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The performance of a process is overseen by numerous quality features that may be
classified as characteristics of interest and auxiliary characteristics. These quality
characteristics may be operated separately or there may exist a relationship among these
quality characteristics/variables in real processes. These relationships are enumerated by
models termed as profiles that may be linear or nonlinear. The simple linear profiles are

determined by three parameters namely intercept, slope, and residual variance.

In this thesis, we have proposed two new approaches for an efficient monitoring of process
parameters. These approaches include assorted and progressive schemes for location,
dispersion and profile parameters. Under progressive setup, we have proposed a Shewhart
control chart for the simultaneous monitoring of simple linear profile parameters. Under
assorted approach, we have designed control charts for location and scale parameters.
Moreover, the assorted approach is extended to monitor simple linear profile parameters
(intercept, slope, and residual variance). The performance of proposed charts and its
counterparts is evaluated and compared using some useful measures such as average run
length, standard deviation run length, relative average run length, sequential relative
average run length, extra quadratic loss, sequential extra quadratic loss and performance
comparison index. The comparative analysis, using run length properties, revealed that the
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proposed assorted and progressive approaches are very efficient at detecting shifts of
varying amounts in process parameters. In addition, we have presented the implementation
of our proposals on some real datasets from different disciplines including computers

sciences, environmental sciences and material sciences.
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Chapter 1

INTRODUCTION

In this study two main subjects are addressed, i.e. monitoring of simple linear profile
parameters through progressive and assorted approaches. Firstly, a brief introduction to
Statistical Process Control (SPC), classical and modified control charting techniques and

monitoring of linear profile parameters are discussed.

1.1 Statistical Process Control

In the modern era, new technology is systematically emerging all around us, particularly
in the field of consumer behavior. Buyers are becoming more technology smart with the
passage of time. There is competition among manufacturers to fulfill the demands of their
loyal customers. On the other hand, customers want a high-quality product with the
cheapest price. It is an uphill task for organizations to retain customers and delivered
according to their wish. To make high-quality products manufacturing process should be
the state of the art. Generally, two types of variations occur in a process, named as common
cause variation and special cause of variation. Common causes are the inherent part of the
process, natural and uncontrollable. Special causes are un-natural and need to be controlled
immediately. The existence of special causes may defect in the outputs of the process.
Statistical Process Control (SPC) is used to control the special causes of variation in
manufacturing or service processes. Further, in SPC seven tools are available to improve
the quality of a process such as (i) Flow Chart (ii) Check Sheet (iii) Pareto Analysis (iv)
Histogram (v) Cause-and-Effect (Fishbone) Diagram (vi) Scatter Diagram and (vii)

Control Charts.



1.2 Control Charts

Control Chart is the most efficient and widely employed technique of SPC. Control charts
are used a graphical tool to monitor the variable of interest in the process. Control chart
has upper and lower limit. The process said to be in-control if observations are lies in the
control limits. A process is said to be statistically out-of-control when observations crossed
the control limits. Which indicates that there must be some special cause occur in the
process. The expectation of control chart is that it must prompt the process engineer about
variations in the process. There are many real-life applications of control charts exists in
the field of manufacturing engineering, nuclear engineering, health care, economics,
education and analytical labs. Control charts are employed in service industries such as in
banking, restaurant and gasoline pumps etc.

v" Monitoring the relationship between interest rate and unemployment

v" Monitoring the waiting time of pizza delivery

v" Monitoring the calling time of customer relationship officer

v" Monitoring the transactions time of ATM users
and so on. Control charts consist on three lines: the center line (CL), upper control limit
(UCL) and lower control limit (LCL). A process is said to be in-control (IC) when any
plotted statistics (e.g. X, S2, P ) lies within the LCL and UCL and if plotted statistics fall

outside the control limits is considered an out-of-control (OOC).

1.2.1. Classical Control Charts

The three well known classical control charts are Shewhart, cumulative sum (CUSUM)

and exponentially weighted moving average (EWMA).



The Shewhart’s control chart

The Shewhart’s X control chart, originated by Shewhart (1920), is most important and
commonly used technique of the SPC tool box. It is very useful to detect large shift in the
process mean. X chart consists of two decision lines known as Upper Control Limit (UCL)
and Lower Control Limit (LCL). Suppose that X is a normally distributed random variable

with mean or process target value u, and known standard deviation g i.e. X;j~N (1o, ad)

where i = 1,2,3, ... ... ,j =1,2,.....,nand n is the size of i*" sample. The plotting statistic

and the control limits for Shewhart’s X chart are given below:

= XXy

X; = % (1.1)
— oy — KO0

LCL=po— K3 .
_ % '

UCL=po+K 7

where K denotes the control limit coefficient.

CUSUM Control Chart

CUSUM control chart was initiated by Page (1954). The plotting statistics of classical
CUSUM denoted by C;* and C;™ are given as follow:
C{ = max[0, (X; — po) — kj_% +C{4]

L o (1.3)
C; =min[0, (X; — po) + k\/_,—1 + Ci_4]

where k is the sensitivity parameter also called reference value and is chosen about half of

the shift (&) in the process location, § = "é})/_”"', 1, is the disturbed/dislocated mean. The

Vn

starting values of C;* and C;” are taken equal to zero. Finally, the statistics in Equation

(1.3) are plotted against +h 0—1"1 respectively, where h is the control limit coefficient and



selected according to the choice of k and ARL,. More details on the choice of k and h are

available in Hawkins and Olwell (1998).

A value of C;* > hj—% indicates a possible upward shift in the process location whereas a

Jo

value of € < —h\/H

means that the process location has possibly shifted downwards.

EWMA control chart

The EWMA control chart (like CUSUM chart) is also used to detect small to moderate
shifts in process location. The plotting statistic and the control limits of EWMA control

chart by Roberts (1959) are given as follows:

Zi == /U_(, + (1 - A)Zi—l (14)

LCL; = po — L (%) \/% [1-(1- A)Zi]\} s

Yl

A-a- )

UCL = po+ L (%) |55

N
where 0 < A < 1 is the sensitivity parameter, the starting value Z; is set equal to the process
target uo and L is the control limit coefficient that is selected according to the choice of 4

and ARL,. More details on the choice of A and L are available in Crowder (1989).

A value of Z; > UCL; indicates a possible upward shift in the process location whereas a

value of Z; < LCL; means that the process location has possibly shifted downwards.

1.2.2. Modified Control Charts
Several modifications of classical control charts have been addressed such as combined
Shewhart- CUSUM (CSC) by Lucas (1982), fast initial response (FIR) CUSUM by Lucas

and Crosier (1982), combined Shewhart- EWMA (CSE) by Lucas and Saccucci (1990),



FIR EWMA by Steinar (1999) , Adaptive EWMA by Capizzi and Masarotto (2003),
Adaptive CUSUM by Jiang et al. (2008), an enhanced Adaptive CUSUM by Wu et al.
(2009), enhancing the performance of EWMA charts by Abbas et al. (2010), improving the
performance of CUSUM by Riaz et al. (2011), mixed EWMA-CUSUM by Abbas et al.
(2013) and mixed CUSUM-EWM (MCE) control chart by Zaman et al. (2015). Further,

details and structure of some modified control chart will discuss in Chapter 3.

1.3  Simple Linear Profile

In many manufacturing and services process, the quality of a product or process is
categorized (qualitative and quantitative) and briefed by an association (linear or nonlinear)
between response variable (dependent variable) and one or more explanatory variable
(independent variable). This relationship is termed as a simple linear profile. Generally,
simple linear profiles have three parameters of interest i.e. slope, intercept and error
variance. Recently, there has been an interest developed to monitor processes by simple
linear profiles. In quality control applications, the monitoring of simple linear profile is a
new domain of interest. The framework of simple linear profiles data-set is given in Figure

1.1.



E' ﬁ.] [o}.'_'}:;
e
g_ IGH‘ ) .}-o] ---------
2 ,,:3’ [n=10
explanatory
variable (X)
J=1 Jj=2 ... Jj=k

> firne
j=12,....k sample profiles, »>2 observations in each profile

Figure 1.1: Description of simple linear profile data set
In literature, several practical applications of linear profiles are discussed by different
authors such as Woodall et al. (2004) present the literature review and framework of simple
linear profiles. The study of calibration curves is well known in linear profiles. A
multivariate control chart to monitor calibration curves of Fe3* (photometric
determination) with sulfosalicylic acid discussed by Mestek et al. (1994) while Stover and
Brill (1998) monitor ion chromatography calibrations frequency by a multivariate control
chart. The practical application of linear profiles in manufacturing process discussed by
Lawless et al. (1999) . Kang and Albin (2000) described the semiconductor manufacturing
example while Ajmani (2003) discussed the Intel Corp. semiconductor manufacturing
without calibration example. Jin and Shi (1999) and Walker and Wright (2002) discussed

the non-linear profile applications in literature.

The detail discussion on simple linear profile monitoring will discuss in chapter 2.
1.4  Performance Measure
The well-known measures used to evaluate the performance of control charts are given

below



Average run length (ARL): ARL is the most commonly used performance measure in
control charts. It is defined as the average number of sample points until the first out of
control signal occurs. Further, there are two types of ARL, IC ARL (ARL,) needs to be
maximized that the false alarm is delayed as much as possible the process in control while
OOC ARL (ARL,) needs to be minimized so that the signal is given as early as possible
when the process goes out of control. In this thesis, the run length distribution of several
charts is evaluated by using Monte Carlo simulation with 100,000 replications.

Extra quadratic loss (EQL): EQL is defined as the weighted average ARL with respect to
range of shift (V,,., 10 V,.;n,) by considering square of shift (V?) as weight.

Mathematically, EQL is described as

EQL=—" [ V2ARL(V)dV (1.6)

Vinax—Vmin * Vmin

Sequential extra quadratic loss (SEQL): SEQL refers to the EQL up to a certain shift

(say V;), mathematically defined as

SEQL; = ——— [ V2ARL(V)dV, (1.7)

i~Vimin * Vmin

wherei =23, ......., Viax

Relative average run length (RARL): The RARL is described as the efficiency of a
specific control chart relative to a benchmark control chart. It observe the performance of
a chart with respect to its benchmark chart in terms of ARL for each value of shift (cf. Wu

et al. (2009)). Mathematically, it is defined as

1 Vinax ARL(V) dv (1.8)

'max—Vmin * Vmin ARLpenchmark (V) ’

RARL =

Sequential relative average run length (SRARL): SRARL refers to the RARL up to a

certain shift (say V;), mathematically defined as



1 v; ARL(V) dv (1.9)

SRARL; = —— T Ta—
t Vi~Vimin ° Vmin ARLpenchmark (V) ’

wherei =23, ......., Viax

where ARL(V) and ARLpencnmark (V) are the average run lengths of a particular chart and
benchmark chart at shift V respectively. In general, a chart having minimum EQL value is
considered as a benchmark chart and it is noted that at V,,,,, , the SEQL and SRARL are
said to be EQL and RARL. The RARL value of a benchmark chart is equal to 1 and for other
charts RARL >1. The value of RARL >1 of any chart shows the inferior performance as

compared to the benchmark chart.

Performance comparison index (PCI): The PCI is the ratio of EQL of a chart and of chart

having least EQL (EQLpenchmark)-

EQL
EQLbenchmark‘

PCI = (1.10)

A chart is considered best if it has PCI is equal to 1.

1.5 Objectives of the thesis

The objectives of this studies are given below:

v Simultaneous monitoring of simple linear profile under progressive setup
v An assorted control chart for monitoring the process location
v An assorted control chart for monitoring the process dispersion

v" An assorted approach for monitoring simple linear profiles

1.6  Outline of the thesis

In Chapter 2, a new control chart is proposed for the simultaneous monitoring of simple

linear profile parameters under progressive setup. The performance of the proposed chart



is evaluated in terms of ARL, standard deviation run length (SDRL), EQL, SEQL, RARL
and SRARL on four types of shifts. The comparative analysis of proposed chart with its
counterpart charts is also in tabular and graphical forms. The findings reveal that the
performance of proposed chart is better than all its competitor charts. The proposed chart

is applied on N-Queen size problem solution.

In chapter 3, a new control chart named as (Assorted control chart) proposed for monitoring
of process location. The said approach is used to monitor small, medium and large
disturbances in a single control chart at the same time. Several performance measures are
used such as ARL,SDRL, EQL, RARL and PCI for the evaluation of the proposed chart. A
tabular and graphical comparison of proposed versus classical and modified control charts

is presented. A real-life example is also discussed to monitor the pH value of water.

In chapter 4, a new control chart named as (S?Assorted control chart) proposed for
monitoring of process dispersion. The said approach is used to monitor small, medium and
large disturbances in a single control chart at the same time. Several performance measures
are used such as ARL, EQL, SEQL,RARL and SRARL for the evaluation of the proposed
chart. A tabular and graphical comparison of proposed versus classical and modified
control charts is presented. A real-life example is also discussed to monitor the Flow Width

Measurement for Hard-Bake Process.

Chapter 5 incorporates chapter 2, chapter 3 and chapter 4. A new control chart proposed
for the monitoring of simple linear profile parameters including slope, intercept and error
variance. The performance of proposed chart is evaluated through ARL, EQL, SEQL, RARL

and SRARL. The comparison analysis of proposed and its counterpart is also presented.



Finally, conclusion, summaries, and recommendations of the work are presented in Chapter

6.

1.7 Limitations of the thesis

This study has some limitations which are described as follow:

v In chapter 2 the independent variable is considered as a fixed level.

v" The study in chapter 3 is based on univariate case.

v The study in chapter 4 is monitored only univariate statistic (S2)

v' The proposed chart in chapter 5 is used to monitor simple linear profile

parameters.
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Chapter 2
SIMULTANEOUS MONITORING OF LINEAR PROFILE

PARAMETERS UNDER PROGRESSIVE SETUP

In many manufacturing or service processes, we come across different quality
characteristics that govern the process behavior. These characteristics are categorized as
the main quality characteristics (study variables) and the supporting or explanatory
characteristics. There is always a possibility that some of the explanatory variables offer a
relationship with the study variable which is known as profiles. The monitoring of study
variable which is linearly associated with an explanatory variable is termed as simple linear
profiles. In this chapter, we intend to design an efficient memory type structure based on
progressive mean for the simultaneous monitoring of linear profile parameters. The
performance of proposed scheme (PM_3) and its counterparts (i.e. EWMA 3 chart,
bivariate T2 chart, EWMA/R chart and Shewhart_3 chart) are evaluated using some useful
performance measures such as average run length (ARL), relative average run length
(RARL), sequential relative average run length (SRARL), extra quadratic loss (EQL) and
sequential extra quadratic loss (SEQL). In the presence of shifts in linear profile
parameters, the findings depict that PM_3 has better detection ability as compared to
counterpart charts. A case study related to Queen size problem is also discussed to highlight

the importance of newly proposed control chart.

2.1 Introduction
In this modern era, new technology is consistently coming forth all around us, especially

in the domain of consumer behavior. With the passage of time, customers are seemly more

11



tech-smart and want products as per their needs with high quality and low cost. Nowadays,
many companies upping efforts to satisfy such desires of customer’s. In general, every
process has some cause of variations namely natural and un-natural variations. Natural
variations are the inherent part of the process and cannot be completely eradicated while
un-natural variations occur due to some assignable factors that affect the performance of
any process. A control chart is a key tool among seven magnificent tools of statistical

process control, mainly used to differentiate the aforementioned variations in any process.

In many manufacturing processes, control charts are used to monitor a single quality
characteristic (qualitative or quantitative) but in some processes, the quality characteristic
has an association (linear or nonlinear) with other ancillary variable(s) in the process. To
monitor such quality characteristic which has a linear relationship with another explanatory
variable is termed as simple linear profiles. In general, three parameters are considered to
express the state of simple linear profiles such as slope, intercept and error variance. In
literature, many studies are developed to monitor simple linear profile parameters. A
regression control chart proposed by Mandel (1969) was applied on manpower scheduling
whereas, Hawkins (1991 and 1993) proposed multivariate charting structures based on
regression adjusted variables. Hauck et al. (1999) proposed control chart for multivariate
monitoring of grouped adjusted variables. Kang and Albin (2000) proposed two control
chart structures for the monitoring of linear profile parameters. They used the multivariate
T2 chart to monitor intercept and slope while EWMAVJ/R chart for the monitoring of error
variance. A well-known control chart (EWMA _3) was proposed by Kim et al. (2003),

which is used for the monitoring of small/moderate shifts in linear profile parameters.

12



Moreover, comparative study on the performance of EWMA _3 chart, multivariate T2 and
EWMAV/R charts are also reported in their study.

For the monitoring of simple linear profile parameters, R and Multivariate CUSUM charts
were developed by Noorossana et al. (2004) while a new Phase | approach based on general
linear F-test was introduced by Mahmoud and Woodall (2004). Zou et al. (2006) proposed
a Phase Il study based on change point model for the monitoring of simple linear profile
parameters. Gupta et al. (2006) proposed Shewhart_3 chart for the monitoring of intercept,
slope and error variance and compared the performance of Shewhart_3 chart with NIST
and EWMA _3 charts. A Phase | analysis of change point model based on segmented
regression technique was discussed by Mahmoud et al. (2007). Further, Zou et al. (2007)
proposed Multivariate EWMA control chart based on general linear profile model and
enhanced the proposed method by implementing variable sampling interval (VSI), self-
starting scheme and paramedic diagnostic technique.

A Phase Il approach based on first order autoregressive model was proposed by
Noorossana et al. (2008) and the CUSUM _3 chart was proposed by Saghaei et al. (2009)
to enhance the detection ability of simple linear profiles. Soleimani et al. (2009) discussed
a transformation study to overcome the issue of within autocorrelation in simple linear
profiles. Yeh and Zerehsaz (2013) developed two control charts for simple linear profile
parameters such as; a chart based on likelihood ratio test was designed for monitoring of
intercept and slope and another chart based on recursive residuals was constructed to
monitor the error variance. Most of the current literature on linear profile parameters are
discussed under fixed effect model while an approach based on random effect model was

designed by Noorossana et al. (2014). In simple linear profiles, the effect of estimation

13



error under fixed effect model was discussed by Aly et al. (2014) while under random effect
model was studied by Noorossana et al. (2016). Recently, monitoring of simple linear
profile parameters are enhanced by incorporating several run rules (cf. Riaz and Tougeer
(2015)) and different ranked set sampling techniques (cf. Riaz et al. (2017)).

Generally, memory type control charts are used to monitor small and moderate shifts in
process parameter(s). Recently, Abbas et al. (2013) proposed a new memory type control
chart based on progressive mean (PM) which provides better detection ability as compared
to classical charts (EWMA and CUSUM). The progressive version for the variability was
introduced by Zafar et al. (2014) and more modification in the progressive setup was
discussed by Abbasi et al. (2013). In this study, we intend to use the progressive setup for
the monitoring of simple linear profile parameters. Further, the outline of the study is as
follow; in Section. 2.2, we will briefly describe the existing charts and proposed structures
used to monitor simple linear profile parameters. In Section. 2.3, discussion on the
performance evaluation of the proposed and other competing charts. In Section. 2.4,
comparative analysis of PM_3 chart with its counterpart are discussed. In Section. 2.5, a
case study about N-Queen size problem has been discussed to highlight the importance of
proposed method. Finally, summary, conclusions, and recommendations are described in

Section. 2.6.

2.2 Simple Linear Profile Methods

Simple linear profiles play a key role in the monitoring of process parameters when study
variable is linearly associated with another auxiliary variable. In this section, we will
provide a brief introduction about simple linear profiles and a memory type structure for

the monitoring of linear profile parameters under progressive setup.
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Simple Linear Profiles

In some practical applications, the quality of a process or product is described by a
relationship (linear or nonlinear) between two or more variables instead of single study
variable. For example, in semiconductor manufacturing, the pressure of the gasses is
dependent on the flow of the gasses in tank (cf. Kang and Albin (2000)) and in electrical
engineering, the voltage of a photovoltaic system is inversely related to capacitance of a
capacitor (cf. Riaz et al. (2017)). Generally, the monitoring of study variable when it is
linearly related to an explanatory variable is termed as simple linear profiles. There exist
three parameters to be monitored in simple linear profiles such as slope, intercept and error

variance.

Assume that we have paired observation (X;,Y;;) for the j™ random sample collected with

respect to time. Then the simple linear regression model with intercept (5,) and slope (5;)

is defined as:

Yii=PBo+ B1Xi+ € (2.1)
wherei = 1,2, ...... ,nand ¢;; is random error term which follows normal distribution with
mean (u) zero and unit variance (a2) of Equation (2.1) (referred as original model). The

OLS estimates of the linear regression parameters are defined as:

3 L Yo (Xi=X)Yi;  Sxy(j
y I (=X)? Sxx

A~

ﬁo;’ =

= ByjX,

=<

where ¥, =YL, Y;;/n , X=X, X;/n and Sxx = X(X —X)* while the means,
variances and co-variance term of 3, ;and By ; are computed as follow:
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E(.élj|X) = Bi; E(ﬁoﬂx) = Bo,

A 2 ” =2
Var(py;|1X) = S‘;—X; Var(Bo;1X) = o? [%-*_;i—x |

A A _ 2 X s
Cov(ﬁlj,ﬁ0j|X) =—0 Sex
It is noted that the mean square error (MSE) is an unbiased estimator of error variance

(62), which is computed by

G n 2
MSE: = Yie, (Vij=Yip)®  Xiiqeij
J n-2 n-2 '

where ﬁj is the i predicted value for j random sample. Usually, simple linear profile
parameters are monitored in simultaneous structure which requires the assumption of
independence between the parameters. To meet such assumption, coded method is an
effective way which requires a transformation on X; values (i.e. X; = X; — X). The coded

form of Equation (2.1) is defined as:

Yij = BO + le>: + Eij (22)
wherei =1,2, ...... M.

It is noted that Equation (2.2) is referred as transformed model, where intercept of
transformed model is B, = B, + 1 X + BoX and slope of transformed model is estimated
by B, = (B, + fo)X;, where the shifts in the slope (f) of Equation (2.1) are considered
in terms of o. Further, in the same line, one may obtain OLS estimates of transformed
model (b, by ;) and their properties. In recent literature, several studies are available about

the monitoring of linear profile parameters, some are briefly described below.
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2.2.1 The Hotelling T?chart

Kang and Albin (2000) proposed a multivariate control chart for the monitoring of slope

and intercept. The j" statistic of Hotelling T2 control chart is estimated by

T = (Z; - U)'E"Y(Z; - U) (2.3)

where the terms in Equation (2.3) are defined as follows:

Z; = (Boj , Baj )Ti U= (Bo, )",

1 X2 X
o’ [— +—| —o*—
_ n  Sxx Sxx
2= ¢ a2 !
—g?2 = 2
Sxx Sxx

The Hotelling T2 statistic follows y? distribution with 2 degrees of freedom and the upper
control limit (UCLy = x2, ) is the " quantile of x? distribution while the lower control

limit is equal to zero (LCLy, = 0). When process is unstable then the Hotelling T2 statistic

follows non-central y?2 distribution with non-centrality parameter (t), which is obtain as:
T =n(po + BaX)? + (Bo)%Syx,

where ¢ is the amounts of shifts in intercept and g is the measure of shift in the slope for

Equation (2.1)

2.2.2 The EWMA/R chart
Kang and Albin (2000) also proposed a combined structure based on EWMA and R chart

for the monitoring of linear profile parameters. Basically, EWMA chart has some
limitations which are covered by incorporating the R chart. The j" statistic of EWMA chart

is estimated by

17



n
i1 €ij

where A is the smoothing parameter which ranges from 0to 1, &; = and the initial

value of EWMA statistic is zero. (i.e. Z, = 0). The process is said to be OOC when Z; is

less than LCL or greater than UCL. The control limits (LCL and UCL) based on charting

constant (L) for EWMA chart are given as follow:

LCLy = —Lo | 2 vere = Lo |55 15

There exist two causes to combine R chart with EWMA chart, (i) to detect shifts in error

variance under model (1) and (ii) to tackle the unusual situation of error variance. Further,

the j statistic and control limits of R chart are defined as
R; = max;(e;;) — min;(e;;)
LCLg = 0o(d, — Ld3); UCLg = o(d, + Ld3)
where d, and d are, unbiased constants reported in Montgomery (2012).

2.2.3 The EWMA 3 control chart
A memory type approach based on EWMA structure was designed by Kim et al. (2003).

This chart is efficient for the monitoring of small or moderate shifts in slope, intercept
and error variance. The structure of EWMA _3 chart depends on the transformed model
given in (2) and the three individual EWMA statistics for each linear profile parameter

are defined as:
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EWMAgjy = max{AIn(MSE;) + (1 — DEWMAg_1y,In(6{)},

where EWMA, ;y is the j'" EWMA statistic for intercept while EWMAg;y and EWMAg

are the j" EWMA statistics for slope and error variance respectively. Further, the control

limits for each EWMA statistic are as follow:

{LCLEI = BO - LEIO- A [

il

For intercept: )
kUCLEI == BO + LEIO- A [

PNy
S|k

~
N

Sk
e

N
N
~

p—_

A o2
LCLES = Bl - LEso- -_—
(2-2) Sxx
For slope: —
A o
UCLES = B1 + LESO- m@
LCLEE = O

For error variance: y!

UCLgp = Lgg J o Var|[In(MSE;)|
where Lg;, Lgs and Lgp are the charting constants which describes the width of control
limits. The asymptotic variance of logarithmic mean square error was derived by Crowder

and Hamilton (1992) which is estimated by

2 2 2 16

Varln(MSE)] ~ -+ =2 3=y 15(n — 2)5
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2.2.4 The Shewhat_3 control chart

Gupta et al. (2006) proposed a control charting scheme based on Shewhart structure for
the monitoring of linear profile parameters. The control limits for each parameter are

defined as

For intercept:

2
{(LCLSI =B — Za/z\/%

02’
\UCLs; = Bo + Zay2 |—

(LCLSS =B —Zg)2 /0_2
Sxx

For slope: {

2 )
kUCLss =P+ Zq /;(_X

2
_ LCLsg = %X(Zl—a/z),(n—Z)
For error variance: ,

_ 9% 2
UCLsg = = X(a/2),n-2)

where Z,,, is the (a/2)™" quantile point of standard normal distribution while
X(21_a/z),(n_z) and )((Za/z),(n-z) are the lower and upper quantile points of y?2distribution

with (n — 2) degrees of freedom.

2.2.5 The Progressive Mean (PM_3) control chart

Recently, Abbas et al. (2013) proposed a memory type structure based on progressive mean
(PM) to monitor the location parameter of a process. The progressive mean is a special
case of EWMA structure as discussed by Abbas (2015). Let Y;~N(u,02);i=1,2,....,n
and Y; is the sequence of i.i.d observations then the i" progressive mean is defined as the

cumulative average over time,
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Z] 1 }
PM;, = ==

where the progressive mean is an unbiased estimator of the population mean (1) and have
a minimum variance (¢2/i) as compared to arithmetic mean (¥). The PM_3 chart is
specially designed to monitor the linear profile parameters based on progressive setup. So,
the progressive statistics for linear profile parameters are defined as follows (cf. Appendix

A):

( PMI(l) — Z] 1 0]

Progressive statistics: PMsg; = D 1b1’ : (2.4)

Y MSE]-

i

\PMg) =

where PM,;y, PMg; and PMg ;) are the progressive statistics for intercept, slope and error

variance respectively. Further, the averages, variances and control limits for each

progressive statistic are as follows:

E(PM,;) = By
Averges : { E(PMs;)) = By (2.5)
E(PMg;) = o?
z 1
( Var(PM,(l-)) = GT (—)

n

o (L) (2.6)

Variances : Var(PMg;) = —\5
XX

2
Var(PME(,-)) = — ot

For intercept: (2.7)
/ 1 ,
LCLl = Bl — Lso' Q f(l)
For slope: (2.8)

,1 .
UCLi:Bl+Lso' Ef(l)



LCL; = 0® — L;a? /ﬁ [{0)
(2.9)
UCL; = 62 + Lgo? /ﬁ [{0)

where L;, Lg and L are the charting constants of intercept, slope and error variance of

For error variance:

PM_3 chart respectively, while f (i) = i~ is a penalty function used to stabilize the control

limits of the PM_3 chart (cf. Zafar et al. (2014).

2.3 Performance evaluations
In this section, we will briefly describe the performance measures used to analyzed the
proposed and existing simple linear profile techniques. Further, the IC design parameters

of simple linear profiles are also discussed.

2.3.1 Performance measures

There exist several measures to describe the performance of linear profile parameters such
as ARL, SDRL, median run length (MDRL), EQL, SEQL, RARL and SRARL. The detail

discussion on performance measures is available in Section. 1.4

2.3.2 Design of in-control parameters
In this study, we have utilized IC linear profile model (i.e.Y;; =3 + 2X; + ¢€;;) by

following Kang and Albin (2000) with fixed sample size (n =4) and values of
independent variable (X; = 2,4, 6,8). Further, the transformed model given in equation
(2.2) with By = 13 + 5(Bo) and B; = (2 + po)X; is defined as Y;; = By + B1 X + €;;.
The transformed value of X; are X; = —3,—1, 1, 3, having the mean is equal to zero.
Keeping in mind the end goal to settle ARL, at a prefixed level, we require to set control
limit coefficients for different combination of design parameters used in given charting

methods. One may get results for various combination of the design parameters at different
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values of ARL,. We have assessed the outcomes for some specific options of these design
parameters, and the outcomes are accounted in Table 2.1 to accomplish an overall ARL, =

200. For calculations, we have utilized Monte Carlo simulation study with 10° iterations.

Table 2.1: Control charting constant for each method at fixed ARLy = 200

Parameter PM_3 Shewhat_3 EWMA 3 EWMA/R
Intercept L;=4.54 Zgsp=3.14 Lg;=3.0156 L=3
Slope Ls=4.54 Zap=3.14 Lzs=3.0109 L=3
EIMOF 24535 x2,,,=0001, x%,,,=1417 [4=13723 L=3.1151
variance
Design g=0.2 1=0.2 1=0.2

Similarly, the charting constants for proposed chart for different overall ARL, are given in

Table 2.2.
Table 2.2: Control charting constants for proposed method (PM_3)
Parameters ARLy, =200  ARLy, =370 ARLy, = 500
Intercept L;=4.54 L;=5.20 L;=5.52
Slope Ls=4.54 Ls=5.20 Ls=5.52
Error variance L;=4.535 L;=5.25 L;=5.525
Design q=0.2 q=0.2 g=0.2

2.3.3 Sensitivity analysis

For the selection of optimal choice of g in penalty function £(i) = i~(©5+@  sensitivity

analysis has done on the base of ARL, SDRL, MDRL and different percentile points. The
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overall ARL, = 200, minimum SDRL and approximately equal individual ARL, are the
criteria to select the optimal value of q. In, nine cases with different values of control

charting constants are reported in Table 2.3.

Table 2.3: Charting parameters for the optimal choice of q

Case g Constants ARL SDRL MDRL Ps Pys Pso Pzs Pgs Pgg
L;=2.950 590.18 1612.28  138.00 7.00 38.00 138.00 485.00 2516.05 7092.18
Lg=2.950 599.49 1717.61 137.00 7.00 39.00 137.00 489.00 253545 7055.34

! 0.15 Lg=7.100 579.04  1611.05 136.00 4.00 38.00 136.00 470.00 2451.10 6866.03
Overall 140.09 311.91 49.00 4.00 17.00 49.00 138.00 557.05 1357.02
L;=4.200 775.75 172520 27750 21.00 89.00 27750 79725 3032.05 7082.29
2 0.20 L¢=4.200 77482 144540 282.00 20.00 90.00 282.00 823.25 3210.10 6787.01
Lp=4.120 75711 151422 26400 1600 86.00 26400 763.00 3118.25  6999.04
Overall 134.44 183.57 72.00 9.00 32.00 72.00 162.00 469.00 910.01
L;=4.500 1112.22 223697 39350 27.00 129.00 393.50 1129.00 4604.10 10453.21
3 020 Ls=4500  1126.52 2326.89 39200 2400 127.00 392.00 1157.25 4537.15 11011.15
Lp=4500 112296 2309.34 386.50 23.00 127.00 386.50 1135.00 4466.35 11060.61
Overall 188.23 283.13 104.00 13.00 47.00 104.00  235.00 686.00 1463.10
L;=4.530 1146.14 231291  408.00 28.00 134.00 408.00 1170.00 4653.10 10793.07
4 0.20 Ls=4530  1143.78 231461 396.00 28.00 129.00 396.00 1191.00 4532.20 11171.64
Lp=4530 1160.49 2388.54 402.00 25.00 131.00 40200 1181.00 4730.10 11173.15
Overall 190.61 281.58 104.00 13.00 46.00 104.00  233.00 677.00 1382.06
L;=4.540 1145.62 2308.13  404.00 29.00 133.00 404.00 1176.00 4624.05 10825.19
5 0.20 Ls=4540  1147.83 2260.33 40350 30.00 133.00 40350 1189.00 4647.20 10907.08
Lg=4535 115293 2266.01 411.00 26.00 137.00 411.00 1182.25 4723.05 10583.67
Overall 200.66 301.54 105.00 13.00 46.00 105.00  232.00 696.00 1413.00
L;=5.800 816.60 121522 379.00 42.00 148.00 379.00 972.00 3036.20  6031.08
6 0.95 Ls=5.800 835.84 128435 398.00 40.00 153.00 398.00 977.25 3068.05 6176.49
' L=5.700 791.15 118551 367.00 37.00 141.00 367.00 92725 2975.15 5731.04
Overall 194.75 223.76 124.00 21.00 61.00 12400  240.00 614.00 1120.03
L;=5.700 78594 121889 361.00 38.00 138.00 361.00 896.00 2999.20  6175.00
7 095 Ls=5.700 79187 125235 367.00 39.00 142.00 367.00 911.00 297245  5872.02
' Lg=5.710 791.15 118551 367.00 37.00 141.00 367.00 92725 2975.15 5731.04
Overall 186.19 227.33 116.00 20.00 58.00 116.00  230.00 574.05 1081.00
L;=5.750 824.09  1300.51 384.00 43.00 147.75 384.00 957.00 3042.05 6252.23
8 0.25 L¢=5.750 791.87 125235 367.00 39.00 142.00 367.00 911.00 297245  5872.02
' L=5.710 817.77  1262.04 381.00 37.00 148.00 381.00 956.25 3048.00  5996.11
overall 186.19 227.33 116.00 20.00 58.00 116.00  230.00 574.05 1081.00
L;=5.741 799.78 124245 376.00 39.00 144.00 376.00 934.00 2967.00 5755.46
9 095 Ls=5.747 800.25  1254.17 368.00 42.00 146.00 368.00 912.00 2952.05 6386.01

Lg=5.705 797.84 119841  383.00 37.00 14500 383.00 947.00 291440  5593.48
overall 187.46 213.16 118.00 21.00 58.75 118.00  231.00 599.05 1045.01

Although two cases (2 and 9) are near to qualify the criteria used for the selection of g
value in the penalty function such as both cases have relatively minimum SDRL and an
approximately equal individual value of ARL, but both cases (2 and 9) does not have
overall ARL, = 200. So, only case 5 meets satisfactory conditions to select the value of q

which is equals to 0.2 in the penalty function.
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2.4  Comparative analysis

With the aim to assess the performance of PM_3 chart to monitor simple linear profile

parameters such as slope, intercept and error variance, different kind of shifts introduced

in profile parameters. The details of these shifts are described in Table 2.4.

Table 2.4: Amounts of shift introduced in linear profile parameters

Type of

Shifts Notation

Amounts of Shift

In intercept
of
transformed
model

BO to BO +§00’

¢ = 0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0

In slope of
original B1to By + Bo
model

B = 0.025,0.05,0.075,0.1,0.125,0.15,0.175,0.2,0.225,0.25

In slope of
transformed B, to B, + 8o
model

5§ =-0.2,-0.3,-0.4,-0.5,—-0.6,—0.7,—0.8,-0.9,— 1.0
and for joint monitoring

6 = 0.025,0.05,0.075,0.1,0.125,0.15,0.175,0.2,0.225,0.25

In error
variance of
original
model

oto yo

y = 1.2,1.4,1.6,1.8,2,2.2,2.4,2.6,2.8,3

We have compared the performance of PM_3 chart with some existing control charts in

terms of ARL, EQL,SEQL, RARL and SRARL. The control charts selected for comparison

purpose include the Hotelling T2, EWMA/R, EWMA 3, and Shewhart_3. The ARL

comparison for intercept shifts in the transformed model, slope shifts in the original model,

error variance shifts in the original model and joint shifts (intercept and slope) in the
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transformed model are portrayed in following tables. The results are reported in terms of

percentage decrease in ARL at certain shift which is obtained by,

ARL, — ARL,

X 100
ARL, )

Percentage decrease = (

2.4.1 Shifts in intercept parameter:

The results for the shifts in intercept parameter are reported in Table 2.5 while ARL curves
are portrayed in Figure 2.1. The 10% increment in intercept parameter (¢ = 0.20) may
cause 66.75% reduction in the ARL of EWMAV/R chart, 31.15% reduction in the ARL of
Hotelling T2 chart, 70.45% reduction in the ARL of EWMA 3 chart, 24.3% reduction in
the ARL of Shewhart_3 chart and 84.88% reduction in the ARL of PM_3 chart. Further,
shift in intercept (¢ = 1.60) may result 2.30, 1.80, 2.30, in 1.90, 2.22 unit ARL for
EWMAV/R, Hotelling T2, EWMA _3, Shewhart_3 and PM_3 charts respectively. The 80%
increment in intercept parameter (¢ = 0.80) may resulted 5.40, 13.20, 5.10, 15.50 and 5.09
unit SEQL values for EWMAV/R, Hotelling T?, EWMA_3, Shewhart_3 and PM_3 charts
respectively. Further, 1.21, 2.25, 1.15, 2.57 and 1 are the values of RARL with respect to
EWMA/R, Hotelling T2, EWMA 3, Shewhart_ 3 and PM_3 charts respectively. The
minimum ARL, EQL and RARL values are the, evident that PM_3 chart has better

detection ability as compared to other charts.
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Table 2.5: ARL comparison for intercept shifts in transformed model (B to By + @o)

P

Chart

0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

ARL 66.5 17.7 8.4 5.4 3.9 3.2 2.7 2.3 2.1 1.9
EWMA/R SEQL 1.33 2.04 233 256 278 3.03 3.3 3.59 3.9 4.23
SRARL 1.6 1.7 1.56 144 136 131 127 124 122 121

ARL 137.7 63.5 28 13.2 6.9 4 2.6 1.8 1.5 1.2
Hotelling T2 SEQL 2.75 5.29 6.9 749 753 733 7.06 678 655 6.38
SRARL  2.77 3.79 4 3.8 348 316 287 263 242 225

ARL 59.1 16.2 7.9 5.1 3.8 31 2.6 2.3 2.1 1.9
EWMA_3 SEQL 1.18 1.83 213 236 259 285 313 342 375 4.09
SRARL 1.47 1.55 143 133 126 122 119 117 115 115

ARL 151.4 77.9 33.8 155 7.7 4.3 2.7 1.9 1.5 1.2
Shewhart_3  SEQL 3.03 6.14 8.2 891 889 857 816 778 745 7.19
SRARL  2.99 4.3 467 446 407 3,67 332 3.03 278 257

ARL 30.34 1253 736 509 386 3.09 258 222 195 175
PM_3 SEQL 0.61 111 151 187 221 253 285 317 348 3.8
SRARL 1 1 1 1 1 1 1 1 1 1

2.4.2 Shifts in the slope of original model:

The results for the shifts in slope parameter are reported in Table 2.6 The 20% increase in
slope parameter (8 = 0.050) may cause 78.05% drop in the ARL of EWMA/R chart,
47.20% drop in the ARL of Hotelling T2 chart, 81.75% drop in the ARL of EWMA _3 chart,
37.50% drop in the ARL of Shewhart_3 chart and 89.28% drop in the ARL of PM_3 chart.
Further, shift in slope (8 = 0.225) may result 196.6, 196.3, 196.7, 195.0, 196.7 unit
decrease in ARL for EWMAJ/R, Hotelling T2, EWMA_3, Shewhart_3 and PM_3 charts
respectively.

When the shift is increased by 50% in slope parameter (8 = 0.125) then 7.70, 20.10, 7.20,
27.90 and 6.83 unit ARL values are reported for EWMA/R, Hotelling T?, EWMA_3,

Shewhart_3 and PM_3 charts respectively. Further, the values of EQL of EWMA/R,
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Hotelling T2, EWMA _3, Shewhart_3 and PM_3 charts are 0.12, 0.24, 0.11, 0.31 and 0.10
respectively. Similarly, the values of RARL of these charts are 1.36, 2.72, 1.23, 3.50 and
1. So, PM_3 chart has least values of ARL, EQL and RARL as compared to other charts
(cf. Figure 2.1) therefore the detection ability of PM_3 is better than EWMA/R, Hotelling

T2, EWMA_3, Shewhart_3 charts.

Table 2.6: ARL comparison for slope shifts in original model (8, to B1 + Bo)

B
0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
ARL 119.00 4390 1980 1130 7.70 5.80 4.70 3.90 3.40 3.00
EWMA/R SEQL 0.04 0.07 0.08 0.09 0.09 0.10 0.10 0.11 0.12 0.12
SRARL 1.73 2.00 1.93 1.79 1.67 1.58 1.50 1.44 1.40 1.36
ARL 166.00 105.60 60.70 34.50 20.10 1220 7.80 5.20 3.70 2.70
Hotelling T2 SEQL 0.05 0.12 0.18 0.22 0.24 0.25 0.25 0.25 0.24 0.24
SRARL 2.22 3.20 3.74 3.87 3.77 3.57 3.35 3.12 291 2.72
ARL 101.60 36.50 17.00 1030 7.20 5.50 4.50 3.80 3.30 2.90
EWMA_3 SEQL 0.03 0.06 0.07 0.08 0.08 0.09 0.09 0.10 0.11 0.11
SRARL 1.55 1.73 1.66 1.55 1.46 1.39 1.33 1.29 1.26 1.23
ARL 178.30 125.00 79.20 46.70 27.90 17.10 1090 7.10 5.00 3.60
Shewhart_3 SEQL 0.06 0.13 0.22 0.28 0.31 0.33 0.33 0.33 0.32 0.31
SRARL 2.35 3.56 4.36 4.68 4.67 4.49 4.25 3.99 3.73 3.50
ARL 48.20 21.43 1294 9.07 6.83 5.43 4.49 3.82 3.30 2.92
PM_3 SEQL 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.09 0.10
SRARL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Chart

2.4.3 Shifts in error variance:

In Table 2.7 and Figure 2.1, the results are reported for the shifts in error variance
parameter. At the small amount of shift (ranges from 1.2 to 2.00) the PM_ 3 chart have
lowest ARL values as compared to other charts while for moderate to large shift (ranges
from 2.2 to 3.0) Shewhart_3 chart has least ARL values. The largest shift in error variance
(y = 3.0) may resulted 1.40, 1.80, 2.10, 1.40 and 1.50 unit ARL for the EWMA/R,

Hotelling T2, EWMA_3, Shewhart_3 and PM_3 charts respectively. When two or more
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charts have equal values of ARL, then their performance assessed on the basis of EQL and
RARL. The EQL values of EWMAV/R, Hotelling T2, EWMA_3, Shewhart_3 and PM_3
charts are 26.44, 30.57, 29.97, 27.49 and 24.94 respectively. Since, EQL of PM_3 is fewer
than all other charts. The RALR values of these charts are 1.03, 1.31, 1.32, 1.07 and 1.00.
Hence, the smallest EQL and RARL values are showed that PM_3 chart has better

detection ability as compared to other charts.

Table 2.7: ARL comparison for error variance shifts in original model (o to yo)

14
1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00
ARL 3430 12.00 6.10 3.90 2.90 2.30 1.90 1.70 1.50 1.40
EWMA/R SEQL 124.70 80.58 60.24 48.71 4139 36.39 32.77 30.07 28.02 2644
SRARL 1.19 1.25 1.22 1.17 1.14 1.11 1.08 1.06 1.05 1.03
ARL 39.60 1490 7.90 5.10 3.80 3.00 2.50 2.20 2.00 1.80
Hotelling T2 SEQL  128.51 85.81 65.45 53.68 46.12 4091 37.13 3432 3220 30.57
SRARL 1.30 1.43 1.44 1.42 1.39 1.37 1.35 1.33 1.32 131
ARL 33.50 1270 7.20 5.10 3.90 3.20 2.80 2.50 2.30 2.10
EWMA_3 SEQL 124.12 80.34 60.78 4996 43.18 3857 3532 3297 3125 2997
SRARL 1.18 1.25 1.26 1.27 1.28 1.28 1.29 1.30 1.31 1.32
ARL 40.10 13.50 6.50 4.00 2.80 2.20 1.80 1.60 1.50 1.40
Shewhart_3 SEQL 128.87 8549 64.17 51.83 43.88 38.39 3441 3143 29.19 27.49
SRARL 1.31 1.40 1.36 1.29 1.23 1.18 1.14 1.10 1.08 1.07
ARL 24.81 9.82 5.61 3.90 2.99 2.42 2.06 1.81 1.65 1.50
PM_3 SEQL 117.86 72.67 54.05 4391 3759 3330 30.22 2795 26.25 2494
SRARL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Chart

2.4.4 Shifts in the slope of transformed model:

The results for the shifts in slope parameter of transformed model are reported in Table 2.8
while ARL curves are portrayed in Figure 2.1. The 20% decrement in slope parameter (6 =
—0.2) may cause 61.65% loss in the ARL of EWMAVJ/R chart, 73.9% in T2 chart, 93.45%
in EWMA 3 chart, 67.85% in Shewhart_3 chart and 94.58%in PM_3 chart. Further, shift
in slope of transformed model (§ = —0.7) may resulted 2.6, 1.9, 2.3, 2.03 and 2.27 unit

ARL for EWMA/R, T2, EWMA 3, Shewhart_3 and PM_3 charts respectively.
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When shift is decreased by 60% in slope parameter of transformed model (6 = —0.6) than
SEQL of EWMAJ/R, T?, EWMA_3, Shewhart_3 and PM_3 charts are 2.12, 1.39, 0.57,
1.63 and 0.54 respectively0. Further, the values of EQL of these five charts are 1.76, 1.23,
0.87, 1.38 and 0.83. Similarly, the values of RARL of EWMA/R, T?, EWMA 3,
Shewhart_3 and PM_3 charts are 2.73, 1.88, 1.05, 2.18 and 1.00. Hence, based on
minimum ARL, EQL and RARL the detection ability of PM_3 chart is superior than other

charts.

Table 2.8: ARL comparison for slope shifts in transformed model (B, to B; + 60)

Chart )
-0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0
ARL 76.7 33.7 15.3 7.5 4.2 2.6 1.8 1.4 1.2
EWMA/R SEQL 1.53 2.04 2.21 2.2 2.12 2.02 1.92 1.83 1.76
SRARL 4.04 4.75 4.65 4.29 3.89 3.52 3.21 2.95 2.73
ARL 522 212 9.6 4.9 2.9 1.9 1.5 1.2 1.1
T? SEQL 1.04 136 145 144 139 133 128 125 1.23
SRARL 291 329 3.15 288 261 237 218 2.02 1.88
ARL 13.1 6.6 4.4 33 2.7 2.3 2.1 1.9 1.7
EWMA_3 SEQL 026 0.36 0.43 0.5 0.57 063 071 079 0.87
SRARL 1.10 111 108 106 1.05 1.04 1.04 105 1.05
ARL 64.29 25.29 11.08 5.42 3.06 2.03 1.49 1.24 1.10
Shewhart_3 SEQL 1.28 1.66 1.75 1.72 1.63 1.55 1.47 1.42 1.38
SRARL 346 396 377 343 3.08 279 254 234 218
ARL 10.83 6.4 4.43 3.36 2.7 2.27 1.96 1.73 1.53
PM_3 SEQL  0.22 0.31 0.4 047 054 061 069 0.76 0.83
SRARL 1.00 100 1.00 1.00 1.00 100 100 100 1.00

2.4.5 Joint Shifts in intercept and slope of transformed model:
In Table 2.9, At fixed ¢ = 0 and shift in the slope (i.e. § = 0.075) may cause loss of

19.19%, 61.65%,16.55% and 81.32% in the ARL of EWMA/R, EWMA _3, Shewhart_3
and PM_3 charts respectively. The ARL at fixed § = 0 and shift in intercept (i.e. ¢ = 0.15

and ¢ = 0.45) are reported as (110.25, 88.66, 170.71 and 56.97) and (21.94, 13.01, 63.40
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and 16.92) in EWMA/R, EWMA _3, Shewhart_3 and PM_3 respectively. At ¢ = 0.20 and
& = 0.15 the unit loss in ARL of EWMA/ R, EWMA 3, Shewhart_3 and PM_3 charts are
147.1, 180.5, 112.79 and 185.79 respectively. Similarly, at § = 0.125 and ¢ = 0.20 unit
loss in ARL are 143.4, 174.6, 98.49 and 183.15 of EWMA/R, EWMA 3, Shewhart_3 and
PM_3 respectively. So, based on ARL results reported in joint shift (intercept and slope)

the performance of PM_3 chart is better than other charts.
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Table 2.9: ARL comparison for joint (intercept and slope) shift in transformed model (B, to By + @) and
(Bl to Bl + 80')

é

Chart
¢ 0 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250

EWMA/R 200 182.54 17465 161.62 146.45 134.65 11562 9536 78.65 69.85 5545
EWMA_3 200 172.50 11940 76.70 49.10 3240 23.00 16.70 13.20 10.60 8.80

00 Shewhart_3 200 195.00 181.80 166.90 142.10 120.80 99.20 81.20 63.80 51.00 41.00
PM_3 200 108.37 58.72 3736 2635 1993 1575 12.89 10.83 09.29 811
EWMA/R 189.65 179.10 169.90 156.60 140.80 123.20 105.10 88.80 73.40 60.20 49.60
EWMA _3 175.61 157.60 11470 74.80 4830 32.20 2250 16.90 13.20 10.70 8.90

0.05 Shewhart_3 196.28 193.18 180.64 162.76 139.73 119.05 98.79 79.91 63.73 50.47 40.90
PM_3 13898 8756 53.82 36.09 2587 19.73 15.65 1291 10.78 9.31 8.03
EWMA/R 167.85 139.50 133.60 125.40 11550 103.50 90.40 7830 65.70 55.60 46.30
EWMA_3 13748 122.10 94.60 66.40 4490 30.70 2190 16.60 13.10 10.60 8.90

0-10 Shewhart 3 186.73 184.63 172.96 154.66 137.51 11532 9528 77.85 62.38 50.83 40.31
PM_3 84.16 57.44 4469 32.75 2449 19.14 1537 12,69 10.69 9.28 8.09
EWMA/R 110.25 96.80 94.20 90.30 85.10 78.50 70.90 63.00 55.30 47.70 40.90
EWMA_3 88.66 84.60 70.80 5450 3960 2850 20.90 16.10 12.80 10.40 8.80

0-15 Shewhart 3 170.71 165.25 160.43 143.16 128.64 109.11 9159 74.65 60.80 49.55 39.75
PM_3 56.97 4041 3451 28.06 22,61 1823 15.01 1250 10.67 9.15 8.00
EWMA/R 84.20 64.80 63.80 62.10 59.70 56.60 5290 4850 44.00 39.20 34.60

0.20 EWMA_3 59.37 57.10 51.10 4240 3330 2540 1950 15.40 1240 10.20 8.70
Shewhart_3 151.90 148.30 143.85 132.16 116.66 101.51 87.21 70.79 57.63 47.31 38.28
PM_3 42.10 29.64 2720 23.68 20.06 16.85 14.21 12.04 1045 9.08 7.93
EWMA/R 64.50 4430 43.80 4290 41.80 4030 38.40 36.10 33.60 30.80 28.10

0.25 EWMA _3 39.74 3950 36,50 3230 27.10 22.00 17.80 14.40 1190 10.00 8.50
Shewhart_3 132.50 130.54 125.22 114.09 103.59 91.89 78.02 67.20 55.43 45.70 36.84
PM_3 32.77 2146 19.02 1786 1630 1450 13.31 115 10.05 8.90 7.80
EWMA/R 54.51 31.00 30.80 30.50 29.90 29.20 2830 27.10 25.70 24.20 22.50
EWMA_3 28.50 28.20 2690 2470 22.00 18.80 15.70 13.20 11.20 9.60 8.30

0-30 Shewhart_3 112.90 112.33 107.85 100.24 9156 81.92 71.51 61.72 50.87 42.88 35.20
PM_3 26.74 17.89 1734 16.70 15.22 13.88 1233 1098 9.71 862 7.68
EWMA/R 38.53 2290 2280 22,60 22.20 2190 2140 20.70 19.90 19.10 18.00
EWMA_3 20.75 2090 20.20 19.10 17.60 15.80 13.90 12.10 10.50 9.10 8.00

03> Shewhart_3 93.75 93.36 90.25 8538 7935 7153 63.79 5497 47.05 40.37 33.23
PM_3 22.50 14.85 1453 14.07 13.33 1237 1133 1023 930 831 7.46
EWMA/R 29.8 17.40 1730 17.20 17.10 16.80 16.60 16.20 15.80 15.30 14.70

0.40 EWMA_3 16.27 16.20 1590 1530 1450 13,50 12.10 10.90 9.70 860 7.60
Shewhart_3 77.67 76.11 75.17 7133 66.92 62.19 5544 49.13 4338 36.36 30.71
PM_3 22.48 12.46 1231 1205 1161 11.01 10.27 9.52 865 796 7.25
EWMA/R 21.94 1390 1390 1390 13.80 13.60 13.50 13.30 13.00 12.60 12.20
EWMA_3 13.01 13.10 1290 1260 1210 1140 1060 9.80 850 800 7.30

043 Shewhart_3 63.40 63.05 62.15 5940 56.24 5219 49.02 43.19 3839 33.32 28.66
PM_3 16.92 10.73 10.66 1045 10.22 9.80 9.36 876 817 756 6.99
EWMA/R 18.98 11.50 1150 1140 1130 1130 11.10 11.00 10.80 10.60 10.30

0.50 EWMA 3 10.69 10.80 10.80 10.60 10.30 9.90 9.30 870 810 750 6.90

Shewhart_3 51.24 51.32 50.88 49.25 46.96 44.14 40.69 3755 33.57 29.96 2594
PM_3 14.99 9.31 9.34 9.17 8.98 8.77 8.48 805 760 7.14 6.62
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Figure 2.1: ARL curves with respect to different amounts of shifts
2.5 A case study: N-Queens size problems

The N-Queen problem is a computational/multithreading program used for benchmarking.
This problem involves by placing N-queensona N X N chessboard (given in Figure 2.2)

such that no Queen repeated in diagonal, row and in column.
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Figure 2.2: Solution of 4-Queen size

There exist different numbers of an N-Queen problem with their possible solutions. In
Table 2.10, two machines having different specification shows the time to solve the
solution of different Queen size problem. The machine has a 2GHz processor and 24 central
processing unit (CPU) takes significantly less time to solve the Queen size problem at the
different level of N (ranging from 4 to 19). It is also noted that as the number of the N-

Queen problems increased the possible solutions and elapsed time also increased.

In the first case, we used one virtual machine/operating system (VM/QOS) and 2-VCPU
(virtual CPU) to run the N-Queen problems. When two CPU are working than rest of the
22 CPU are in idle condition. In the next experiment, we increase the of VCPU from 2 to
4 to reduce the elapsed time and utilize more CPU. In this case, 4-VCPU are used and 20
CPU is in idle condition. We gradually increase the number of VCPU up to 24 and then
increase it from 24 to 32 to check to see its effect of elapsed time. Once all 24 CPU is used,
the best result produced (i.e. less elapsed time). When we cross the limit of 24 CPU the
elapsed time increased for 28 & 32 CPU. After that, we apply virtualization technology to
run more than one VM/OS on the top of our powerful server and run the N-Queen

benchmarking application. The layout of our experimental study is portrayed in Figure 2.3.
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Table 2.10: Comparison of two machines for N-Queens problem

Board Size (N x N

Number of Solutions to

Time to find a

Time to find a

chessboard) N-Queens Problem solution. solution.
PC specification PC specification
2GHz with 24 CPU 800 MHz
4 2 10 milliseconds 13 milliseconds
5 10 10 milliseconds 13 milliseconds
6 4 10 milliseconds 13 milliseconds
7 40 10 milliseconds 13 milliseconds
8 92 10 milliseconds 13 milliseconds
9 352 20 milliseconds 28 milliseconds
10 724 20 milliseconds 60 milliseconds
11 2680 30 milliseconds 130 milliseconds
12 14200 50 milliseconds 550 milliseconds
13 73712 165 milliseconds 860 milliseconds
14 365596 385 milliseconds 1 seconds
15 2279184 605 milliseconds 4 seconds
16 14772512 970 milliseconds 23 seconds
17 95815104 3.5 seconds 2 min 38 seconds
18 666090624 23.5 seconds 19 min 26 seconds
19 4968057848 3.3 min 2 hour 31 min 24

seconds
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N-Queen Size

Algorithm —

Type 1 Type 2 I

1VM 2VM 4VM 6 VM 8 VM
| | | | |
2 VCPU 2 VCPU 2 VCPU 2 VCPU 2 VCPU
| | | | |
4 VCPU 4\VCPU 4VCPU 4\VCPU 4 VCPU
| | | | |
8 VCPU 8 VCPU 8 VCPU 8 VCPU 8 VCPU
| | | | |
12 VCPU 12 VCPU 12 VCPU 12 VCPU 12 VCPU
| | | | |
16 VCPU 16 VCPU 16 VCPU 16 VCPU 16 VCPU
| | | | |
20 VCPU 20 VCPU 20 VCPU 20 VCPU 20 VCPU
| | | | |
24 VCPU best CPUI 24 VCPU 24 VCPU 24 VCPU 24 VCPU
| | | | |
28 VCPU cross limit 28 VCPU 28 VCPU 28 VCPU 28 VCPU
L 32 VCPU cross L I_ I_ I_
limit 32 VCPU 32 VCPU 32 VCPU 32 VCPU

Figure 2.3: Experimental layout of N-Queen size

In this case study, we have selected 16 Queen problems ranging from (chessboard size 4

to 19), two type of algorithm, five VM/OS and nine different level of VCPU. Thus, we
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have 1440 (16 x 2 X 5 x 9) possible combinations of the solution. So, each
combination of Queen size has 90 elapsed time (in sec) values against a VM/OS. The total
values of elapsed time are 90 x 5 = 450. We are considering problem size 17 as a

benchmark and applied our proposed progressive mean control chart (PM_3).

2.5.1 Implementation of PM_3 and Shewhart_3 chart
We have considered VCPU value as independent variable (X = 2,4,8,12,16,20,24,28,32)
and elapsed time (Y) as a dependent variable. The following steps are described the

implementation of Shewhart_3 and PM_3 charts.

Step 1: We have total 450 sample values (50 profiles). The IC regression model based on

50 profiles is
Y =19.367 — 0.506X + €. (original model)

Step 2: Further, to gain the assumption of independence between parameters, we

transformed the X values in X’ by using X' = X — X,
X'=-14.22,-12.22,-8.22,—4.22,-0.22,3.78,7.78,11.78, 15.78
Y =11.367 — 0.506X’ + . (transformed model)

Step 3: The selected charting constants for each chart is given below

L, = 16.54
For PM_3:] Lg = 4.54 |

Zo)p = 3.14

For Shewhart_3: )(ZLCL = 0.001"
2 _
XPye, = 1417
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Step 4: We have plotted our proposed statistics for each parameter (i.e. intercept, slope
and error variance) against their control limits which are displayed in Figure 2.4 and Figure
25. The process is declared IC (shaded in pink color) for the first 25 points while OOC
region presented in white color. The points which are lying outside the limits (UCL or

LCL) shows that the process is out of control.

Step 5: When a turbulence occurs in the data set due to Queen size (16 problem) after 25™
sample, we can see that the elapsed time of new data has significantly changed in terms of
intercept, slope and error variance. The PM_3 and Shewhart_3 charts for Queen size (16
problems) are portrayed in Figure 2.4 and Figure 2.5. The findings depict that for shifted
intercept parameter, PM_3 detect 6 OOC points while Shewhart_3 detects 10 OOC signals.
For the shifted slope and error variance parameters, PM_3 declares 7 and 9 OOC points

while Shewhart_3 detects 0 and 10 OOC signals respectively.

PM_3 Intercept PM_3 Slope PM_3 Error Variance
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Figure 2.4: PM_3 chart for Queen size problem 16
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Figure 2.5: Shewhart_3 chart Queen size problem 16
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Figure 2.6: PM_3 charts for Queen size 18

Further, to explore the detection ability of PM_3 chart, we also introduced large shifts by

considering last 25 profiles of Queen size 18. The graphical display of PM_3 chart for
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Queen size 18 is portrayed in Figure 2.6, which shows more out of control signals as

compared to a data set having Queen size 16.

2.5.2 Implementation of charts on perturbing the data

In literature, data perturbation approaches are classified into two categories such as value
distortion approach and probability distribution approach. In distortion technique, data
elements are perturbed by several methods that include additive noise, multiplicative noise,
or other randomization methods. The probability distribution approach substitutes the data
set with the sample from the own distribution. Recently, Muralidhar and Sarathy (2006)
discussed four different perturbation approaches on linear models. In this study, an additive
noise model was used which was proposed by Kim (1986) and modified by Tendick and
Matloff (1994). The linear profile parameters of the regression model (OOC model)

obtained by perturbating data along with IC model are described in Table 2.11.

Table 2.11: Comparison of in-control and out-of-control models

IC Model OOC Model

Intercept = 19.364 Intercept = 33.711
Slope = -0.506 Slope = -0.844
Standard error = 8.535 Standard error = 16.107

Rate of Change in intercept = 100*(33.711 -19.364) / 19.364 = 74.09%
Rate of Change in slope = 100*(-0.844+0.506) / -0.506 = 66.79%

Rate of Change in error = 100*(16.107 - 8.535) / 8.535 = 88.71%

The performance of PM_3 chart is still better than Shewhart_3 when the shift is introduced

by using distorted the data. The PM_3 chart detects 10 OOC points in intercept, 6 OOC
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points in slope and 7 OOC points in error variance in perturbated data as shown in Figure
2.7. On the other hand, Shewhart_3 is detecting 10 OOC points in intercept, 4 in slope and
6 OOC points in error variance as shown in Figure 2.8. So, based on data perturbation

PM_3 chart has more detection ability as compare to Shewhart_3 chart.

PM_3 Intercept PM_3 Slope PM_3 Error Variance
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Figure 2.7: PM_3 chart for perturbated data

The detection ability of PM_3 chart is better when the shift is introduced by perturbation
technique. PM_3. Hence, in decreasing shift (Queen size problem 16) and perturbation

shift PM_3 chart has outperformed well as compared to Shewhart_3 chart

41
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Figure 2.8: Shewhart_3 chart perturbated data

2.6 Conclusions

In this study, we proposed a new charting method based on progressive mean for the
simultaneous monitoring of simple linear profile parameters. For the comparative study,
we have introduced several amounts of shifts in linear profile parameters such as intercept,
slope and error variance. Further, we have used several performance measures such as
ARL,EQL,SEQL,RARL and SRARL for determining the detection ability of PM_3 chart
and its counterparts. In the presence of shifts in linear profile parameters, the findings
depict that PM_3 chart has better detection ability as compared to other competing charts.
Moreover, the proposed chart PM_3 is applied on a case study from computer engineering

field and results depict the importance of PM_3 chart for controlling the real systems.
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Chapter 3
AN ASSORTED CONTROL CHART FOR LOCATION

PARAMETER

Primarily, three types of control charts are employed to observe the disturbances in the
process parameters. Large turbulences are detected efficiently by Shewhart’s control chart
whereas, for small and medium instabilities, cumulative sum and exponentially weighted
moving average control charts are used. This chapter proposes an assorted approach to
monitor small, medium and large disturbances in a single control charting procedure. The
said objective is met by using the well-known max approach. For the evaluation of the
proposed assorted control chart, we have used various measures like average run length,
standard deviation run length, extra quadratic loss, relative average run length and
performance comparison index. A comparison of the assorted control chart is presented
with some typical charts including the Shewhart’s, cumulative sum and exponentially
weighted moving average control charts. Finally, a real-life example is presented to

monitor the pH level of water in Ecotoxicology lab.

3.1. Introduction

Generally, the control charts are designed to detect three types of shifts in the process
parameter(s) (i.e. small, medium and large). Shewhart’s control charts are efficient in
detecting large shifts whereas CUSUM and EWMA charts are used to detect small to
moderate shifts in the process. In literature, several classical and enhanced schemes are
available to detect different amounts of shift in process location parameter. Some of these
control charting strategies are as follows: Fast Initial Response (FIR) CUSUM by Lucas
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and Crosier (1982), FIR EWMA by Lucas and Saccucci (1990), new CUSUM by Croiser
(1986), generalized weighted moving average control chart by Sheu and Lin (2003), a run-
rules scheme by Abbas et al. (2011), mixed EWMA-CUSUM (MEC) by Abbas et al.

(2013) and mixed CUSUM-EWMA by Zaman et al. (2015).

All these enhanced and modified control charts focus on detecting a specific size of the
shift. This makes these charts insensitive to the others shift sizes. The said drawback is
addressed by some further modifications (focusing on detecting a range of shifts) in
Shewhart’s, CUSUM and EWMA charts. Some of these modifications are combined
Shewhart-CUSUM(CSC) by Lucas (1982), Adaptive EWMA (AEWMA) by Capizzi and
Masarotto (2003), Adaptive CUSUM by Alippi and Roveri (2006) and Wu et al. (2009),
Riaz et al. (2011) ,Abujiya et al. (2013a) and combined Shewhart-EWMA(CSE) by
Abujiya et al. (2013) and Koshti (2016). Taking inspiration from these enhanced and
modified control charts, this chapter proposes a new assorted control charting approach
that can be used to detect the small, medium and large shifts (in process location)
simultaneously. Before getting into the details of proposed assorted control chart, the next
few subsections provide the structural details of some classical, modified and enhanced
control charts. The outlined of rest of the chapter is as follows: in sub section 3.1.1- 3.1.6,
a brief discussion on existing methods to monitor process location parameter. In section
3.2, proposed structure of Assorted control chart is discussed. The performance and
comparative analysis of proposed with the existing control charting strategies are discussed
in Section 3.3. An implementation of proposed and competing charts on a real-life
application is discussed in Section 3.4. The concluding remarks are given in the Section

3.5.
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3.1.1. The Classical Control Charts

A detailed discussion on classical control charts has been described in Section 1.2.1.

3.1.2. The FIR EWMA control chart
The FIR EWMA control chart was proposed by Steiner (1999). The structure and control

limits of FIR EWMA are as follow:

FIR,5; =1— (1 — f)1+e@-0

LeLiimy = o =L (%) (1= (1= 1070 [Z2opi— - 2)2)

UCLieimy = o+ L (52) (1 = (L= o0 At = (1= )%

-2
log(1—£)

where a = (

~1)/19,

3.1.3. The Combined Shewhart- CUSUM (CSC) control chart
The CSC control chart is the combination of Shewhart and CUSUM control charts:
Shewhart control chart is used to detect a large amount of shift, while CUSUM control

chart is used to observe small and moderate shifts. The structure of CSC control chart

proposed by Lucas (1982) is as follow:

The standardized CUSUM statistics are

C;t = max[0,Z; — k+ C" ] }
C; =max[0,—k—7Z;+C_,])

The CSC scheme indicates out of control signal if C;*and/or C;” have exceeded decision

interval value h.
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3.1.4. The Combined Shewhart- EWMA (CSE) control chart

The CSE control chart scheme is obtained by some modification in EWMA scheme
probability matrix by Lucas (1982). To detect small and large shifts in a process, CSE
control chart performs well. The structure of CSE is obtained by merging Shewhart limits
with EWMA scheme. In this case, the process is considered as IC if EWMA statistic lies
within the control limit of Shewhart and declared as an OOC if EWMA statistic falls
outside the limits. Koshti (2016) compared the performance of CSE control chart with

Shewhart chart limits between 4 to 4.5 standard deviation.

3.1.5. The Adaptive EWMA (AEWMA) control chart
Capizzi and Masarotto (2003) was proposed AEWMA control chart, detect the small and

large shifts in the process parameters. The design structure of AEWMA control chart is as

follow:

Xi = Xi-1 + ¢(fi)

where Xy = Uy, fi = v; — Xi-1 and ¢(f;) is a score function. When y; # X;_;, the above

equation can be rewritten as
Xi = (1 = w({fi))Xi-1 + w(f)y;
where w(f) = ¢(f)/f i.e. an EWMA statistic varying weights

f+(1-2Dr, f<-t

d(f) = Af, Ifl<t
f+(1-Dr, f>

where A is a smoothing constant ranging 0 < A < 1and 7t > 0.
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3.1.6. The Mixed EWMA-CUSUM (MEC) control chart

Abbas et al. (2013) proposed MEC control chart for the monitoring of process location.

The two statistics of MEC chart and UCL are as follows

Mi+ = max[0, (Q; — po) — a; + Mi+—1] }
M; = max[0, —(Q; — uo) — a; + Mi_—1]

where M;"and M; are the upper and lower CUSUM statistics and a; time varying reference
value. Further, M= M7 = 0 ati = 1. The EWMA statistic and control limits are defined

as

Qi =AgXi + (1 —25)Qi—1

LCL; = a*aXJ 21— (1- 2,)"]
q

ucL; = b*aX\/ZA_—qA[l ~(1- ,16,)2"]'
q

where a* and b* are constant value like k and h.The further details may be seen in Abbas
et al. (2013). On the same lines, a mixed CUSUM-EWMA (MCE) control chart for
process monitoring location was proposed by Zaman et al. (2015). The details of MCE

charts may be seen in the said paper.

3.2.  The design structure of Assorted, ; control chart for location

In this segment, we propose an assorted approach to detect large, medium and small shifts
in a single control chart namely an Assorted control chart. Assume that X is normally
distributed random variable X;;~N (.Uo + 53—%,00), i=12,.....andj=12,...,n

& = 0 corresponds to an IC situation.

& # 0 means that process has shifted to a new location.
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Mathematically, shift can be defined as

6:#1—,‘10

0o
i
where p, is IC mean.

Uy i1s OOC mean.

o, 1s IC standard deviation and n is sample size.

The following statistics of Shewhart, CUSUM, and EWMA are used in our proposed chart
respectively.

max[0, (X; — uo) — kj—% +C 4]
min[0, (X; — uo) + k=

7 T Cidl ’

Zi - A)?l + (1 - A)Zi—l

Let T is first statistic of the proposed chart to detect large shift in the process location. It
is defined as:

c

Xi—Mo
r, = [fm)

(3.1)
where ¢ = Cs:;_% and ¢, is the charting constant for Shewhart chart.

The following two statistics are used to detect the moderate shift in the process location

+ -
+ Ci - _ _G
T3 h.20 'TZ_h”_o'
C\/ﬁ (4

(3.2)
\/ﬁ
where h, is the charting constant for CUSUM chart.

Similarly, the following statistic is used to detect the small shift in the process location

T;

|Zi—ﬂo|
L )

(3.3)
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where L = Le'j—% l\/%{l — (@1 =22%},0<xr<1andL, isthe charting constant for
EWMA chart.
The plotting statistic of proposed chart is defined as:

T = max(T,,T,",T,, T3). (3.4)
In Eq. (3.4) T is the maximum value of four statistics as discussed above and plotted with
respect to time. Because T is the function of standardized max statistics, therefore, it will
always have positive value. The upper control limit of T is defined as:

UCL=T>1. (3.5)

The sensitivity of the proposed Assorted control chart depends on the selection of (k, A).
For the said reason, we will use the notation Assorted,, , for our proposed control chart.
Different combinations of sensitivity parameters (k,A) are used in the proposed
Assortedy ; chart. To detect large, medium and small shift in process location three types
of charting constants are incorporated in this study. Table 3.1 Ranges of sensitivity
parameters for different categories of shift portrays the ranges of sensitivity parameters for

different categories of shifts.

Table 3.1 Ranges of sensitivity parameters for different categories of shift

Sensitivity Category of shift

Parameter Small Medium Large

A 0.03t00.2 0.21to05 051tol

k 0.1t00.75 0.76t01.5 morethan1.5

When the process is in IC state (i.e. § = 0) we fix ARL, at specific level such as 370. In
order to fix the ARL, of the proposed Assortedy , control chart we need to set the control
limit coefficients (h., L. , cs) used with reference to Egs. 3.1-3.3. For the said purpose, we

have used several combinations of sensitivity parameters (k, A) and worked out the triplets

49



(he, L. ,cs) for our proposed control chart. The resulting control charting
constants/coefficients (h, L. , cs) are provided in Table 3.2 at some useful combinations
of (k, A) for two commonly used choices of ARL,=370 and ARL,=500. One may work out

the same for other choices of ARL,.

Table 3.2: Charting Constant at ARLy, = 370 and ARL, = 500

Case I \ ARLy, = 370 ARL,=500
h L, Cs h. L, Cs
1 0.25 9.7787 3.1932 3.2685 10.3997 3.2891 3.3571
2 0.25 0.38 9.7403 3.2306 3.2629 10.3369 3.3196 3.3483
3 0.55 9.6924 3.2457 3.2559 10.2884 3.3326 3.3414
4 0.25 5.5842 3.1634 3.2411 5.8962 3.2594 3.3296
5 0.5 0.38 5.5960 3.2114 3.2445 5.9133 3.3052 3.3344
6 0.55 5.6018 3.2357 3.2461 5.9048 3.3231 3.3320
7 0.05 3.9749 2.8705 3.2804 4.1611 2.9725 3.3587
8 0.13 3.9113 3.0695 3.2534 4.1069 3.1655 3.3361
9 0.75 0.25 3.8503 3.1483 3.2272 4.0673 3.2484 3.3195

10 0.38 3.8461 3.1914 3.2254 4.0564 3.2849 3.3149
11 0.55 3.8419 3.2127 3.2236 4.0601 3.3072 3.3164
12 0.05 2.9838 2.8647 3.2760 3.1466 2.9835 3.3672
13 1 0.13  2.9456 3.0706 3.2543 3.0948 3.1682 3.3384
14 0.25 2.9044 3.1521 3.2307 3.0554 3.2451 3.3164
15 0.05 2.3487 2.8556 3.2691 2.4721 2.9700 3.3567
16 1.25 0.13  2.3237 3.0668 3.2511 2.4444 3.1669 3.3372
17 0.25 2.2817 3.1412 3.2207 24136 3.2440 3.3154

3.3.  Performance evaluations and comparisons

In this section, performance evaluations and comparisons of the proposed and some other
competing charts are discussed. The competing charts include the classical (Shewhart,
EWMA, and CUSUM) and some modified charts (CSE and MEC). We have used different

performance measure based on run length including ARL, SDRL, EQL,SEQL, RARL, and
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PCI. In order to evaluate these measures, we have used Monte Carlo simulations (for ARL)

and numerical integration for other measures (EQL, SEQL, RARL and PCI ).

The computational algorithm for these measures is given as: (i) generate random samples
from the parent probability model (normal); (ii) compute the sample statistics ; (iii) set the
control limits using the description given in Section 3.2; (iv) using steps (i)—(iii), implement
the procedural steps of ARL depending on the choices of A and k (cf. Table 3.2); (v) based
on the results of step (iv) for ARL as function of §: integrate the ARL values over the entire
& range by using an appropriate numerical integration technique (like Simpson or
Trapezoidal) (this results into EQL value); (vi) repeat steps (iv) and (v) for all the charts;
(vii) based on the results of step (vi), take the ratio of the ARL of a particular chart by the
ARL of the benchmark chart (the usual one in this study), divide with the range of § values
and then integrate the output over the entire § range using an appropriate numerical

integration technique (like Simpson or Trapezoidal) (this results into RARL values).

3.3.1. Performance analysis of Assorted, ; control chart

The performance of proposed Assorted, ; control chart is evaluated in terms of ARL and
SDRL for varying combination of k,A and §. The resulting outcomes are presented in
Tables 3.3-3.6 at ARL,=370 and ARL =500. In addition to the tabular results, we have
produced some useful graphical displays based on ARLs and are provided in Figure 3.1

The results advocate the following:

e The proposed chart is sensitive for all types of shifts i.e. small, moderate and large

(cf. Table 3.3 and Table 3.5).
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The sensitivity of the proposed chart increases with a decrease in A at a specific
choice of k and it is true for all values of k.

The sensitivity of the proposed chart increases with a decrease in k at a specific
choice of A and it is true for all values of A (cf. Table 3.3 and Table 3.5).

The SDRL behavior of the proposed chart is quite stable for different combinations
of sensitivity parameter (k, A) at varying values of § (cf. Table 3.4 and Table 3.6).
The case 15 is stated the optimal choice of charting constants (h, = 2.3487,L, =
2.8556,c;, = 3.2691) and (h, = 2.4721,L, = 2.9700, ¢, = 3.3567)  with
sensitivity parameter k = 1.25 and A=0.05 at ARLy=370 and ARL, =500
respectively(cf. Table 3.2).

The selection of charting constant at ARL,=370 and ARL, =500 are based on
minimum ARLSs highlighted in bold (cf. Table 3.3 and Table 3.5).

Four different type of charts is portrayed in Figure 3.1. Graph (a) shows the
comparison of ARL values at ARL, = 370 with fixed value k=0.75 and varying A
for different amounts of shifts ranging from 0.25 to 3. Graph (b) shows the
comparison of ARL values at ARL, = 370 with fixed value A =0.25 and varying
k for different amounts of shifts ranging from 0.25 to 3. The results depicted that
the Assortedg ;5005 has minimum ARL at A=0.05. The ARL comparison of
Assortedy ; control charts at ARLy, = 370 with varying k and fixed 2=0.25 is
described that at smaller value k = 0.25 has minimum ARL. Similarly, the same

results are portrayed in graph (c) and (d) at ARL, = 500.
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Table 3.3: ARLs of Assorted, ; Chartat ARLy = 370

k A 8
0 0.25 0.5 0.75 1 1.5 2 2.5 3
0.25 366.988 98.278 31.789 16.917 10.637 5.294 3.223 2.266 1.739
0.25 0.38 365.026 98.871 32.520 17.598 11.438 5.808 3.458 2.360 1.785
0.55 370.578 99.582 32.979 18.112 12.043 6.440 3.844 2.520 1.850
0.25 371.645 139.138 39.554 17.338 10.204 5.124 3.174 2.235 1.720
05 0.38 368.862 142.539 40.654 17.778 10.552 5.369 3.342 2.329 1.768
~ 0.55 374.478 147.456 41.621 18.162 10.818 5.624 3.550 2.456 1.832
=l 0.05 374.061 91.623 27.778 13.706 8.380 4.272 2.717 1.960 1.533
£ 0.13  37.995 133.161 37.771 16.630 9.636 4.762 2.991 2.134 1.654
2 075 025 369.287 167.580 51.394 20.796 11.072 5.071 3.143 2.221 1.709
= 0.38 371.107 179.890 56.878 22.380 11.650 5.286 3.251 2.295 1.758
0.55 370.373 185.415 58.935 23.146 11.900 5.437 3.351 2.365 1.799
0.05 368292 90.376 27.437 13.672 8353 4.250 2.705 1.955 1.530
1 0.3 371.649 133.443 37.882 16.625 9.604 4.758 2991 2.133 1.655
0.25 374543 176.335 55.012 22.392 11.686 5.193 3.165 2.226 1.714
0.05 370.067 90.133 27.522 13.527 8.260 4.231 2.692 1.948 1.525
1.25 0.13 375.813 133.171 37.838 16.553 9.626 4.736 2.980 2.129 1.653
0.25 369.060 174.856 54.966 22.098 11.594 5.182 3.143 2.216 1.703
Table 3.4: SDRL at ARLy = 370 of Assorted, ; Chart
k A 5
0 0.25 0.5 0.75 1 1.5 2 2.5 3

0.25 359.507 82.761 20.145 9.614 6.010 2.997 1.651 1.065 0.759
0.25 038 358634 83.503 19.924 9346 6.014 3.274 1.874 1.157 0.798
0.55 363.612 82.862 19.765 9.027 5.777 3.400 2.170 1.349 0.891
0.25 367.759 134.249 33.124 12.102 6.176 2.775 1.608 1.046 0.749
0.5 038 366.224 136.895 34.030 12.093 6.192 2.814 1.702 1.123 0.791
- 0.55 372.186 141.425 34.732 12217 6.124 2791 1.772 1.219 0.864
§ 0.05 378.113 82.205 20.559 9.025 5.188 2.407 1.401 0.926 0.665
£ 0.13  378.547 128.893 32.009 12.007 6.149 2.612 1.502 0.993 0.719
2 075 025 367.081 164.943 47.875 17.147 7.906 2.872 1.587 1.041 0.749
= 0.38 367.817 176.272 53.451 18.808 8.302 2.985 1.631 1.089 0.779
0.55 368.461 181.865 55.548 19.335 8.433 2997 1645 1.118 0.816
0.05 370.531 81.205 20.302 9.070 5.211 2.390 1.396 0.926 0.662
1 0.13 369.543 128.535 32.250 12.052 6.142 2.628 1.503 0.995 0.719
0.25 375425 174.604 51.514 18.953 8.736 3.075 1.625 1.046 0.744
0.05 379.470 81.027 20.457 8979 5.116 2.392 1387 0.924 0.661
1.25 0.13 376.160 128.397 32.402 12.020 6.172 2.614 1.491 0.994 0.713
0.25 369.472 172997 51.352 18.758 8.565 3.066 1.622 1.045 0.745
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Assortedy ,

Table 3.5: ARLs of Assorted,, ; Chartat ARLy = 500

Assortedy ;

k A 0
0 0.25 0.5 0.75 1 1.5 2 2.5 3
0.25 503.693 112.726 34.735 18.288 11.489 5.625 3.402 2.376 1.810
0.25 0.38 500.498 112.237 35.272 18.923 12.251 6.201 3.658 2.469 1.856
0.55 500.181 113.525 35.384 19.398 12.864 6.890 4.090 2.657 1.924
0.25 498.034 170.702 43.845 18.613 10.845 5.395 3.333 2.340 1.790
0.5 0.38 498.731 174.436 45.349 19.204 11.223 5.693 3.522 2.437 1.838
0.55 499.040 177.536 46.000 19.457 11.498 5.928 3.743 2.572 1.906
0.05 499.840 106.328 30.258 14.712 8935 4.526 2.862 2.043 1.597
0.13 502.063 164.421 42939 18.164 10.392 5.021 3.140 2.231 1.717
0.75 0.25 501.029 211.937 60.354 23.022 11.946 5.404 3.310 2.323 1.784
0.38 499.039 225.219 66.028 24.589 12.532 5.597 3.424 2402 1.819
0.55 502.470 235.656 68.588 25.192 12.797 5.714 3.530 2.479 1.870
0.05 502.486 107.911 30.643 14.822 9.010 4.549 2.865 2.058 1.602
1 0.13  498.778 163.351 43.126 18.174 10.375 5.021 3.134 2.223 1.718
0.25 499.586 223.552 66.069 25.245 12.808 5.506 3.303 2.320 1.783
0.05 501.378 106.911 30.358 14.666 8.927 4.512 2.841 2.046 1.591
1.25 0.13 500.405 164.215 43.069 18.134 10.376 5.028 3.124 2.227 1.721
0.25 500.039 224.814 66.671 25371 12.856 5.517 3.319 2.324 1.777
Table 3.6: SDRL at ARLy, = 500 of Assorted, ; Chart
k A 0
0 0.25 0.5 0.75 1 1.5 2 2.5 3
0.25 499.811 96.755 21.217 9.929 6.370 3.251 1.807 1.144 0.810
0.25 0.38 494.894 95.831 21.154 9.721 6.239 3.494 2.018 1.233 0.848
0.55 492.696 94.648 20.983 9.329 5965 3.562 2.306 1.446 0.939
0.25 496.601 169.257 37.984 12961 6.444 2902 1.719 1.130 0.806
0.5 0.38 501.622 172.344 38426 12950 6.397 2.898 1.778 1.189 0.838
0.55 496.429 171.864 38.495 12.897 6.375 2.869 1.822 1.281 0.903
0.05 498.695 162.349 32.398 12401 6.725 3.031 1.775 1.195 0.857
0.13  495.176 198.513 47.329 15925 7.462 2989 1.702 1.130 0.814
0.75 0.25 503.809 222.782 60.697 20.126 8.702 3.059 1.686 1.118 0.803
0.38 507.219 229.406 63.603 20.901 8.916 3.088 1.711 1.134 0.817
0.55 500.078 233.662 64.427 21.287 9.023 3.095 1.697 1.159 0.851
0.05 504.963 164.511 32.410 12415 6.783 3.029 1.777 1.193 0.856
1 0.13  499.019 200.150 47.658 15951 7.574 3.020 1.699 1.127 0.810
0.25 499.417 240.509 69.663 23.969 10.437 3.390 1.748 1.107 0.798
0.05 508.963 164.258 32.324 12.336 6.794 3.049 1.778 1.190 0.846
1.25 0.13 502,983 202.466 47.937 16.003 7.507 3.003 1.706 1.128 0.809
0.25 500.448 241.577 70.292 23.923 10.358 3.465 1.760 1.121 0.800
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Figure 3.1: ARL comparison of Assorted Chart for: (a) varying values of 4 and fixed k at ARLy = 370; (b)
varying values of k and fixed 4 at ARLy = 370; (c) varying values of 4 and fixed k at ARLy = 500; (d) varying
values of k and fixed 4 at ARL, = 500;

3.3.2. Comparative analysis

In this section, we provide a comparative analysis of the proposed Assorted,, ; chart with
the classical (Shewhart, EWMA and CUSUM) charts and some modified charts (including
CSE and MEC charts) at ARL, = 500. The ARL results of all aforementioned competing
charts, along with the proposed chart, are compile in the form of tabular display (cf. Table

3.7). This table helps in carrying out ARL comparison of the proposed Assorted,, ; chart
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with the existing counterparts charts including Shewhart;, EWMA,;, CUSUMy,,

CSEj(sq) and MEG;,, ¢*, b+ - IN addition to the tabular results, we have also produced some

useful comparative graphical displays based on ARLs and are provided in Figure 3.2. The

results advocate the following:

The proposed chart has minimum ARL at k=1.25 and A=0.05 for all types of shifts
ranges from 0.25 to 3 (cf. Table 3.7).

The sensitivity of the proposed Assorted; ;s o5 Chart is significantly better than
Shewhart, EWMA and CUSUM control charts at small amount of shift. For
example, at 6=0.25 the ARL, of proposed, Shewhart, EWMA and CUSUM charts
are 106.911, 373.66, 171.90 and 143.90 respectively.

The proposed chart has minimum ARL; at 6=0.75 (i.e. 14.67) as compared to CSE
(19.41) and MEC (16.63).

Four different type of charts are portrayed in Figure 3.2. Graph (a) shows the
comparison of ARL values at ARL, = 500 and different amounts of shifts ranging
from 0.25 to 3. The Assorted, ;5005has minimum ARL values among the
classical approaches of control charting techniques. The ARL comparison of
Assorted, 35005 and CSE chart are highlighted in graph (b). In graph (c), the ARL
values of Assorted; ;s g5 are less than MEC at different combinations of A, a”
and b* for small and moderate shifts. The graph (d) shows ARL of Assortedy ;
by using dissimilar combination of k and A. The proposed Assorted; ;505 Chart

has lowest ARL.
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Table 3.7: ARL comparisons at ARLy = 500

Control Charts

0 0.25 0.5 0.75 1 1.5 2 2.5 3
Assorted 350.05 50137 10691 3035 1467 892 451 284 204 159
Shewhart; g 499.87  373.66 201.30 103.03 5452 17.79 7.26 359  2.16
EWMA 5 2.995 49751  171.90 4851 2029  7.45 44 312 224 194
CUSUMy 5 5,06 500 143.90 3871 1729 1053 577 367 311 257
CSE4(sa) 492,62 16630  49.12 1941  7.42 427 354 215 177
CSE4 5(sa) 499.18 17150 4806 2010 7.43 433 361 221 1.88
CSEs(sa) 509.09 17240 4835 1976 742 437 361 226 196
MECo 1053742 49838  80.13 3552 2405 1886 13.79 11.19 955 841
MECo.25,0.520.18 502.01 8375  30.88 1887 13.88 960 759 640 559
MECo.5,05,11.2 507.95  100.26  30.74 1663 1145 729 552 454 391
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Figure 3.2: ARL comparison of Assorted Chart with (a) Shewhart, EWMA, and CUSUM; (b) CSE; (c) MEC;
(d) varying k and 4,

3.3.3. Performance Analysis based on overall measures

Besides ARL (used as performance measure at a particular shift), there are some important
measures such as EQL, RARL and PCI that are used to evaluate overall performance. The
details of these performance measure have been discussed in Section 1.4. A comparative
analysis (among proposed, classical and modified control charting strategies) based on

these measures is presented in Table 3.8.
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The assorted chart with k = 1.25 and A = 0.05 is considered as benchmark chart
based on minimum EQL result (i.e. 10.50). For the other competing charts, the
EQLs are 36.74, 11.85, 14.27,11.81 and 16.47.

The RARL of assorted chart is equal to 1 while the RARL of contending charts are
3.82, 1.14, 1.32, 1.13 and 1.19. These results depict that the performance of the
proposed chart is better than all other competing control charting strategies.

As the proposed Assorted; ;5.5 Chart has minimum EQL (i.e.10.50) so it is
considered as benchmark chart. The PCI is defined as the ratio between the EQL of
a chart and EQL of benchmark chart.

The proposed Assorted,; ;5005 chart has PCI is equal to 1 while all others
competing charts have PCI greater than 1 (3.50, 1.13, 1.36, 1.12 and 1.57) which
shows the superiority of the proposed Assorted; ;55 Chart.

To check the sensitivity of the proposed Assorted, ;505 Chart and competing
charts on different ranges of shifts from 0.25 to 3, we have calculated Sequential
Extra Quadratic Loss (SEQL) for proposed and competing charts. The results depict
that the detection ability of proposed Assorted, ,s5 ¢ o5 Chart is better than all others

contending charts (cf. Table 3.9 and Figure 3.3).
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Table 3.8: Comparison of EQL, RARL and PCI

k A EQL RARL PCI
0.25 11.81 1.19 1.19
0.25 0.38 12.47 1.25 1.26
0.55 13.37 1.33 1.35
0.25 12.06 1.23 1.22
N 0.5 0.38 12.56 1.28 1.27
3 0.55 13.06 1.33 1.32
§ 0.05 9.92 1.001 1.002
2 0.13 11.49 1.18 1.16
= 0.75 0.25 12.92 1.35 1.31
0.38 13.52 1.41 1.36
0.55 13.92 1.45 1.41
0.05 9.98 1.01 1.01
1 0.13 11.47 1.18 1.16
0.25 13.35 1.40 1.35
0.05 9.90 1.00 1.00
1.25 0.13 11.48 1.18 1.16
0.25 13.39 1.40 1.35
Shewharts 4q 34.66 3.82 3.50
EWMA, 252 098 11.31 1.14 1.14
CUSUMg 5 5.06 13.46 1.32 1.36
CSE4(sa) 11.26 1.13 1.14
CSE4 5(sa) 11.51 1.15 1.16
CSEs(sa) 11.63 1.16 1.17
MECy 10.537.42 22.85 1.73 3.39
MECy 35,0.5.20.18 16.47 1.35 2.34
MECos.0.5.11.2 13.17 1.19 1.76
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Table 3.9: SEQL comparison at ARLy = 500

Control Charts >
0.25 0.5 0.75 1 1.5 2 2.5 3
Assortedl.zs,o.os 3.34 5.23 6.13 6.74 7.67 8.44 9.16 9.90
Shewharts gq 11.67 2425 3421 3972 4224 4031 37.40 34.66
EWMAy 25 2.998 5.37 8.40 9.53 9.50 9.22 9.71 1042 1131
CUSUMgs5,5.06 450 6.91 7.84 841 952 1060 11.89 13.46
CSE4 5(sa) 5.35 8.36 9.46 9.44 915 9589 1073 11.51
MECq 505112 3.13 5.05 6.20 7.26  9.48 1192 1458 17.45
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Figure 3.3: SEQL comparison of proposed and competing charts

3.4. Application: Monitoring the amount of pH characteristics

In this section, an application of our proposed chart to monitor the amount of potential
Hydrogen (pH) characteristic in water at Aquatic Ecotoxicology laboratory is illustrated.
The pH values of water were recorded regularly from 1%t April to 30" May 2016 and

resulting data are provided in Table 3.10.
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Table 3.10: pH values

Days 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

pH value 8.2 8.2 82 819 825 819 819 834 812 829 825 812 819 83 825
Days 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
pH value 8.2 8.2 82 815 825 829 83 83 828 827 819 828 83 8.4 8.3
Days 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
pH value 811 835 822 824 829 83 815 814 824 811 813 811 815 814 82
Days 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
pH value 836 826 811 832 811 833 842 832 841 839 837 831 829 826 827

3.4.1. Data description

The toxic effects of chemicals on aquatic organisms especially on mysids are examined
and tested in ecotoxicology lab. The lab has its own sophisticated environment and
functionality. The living environment of mysids consists of four characteristic parameters
including lab temperature, pH, salinity and dissolved oxygen (DO) of circulating water.
Mysids are small shrimps having carapace and usually, their length is about 1 cm. Mysids
inhibit in fresh and salt water. Extensively, Mysids have been used as an indicator of spices
in water toxicity tests Miller et al. (1990) for many years and are commonly brought up or
cultured in the lab. In the Ecotoxicology lab mysids are growing up in water tanks (4x3x2
cubic feet) in fresh and salted water. The culture system of mysids is showing Figure 3.4.
The fresh & salted water is circulated through supply lines. The suction and filtration pump
work 22 hours/day to keep water fresh and free from algae. Mysids are being fed by lab
supervisor twice a day (morning and afternoon). The average values of water characteristic

in the lab are (cf. Marini (2003):

e Temperature 23.8 °C / 75°F
e Light 75 foot -candle / 941.775 LUX

] pH 8.2
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e Ammonia(NHz) 0.1 mg/Liter

e Salinity 20 - 22ppt

Suction and Air Supply
Filtration
Pump
Fresh & Salted
Water Supply
Water Tank

Figure 3.4: Mysids culture system

3.4.2. Application of different control chart on pH characteristics

The reproduction system of mysids depends upon four main factors of water (Salinity,
Temperature, Dissolved oxygen (DO) and pH). Our aim here is to monitor the pH value of
water in lab using the proposed and other competing charts of this study. The average value
of pH (cf. Marini (2003)) for mysids is 8.2 with standard deviations 0.1. Using this
information and the data given in Table 3.10, we have constructed the following control

charts with their respective settings as listed below:
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e The proposed chart (Assorted; ;s .05 ) With charting constant (h, = 2.4721, L, =
2.9700 and ¢y = 3.3567) and UCL = 1,
e The Shewhart chart with charting constant (K = 3.0892) and control limits
(LCL = 7.8917 and UCL = 8.5098);
e The CUSUM chart with sensitivity parameter (k = 1.25), control limit coefficient
(h = 2.1053) and (UCL = 0.2105);
e The EWMA chart with sensitivity parameter (4 = 0.05) and control limit
coefficient (L = 2.6150) with varying limits.
The implementation of these charts on pH data of Table 3.10 is portrayed in the form of
Figure 3.5 (Assorted , Shewhart, CUSUM and EWMA). The IC region contains first 50
number of days and OOC region starting from 51% to 60" number of days as shown in

graphical representation. The OOC points are indicated by red color in all figures. The

detection summary of these charts is given as:

Table 3.11: Detection Summary

Control Chart OOC detections | False Alarms
The Proposed Assorted 6 0
Shewhart 0 0
CUSUM 4 0
EWMA 7 4
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It is evident from the detection ability of the charts that Shewhart appeared as the least
efficient chart, followed by CUSUM and EWMA. It is to be noted that EWMA chart has
detected seven but at the cost of high false alarms as may be seen in the summary Table
3.11. The proposed chart (Assorted; 3505 ) perfumed the best in detecting OOC points.
The reason for this superiority order relates to the amount of shift in the real process. As
the aim of proposed chart is to detect small, medium and large shift in the process so it

takes edge over other charts in detecting OOC scenarios.

For these OOC signals, we investigated the process in search of the assignable cause(s)
and found that water suction and filtration pumps were not functioning properly. The
variations in the pH value of water affect the reproduction system of mysids. Usually, the
daily production of juveniles in each water tank should be between 80 to 90. But, due to

the high value of pH, the production rate was decreased by almost 15%.
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Figure 3.5: Graphical representation of Assorted, Shewhart, CUSUM and EWMA chart on pH data

3.4.3. Application through data perturbation on pH data.

There may be one or more sources of assignable causes (such as water suction and filtration
pumps not functioning properly, cleaning of the water tanks and salinity of the water) to
generate OOC points in the process. These causes may lead to small, medium and/or large
amounts of shifts depending on their intensity. In order to cover different potential causes
of OOC scenarios, we have distorted the given data-set through data perturbation
(cf. Liu and Kargupta (2006) and Kargupta et al. (2005)). We have perturbed the data
using small, moderate and large amounts of distortions and applied the proposed assorted

and other classical charts of this study. The graphical and tabular representation of the
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resulting charts and their detection abilities are presented in Figures 3.6 - 3.8 and Table
3.12. From these results, it is obvious that the performance of the proposed Assorted chart
is better than the competing Shewhart, CUSUM and EWMA control charts for to detect all

type of shifts (0.750, 1.40 and 30) as may be seen form Table 3.12 and Figures 3.6-3.8.

Table 3.12: Detection summary through data perturbation

Control Chart OOC detections | False Alarms Shift
The Proposed Assorted 8 0 0.75¢
Shewhart 0 0 0.750
CUSUM 0 0 0.750
EWMA 7 3 0.750
The Proposed Assorted 15 0 140
Shewhart 0 0 140
CUSUM 3 0 l4o
EWMA 15 3 l4o
The Proposed Assorted 15 0 30
Shewhart 5 0 30
CUSUM 15 0 3o
EWMA 15 3 3o
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Figure 3.6: Graphical comparison at shift=0.75¢
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Figure 3.8: Graphical comparison at shift=3¢

3.5.  Summary and Concluding Remarks

The classical Shewhart control chart is a memoryless control chart that is used to detect
large shift while CUSUM and EWMA are memory charts that are used to detect a moderate
and small shift in process parameters. We have proposed an assorted approach to detect a
small, medium and large shift in a single control chart. Using the performance measures
ARL,SDRL,EQL,SEQL,RARL and PCI we have evaluated the performance of the
proposed chart. We have compared the proposed assorted chart with some existing
counterparts including the traditional charts (Shewhart, CUSUM and EWMA) and some

modified charts (CSE and MEC).

A detailed performance analysis advocated that the proposed chart is sensitive for all types
of shifts i.e. small, moderate and large. The sensitivity of the proposed assorted chart
depends on k and A. The ability of the proposed chart increases with decrease in A at a
specific choice of k and it is true for all values of k and vice versa. We have noticed that

the performance of proposed Assorted,, ; control chart at k = 1.25 and 4 = 0.05 is best
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in terms of different run length properties. The Assorted chart with k = 1.25and A = 0.05
is considered as benchmark chart based on minimum EQL as compared to others competing
charts. The RARL and for PCI of contending charts are greater than 1 which shows that the
performance of proposed chart is best among Shewhart, CUSUM, EWMA, CSE and MEC
charts. Further, SEQL is calculated to investigate the performance of the aforementioned
charts at different amounts of shifts and it also supports the proposed chart. A real
application of the proposed and other competing charts is presented in ecotoxicology lab
to monitor pH value. The said application also supports the findings in favor of our

proposed assorted technique to monitor location parameter.
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Chapter 4
AN ASSORTED CONTROL CHART FOR MONITORING

DISPERSION

The monitoring of process variability is very important to get optimal output from any
process. In Statistical Process Control toolkit, control charts are one of the important tools
to monitor process variability. Mostly, three types of control charts are applied to observe
the disturbances in the process variations. Large turbulences are detected efficiently by
Shewhart R and Shewhart S control charts whereas, for small and medium instabilities,
cumulative sum and exponentially weighted moving average control charts with some
transformation are used. This chapter proposes an assorted approach to monitor small,
medium and large disturbances in process variability. The said objective is met by using
the well-known max approach. For the evaluation of the proposed assorted control chart,
we have used various measures like average run length, sequential extra quadratic loss,
extra quadratic loss, sequential relative average run length and relative average run length.
A comparison of the assorted control chart is presented with some typical charts including
the Shewhart R, Shewhart S, the EWMA of [nS?, the CUSUM of [nS?, the CUSUM R,

the y CUSUM, the P, CUSUM, and the CUSUM S charts.

4.1. Introduction

The quality of a process is determined by different parameters such as location, shape, and
dispersion. The dispersion parameter is of prime importance as the stability of other
parameters (like location) depends on dispersion. Generally, dispersion charts are used for
two main reasons (i) if the variation in process increases, there is a possibility that more
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defective units will be produced (ii) if the variation in the process decreases than more units
will be near the target value and hence process capability will also increase. These changes
can be quickly detected by dispersion charts. These charts are also important while
interpreting the results of a location chart because they assume that standard deviation

remains constant.

The Shewhart range R chart and Shewhart S chart are used to monitor process variability
of small subgroup sizes. Page (1963) introduced CUSUM chart to monitor process
variability among different subgroups. Many authors have evaluated the performance of
CUSUM and EWMA control charts that were based on the subgroup standard deviation
(cf. Truph and Ncube (1987) and Ng and Case (1989)). One sided EWMA control chart
based on the natural log was suggested by Crowder and Hamilton (1992) to monitor
subgroup variance. Chang and Gen (1995) have proposed CUSUM chart based on the
logarithmic transformation of the subgroup variance. Amin et al. (1999) proposed a
MaxMin EWMA chart to monitor process variability. Acosta-Mejia et al. (1999) have
discussed and compared several control charts to monitor variation in the process.
Castagliola (2005) proposed a new two sided S? chart based on logarithmic transformation
for monitoring variation in the process. A new CUSUM-S2 to monitor the process variation

was proposed by Castagliola (2009).

As we have seen the aforementioned assorted approach is very effective to monitor process
location, the same may be true for other parameters. Now with the same spirit of assorted
structure, we propose a new one-sided control chart called “S? — Assorted, ;” control
chart to monitor the process variability. The aim of this chapter is to enhance the detection

ability of simple linear profile parameters by a newly assorted control chart based on Max
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statistics. The outlined of rest of the chapter is as follows: in sub section 4.1.1- 4.1.8, a
brief discussion on existing methods to monitor process dispersion. In section 4.2, proposed
structure of one sided S? Assorted control chart. The performance and comparative
analysis of proposed with the existing control charting strategies are discussed in Section
4.3. An implementation of proposed and competing charts on a real-life application is

discussed in Section4.4. The concluding remarks are given in the Section 4.5.

4.1.1. The Shewhart R Chart

The Shewhart R chart (cf. Montgomery (2012)) is used to control the process variability
for small sample size group (sample size less than or equal to 10). Let Ry, R,, ... ... , R, be

the ranges of m samples.
Since R = Wo , the standard deviation of R is defined as
O-R = d30',

where d; is the standard deviation of W. The 3-sgima control limit of R chart is

_ R
UCL =R +3ds —
2

4.1.2. The Shewhart S Chart

The Shewhart S chart (cf. Montgomery (2012)) is used to monitor the standard deviation
(o) in the process. Assume that at disposition there are m prelimnary samples each of size
n, and let s; be the standard deviation of ith sample. Then the average of m standard

deviation is defined as
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m
1
S = —Z S
m . .
1=l

The upper control limit of Shewhart S chart is

_ 5
UCL =5+ 3;41 — €42,

4.1.3. The EWMA InS? control chart

For the monitoring of process variance, Crowder and Hamilton (1992) were apply the

EWMA scheme to the normal approximation of natural logarithmic (;—22) where g,? is the
0

IC process variance. To enhance the efficiency for monitoring the process variability, they
readjust the EWMA statistic to O if it is less than 0. The readjustment of smaller EWMA
statistics to 0 definitely may improve the EWMA statistic inertia problem and increase its

detection ability. They used the following EWMA statistic
EWMA; = max {(1 — DEWMA;_; + An(S?),In(dd)}

where EWMA, = In( 6?), 1 is the smoothing constant, ¢ = 1 and S? is the sample

variance. The upper control limit of EWMA statistic is

UCL = LO—EWMA

where L is the charting constant and oz 4 = \/ A [ 2 2 4 16 ]

2-2ln-1 " -2 ' 3(n=1)3 15(n-1)5
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4.1.4. The CUSUM InS? control chart

Chang and Gan (1995) proposed one sided CUSUM [nS? control chart to monitor process

variance. The CUSUM statistic used in this study is given by
C; = max{0,InS? —k+ Ci_,},i =12, ...

where C, =u for 0 < u < hand S? is the sample variance. The out-of-control signal is

issues at the first i C; = h.

4.1.5. The y — CUSUM control chart

Wilson and Hilferty (1931) was proposed a CUSUM control chart based on a

1
L
transformation for the monitoring of process variability. They proved that (%")3 is

approximately follow normal distribution with mean 1 — 2/(9n) and variance 2/(9n).

Further, if the observations are independent and identical distributed N (u, o) then

1
s2\3 2
(é) _(1_ 9(n—1))

Xi = > )

9(n—-1)

will follow an approximately standard normal distribution when o = ¢,. The CUSUM
statistic used in this study is

Ct = max{0,y; — k + C*}
where C§ = 0 and k is the reference value. The control limit of this statistic greater than

h. For a specific (i.e. ARL, = 200) the value of h = 4.28 and k = 0.38.
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4.1.6. The P, CUSUM control chart

The same approximation which was applied in y — CUSUM, also used for P, CUSUM

control chart. The following statistic is used in this study

Cit =max{0,y; — k + Ct ;3

The reference value for P, CUSUM can be obtained as

k = %[{(G§+/G()2)1/3 - 1} {1 - 9(n2—1)}/\/$]

where C; = 0 and control limit of this statistic is greater than h. For a specific (i.e. ARL, =

200) the value of h = 4.28 and k = 0.38.

4.1.7. The CUSUM R control chart

Page (1963) proposed CUSUM chart on subgroup range to monitor the process variability.

The plotting statistic used in this study is S, = }j_,(x; — k). The quantity k is called

reference value and h is the control limit.

4.1.8. The CUSUM S control chart

Tuprah and Ncube (1987) proposed CUSUM S control chart to monitor the process

dispersion. The statistic used in this study is given below

Ci = max{O, Si —k+ Ci—l}v [ = 1,2,
where S; is the sample standard deviation, C, = 0 and k is the reference value. Immediate

corrective action is taken if C; > h, where h is the decision interval.
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4.2.  The design structure of one-sided §? — Assorted, ; chart

In this segment, we proposed an assorted approach to detect large, medium and small
variations in the process in a single control chart namely one-sided S? — Assortedy;
control chart. The proposed S? — Assorted,, ; is designed for the upward detection in the
process  variability. Assume that X is normally distributed random
variable X;;~N (1o, (6100)), i = 1,2,......andj =1,2,...,n

6, = 1 corresponds to an IC situation.

&, # 1 means that some variations exist in the process.

Mathematically, shift can be defined as

where g, is IC standard deviation.
o0, i1s OOC standard deviation.
The sample variance is defined as

t n-1 !

We define the following statistic that may be used for the detection of the large, medium

and small amount of shift in the process variance.

(n—-1)s2

Vi=¢t|H{ > n—1}] ~N (1)

where H is CDF of chi-square distribution and n denotes the sample size (n=5 is used in
this study).
Let U be the statistic of the §> — Assorted, ; chart to detect large shift in the process

variability. It is defined as:
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V;

Uy = c. (4.2)
where c is the control limit coefficient for Shewhart control chart.
To detect the moderate shift in the process variability the following statistic is used
U3; = max[0,V; — k+ U3;_4] /h. , (4.2)

where h, is the control limit coefficient for CUSUM control chart.

Similarly, the following statistic is used to detect the small shift in the process variance

Usi = @Vi+ (1= DU ) /1. [l - a- 27 (43)
where L, is the control limit coefficient for EWMA. The value sensitivity parameter A is

lies between 0 and 1.

The plotting statistic of proposed chart is defined as:

U = max(Uy;, Uy;, Us) (4.4)
In Eq. (4.4) U is the maximum value of three statistics as discussed above and plotted with
respect to time. Because U is the function of standardized max statistics, therefore, it will

always have positive value. The upper control limit of U is defined as:

UCL=U> 1. (4.5)

The sensitivity of the S? — Assorted control chart depends on the selection of (k,1).
Different combinations of sensitivity parameters (k,A) are used in the proposed
Assortedy ; chart. To detect large, medium and small shift in process location three types
of charting constants are incorporated in this study. Table 4.1 portrays the ranges of

sensitivity parameters for different categories of shifts.
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Table 4.1: Ranges of sensitivity parameters for different categories of shift for $2 — Assorted chart

Sensitivity Category of shift

Parameter Small Medium Large

A 0.05t00.15 0.16t00.25 04to1l

k 0.1t00.25 0.26t00.5 More than 0.5

When the process is in IC state (i.e. §; = 1) we fix ARL, at a specific level such as 200. In
order to fix the ARL, of the proposed S? — Assorted, , control chart we need to set the
control limit coefficients (h., L, ,cs) used with reference to Eqs. 4.1-4.3. For the said
purpose, we have used several combinations of sensitivity parameters (k, A) and worked
out the triplets (h, L, , c5) for our proposed control chart. The resulting control charting
constants/coefficients (h., L, , cs) are provided in Table 4.2 at some useful combination of
(k, A) for ARL,=200. One may work out the same for other choices of ARL,. The charting
constants highlighted in bold in Table 4.2 are selected as an optimum choice because it has
lowest EQL (i.e. 13.21) (cf. Table 4.3). The graphical representation of ARL, = 200 with

different combination of (k, 1) is portrayed in Figure 4.1.
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Table 4.2: Charting Constant at ARL, = 200

Case k A ARLq = 200
h. L Cs
1 0.25 11.3000 2.7000 2.8230
2 0.1 0.40 11.3000 2.7900 2.8300
3 0.55 11.3000 2.8000 2.8300
4 0.25 6.9500 2.7000 2.8300
5 0.25 0.40 6.9500 2.7900 2.8300
6 0.55 6.9500 2.8020 2.8300
7 0.05 42490 2.2150 2.8350
8 0.5 0.4 4.2470 2.7900 2.8300
9 0.55 42100 2.7950 2.8200
10 0.05 2.2298 2.2100 2.8295
11 1 0.15 2.2260 2.5700 2.8100
12 0.55 2.2160 2.7400 2.7600
13 0.05 1.3950 2.5200 2.8000
14 1.5 0.15 1.3900 2.5400 2.8000
15 0.25 1.3900 2.6000 2.8100
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Table 4.3: ARL and EQL of §2 — Assorted chart for Case 1 to Case 15.

Shift 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1.05 | 74.01 77.01 77.13 79.35 81.89 80.29 74.06 91.45 90.83 7431 81.80 98.48 76.28 84.04 87.44
1.10 | 39.77 40.54 40.74 40.63 41.21 41.24 38.32 47.76 47.02 37.88  41.96 52.81 38.18 41.59 45.39
1.15 | 25.22 25.88 26.58 24.65 24.72 25.44 23.80 27.75 27.45 23.15 25.32 32.01 23.90 25.16 26.92
1.20 | 17.59 18.36 19.01 17.06 17.49 17.66 16.61 18.31 18.09 16.27 17.33 21.38 16.70 16.92 17.80
1.25 | 13.25 13.74 14.22 12.70 12.93 13.06 12.49 13.24 13.44 12.49 12.39 14.82 12.55 12.25 12.88
1.30 | 10.36 10.76 11.34 9.85 10.21 10.38 9.99 10.08 10.27 9.74 9.54 11.03 10.04 9.77 10.07
135 831 8.72 9.30 8.14 8.22 8.51 8.21 8.15 8.03 8.15 7.82 8.68 8.35 7.83 8.03
1.40 6.93 7.28 7.67 6.81 6.82 7.08 6.98 6.69 6.72 6.89 6.55 6.99 7.04 6.59 6.58
1.45 5.88 6.18 6.42 5.80 5.89 6.06 5.94 5.79 5.83 5.85 5.67 5.80 6.06 5.66 5.59
1.50 5.13 5.30 5.49 5.10 5.13 5.27 5.26 5.02 4.94 5.09 4.94 5.09 5.34 4.98 4.89
1.55 4.51 4.69 4.79 4.49 4.50 4.65 4.63 4.43 4.42 4.58 4.36 4.42 4.67 4.36 4.32
1.60 4.01 4.08 4.21 4.06 4.05 4.13 4.17 3.97 3.96 4.04 3.92 3.96 4.22 4.01 3.88
1.65 3.69 3.69 3.84 3.63 3.66 3.72 3.81 3.62 3.53 3.64 3.56 3.52 3.76 3.61 3.53
1.70 3.36 3.36 3.43 3.35 331 3.36 3.49 331 3.26 3.31 3.24 3.20 3.44 331 3.22
1.75 3.06 3.10 3.15 3.08 3.04 3.08 3.17 3.00 3.00 3.06 2.97 2.94 3.14 3.05 2.97
1.80 2.87 2.87 2.88 2.88 2.80 2.87 2.96 2.84 2.79 2.84 2.73 2.73 2.98 2.81 2.79
1.85 2.69 2.68 2.63 2.67 2.62 2.65 2.78 2.64 2.61 2.63 2.58 2.54 2.73 2.61 2.57
1.90 2.50 2.45 2.56 2.52 2.50 2.50 2.58 2.46 2.46 2.48 241 2.37 2.54 2.48 2.44
1.95 2.40 2.34 237 2.38 2.33 2.34 2.47 2.33 2.29 2.32 2.32 2.24 2.40 232 2.28
2.00 2.24 2.22 2.27 2.23 2.18 221 231 2.19 221 2.22 2.19 2.12 2.26 2.20 2.17
2.05 2.12 2.14 211 213 2.10 211 2.19 2.12 2.11 211 2.10 2.03 2.14 212 2.08
2.10 2.02 2.02 2.01 2.04 2.01 2.02 2.06 1.99 2.00 1.99 2.01 1.94 2.06 2.00 1.99
2.15 1.94 1.92 1.94 1.96 1.94 1.94 2.00 1.92 1.91 1.92 1.91 1.86 1.95 1.94 191
2.30 1.76 1.72 1.74 1.75 1.72 1.74 1.79 173 171 1.73 1.69 1.69 1.76 1.74 171
2.35 1.71 1.68 1.67 1.69 1.67 1.67 1.71 1.67 1.66 1.65 1.66 1.63 1.70 1.67 1.67
2.40 1.64 1.62 1.64 1.62 1.63 1.63 1.66 1.6l 1.61 1.61 1.62 1.58 1.62 1.62 1.62
245 1.59 1.59 1.58 1.58 1.57 1.58 1.63 1.57 1.57 1.58 1.58 1.54 1.61 1.59 1.57
2.50 1.55 1.53 1.54 1.55 1.53 1.53 1.58 1.54 1.54 1.53 1.51 151 1.55 1.53 1.53
2.55 1.52 1.50 1.51 1.50 1.50 1.51 1.54 1.50 1.49 1.50 1.49 1.46 1.52 1.48 1.51
2.60 1.48 1.48 1.47 1.49 1.47 1.48 1.51 1.47 1.48 1.47 1.46 1.45 1.47 1.48 1.46
2.70 1.42 1.41 1.41 1.44 1.41 1.42 1.44 1.41 1.40 1.40 1.41 1.39 1.43 1.42 1.39
2.75 1.40 1.38 1.39 1.39 1.38 1.38 1.42 1.39 1.38 1.38 1.38 1.36 1.38 1.39 1.38
2.80 1.36 1.37 1.37 1.37 1.36 1.36 1.38 1.36 1.36 1.37 1.35 1.34 1.36 1.36 1.37
2.85 1.36 1.35 1.34 1.35 1.35 1.34 1.37 1.34 1.34 1.34 133 132 133 133 1.34
2.90 1.32 132 1.32 1.32 1.32 1.33 1.33 1.33 131 1.32 1.32 1.30 1.31 1.32 1.30
2.95 1.30 1.30 1.29 131 1.30 1.30 133 1.30 1.30 1.30 1.30 1.29 1.30 1.30 1.30
3.00 1.30 1.29 1.29 1.30 1.29 1.29 1.30 1.28 1.29 1.27 1.28 1.27 1.29 1.27 1.29

EQL 1352 13.72 13.93 13.52 13.57 13.69 13.52 14.01 13.93 13.21 13.41 14.49 13.47 13.48 13.71
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Figure 4.1: ARL comparison of §2 — Assorted ; ; Chart for: (a) varying values of k and fixed 1 at ARL, =
200; (b) varying values of 4 and fixed k at ARL, = 200; (c) varying values of 4 and k at ARL, = 200; (d)
varying values of k and 4 at ARLy, = 200;

4.3. Performance evaluations and comparisons

In this section, performance evaluations and comparisons of the proposed
S? — Assorted,,; chart and other competing charts are discussed. The competing charts
include the Shewhart R, and Shewhart S,the EWMA of InS?, the CUSUM of InS?,
the CUSUM R, the y CUSUM, the P, CUSUM, and the CUSUM S charts. We have used
different performance measure based on run length including ARL, EQL, SEQL, RARL, and

SRARL. In order to evaluate these measures, we have used Monte Carlo simulations (for
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ARL) and numerical integration for other measures (EQL,SEQL,and RARL ). The
computational algorithm for these measures is given as: (i) Generation of random sample
from normal distribution with sample size (i.e. n = 5); (ii) computation of the sample
statistics (i.e. sample variance and then V;) ; (iii) set the control limits using the description
given in Section 4.2; (iv) using steps (i)—(iii), implement the procedural steps of ARL
depending on the choices of A and k (cf. Table 4.3); (v) based on the results of step (iv) for
ARL as function of §;: integrate the ARL values over the entire § range by using an
appropriate numerical integration technique (like Simpson or Trapezoidal) (this results into
EQL value); (vi) repeat steps (iv) and (v) for all the charts; (vii) based on the results of step
(vi), take the ratio of the ARL of a particular chart by the ARL of the benchmark chart (the
usual one in this study), divide with the range of §; values and then integrate the output
over the entire §; range using an appropriate numerical integration technique (like Simpson

or Trapezoidal) (this results into RARL values).

4.3.1. Performance analysis of §> — Assorted, ; control chart

The performance of proposed S? — Assorted, , control chart is evaluated in terms of ARL
and EQL for varying combination of k, A and &;. The resulting outcomes are presented in
Tables 4.3 at ARL,=200. In addition to the tabular results, we have produced some useful
graphical displays based on ARLs and are provided in Figure 4.1 The results advocate the

following:

e The proposed chart is sensitive for all types of shifts i.e. small, moderate and large

(cf. Table 4.3).
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e The sensitivity of the proposed chart increases with a decrease in A at a specific
choice of k and it is true for all values of k.

e The sensitivity of the proposed chart increases with a decrease in k at a specific
choice of A and it is true for all values of A (cf. Table 4.3).

e The case 10 is the optimal choice because it has minimum ARL (cf. Figure 4.1 (d))
and EQL (i.e.13.21). The charting constants of this case are (h, = 2.2298, L, =
2.2100,c, = 2.8295) with sensitivity parameter k = 1.00 and A=0.05 at
ARLy=200.

e Four different types of charts are portrayed in Graph (a) shows the comparison of
ARL values at ARL, = 200 with fixed value A=0.40 and varying k for different
amounts of shifts ranging from 1.05 to 1.5. Graph (b) shows the comparison of
ARL values at ARL, = 200 with fixed value k=1.00 and varying A for different
amounts of shifts ranging from 1.05 to 1.5. In Graph (c) and (d) shows that varying
k and A are used to detect small and moderate amount of shift and vice versa. The

results depicted that the S? — Assorted; g,0.05 has minimum ARL.

4.3.2. Comparative analysis

In this section, performance evaluations and comparisons of the S? — Assorted ; and
some other competing charts are discussed. The competing charts include the Shewhart R,
Shewhart S, the EWMA of InS?, the CUSUM of InS?, the CUSUM R, the y CUSUM, the
P, CUSUM, and the CUSUM S charts. We have used different performance measures

based on run length including ARL,SEQL, EQL, RARL and SRARL. In order to evaluate
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these measures, we have covered different OOC situations by considering varying values

of shift (6,) given in Table 4.4

e The ARLs comparison of the proposed S* — Assorted,, ; chart with different
competing charting charts is described in Figure 4.2.

e The S?— Assorted,,; chart with k=1.00 and 1= 0.05 is considered as
benchmark chart based on minimum EQL result (i.e. 25.56). The EQLs of other
competing charts are 34.65, 32.96, 28.40, 28.32, 28.14, 27.34, 27.42 and 27.33.

e Because S? — Assorted is conceived as a benchmark chart so it RARL is equal to
1. All contending charts have RARLs (1.42, 1.32, 1.21, 1.21, 1.20, 1.13,1.14 and
1.16) greater than 1, which shows the superiority of the proposed charts.

e As we have seen that proposed chart has lowest EQL. To check the sensitivity of
the % — Assorted, o o5 chart and competing charts on each amount of shift. We
should determine Sequential Extra Quadratic Loss (SEQL). The results in Table 4.4
and in Figure 4.3 depicts that the performance of proposed chart at each amount of
shift is better than all competing charts.

e The results advocate that the detection ability of S? — Assorted, (5 chart based
on ARL,SEQL,EQL,SRARL and RARL is better than competing charts discussed

in this study.
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Table 4.4: Performance comparison based on ARL, EQL, and RARL of §2 — Assorted and others competing
charts

Chart 61
1.10 1.20 1.30 1.40 1.50 2.00

ARL 68.75 30.72 16,55 10.20 6.96 2.40
Shewhart- R SEQL 141.68 102.69 80.50 66.37 56.66 34.65
SRARL 1.40 1.63 1.68 1.66 161 1.42

ARL 65.10 2830 15.10 9.20 6.30 2.40
Shewhart- S SEQL 139.43 99.59 77.44 63.52 54.04 32.96
SRARL 1.36 1.54 1.57 1.54 1.49 1.32

ARL 43.00 18.10 11.00 7.60 6.00 3.20
EWMA InS? SEQL 126.01 82.53 62.46 51.03 4366 28.40
SRARL 1.06 1.09 1.10 111 1.11 1.21

ARL 42.94 18.07 10.75 7.63 5.98 3.18
CUSUM [nS? SEQL 12594 8246 62.34 50.89 43.55 28.32
SRARL 1.07 1.09 1.09 1.10 1.11 1.21

ARL 40.40 1760 10.82 7.81 6.13 3.13
CUSUMR SEQL 12534 81.22 61.42 50.27 43.12 28.14
SRARL 1.03 1.05 1.06 1.08 1.09 1.20

ARL 38.80 16.85 1036 7.50 5.85 3.01
CUSUM S SEQL 123.77 79.69 60.08 49.09 42.06 27.33
SRARL 1.01 1.02 1.03 1.04 1.05 1.16

ARL 41.04 17.17 10.23 7.26 5.66 2.90
x CUSUM SEQL 125.17 81.18 61.12 49.78 4252 27.34
SRARL 1.04 1.06 1.05 1.05 1.06 1.13

ARL 41.04 17.15 10.21 7.24 5.65 2.98
P, CUSUM SEQL 12537 81.27 61.17 49.81 4254 27.42
SRARL 1.04 1.06 1.05 1.05 1.06 1.14

ARL 37.87 16.27 9.74 6.89 5.09 2.21
S2 — Assorted SEQL 12291 78.77 59.16 48.11 40.99 25.56
SRARL 1 1 1 1 1 1
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4.4. Application: Monitoring the Flow Width Measurements

In this section, an application of our proposed chart to monitor the flow width
measurements (in microns) for the Hard-Bake Process is illustrated. For the IC process,

25 samples, each of size five is taken. (cf. Montgomery (2012)).
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4.4.1. Application of Proposed and other charts

We have constructed the following control charts of Hard-Bake measurements process data
(cf. Montgomery (2012)) with their respective settings (such that ARL, = 200) as listed

below:

e The proposed S? Assorted, o5 chart with charting constant (h, = 2.2298, L, =
2.2100 and ¢, = 2.8295) and UCL = 1,

e The S? Shewhart chart with charting constant (K = 3.84) and upper control limits
(UCL = 0.07277 );

e The S?2CUSUM chart with sensitivity parameter (k = 1.0), control limit
coefficient (h = 1.88) and (UCL = 1.88);

e The S2EWMA chart with sensitivity parameter (1 = 0.05) and control limit
coefficient (L = 1.81) and (UCL = 0.2898);.

The graphical implementation of these charts on Hard-Break measurements data is

portrayed in Figure 4.4. The IC region contains first 25 and we have seen that neither a

single OOC point nor a false alarm exist.
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It is evident from the detection ability of the proposed S?Assorted, S? Shewhart, S?

Table 4.5: Detection Summary

Control Chart OOC detections False Alarms
S%Assorted 0 0
S%Shewhart 0 0
S2CUSUM 0 0

SZEWMA 0 0

CUSUM and S2 EWMA charts have equal detection ability when process is IC.
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Figure 4.4: Graphical representation of $2Assorted, §? Shewhart, $* CUSUM and §? EWMA charts
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4.4.2. Application through data perturbation

The data perturbation technique is used for monitoring the future production of the control
charts. It will use after established a set of reliable control limits. From Hard-Bake
measurement process 25 new sample were collected and plotted immediately after IC
region. We have perturbed the data using small (1.10), moderate (1.50), and large (20).
amounts of distortions and applied the proposed assorted and other charts of this study.
The graphical and tabular representation of the resulting charts and their detection abilities
are presented in Figures 4.5 - 4.7 and Table 4.6. Form these results, it is obvious that the
performance of the proposed S2Assorted chart is better than the competing S? Shewhart
and 2 CUSUM charts while S? EWMA detect more OOC points because it has 2 = 0.05
which is targeted small amount of shift (1.10). At medium amount of shift (1.50) the
detection ability of S2Assorted chart is better than its competing charts. At large shift the
proposed S2Assorted chart detect OOC point on first sample while EWMA detect first
OOC point on third sample. From graphical and tabular results, we have seen that our

proposed S2Assorted chart performed well in all types of shifts.
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Table 4.6: Detection summary through data perturbation

Control Chart OOC detections | False Alarms Shift
S?%Assorted 1 0 110
S%Shewhart 0 0 110
S2CUSUM 0 0 llo

S2EWMA ) 0 llo
S2Assorted 19 0 1.50
S2Shewhart 2 0 1.50
S2CUSUM 17 0 150
S2EWMA 19 0 150
S%Assorted 24 0 20
S%Shewhart 13 0 20
S2CUSUM 25 0 20
S2EWMA 22 0 20
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4.5. Summary and Concluding Remarks

The Shewhart R and Shewhart S are the basic control charts used to detect large shift while
CUSUM [nS? and EWMA [nS? charts are used to detect moderate and small shift in
process variation. We have proposed an assorted approach (S? — Assorted, ;) to detect
small, medium and large variability in the process in a single control chart. We have
evaluated the performance of the proposed S? — Assorted, ; chart by using the well-
known measures such as ARL, EQL,SEQL, and RARL. We have compared the proposed
assorted chart with some existing counterparts including the Shewhart R, Shewhart S, the
EWMA of [nS?, the CUSUM of InS?, the CUSUM R, the y CUSUM, the P, CUSUM,

and the CUSUM S charts.

A detailed performance analysis advocated that the proposed S? — Assorted, ; chart is

sensitive for all types of shifts i.e. small, moderate and large. The sensitivity of the
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proposed S? — Assorted, ; chart depends on k and A. The ability of the proposed chart
increases with decrease in A at a specific choice of k and it is true for all values of k and
vice versa. We have noticed that the performance of proposed $% — Assorted,, ; control
chart at k = 1.0 and A = 0.05 is best in terms of different run length properties. The
S? — Assorted,, ; chart with k = 1.0 and A = 0.05 is considered as benchmark chart
based on minimum EQL as compared to others competing charts. The RARL of contending
charts are greater than for 1 which shows that the performance of proposed chart is best
among the Shewhart R, Shewhart S, the EWMA of [nS?, the CUSUM of [nS?, the
CUSUM R, the y CUSUM, the P, CUSUM, and the CUSUM S charts. Further, SEQL is
calculated to investigate the performance of the aforementioned charts at different amounts

of shifts and it also supports the proposed chart.
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Chapter 5
AN ASSORTED APPROACH FOR MONITORING SIMPLE

LINEAR PROFILES

In manufacturing and nonmanufacturing processes, there exist a relationship between
quality and quality characteristics of a product and process. This association is known as a
profile. The nature of profile depends on the variable of interest which may be linear or
nonlinear. So far, a lot of studies have been done to monitor linear profile parameters by
different researchers. The well-known study for monitoring the linear profile parameters
including intercept, slope and error variance are multivariate T2, Shewhart_3, EWMA_3,
CUSUM_3 and EWMAV/R charts. This chapter proposes a new assorted control chart to
monitor linear profile parameters. The performance and comparison of proposed chart with
existing approaches are evaluated using some useful performance measures such as

ARL,RARL,SRARL,EQL and SEQL.

5.1. Introduction

In the modern era, new technology is systematically emerging all around us particularly in
the field of consumer behavior. Buyers are becoming more technology smart with the
passage of time. There is competition among manufacturers to fulfill the demands of their
loyal customers. On the other hand, customers want high-quality product with cheapest
price. It is an uphill task for organizations to retain customers and deliver according to their
wish. There is an inverse relationship between quality of a product and variations in the

product.
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In SPC, control charts play a significant role to monitor the variable of interest in the
process. Sometimes, the nature of a process is described in a connection between a
dependent variable and at least one independent variable, which is alluded to as a profile.
Several examples of linear profiles are discussed by different researchers such as Kang and
Albin (2000), Woodall et al. (2004), Mahmood and Woodall (2004), Wang and Tsung
(2005), Zou et al. (2007) and Riaz et al. (2017). Different strategies are produced to monitor
simple linear profiles in both Phases | and I1. In Phase I, one assesses the process stability
and estimates its parameters on the basis of historical data. However, the purpose of Phase

I examination is to identify disturbance in the process parameters at the earliest.

The aim of this chapter is to enhance the detection ability of simple linear profile
parameters by a newly assorted control chart based on Max statistics. The outline of rest
of the chapter is as follows: in section 5.2, a brief discussion on existing methods to monitor
simple linear profile parameters is given; in section 5.3, proposed structure of assorted
control chart is provided; the performance and comparative analysis of proposed with the
existing control charting strategies are discussed in section 5.4; the implementation of
Assorted_3 chart is demonstrated in section 5.5 and concluding remarks are given in the

section 5.6.

5.2. Simple linear profile methods

In this chapter, equation (2.1) and (2.2) with its properties are used as original and
transformed model respectively. The detail discussion on simple linear profiles and

different methods to monitor simple linear profile parameters are described in section 2.2.
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5.2.1. The CUSUM 3 chart
Saghaei et al. (2009) proposed three distinct CUSUM control charts to monitor intercept,

slope and error variance separately. The proposed method is known as CUSUM_3. The

three individual statistics are given as

CUSUMj;;, = max[0, by; — (Bo + k;) + CUSUM;};_y)]

For int t:
or mtercep {CUSUM,‘(,-) = max[0, (Bo + k;) — boj + CUSUM;;_yy]

CUSUMSj, = max[0, by; — (B + ks) + CUSUMg;_y)]

For slope: ’

CUSUMz,;, = min[0, MSE; — kg + CUSUMzj_y)]

For error variance: {
where

CUSUM;}y) = CUSUMj ) = CUSUMg ) = CUSUM5q) = CUSUMzqy = CUSUMgq) = 0

k;: intercept reference value, kg: slope reference value and kg: error variance reference

value.

The decision interval for intercept, slope and error variance is same as of classical CUSUM.

5.3.  Structure of Assorted_3 control chart and Computation of ARL

Assume that we have paired observation (X;,Y;;) for the j™ random sample collected with
respect to time. Then the simple linear regression model with intercept (S,) and slope (f;)

(already have discussed in Section 2.2) will have the following original model

Yij = Bo + B1X; + € (55.1)
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where i = 1,2, ...... ,n and ¢;; is random error term that follows normal distribution with

mean (u) zero and variance (o2). The OLS estimates of the linear regression parameters
are described in Section 2.2. Usually, simple linear profile parameters are monitored in
simultaneous structure which requires the assumption of independence between the
parameters. To meet such assumption, coded method is an effective way which requires a
transformation on X; values (i.e. X; = X; — X). The coded form of equation (5.1) is defined

as:

Y = Bo + B1X; + € (55.2)
wherei =1,2, ...... M.
It is noted that Equation (5.2) is referred as transformed model, where intercept of
transformed model is B, = B, + 1 X + BoX and slope of transformed model is estimated
by B, = (B, + fo)X;, where the shifts in the slope (f) of Equation (5.1) are considered
in terms of o. Further, in the same line, one may obtain OLS estimates of transformed

model (by;, b, ;) and their properties.

In the Assorted 3 control chart for monitoring the intercept of transformed model, the

estimate of intercept, by, is used to compute the assorted statistics.

Assorted statistic for intercept: < TZJ“(,) =1 C+2 ’Tz_(z) =1 C—‘Z ,
il P e " . [zﬁ]
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where ¢, , h, and L, are the charting constants for the Shewhart, CUSUM and EWMA

control chart. The statistics of CUSUM are C;E,) and Cj;, where k is the reference value.
1, X
Cl-l(-l) = max 0, bO] - BO - kO’ [; + E] + Cltl(l) )

72

- 1 -
Ci(l) = max 0, _(bOJ — Bo) — ko [; + ] + Ci—l(l) )

Sxx

The EWMA statistic is given below and A is sensitivity parameter
Ziy =Aboj + (A =V Zi_1y

The overall statistic of assorted control chart for intercept is denoted by Ty is given

below

Tqy = max[Typ, T3y, Toay Taa | (5.3)
For monitoring the slope of transformed model, the estimate of slope, by, is used to

compute the assorted statistics.

L + 1 ct _ 1 c
Assorted statistic for slope: | Tz(5) = = — |. Toisy = = ,

c

1 Z;—B,

Ty =1 - :
L |7 feati-a-p)

where Cis) = max IO, bij =B, — ko /S; + Cit1(s)l’
x'x!



- ’ 1 -
Ci(S) = max 0, _(b1] - Bl) — ko E + Ci_l(s)l,

and Zi(S) = Abl] + (1 - A)Zi—l(S)'
The overall statistic of assorted control chart for slope is denoted by T(s is given below
Ty = max|Tygs), Tas) Togs) Tacs) | (5.4)

For monitoring the error variance, the estimate of slope, ¢;;, is used to compute the assorted

statistics.

g

7+ 1 o - =1 ci
. e 20 =3 (5) T = 5(7)
Assorted statistic for error variance: < ¢ ¢ :

( T, & = Cis(ﬂ)

1 Z;—B;

T3y =+
\ be lg |2{1-a-22)

2
where MSE = —0.7882 + 2.1089 X log, (% + 0.6261) is the transformed mean

square error, CUSUM and EWMA statistics are given below
Citpy = max[0, MSE — ko + C* |
Citgy = max[0, —MSE — ko + C_yg)|
Zigy = AMSE + (1 — 1) Z;_1(p)

The overall statistic of assorted control chart for error variance is denoted by T(g is given

below

T(E) = max[Tl(E), T;(E) , TE(E)'T3(E) ] (55)

Hence, the final plotting statistics for assorted control chart is given below

T (overny = max[T(I)' T, Tk ] (5.6)
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In Eq. (5.4) Teoverny is the maximum value of three assorted statistics as discussed above
and plotted with respect to time. Because Ty is the function of standardized max
statistics, therefore, it will always have positive value. The upper control limit of T gy,e,11)

is defined as:

UCL = T(overll) > 1 (55)

The sensitivity of the Assorted_3 control chart depends on the selection of (k,A).
Different combinations of sensitivity parameters (k,A) are used in the proposed
Assorted_3 chart. To detect large, medium and small shift in linear profile parameters
three types of charting constants are incorporated in this study.

Table 3.1 Ranges of sensitivity parameters for different categories of shift portrays the

ranges of sensitivity parameters for different categories of shifts.

Table 5.1: Ranges of sensitivity parameters for different categories of shift

Sensitivity Category of shift

Parameter Small Medium Large

A 0.03t00.2 0.21to05 051tol

k 0.1t00.75 0.76t01.5 morethan1.5

When the linear profile model is in IC state (i.e. ¢ = =& = 0andy = 1) we fix overall
ARL, at specific level such as 200. In order to fix the overall ARL, of the proposed
Assorted_3 control chart we need to determine the control limit coefficients (h., L, , c5)
with reference to Eqgs 5.1-5.4. For the said purpose, we have used several combinations of
sensitivity parameters (k,A) and worked out the triplets (h., L, ,cs) for our proposed
control chart. The resulting control charting constants/coefficients (h., L. , c;) are provided
in Table 5.2 at some useful combination of (k, 1) for overall ARL,=200. The outcomes of

proposed charts are described as:
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The case 15 having sensitivity parameters (i.e. k = 1.25 and A1 = 0.05) with
charting constants (h, = 2.722548,L, = 3.188036,c; = 3.528191) is an
optimal choice because it has minimum EQL (3.340).

The ARL and EQL of all cases are portrayed in Table 5.3.

The sensitivity of the proposed Assorted_3 chart increases with a decrease in A at a
specific choice of k and it is true for all values of k.

The sensitivity of the proposed Assorted 3 chart increases with a decrease in k at

a specific choice of A and it is true for all values of A (cf. Table 5.3).

Table 5.2: Charting constant for ARLy = 200

Case k A h L, Cs
1 0.25 11.57075 3.461273 3.518018
2 0.25 0.38 11.57075 3.495503 3.518018
3 0.55 11.57075 3.511677 3.518018
4 0.25 6.421674 3.414323 3.473969
5 0.5 0.38 6.431839 3.452829 3.476706
6 0.55 6.431839 3.469855 3.476706
7 0.05 4.566855 3.182446 3.523721
8 0.13 4.439271 3.321801 3.472589
9 0.75 0.25 4.370697 3.383178 3.444825
10 0.38 4.370697 3.419843 3.444825
11 0.55 4.380133 3.441441 3.448658
12 0.05 3.446544 3.189418 3.529296
13 1 0.13 3.367723 3.338557 3.487365
14 0.25 3.281446 3.379014 3.440934
15 0.05 2.722548 3.188036 3.528191
16 1.25 0.13 2.65931 3.336629 3.485664
17 0.25 2.594751 3.379852 3.441717
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Table 5.3: ARL and EQL of proposed Assorted_3 chart

Case ARL EQL
0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
1 51.842 18.303 9.394 5560 3.702 2.733 2.147 1.765 1.501 1.310 | 3.861
2 52.326 19.120 10.323  6.182 4.038 2.889 2.222 1.811 1.525 1.328 | 4.060
3 53.236 19.829 11.172 7.053 4.624 3.203 2.373 1.875 1.554 1.341 | 4.350
4 68.363 17.603 8.535 5.237 3.600 2.663 2102 1.732 1.475 1.289 | 3.770
5 69.446 18.053 8.872 5512 3.801 2.797 2175 1.776 1.498 1.308 | 3.900
6 70.259 18.382 9.165 5824 4.055 2984 2291 1831 1532 1.320 | 4.050
7 49.246 15.633 7.533 4517 3.161 2.385 1.891 1.581 1.362 1.212 | 3.360
8 68.679 17.428 8.062 4.867 3.369 2,533 2011 1669 1431 1.258 | 3.610
9 87.020 21.154 8.774 5143 3525 2623 2075 1.709 1.459 1.280 | 3.840
10 91.783 22.193 9.076 5304 3.658 2.717 2.143 1.746 1.481 1.297 | 3.960
11 94.632 22.807 9.323 5.467 3.789 2817 2209 1.796 1510 1.309 | 4.070
12 49.701 15.701 7.532 4523 3.157 2384 1905 1590 1367 1.213 | 3.370
13 70.171 17.706 8.140 4918 3.401 2550 2.023 1.676 1.434 1.263 | 3.640
14 93.492 23.822 9.353 5.241 3.517 2.625 2.071 1.705 1.454 1.279 | 3.930
15 48.717 14.696 7.337 4.511 3.154 2.383 1.905 1.585 1.367 1.215 | 3.340
16 69.939 17.721 8.147 4904 3.394 2545 2022 1677 1434 1.264 | 3.640
17 95.000 24.040 9.447 5.287 3.547 2626 2.072 1710 1458 1.280 | 3.950

5.4. Performance evaluations and comparisons

In this section, the performance of assorted control chart is evaluated and compared with

existing control charts in the literature. An IC linear profile model (i.e.Y;; = 3 + 2X; +

€;;) discussed by Kang and Albin (2000) utilized in this study with fixed sample size

(n=4) and (X; = 2,4,6,8). The performance of proposed chart is compared with

Shewhart_3, T2, CUSUM_3, EWMA/R, EWMA 3 and PM_3. Further, the transformed

model given in Equation (2.2) with By = 13 + 5(80) and B, = (2 + Bo)X; is defined as

Yij = By + B1X{ + €;j. where X;" = —3,—1, 1, 3. To calculate ARL values by Monte Carlo

simulation with 10° iterations have done in R-language. For performance evaluations, we

have considered four types of shifts in different parameters as listed below in Table 5.4.
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Table 5.4: Four types of Shifts introduced in proposed study

Type of
Shifts

Notation

Amounts of Shifts

In intercept
of
transformed
model

By to By + @o

¢ =0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0

In slope of
original
model

Bito By + Bo

B = 0.025,0.05,0.075,0.1,0.125,0.15,0.175,0.2,0.225,0.25

In slope of
transformed
model

Bl to B]_ + do

6 =0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0

In error
variance of
original
model

oto yo

y = 1.2,14,1.6,1.8,2,2.2,2.4,2.6,2.8,3.0

5.4.1. Shift in intercept of transformed model

The OOC ARL (ARL,) values of proposed and its counterpart charts are shown in Table
5.4 for shift in intercept (B, to B, + ¢a). The performance of PM_3 chart is best to detect
small shifts (i.e. ¢=0.2 and ¢=0.4) while the detection ability of proposed chart at moderate
and large shift is most proficient. The minimum ARL, values at different amounts of shifts
in intercept is highlighted in bold numbers. CUSUM _3 has the minimum value (3.10) of
ARL, at ¢=1.0. The aim of this study is to see the overall best detection ability of a chart.
The chart has minimum EQL value is considered as a best chart. So, based on EQL
proposed chart has minimum EQL value (3.11) and shown graphical in Figure 5.1. Hence,
proposed chart is considered as a benchmark chart. Also, the RARL value of proposed chart

is equal to 1. As all other charts have RARL > 1 which shows that the detection ability of

the Assorted_3 chart is superior from all other charts.
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Table 5.5 Performance comparison based on ARL under shift in intercept (B t0 By + @0)

)
0.20 0.40 0.60 080 1.00 120 140 160 1.80 2.00

ARL 15140 77.90 33.80 1550 7.70 430 270 190 150 1.20

Shewhart_3  SEQL 3.03 6.14 820 891 889 857 816 7.78 745 7.19
SRARL 2.05 3.13 3.74 381 364 339 313 290 271 254

ARL 137.70 63.50 28.00 13.20 6.90 4.00 2.60 180 150 1.20

T2 SEQL 2.75 5.29 6.90 749 753 733 7.06 6.78 6.55 6.38
SRARL 1.91 2.75 3.19 324 310 290 271 253 237 224

ARL 7210 2030 820 460 3.10 240 191 160 140 1.30

CUSUM_3 SEQL 1.44 2.25 2.54 264 272 281 292 3.04 319 335
SRARL 1.24 1.34 131 1.25 120 116 114 112 111 1.11

ARL 66.50 17.70 8.40 540 390 3.20 270 230 210 1.90

EWMA/R SEQL 1.33 2.04 2.33 256 278 3.03 330 3.59 390 423
SRARL 1.18 1.23 1.22 120 121 122 124 127 129 132

ARL 59.10 16.20 7.90 510 3.80 3.10 2,60 230 210 1.90

EWMA_3 SEQL 1.18 1.83 2.13 236 259 285 3.13 342 375 4.09
SRARL 1.11 1.13 1.12 112 113 1.15 1.17 120 124 1.27

ARL 30.34 1253 7.36 509 3.86 3.09 258 222 195 1.75

PM_3 SEQL 0.61 1.11 1.51 187 221 253 285 317 348 3.80
SRARL 0.81 0.77 0.83 089 094 100 104 1.09 112 1.15

Chart

ARL 48.70 1468 731 452 316 239 190 158 137 1.21
Assorted_3  SEQL 0.97 1.56 1.87 2,09 228 245 261 277 293 311
SRARL 1.00 1.00 1.00 1.00 100 100 100 100 100 1.00

5.4.2. Shift in slope of original model

The results of OOC ARL (ARL,), SEQL and SRARL are portrayed in Table 5.5 under shift
in slope of original model. The results of mentioned performance measure are quite
interested. From small to moderate shift in slope (i.e. 8 = 0.025 to 0.10) the detection
ability of PM_3 chart is better than all other charts while when shift is increased from 0.10
to onwards up to 0.25 the Assorted_3 charts performed well. The Shewhart_3 and Hoteling

T2 charts have worst detection ability. Again, the Assorted_3 chart has the minimum EQL
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value (see Figure 5.1) so it is considered as a benchmark chart. The RARL values show that
approximately PM_3 and Assorted_3 charts have equal detection ability because both have

same RARL=1

Table 5.6 Performance comparison based on ARL under shift in slope (81 to 81 + B0o)

B

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250

Chart

ARL 178.300 125.000 79.200 46.700 27.900 17.100 10.900 7.100 5.000 3.600
Shewhart_3 SEQL 0.056 0.134 0.216 0.276 0.311 0.327 0.332 0.329 0.322 0.314
SRARL 1.481 2.236 3.010 3.509 3.724 3.753 3.676  3.542 3.387 3.228

ARL 166.000 105.600 60.700 34.500 20.100 12.200 7.800 5.200 3.700 2.700
T2 SEQL 0.052 0.118 0.179 0.220 0.242 0.251 0.252  0.248 0.243 0.236
SRARL 1.414 2.012 2.558 2.861 2.958 2931 2.840 2.721 2.594 2.469

ARL 119.000 43.900 19.800 11.300 7.700 5.800 4700 3.900 3.400 3.000
EWMA/R SEQL 0.037 0.065 0.080 0.088 0.094 0.099 0.104 0.110 0.116 0.123
SRARL 1.414 1.258 1.286 1.272 1.254 1.243 1.240 1.243 1.250 1.260

ARL 101.600 36.500 17.000 10.300 7.200 5.500 4500 3.800 3.300 2.900
EWMA_3 SEQL 0.032 0.055 0.068 0.075 0.082 0.088 0.094 0.100 0.107 0.114
SRARL 1.059 1.103 1.113 1.107 1.104 1.106 1.115 1.128 1.143 1.160

ARL 85.700 37.800 19.000 11.100 7.200 5.000 3.900 3.100 2.600 2.300
CUSUM_3 SEQL 0.027 0.050 0.067 0.078 0.084 0.089 0.093 0.097 0.100 0.104
SRARL 0.972 1.025 1.090 1.116 1.120 1.111 1.100 1.090 1.082 1.078

ARL 48.200 21.430 12.940 9.070 6.830 5.430 4490 3.820 3.300 2.920
PM_3 SEQL 0.015 0.028 0.040 0.050 0.060 0.069 0.078 0.086 0.094 0.102
SRARL 0.765 0.687 0.712 0.757 0.805 0.852 0.895 0.936 0.973 1.007

ARL 90.841 31.112 15.533  9.509 6.552 4.834 3.771  3.055 2552 2.186
Assorted_3 SEQL 0.028 0.048 0.059 0.067 0.074 0.079 0.084 0.088 0.092 0.096

SRARL 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5.4.3. Shift in error variance of original model

Table 5.6 presented the results of ARL,, SEQL and SRARL under shift in error variance.
The detection ability of Assorted 3 chart at small and moderate shift is significantly better
among all other mentioned charts. Although, at large amount of shift the performance of

CUSUM _3 is slightly better than Assorted_3 chart. The minimum ARL, is highlighted in
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bold numbers. Assorted_3 chart has minimum EQL value so it is considered as benchmark
chart. The detection ability of CUSUM_3 chart better than all other charts except

Assorted_3 chart. The graphical presentation of SEQL is portrayed in Figure 5.1.

Table 5.7 Performance comparison based on ARL under shift in error variance (o t0 y o)

Y
1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00
ARL 40.10 13,50 6.50 4.00 2.80 2.20 1.80 1.60 1.50 1.40
Shewhart_3 SEQL 128.87 85.49 64.17 51.83 43.88 38.39 3441 3143 29.19 27.49
SRARL 1.25 1.38 1.40 1.39 1.36 1.32 1.29 1.26 1.24 1.22
ARL 39.60 1490 7.90 5.10 3.80 3.00 2.50 2.20 2.00 1.80
T2 SEQL  128.51 85.81 6545 53.68 46.12 4091 37.13 3432 3220 30.57
SRARL 1.24 141 1.50 1.54 1.56 1.56 1.55 1.54 1.53 1.52
ARL 3430 12.00 6.10 3.90 2.90 2.30 1.90 1.70 1.50 1.40
EWMA/R SEQL 124.70 80.58 60.24 48.71 4139 36.39 3277 30.07 28.02 26.44
SRARL 1.14 1.23 1.26 1.26 1.25 1.25 1.24 1.22 1.21 1.19
ARL 33.50 1270 7.20 5.10 3.90 3.20 2.80 2.50 2.30 2.10
EWMA_3 SEQL 124.12 80.34 60.78 4996 43.18 38.57 3532 3297 3125 29.97
SRARL 1.12 1.23 1.32 1.38 1.44 1.47 1.50 1.52 1.53 1.54
ARL 31.20 9.40 4.80 3.20 2.40 2.00 1.70 1.50 1.40 1.30
CusumM_3 SEQL 12246 77.07 56.49 4520 38.16 33.40 30.02 2751 2563 24.20
SRARL 1.08 1.10 1.08 1.07 1.06 1.05 1.05 1.04 1.03 1.03
ARL 24.81 9.82 5.61 3.90 2.99 242 2.06 1.81 1.65 1.50
PM_3 SEQL 117.86 72.67 54.05 4391 3759 3330 30.22 2795 26.25 2494
SRARL 0.96 0.99 1.04 1.09 1.12 1.14 1.16 1.16 117 1.17
ARL 26.90 8.84 4.70 3.11 2.37 1.95 1.69 1.52 1.39 1.31
Assorted_3  SEQL 119.37 73.69 54.02 43.28 36.58 32.06 28.85 2649 2472 23.38
SRARL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Chart

5.4.4. Shift in slope of transformed model

In this study, the positive amount of shift is used in the slope of transformed model. Kang
and Albin (2000) used the same amount of shift in negative numbers. The OOC ARL values
and other performance measures such as EQL and RARL of proposed and others chart are
given in Table 5.7. Although, the PM_3 has minimum ARL, (10.83) at § = 0.2. But, for
all the amount of shifts the performance of Assorted 3 chart is best. The EQL of proposed

chart is equal to 0.65 which is minimum from all other charts (see Figure 5.1). So, it is
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considered as benchmark chart. The RARL of all other charts is not less than 1 which shows

the inferiority of these charts.

Table 5.8 Shift in slope transformed model

Chart S
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ARL 76.7 337 153 7.5 4.2 2.6 1.8 1.4 1.2
EWMA/R SEQL 153 2.04 221 2.2 212 202 192 183 1.76
SRARL 3.67 443 453 431 4 3.69 341 317 296
ARL 64.29 2529 11.08 542 306 203 149 124 1.10
Shewhart_3  SEQL 128 166 175 172 163 155 147 142 138
SRARL 3.15 368 365 342 315 2389 267 250 234
ARL 522 212 9.6 4.9 2.9 1.9 1.5 1.2 1.1
T? SEQL 1.04 136 145 144 139 133 128 125 1.23
SRARL  2.66 3.07 3.06 2.89 2.68 2.48 2.31 2.17 2.05
ARL 13.1 6.6 4.4 3.3 2.7 2.3 2.1 1.9 1.7
EWMA_3 SEQL 0.26 036 043 0.5 057 063 071 0.79 0.87
SRARL 1.04 1.06 1.07 1.1 1.13 1.17 1.2 1.24 1.27
ARL 12.4 7.9 5.8 4.6 3.8 3.3 2.9 2.6 2.4
CUSUM_3 SEQL 0.26 037 048 0.59 0.7 082 093 1.05 1.17
SRARL 1.01 1.06 1.15 1.25 1.34 1.43 1.51 1.58 1.64
ARL 1083 64 443 3.36 2.7 227 196 173 1.53
PM_3 SEQL 0.22 0.31 0.4 047 054 061 069 076 0.83
SRARL 095 09 099 1.04 109 113 116 1.19 121
ARL 121 6.05 3.76 266 202 163 138 1.21 11
Assorted_3  SEQL 024 033 039 044 048 052 0.56 0.6 0.65
SRARL 1 1 1 1 1 1 1 1 1
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Figure 5.1: SEQL of four types of shifts

5.5. Application of proposed chart on Thermal Management of

Diamond-Copper composites

Thermal management of high-performance electronic devices is the key to their efficient
and continued working. The average size of electronic devices is decreasing day by day
with the decreasing size of the transistor. Each electronic process produces waste heat in
the component. In overall, thermal density (heat produced per unit area) of electronic
devices is increasing with the level of miniaturization. The waste heat produced must be
carried away from the component without disturbing the electronic operation of the

electronic component and the device.

One solution to this problem is to have a high thermal conductivity substrate for the device.

Its high thermal conductivity will enable fast extraction of waste heat from the device. So,
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high thermal conductivity metals like copper, silver or aluminum (for copper ~ 400 W/mK)
seems a good solution for the substrate material. However, the thermal expansion behavior
of the substrate should be comparable to that of the parent device. So that any rise or
decrease in temperature of the system produce comparable thermal expansion, otherwise
large difference in thermal expansion will produce stresses at the interface and may lead to
delamination. The thermal expansion coefficient of electronic devices has low value (for
silicon ~ 5 m/mK) while that of the mentioned metals is very high in comparison (for
copper ~ 16 m/mK). Therefore, metals alone are not compatible with most of the electronic
devices. Hence for the substrate, a high thermal conductivity and a low thermal expansion

are desired.

Ceramic materials are generally very low in their thermal expansion coefficient plus they
have a wide range of thermal conductivity available. For example, diamond has a very high
thermal conductivity of 2000 W/mK with a thermal expansion coefficient of only ~ 2
m/mK. A composite of diamond particles and copper metal may produce a combination of
high thermal conductivity and a thermal expansion coefficient comparable to that of
electronic devices. Mostly, the researchers have adopted powder metallurgy route for

making the diamond-copper composites.

Briefly, in powder metallurgy, powders are consolidated with a combination of mechanical
pressure and high temperature. The treatment of powders at high temperature is called as
sintering. Conventional sintering is the type of powder metallurgy route in which the
powders are mixed, cold compacted at room temperature by pressing the mixed powders
in a die and then sintered at high temperature in the desired environment. The effective

thermal conductivity and thermal expansion coefficients are mainly affected by the volume

114



fraction of diamond and the densification of the composite. Densification is the ratio of
actual density to the theoretical density of the composite sample. In other words,
densification is an inverse measure of the porosity in the composite sample. A densification
closer to 100% means the lower volume of porosity and improved effective thermal

properties.

In this study, diamond-copper composites were produced by conventional sintering route.
The pressure of cold compaction (PCC) is an important parameter which affects the final
properties of the composite. The composite samples were sintered following the same
sintering cycle. The volume fraction of diamond particles was 10% and the sintering was
carried out at 900 °C for 2 hours in a vacuum environment. The only independent variable
was PCC. The composite samples were cold compacted at five different levels of pressure
i.e. 425, 450, 475, 500 and 525 MPa. The dependent variable was the densification of the
diamond-copper composite. The densification was measured 24 times by an apparatus

based on Archimedes’ principle.
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5.5.1. Implementation of Assorted_3 chart
In this study, we have considered the independent variable (PCC) (X = 425,450,475,500
and 525) and densification () as a dependent variable. The implementation of Assorted 3

chart needs the following steps.

Step 1: We have total 120 sample values (24 profiles). The IC regression model based on

24 profiles is

Y =86.899 + 0.00972X + €. (original model)

Step 2: Further, to gain the assumption of independence between parameters, we

transformed the X values in X' by using X' = X — X,

X' =-50,-25,0,25,50

Y =91.518 + 0.00972X" + €. (transformed model)

Step 3: The selected charting constants for proposed chart is given below

k=125,2=0.05

h, = 2.7225
For Assorted_3: L, =3.1880
cs = 3.5281

Step 4: We have plotted our proposed statistics for each parameter (i.e. Intercept, slope
and error variance) against their upper control limit (i.e. UCL =1). The proposed

Assorted_3 chart for IC process (for 24 profiles) is portrayed in Figure 5.2.
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Figure 5.2: The performance of Assorted_3 chart for IC process

Step 5: When a turbulence occurs in the data set due to increase the PCC after 16" sample
profile. The densification of the diamond-copper composite is affected. We can see the
performance of our proposed Assorted 3 chart versus CUSUM 3, EWMA 3 and
Shewhart_3 chart in Figure 5.3-5.6 respectively. The summary of detection ability of these
charts is presented in Table 5.9. The following results reveal that our proposed Assorted 3

chart have better detection ability to monitor simple linear profile parameters.

It is evident from the detection ability of the charts that CUSUM_3 and EWMA _3 appeared
as the least efficient chart. It is to be noted that Shewhart_3 chart has detected one OOC
point but at the cost of four false alarms as may be seen in the summary Table 5.9. The
proposed Assorted_3 chart perfumed the best in detecting OOC points. The reason for this
superiority order relates to the amount of shift in the real process. As the aim of proposed
chart is to detect small, medium and large shift in the process so it takes edge over other

charts in detecting OOC scenarios.
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For these OOC signals, we investigated the process in search of the assignable cause(s)

and found that there are some technical issues (voltage ampere) occur in PCC. Due to this

reason densification is changed and some OOC points detected by our proposed chart.

Table 5.9: Detection Summary

Slope Intercept Error Variance
Control
Charts 00cC False 00cC False 00cC False
Detection Alarms Detection Alarms Detection Alarms
Assorted_3 0 0 5 0 0 0
Shewhart_3 1 4 0 0 0 0
CUsSUM_3 0 0 0 0 0 0
EWMA_3 0 0 0 0 0 0
Assorted_3 Slope Assorted_3 Intercept Assorted_3 Error Variance
A - | \
S YA R dl
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Figure 5.3: The performance of Assorted_3 chart for OOC process
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The performance of Shewhart_3 Chart for OOC process
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The diamond-copper composite is portrayed in Figure 5.7;(a) at 500 PCC while when PCC
is increased we can observe, a blister on the diamond-copper composite in Figure 5.7 (b).
Further, this blister is investigated by scanning electron microscopy (SEM) (cf. Figure 5.7

(cand d))

bl

&

<

Figure 5.7: Impact of increasing PCC

5.6. Conclusions

The monitoring of simple linear profile parameters is an emerging field in SPC. Several
approaches have been developed to monitor the simple linear profile parameters such as
EWMAJ/R, Hotelling T?, EWMA 3, CUSUM_3 and PM_3. We have proposed an
Assorted_3 approach to monitor simple linear profile parameters. Using the performance
measures such as ARL,EQL,SEQL, RARL and SRARL, we have evaluated and compared
the performance of the proposed Assorted_3 chart with some existing counterparts charts

aforementioned.

A detailed performance analysis urged that the proposed Assorted_3 chart is sensitive for
monitoring linear profile parameters including intercept, slope and error variance at

different amounts of shifts. We have found that the performance of proposed Assorted 3
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control chart at k = 1.25 and A = 0.05 is best in terms of different run length properties.
The RARL of contending charts are greater than 1 which shows that the performance of
proposed Assorted_3 chart is best among EWMAVJ/R, Hotelling T2, EWMA_3, CUSUM 3
and PM_3 charts. Further, SEQL is calculated to investigate the performance of the said
charts at different amounts of shifts and it also supports the proposed Assorted_3 chart. A
real application of the Assorted_3 chart is also presented to affirms the findings in favor of

our proposed Assorted_3 chart to monitor simple linear profile parameters.
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Chapter 6

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The monitoring of study variable which is linearly related to another ancillary variable is
known as simple linear profiles. A number of control charting structures based on memory
or memoryless type structures are available for the simultaneous monitoring of linear
profile parameters. The most famous simple linear profile monitoring approaches are
(EWMAV/R, the Hotelling T?, EWMA _3, Shewhart_3, CUSUM _3). Recently, a memory
type structure based on progressive mean was introduced as an efficient chart as compared

to existing memory type structures (EWMA) and CUSUM).

So, in Chapter 2 with the inspiration of progressive mean structure, a control chart is
developed to monitor simple linear profile parameters under progressive mean setup. The
performance of proposed chart is evaluated on the basis of well-known performance
measures such as ARL, EQL, SEQL, RARL and SRARL. The results depict that the detection
ability of PM_3 chart is best among the existing approaches to monitor simple linear profile

parameters such as slope, intercept and error variance.

There are two approaches of control charts exists in literature recognized as classical
(Shewhart, CUSUM, and EWMA) and modified control charts. To enhance the detection
ability of classical approaches at different amount of shift (i.e. small, medium and large)
several modifications are available in the literature. In Chapter 3, a new control chart
technique is proposed to detect large, medium and small turbulences in the process location
based on max approach in a sole control chart. The performance of Assorted, ; control

chartis evaluated by ARL, RARL, EQL and PCI . The comparison of proposed Assortedy ,
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chart versus classical and modified control charts are also portrayed. The comparative
analysis concludes that the Assortedy ; chart outperform well to detect turbulences as

compared to classical and some modified approaches.

In Chapter 4, a new control chart technigue is proposed to detect large, medium and small
turbulences in the process dispersion based on max approach in a sole control chart. The
performance of S? — Assorted, ; control chart is evaluated by ARL, SEQL, EQL, RARL,
and SRARL. The comparison of proposed S% — Assortedy, ; chart versus competing
charts are presented and results depicted that the performance of proposed

S? — Assorted,, ; chart is better than all others contending chats.

In Chapter 5, the idea of assorted control chart is employed to monitor simple linear profile
parameters. So, each parameter of linear profile parameter is shaped in max approach and
finally the overall assorted statistic plotted against its control limits. There were existing
12 individual statistics existing. The proposed control chart than compare with existing
approaches to monitor simple linear profile parameters and results conclude that the
detection ability of assorted control chart to monitor simple linear profile parameter is
outclass from all other existing approaches such as Shewhart_3, Hotelling T2, EWMA/R,

EWMA_3, CUSUM_3 and PM_3.

6.1. Future recommendations

v In future, one may extend simultaneous monitoring of linear profiles under
progressive setup study to multiple linear/nonlinear regression models.
v' The Assorted,, ; control chart can also be applied for the monitoring of process

location and dispersion in multivariate control charts.
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v'Joint monitoring of linear profile.
v The study in Chapter 5 based on univariate and linear profile monitoring, one may

extend this idea into multivariate and nonlinear profile monitoring.
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Appendix A

Properties of linear profile parameters under progressive setup

As discussed in Section 2.2.1.5 that the progressive mean is the cumulative mean of the
variable so the progressive mean of the Intercept term may be obtained by,

Zj=1b0j _ o +boy + -+ + by

PM;» =
1(1) i i

by taking expectation

(b01 + by + -+ bOi) _ E(bo1) + E(bgz) + --- + E(bo;)

E(PMI(l)) =F i

as we know that E(by;) = By, SO

BO+BO++BO
[

i(Bo)

E(PM;;)) =

Similarly, one may also get the mean of slope and mean square error under progressive
mean setup such as,

E(PMs;y)) = By; E(PMgy) = o®

The variance of the slope parameter under progressive mean setup is obtain by

L b
Var(PMsq) = Var <%”>

i
1
Var(PMsq) = z var(b,)| + Z Cov(by;, by)
=

J#i
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As we know that
0.2
Var(blj) = E and COU(blj, bli) =0
Then the variance of the slope parameter under progressive mean structure is

1(c? o2 o?
Var(PMS(i)):i_z Q-I_E-I_.“-}_E

1( (o2 o?/ 1
Var(PMS(i))zl_—z l g ZT(E>

Similarly, the variance of the progressive intercept term may be obtained as

g’ /1
Var(PM,(i)) = T (H)
As we know that the mean square error (MSE) is an unbiased estimator of error variance

which has following properties.

MSE~-2 42
(n-2)"

n-—2

_ 9 2 _ )
BOMSE) = 5B 1 oy | = 55 (1= 2 = %

_ (%)’ 2 _ (o)’ —_2% 4
Var(MSE) = (7)) Var [y, | = () 2-2 = 50*
So, the variance of PMg; is obtained as follows

2 4
Var(PME(i)) = mO’
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Appendix B

The properties of pH characteristic value of data are given below. The probability plot in
Figure B-1 portrayed that the dataset satisfied the normality assumption. Also, the value of

Anderson-Darling (AD) test statistic for normality is equal to 0.589 with P-value=0.119.

Probability Plot of pH
Normal

99.9

Mean 8.243

StDev  0.08433

991 N 60

AD 0.589

95 1 P-Value  0.119
90
80
= 70
@ 60
O 501
o 401
A 30-
20
10 4
5_
1_
0.1

Figure B-6.1: Probability plot of pH value of water

The descriptive summary of given data is described in Figure B-2. The histogram

suggested that the distribution of the data is bell shaped (i.e. normal).
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Summary for pH

Anderson-Darling Normality Test

A-Squared 0.59

P-Value 0.119

/ ~ Mean 8.2433

StDev 0.0843

Variance 0.0071

Skewness 0.097329

Kurtosis -0.772466

N 60

Minimum 8.1100

-1 1st Quartile 8.1900

t'\ Median 8.2500

T T T T 3rd Quartile 8.3000

i Az 52 A0 Maximum 8.4200
95% Confidence Interval for Mean

— | 8.2215 8.2651
95% Confidence Interval for Median

8.2000 8.2807
95% Confidence Interval for StDev

959% Confidence Intervals 0.0715 0.1028

Mean A I |
Median t 2 |
820 822 824 826 828
Figure B-6.2: Graphical and descriptive summary of pH value of water
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Appendix C

The probability plot of diamond-copper composite densification is portrayed in Figure C-
1. The value of Anderson-Darling (AD) test statistic for normality is equal to 0.336 with

P-value=0.504 which shows that the given dataset satisfies the normality assumption.

Probability Plot of y
Normal
99.9
Mean 91.52
° StDev  1.459
99 | N 120
AD 0.336
95 1 P-Value 0.504
90
80 -
= 70
o 60
O 50
o 40-
o 30
20 -
10
5_
14 (]
°
01 T T T T T T
86 88 90 92 94 96
Yy

Figure C-1: Diamond-copper composite densification

The descriptive summary of given data is described in Figure C-2. The histogram

suggested that the distribution of the data is bell shaped (i.e. normal).
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Summary for y

™

“2EN

Anderson-Darling Normality Test

A-Squared 0.34
P-Value 0.504
Mean 91.518
StDev 1.459
Variance 2.127
Skewness 0.100119
Kurtosis -0.572170
N 120
Minimum 88.540
1st Quartile 90.362
Median 91.450
3rd Quartile 92.405
Maximum 94.650

95% Confidence Interval for Mean
91.254 91.782

95% Confidence Interval for Median
91.250 91.850

95% Confidence Interval for StDev
1.294 1.671

//
T T T T T T
89 90 91 92 93 94
1
— I
959% Confidence Intervals
Mean I 2
Median t L 4
912 913 914 915 916 917 18

Figure C-2: Descriptive Summary
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