)Td < 0}. (3.8)

The gradient descent algorithm, also known as the steepest descent algo-

rithm, chooses d = −∇f(β̄), which is one of the improving directions (since

∇f(β̄)Td = ∇f(β̄)T (−∇f(β̄)) = −||∇f(β̄)||2 < 0).

The coordinate descent algorithm does not take d as the steepest descent direction,

i.e. d 6= −∇f(β̄). Rather it sets another d ∈ Rp, which still belongs to the cone

of improving directions. The direction vector is cyclically selected for all the

elements j = 1, . . . , p, defined as: d = −Uj∇f(β̄), where Uj is a (p × p) matrix

that contains all zero’s except at the (j × j) element, which is equal to one. The

direction vector is an improving direction, as shown below:

∇f(β̄)Td = ∇f(β̄)T (−Uj∇f(β̄)) = −[∇f(β̄)]j
2
< 0, (3.9)

where [∇f(β̄)]j is the jth element of ∇f(β̄). The coordinate descent algorithm

is a cyclic iterative algorithm that minimizes the function with respect to one

variable, and considers the remaining variables as constants. Then, it does this to

every variable in a cyclic order until convergence. Although, this procedure is very

simple, its efficiency in practice is proven to be very high for such PLR problems
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[32]. The update rule for the coordinate descent algorithm can be expressed as:

βr+1 = βr − γUj∇f(βr). (3.10)

where r is the iteration number, and γ ∈ (0, γ0). For cycles of iterations

j = 1, . . . , p respectively, the algorithm will converge to the global minimum.

Alternatively, the coordinate descent algorithm can be written as:

βr+1
1 = argmin

β1

{
f(β1, β

r
2 , . . . , β

r
p)

}
(3.11)

βr+1
2 = argmin

β2

{
f(βr+1

1 , β2, . . . , β
r
p)

}
(3.12)

... (3.13)

βr+1
p = argmin

βp

{
f(βr+1

1 , βr+1
2 , . . . , βp)

}
, (3.14)

and the cycle repeats iteratively ∀ j = 1, . . . , p, until the convergence.

The coordinate descent algorithm can converge for some special cases where the

function is non-smooth or non-differentiable. Tseng [33, 34] proved that the co-

ordinate descent algorithm can be generalized as “Block Coordinate Relaxation”

(BCR) algorithm, which can be used for solving non-smooth regularization term.

Consider the following formulation:

β̂ = argmin
β∈Rp

{
f(β)

}
= argmin

β∈Rp

{
S(β) + λP (β)

}
(3.15)
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if S(β) is convex and differentiable, and if P (β) is convex, continuous in

its effective domain, and separable such that P (β) =
∑p

j=1 φj(βj); then the

coordinate descent algorithm converges to the global minimum [33]. Thus, this

solution approach is applicable to the lasso and the elastic net.

The coordinate descent algorithm can be implemented in three different forms of

update mechanisms. These update mechanisms will converge to the same solu-

tion, and have similar number of iterations. However, these updates mechanisms

differ in the computing efficiencies. The updates mechanisms are: Naive updates,

covariance updates, and coordinate newton updates. They are described as fol-

lows:

3.3.1 Solving OLS

Naive Updates for OLS

Consider the following OLS problem:

argmin
β∈Rp

{
S(β)

}
= argmin

β∈Rp

{
1

2
(y −Xβ)T (y −Xβ)

}
, (3.16)

At the optimal solution, the partial derivative of S(β) w.r.t. all βj’s should be

zero. To ultimately achieve this, the coordinate descent algorithm focuses on the

partial derivative w.r.t. one variable in a give iteration:

∂

∂βj

(
1

2
(y −Xβ)T (y −Xβ)

)
= 0 (3.17)
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−
N∑
i=1

xij

(
yi −

p∑
l=1

βlxil

)
= 0 (3.18)

N∑
i=1

xij

(
yi − βjxij −

∑
l 6=j

βlxil

)
= 0 (3.19)

N∑
i=1

xij

(
yi −

∑
l 6=j

βlxil

)
− βj

N∑
i=1

x2ij = 0 (3.20)

N∑
i=1

xij

(
yi −

∑
l 6=j

βlxil

)
= βj

N∑
i=1

x2ij (3.21)

βj =

∑N
i=1 xij

(
yi −

∑
l 6=j βlxil

)
∑N

i=1 x
2
ij

(3.22)

For standardized parameters,
∑N

i=1 x
2
ij = N ∀ j. Now, let zr+1

j be described as:

zr+1
j =

1

N

N∑
i=1

xij

(
yi −

∑
l 6=j

β∗l xil

)
, (3.23)

where β∗l is the current or recent update value, i.e., for 1 ≤ l < j, ∗ = r+1 and for

j ≤ l ≤ p, ∗ = r. Then, iteratively, executing zr+1
j for j = 1, 2, . . . , p, 1, 2, . . . , p, . . .

until the convergence will lead to solve for the OLS estimate β̂oj ∀ j.
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Covariance Updates for OLS

Friedman et al. [32] called the above way of solving coordinate descent iterations

in Section 3.3.1 as “naive updates”. They suggested another way of updates and

called it as “covariance updates”, which can be computationally efficient when

N � p. Let y
(j)
i =

∑
l 6= j βlxil. the idea is described as follows:

yi − y(j)i = yi −
( p∑

l=1

βlxil − βjxij
)
. (3.24)

From Equation (3.22), the following formulation is obtained:

βj =
1

N

( N∑
i=1

(
xijyi −

p∑
j=1

βl
(
xijxil

))
+Nβj

)
, (3.25)

βj =
1

N

N∑
i=1

(
xijyi −

p∑
j=1

βl
(
xijxil

))
+ βj. (3.26)

Now, the update mechanism can be written as:

zr+1
j =

1

N

N∑
i=1

(
xijyi −

p∑
j=1

β∗l
(
xijxil

))
+ zrj (3.27)

The covariance update is more efficient than the naive update when N � p,

because XTX and XTy can be calculated and stored before the execution of the

algorithm. On the contrary, the naive update approach calculates yi − y
(j)
i at

every update.
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Coordinate Newton Updates for OLS

Coordinate newton update determines the step size from the partial second order

derivative of f(β). Fu [29] used the coordinate newton update for solving the

lasso. In general, the update mechanism can be expressed as follows:

βr+1
j = βrj −

(
∂2f(β)

∂βj∂βj

)−1
∂f(β)

∂βj

∣∣∣∣∣
βj=βrj

(3.28)

Since f(β) in OLS, ridge regression, lasso and elastic net is quadratic, one coor-

dinate newton update for βj, when βrj 6= 0, will satisfy:

∂f(β)

∂βj

∣∣∣∣
βj=βrj

= 0 (3.29)

Coordinate newton update have the same number of iterations (like naive or

covariance update), but without re-calculating xij(yi − y(j)i ) in every cycle, and

does not require any storing of
∑N

i=1 xijyi and
∑N

k=1

∑N
i=1 xijxik. The update

mechanism for OLS can be expressed as follows:

∂f(β)

∂βj
= −

N∑
i=1

xij

(
yi −

p∑
l=1

βlxil

)
(3.30)

∂2f(β)

∂βj∂βj
=

N∑
i=1

x2ij = N (3.31)
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Now, the update mechanism can be written as:

zr+1
j = zrj +

1

N

N∑
i=1

xij

(
yi −

p∑
l=1

β∗l xil

)
(3.32)

Iteratively, the algorithm will be executed for j = 1, 2, . . . , p, 1, 2, . . . , p, 1, . . .

until the convergence. Clearly, the coordinate newton update in OLS, is just

another way of describing the naive or covariance update mechanism. However,

it is usually computationally less expensive than the naive approach.

zr+1
j = zrj +

1

N

N∑
i=1

xij

(
yi − zrjxij −

∑
l 6=j

β∗l xil

)
∀ j (3.33)

zr+1
j = zrj −

N

N
zrj +

1

N

N∑
i=1

xij

(
yi −

∑
l 6=j

β∗l xil

)
∀ j (3.34)

zr+1
j =

1

N

N∑
i=1

xij

(
yi −

∑
l 6=j

β∗l xil

)
∀ j (3.35)

3.3.2 Solving Penalized Linear Regression

The Ridge Regression

Consider the following ridge regression’s mathematical model:

min
β∈Rp

1

2
(y −Xβ)T (y −Xβ) +

λ

2

p∑
l=1

β2
l , (3.36)

Since the above problem is convex, it can be solved by taking the derivative with
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respect to βj and equating it to zero:

−
N∑
i=1

xij

(
yi −

p∑
l=1

βlxil

)
+ λβj = 0, (3.37)

−
N∑
i=1

xij

(
yi −

∑
l 6=1

βlxil

)
− βj

N∑
i=1

x2ij + λβj = 0, (3.38)

− 1

N

N∑
i=1

xij

(
yi −

∑
l 6=1

βlxil

)
− βj +

λ

N
βj = 0, (3.39)

the update of the ridge regression coefficient can be written as:

βr+1
j,ridge =

zr+1
j

1 +
λ

N

. (3.40)

Then, executing βr+1
j,ridge for j = 1, 2, . . . , p, 1, 2, . . . , p, . . . until the convergence,

will lead to solve for the ridge estimate β̂j,ridge ∀ j.

The term zr+1
j can be updated by any of the above three update mechanisms. In

addition to that, βr+1
j,ridge can also be updated directly by the coordinate newton

update mechanism, which is described as follows:

∂f(β)

∂βj
= −

N∑
i=1

xij

(
yi −

p∑
l=1

βlxil

)
+ λβj (3.41)
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∂2f(β)

∂βj∂βj
=

N∑
i=1

x2ij + λ = N + λ (3.42)

βr+1
j,ridge = βrj,ridge +

∑N
i=1 xij

(
yi −

∑p
l=1 β

∗
l xil

)
− λβrj,ridge

N + λ
(3.43)

This is just another way of re-writing coordinate newton update for the ridge

regression. Let it be called as “direct coordinate newton updates.

The Lasso

Consider the following lasso’s mathematical model:

min
β∈Rp

1

2
(y −Xβ)T (y −Xβ) + λ

p∑
l=1

|βl|, (3.44)

Although the above mathematical model is convex, but it is not differentiable

when any βj is equal to zero. However, when βj 6= 0 the gradient condition for

optimality can be written as:

−
N∑
i=1

xij

(
yi −

p∑
l=1

βlxil

)
+ λ sign

(
βj
)

= 0, (3.45)

If βr+1
j,lasso > 0, then β

(+)r+1
j,lasso is the positive update, defined as:

β
(+)r+1
j,lasso =

1

N

N∑
i=1

xij
(
yi −

p∑
l=1

β∗l xil
)
− λ

N
(3.46)
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If βr+1
j,lasso < 0, then β

(−)r+1
j,lasso is the negative update, defined as:

β
(−)r+1
j,lasso =

1

N

N∑
i=1

xij
(
yi −

p∑
l=1

β∗l xil
)

+
λ

N
(3.47)

Otherwise, βr+1
j,lasso = 0. Since

λ

N
> 0, βr+1

j,lasso will always have a magnitude less

than zr+1
j with the same sign of zr+1

j or will be zero. In general:

βr+1
j,lasso = sign

(
zr+1
j

)(
zr+1
j − λ

N

)
+

(3.48)

where (β)+ denotes max{0, β}. Executing βr+1
j,lasso for j = 1, 2, . . . , p, 1, 2, . . . , p, . . .

until the convergence, will lead to solve for the lasso estimate β̂j,lasso ∀ j.

The term zr+1
j can be updated by any of the above three update mechanisms. In

addition to that, the lasso coefficient estimate can also be updated directly by the

direct coordinate newton updates, as follows:

∂f(β)

∂βj
= −

N∑
i=1

xij

(
yi −

p∑
l=1

βlxil

)
+ λ sign

(
βj
)

(3.49)

∂2f(β)

∂βj∂βj
=

N∑
i=1

x2ij = N (3.50)

Now, if βr+1
j,lasso > 0, then β

(+)r+1
j,lasso is the positive update, defined as:

β
(+)r+1
j,lasso = βrj,lasso −

1

N

N∑
i=1

xij

(
yi −

p∑
l=1

β∗l xil

)
− λ

N
. (3.51)

42



And, if βr+1
j,lasso < 0, then β

(−)r+1
j,lasso is the negative update, defined as:

β̂
(−)r+1
j,lasso = βrj,lasso −

1

N

N∑
i=1

xij

(
yi −

p∑
l=1

β∗l xil

)
+
λ

N
. (3.52)

The value of zr+1
j is not apparent in the above equations. However, its sign can

be entirely estimated. It is very important to note that if |zr+1
j | >

λ

N
, β

(+)r+1
j,lasso

and β
(−)r+1
j,lasso will have the same sign as zr+1

j . If |zr+1
j | <

λ

N
, (i.e.βr+1

j,lasso = 0),

then β
(+)r+1
j,lasso and β

(−)r+1
j,lasso will have different signs, such that β

(+)r+1
j,lasso < 0, and

β
(−)r+1
j,lasso > 0. Thus, one has to calculate both β

(+)r+1
j,lasso and β

(−)r+1
j,lasso to obtain the

value of βr+1
j,lasso, described as follows:

If β
(+)r+1
j,lasso > 0, β

(−)r+1
j,lasso > 0, then set βr+1

j,lasso = β
(+)r+1
j,lasso .

Else if β
(+)r+1
j,lasso < 0, β

(−)r+1
j,lasso < 0, then set βr+1

j,lasso = β
(−)r+1
j,lasso .

Otherwise, set βr+1
j,lasso = 0.

Friedman et al. [35] and Wu and Lange [36] highlighted the significance of using

coordinate descent method for solving the lasso. Coordinate descent algorithm

is not often used in typical NLP approaches, but it is very efficient for the un-

constrained convex problems (like lasso). Friedman et al. [32] argued that the

efficiency of the algorithm for L1-norm due to the fact that when the coefficient

estimates are set to zero, then they will usually remain at zero. Thus, the updates
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are required only for the remaining nonzero coefficient estimates, until a zero level

estimate increases to a non-zero value (very rare). It turns out that the threshold

(
λ

N
) that emerged due to the L1-norm gives the above stated efficiency to the

coordinate descent algorithm.

The Elastic Net

Consider the following mathematical formulation for elastic net:

min
β∈Rp

1

2
(y −Xβ)T (y −Xβ) + λ

(
α

p∑
l=1

|βl|+
(1− α

2

) p∑
l=1

β2
l

)
, (3.53)

The model is convex, and following the same approach (as we did for lasso), we

get:

−
N∑
i=1

xij

(
yi −

p∑
l=1

βlxil

)
+ λ

(
α sign

(
βj
)

+
(
1− α

)
βl

)
= 0, (3.54)

−
N∑
i=1

xij

(
yi −

∑
l 6=1

βlxil

)
+ βj

N∑
i=1

x2ij + λ α sign
(
βj
)

+ λ
(
1− α

)
βl = 0, (3.55)

− 1

N

N∑
i=1

xij

(
yi −

∑
l 6=1

βlxil

)
+ βj +

λα

N
sign

(
βj
)

+
λ
(
1− α

)
N

βl = 0, (3.56)
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Now, if βr+1
j,nnet > 0, then β

(+)r+1
j,nnet is the positive update, defined as:

β
(+)r+1
j,nnet =

zr+1
j − λα

N

1 + (1− α)
λ

N

(3.57)

And, if βr+1
j,nnet < 0, then β

(−)r+1
j,nnet is the negative update, defined as:

β
(−)r+1
j,nnet =

zr+1
j +

λα

N

1 + (1− α)
λ

N

(3.58)

Otherwise βr+1
j,nnet = 0. Since

αλ

N
> 0, βr+1

j,nnet will always have a magnitude less

than zr+1
j with the same sign of zr+1

j or will be zero. In general:

βr+1
j,nnet =

sign
(
zr+1
j

)(
zr+1
j − λ

N

)
+

1 + (1− α)
λ

N

(3.59)

Executing βr+1
j,nnet for j = 1, 2, . . . , p, 1, 2, . . . , p, . . . until the convergence, will lead

to solve for the naive elastic net estimate β̂j,nnet ∀ j. The elastic net estimate

β̂j,net is a rescaling of the naive elastic net to avoid “double shrinkage”, which can

be obtained as:

β̂j,net =

(
1 + (1− α)

λ

N

)
β̂j,nnet ∀ j. (3.60)

The term zr+1
j can be updated by any of the three updates. The naive elastic

net coefficient estimate also can be updated directly by direct coordinate newton

updates as follows:
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∂f(β)

∂βj
= −

N∑
i=1

xij

(
yi −

p∑
l=1

βlxil

)
+ λ α sign

(
βj
)

+ λ(1− α)βj (3.61)

∂2f(β)

∂βj∂βj
=

N∑
i=1

x2ij + λ(1− α) = N + λ(1− α) (3.62)

If βr+1
j,nnet > 0, then β

(+)r+1
j,nnet is the positive update, defined as:

β
(+)r+1
j,nnet = βrj,nnet +

∑N
i=1 xij

(
yi −

∑p
l=1 β

∗
l xil
)
− λ
(
α + (1− α)βrj,nnet

)
N + λ(1− α)

. (3.63)

If βr+1
j,nnet < 0, then β

(−)r+1
j,nnet is the negative update, defined as:

β
(−)r+1
j,nnet = βrj,nnet +

∑N
i=1 xij

(
yi −

∑p
l=1 β

∗
l xil
)
− λ
(
α− (1− α)βrj,nnet

)
N + λ(1− α)

. (3.64)

Similar to the lasso, one has to calculate both β
(+)r+1
j,nnet and β

(−)r+1
j,nnet as follows:

If β
(+)r+1
j,nnet > 0, & β

(−)r+1
j,nnet > 0, then set βr+1

j,nnet = β
(+)r+1
j,nnet .

If β
(+)r+1
j,nnet < 0, & β

(−)r+1
j,nnet < 0, then set βr+1

j,nnet = β
(−)r+1
j,nnet .

Otherwise, set βr+1
j,nnet = 0.

It is worth to highlight the identicality between the orthogonal case and the
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coordinate descent algorithm. The orthogonal case is a special case of the

coordinate descent algorithm, where it converges at the very first iteration

(r + 1 = 1). This indicates that as the correlation between the predictors in-

creases, the number of iterations of the coordinate descent algorithm also increase.

The path-wise coordinate algorithm is highly recommended when solving for the

whole range of parameter λ, i.e. from OLS until all are set to zero. For example, for

any estimate β̂, β̂(λ1) will be a “warm start” for β̂(λ2), where λ is monotonically

increasing or decreasing. Let Qi be the number of iterations to get β̂ for λ = λ1,

(λ1 > λ2 . . .) starting from the same initial point. Let Mij be the number of

iterations to get β̂ for λ = λj starting from β̂ for λ = λi. Based on the path-wise

approach, it can be seen that, Qi +Mij < Qi +Qj.
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CHAPTER 4

THE FIXED-SHAPE ELASTIC

NET

4.1 Formulation of the Fixed-Shape Elastic Net

Consider solving for the naive elastic net (see Formulation (2.11)) for one predic-

tor. It can be seen from Figure (4.1) that when β̂nnet is large, a small change of

λ will shrink β̂nnet by a large margin, and when β̂nnet is small, a large change of

λ will shrink β̂nnet by a small margin. On the other hand, the elastic net after

rescaling rearranges the relationship between β̂net and λ to be linear for one pre-

dictor. However, they both lack the ability to fully capture the norm shape and

norm size.

The lasso and ridge regression, have one tuning dimension; the norm size that

is controlled by t (or λ). On the other hand, the elastic net has two tuning
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Figure 4.1: For one predictor, y-axis represents β and x-axis represents λ
N

. Rescal-
ing β after solving removes the effect of double shrinking.
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dimensions; the first dimension is for the norm size, and the other is for the norm

shape. These two dimensions provide a higher flexibility in the elastic net than

compared to the lasso and to the ridge regression. However, the current method

of solving the elastic net does not utilize the flexibility to its full capacity.

Typically, the role of t (or λ) in the elastic net is to control the norm size. At

first glance, one might think that the role of α in the elastic net is to control the

norm shape. However, α does not fully control the norm shape. To have a clear

picture, let us look at the weighted percentage of the elastic net penalty in Table

(4.1) for different values of t:

αt+
1− α

2
t2 (4.1)

Table 4.1: When α = 0.5, the composition of the lasso and ridge in Equation (4.1)
for different values of t.

t αt
1− α

2
t2 lasso % Ridge %

1000 500 250000 0.20% 99.80%
500 250 62500 0.40% 99.60%
100 50 2500 2.00% 98.00%
50 25 625 3.80% 96.20%
10 5 25 16.70% 83.30%
5 2.5 6.25 28.60% 71.40%
1 0.5 0.25 66.70% 33.30%

0.5 0.25 0.0625 80.00% 20.00%
0.1 0.05 0.0025 95.20% 4.80%
0.05 0.025 0.00063 97.60% 2.40%

From Table 4.1, it can be clearly seen, that at a constant value of α, the norm

shape is still changing. In addition to that, Figure 4.2 indicates the issue for a
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Figure 4.2: y-axis represents the composition of L2-norm, and x-axis represents
log(t). Different fixed values of α will lead to different compositions at different
values of t for the conventional elastic net. The novel method will set a parameter
c that will have the same composition at different values of t.

fixed value of α at different values of t, where 0 � α � 1. It can be seen that,

when t is very high (very low), only L2-norm (L1-norm) is selected, irrespective

of the value of α ∈ [0.1, 0.9]. Furthermore, with a fixed value of α, the trace plot

contributes the solution to different norm shapes. Thus, with the current way of

solving the elastic net, most of the combinations of norm shapes and norm sizes

will not be fully explored.
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In this chapter, a novel approach is proposed, called “fixed-shape elastic net”.

The method overcomes the above issues of the elastic net, by having two tuning

parameters such that one fully controls the norm shape and the other fully controls

the norm size.

Table 4.2: The corresponding values α for different values of t and α to give 50%
for each norm.

α t αt
1− α

2
t2 lasso % Ridge %

0.998 1000 1000 1000 50% 50%
0.996 500 500 500 50% 50%
0.98 100 100 100 50% 50%
0.962 50 50 50 50% 50%
0.833 10 10 10 50% 50%
0.714 5 5 5 50% 50%
0.333 1 1 1 50% 50%
0.2 0.5 0.5 0.5 50% 50%

0.048 0.1 0.1 0.1 50% 50%
0.024 0.05 0.05 0.05 50% 50%

Table (4.2) shows the corresponding value of α and t for a fixed norm shape at

different norm sizes. In order to explore the full capacity of the elastic net, the

traditional constraint of the elastic net needs to be reformulated. The traditional

constraint is of the following form:

p∑
j=1

(
α|βj|+

(1− α)

2
β2
j

)
≤ αt+

1− α
2

t2 (4.2)

For α ∈ (0, 1), divide Equation (4.2) on both sides by α:

p∑
j=1

(
|βj|+

(1− α)

2α
β2
j

)
≤ t+

1− α
2α

t2 (4.3)
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Let σ > 0 be defined as:

σ =
α

1− α
(4.4)

The elastic net constraint can be written as:

p∑
j=1

(
|βj|+

β2
j

2σ

)
≤ t+

t2

2σ
(4.5)

As α → 1, it can be seen that σ → ∞. Thus the second term
β2
j

2σ
→ 0, which

implies that the norm shape tends towards lasso’s shape. When α→ 0, it can be

seen that σ → 0. Thus, the second term
β2
j

2σ
→ ∞, which implies that the norm

shape tends towards ridge’s shape.

Let σ = ct, where c > 0 is the shape parameter. The traditional elastic net

constraint can be updated as:

p∑
j=1

(
|βj|+

β2
j

2ct

)
≤ t

(
1 +

1

2c

)
(4.6)

Therefore, the fixed-shape elastic net can be formulated as follows:

min
β∈Rp

1

2
(y −Xβ)T (y −Xβ) s.t.

p∑
j=1

(
|βj|+

β2
j

2ct

)
≤ t

(
1 +

1

2c

)
, (4.7)

where t ≥ 0 controls the norm size, such that the maximum value any |βj| can

reach is t, and c controls the norm shape. Equivalently, the penalized form of the
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fixed-shape elastic net can be formulated as follows:

min
β∈Rp

1

2
(y −Xβ)T (y −Xβ) + λ

p∑
j=1

(
|βj|+

β2
j

2ct

)
, (4.8)

where λ ≥ 0 is the penalty parameter. If λ = 0, then it is similar to solving for

OLS. If λ→∞, then all coefficient estimates will be set to 0.

4.1.1 Solving the Fixed-Shape Elastic Net Problem

A Coordinate descent algorithm based method is proposed to solve the fixed-shape

elastic net. The algorithm is described in the following steps:

Input: The outer iteration counter v, the penalty parameter λ(v), and the shape

parameter c.

Step 1: Set r = 0, the iteration counter. Initialize βrfnet as follows: if v = 1, then

βrfnet = β̂o, otherwise βrfnet|v = β̂fnet|(v−1), where βrfnet is the rth update for the

fixed-shape elastic net estimate β̂fnet

Step 2: Set j = 1.

Step 3: Update tr+1
j as per Equation (4.9), except when all βj,fnetr+1 = 0.

tr+1
j =

∑p
l=1 |β∗l,fnet|+

√(∑p
l=1 |β∗l,fnet|

)2
+ 2

(
1 + 1

2c

) (∑p
l=1

β∗l,fnet
2

c

)
2
(
1 + 1

2c

) (4.9)

where β∗l,fnet is the current or recent updated value, i.e., for 1 ≤ l < j, ∗ = r + 1

and for j ≤ l ≤ p, ∗ = r.
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Step 4: Find βr+1
j,fnet as per Equation (4.10):

βr+1
j,fnet =

sign
(
zr+1
j

) (
|zr+1
j | − λ

N

)
+

1 + λ
c tr+1
j N

(4.10)

Step 5: Set j = j + 1. If j ≤ p, then repeat Step 3 and Step 4. If j = p+ 1, then

set r = r + 1. If termination criterion is met, then stop, otherwise go to Step 2.

The above algorithm is repeated by updating the value of v as v = v + 1, and

λ(v+1) > λ(v).

The KKT conditions of the new formulation can be written as follows:

Optimality condition:

∇S(β) + λ∇g(β) = 0, ∀ βj 6= 0 (4.11)



−
∑N

i=1

(
xi1

(
yi −

∑p
j=1 βjxij

))

−
∑N

i=1

(
xi2

(
yi −

∑p
j=1 βjxij

))
...

−
∑N

i=1

(
xip

(
yi −

∑p
j=1 βjxij

))


+ λ



sign
(
β1
)

+
β1
ct

sign
(
β2
)

+
β2
ct

...

sign
(
βp
)

+
βp
ct


= 0, ∀ βj 6= 0

(4.12)

Dual feasibility:

λ ≥ 0 (4.13)
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Primal feasibility:

g(β) ≤ 0 (4.14)

p∑
j=1

(
|βj|+

β2
j

2ct

)
− t− t2

2ct
≤ 0 (4.15)

Complementary slackness:

λ g(β) = 0 (4.16)

λ

(
p∑
j=1

(
|βj|+

β2
j

2ct

)
− t− t2

2ct

)
= 0 (4.17)

Since the updating estimates of fixed-shape elastic net requires the information

of t, following idea is used to get the corresponding value of t at any iteration.

When λ > 0, there exists a corresponding t, such that Equation (4.7) is active or

binding. Rewriting α in term of c, the binding constraint can be written as:

p∑
j=1

(
|βj|+

β2
j

2ct

)
≤ t

(
1 +

1

2c

)
(4.18)

t2
(

1 +
1

2c

)
− t

p∑
j=1

|βj| −
p∑
j=1

β2
j

2c
= 0 (4.19)

By solving the quadratic equation for t:

t =

∑p
j=1 |βj| ±

√(∑p
j=1 |βj|

)2

+ 2

(
1 +

1

2c

)(∑p
j=1

β2
j

c

)
2

(
1 +

1

2c

) (4.20)
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Since

√(∑p
j=1 |βj|

)2

+ 2

(
1 +

1

2c

)(∑p
j=1

β2
j

c

)
≥
∑p

j=1 |βj| and t ≥ 0,

t =

∑p
j=1 |βj|+

√(∑p
j=1 |βj|

)2

+ 2

(
1 +

1

2c

)(∑p
j=1

β2
j

c

)
2

(
1 +

1

2c

) (4.21)

Furthermore, Equation (4.10) is obtained from the penalized fixed-shape elastic

net formulation. The stationary point should satisfy the following criterion:

−
N∑
i=1

xij

(
yi −

p∑
l=1

βlxil

)
+ λ sign (βj) +

λβj
ct

= 0, βj 6= 0, ∀ j. (4.22)

If βr+1
j,fnet > 0, then β

(+)r+1
j,fnet is the positive update that can be defined as:

β
(+)r+1
j,fnet =

zr+1
j − λ

N

1 +
λ

c t N

(4.23)

If βr+1
j,fnet < 0, then β

(−)r+1
j,fnet is the negative update that can be defined as:

β
(−)r+1
j,fnet =

zr+1
j +

λ

N

1 +
λ

c t N

(4.24)

Otherwise βr+1
j,fnet = 0. In general:

βr+1
j,fnet =

sign
(
zr+1
j

) (
|zr+1
j | − λ

N

)
+

1 + λ
c t N

(4.25)

Thus, using the proposed algorithm, the fixed-shape elastic net can be efficiently
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Figure 4.3: y-axis represents α, and x-axis represents log(t). The order pairs
(4.5, 10), (0.5, 50), & (0.06, 90) represent c and L2-norm (%), respectively.

solved for given values of λ & c.

4.1.2 Parameter c and Norm Shape

The fixed-shape elastic net requires solving the problem as the conventional elastic

net and then correcting the norm shape in order to have consistent norm shape

along the whole path. Thus, it utilizes every possible combination of L1-norm &

L2-norm. The fixed-shape elastic net solution approach is similar to the projected

gradient algorithm by having a corrective action after every iteration.
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Notice that every parameter is responsible for controlling one dimension in the

fixed-shape elastic net, i.e., t controls only the norm size and c controls only the

norm shape. When c → ∞, the problem tends towards the lasso, and when

c → 0, the problem tends towards the ridge regression (See Figure (4.3) and

Figure (4.4)). The list of figures (Figure (4.5) - Figure (4.14)) indicates the trace

plots for different values of c.
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Figure 4.4: The first column is for the conventional elastic net with α = 0.5,
and the second column is for the fixed-shape elastic net with c = 1. The tuning
parameter t = 0.1, 1, 10, 100 respectively as per rows from above.
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Figure 4.5: Trace plot of Boston dataset by the fixed-shape elastic net with c =
1000. The x-axis is the tuning parameter t. The y-axis indicates the values of the
coefficient estimates.
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Figure 4.6: Trace plot of Boston dataset by the fixed-shape elastic net with c = 2.
The x-axis is the tuning parameter t. The y-axis indicates the values of the
coefficient estimates.
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Figure 4.7: Trace plot of Boston dataset by the fixed-shape elastic net with c =
1.15. The x-axis is the tuning parameter t. The y-axis indicates the values of the
coefficient estimates.
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Figure 4.8: Trace plot of Boston dataset by the fixed-shape elastic net with c =
0.75. The x-axis is the tuning parameter t. The y-axis indicates the values of the
coefficient estimates.
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Figure 4.9: Trace plot of Boston dataset by the fixed-shape elastic net with c = 0.5.
The x-axis is the tuning parameter t. The y-axis indicates the values of the
coefficient estimates.
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Figure 4.10: Trace plot of Boston dataset by the fixed-shape elastic net with
c = 0.35. The x-axis is the tuning parameter t. The y-axis indicates the values of
the coefficient estimates.
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Figure 4.11: Trace plot of Boston dataset by the fixed-shape elastic net with
c = 0.2. The x-axis is the tuning parameter t. The y-axis indicates the values of
the coefficient estimates.
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Figure 4.12: Trace plot of Boston dataset by the fixed-shape elastic net with
c = 0.1. The x-axis is the tuning parameter t. The y-axis indicates the values of
the coefficient estimates.
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Figure 4.13: Trace plot of Boston dataset by the fixed-shape elastic net with
c = 0.05. The x-axis is the tuning parameter t. The y-axis indicates the values of
the coefficient estimates.
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Figure 4.14: Trace plot of Boston dataset by the fixed-shape elastic net with
c = 0.01. The x-axis is the tuning parameter t. The y-axis indicates the values of
the coefficient estimates.
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4.2 The Relationship Between λ and t

The relationship between t and λ is inversely proportional. When λ monotonically

increases, t monotonically decreases. It is very critical to have the regularization

term in this form
∑p

j=1

(
|βj|+

β2
j

2σ

)
. If the form was

∑p
j=1

(
|βj|
σ

+
β2
j

2σ2

)
then the

relationship between t and λ will not be inversely propotional, and the monotonic

relationship between them will not exist. The corresponding coordinate update

for βr+1
j,fnet can be expressed as:

βr+1
j,fnet =

sign
(
zr+1
j

)(
|zr+1
j | −

λ

σN

)
+

1 +
λ

σ2N

(4.26)

At the initial stage, if λ increases, then t decreases and so does σ = ct. The

threshold term
λ

σN
in practice will always make β̂j,fnet = 0 at some finite λ. In

other words, the trace plots will not be continuous. Looking closely at the case

of one predictor for the form
∑p

j=1

(
|βj|
σ

+
β2
j

2σ2

)
, where t = |β̂j,fnet| will provide

an in-depth idea. Let β̂o >
λ

σN
, then:

t =
β̂o −

λ

σN

1 +
λ

σ2N

(4.27)

Since σ = ct, we have:

t =
β̂o −

λ

ctN

1 +
λ

c2t2N

(4.28)
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Figure 4.15: For one predictor, the form;
|β|
σ

+
β2

2σ2
will let two values of t (y-axis)

correspond to one value of λ (x-axis).

t =
β̂o ±

√
β̂2
o − 4λ

( 1

c2N
+

1

cN

)
2

(4.29)

Consider Equation (4.29), which defines the relationship between t and λ. Figure

(4.15) illustrates the relationship, and indicates the reason for the discontunuity

in the trace plot. Since there is no direct relationship between λ and t, it is

very critical to make sure that for every dual variable λ, there is one unique

optimal solution for β̂. Looking closely at the case of one predictor for the form∑p
j=1

(
|βj|+

β2
j

2σ

)
where t = |β̂j,fnet| will provide an in-depth idea. Let β̂o >

λ

N
,

then:

t =
β̂o −

λ

N

1 +
λ

σN

(4.30)
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Figure 4.16: For one predictor, the form; |β|+ β2

2σ
will let two values of t (y-axis)

correspond to one value of λ (x-axis).

Since σ = ct, we have:

t =
β̂o −

λ

N

1 +
λ

ctN

(4.31)

t = β̂o − λ
(

1

N
+

1

cN

)
(4.32)

Figure (4.16) illustrates the new relationship, and indicates the continuity in the

trace plot for the fixed-shape elastic net. In addition to that, the threshold
λ

N
is

not affected by σ.
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CHAPTER 5

THE EXPONENTIAL NORM

REGRESSION

5.1 The Exponential Norms

As seen in the literature review, one family of the PLR is the bridge regression

with Lq-norms, where the penalty is λ
∑p

j=1 |βj|q. When q > 1 the problem is

strictly convex but not sparse. When q < 1 the problem is sparse but not convex.

The only norm that is convex and sparse is when q = 1, i.e. the lasso. (See Table

5.1 ).

Table 5.1: The bridge regression status of convexity and sparsity with different q
Lq-norm q > 1 q < 1 q = 1
Convexity Strictly Convex Non-convex Convex
Sparsity Non-sparse Sparse Sparse

Another type of PLR is the combination between two different norms. The elastic
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net and the fixed-shape elastic net utilize a combination of two norms, q = 1 and

q = 2 (i.e. the combination between the lasso and the ridge regression). The

purpose of the first norm is to achieve sparsity, and the purpose of the second

norm is to obtain the characteristics of grouping effect and to deal with high

correlation among the predictors.

What will happen if a higher degree norm (say q ≥ 3) is added to the combination

q = 1 and q = 2 norms? Will the new norm add flexibility than compared to the

elastic net (as the elastic net is flexible compared to the lasso)? In order to answer

these questions, a novel family is introduced to the penalized linear regression, and

the family is named as Lq-exponential norms. The Lq-exponential norm is defined

as:
p∑
j=1

(
e

|βj|q

q!σq − 1

)
≤ e

tq

q!σq − 1 (5.1)

where t is the tuning parameter that controls the size of the norm, and σ = ct,

where c controls the size of the norm.

To find the predictor estimates β̂exp, the problem can be formulated as:

min
β∈Rp

1

2
(y −Xβ)T (y −Xβ) s.t.

p∑
j=1

(
e

|βj|q

q!σq − 1

)
≤ e

tq

q!σq − 1, (5.2)

where t ≥ 0 is a tuning parameter that controls the size of the norm, such that
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when t = 0, then β̂j,exp will be zero ∀ j, where β̂j,exp denotes the jth element of

β̂exp. Let to be the minimum value such that when t ≥ t0, then the constraint will

be redundant and β̂j,exp will be the same as β̂oj ∀ j. Parameter σ = ct > 0 has

a similar role to the σ in the fixed-shape elastic net, where c controls the shape

of the norm. The exponential norm is a combination of infinite norms that have

the power of mq where m = 1, 2, 3, . . . ,∞. The Taylor series expansion of the

Lq-exponential norm can reveal further understanding of its nature:

p∑
j=1

(
e

|βj|q

q!σq − 1

)
=

p∑
j=1

∞∑
m=1

|βj|mq

(m!)(q!)mσmq
=

p∑
j=1

(
|βj|q

(q!)σq
+
|βj|2q

2(q!)2σ2q
+
|βj|3q

3!(q!)3σ3q
+ . . .

)
.

(5.3)

Since σ = ct, then as c → ∞, it can be seen that except the first term of the

Taylor expansion
|βj|q

(q!)σq
, the other remaining terms go to zero. Thus, they can be

neglected. Therefore, the formulation will be similar to the Lq-norm PLR, where

the penalty term is λ
∑p

j=1 |βj|q. On the other hand, as c → 0, the formulation

will be similar to the OLS subject to L∞-norm. Geometrically, L∞-norm would be

square-shaped for two predictors and cube-shaped for three predictors. Moreover,

when 0 � c � ∞, the penalty term in the formulation will be a combination

of infinite norms. For example, setting q = 2 will have an infinite combina-

tion of norms, ranging from L2-norm (when c→∞) until L∞-norm (when c→ 0).

Now consider the formulation, which can be equivalently written in the penalized

form as:
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min
β∈Rp

1

2
(y −Xβ)T (y −Xβ) + λσq

p∑
j=1

e

|βj|q

q!σq , (5.4)

where λ ≥ 0 is the penalty parameter. Multiplying σq by the regularization term

in the penalized form is essential to guarantee a monotonic relationship between

λ & t. Among this novel family of the Lq-exponential norms, the focus will be

on the L1-exponential norm. The corresponding constrained version of the linear

regression problem can be written as:

min
β∈Rp

1

2
(y −Xβ)T (y −Xβ) s.t.

p∑
j=1

(
e

|βj|
σ − 1

)
≤ e

t

σ − 1, (5.5)

Equivalently, the penalized formulation can be expressed as:

min
β∈Rp

1

2
(y −Xβ)T (y −Xβ) + λσ

p∑
j=1

e

|βj|
σ (5.6)

The Taylor series of the L1- exponential norm PLR is as follows:

p∑
j=1

(
e

|βj|
σ − 1

)
=

p∑
j=1

∞∑
m=1

|βj|m

m!σm
=

p∑
j=1

(
|βj|
σ

+
β2
j

2σ2
+
|βj|3

6σ3
+ . . .

)
. (5.7)

There are three main reasons to focus on the L1-exponential norm. Firstly, the

norm is always convex for all σ > 0 (as can be seen from the Taylor expansion).

The second reason is the fact that it exploits the sparsity due to the existence of

L1-norm in the first term of the Taylor expansion, i.e., the term will be
|βj|
σ

. The

third reason is that the L1-exponential norm is the only one among its family of
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exponential norms that includes all the moments, i.e., all natural-number norms

m = 1, 2, . . . ,∞. Other class of Lq-exponential norms (where q 6= 1) does not have

the three characteristics simultaneously. For example: the exponential norm for

q < 1 is not always convex, since its shape can be similar to Lq-norm. Moreover,

for q > 1, the exponential norm will never have a sparse solution, since it consists

of summation of non-sparse norms. Lastly, for any value of q (say q = 2), the

exponential norm will only include even-number norms m = 2, 4, . . . ,∞. Table

5.2 presents a brief summary of the above discussion.

Table 5.2: The exponential norm status of convexity, sparsity, & moments with
different values of q.
Lq-exponential norm q > 1 q < 1 q = 1

Convexity Always convex Not always convex Always convex
Sparsity Non-sparse Sparse Sparse
Moments not all not all all moments

Now, consider the first two terms as an approximation of the L1-exponential norm:

p∑
j=1

(
e

|βj|
σ − 1

)
≈

p∑
j=1

(
|βj|
σ

+
β2
j

2σ2

)
(5.8)

Clearly, the fixed-shape elastic net is an approximation of the L1-exponential

norm. Similar to the fixed-shape elastic net, it is important to reformulate the

L1-exponential norm as well. From the L1-exponential norm approximation, it

can be seen that the relationship between λ and t is similar to the fixed-shape

elastic net. Hence multiplying by σ is essential to ensure a monotonic relationship

between λ and t. This will avoid having two corresponding t’s for one value of λ.

See Figure (4.15) and Figure (4.16) as an illustration for the relationship.
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In L1-exponential norm, the tuning parameter λ or t controls the size of the norm,

while c controls the shape of the norm. To have a broader idea about the role that

c plays in shaping the exponential norm, see Table (5.3). When c gets smaller,

the presence of higher norms will be dominant w.r.t the changes in c (See Figure

(5.1)).

Table 5.3: The compositions of norms at different values of c for the L1-exponential
norm

c L1-norm L2-norm L3-norm L4-norm L5-norm Rest
1000000 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%

1000 99.95% 0.05% 0.00% 0.00% 0.00% 0.00%
100 99.50% 0.50% 0.00% 0.00% 0.00% 0.00%

5 90.33% 9.03% 0.60% 0.03% 0.00% 0.00%
4 88.02% 11.00% 0.92% 0.06% 0.00% 0.00%
3 84.26% 14.04% 1.56% 0.13% 0.01% 0.00%
2 77.07% 19.27% 3.21% 0.40% 0.04% 0.00%
1 58.20% 29.10% 9.70% 2.42% 0.48% 0.09%

0.8 50.19% 31.37% 13.07% 4.08% 1.02% 0.26%
0.6 38.81% 32.34% 17.97% 7.49% 2.50% 0.90%
0.5 31.30% 31.30% 20.87% 10.43% 4.17% 1.92%
0.4 22.36% 27.95% 23.29% 14.55% 7.28% 4.58%
0.3 12.33% 20.55% 22.84% 19.03% 12.69% 12.56%

0.25 7.46% 14.93% 19.90% 19.90% 15.92% 21.89%
0.2 3.39% 8.48% 14.13% 17.67% 17.67% 38.66%
0.1 0.05% 0.23% 0.76% 1.89% 3.78% 93.30%

0.01 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

In addition to that, for a fixed value of c, the shape of the norm will be fixed, re-

gardless of the value of the tuning parameter t. On the other hand, the parameter
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Figure 5.1: y-axis represents the composition of each norm. x-axis represents the
shape controller c.

t will control the size of the norm (See Figure (5.2)). The trace plots for different

values of c are shown in Figure (5.3) to Figure (5.10).
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Figure 5.2: For two predictors, for the same value of t, the L1-exponential norm
with different values of c from inside are 106, 5, 2, 1, 0.75, 0.5, 0.3, 0.2, 0.1,
respectively.
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Figure 5.3: Trace plot of Boston dataset by the L1-exponential norm with c =
1000. The x-axis is the tuning parameter t. The y-axis indicates the values of the
coefficient estimates.
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Figure 5.4: Trace plot of Boston dataset by the L1-exponential norm with c = 2.
The x-axis is the tuning parameter t. The y-axis indicates the values of the
coefficient estimates.
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Figure 5.5: Trace plot of Boston dataset by the L1-exponential norm with c = 1.
The x-axis is the tuning parameter t. The y-axis indicates the values of the
coefficient estimates.
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Figure 5.6: Trace plot of Boston dataset by the L1-exponential norm with c = 0.8.
The x-axis is the tuning parameter t. The y-axis indicates the values of the
coefficient estimates.

85



Figure 5.7: Trace plot of Boston dataset by the L1-exponential norm with c = 0.6.
The x-axis is the tuning parameter t. The y-axis indicates the values of the
coefficient estimates.
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Figure 5.8: Trace plot of Boston dataset by the L1-exponential norm with c = 0.4.
The x-axis is the tuning parameter t. The y-axis indicates the values of the
coefficient estimates.
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Figure 5.9: Trace plot of Boston dataset by the L1-exponential norm with c = 0.25.
The x-axis is the tuning parameter t. The y-axis indicates the values of the
coefficient estimates.
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Figure 5.10: Trace plot of Boston dataset by the L1-exponential norm with c =
0.15. The x-axis is the tuning parameter t. The y-axis indicates the values of the
coefficient estimates.
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5.2 Bayes Estimates

The penalized linear regression estimates can be interpreted as the mode of the

Bayes posterior estimates under prior. The lasso corresponds to the Laplacian

prior, as follows:

β|λ ∼
p∏
j=1

λ

2
e−λ|βj |. (5.9)

Park and Casella [37] presented an extensive comparison between the Bayesian

lasso and the ordinary lasso. The ridge regression corresponds to the Gaussian

prior, as follows:

β|λ ∼
p∏
j=1

λ

2
e−λβ

2
j . (5.10)

The elastic net corresponds to a combination of the Laplacian and Gaussian, as

follows:

β|λ ∼
p∏
j=1

λ

2
e
−λ

(
α|βj |+

(1− α)

2
β2
j

)
. (5.11)

The L1-exponential net corresponds to the new prior, as follows:

β|λ ∼
p∏
j=1

λ

2
e
−λ

(
e

|βj|
σ

)
(5.12)
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5.3 Solution Algorithm for the L1-exponential

norm

A coordinate descent algorithm based approach is proposed to solve the L1-

exponential norm PLR. The algorithm is described in the following steps:

Input: The outer iteration counter v, the penalty parameter λ(v), and the shape

parameter c.

Step 1: Set r = 0, the iteration counter. Initialize βrexp as follows: if v = 1, then

βrexp = β̂o, otherwise βrexp|v = β̂exp|(v−1). where βrexp is the rth update for the

L1-exponential norm estimate β̂exp

Step 2: Set j = 1.

Step 3: Solve tr+1
j as per Equation (5.13), except when all βj,expr+1 = 0.

tr+1
j = ctr+1

j ln

(
p∑
l=1

(
e

|β∗l,exp|

ctr+1
j − 1

)
+ 1

)
(5.13)

where β∗l,exp is the current or recent updated value, i.e., for 1 ≤ l < j, ∗ = r + 1

and for j ≤ l ≤ p, ∗ = r.

Step 4: Find βr+1
j,exp as per the equation solver approach given by Equation (5.25)

or the updater approach given by Equation (5.39)

Step 5: j = j + 1. If j ≤ p, then repeat Step 3 and Step 4. If j = p + 1, then

set r = r + 1. If termination criterion is met, then stop, otherwise go to Step 2.

The above algorithm is repeated by updating the value of v as v = v + 1, and

λ(v+1) > λ(v).

91



The KKT conditions of the new formulation will be:

Optimality condition:

∇S(β) + λ∇g(β) = 0, βj 6= 0 (5.14)



−
∑N

i=1

(
xi1

(
yi −

∑p
j=1 βjxij

))

−
∑N

i=1

(
xi2

(
yi −

∑p
j=1 βjxij

))
...

−
∑N

i=1

(
xip

(
yi −

∑p
j=1 βjxij

))


+λ



sign
(
β1
)
e

β1
σ

sign
(
β2
)
e

β2
σ

...

sign
(
βp
)
e

βp
σ


= 0, βj 6= 0 (5.15)

Dual feasibility:

λ ≥ 0 (5.16)

Primal feasibility:

g(β) ≤ 0 (5.17)

σ

p∑
j=1

(
e

|βj|
σ − 1

)
− σ

(
e

t

σ − 1
)
≤ 0 (5.18)

Complementary slackness:

λ g(β) ≤ 0 (5.19)

λ

(
σ

p∑
j=1

(
e

|βj|
σ − 1

)
− σ

(
e

t

σ − 1
))

= 0 (5.20)

The L1-exponential norm requires the norm shape to be fixed. This is done in

order to explore its full capacity. When λ > 0, then there is a corresponding t,
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such that the following constraint is active or binding, i.e.:

p∑
j=1

(
e

|βj|
σ − 1

)
=
(
e

t

σ − 1
)

(5.21)

t = σ ln

(
p∑
j=1

(
e

|βj|
σ − 1

)
+ 1

)
(5.22)

The coordinate descent algorithm is still applicable since the loss function is con-

vex & differentiable, and the penalized term is convex, continuous in its domain

& separable. Since the function is not quadratic, the direct coordinate newton

updates can have a different number of iterations than naive updates, covariant

updates, or indirect coordinate newton updates (the one that updates zr+1
j by the

coordinate newton update). Now the stationary point of Formulation (5.6) should

satisfy the following:

−
N∑
i=1

xij

(
yi −

p∑
l=1

βlxil

)
+ λ sign

(
βj
)
e

|βj|
σ = 0, βj 6= 0, ∀ j. (5.23)

In general, if βr+1
j,exp 6= 0, the update βr+1

j,exp will be defined as:

βr+1
j,exp = zr+1

j − sign (βj,exp)
λ

N
e

|βj,exp|
σ . (5.24)

where βj,exp on the right hand side of Equation (5.24) can be the rth or (r + 1)th

update depending on the approach of solving. There are two approaches proposed

for solving the L1-exponential norm: equation solver approach, and updater
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approach.

5.3.1 Equation Solver Approach

From Equation (5.24), zr+1
j can be obtained by any type of coordinate descent

update mechanisms. Variable βr+1
j,exp cannot have an explicit mathematical ex-

pression. The equation-solver approach requires solving for the equation of one

variable βr+1
j,exp by some line search technique, like golden-section search, or bisec-

tion search. The equation solver approach considers βr+1
j,exp on both sides of the

equation as a variable for the (r + 1)th update.

βr+1
j,exp = sign(zr+1

j )

(
|zr+1
j | −

λ

N
e

|βr+1
j,exp|
σ

)
+

, (5.25)

The sign and magnitude of zr+1
j will determine the sign and magnitude of βr+1

j,exp.

If |zr+1
j | ≤

λ

N
, then the only feasible solution is βr+1

j,exp equal to 0. If |zr+1
j | >

λ

N
,

then there will be two scenarios:

Scenario 1

If zr+1
j >

λ

N
, then consider R+

j (βr+1
j,exp) that is defined as:

R+
j (βr+1

j,exp) = βr+1
j,exp − zr+1

j +
λ

N
e

βr+1
j,exp

σ = 0 (5.26)
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Observe that R+
j is monotonically increasing w.r.t βr+1

j,exp, since
dR+

j

dβj

∣∣∣∣∣
βj=β

r+1
j,exp

=

1 +
λ

σN
e

βr+1
j,exp

σ > 0 ∀ βr+1
j,exp. Also, notice that R+

j (0) < 0 and R+
j (zr+1

j ) > 0.

Thus, βr+1
j,exp ∈ (0, zr+1

j ).

Scenario 2

If zr+1
j < − λ

N
, then consider R−j (βr+1

j,exp) that is defined as:

R−j (βr+1
j,exp) = βr+1

j,exp − zr+1
j − λ

N
e

−βr+1
j,exp

σ = 0 (5.27)

Similarly, R−j is monotonically increasing w.r.t. βr+1
j,exp, since

dR−j
dβj

∣∣∣∣∣
βj=β

r+1
j,exp

=

1 +
λ

σN
e

−βr+1
j,exp

σ > 0 ∀ βr+1
j,exp. Also, notice that R−j (0) > 0 and R−j (zr+1

j ) < 0.

Thus, βr+1
j,exp ∈ (zr+1

j , 0).

Iteratively, the algorithm will be excuted for j = 1, 2, . . . p, 1, 2, . . . p, 1 . . . until

the convergence.

5.3.2 Updater Approach

This approach considers βj,exp on the left hand side of Equation (5.24) to

be the new update (r + 1). And βj,exp on the right hand side of Equation

(5.24), which is inside the exponential term, to be the old update βrj,exp. More-
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over, we assume that the coefficient update does not change the sign abruptly, i.e.:

If βrj,exp > 0, then βr+1
j,exp ≥ 0. If βrj,exp < 0, then βr+1

j,exp ≤ 0. If βrj,exp = 0, then

βr+1
j,exp ∈ R.

One can rewrite Equation (5.24) for the updater approach as follows:

βr+1
j,exp = sign(zr+1

j )

(
|zr+1
j | −

λ

N
e

|βrj,exp|
σ

)
+

, (5.28)

zr+1
j can be obtained by naive, covariant, or indirect newton coordinate updates.

However, this method is not guaranteed to converge when σ becomes smaller and

higher order norms are not negligible. This is due to abrupt increase in the step

size as can be seen by the counterexample (See Figure (5.11)). The direct newton

coordinate update has the capability to deal with the situation when σ becomes

smaller, which is described, when βj 6= 0, as follows:

βr+1
j = βrj −

∂

∂βj

(
S(β) + λP (β)

)
∂2

∂βj
2

(
S(β) + λP (β)

) (5.29)

∂

∂βj

(
S(β) + λP (β)

)
= −

N∑
i=1

xij

(
yi −

p∑
l=1

βlxil

)
+ λ sign

(
βj
)
e

|βj|
σ (5.30)
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∂2

∂βj
2

(
S(β) + λP (β)

)
= N +

λ

σ
e

|βj|
σ (5.31)

If βr+1
j,exp > 0, then let β

(+)r+1
j,exp the positive update be defined as:

β
(+)r+1
j,exp = βrj,exp +

∑N
i=1 xij

(
yi −

∑p
l=1 β

∗
l xil

)
− λe

βrj,exp
σ

N +
λ

σ
e

βrj,exp
σ

. (5.32)

If βr+1
j,exp > 0, then let β

(−)r+1
j,exp the negative update be defined as:

β
(−)r+1
j,exp = βrj,exp +

∑N
i=1 xij

(
yi −

∑p
l=1 β

∗
l xil

)
+ λe

−βrj,exp
σ

N +
λ

σ
e

−βrj,exp
σ

, (5.33)

otherwise βr+1
j,exp = 0. Then:

If β
(+)r+1
j,exp > 0, β

(−)r+1
j,exp > 0, then set βr+1

j,exp = β
(+)r+1
j,exp .

If β
(+)r+1
j,exp < 0, β

(−)r+1
j,exp < 0, then set βr+1

j,exp = β
(−)r+1
j,exp .

Otherwise, set βr+1
j,exp = 0.

Looking closely at the direct coordinate newton updates in the L1-exponential

norm, it is not equivalent to naive, covariance, or indirect coordinate newton
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updates. This is because the L1-exponential norm, unlike the lasso, ridge

regression, elastic net, is not quadratic. Hence, one iteration of the direct newton

coordinate will move to the improving direction but will not necessarily result

∂f(β)

∂βj
= 0 ∀ βj 6= 0.

The direct coordinate newton can also be expressed as:

If βr+1
j,exp > 0, then let β

(+)r+1
j,exp the positive update be defined as:

β
(+)r+1
j,exp = βrj,exp +

∑N
i=1 xij

(
yi −

∑
l 6=j β

∗
l xil

)
−Nβrj,exp − λe

βrj,exp
σ

N

(
1 +

λ

Nσ
e

βrj,exp
σ

) , (5.34)

β
(+)r+1
j,exp = βrj,exp +

zr+1
j − βrj,exp −

λ

N
e

βrj,exp
σ

1 +
λ

Nσ
e

βrj,exp
σ

, (5.35)

β
(+)r+1
j,exp =

zr+1
j +

λ

Nσ
e

βrj,exp
σ βrj,exp −

λ

N
e

βrj,exp
σ

1 +
λ

Nσ
e

βrj,exp
σ

, (5.36)

β
(+)r+1
j,exp =

zr+1
j − λ

N
e

βrj,exp
σ

(
1−

βrj,exp
σ

)

1 +
λ

Nσ
e

βrj,exp
σ

, (5.37)
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If βr+1
j,exp < 0, then let β

(−)r+1
j,exp the negative update be defined as:

β
(−)r+1
j,exp =

zr+1
j +

λ

N
e

−βrj,exp
σ

(
1 +

βrj,exp
σ

)

1 +
λ

Nσ
e

−βrj,exp
σ

, (5.38)

otherwise βr+1
j,exp = 0. In general:

βr+1
j,exp =

sign
(
zr+1
j

)(
|zr+1
j | −

λ

N
e

|βrj,exp|
σ

(
1− sign

(
zr+1
j

)βrj,exp
σ

))
+

1 +
λ

Nσ
e

|βrj,exp|
σ

, (5.39)

Iteratively, the algorithm will be executed for j = 1, 2, . . . p, 1, 2, . . . p, 1 . . . un-

til the convergence. zr+1
j can be found by any kind of updates then instead of

using Equation (5.28), Equation (5.39) can be utilized. Figure (5.11) shows the

difference between using Equation (5.28) and Equation (5.39). The reason is that

when σ becomes very small in Equation (5.28), the term e

|βrj,exp|
σ becomes large

and hence the step size is too large, while Equation (5.39) normalizes the step as

can be seen in the denominator.

Based on trial experiments, it is observed that the equation solver approach is

faster than the updater approach, in terms of the number of iterations. See the

example demonstrated in Figure (5.12). However, the efficiency of the equation

solver approach is less, since it requires the solution for Equation (5.25) in every
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Figure 5.11: y-axis represents the value of the coefficient estimate. x-axis rep-
resents the number of iterations. Solving for two coefficient estimates, the two
smooth curves are solved by updater approach; indirect coordinate newton up-
dates, and the two zigzagging curves are solved by updater approach but direct
update (not converging).

iteration.
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Figure 5.12: y-axis represents the value of the coefficient estimate. x-axis repre-
sents the number of iterations. Solving for two coefficient estimates, the two longer
curves are solved by updater approach; indirect coordinate newton updates, and
the short curves are solved by equation-solver approach.
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CHAPTER 6

NUMERICAL

EXPERIMENTATION

6.1 Boston Housing Data

Data: The dataset of Boston housing comes from a study by [38] that exploits

the will of people to pay more for clean air. The response y is the mean value of

owner occupied homes in $1000’s. There are 13 predictors (i.e., p = 13). There

are 506 observations.

Method: X is standardized and y is centered before fitting linear models.

A tenfold cross validation approach will be used on the 506 observations to

determine the optimal tuning parameters. The coefficients will be estimated

using the OLS, lasso, ridge regression, fixed-shape elastic net, and L1-exponential

norm methods.
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Results & Discussion: The L1-exponential norm outperforms all other

methods in the example of Boston housing dataset. It is worthy to note that

the fixed-shape elastic net in this example is always outperformed by the lasso,

except when c becomes very high and hence the fixed-shape elastic net becomes

the lasso. It is a good example to show the effect of adding higher degree norms

on the prediction error. Figure (6.1) shows the mean squared errors acquired

from a tenfold cross validation of the 506 observations on the dataset. Both the

fixed-shape elastic net and the L1-exponential norm are behaving like the lasso

for c → ∞, but they set apart when c → 0. The L1-exponential norm becomes

L∞-norm, while the fixed-shape elastic net becomes the ridge regression.

Table 6.1 indicates the coefficient estimates of each method. The best result is for

the L1-exponential norm at c = 0.15. The best result of the most sparse solution

is for the L1-exponential norm at c = 0.4. Although it is geometrically noticeable

that the curves of such a norm with σ = 0.4t has more exposure to the OLS

function than the curves of L2-norm, the L1-exponential norm at c = 0.4 still can

potentially give a sparse solution as good as the lasso due to the existence of the

L1-norm or, roughly speaking, the non-smooth corners. Figure (6.2) shows the

norm shapes of the L1-exponential norm at c = 0.45, and the ridge regression.
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Table 6.1: Boston housing results

Coeff.\Method OLS Lasso Ridge Exp (c=0.4) Exp (c=0.15) ENet (c=2)
1. CRIM -0.108 -0.1 -0.104 -0.101 -0.108 -0.101
2. ZN 0.046 0.042 0.043 0.042 0.041 0.042
3. INDUS 0.021 0 0.006 0 0.003 0
4. CHAS 2.687 2.689 2.745 2.732 2.858 2.693
5. NOX -17.766 -16.481 -16.643 -16.3 -16.498 -16.504
6. RM 3.81 3.855 3.864 3.882 4.026 3.854
7. AGE 0.001 0 -0.0003 0 -0.003 0
8. DIS -1.476 -1.412 -1.414 -1.387 -1.335 -1.414
9. RAD 0.306 0.261 0.27 0.256 0.265 0.262
10. TAX -0.012 -0.01 -0.011 -0.01 -0.01 -0.01
11. PTRATIO -0.953 -0.933 -0.935 -0.93 -0.95 -0.933
12. B 0.009 0.009 0.009 0.009 0.01 0.009
13. LSTAT -0.525 -0.522 -0.516 -0.514 -0.461 -0.522

MSE 23.854 23.804 23.828 23.797 23.645 23.805
SE 2.073 2.145 2.134 2.165 2.266 2.143

Zero coeff. 0 2 0 2 0 2

Figure 6.1: y-axis represents MSE from
the tenfold CV, and x-axis represents c,
which controls the shape of the norm.

Figure 6.2: The red ball is the norm con-
straint of the ridge regression, and the
blue ball is the L1-exponential norm at
c=0.45 for the same norm size.
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6.2 Leukemia Classification Data

Data: Leukemia classification data by [39] is one of the well-known microarray

dataset. There are two classes of Leukemia cancer: Acute Lymphoblastic

Leukemia (ALL), and Acute Myeloid Leukemia (AML).

Method: There are two sets: training set and testing set. With 7129 genes

for both sets, the training set has 38 observations (N = 38); 27 in ALL and

11 in AML. The testing set has 34 observations that will be used to check the

prediction accuracy for models. To have an efficient solving time, 1000 genes that

have the highest overall variance among 7129 genes in training set will be selected

(p = 1000). Tenfold cross validation will be used to determine the determine the

optimal tuning parameters. The coefficients will be estimated using the OLS,

lasso, ridge regression, fixed-shape elastic net, and L1-exponential norm methods.

Results & Discussion: Table 6.2 indicates the testing error for each method

and each value of c (if applicable). The fixed-shape elastic net and L1-exponential

norm have the same best prediction error. At the best prediction error, L1-

exponential norm selects 135 features, compared to 104 features selected by the

fixed-shape elastic net. The fixed-shape elastic net, at c = 0.5 has the sparsest

solution at the minimum testing error, i.e., the number of nonzero coefficient

is 63. In any case, it is obvious that both the fixed-shape elastic net and the

L1-exponential norm can perform very well with p� N case and provide various
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range of sparsity.

Microarray datasets usually consist of thousands of genes as predictors and much

less number of observations, such that p� N . The ridge regression is not a good

method for such datasets because it cannot perform variable selection. Thus, all

coefficient estimates will be nonzero. On the other hand, the lasso can perform

variable selection but has two limitations. The first limitation is that it cannot

select features more than the number of observations, i.e. the maximum number

of nonzero estimates can be selected is N . The second limitation is the fact that

it does not perform well with correlated predictors, and thus may not select a

group of correlated genes.

The novel methods: the fixed-shape elastic net and the L1-exponential norm can

have nonzero coefficient estimates more than N for p � N case. When c → ∞,

both methods will act like the lasso. When c→ 0, the fixed-shape elastic net will

act like the ridge regression, and the L1-exponential norm will act like L∞-norm.

Both ridge regression and L∞-norm will have p nonzero coefficient estimate, i.e.,

there will be no sparse solution. The shape parameter c can control the level of

sparsity form the lasso up to non-sparse case. They also can be solved efficiently

by CDA.

The conventional elastic net is known to be a better option than the lasso, but

106



Table 6.2: Leukemia classification results
Method c 10-fold

CV error
Testing
error

Number
of genes

Golub - 3/38 4/34 50
Lasso - 0/38 2/34 37

Fixed-Shape EN

1 0/38 2/34 49
0.75 0/38 2/34 54
0.50 0/38 1/34 63
0.35 0/38 1/34 66
0.20 0/38 1/34 104
0.10 0/38 2/34 199
0.05 0/38 2/34 328
0.01 0/38 2/34 789
0.05 0/38 2/34 889
0.001 0/38 3/34 971

L1-Exponential Norm

2 0/38 2/34 83
1 0/38 1/34 87

0.80 0/38 1/34 90
0.60 0/38 1/34 91
0.40 0/38 1/34 114
0.30 0/38 1/34 135
0.25 0/38 2/34 204
0.20 0/38 2/34 321
0.17 0/38 2/34 479
0.15 0/38 3/34 639
0.13 0/38 3/34 825
0.10 0/38 3/34 974

the shape is influenced by the tuning parameter t, as shown earlier. The fused

lasso can have different groups of variable selection ([16]). The fused lasso cannot

be solved using CDA. Also, it requires “linkage hierarchical clustering” to make

an order for the fusion before solving microarray dataset. However, the results of

the proposed methods are better than the fused lasso’s result.
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6.3 Simulated Data

The aim of this study is to compare lasso, ridge regression, fixed-shape elastic

net and the L1-exponential norm with simulated data. Examples 1, 2, and 3

are taken from [5] and Example 4 is taken from [6]. Example 5 is created as a

modification of Example 4, where every correlated group of predictors is partially

correlated to another group.

Data: The data is generated from the following model:

y = Xβ + ωε, (6.1)

where ε ∼ N(0, 1) and ω > 0 sets the noise to signal ratio.

The details of the five examples are as follows:

1. For Example 1, let β = (3 1.5 0 0 2 0 0)T and ω = 3. The correla-

tion between xj and xl is to be 0.5|l−j| for j = 1, 2, . . . p, and l = 1, 2, . . . p.

The number of observations for both training set and testing set is N = 40.

2. For Example 2, it is the same as the above one except that the correlation

between any two different predictors is 0.85.

3. For Example 3, ω = 15. The correlation between any two different predictors

is 0.5. The number of observations for both training set and testing set is
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N = 100. Let

β =

(
0 . . . 0︸ ︷︷ ︸

10

2 . . . 2︸ ︷︷ ︸
10

0 . . . 0︸ ︷︷ ︸
10

2 . . . 2︸ ︷︷ ︸
10

)T
, (6.2)

4. For Example 4, ω = 15. The number of observations for both training set

and testing set is N = 50. Let

β =

(
3 . . . 3︸ ︷︷ ︸

15

0 . . . 0︸ ︷︷ ︸
25

)T
, (6.3)

Let X be,

xj = Z1 + εxj , Z1 ∼ N(0, 1), j = 1, . . . , 5, (6.4)

xj = Z2 + εxj , Z2 ∼ N(0, 1), j = 6, . . . , 10, (6.5)

xj = Z3 + εxj , Z3 ∼ N(0, 1), j = 11, . . . , 15, (6.6)

where xj ∼ N(0, 1) is independent identically distributed such that j =

16, . . . , 40, and εxj , is independent identically distributed for j = 1, . . . , 15.

As can be seen that the first fifteen predictors are correlated as shown above,

and the last 25 predictors are added noise.

5. For Example 5, it is the same as Example 4 except,

xj =
Z1 + Z2

2
+ εxj , j = 1, . . . , 5, (6.7)

xj =
Z2 + Z3

2
+ εxj , j = 6, . . . , 10, (6.8)
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xj =
Z1 + Z3

2
+ εxj , j = 11, . . . , 15, (6.9)

Method: For each example, the simulation is replicated 50 times. Every replica-

tion will have two different sets: the training set, to fit the model; and the testing

set to find the mean-squared prediction error. The median of the 50 mean-squared

prediction error is the one that will be considered for performance compari-

son. The re-sampling method used for the simulation was tenfold cross validation.

Results & Discussion: The series of tables (Table (6.3) - Table (6.7)) show

the results of the simulations. For Example 1 and Example 2, the L1-exponential

norm outperforms the other methods. Whether the correlation is low like the

first example or high like the second example, L1-exponential norm is better, and

gives sparse solution.

The L1-exponential norm outperforms all methods in Example 3. The L1-

exponential norm at c = 0.4 (with almost 20% weight of L1-norm) showed to

perform the best and its solution has the closest average of number of zeros

compared to the actual model. The second best perform is the L1-exponential

norm at c = 5 (with almost 90% weight of L1-norm).

For the last two examples; Example 4 and Example 5, the L1-exponential norm

outperformed all the other methods. These two examples are ideally made to

check the ability of the methods to deal with the high correlations and noise. The
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Table 6.3: Example 1 results

Method
Example 1

c MSPE SE Ave 0’s
Lasso - 9.84 2.06 5.3
Ridge regression - 9.66 2.01 -
Fixed-shape elastic net 1.15 9.73 2.03 4

L1-exponential norm
0.6 9.2 1.96 2.5
2 9.33 2 4.4

Table 6.4: Example 2 results

Method
Example 2

c MSPE SE Ave 0’s
Lasso - 9.92 2.06 4.9
Ridge regression - 9.74 1.99 -
Fixed-shape elastic net 0.01 9.76 2 0.5

L1-exponential norm
5 8.97 1.83 4.6
1 9.41 2 3.4

fixed shape elastic net came second in performance.

Table 6.5: Example 3 results

Method
Example 3

c MSPE SE Ave 0’s
Lasso - 243.73 33.85 30.5

Ridge regression - 234.36 32.92 -
Fixed-shape elastic net 0.01 234.1 32.88 0.6

L1-exponential norm
0.4 230 31.48 18.9
5 231.15 31.68 29.8
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Table 6.6: Example 4 results

Method
Example 4
c MSPE SE Ave 0’s

Lasso - 282.01 51.43 29.1
Ridge regression - 299.07 53.85 -

Fixed-shape elastic net 2 268.5 49.1 20.4

L1-exponential norm
0.6 264.9 48.8 17.3
0.8 272.9 51.01 17.6

Table 6.7: Example 5 results

Method
Example 5

c MSPE SE Ave 0’s
Lasso - 263.154 50.7153 30.98

Ridge regression - 258.7 50.3261 -
Fixed-shape elastic net 2 252.3 49.4514 22.38

L1-exponential norm
0.4 248.9 47.5755 16.96
1.5 266.4 52.8783 19.28
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CHAPTER 7

DISCUSSION AND

CONCLUSION

In this thesis, a brief literature review on the OLS method is presented. Its poor

performance in terms of prediction accuracy and interpretation is highlighted.

Some regularization and/or variable selection methods such as the ridge regres-

sion, the lasso, and the elastic net are illustrated. For the ridge regression, it

can be concluded that it can overcome the problem of the prediction accuracy.

However, its results are sometime very difficult to interpret. On the other hand,

the lasso can overcome the interpretability issue with sparsity, but still it has

its own drawbacks. For example, when the predictors are much higher than the

number of observations, the sparsity is restricted. Also, when the predictors have

a high correlation, only one of the correlated predictors is selected. The elastic

net overcomes the above two drawbacks of the lasso, and have a higher flexibility

than the previous mothods. This is due to the combination of the L1-norm and
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L2-norm. Also, the elastic net has two parameters, which controls the size of

the norm and the shape, by a weighted combination between the L1-norm and

L2-norm.

The conventional elastic net was shown to fail at capturing all the combinations

of norm shape and norm size. To overcome this, the concept of the fixed-shape

elastic net was proposed. Basically, it controls the norm shape at different norm

sizes. The same concept of the fixed-shape elastic net can be applied for other

generalizations that use α as a combination weight.

Moreover, a new norm was introduced to the family of the regularized linear

regressions. The norm is called as the exponential norm. The focus of this thesis

is on the L1-exponential norm. It can successfully compete with other existing

methods. It was shown that the L1-exponential norm is always convex, and can

give a sparse solution. Moreover, it was shown that the elastic net is a two term

approximation of the L1-exponential norm.

The idea of the exponential norms started from Syed et al.[40]. The paper sug-

gested to use the corrontropic function as a loss function instead of the first and

second order loss function. Similarly, the intention here was to use exponential

norms instead of the first and second order norms. There are two types of expo-

nential norms, the first is the one that was introduced in the report:
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p∑
j=1

(
e

|βj|q

q!σq − 1

)
≤ e

tq

q!σq − 1. (7.1)

This norm was shown to be flexible to have Lq-norm when c→∞, and L∞-norm

when c → 0. There is another type of exponential norm, (let it be called as the

Lq-inverse exponential norm) that can be formulated as:

p∑
j=1

(
1− e

−|βj|q

q!σq
)
≤ 1− e

−tq

q!σq . (7.2)

This inverse exponential norm has a flexibility to have Lq-norm when c → ∞,

and L0-norm when c → 0, (see Figure (7.1)). This means that the norm will

never be convex, since L0-norm can exist ∀q.

The Taylor series expansion of the norm will be:

p∑
j=1

(
1− e

−|βj|q

q!σq
)

=

p∑
j=1

∞∑
m=1

(−1)m−1|βj|mq

(m!)(q!)mσmq
=

p∑
j=1

(
|βj|q

(q!)σq
− |βj|2q

2(q!)2σ2q
+
|βj|3q

3!(q!)3σ3q
− . . .

)
.

(7.3)

Looking closely at a case where q > 1, say q = 2. Figure (7.2) shows us extreme

nonconvex cases for q = 2, yet it cannot have a sparse solution due to lack of the

contribution of L1-norm.
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Figure 7.1: For two predictors, the exponential norms with q = 1 with c =
0.1,0.5,1,1000, respectively from outside, and the inverse exponential norms with
c = 0.1,0.5,1,1000, respectively from outside. They almost meet when c = 1000
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Figure 7.2: The sub-level sets of the L2-inverse exponential norm
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Figure 7.3: Function 1− e
|β|
σ

Future study can be done on the nonconvex case which might give a very strong

sparse property, whether it is the Lq-exponential norm where q < 1, or the Lq-

inverse exponential norm. The L1-inverse exponential norm can be considered as a

novel method to the nonconvex PLR such as SCAD and MC+. The nonconvexity

parameter in this case is σ. Figure (7.3) shows the penalty in R for different values

of σ.

For solving the PLR, the coordinate descent algorithm was selected. three update

mechanisms for the coordinate descent algorithm were presented to solve for PLR

models. It was shown that the coordinate descent method is simple and efficient.

Typically, the coordinate descent algorithm converges for L1-norm penalty (such

as the lasso and the elastic net) even though it is non-differentiable. The main

element for convergence is convexity.
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In addition to that, there is a contribution in the literature to solve for nonconvex

PLR as described in Section 2.4. This can be applied for nonconvex exponential

norms, such as the L1-inverse exponential norm. Mazumder et al. [41] and

Breheny and Huang [42] demonstrated coordinate descent algorithm to find a

local optimal solution for nonconvex penalty.

Based on the numerical examples, it can be concluded that the proposed methods

will excel when the predictors are highly correlated, and for p� N case.
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Optimization: theory, practice and software. Springer, 2014.

[27] M. R. Osborne, B. Presnell, and B. A. Turlach, “A new approach to vari-

able selection in least squares problems,” IMA journal of numerical analysis,

vol. 20, no. 3, pp. 389–403, 2000.

[28] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani et al., “Least angle regres-

sion,” The Annals of statistics, vol. 32, no. 2, pp. 407–499, 2004.

[29] W. J. Fu, “Penalized regressions: the bridge versus the lasso,” Journal of

computational and graphical statistics, vol. 7, no. 3, pp. 397–416, 1998.

[30] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algo-

rithm for linear inverse problems with a sparsity constraint,” Communica-

tions on pure and applied mathematics, vol. 57, no. 11, pp. 1413–1457, 2004.

[31] A. J. Kooij et al., Prediction accuracy and stability of regression with op-

timal scaling transformations. Child & Family Studies and Data Theory

(AGP-D), Department of Education and Child Studies, Faculty of Social

and Behavioural Sciences, Leiden University, 2007.

123



[32] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for gener-

alized linear models via coordinate descent,” Journal of statistical software,

vol. 33, no. 1, p. 1, 2010.

[33] P. Tseng et al., “Coordinate ascent for maximizing nondifferentiable concave

functions,” 1988.

[34] P. Tseng, “Convergence of a block coordinate descent method for nondiffer-

entiable minimization,” Journal of optimization theory and applications, vol.

109, no. 3, pp. 475–494, 2001.
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