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The performance of a process is overseen by numerous quality features that may be 

classified as characteristics of interest and auxiliary characteristics. These quality 

characteristics may be operated separately or there may exist a relationship among these 

quality characteristics/variables in real processes. These relationships are enumerated by 

models termed as profiles that may be linear or nonlinear. The simple linear profiles are 

determined by three parameters namely intercept, slope, and residual variance.  

In this thesis, we have proposed two new approaches for an efficient monitoring of process 

parameters. These approaches include assorted and progressive schemes for location, 

dispersion and profile parameters. Under progressive setup, we have proposed a Shewhart 

control chart for the simultaneous monitoring of simple linear profile parameters. Under 

assorted approach, we have designed control charts for location and scale parameters. 

Moreover, the assorted approach is extended to monitor simple linear profile parameters 

(intercept, slope, and residual variance). The performance of proposed charts and its 

counterparts is evaluated and compared using some useful measures such as average run 

length, standard deviation run length, relative average run length, sequential relative 

average run length, extra quadratic loss, sequential extra quadratic loss and performance 

comparison index. The comparative analysis, using run length properties, revealed that the 
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proposed assorted and progressive approaches are very efficient at detecting shifts of 

varying amounts in process parameters. In addition, we have presented the implementation 

of our proposals on some real datasets from different disciplines including computers 

sciences, environmental sciences and material sciences.    
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 ملخص الرسالة

 
 

 عثمان سعيد الاسم الكامل:
 

 مراقبة العمليات باستخدام أساليب جديدة متنوعة ومتقدمة عنوان الرسالة:
  

 الإحصاء التطبيقي التخصص:
 

 2017مايو  تاريخ الدرجة العلمية:
 

يتم الإشراف على أداء عملية من قبل العديد من الميزات الجودة التي يمكن تصنيفها على أنها خصائص الفائدة والخصائص 

المساعدة. ويمكن تشغيل خصائص الجودة هذه بشكل منفصل أو قد توجد علاقة بين خصائص / متغيرات الجودة هذه في العمليات 

الحقيقية. يتم تعداد هذه العلاقات من قبل نماذج وصفت بأنها ملامح التي قد تكون خطية أو غير الخطية. يتم تحديد ملامح الخطية 

 .بسيطة من قبل ثلاث معلمات وهي اعتراض، المنحدر، والتباين المتبقي

وفي هذه الأطروحة، اقترحنا نهجين جديدين للرصد الفعال لمعايير العملية. وتشمل هذه النهج مخططات متنوعة ومتقدمة للموقع، 

والتشتت، والمعلمات الشخصية. تحت الإعداد التدريجي، اقترحنا مخطط التحكم شيوهارت لرصد في وقت واحد من المعلمات 

الشخصية الخطية بسيطة. تحت نهج متنوعة، قمنا بتصميم مخططات التحكم للموقع والمعلمات مقياس. وعلاوة على ذلك، يتم 

توسيع نطاق النهج المتنوع لرصد المعلمات الشخصية الخطية بسيطة )اعتراض، المنحدر، والتباين المتبقية(. ويتم تقييم ومقارنة 

أداء المخططات المقترحة ونظيراتها باستخدام بعض التدابير المفيدة مثل متوسط طول المدى وطول تشغيل الانحراف المعياري 

ومتوسط طول المدى النسبي ومتوسط طول المدى النسبي المتتابع وفقدان التربيع الإضافي وفقدان التربيع الإضافية المتتالية 

ومؤشر مقارنة الأداء . وكشف التحليل المقارن، باستخدام خصائص طول المدى، أن النهج المقترحة والتقدمية المقترحة فعالة جدا 

في الكشف عن تحولات متفاوتة في معلمات العملية. وبالإضافة إلى ذلك، قدمنا تنفيذ مقترحاتنا على بعض مجموعات البيانات 

الحقيقية من مختلف التخصصات بما في ذلك علوم الكمبيوتر والعلوم البيئية وعلوم المواد
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Chapter 1                                                                        

INTRODUCTION 

In this study two main subjects are addressed, i.e. monitoring of simple linear profile 

parameters through progressive and assorted approaches. Firstly, a brief introduction to 

Statistical Process Control (SPC), classical and modified control charting techniques and 

monitoring of linear profile parameters are discussed. 

1.1 Statistical Process Control 

In the modern era, new technology is systematically emerging all around us, particularly 

in the field of consumer behavior. Buyers are becoming more technology smart with the 

passage of time. There is competition among manufacturers to fulfill the demands of their 

loyal customers. On the other hand, customers want a high-quality product with the 

cheapest price. It is an uphill task for organizations to retain customers and delivered 

according to their wish. To make high-quality products manufacturing process should be 

the state of the art. Generally, two types of variations occur in a process, named as common 

cause variation and special cause of variation. Common causes are the inherent part of the 

process, natural and uncontrollable.  Special causes are un-natural and need to be controlled 

immediately. The existence of special causes may defect in the outputs of the process. 

Statistical Process Control (SPC) is used to control the special causes of variation in 

manufacturing or service processes. Further, in SPC seven tools are available to improve 

the quality of a process such as (i) Flow Chart (ii) Check Sheet (iii) Pareto Analysis (iv) 

Histogram (v) Cause-and-Effect (Fishbone) Diagram (vi) Scatter Diagram and (vii) 

Control Charts. 
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1.2 Control Charts 

Control Chart is the most efficient and widely employed technique of SPC. Control charts 

are used a graphical tool to monitor the variable of interest in the process. Control chart 

has upper and lower limit. The process said to be in-control if observations are lies in the 

control limits. A process is said to be statistically out-of-control when observations crossed 

the control limits. Which indicates that there must be some special cause occur in the 

process. The expectation of control chart is that it must prompt the process engineer about 

variations in the process. There are many real-life applications of control charts exists in 

the field of manufacturing engineering, nuclear engineering, health care, economics, 

education and analytical labs. Control charts are employed in service industries such as in 

banking, restaurant and gasoline pumps etc.   

✓ Monitoring the relationship between interest rate and unemployment 

✓ Monitoring the waiting time of pizza delivery 

✓ Monitoring the calling time of customer relationship officer   

✓ Monitoring the transactions time of ATM users 

 and so on. Control charts consist on three lines: the center line (𝐶𝐿), upper control limit 

(𝑈𝐶𝐿) and lower control limit (𝐿𝐶𝐿). A process is said to be in-control (IC) when any 

plotted statistics (e.g. �̅�, 𝑆2, 𝑃 ) lies within the 𝐿𝐶𝐿 and 𝑈𝐶𝐿 and if plotted statistics fall 

outside the control limits is considered an out-of-control (OOC). 

1.2.1. Classical Control Charts 

The three well known classical control charts are Shewhart, cumulative sum (CUSUM) 

and exponentially weighted moving average (EWMA). 
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The Shewhart’s control chart 

The Shewhart’s �̅� control chart, originated by Shewhart (1920), is most important and 

commonly used technique of the SPC tool box. It is very useful to detect large shift in the 

process mean. �̅� chart consists of two decision lines known as Upper Control Limit (UCL) 

and Lower Control Limit (LCL). Suppose that 𝑋 is a normally distributed random variable 

with mean or process target value 𝜇0 and known standard deviation 𝜎0 i.e. 𝑋𝑖𝑗~𝑁(𝜇0, 𝜎0
2) 

where 𝑖 = 1,2,3, …… , 𝑗 = 1,2, … . . , 𝑛 and 𝑛 is the size of 𝑖𝑡ℎ sample. The plotting statistic 

and the control limits for Shewhart’s �̅� chart are given below: 

�̅�𝒊 =
∑ 𝑿𝒊𝒋
𝒏
𝒋=𝟏

𝒏
        (1.1) 

 𝑳𝑪𝑳 = 𝝁𝟎 −𝑲
𝝈𝟎

√𝒏

𝑼𝑪𝑳 = 𝝁𝟎 +𝑲
𝝈𝟎

√𝒏

}           (1.2)  

where 𝐾 denotes the control limit coefficient.  

CUSUM Control Chart 

CUSUM control chart was initiated by Page (1954). The plotting statistics of classical 

CUSUM denoted by 𝐶𝑖
+ and 𝐶𝑖

− are given as follow: 

𝑪𝒊
+ = 𝐦𝐚𝐱 [𝟎, (�̅�𝒊 − 𝝁𝟎) − 𝒌

𝝈𝟎

√𝒏
+ 𝑪𝒊−𝟏

+ ] 

𝑪𝒊
− = 𝐦𝐢𝐧 [𝟎, (�̅�𝒊 − 𝝁𝟎) + 𝒌

𝝈𝟎

√𝒏
+ 𝑪𝒊−𝟏

− ]
}                    (1.3) 

where 𝑘 is the sensitivity parameter also called reference value and is chosen about half of 

the shift (𝛿) in the process location, 𝛿 =
|𝜇1−𝜇0|
𝜎0

√𝑛
⁄

, 𝜇1 is the disturbed/dislocated mean. The 

starting values of  𝐶𝑖
+ and 𝐶𝑖

− are taken equal to zero. Finally, the statistics in Equation 

(1.3) are plotted against ±ℎ
𝜎0

√𝑛
, respectively, where ℎ is the control limit coefficient and 
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selected according to the choice of 𝑘 and 𝐴𝑅𝐿0. More details on the choice of 𝑘 and ℎ are 

available in Hawkins and Olwell (1998). 

A value of 𝐶𝑖
+ > ℎ

𝜎0

√𝑛
 indicates a possible upward shift in the process location whereas a 

value of 𝐶𝑖
− < −ℎ

𝜎0

√𝑛
 means that the process location has possibly shifted downwards. 

EWMA control chart 

The EWMA control chart (like CUSUM chart) is also used to detect small to moderate 

shifts in process location. The plotting statistic and the control limits of EWMA control 

chart by Roberts (1959) are given as follows: 

𝒁𝒊 = 𝝀�̅�𝒊 + (𝟏 − 𝝀)𝒁𝒊−𝟏                                                          (1.4) 

𝑳𝑪𝑳𝒊 = 𝝁𝟎 − 𝑳(
𝝈𝟎

√𝒏
) √

 𝝀 

 𝟐−𝝀
[𝟏 − (𝟏 −  𝝀 )𝟐𝒊]

𝑼𝑪𝑳𝒊 = 𝝁𝟎 + 𝑳(
𝝈𝟎

√𝒏
) √

 𝝀 

 𝟐−𝝀
[𝟏 − (𝟏 −  𝝀 )𝟐𝒊]

}
 

 

,                     (1.5) 

where 0 < 𝜆 ≤ 1 is the sensitivity parameter, the starting value Zi is set equal to the process 

target 𝜇0 and 𝐿 is the control limit coefficient that is selected according to the choice of 𝜆 

and 𝐴𝑅𝐿0. More details on the choice of 𝜆 and 𝐿 are available in Crowder (1989). 

A value of Zi > 𝑈𝐶𝐿𝑖 indicates a possible upward shift in the process location whereas a 

value of Zi < 𝐿𝐶𝐿𝑖 means that the process location has possibly shifted downwards. 

1.2.2. Modified Control Charts 

 Several modifications of classical control charts have been addressed such as combined 

Shewhart- CUSUM (CSC) by Lucas (1982), fast initial response (FIR) CUSUM by Lucas 

and Crosier (1982), combined Shewhart- EWMA (CSE) by Lucas and Saccucci (1990), 
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FIR EWMA by Steinar (1999) , Adaptive EWMA by Capizzi and Masarotto (2003), 

Adaptive CUSUM by Jiang et al. (2008), an enhanced Adaptive CUSUM by Wu et al. 

(2009), enhancing the performance of EWMA charts by Abbas et al. (2010), improving the 

performance of CUSUM by Riaz et al. (2011), mixed EWMA-CUSUM by Abbas et al. 

(2013) and mixed CUSUM-EWM (MCE) control chart by Zaman et al. (2015). Further, 

details and structure of some modified control chart will discuss in Chapter 3. 

1.3 Simple Linear Profile 

In many manufacturing and services process, the quality of a product or process is 

categorized (qualitative and quantitative) and briefed by an association (linear or nonlinear) 

between response variable (dependent variable) and one or more explanatory variable 

(independent variable). This relationship is termed as a simple linear profile. Generally, 

simple linear profiles have three parameters of interest i.e. slope, intercept and error 

variance. Recently, there has been an interest developed to monitor processes by simple 

linear profiles. In quality control applications, the monitoring of simple linear profile is a 

new domain of interest. The framework of simple linear profiles data-set is given in  Figure 

1.1. 
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Figure 1.1: Description of simple linear profile data set 

In literature, several practical applications of linear profiles are discussed by different 

authors such as Woodall et al. (2004) present the literature review and framework of simple 

linear profiles. The study of calibration curves is well known in linear profiles. A 

multivariate control chart to monitor calibration curves of 𝐹𝑒3+ (photometric 

determination) with sulfosalicylic acid discussed by Mestek et al. (1994) while Stover and 

Brill (1998) monitor ion chromatography calibrations frequency by a multivariate control 

chart. The practical application of linear profiles in manufacturing process discussed by 

Lawless et al. (1999) . Kang and Albin (2000) described the semiconductor manufacturing 

example while Ajmani (2003) discussed the Intel Corp. semiconductor manufacturing 

without calibration example. Jin and Shi (1999) and Walker and Wright (2002) discussed 

the non-linear profile applications in literature.  

The detail discussion on simple linear profile monitoring will discuss in chapter 2. 

1.4 Performance Measure  

The well-known measures used to evaluate the performance of control charts are given 

below 
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Average run length (𝑨𝑹𝑳): 𝐴𝑅𝐿 is the most commonly used performance measure in 

control charts. It is defined as the average number of sample points until the first out of 

control signal occurs. Further, there are two types of 𝐴𝑅𝐿, IC  𝐴𝑅𝐿 (𝐴𝑅𝐿0) needs to be 

maximized that the false alarm is delayed as much as possible the process in control while 

OOC 𝐴𝑅𝐿 (𝐴𝑅𝐿1) needs to be minimized so that the signal is given as early as possible 

when the process goes out of control. In this thesis, the run length distribution of several 

charts is evaluated by using Monte Carlo simulation with 100,000 replications. 

Extra quadratic loss (𝑬𝑸𝑳): 𝐸𝑄𝐿 is defined as the weighted average 𝐴𝑅𝐿 with respect to 

range of shift (∇𝑚𝑎𝑥 to ∇𝑚𝑖𝑛) by considering square of shift (∇2) as weight. 

Mathematically, 𝐸𝑄𝐿 is described as  

𝑬𝑸𝑳 =
𝟏

𝛁𝒎𝒂𝒙−𝛁𝒎𝒊𝒏
∫ 𝛁𝟐𝑨𝑹𝑳(𝛁)𝒅𝛁
𝛁𝒎𝒂𝒙

𝛁𝒎𝒊𝒏
     (1.6) 

Sequential extra quadratic loss (𝑺𝑬𝑸𝑳): 𝑆𝐸𝑄𝐿 refers to the 𝐸𝑄𝐿 up to a certain shift   

(say ∇𝑖), mathematically defined as 

𝑺𝑬𝑸𝑳𝒊 =
𝟏

𝛁𝒊−𝛁𝒎𝒊𝒏
∫ 𝛁𝟐𝑨𝑹𝑳(𝛁)𝒅𝛁
𝛁𝒊

𝛁𝒎𝒊𝒏
,       (1.7) 

where 𝑖 = 2,3, …… . , ∇𝑚𝑎𝑥 

Relative average run length (𝑹𝑨𝑹𝑳): The 𝑅𝐴𝑅𝐿 is described as the efficiency of a 

specific control chart relative to a benchmark control chart. It observe the performance of  

a chart with respect to its benchmark chart in terms of 𝐴𝑅𝐿 for each value of shift (cf. Wu 

et al. (2009)). Mathematically, it is defined as 

𝑹𝑨𝑹𝑳 =
𝟏

𝛁𝒎𝒂𝒙−𝛁𝒎𝒊𝒏
∫

𝑨𝑹𝑳(𝛁)

𝑨𝑹𝑳𝒃𝒆𝒏𝒄𝒉𝒎𝒂𝒓𝒌(𝛁)
𝒅𝛁

𝛁𝒎𝒂𝒙

𝛁𝒎𝒊𝒏
,    (1.8) 

Sequential relative average run length (𝑺𝑹𝑨𝑹𝑳): 𝑆𝑅𝐴𝑅𝐿 refers to the 𝑅𝐴𝑅𝐿 up to a 

certain shift (say ∇𝑖), mathematically defined as 
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𝑺𝑹𝑨𝑹𝑳𝒊 =
𝟏

𝛁𝒊−𝛁𝒎𝒊𝒏
∫

𝑨𝑹𝑳(𝛁)

𝑨𝑹𝑳𝒃𝒆𝒏𝒄𝒉𝒎𝒂𝒓𝒌(𝛁)
𝒅𝛁

𝛁𝒊

𝛁𝒎𝒊𝒏
,     (1.9) 

where 𝑖 = 2,3, …… . , ∇𝑚𝑎𝑥 

where 𝐴𝑅𝐿(∇) and 𝐴𝑅𝐿𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘(∇) are the average run lengths of a particular chart and 

benchmark chart at shift ∇ respectively. In general, a chart having minimum 𝐸𝑄𝐿 value is 

considered as a benchmark chart and it is noted that at ∇𝑚𝑎𝑥 , the 𝑆𝐸𝑄𝐿 and 𝑆𝑅𝐴𝑅𝐿 are 

said to be 𝐸𝑄𝐿 and 𝑅𝐴𝑅𝐿. The 𝑅𝐴𝑅𝐿 value of a benchmark chart is equal to 1 and for other 

charts 𝑅𝐴𝑅𝐿 >1. The value of RARL >1 of any chart shows the inferior performance as 

compared to the benchmark chart. 

Performance comparison index (𝑷𝑪𝑰): The 𝑃𝐶𝐼 is the ratio of 𝐸𝑄𝐿 of a chart and of chart 

having least 𝐸𝑄𝐿 (𝐸𝑄𝐿𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘).  

𝑷𝑪𝐈 =
𝑬𝑸𝑳

𝑬𝑸𝑳𝒃𝒆𝒏𝒄𝒉𝒎𝒂𝒓𝒌
,              (1.10) 

A chart is considered best if it has 𝑃𝐶𝐼 is equal to 1. 

1.5 Objectives of the thesis 

The objectives of this studies are given below: 

✓ Simultaneous monitoring of simple linear profile under progressive setup 

✓ An assorted control chart for monitoring the process location 

✓ An assorted control chart for monitoring the process dispersion 

✓ An assorted approach for monitoring simple linear profiles  

1.6 Outline of the thesis 

In Chapter 2, a new control chart is proposed for the simultaneous monitoring of simple 

linear profile parameters under progressive setup. The performance of the proposed chart 
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is evaluated in terms of 𝐴𝑅𝐿, standard deviation run length (𝑆𝐷𝑅𝐿), 𝐸𝑄𝐿, 𝑆𝐸𝑄𝐿, 𝑅𝐴𝑅𝐿 

and 𝑆𝑅𝐴𝑅𝐿 on four types of shifts. The comparative analysis of proposed chart with its 

counterpart charts is also in tabular and graphical forms. The findings reveal that the 

performance of proposed chart is better than all its competitor charts. The proposed chart 

is applied on N-Queen size problem solution.     

In chapter 3, a new control chart named as (Assorted control chart) proposed for monitoring 

of process location. The said approach is used to monitor small, medium and large 

disturbances in a single control chart at the same time. Several performance measures are 

used such as 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐸𝑄𝐿, 𝑅𝐴𝑅𝐿 and 𝑃𝐶𝐼 for the evaluation of the proposed chart. A 

tabular and graphical comparison of proposed versus classical and modified control charts 

is presented. A real-life example is also discussed to monitor the pH value of water. 

In chapter 4, a new control chart named as (𝑆2Assorted control chart) proposed for 

monitoring of process dispersion. The said approach is used to monitor small, medium and 

large disturbances in a single control chart at the same time. Several performance measures 

are used such as 𝐴𝑅𝐿, 𝐸𝑄𝐿, 𝑆𝐸𝑄𝐿, 𝑅𝐴𝑅𝐿 and 𝑆𝑅𝐴𝑅𝐿 for the evaluation of the proposed 

chart. A tabular and graphical comparison of proposed versus classical and modified 

control charts is presented. A real-life example is also discussed to monitor the Flow Width 

Measurement for Hard-Bake Process. 

Chapter 5 incorporates chapter 2, chapter 3 and chapter 4. A new control chart proposed 

for the monitoring of simple linear profile parameters including slope, intercept and error 

variance. The performance of proposed chart is evaluated through A𝑅𝐿, 𝐸𝑄𝐿, 𝑆𝐸𝑄𝐿, 𝑅𝐴𝑅𝐿 

and 𝑆𝑅𝐴𝑅𝐿. The comparison analysis of proposed and its counterpart is also presented. 
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Finally, conclusion, summaries, and recommendations of the work are presented in Chapter 

6.  

1.7 Limitations of the thesis 

This study has some limitations which are described as follow: 

✓ In chapter 2 the independent variable is considered as a fixed level. 

✓ The study in chapter 3 is based on univariate case. 

✓ The study in chapter 4 is monitored only univariate statistic (𝑆2) 

✓ The proposed chart in chapter 5 is used to monitor simple linear profile 

parameters. 
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Chapter 2                                                                         

SIMULTANEOUS MONITORING OF LINEAR PROFILE 

PARAMETERS UNDER PROGRESSIVE SETUP 

In many manufacturing or service processes, we come across different quality 

characteristics that govern the process behavior. These characteristics are categorized as 

the main quality characteristics (study variables) and the supporting or explanatory 

characteristics. There is always a possibility that some of the explanatory variables offer a 

relationship with the study variable which is known as profiles. The monitoring of study 

variable which is linearly associated with an explanatory variable is termed as simple linear 

profiles.  In this chapter, we intend to design an efficient memory type structure based on 

progressive mean for the simultaneous monitoring of linear profile parameters. The 

performance of proposed scheme (PM_3) and its counterparts (i.e. EWMA_3 chart, 

bivariate 𝑇2 chart, EWMA/R chart and Shewhart_3 chart) are evaluated using some useful 

performance measures such as average run length (ARL), relative average run length 

(RARL), sequential relative average run length (SRARL), extra quadratic loss (EQL) and 

sequential extra quadratic loss (SEQL). In the presence of shifts in linear profile 

parameters, the findings depict that PM_3 has better detection ability as compared to 

counterpart charts. A case study related to Queen size problem is also discussed to highlight 

the importance of newly proposed control chart. 

2.1 Introduction 

In this modern era, new technology is consistently coming forth all around us, especially 

in the domain of consumer behavior. With the passage of time, customers are seemly more 
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tech-smart and want products as per their needs with high quality and low cost. Nowadays, 

many companies upping efforts to satisfy such desires of customer’s. In general, every 

process has some cause of variations namely natural and un-natural variations. Natural 

variations are the inherent part of the process and cannot be completely eradicated while 

un-natural variations occur due to some assignable factors that affect the performance of 

any process.  A control chart is a key tool among seven magnificent tools of statistical 

process control, mainly used to differentiate the aforementioned variations in any process.  

In many manufacturing processes, control charts are used to monitor a single quality 

characteristic (qualitative or quantitative) but in some processes, the quality characteristic 

has an association (linear or nonlinear) with other ancillary variable(s) in the process. To 

monitor such quality characteristic which has a linear relationship with another explanatory 

variable is termed as simple linear profiles. In general, three parameters are considered to 

express the state of simple linear profiles such as slope, intercept and error variance. In 

literature, many studies are developed to monitor simple linear profile parameters. A 

regression control chart proposed by Mandel (1969) was applied on manpower scheduling 

whereas, Hawkins (1991 and 1993) proposed multivariate charting structures based on 

regression adjusted variables. Hauck et al. (1999) proposed control chart for multivariate 

monitoring of grouped adjusted variables. Kang and Albin (2000) proposed two control 

chart structures for the monitoring of linear profile parameters. They used the multivariate 

T2 chart to monitor intercept and slope while EWMA/R chart for the monitoring of error 

variance. A well-known control chart (EWMA_3) was proposed by Kim et al. (2003), 

which is used for the monitoring of small/moderate shifts in linear profile parameters. 
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Moreover, comparative study on the performance of EWMA_3 chart, multivariate 𝑇2, and 

EWMA/R charts are also reported in their study. 

For the monitoring of simple linear profile parameters, R and Multivariate CUSUM charts 

were developed by Noorossana et al. (2004) while a new Phase I approach based on general 

linear F-test was introduced by Mahmoud and Woodall (2004). Zou et al. (2006) proposed 

a Phase II study based on change point model for the monitoring of simple linear profile 

parameters. Gupta et al. (2006) proposed Shewhart_3 chart for the monitoring of intercept, 

slope and error variance and compared the performance of Shewhart_3 chart with NIST 

and EWMA_3 charts. A Phase I analysis of change point model based on segmented 

regression technique was discussed by Mahmoud et al. (2007). Further, Zou et al. (2007) 

proposed Multivariate EWMA control chart based on general linear profile model and 

enhanced the proposed method by implementing variable sampling interval (VSI), self-

starting scheme and paramedic diagnostic technique.  

A Phase II approach based on first order autoregressive model was proposed by 

Noorossana et al. (2008) and the CUSUM_3 chart was proposed by Saghaei et al. (2009) 

to enhance the detection ability of simple linear profiles. Soleimani et al. (2009) discussed 

a transformation study to overcome the issue of within autocorrelation in simple linear 

profiles. Yeh and Zerehsaz (2013) developed two control charts for simple linear profile 

parameters such as; a chart based on likelihood ratio test was designed for monitoring of 

intercept and slope and another chart based on recursive residuals was constructed to 

monitor the error variance. Most of the current literature on linear profile parameters are 

discussed under fixed effect model while an approach based on random effect model was 

designed by Noorossana et al. (2014).  In simple linear profiles, the effect of estimation 
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error under fixed effect model was discussed by Aly et al. (2014) while under random effect 

model was studied by Noorossana et al. (2016). Recently, monitoring of simple linear 

profile parameters are enhanced by incorporating several run rules (cf. Riaz and Touqeer 

(2015)) and different ranked set sampling techniques (cf. Riaz et al. (2017)).  

Generally, memory type control charts are used to monitor small and moderate shifts in 

process parameter(s). Recently, Abbas et al. (2013) proposed a new memory type control 

chart based on progressive mean (PM) which provides better detection ability as compared 

to classical charts (EWMA and CUSUM). The progressive version for the variability was 

introduced by Zafar et al. (2014) and more modification in the progressive setup was 

discussed by Abbasi et al. (2013). In this study, we intend to use the progressive setup for 

the monitoring of simple linear profile parameters. Further, the outline of the study is as 

follow; in Section. 2.2, we will briefly describe the existing charts and proposed structures 

used to monitor simple linear profile parameters. In Section. 2.3, discussion on the 

performance evaluation of the proposed and other competing charts. In Section. 2.4, 

comparative analysis of PM_3 chart with its counterpart are discussed. In Section. 2.5, a 

case study about N-Queen size problem has been discussed to highlight the importance of 

proposed method. Finally, summary, conclusions, and recommendations are described in 

Section. 2.6. 

2.2 Simple Linear Profile Methods 

 Simple linear profiles play a key role in the monitoring of process parameters when study 

variable is linearly associated with another auxiliary variable. In this section, we will 

provide a brief introduction about simple linear profiles and a memory type structure for 

the monitoring of linear profile parameters under progressive setup. 
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Simple Linear Profiles 

In some practical applications, the quality of a process or product is described by a 

relationship (linear or nonlinear) between two or more variables instead of single study 

variable. For example, in semiconductor manufacturing, the pressure of the gasses is 

dependent on the flow of the gasses in tank (cf. Kang and Albin (2000)) and in electrical 

engineering, the voltage of a photovoltaic system is inversely related to capacitance of a 

capacitor (cf. Riaz et al. (2017)). Generally, the monitoring of study variable when it is 

linearly related to an explanatory variable is termed as simple linear profiles. There exist 

three parameters to be monitored in simple linear profiles such as slope, intercept and error 

variance. 

Assume that we have paired observation (𝑋𝑖, 𝑌𝑖𝑗) for the jth random sample collected with 

respect to time. Then the simple linear regression model with intercept (𝛽0) and slope (𝛽1) 

is defined as: 

𝒀𝒊𝒋 = 𝜷𝟎 + 𝜷𝟏𝑿𝒊 + 𝝐𝒊𝒋      (2.1) 

where 𝑖 = 1,2, …… , 𝑛 and 𝜖𝑖𝑗 is random error term which follows normal distribution with 

mean (𝜇) zero and unit variance (𝜎2) of Equation (2.1) (referred as original model). The 

OLS estimates of the linear regression parameters are defined as: 

�̂�1𝑗 =
∑ (𝑋𝑖−�̅�)𝑌𝑖𝑗
𝑛
𝑖=1

∑ (𝑋𝑖−�̅�)
2𝑛

𝑖=1

=
𝑆𝑋𝑌(𝑗)

𝑆𝑋𝑋
, 

�̂�0𝑗 = �̅�𝑗 − �̂�1𝑗�̅�, 

where �̅�𝑗 = ∑ 𝑌𝑖𝑗
𝑛
𝑖=1 𝑛⁄  , �̅� = ∑ 𝑋𝑖

𝑛
𝑖=1 𝑛⁄   and  𝑆𝑋𝑋 = ∑(𝑋 − �̅�)2 while the means, 

variances and co-variance term of �̂�0𝑗 and �̂�1𝑗 are computed as follow: 
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𝐸(�̂�1𝑗|𝑋) = 𝛽1;   𝐸(�̂�0𝑗|𝑋) = 𝛽0, 

𝑉𝑎𝑟(�̂�1𝑗|𝑋) =
𝜎2

𝑆𝑋𝑋
 ;   𝑉𝑎𝑟(�̂�0𝑗|𝑋) = 𝜎

2 [
1

𝑛
+

�̅�2

𝑆𝑋𝑋
], 

𝐶𝑜𝑣(�̂�1𝑗, �̂�0𝑗|𝑋) = −𝜎2
�̅�

𝑆𝑋𝑋
’  

It is noted that the mean square error (MSE) is an unbiased estimator of error variance 

(𝜎2), which is computed by  

𝑀𝑆𝐸𝑗 =
∑ (𝑌𝑖𝑗−�̂�𝑖𝑗)

2𝑛
𝑖=1

𝑛−2
=

∑ 𝑒𝑖𝑗
2𝑛

𝑖=1

𝑛−2
, 

where �̂�𝑖𝑗 is the ith predicted value for jth random sample. Usually, simple linear profile 

parameters are monitored in simultaneous structure which requires the assumption of 

independence between the parameters. To meet such assumption, coded method is an 

effective way which requires a transformation on 𝑋𝑖 values (i.e. 𝑋𝑖
∗ = 𝑋𝑖 − �̅�). The coded 

form of Equation (2.1) is defined as: 

𝒀𝒊𝒋 = 𝑩𝟎 + 𝑩𝟏𝑿𝒊
∗ + 𝝐𝒊𝒋               (2.2)       

where 𝒊 = 𝟏, 𝟐,…… , 𝒏. 

It is noted that Equation (2.2) is referred as transformed model, where intercept of 

transformed model is 𝐵0 = 𝛽0 + 𝛽1�̅� + 𝛽𝜎�̅� and slope of transformed model is estimated 

by 𝐵1 = (𝛽1 + 𝛽𝜎)𝑋𝑖
∗, where the shifts in the slope (𝛽) of Equation (2.1) are considered 

in terms of 𝜎. Further, in the same line, one may obtain OLS estimates of transformed 

model (𝑏0𝑗, 𝑏1𝑗) and their properties. In recent literature, several studies are available about 

the monitoring of linear profile parameters, some are briefly described below. 
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2.2.1 The Hotelling 𝑻𝟐chart 

Kang and Albin (2000) proposed a multivariate control chart for the monitoring of slope 

and intercept. The jth statistic of Hotelling 𝑇2 control chart is estimated by  

𝑻𝒋
𝟐 = (𝒁𝒋 − 𝑼)

𝑻𝚺−𝟏(𝒁𝒋 − 𝑼)                                             (2.3) 

where the terms in Equation (2.3) are defined as follows: 

𝑍𝑗 = (�̂�0𝑗 , �̂�1𝑗 )
𝑇
; 𝑈 = (𝛽0, 𝛽1)

𝑇, 

Σ = [
𝜎2 [

1

𝑛
+

�̅�2

𝑆𝑋𝑋
] −𝜎2

�̅�

𝑆𝑋𝑋

−𝜎2
�̅�

𝑆𝑋𝑋

𝜎2

𝑆𝑋𝑋

], 

The Hotelling 𝑇2 statistic follows 𝜒2 distribution with 2 degrees of freedom and the upper 

control limit (𝑈𝐶𝐿𝐻 = 𝜒2
2,𝛼

) is the 𝛼𝑡ℎ quantile of 𝜒2 distribution while the lower control 

limit is equal to zero (𝐿𝐶𝐿𝐻 = 0). When process is unstable then the Hotelling 𝑇2 statistic 

follows non-central 𝜒2 distribution with non-centrality parameter (𝜏), which is obtain as: 

𝜏 = 𝑛(𝜑𝜎 + 𝛽𝜎�̅�)2 + (𝛽𝜎)2𝑆𝑋𝑋, 

where 𝜑 is the amounts of shifts in intercept and 𝛽 is the measure of shift in the slope for 

Equation (2.1) 

2.2.2 The EWMA/R chart 

Kang and Albin (2000) also proposed a combined structure based on EWMA and R chart 

for the monitoring of linear profile parameters. Basically, EWMA chart has some 

limitations which are covered by incorporating the R chart. The jth statistic of EWMA chart 

is estimated by  
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𝑍𝑗 = 𝜆�̅�𝑗 + (1 − 𝜆)𝑍𝑗−1, 

where 𝜆 is the smoothing parameter which ranges from 0 to 1, �̅�𝑗 =
∑ 𝑒𝑖𝑗
𝑛
𝑖=1

𝑛
  and the initial 

value of EWMA statistic is zero. (i.e. 𝑍0 = 0). The process is said to be OOC when 𝑍𝑗 is 

less than LCL or greater than UCL. The control limits (LCL and UCL) based on charting 

constant (𝐿) for EWMA chart are given as follow: 

 𝐿𝐶𝐿𝐸 = −𝐿𝜎√
𝜆

(2−𝜆)
[
1

𝑛
]; 𝑈𝐶𝐿𝐸 = 𝐿𝜎√

𝜆

(2−𝜆)
[
1

𝑛
], 

There exist two causes to combine R chart with EWMA chart, (i) to detect shifts in error 

variance under model (1) and (ii) to tackle the unusual situation of error variance. Further, 

the jth statistic and control limits of R chart are defined as  

𝑅𝑗 = 𝑚𝑎𝑥𝑖(𝑒𝑖𝑗) − 𝑚𝑖𝑛𝑖(𝑒𝑖𝑗) 

 𝐿𝐶𝐿𝑅 = 𝜎(𝑑2 − 𝐿𝑑3); 𝑈𝐶𝐿𝑅 = 𝜎(𝑑2 + 𝐿𝑑3) 

where 𝑑2 and 𝑑3 are, unbiased constants reported in Montgomery (2012). 

2.2.3 The EWMA_3 control chart 

A memory type approach based on EWMA structure was designed by Kim et al. (2003). 

This chart is efficient for the monitoring of small or moderate shifts in slope, intercept 

and error variance. The structure of EWMA_3 chart depends on the transformed model 

given in (2) and the three individual EWMA statistics for each linear profile parameter 

are defined as: 

𝐸𝑊𝑀𝐴𝐼(𝑗) = 𝜆𝑏0𝑗 + (1 − 𝜆)𝐸𝑊𝑀𝐴𝐼(𝑗−1), 
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𝐸𝑊𝑀𝐴𝑆(𝑗) = 𝜆𝑏1𝑗 + (1 − 𝜆)𝐸𝑊𝑀𝐴𝑆(𝑗−1), 

𝐸𝑊𝑀𝐴𝐸(𝑗) = max {𝜆 ln(𝑀𝑆𝐸𝑗) + (1 − 𝜆)𝐸𝑊𝑀𝐴𝐸(𝑗−1), ln(𝜎0
2)}, 

where 𝐸𝑊𝑀𝐴𝐼(𝑗) is the jth EWMA statistic for intercept while 𝐸𝑊𝑀𝐴𝑆(𝑗) and 𝐸𝑊𝑀𝐴𝐸(𝑗) 

are the jth EWMA statistics for slope and error variance respectively. Further, the control 

limits for each EWMA statistic are as follow: 

For intercept:

{
 

 𝐿𝐶𝐿𝐸𝐼 = 𝐵0 − 𝐿𝐸𝐼𝜎√
𝜆

(2−𝜆)
[
1

𝑛
]

𝑈𝐶𝐿𝐸𝐼 = 𝐵0 + 𝐿𝐸𝐼𝜎√
𝜆

(2−𝜆)
[
1

𝑛
]

, 

For slope:

{
 

 𝐿𝐶𝐿𝐸𝑆 = 𝐵1 − 𝐿𝐸𝑆𝜎√
𝜆

(2−𝜆)

𝜎2

𝑆𝑋𝑋

𝑈𝐶𝐿𝐸𝑆 = 𝐵1 + 𝐿𝐸𝑆𝜎√
𝜆

(2−𝜆)

𝜎2

𝑆𝑋𝑋

, 

For error variance: {

𝐿𝐶𝐿𝐸𝐸 = 0

𝑈𝐶𝐿𝐸𝐸 = 𝐿𝐸𝐸√
𝜆

 (2−𝜆)
𝑉𝑎𝑟[ln(𝑀𝑆𝐸𝑗)]

, 

where 𝐿𝐸𝐼, 𝐿𝐸𝑆 and 𝐿𝐸𝐸  are the charting constants which describes the width of control 

limits. The asymptotic variance of logarithmic mean square error was derived by Crowder 

and Hamilton (1992) which is estimated by  

𝑉𝑎𝑟[ln(𝑀𝑆𝐸𝑗)] ≈
2

𝑛 − 2
+

2

(𝑛 − 2)2
+

2

3(𝑛 − 2)3
−

16

15(𝑛 − 2)5
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2.2.4 The Shewhat_3 control chart 

Gupta et al. (2006) proposed a control charting scheme based on Shewhart structure for 

the monitoring of linear profile parameters. The control limits for each parameter are 

defined as  

For intercept:

{
 

 𝐿𝐶𝐿𝑆𝐼 = 𝛽0 − 𝑍𝛼/2√
𝜎2

𝑛

𝑈𝐶𝐿𝑆𝐼 = 𝛽0 + 𝑍𝛼/2√
𝜎2

𝑛

, 

For slope:

{
 

 𝐿𝐶𝐿𝑆𝑆 = 𝛽1 − 𝑍𝛼/2√
𝜎2

𝑆𝑋𝑋

𝑈𝐶𝐿𝑆𝑆 = 𝛽1 + 𝑍𝛼/2√
𝜎2

𝑆𝑋𝑋

, 

For error variance: {
𝐿𝐶𝐿𝑆𝐸 =

𝜎2

𝑛−2
𝜒(1−𝛼 2),(𝑛−2)⁄
2

𝑈𝐶𝐿𝑆𝐸 = 
𝜎2

𝑛−2
𝜒(𝛼 2),(𝑛−2)⁄
2

, 

where 𝑍𝛼/2 is the (𝛼/2)𝑡ℎ quantile point of standard normal distribution while 

𝜒(1−𝛼 2),(𝑛−2)⁄
2  and 𝜒(𝛼 2),(𝑛−2)⁄

2  are the lower and upper quantile points of 𝜒2distribution 

with (𝑛 − 2) degrees of freedom.  

2.2.5 The Progressive Mean (PM_3) control chart 

Recently, Abbas et al. (2013) proposed a memory type structure based on progressive mean 

(PM) to monitor the location parameter of a process. The progressive mean is a special 

case of EWMA structure as discussed by Abbas (2015). Let 𝑌𝑖~𝑁(𝜇, 𝜎
2); 𝑖 = 1, 2, … . , 𝑛 

and 𝑌𝑖 is the sequence of i.i.d observations then the ith progressive mean is defined as the 

cumulative average over time, 
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𝑃𝑀(𝑖) =
∑ 𝑌𝑗
𝑖
𝑗=1

𝑖
, 

where the progressive mean is an unbiased estimator of the population mean (𝜇) and have 

a minimum variance (𝜎2 𝑖⁄ ) as compared to arithmetic mean (�̅�). The PM_3 chart is 

specially designed to monitor the linear profile parameters based on progressive setup. So, 

the progressive statistics for linear profile parameters are defined as follows (cf. Appendix 

A): 

𝐏𝐫𝐨𝐠𝐫𝐞𝐬𝐬𝐢𝐯𝐞 𝐬𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬:

{
 
 

 
 𝑷𝑴𝑰(𝒊) =

∑ 𝒃𝟎𝒋
𝒊
𝒋=𝟏

𝒊

𝑷𝑴𝑺(𝒊) =
∑ 𝒃𝟏𝒋
𝒊
𝒋=𝟏

𝒊

𝑷𝑴𝑬(𝒊) =
∑ 𝑴𝑺𝑬𝒋
𝒊
𝒋=𝟏

𝒊

,            (2.4) 

where 𝑃𝑀𝐼(𝑖), 𝑃𝑀𝑆(𝑖) and 𝑃𝑀𝐸(𝑖) are the progressive statistics for intercept, slope and error 

variance respectively. Further, the averages, variances and control limits for each 

progressive statistic are as follows: 

𝐀𝐯𝐞𝐫𝐠𝐞𝐬 ∶ {

𝑬(𝑷𝑴𝑰(𝒊)) = 𝑩𝟎
𝑬(𝑷𝑴𝑺(𝒊)) = 𝑩𝟏

𝑬(𝑷𝑴𝑬(𝒊)) = 𝝈
𝟐

                                    (2.5) 

𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆𝒔 ∶

{
 
 

 
 𝑽𝒂𝒓(𝑷𝑴𝑰(𝒊)) =

𝝈𝟐

𝒊
(
𝟏

𝒏
)

𝑽𝒂𝒓(𝑷𝑴𝑺(𝒊)) =
𝝈𝟐

𝒊
(
𝟏

𝑺𝑿𝑿
)

𝑽𝒂𝒓(𝑷𝑴𝑬(𝒊)) =
𝟐

𝒏−𝟐
𝝈𝟒

                   (2.6) 

𝐅𝐨𝐫 𝐢𝐧𝐭𝐞𝐫𝐜𝐞𝐩𝐭:

{
 

 𝑳𝑪𝑳𝒊 = 𝑩𝟎 − 𝑳𝑰𝝈√
𝟏

𝒏
 𝒇(𝒊)

𝑼𝑪𝑳𝒊 = 𝑩𝟎 + 𝑳𝑰𝝈√
𝟏

𝒏
 𝒇(𝒊)

                          (2.7) 

𝐅𝐨𝐫 𝐬𝐥𝐨𝐩𝐞:

{
 

 𝑳𝑪𝑳𝒊 = 𝑩𝟏 − 𝑳𝑺𝝈√
𝟏

𝑺𝑿𝑿
 𝒇(𝒊)

𝑼𝑪𝑳𝒊 = 𝑩𝟏 + 𝑳𝑺𝝈√
𝟏

𝑺𝑿𝑿
 𝒇(𝒊)

                (2.8) 
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𝐅𝐨𝐫 𝐞𝐫𝐫𝐨𝐫 𝐯𝐚𝐫𝐢𝐚𝐧𝐜𝐞:

{
 

 𝑳𝑪𝑳𝒊 = 𝝈𝟐 − 𝑳𝑬𝝈
𝟐√

𝟐

𝒏−𝟐
 𝒇(𝒊)

𝑼𝑪𝑳𝒊 = 𝝈𝟐 + 𝑳𝑬𝝈
𝟐√

𝟐

𝒏−𝟐
 𝒇(𝒊)

             (2.9) 

where 𝐿𝐼, 𝐿𝑆 and 𝐿𝐸 are the charting constants of intercept, slope and error variance of 

PM_3 chart respectively, while 𝑓(𝑖) = 𝑖−𝑞 is a penalty function used to stabilize the control 

limits of the PM_3 chart (cf. Zafar et al. (2014). 

2.3 Performance evaluations  

In this section, we will briefly describe the performance measures used to analyzed the 

proposed and existing simple linear profile techniques. Further, the IC design parameters 

of simple linear profiles are also discussed. 

2.3.1 Performance measures   

There exist several measures to describe the performance of linear profile parameters such 

as 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, median run length (𝑀𝐷𝑅𝐿), 𝐸𝑄𝐿, 𝑆𝐸𝑄𝐿, 𝑅𝐴𝑅𝐿 and 𝑆𝑅𝐴𝑅𝐿. The detail 

discussion on performance measures is available in Section. 1.4  

2.3.2 Design of in-control parameters  

In this study, we have utilized IC linear profile model (𝑖. 𝑒. 𝑌𝑖𝑗 = 3 + 2𝑋𝑖 + 𝜖𝑖𝑗) by 

following Kang and Albin (2000) with fixed sample size (𝑛 = 4) and values of 

independent variable (𝑋𝑖 = 2, 4, 6, 8). Further, the transformed model given in equation 

(2.2) with 𝐵0 = 13 + 5(𝛽𝜎) and 𝐵1 = (2 + 𝛽𝜎)𝑋𝑖
∗ is defined as 𝑌𝑖𝑗 = 𝐵0 + 𝐵1𝑋𝑖

∗ + 𝜖𝑖𝑗. 

The transformed value of 𝑋𝑖 are 𝑋𝑖
∗ = −3,−1, 1, 3, having the mean is equal to zero. 

Keeping in mind the end goal to settle 𝐴𝑅𝐿0 at a prefixed level, we require to set control 

limit coefficients for different combination of design parameters used in given charting 

methods. One may get results for various combination of the design parameters at different 
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values of 𝐴𝑅𝐿0. We have assessed the outcomes for some specific options of these design 

parameters, and the outcomes are accounted in Table 2.1 to accomplish an overall 𝐴𝑅𝐿0 =

200. For calculations, we have utilized Monte Carlo simulation study with 106 iterations. 

Table 2.1: Control charting constant for each method at fixed 𝑨𝑹𝑳𝟎 = 𝟐𝟎𝟎 

Parameter PM_3 Shewhat_3 EWMA_3 EWMA/R 

Intercept 𝐿𝐼=4.54 𝑍𝛼/2= 3.14 𝐿𝐸𝐼=3.0156 𝐿=3 

Slope 𝐿𝑆=4.54 𝑍𝛼/2= 3.14 𝐿𝐸𝑆=3.0109 𝐿=3 

Error 

variance 
𝐿𝐸=4.535 𝜒2

𝐿𝐶𝐿
= 0.001, 𝜒2

𝑈𝐶𝐿
= 14.17 𝐿𝐸𝐸=1.3723 𝐿=3.1151 

Design q=0.2  𝜆=0.2 𝜆=0.2 

 

Similarly, the charting constants for proposed chart for different overall 𝐴𝑅𝐿0 are given in 

Table 2.2. 

Table 2.2: Control charting constants for proposed method (PM_3) 

Parameters 𝐴𝑅𝐿0 = 200 𝐴𝑅𝐿0 = 370 𝐴𝑅𝐿0 = 500 

Intercept 𝐿𝐼=4.54 𝐿𝐼=5.20 𝐿𝐼=5.52 

Slope 𝐿𝑆=4.54 𝐿𝑆=5.20 𝐿𝑆=5.52 

Error variance 𝐿𝐸=4.535 𝐿𝐸=5.25 𝐿𝐸=5.525 

 Design q=0.2 q=0.2 q=0.2 

  

2.3.3 Sensitivity analysis   

For the selection of optimal choice of 𝑞 in penalty function 𝑓(𝑖) = 𝑖−(0.5+𝑞), sensitivity 

analysis has done on the base of ARL, SDRL, MDRL and different percentile points. The 
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overall 𝐴𝑅𝐿0 = 200, minimum SDRL and approximately equal individual 𝐴𝑅𝐿0 are the 

criteria to select the optimal value of  𝑞. In, nine cases with different values of control 

charting constants are reported in Table 2.3.  

Table 2.3: Charting parameters for the optimal choice of q 

Case q Constants ARL SDRL MDRL P5 P25 P50 P75 P95 P99 

1 0.15 

𝐿𝐼=2.950 590.18 1612.28 138.00 7.00 38.00 138.00 485.00 2516.05 7092.18 

𝐿𝑆=2.950 599.49 1717.61 137.00 7.00 39.00 137.00 489.00 2535.45 7055.34 

𝐿𝐸=7.100 579.04 1611.05 136.00 4.00 38.00 136.00 470.00 2451.10 6866.03 

Overall 140.09 311.91 49.00 4.00 17.00 49.00 138.00 557.05 1357.02 

2 0.20 

𝐿𝐼=4.200 775.75 1725.20 277.50 21.00 89.00 277.50 797.25 3032.05 7082.29 

𝐿𝑆=4.200 774.82 1445.40 282.00 20.00 90.00 282.00 823.25 3210.10 6787.01 

𝐿𝐸=4.120 757.11 1514.22 264.00 16.00 86.00 264.00 763.00 3118.25 6999.04 

Overall 134.44 183.57 72.00 9.00 32.00 72.00 162.00 469.00 910.01 

3 0.20 

𝐿𝐼=4.500 1112.22 2236.97 393.50 27.00 129.00 393.50 1129.00 4604.10 10453.21 

𝐿𝑆=4.500 1126.52 2326.89 392.00 24.00 127.00 392.00 1157.25 4537.15 11011.15 

𝐿𝐸=4.500 1122.96 2309.34 386.50 23.00 127.00 386.50 1135.00 4466.35 11060.61 

Overall 188.23 283.13 104.00 13.00 47.00 104.00 235.00 686.00 1463.10 

4 0.20 

𝐿𝐼=4.530 1146.14 2312.91 408.00 28.00 134.00 408.00 1170.00 4653.10 10793.07 

𝐿𝑆=4.530 1143.78 2314.61 396.00 28.00 129.00 396.00 1191.00 4532.20 11171.64 

𝐿𝐸=4.530 1160.49 2388.54 402.00 25.00 131.00 402.00 1181.00 4730.10 11173.15 

Overall 190.61 281.58 104.00 13.00 46.00 104.00 233.00 677.00 1382.06 

5 0.20 

𝐿𝐼=4.540 1145.62 2308.13 404.00 29.00 133.00 404.00 1176.00 4624.05 10825.19 

𝐿𝑆=4.540 1147.83 2260.33 403.50 30.00 133.00 403.50 1189.00 4647.20 10907.08 

𝐿𝐸=4.535 1152.93 2266.01 411.00 26.00 137.00 411.00 1182.25 4723.05 10583.67 

Overall 200.66 301.54 105.00 13.00 46.00 105.00 232.00 696.00 1413.00 

6 0.25 

𝐿𝐼=5.800 816.60 1215.22 379.00 42.00 148.00 379.00 972.00 3036.20 6031.08 

𝐿𝑆=5.800 835.84 1284.35 398.00 40.00 153.00 398.00 977.25 3068.05 6176.49 

𝐿𝐸=5.700 791.15 1185.51 367.00 37.00 141.00 367.00 927.25 2975.15 5731.04 

Overall 194.75 223.76 124.00 21.00 61.00 124.00 240.00 614.00 1120.03 

7 0.25 

𝐿𝐼=5.700 785.94 1218.89 361.00 38.00 138.00 361.00 896.00 2999.20 6175.00 

𝐿𝑆=5.700 791.87 1252.35 367.00 39.00 142.00 367.00 911.00 2972.45 5872.02 

𝐿𝐸=5.710 791.15 1185.51 367.00 37.00 141.00 367.00 927.25 2975.15 5731.04 

Overall 186.19 227.33 116.00 20.00 58.00 116.00 230.00 574.05 1081.00 

8 0.25 

𝐿𝐼=5.750 824.09 1300.51 384.00 43.00 147.75 384.00 957.00 3042.05 6252.23 

𝐿𝑆=5.750 791.87 1252.35 367.00 39.00 142.00 367.00 911.00 2972.45 5872.02 

𝐿𝐸=5.710 817.77 1262.04 381.00 37.00 148.00 381.00 956.25 3048.00 5996.11 

overall 186.19 227.33 116.00 20.00 58.00 116.00 230.00 574.05 1081.00 

9 0.25 

𝐿𝐼=5.741 799.78 1242.45 376.00 39.00 144.00 376.00 934.00 2967.00 5755.46 

𝐿𝑆=5.747 800.25 1254.17 368.00 42.00 146.00 368.00 912.00 2952.05 6386.01 

𝐿𝐸=5.705 797.84 1198.41 383.00 37.00 145.00 383.00 947.00 2914.40 5593.48 

overall 187.46 213.16 118.00 21.00 58.75 118.00 231.00 599.05 1045.01 

 

Although two cases (2 and 9) are near to qualify the criteria used for the selection of q 

value in the penalty function such as both cases have relatively minimum SDRL and an 

approximately equal individual value of 𝐴𝑅𝐿0 but both cases (2 and 9) does not have 

overall 𝐴𝑅𝐿0 = 200. So, only case 5 meets satisfactory conditions to select the value of q 

which is equals to 0.2 in the penalty function.    
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2.4 Comparative analysis 

With the aim to assess the performance of PM_3 chart to monitor simple linear profile 

parameters such as slope, intercept and error variance, different kind of shifts introduced 

in profile parameters. The details of these shifts are described in Table 2.4. 

Table 2.4: Amounts of shift introduced in linear profile parameters 

Type of 

Shifts 
Notation Amounts of Shift 

In intercept 

of 

transformed 

model 

𝐵0 to 𝐵0 +𝜑𝜎 𝜑 = 0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0 

In slope of 

original 

model 

𝛽1 to 𝛽1 + 𝛽𝜎 𝛽 = 0.025,0.05,0.075,0.1,0.125,0.15,0.175,0.2,0.225,0.25 

In slope of 

transformed 

model 

𝐵1 to 𝐵1 + 𝛿𝜎 

𝛿 = −0.2, −0.3, −0.4, −0.5, −0.6, −0.7, −0.8, −0.9,−1.0  

and for joint monitoring 

𝛿 = 0.025,0.05,0.075,0.1,0.125,0.15,0.175,0.2,0.225,0.25 

In error 

variance of 

original 

model 

𝜎 to  𝛾𝜎 𝛾 = 1.2,1.4,1.6,1.8,2,2.2,2.4,2.6,2.8,3 

 

We have compared the performance of PM_3 chart with some existing control charts in 

terms of 𝐴𝑅𝐿, 𝐸𝑄𝐿, 𝑆𝐸𝑄𝐿, 𝑅𝐴𝑅𝐿 and 𝑆𝑅𝐴𝑅𝐿. The control charts selected for comparison 

purpose include the Hotelling 𝑇2, EWMA/R, EWMA_3, and Shewhart_3. The ARL 

comparison for intercept shifts in the transformed model, slope shifts in the original model, 

error variance shifts in the original model and joint shifts (intercept and slope) in the 
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transformed model are portrayed in following tables. The results are reported in terms of 

percentage decrease in ARL at certain shift which is obtained by,  

Percentage decrease = (
 𝐴𝑅𝐿0 − 𝐴𝑅𝐿1

𝐴𝑅𝐿0
) × 100 

2.4.1 Shifts in intercept parameter: 

The results for the shifts in intercept parameter are reported in Table 2.5 while ARL curves 

are portrayed in Figure 2.1. The 10% increment in intercept parameter (𝜑 = 0.20) may 

cause 66.75% reduction in the 𝐴𝑅𝐿 of EWMA/R chart, 31.15% reduction in the 𝐴𝑅𝐿 of 

Hotelling 𝑇2 chart, 70.45% reduction in the 𝐴𝑅𝐿 of EWMA_3 chart, 24.3% reduction in 

the 𝐴𝑅𝐿 of Shewhart_3 chart and 84.88% reduction in the 𝐴𝑅𝐿 of PM_3 chart. Further, 

shift in intercept (𝜑 = 1.60) may result 2.30, 1.80, 2.30, in 1.90, 2.22 unit 𝐴𝑅𝐿 for 

EWMA/R, Hotelling 𝑇2, EWMA_3, Shewhart_3 and PM_3 charts respectively. The 80% 

increment in intercept parameter (𝜑 = 0.80) may resulted 5.40, 13.20, 5.10, 15.50 and 5.09 

unit SEQL values for EWMA/R, Hotelling T2, EWMA_3, Shewhart_3 and PM_3 charts 

respectively. Further, 1.21, 2.25, 1.15, 2.57 and 1 are the values of RARL with respect to 

EWMA/R, Hotelling 𝑇2, EWMA_3, Shewhart_3 and PM_3 charts respectively. The 

minimum ARL, EQL and RARL values are the, evident that PM_3 chart has better 

detection ability as compared to other charts.  
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Table 2.5: ARL comparison for intercept shifts in transformed model (𝑩𝟎 to 𝑩𝟎 + 𝝋𝝈) 

Chart   

𝜑 

  
 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

EWMA/R 

ARL 66.5 17.7 8.4 5.4 3.9 3.2 2.7 2.3 2.1 1.9 

SEQL 1.33 2.04 2.33 2.56 2.78 3.03 3.3 3.59 3.9 4.23 

SRARL 1.6 1.7 1.56 1.44 1.36 1.31 1.27 1.24 1.22 1.21 

Hotelling T2 

ARL 137.7 63.5 28 13.2 6.9 4 2.6 1.8 1.5 1.2 

SEQL 2.75 5.29 6.9 7.49 7.53 7.33 7.06 6.78 6.55 6.38 

SRARL 2.77 3.79 4 3.8 3.48 3.16 2.87 2.63 2.42 2.25 

EWMA_3 

ARL 59.1 16.2 7.9 5.1 3.8 3.1 2.6 2.3 2.1 1.9 

SEQL 1.18 1.83 2.13 2.36 2.59 2.85 3.13 3.42 3.75 4.09 

SRARL 1.47 1.55 1.43 1.33 1.26 1.22 1.19 1.17 1.15 1.15 

Shewhart_3 

ARL 151.4 77.9 33.8 15.5 7.7 4.3 2.7 1.9 1.5 1.2 

SEQL 3.03 6.14 8.2 8.91 8.89 8.57 8.16 7.78 7.45 7.19 

SRARL 2.99 4.3 4.67 4.46 4.07 3.67 3.32 3.03 2.78 2.57 

PM_3 

ARL 30.34 12.53 7.36 5.09 3.86 3.09 2.58 2.22 1.95 1.75 

SEQL 0.61 1.11 1.51 1.87 2.21 2.53 2.85 3.17 3.48 3.8 

SRARL 1 1 1 1 1 1 1 1 1 1 

 

2.4.2 Shifts in the slope of original model: 

The results for the shifts in slope parameter are reported in Table 2.6 The 20% increase in 

slope parameter (𝛽 = 0.050) may cause 78.05% drop in the 𝐴𝑅𝐿 of EWMA/R chart, 

47.20% drop in the 𝐴𝑅𝐿 of Hotelling T2 chart, 81.75% drop in the 𝐴𝑅𝐿 of EWMA_3 chart, 

37.50% drop in the 𝐴𝑅𝐿 of Shewhart_3 chart and 89.28% drop in the 𝐴𝑅𝐿 of PM_3 chart. 

Further, shift in slope (𝛽 = 0.225) may result 196.6, 196.3, 196.7, 195.0, 196.7 unit 

decrease in 𝐴𝑅𝐿 for EWMA/R, Hotelling T2, EWMA_3, Shewhart_3 and PM_3 charts 

respectively.  

When the shift is increased by 50% in slope parameter (𝛽 = 0.125) then 7.70, 20.10, 7.20, 

27.90 and 6.83 unit ARL values are reported for EWMA/R, Hotelling T2, EWMA_3, 

Shewhart_3 and PM_3 charts respectively. Further, the values of EQL of EWMA/R, 
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Hotelling 𝑇2, EWMA_3, Shewhart_3 and PM_3 charts are 0.12, 0.24, 0.11, 0.31 and 0.10 

respectively. Similarly, the values of RARL of these charts are 1.36, 2.72, 1.23, 3.50 and 

1. So, PM_3 chart has least values of ARL, EQL and RARL as compared to other charts 

(cf. Figure 2.1) therefore the detection ability of PM_3 is better than EWMA/R, Hotelling 

𝑇2, EWMA_3, Shewhart_3 charts.  

Table 2.6: ARL comparison for slope shifts in original model (𝜷𝟏 to 𝜷𝟏 +𝜷𝝈) 

Chart  
𝛽 

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 

EWMA/R 

ARL 119.00 43.90 19.80 11.30 7.70 5.80 4.70 3.90 3.40 3.00 

SEQL 0.04 0.07 0.08 0.09 0.09 0.10 0.10 0.11 0.12 0.12 

SRARL 1.73 2.00 1.93 1.79 1.67 1.58 1.50 1.44 1.40 1.36 

Hotelling T2 

ARL 166.00 105.60 60.70 34.50 20.10 12.20 7.80 5.20 3.70 2.70 

SEQL 0.05 0.12 0.18 0.22 0.24 0.25 0.25 0.25 0.24 0.24 

SRARL 2.22 3.20 3.74 3.87 3.77 3.57 3.35 3.12 2.91 2.72 

EWMA_3 

ARL 101.60 36.50 17.00 10.30 7.20 5.50 4.50 3.80 3.30 2.90 

SEQL 0.03 0.06 0.07 0.08 0.08 0.09 0.09 0.10 0.11 0.11 

SRARL 1.55 1.73 1.66 1.55 1.46 1.39 1.33 1.29 1.26 1.23 

Shewhart_3 

ARL 178.30 125.00 79.20 46.70 27.90 17.10 10.90 7.10 5.00 3.60 

SEQL 0.06 0.13 0.22 0.28 0.31 0.33 0.33 0.33 0.32 0.31 

SRARL 2.35 3.56 4.36 4.68 4.67 4.49 4.25 3.99 3.73 3.50 

PM_3 

ARL 48.20 21.43 12.94 9.07 6.83 5.43 4.49 3.82 3.30 2.92 

SEQL 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.09 0.10 

SRARL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

2.4.3 Shifts in error variance: 

In Table 2.7 and Figure 2.1, the results are reported for the shifts in error variance 

parameter. At the small amount of shift (ranges from 1.2 to 2.00) the PM_ 3 chart have 

lowest ARL values as compared to other charts while for moderate to large shift (ranges 

from 2.2 to 3.0) Shewhart_3 chart has least ARL values. The largest shift in error variance 

(𝛾 = 3.0) may resulted 1.40, 1.80, 2.10, 1.40 and 1.50 unit ARL for the EWMA/R, 

Hotelling 𝑇2, EWMA_3, Shewhart_3 and PM_3 charts respectively. When two or more 
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charts have equal values of ARL, then their performance assessed on the basis of EQL and 

RARL. The EQL values of EWMA/R, Hotelling 𝑇2, EWMA_3, Shewhart_3 and PM_3 

charts are 26.44, 30.57, 29.97, 27.49 and 24.94 respectively. Since, EQL of PM_3 is fewer 

than all other charts. The RALR values of these charts are 1.03, 1.31, 1.32, 1.07 and 1.00. 

Hence, the smallest EQL and RARL values are showed that PM_3 chart has better 

detection ability as compared to other charts. 

Table 2.7: ARL comparison for error variance shifts in original model (𝝈 to 𝜸𝝈 ) 

Chart  
𝛾 

1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 

EWMA/R 

ARL 34.30 12.00 6.10 3.90 2.90 2.30 1.90 1.70 1.50 1.40 

SEQL 124.70 80.58 60.24 48.71 41.39 36.39 32.77 30.07 28.02 26.44 

SRARL 1.19 1.25 1.22 1.17 1.14 1.11 1.08 1.06 1.05 1.03 

Hotelling T2 

ARL 39.60 14.90 7.90 5.10 3.80 3.00 2.50 2.20 2.00 1.80 

SEQL 128.51 85.81 65.45 53.68 46.12 40.91 37.13 34.32 32.20 30.57 

SRARL 1.30 1.43 1.44 1.42 1.39 1.37 1.35 1.33 1.32 1.31 

EWMA_3 

ARL 33.50 12.70 7.20 5.10 3.90 3.20 2.80 2.50 2.30 2.10 

SEQL 124.12 80.34 60.78 49.96 43.18 38.57 35.32 32.97 31.25 29.97 

SRARL 1.18 1.25 1.26 1.27 1.28 1.28 1.29 1.30 1.31 1.32 

Shewhart_3 

ARL 40.10 13.50 6.50 4.00 2.80 2.20 1.80 1.60 1.50 1.40 

SEQL 128.87 85.49 64.17 51.83 43.88 38.39 34.41 31.43 29.19 27.49 

SRARL 1.31 1.40 1.36 1.29 1.23 1.18 1.14 1.10 1.08 1.07 

PM_3 

ARL 24.81 9.82 5.61 3.90 2.99 2.42 2.06 1.81 1.65 1.50 

SEQL 117.86 72.67 54.05 43.91 37.59 33.30 30.22 27.95 26.25 24.94 

SRARL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

2.4.4 Shifts in the slope of transformed model: 

The results for the shifts in slope parameter of transformed model are reported in Table 2.8 

while ARL curves are portrayed in Figure 2.1. The 20% decrement in slope parameter (𝛿 =

−0.2) may cause 61.65% loss in the 𝐴𝑅𝐿 of EWMA/R chart, 73.9% in 𝑇2 chart, 93.45% 

in EWMA_3 chart, 67.85% in Shewhart_3 chart and 94.58%in PM_3 chart. Further, shift 

in slope of transformed model (𝛿 = −0.7) may resulted 2.6, 1.9, 2.3, 2.03 and 2.27 unit 

ARL for EWMA/R, 𝑇2, EWMA_3, Shewhart_3 and PM_3 charts respectively.  
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When shift is decreased by 60% in slope parameter of transformed model (𝛿 = −0.6)  than 

SEQL of EWMA/R, 𝑇2, EWMA_3, Shewhart_3 and PM_3 charts are 2.12, 1.39, 0.57, 

1.63 and 0.54 respectively0. Further, the values of EQL of these five charts are 1.76, 1.23, 

0.87, 1.38 and 0.83. Similarly, the values of RARL of EWMA/R, 𝑇2, EWMA_3, 

Shewhart_3 and PM_3 charts are 2.73, 1.88, 1.05, 2.18 and 1.00. Hence, based on 

minimum ARL, EQL and RARL the detection ability of PM_3 chart is superior than other 

charts.  

Table 2.8: ARL comparison for slope shifts in transformed model (𝑩𝟏 to 𝑩𝟏 + 𝜹𝝈) 

Chart  
 

   𝛿     
  -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 

EWMA/R 

ARL 76.7 33.7 15.3 7.5 4.2 2.6 1.8 1.4 1.2 

SEQL 1.53 2.04 2.21 2.2 2.12 2.02 1.92 1.83 1.76 

SRARL 4.04 4.75 4.65 4.29 3.89 3.52 3.21 2.95 2.73 

T2 

ARL 52.2 21.2 9.6 4.9 2.9 1.9 1.5 1.2 1.1 

SEQL 1.04 1.36 1.45 1.44 1.39 1.33 1.28 1.25 1.23 

SRARL 2.91 3.29 3.15 2.88 2.61 2.37 2.18 2.02 1.88 

EWMA_3 

ARL 13.1 6.6 4.4 3.3 2.7 2.3 2.1 1.9 1.7 

SEQL 0.26 0.36 0.43 0.5 0.57 0.63 0.71 0.79 0.87 

SRARL 1.10 1.11 1.08 1.06 1.05 1.04 1.04 1.05 1.05 

Shewhart_3 

ARL 64.29 25.29 11.08 5.42 3.06 2.03 1.49 1.24 1.10 

SEQL 1.28 1.66 1.75 1.72 1.63 1.55 1.47 1.42 1.38 

SRARL 3.46 3.96 3.77 3.43 3.08 2.79 2.54 2.34 2.18 

PM_3 

ARL 10.83 6.4 4.43 3.36 2.7 2.27 1.96 1.73 1.53 

SEQL 0.22 0.31 0.4 0.47 0.54 0.61 0.69 0.76 0.83 

SRARL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

2.4.5 Joint Shifts in intercept and slope of transformed model: 

In Table 2.9, At fixed 𝜑 = 0 and shift in the slope (i.e. 𝛿 = 0.075)  may cause loss of 

19.19%, 61.65%,16.55% and 81.32% in the ARL of EWMA/R, EWMA_3, Shewhart_3 

and PM_3 charts respectively. The ARL at fixed 𝛿 = 0 and shift in intercept (i.e. 𝜑 = 0.15 

and 𝜑 = 0.45 ) are reported as (110.25, 88.66, 170.71 and 56.97) and (21.94, 13.01, 63.40 
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and 16.92) in EWMA/R, EWMA_3, Shewhart_3 and PM_3 respectively. At 𝜑 = 0.20 and 

𝛿 = 0.15 the unit loss in ARL of EWMA/ R, EWMA_3, Shewhart_3 and PM_3 charts are 

147.1, 180.5, 112.79 and 185.79 respectively. Similarly, at 𝛿 = 0.125 and 𝜑 = 0.20  unit 

loss in ARL are 143.4, 174.6, 98.49 and 183.15 of EWMA/R, EWMA_3, Shewhart_3 and 

PM_3 respectively. So, based on ARL results reported in joint shift (intercept and slope) 

the performance of PM_3 chart is better than other charts. 
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Table 2.9: ARL comparison for joint (intercept and slope) shift in transformed model (𝑩𝟎 to 𝑩𝟎 +𝝋𝝈) and   

(𝑩𝟏 to 𝑩𝟏 + 𝜹𝝈) 

𝜑  Chart 
 𝛿 

0 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 

0.0 

EWMA/R 200 182.54 174.65 161.62 146.45 134.65 115.62 95.36 78.65 69.85 55.45 

EWMA_3   200 172.50 119.40 76.70 49.10 32.40 23.00 16.70 13.20 10.60 8.80 

Shewhart_3 200 195.00 181.80 166.90 142.10 120.80 99.20 81.20 63.80 51.00 41.00 

PM_3  200 108.37 58.72 37.36 26.35 19.93 15.75 12.89 10.83 9.29 8.11 

0.05 

EWMA/R 189.65 179.10 169.90 156.60 140.80 123.20 105.10 88.80 73.40 60.20 49.60 

EWMA_3   175.61 157.60 114.70 74.80 48.30 32.20 22.50 16.90 13.20 10.70 8.90 

Shewhart_3 196.28 193.18 180.64 162.76 139.73 119.05 98.79 79.91 63.73 50.47 40.90 

PM_3  138.98 87.56 53.82 36.09 25.87 19.73 15.65 12.91 10.78 9.31 8.03 

0.10 

EWMA/R 167.85 139.50 133.60 125.40 115.50 103.50 90.40 78.30 65.70 55.60 46.30 

EWMA_3   137.48 122.10 94.60 66.40 44.90 30.70 21.90 16.60 13.10 10.60 8.90 

Shewhart_3 186.73 184.63 172.96 154.66 137.51 115.32 95.28 77.85 62.38 50.83 40.31 

PM_3  84.16 57.44 44.69 32.75 24.49 19.14 15.37 12.69 10.69 9.28 8.09 

0.15 

EWMA/R 110.25 96.80 94.20 90.30 85.10 78.50 70.90 63.00 55.30 47.70 40.90 

EWMA_3   88.66 84.60 70.80 54.50 39.60 28.50 20.90 16.10 12.80 10.40 8.80 

Shewhart_3 170.71 165.25 160.43 143.16 128.64 109.11 91.59 74.65 60.80 49.55 39.75 

PM_3  56.97 40.41 34.51 28.06 22.61 18.23 15.01 12.50 10.67 9.15 8.00 

0.20 

EWMA/R 84.20 64.80 63.80 62.10 59.70 56.60 52.90 48.50 44.00 39.20 34.60 

EWMA_3   59.37 57.10 51.10 42.40 33.30 25.40 19.50 15.40 12.40 10.20 8.70 

Shewhart_3 151.90 148.30 143.85 132.16 116.66 101.51 87.21 70.79 57.63 47.31 38.28 

PM_3  42.10 29.64 27.20 23.68 20.06 16.85 14.21 12.04 10.45 9.08 7.93 

0.25 

EWMA/R 64.50 44.30 43.80 42.90 41.80 40.30 38.40 36.10 33.60 30.80 28.10 

EWMA_3   39.74 39.50 36.50 32.30 27.10 22.00 17.80 14.40 11.90 10.00 8.50 

Shewhart_3 132.50 130.54 125.22 114.09 103.59 91.89 78.02 67.20 55.43 45.70 36.84 

PM_3  32.77 21.46 19.02 17.86 16.30 14.50 13.31 11.5 10.05 8.90 7.80 

0.30 

EWMA/R 54.51 31.00 30.80 30.50 29.90 29.20 28.30 27.10 25.70 24.20 22.50 

EWMA_3   28.50 28.20 26.90 24.70 22.00 18.80 15.70 13.20 11.20 9.60 8.30 

Shewhart_3 112.90 112.33 107.85 100.24 91.56 81.92 71.51 61.72 50.87 42.88 35.20 

PM_3  26.74 17.89 17.34 16.70 15.22 13.88 12.33 10.98 9.71 8.62 7.68 

0.35 

EWMA/R 38.53 22.90 22.80 22.60 22.20 21.90 21.40 20.70 19.90 19.10 18.00 

EWMA_3   20.75 20.90 20.20 19.10 17.60 15.80 13.90 12.10 10.50 9.10 8.00 

Shewhart_3 93.75 93.36 90.25 85.38 79.35 71.53 63.79 54.97 47.05 40.37 33.23 

PM_3  22.50 14.85 14.53 14.07 13.33 12.37 11.33 10.23 9.30 8.31 7.46 

0.40 

EWMA/R 29.8 17.40 17.30 17.20 17.10 16.80 16.60 16.20 15.80 15.30 14.70 

EWMA_3   16.27 16.20 15.90 15.30 14.50 13.50 12.10 10.90 9.70 8.60 7.60 

Shewhart_3 77.67 76.11 75.17 71.33 66.92 62.19 55.44 49.13 43.38 36.36 30.71 

PM_3  22.48 12.46 12.31 12.05 11.61 11.01 10.27 9.52 8.65 7.96 7.25 

0.45 

EWMA/R 21.94 13.90 13.90 13.90 13.80 13.60 13.50 13.30 13.00 12.60 12.20 

EWMA_3   13.01 13.10 12.90 12.60 12.10 11.40 10.60 9.80 8.90 8.00 7.30 

Shewhart_3 63.40 63.05 62.15 59.40 56.24 52.19 49.02 43.19 38.39 33.32 28.66 

PM_3  16.92 10.73 10.66 10.45 10.22 9.80 9.36 8.76 8.17 7.56 6.99 

0.50 

EWMA/R 18.98 11.50 11.50 11.40 11.30 11.30 11.10 11.00 10.80 10.60 10.30 

EWMA_3   10.69 10.80 10.80 10.60 10.30 9.90 9.30 8.70 8.10 7.50 6.90 

Shewhart_3 51.24 51.32 50.88 49.25 46.96 44.14 40.69 37.55 33.57 29.96 25.94 

PM_3  14.99 9.31 9.34 9.17 8.98 8.77 8.48 8.05 7.60 7.14 6.62 
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Figure 2.1: ARL curves with respect to different amounts of shifts  

  

2.5  A case study: N-Queens size problems 

The N-Queen problem is a computational/multithreading program used for benchmarking. 

This problem involves by placing N-queens on a 𝑁 ×  𝑁 chessboard (given in Figure 2.2) 

such that no Queen repeated in diagonal, row and in column.  
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Figure 2.2:  Solution of 4-Queen size  

There exist different numbers of an N-Queen problem with their possible solutions. In 

Table 2.10, two machines having different specification shows the time to solve the 

solution of different Queen size problem. The machine has a 2GHz processor and 24 central 

processing unit (CPU) takes significantly less time to solve the Queen size problem at the 

different level of N (ranging from 4 to 19). It is also noted that as the number of the N-

Queen problems increased the possible solutions and elapsed time also increased. 

In the first case, we used one virtual machine/operating system (VM/OS) and 2-VCPU 

(virtual CPU) to run the N-Queen problems. When two CPU are working than rest of the 

22 CPU are in idle condition. In the next experiment, we increase the of VCPU from 2 to 

4 to reduce the elapsed time and utilize more CPU. In this case, 4-VCPU are used and 20 

CPU is in idle condition. We gradually increase the number of VCPU up to 24 and then 

increase it from 24 to 32 to check to see its effect of elapsed time. Once all 24 CPU is used, 

the best result produced (i.e. less elapsed time). When we cross the limit of 24 CPU the 

elapsed time increased for 28 & 32 CPU. After that, we apply virtualization technology to 

run more than one VM/OS on the top of our powerful server and run the N-Queen 

benchmarking application. The layout of our experimental study is portrayed in Figure 2.3. 
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Table 2.10: Comparison of two machines for N-Queens problem 

Board Size (N x N 

chessboard) 

Number of Solutions to 

N-Queens Problem 

Time to find a 

solution.                     

PC specification       

2GHz with 24 CPU 

Time to find a 

solution.                   

PC specification      

800 MHz 

4 2 10 milliseconds 13 milliseconds 

5 10 10 milliseconds 13 milliseconds 

6 4 10 milliseconds 13 milliseconds 

7 40 10 milliseconds 13 milliseconds 

8 92 10 milliseconds 13 milliseconds 

9 352 20 milliseconds 28 milliseconds 

10 724 20 milliseconds 60 milliseconds 

11 2680 30 milliseconds 130 milliseconds 

12 14200 50 milliseconds 550 milliseconds 

13 73712 165 milliseconds 860 milliseconds 

14 365596 385 milliseconds 1 seconds 

15 2279184 605 milliseconds 4 seconds 

16 14772512 970 milliseconds 23 seconds 

17 95815104 3.5 seconds 2 min 38 seconds 

18 666090624 23.5 seconds 19 min 26 seconds 

19 4968057848 3.3 min 2 hour 31 min        24 

seconds 
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Figure 2.3: Experimental layout of N-Queen size 

   

In this case study, we have selected 16 Queen problems ranging from (chessboard size 4 

to 19), two type of algorithm, five VM/OS and nine different level of VCPU. Thus, we 
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have 1440 (16 ×  2 ×  5 ×  9) possible combinations of the solution. So, each 

combination of Queen size has 90 elapsed time (in sec) values against a VM/OS. The total 

values of elapsed time are 90 ×  5 = 450. We are considering problem size 17 as a 

benchmark and applied our proposed progressive mean control chart (PM_3). 

2.5.1 Implementation of PM_3 and Shewhart_3 chart 

We have considered VCPU value as independent variable (𝑋 = 2,4,8,12,16,20,24,28,32) 

and elapsed time (𝑌) as a dependent variable. The following steps are described the 

implementation of Shewhart_3 and PM_3 charts. 

Step 1: We have total 450 sample values (50 profiles). The IC regression model based on 

50 profiles is  

𝑌 = 19.367 − 0.506𝑋 + 휀.  (original model) 

Step 2:  Further, to gain the assumption of independence between parameters, we 

transformed the 𝑋 values in 𝑋′ by using 𝑋′ = 𝑋 − �̅�,  

𝑋′ = −14.22,−12.22,−8.22,−4.22,−0.22, 3.78, 7.78, 11.78, 15.78 

𝑌 = 11.367 − 0.506𝑋′ + 휀.  (transformed model) 

Step 3: The selected charting constants for each chart is given below 

For PM_3: {

  𝐿𝐼 = 16.54
𝐿𝑆 = 4.54
𝐿𝐸 = 4.54

, 

For Shewhart_3: {

𝑍𝛼/2 = 3.14

 𝜒2
𝐿𝐶𝐿

= 0.001 

𝜒2
𝑈𝐶𝐿

=  14.17

’ 
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Step 4:  We have plotted our proposed statistics for each parameter (i.e. intercept, slope 

and error variance) against their control limits which are displayed in Figure 2.4 and Figure 

2.5. The process is declared IC (shaded in pink color) for the first 25 points while OOC 

region presented in white color. The points which are lying outside the limits (UCL or 

LCL) shows that the process is out of control.  

Step 5: When a turbulence occurs in the data set due to Queen size (16 problem) after 25th 

sample, we can see that the elapsed time of new data has significantly changed in terms of 

intercept, slope and error variance. The PM_3 and Shewhart_3 charts for Queen size (16 

problems) are portrayed in Figure 2.4 and Figure 2.5. The findings depict that for shifted 

intercept parameter, PM_3 detect 6 OOC points while Shewhart_3 detects 10 OOC signals. 

For the shifted slope and error variance parameters, PM_3 declares 7 and 9 OOC points 

while Shewhart_3 detects 0 and 10 OOC signals respectively.  

 

Figure 2.4: PM_3 chart for Queen size problem 16 
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Figure 2.5: Shewhart_3 chart Queen size problem 16 

 

Figure 2.6: PM_3 charts for Queen size 18  

 

Further, to explore the detection ability of PM_3 chart, we also introduced large shifts by 

considering last 25 profiles of Queen size 18. The graphical display of PM_3 chart for 
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Queen size 18 is portrayed in Figure 2.6, which shows more out of control signals as 

compared to a data set having Queen size 16. 

2.5.2 Implementation of charts on perturbing the data 

In literature, data perturbation approaches are classified into two categories such as value 

distortion approach and probability distribution approach. In distortion technique, data 

elements are perturbed by several methods that include additive noise, multiplicative noise, 

or other randomization methods. The probability distribution approach substitutes the data 

set with the sample from the own distribution. Recently, Muralidhar and Sarathy (2006) 

discussed four different perturbation approaches on linear models. In this study, an additive 

noise model was used which was proposed by Kim (1986) and modified by Tendick and 

Matloff (1994). The linear profile parameters of the regression model (OOC model) 

obtained by perturbating data along with IC model are described in Table 2.11. 

Table 2.11: Comparison of in-control and out-of-control models 

IC Model      OOC Model 

 Intercept = 19.364     Intercept = 33.711 

Slope = -0.506      Slope = -0.844 

Standard error = 8.535    Standard error = 16.107 

Rate of Change in intercept = 100*(33.711 -19.364) / 19.364 = 74.09% 

Rate of Change in slope = 100*(-0.844+0.506) / -0.506 = 66.79% 

Rate of Change in error = 100*(16.107 - 8.535) / 8.535 = 88.71% 

 

The performance of PM_3 chart is still better than Shewhart_3 when the shift is introduced 

by using distorted the data. The PM_3 chart detects 10 OOC points in intercept, 6 OOC 
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points in slope and 7 OOC points in error variance in perturbated data as shown in Figure 

2.7. On the other hand, Shewhart_3 is detecting 10 OOC points in intercept, 4 in slope and 

6 OOC points in error variance as shown in Figure 2.8. So, based on data perturbation 

PM_3 chart has more detection ability as compare to Shewhart_3 chart.  

 

Figure 2.7: PM_3 chart for perturbated data 

 

The detection ability of PM_3 chart is better when the shift is introduced by perturbation 

technique. PM_3. Hence, in decreasing shift (Queen size problem 16) and perturbation 

shift PM_3 chart has outperformed well as compared to Shewhart_3 chart 
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Figure 2.8: Shewhart_3 chart perturbated data 

 

2.6 Conclusions 

In this study, we proposed a new charting method based on progressive mean for the 

simultaneous monitoring of simple linear profile parameters. For the comparative study, 

we have introduced several amounts of shifts in linear profile parameters such as intercept, 

slope and error variance. Further, we have used several performance measures such as 

𝐴𝑅𝐿, 𝐸𝑄𝐿, 𝑆𝐸𝑄𝐿, 𝑅𝐴𝑅𝐿 and 𝑆𝑅𝐴𝑅𝐿 for determining the detection ability of PM_3 chart 

and its counterparts. In the presence of shifts in linear profile parameters, the findings 

depict that PM_3 chart has better detection ability as compared to other competing charts. 

Moreover, the proposed chart PM_3 is applied on a case study from computer engineering 

field and results depict the importance of PM_3 chart for controlling the real systems.  
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Chapter 3                                                                                                 

AN ASSORTED CONTROL CHART FOR LOCATION 

PARAMETER 

Primarily, three types of control charts are employed to observe the disturbances in the 

process parameters. Large turbulences are detected efficiently by Shewhart’s control chart 

whereas, for small and medium instabilities, cumulative sum and exponentially weighted 

moving average control charts are used. This chapter proposes an assorted approach to 

monitor small, medium and large disturbances in a single control charting procedure. The 

said objective is met by using the well-known max approach. For the evaluation of the 

proposed assorted control chart, we have used various measures like average run length, 

standard deviation run length, extra quadratic loss, relative average run length and 

performance comparison index. A comparison of the assorted control chart is presented 

with some typical charts including the Shewhart’s, cumulative sum and exponentially 

weighted moving average control charts. Finally, a real-life example is presented to 

monitor the pH level of water in Ecotoxicology lab. 

3.1. Introduction 

Generally, the control charts are designed to detect three types of shifts in the process 

parameter(s) (i.e. small, medium and large). Shewhart’s control charts are efficient in 

detecting large shifts whereas CUSUM and EWMA charts are used to detect small to 

moderate shifts in the process.  In literature, several classical and enhanced schemes are 

available to detect different amounts of shift in process location parameter. Some of these 

control charting strategies are as follows: Fast Initial Response (FIR) CUSUM by Lucas 
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and Crosier (1982), FIR EWMA by Lucas and Saccucci (1990), new CUSUM by Croiser 

(1986), generalized weighted moving average control chart by Sheu and Lin (2003), a run-

rules scheme by Abbas et al. (2011), mixed EWMA-CUSUM (MEC) by Abbas et al. 

(2013) and mixed CUSUM-EWMA by Zaman et al. (2015).  

All these enhanced and modified control charts focus on detecting a specific size of the 

shift. This makes these charts insensitive to the others shift sizes. The said drawback is 

addressed by some further modifications (focusing on detecting a range of shifts) in 

Shewhart’s, CUSUM and EWMA charts. Some of these modifications are combined 

Shewhart-CUSUM(CSC) by Lucas (1982), Adaptive EWMA (AEWMA) by Capizzi and 

Masarotto (2003), Adaptive CUSUM by Alippi and Roveri (2006) and Wu et al. (2009), 

Riaz et al. (2011) ,Abujiya et al. (2013a) and combined Shewhart-EWMA(CSE) by 

Abujiya et al. (2013) and Koshti (2016).  Taking inspiration from these enhanced and 

modified control charts, this chapter proposes a new assorted control charting approach 

that can be used to detect the small, medium and large shifts (in process location) 

simultaneously. Before getting into the details of proposed assorted control chart, the next 

few subsections provide the structural details of some classical, modified and enhanced 

control charts. The outlined of rest of the chapter is as follows: in sub section 3.1.1- 3.1.6, 

a brief discussion on existing methods to monitor process location parameter. In section 

3.2, proposed structure of Assorted control chart is discussed. The performance and 

comparative analysis of proposed with the existing control charting strategies are discussed 

in Section 3.3. An implementation of proposed and competing charts on a real-life 

application is discussed in Section 3.4. The concluding remarks are given in the Section 

3.5. 
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3.1.1. The Classical Control Charts 

A detailed discussion on classical control charts has been described in Section 1.2.1.  

3.1.2. The FIR EWMA control chart 

The FIR EWMA control chart was proposed by Steiner (1999). The structure and control 

limits of FIR EWMA are as follow:  

𝑭𝑰𝑹𝒂𝒅𝒋 = 𝟏 − (𝟏 − 𝒇)𝟏+𝜶(𝟏−𝒕)                                                

𝐿𝐶𝐿𝑖(𝐹𝐼𝑅) = 𝜇0 − 𝐿 (
𝜎0

√𝑛
) (1 − (1 − 𝑓)1+𝛼(1−𝑡) ) √

 𝜆 

 (2−𝜆)𝑛
[1 − (1 −  𝜆 )2𝑖]

𝑈𝐶𝐿𝑖 (𝐹𝐼𝑅) = 𝜇0 + 𝐿 (
𝜎0

√𝑛
) (1 − (1 − 𝑓)1+𝛼(1−𝑡) ) √

 𝜆 

 (2−𝜆)𝑛
[1 − (1 −  𝜆 )2𝑖]

}
 

 

, 

where   𝛼 = (
−2

log(1−𝑓)
− 1) /19, 

3.1.3. The Combined Shewhart- CUSUM (CSC) control chart 

The CSC control chart is the combination of Shewhart and CUSUM control charts: 

Shewhart control chart is used to detect a large amount of shift, while CUSUM control 

chart is used to observe small and moderate shifts. The structure of CSC control chart 

proposed by Lucas (1982) is as follow:  

𝒁𝒊 =
�̅�𝒊 −𝝁𝟎

𝝈𝟎

√𝒏

                

The standardized CUSUM statistics are 

𝐶𝑖
+ = max  [0, Zi − k + Ci−1

+ ] 

𝐶𝑖
− = max [0, − k − Zi + Ci−1

− ]
},                 

The CSC scheme indicates out of control signal if 𝐶𝑖
+and/or 𝐶𝑖

− have exceeded decision 

interval value ℎ.  
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3.1.4. The Combined Shewhart- EWMA (CSE) control chart 

The CSE control chart scheme is obtained by some modification in EWMA scheme 

probability matrix by Lucas (1982). To detect small and large shifts in a process, CSE 

control chart performs well. The structure of CSE is obtained by merging Shewhart limits 

with EWMA scheme. In this case, the process is considered as IC if EWMA statistic lies 

within the control limit of Shewhart and declared as an OOC if EWMA statistic falls 

outside the limits. Koshti (2016) compared the performance of CSE control chart with 

Shewhart chart limits between 4 to 4.5 standard deviation.  

3.1.5. The Adaptive EWMA (AEWMA) control chart 

Capizzi and Masarotto (2003) was proposed AEWMA control chart, detect the small and 

large shifts in the process parameters. The design structure of AEWMA control chart is as 

follow: 

Xi = Xi−1 + 𝜙(𝑓𝑖)                  

where X0 = 𝜇0 , 𝑓𝑖 = 𝑦𝑖 − Xi−1 and 𝜙(𝑓𝑖) is a score function. When 𝑦𝑖 ≠ Xi−1, the above 

equation can be rewritten as  

Xi = (1 −w(𝑓𝑖))Xi−1 + 𝑤(𝑓𝑖)𝑦𝑖 

where 𝑤(𝑓) = 𝜙(𝑓)/𝑓 i.e. an EWMA statistic varying weights 

𝝓(𝒇) = {

𝒇 + (𝟏 − 𝝀)𝝉,          𝒇 < −𝝉

𝝀𝒇,                             |𝒇| ≤ 𝝉

𝒇 + (𝟏 − 𝝀)𝝉,             𝒇 >     𝝉         

    

where λ is a smoothing constant ranging 0 <  λ ≤ 1 and  𝜏 ≥ 0.  
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3.1.6. The Mixed EWMA-CUSUM (MEC) control chart 

Abbas et al. (2013) proposed MEC control chart for the monitoring of process location. 

The two statistics of MEC chart and UCL are as follows 

𝑀𝑖
+ = max[0, (𝑄𝑖 − 𝜇0) − 𝑎𝑖 +𝑀𝑖−1

+ ]

𝑀𝑖
− = max[0,−(𝑄𝑖 − 𝜇0) − 𝑎𝑖 +𝑀𝑖−1

− ]
} 

where 𝑀𝑖
+and 𝑀𝑖

− are the upper and lower CUSUM statistics and 𝑎𝑖 time varying reference 

value. Further, 𝑀𝑖
+= 𝑀𝑖

− = 0 at 𝑖 = 1. The 𝐸𝑊𝑀𝐴 statistic and control limits are defined 

as 

𝑄𝑖 = 𝜆𝑞𝑋𝑖 + (1 − 𝜆𝑞)𝑄𝑖−1 

𝐿𝐶𝐿𝑖 = 𝑎∗𝜎𝑋√
 𝜆𝑞 

 2−𝜆𝑞
[1 − (1 − 𝜆𝑞)

2𝑖
]

𝑈𝐶𝐿𝑖 = 𝑏
∗𝜎𝑋√

 𝜆𝑞 

 2−𝜆𝑞
[1 − (1 − 𝜆𝑞)

2𝑖
]

, 

where 𝑎∗ and 𝑏∗ are constant value like 𝑘 and ℎ.The further details may be seen in Abbas 

et al. (2013). On the same lines, a mixed CUSUM-EWMA (MCE) control chart for 

process monitoring location was proposed by Zaman et al. (2015). The details of MCE 

charts may be seen in the said paper. 

3.2. The design structure of 𝑨𝒔𝒔𝒐𝒓𝒕𝒆𝒅𝒌,𝝀 control chart for location  

In this segment, we propose an assorted approach to detect large, medium and small shifts 

in a single control chart namely an Assorted control chart. Assume that 𝑋 is normally 

distributed random variable 𝑋𝑖𝑗~𝑁 (𝜇0 + 𝛿
𝜎0

√𝑛
, 𝜎0),  𝑖 = 1,2, …… ..  and 𝑗 = 1,2, … . , 𝑛  

𝛿 = 0 corresponds to an IC situation. 

𝛿 ≠ 0 means that process has shifted to a new location. 
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Mathematically, shift can be defined as 

𝛿 =
𝜇1 − 𝜇0
𝜎0
√𝑛
⁄

 

where 𝜇0 is IC mean. 

𝜇1 is OOC mean. 

𝜎0 is IC standard deviation and   𝑛 is sample size. 

 The following statistics of Shewhart, CUSUM, and EWMA are used in our proposed chart 

respectively. 

�̅�𝑖 =
∑ 𝑋𝑖𝑗
𝑛
𝑗=1

𝑛
 

𝐶𝑖
+ = max [0, (�̅�𝑖 − 𝜇0) − 𝑘

𝜎0

√𝑛
+ 𝐶𝑖−1

+ ] 

𝐶𝑖
− = min [0, (�̅�𝑖 − 𝜇0) + 𝑘

𝜎0

√𝑛
+ 𝐶𝑖−1

− ]
}, 

𝑍𝑖 = 𝜆�̅�𝑖 + (1 − 𝜆)𝑍𝑖−1 

Let 𝑻𝟏 is first statistic of the proposed chart to detect large shift in the process location. It 

is defined as:   

𝑻𝟏 = |
�̅�𝒊−𝛍𝟎

𝒄
|,                                                           (3.1) 

where 𝑐 = 𝑐𝑠
𝜎0

√𝑛
  and 𝑐𝑠 is the charting constant for Shewhart chart. 

The following two statistics are used to detect the moderate shift in the process location   

𝑻𝟐
+ =

𝑪𝒊
+

𝒉𝒄 
𝝈𝟎
   √𝒏

   , 𝑻𝟐
− =

𝑪𝒊
−

𝒉𝒄 
𝝈𝟎
   √𝒏

 ,                                                    (3.2) 

where ℎ𝑐 is the charting constant for CUSUM chart.  

Similarly, the following statistic is used to detect the small shift in the process location                      

  𝑻𝟑 = |
𝒁𝒊−𝝁𝟎

𝑳
|,                                                                         (3.3) 
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where 𝐿 = 𝐿𝑒
𝜎0

√𝑛
[√

𝜆

2−𝜆
{1 − (1 − 𝜆)2𝑖}] , 0 < λ ≤ 1 and 𝐿𝑒  is the charting constant for 

EWMA chart. 

The plotting statistic of proposed chart is defined as:  

      𝑇 = max(𝑇1, 𝑇2
+, 𝑇2

−,𝑇3).                           (3.4) 

In Eq. (3.4) 𝑇 is the maximum value of four statistics as discussed above and plotted with 

respect to time. Because 𝑇 is the function of standardized max statistics, therefore, it will 

always have positive value. The upper control limit of 𝑇 is defined as: 

𝑼𝑪𝑳 = 𝑻 > 𝟏.       (3.5) 

The sensitivity of the proposed Assorted control chart depends on the selection of (𝑘, 𝜆). 

For the said reason, we will use the notation 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 for our proposed control chart. 

Different combinations of sensitivity parameters (𝑘, 𝜆) are used in the proposed 

𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 chart. To detect large, medium and small shift in process location three types 

of charting constants are incorporated in this study. Table 3.1 Ranges of sensitivity 

parameters for different categories of shift portrays the ranges of sensitivity parameters for 

different categories of shifts. 

Table 3.1 Ranges of sensitivity parameters for different categories of shift 

Sensitivity 

Parameter 

Category of shift 

Small Medium Large 

λ 0.03 to 0.2 0.21 to 0.5 0.51 to 1 

𝑘 0.1 to 0.75 0.76 to 1.5 more than 1.5 

 

When the process is in IC state (i.e. 𝛿 = 0) we fix 𝐴𝑅𝐿0 at specific level such as 370. In 

order to fix the 𝐴𝑅𝐿0 of the proposed 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 control chart we need to set the control 

limit coefficients (ℎ𝑐, 𝐿𝑒 , 𝑐𝑠)  used with reference to Eqs. 3.1-3.3. For the said purpose, we 

have used several combinations of sensitivity parameters (𝑘, 𝜆) and worked out the triplets 
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(ℎ𝑐, 𝐿𝑒 , 𝑐𝑠) for our proposed control chart. The resulting control charting 

constants/coefficients (ℎ𝑐, 𝐿𝑒 , 𝑐𝑠) are provided in Table 3.2 at some useful combinations 

of (𝑘, 𝜆) for two commonly used choices of 𝐴𝑅𝐿0=370 and 𝐴𝑅𝐿0 =500. One may work out 

the same for other choices of 𝐴𝑅𝐿0. 

Table 3.2: Charting Constant at 𝑨𝑹𝑳𝟎 = 𝟑𝟕𝟎 and 𝑨𝑹𝑳𝟎 = 𝟓𝟎𝟎 

Case 𝑘 λ 
𝐴𝑅𝐿0 = 370  𝐴𝑅𝐿0=500 

ℎ𝑐   𝐿𝑒   𝑐𝑠 ℎ𝑐   𝐿𝑒   𝑐𝑠 

1 

0.25 

0.25 9.7787 3.1932 3.2685 10.3997 3.2891 3.3571 

2 0.38 9.7403 3.2306 3.2629 10.3369 3.3196 3.3483 

3 0.55 9.6924 3.2457 3.2559 10.2884 3.3326 3.3414 

4 

0.5 

0.25 5.5842 3.1634 3.2411 5.8962 3.2594 3.3296 

5 0.38 5.5960 3.2114 3.2445 5.9133 3.3052 3.3344 

6 0.55 5.6018 3.2357 3.2461 5.9048 3.3231 3.3320 

7 

0.75 

0.05 3.9749 2.8705 3.2804 4.1611 2.9725 3.3587 

8 0.13 3.9113 3.0695 3.2534 4.1069 3.1655 3.3361 

9 0.25 3.8503 3.1483 3.2272 4.0673 3.2484 3.3195 

10 0.38 3.8461 3.1914 3.2254 4.0564 3.2849 3.3149 

11 0.55 3.8419 3.2127 3.2236 4.0601 3.3072 3.3164 

12 

1 

0.05 2.9838 2.8647 3.2760 3.1466 2.9835 3.3672 

13 0.13 2.9456 3.0706 3.2543 3.0948 3.1682 3.3384 

14 0.25 2.9044 3.1521 3.2307 3.0554 3.2451 3.3164 

15 

1.25 

0.05 2.3487 2.8556 3.2691 2.4721 2.9700 3.3567 

16 0.13 2.3237 3.0668 3.2511 2.4444 3.1669 3.3372 

17 0.25 2.2817 3.1412 3.2207 2.4136 3.2440 3.3154 

 

3.3. Performance evaluations and comparisons 

In this section, performance evaluations and comparisons of the proposed and some other 

competing charts are discussed. The competing charts include the classical (Shewhart, 

EWMA, and CUSUM) and some modified charts (CSE and MEC). We have used different 

performance measure based on run length including 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐸𝑄𝐿, 𝑆𝐸𝑄𝐿, 𝑅𝐴𝑅𝐿, and 
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𝑃𝐶𝐼. In order to evaluate these measures, we have used Monte Carlo simulations (for ARL) 

and numerical integration for other measures (𝐸𝑄𝐿, 𝑆𝐸𝑄𝐿, 𝑅𝐴𝑅𝐿 and 𝑃𝐶𝐼 ).  

The computational algorithm for these measures is given as: (i) generate random samples 

from the parent probability model (normal); (ii) compute the sample statistics ; (iii) set the 

control limits using the description given in Section 3.2; (iv) using steps (i)–(iii), implement 

the procedural steps of ARL depending on the choices of λ and 𝑘 (cf. Table 3.2); (v) based 

on the results of step (iv) for ARL as function of 𝛿: integrate the ARL values over the entire 

𝛿 range by using an appropriate numerical integration technique (like Simpson or 

Trapezoidal) (this results into EQL value); (vi) repeat steps (iv) and (v) for all the charts; 

(vii) based on the results of step (vi), take the ratio of the ARL of a particular chart by the 

ARL of the benchmark chart (the usual one in this study), divide with the range of 𝛿 values 

and then integrate the output over the entire 𝛿 range using an appropriate numerical 

integration technique (like Simpson or Trapezoidal) (this results into RARL values).  

3.3.1. Performance analysis of 𝑨𝒔𝒔𝒐𝒓𝒕𝒆𝒅𝒌,𝝀 control chart  

The performance of proposed 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 control chart is evaluated in terms of ARL and 

SDRL for varying combination of 𝑘, 𝜆 and 𝛿. The resulting outcomes are presented in 

Tables 3.3-3.6 at 𝐴𝑅𝐿0=370 and 𝐴𝑅𝐿0 =500. In addition to the tabular results, we have 

produced some useful graphical displays based on ARLs and are provided in Figure 3.1 

The results advocate the following: 

• The proposed chart is sensitive for all types of shifts i.e. small, moderate and large 

(cf. Table 3.3 and Table 3.5). 
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• The sensitivity of the proposed chart increases with a decrease in λ at a specific 

choice of 𝑘 and it is true for all values of 𝑘. 

• The sensitivity of the proposed chart increases with a decrease in 𝑘 at a specific 

choice of λ and it is true for all values of λ (cf. Table 3.3 and Table 3.5). 

• The SDRL behavior of the proposed chart is quite stable for different combinations 

of sensitivity parameter (𝑘, λ) at varying values of 𝛿 (cf. Table 3.4 and Table 3.6).  

• The case 15 is stated the optimal choice of charting constants (ℎ𝑐 = 2.3487, 𝐿𝑒 =

2.8556 , 𝑐𝑠 = 3.2691)  and (ℎ𝑐 = 2.4721, 𝐿𝑒 = 2.9700 , 𝑐𝑠 = 3.3567)  with 

sensitivity parameter 𝑘 = 1.25 and λ=0.05 at 𝐴𝑅𝐿0=370 and 𝐴𝑅𝐿0 =500 

respectively(cf. Table 3.2). 

• The selection of charting constant at 𝐴𝑅𝐿0=370 and 𝐴𝑅𝐿0 =500 are based on 

minimum ARLs highlighted in bold (cf. Table 3.3 and Table 3.5). 

• Four different type of charts is portrayed in Figure 3.1. Graph (a) shows the 

comparison of ARL values at 𝐴𝑅𝐿0 = 370 with fixed value 𝑘=0.75 and varying λ 

for different amounts of shifts ranging from 0.25 to 3.  Graph (b) shows the 

comparison of ARL values at 𝐴𝑅𝐿0 = 370 with fixed value λ =0.25 and varying 

𝑘 for different amounts of shifts ranging from 0.25 to 3. The results depicted that 

the 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑0.75,0.05 has minimum 𝐴𝑅𝐿  at λ=0.05. The 𝐴𝑅𝐿 comparison of 

𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 control charts at 𝐴𝑅𝐿0 = 370 with varying 𝑘 and fixed λ=0.25 is 

described that at smaller value 𝑘 = 0.25 has minimum 𝐴𝑅𝐿. Similarly, the same 

results are portrayed in graph (c) and (d) at 𝐴𝑅𝐿0 = 500.   
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Table 3.3: ARLs of 𝑨𝒔𝒔𝒐𝒓𝒕𝒆𝒅𝒌,𝝀  Chart at 𝑨𝑹𝑳𝟎 = 𝟑𝟕𝟎 

𝐴
𝑠𝑠
𝑜
𝑟𝑡
𝑒𝑑

𝑘
,𝜆
  

𝑘 λ 
δ 

0 0.25 0.5 0.75 1 1.5 2 2.5 3 

0.25 

0.25 366.988 98.278 31.789 16.917 10.637 5.294 3.223 2.266 1.739 

0.38 365.026 98.871 32.520 17.598 11.438 5.808 3.458 2.360 1.785 

0.55 370.578 99.582 32.979 18.112 12.043 6.440 3.844 2.520 1.850 

0.5 

0.25 371.645 139.138 39.554 17.338 10.204 5.124 3.174 2.235 1.720 

0.38 368.862 142.539 40.654 17.778 10.552 5.369 3.342 2.329 1.768 

0.55 374.478 147.456 41.621 18.162 10.818 5.624 3.550 2.456 1.832 

0.75 

0.05 374.061 91.623 27.778 13.706 8.380 4.272 2.717 1.960 1.533 

0.13 37.995 133.161 37.771 16.630 9.636 4.762 2.991 2.134 1.654 

0.25 369.287 167.580 51.394 20.796 11.072 5.071 3.143 2.221 1.709 

0.38 371.107 179.890 56.878 22.380 11.650 5.286 3.251 2.295 1.758 

0.55 370.373 185.415 58.935 23.146 11.900 5.437 3.351 2.365 1.799 

1 

0.05 368.292 90.376 27.437 13.672 8.353 4.250 2.705 1.955 1.530 

0.13 371.649 133.443 37.882 16.625 9.604 4.758 2.991 2.133 1.655 

0.25 374.543 176.335 55.012 22.392 11.686 5.193 3.165 2.226 1.714 

1.25 

0.05 370.067 90.133 27.522 13.527 8.260 4.231 2.692 1.948 1.525 

0.13 375.813 133.171 37.838 16.553 9.626 4.736 2.980 2.129 1.653 

0.25 369.060 174.856 54.966 22.098 11.594 5.182 3.143 2.216 1.703 

 

Table 3.4: SDRL at  𝑨𝑹𝑳𝟎 = 𝟑𝟕𝟎  of 𝑨𝒔𝒔𝒐𝒓𝒕𝒆𝒅𝒌,𝝀 Chart 

𝐴
𝑠𝑠
𝑜
𝑟𝑡
𝑒𝑑

𝑘
,𝜆
  

𝑘 λ 
δ 

0 0.25 0.5 0.75 1 1.5 2 2.5 3 

0.25 

0.25 359.507 82.761 20.145 9.614 6.010 2.997 1.651 1.065 0.759 

0.38 358.634 83.503 19.924 9.346 6.014 3.274 1.874 1.157 0.798 

0.55 363.612 82.862 19.765 9.027 5.777 3.400 2.170 1.349 0.891 

0.5 

0.25 367.759 134.249 33.124 12.102 6.176 2.775 1.608 1.046 0.749 

0.38 366.224 136.895 34.030 12.093 6.192 2.814 1.702 1.123 0.791 

0.55 372.186 141.425 34.732 12.217 6.124 2.791 1.772 1.219 0.864 

0.75 

0.05 378.113 82.205 20.559 9.025 5.188 2.407 1.401 0.926 0.665 

0.13 378.547 128.893 32.009 12.007 6.149 2.612 1.502 0.993 0.719 

0.25 367.081 164.943 47.875 17.147 7.906 2.872 1.587 1.041 0.749 

0.38 367.817 176.272 53.451 18.808 8.302 2.985 1.631 1.089 0.779 

0.55 368.461 181.865 55.548 19.335 8.433 2.997 1.645 1.118 0.816 

1 

0.05 370.531 81.205 20.302 9.070 5.211 2.390 1.396 0.926 0.662 

0.13 369.543 128.535 32.250 12.052 6.142 2.628 1.503 0.995 0.719 

0.25 375.425 174.604 51.514 18.953 8.736 3.075 1.625 1.046 0.744 

1.25 

0.05 379.470 81.027 20.457 8.979 5.116 2.392 1.387 0.924 0.661 

0.13 376.160 128.397 32.402 12.020 6.172 2.614 1.491 0.994 0.713 

0.25 369.472 172.997 51.352 18.758 8.565 3.066 1.622 1.045 0.745 
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Table 3.5: ARLs of 𝑨𝒔𝒔𝒐𝒓𝒕𝒆𝒅𝒌,𝝀  Chart at 𝑨𝑹𝑳𝟎 = 𝟓𝟎𝟎 

𝐴
𝑠𝑠
𝑜
𝑟𝑡
𝑒𝑑

𝑘
,𝜆
  

𝑘 λ 
δ 

0 0.25 0.5 0.75 1 1.5 2 2.5 3 

0.25 

0.25 503.693 112.726 34.735 18.288 11.489 5.625 3.402 2.376 1.810 

0.38 500.498 112.237 35.272 18.923 12.251 6.201 3.658 2.469 1.856 

0.55 500.181 113.525 35.384 19.398 12.864 6.890 4.090 2.657 1.924 

0.5 

0.25 498.034 170.702 43.845 18.613 10.845 5.395 3.333 2.340 1.790 

0.38 498.731 174.436 45.349 19.204 11.223 5.693 3.522 2.437 1.838 

0.55 499.040 177.536 46.000 19.457 11.498 5.928 3.743 2.572 1.906 

0.75 

0.05 499.840 106.328 30.258 14.712 8.935 4.526 2.862 2.043 1.597 

0.13 502.063 164.421 42.939 18.164 10.392 5.021 3.140 2.231 1.717 

0.25 501.029 211.937 60.354 23.022 11.946 5.404 3.310 2.323 1.784 

0.38 499.039 225.219 66.028 24.589 12.532 5.597 3.424 2.402 1.819 

0.55 502.470 235.656 68.588 25.192 12.797 5.714 3.530 2.479 1.870 

1 

0.05 502.486 107.911 30.643 14.822 9.010 4.549 2.865 2.058 1.602 

0.13 498.778 163.351 43.126 18.174 10.375 5.021 3.134 2.223 1.718 

0.25 499.586 223.552 66.069 25.245 12.808 5.506 3.303 2.320 1.783 

1.25 

0.05 501.378 106.911 30.358 14.666 8.927 4.512 2.841 2.046 1.591 

0.13 500.405 164.215 43.069 18.134 10.376 5.028 3.124 2.227 1.721 

0.25 500.039 224.814 66.671 25.371 12.856 5.517 3.319 2.324 1.777 

 

Table 3.6: SDRL at  𝑨𝑹𝑳𝟎 = 𝟓𝟎𝟎  of 𝑨𝒔𝒔𝒐𝒓𝒕𝒆𝒅𝒌,𝝀 Chart 

𝐴
𝑠𝑠
𝑜
𝑟𝑡
𝑒𝑑

𝑘
,𝜆
  

𝑘 λ 
δ 

0 0.25 0.5 0.75 1 1.5 2 2.5 3 

0.25 

0.25 499.811 96.755 21.217 9.929 6.370 3.251 1.807 1.144 0.810 

0.38 494.894 95.831 21.154 9.721 6.239 3.494 2.018 1.233 0.848 

0.55 492.696 94.648 20.983 9.329 5.965 3.562 2.306 1.446 0.939 

0.5 

0.25 496.601 169.257 37.984 12.961 6.444 2.902 1.719 1.130 0.806 

0.38 501.622 172.344 38.426 12.950 6.397 2.898 1.778 1.189 0.838 

0.55 496.429 171.864 38.495 12.897 6.375 2.869 1.822 1.281 0.903 

0.75 

0.05 498.695 162.349 32.398 12.401 6.725 3.031 1.775 1.195 0.857 

0.13 495.176 198.513 47.329 15.925 7.462 2.989 1.702 1.130 0.814 

0.25 503.809 222.782 60.697 20.126 8.702 3.059 1.686 1.118 0.803 

0.38 507.219 229.406 63.603 20.901 8.916 3.088 1.711 1.134 0.817 

0.55 500.078 233.662 64.427 21.287 9.023 3.095 1.697 1.159 0.851 

1 

0.05 504.963 164.511 32.410 12.415 6.783 3.029 1.777 1.193 0.856 

0.13 499.019 200.150 47.658 15.951 7.574 3.020 1.699 1.127 0.810 

0.25 499.417 240.509 69.663 23.969 10.437 3.390 1.748 1.107 0.798 

1.25 

0.05 508.963 164.258 32.324 12.336 6.794 3.049 1.778 1.190 0.846 

0.13 502.983 202.466 47.937 16.003 7.507 3.003 1.706 1.128 0.809 

0.25 500.448 241.577 70.292 23.923 10.358 3.465 1.760 1.121 0.800 
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Figure 3.1: ARL comparison of Assorted Chart for: (a) varying values of 𝝀 and fixed 𝒌 at 𝑨𝑹𝑳𝟎 = 𝟑𝟕𝟎; (b) 

varying values of 𝒌 and fixed 𝝀 at 𝑨𝑹𝑳𝟎 = 𝟑𝟕𝟎; (c) varying values of 𝝀 and fixed 𝒌 at 𝑨𝑹𝑳𝟎 = 𝟓𝟎𝟎; (d) varying 

values of 𝒌 and fixed 𝝀 at 𝑨𝑹𝑳𝟎 = 𝟓𝟎𝟎; 

 

3.3.2. Comparative analysis 

In this section, we provide a comparative analysis of the proposed 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 chart with 

the classical (Shewhart, EWMA and CUSUM) charts and some modified charts (including 

CSE and MEC charts) at 𝐴𝑅𝐿0 = 500. The 𝐴𝑅𝐿 results of all aforementioned competing 

charts, along with the proposed chart, are compile in the form of tabular display (cf. Table 

3.7). This table helps in carrying out 𝐴𝑅𝐿 comparison of the proposed 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆  chart 
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with the existing counterparts charts including Shewhart𝐿 , EWMA𝜆,𝐿 , CUSUM𝑘,ℎ , 

CSE𝐿(𝑠𝑑)  and MEC𝜆𝑞, 𝑎∗, 𝑏∗ . In addition to the tabular results, we have also produced some 

useful comparative graphical displays based on 𝐴𝑅𝐿𝑠 and are provided in Figure 3.2. The 

results advocate the following: 

• The proposed chart has minimum 𝐴𝑅𝐿 at 𝑘=1.25 and λ=0.05 for all types of shifts 

ranges from 0.25 to 3 (cf. Table 3.7). 

• The sensitivity of the proposed 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑1.25,0.05 chart is significantly better than 

Shewhart, EWMA and CUSUM control charts at small amount of shift. For 

example, at δ=0.25 the 𝐴𝑅𝐿1 of proposed, Shewhart, EWMA and CUSUM charts 

are 106.911, 373.66, 171.90 and 143.90 respectively.   

• The proposed chart has minimum 𝐴𝑅𝐿1 at δ=0.75 (i.e. 14.67) as compared to CSE 

(19.41) and MEC (16.63).  

• Four different type of charts are portrayed in Figure 3.2. Graph (a) shows the 

comparison of ARL values at 𝐴𝑅𝐿0 = 500 and different amounts of shifts ranging 

from 0.25 to 3. The 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑1.25,0.05 has minimum 𝐴𝑅𝐿 values among the 

classical approaches of control charting techniques. The 𝐴𝑅𝐿 comparison of 

𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑1.25,0.05 and CSE chart are highlighted in graph (b). In graph (c), the 𝐴𝑅𝐿 

values of  𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑1.25,0.05 are less than MEC at different combinations of λ, 𝑎∗ 

and  𝑏∗  for small and moderate shifts.  The graph (d) shows 𝐴𝑅𝐿 of  𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆  

by using dissimilar combination of 𝑘 and λ. The proposed  𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑1.25,0.05  chart 

has lowest ARL. 
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Table 3.7:  ARL comparisons at  𝑨𝑹𝑳𝟎 = 𝟓𝟎𝟎 

 Control Charts       
δ 

0 0.25 0.5 0.75 1 1.5 2 2.5 3 

𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑1.25,0.05  501.37 106.91 30.35 14.67 8.92 4.51 2.84 2.04 1.59 

Shewhart3.09  499.87 373.66 201.30 103.03 54.52 17.79 7.26 3.59 2.16 

EWMA0.25,2.998  497.51 171.90 48.51 20.29 7.45 4.4 3.12 2.24 1.94 

CUSUM0.5,5.06  500 143.90 38.71 17.29 10.53 5.77 3.67 3.11 2.57 

CSE4(𝑠𝑑)  492.62 166.30 49.12 19.41 7.42 4.27 3.54 2.15 1.77 

CSE4.5(𝑠𝑑)  499.18 171.50 48.06 20.10 7.43 4.33 3.61 2.21 1.88 

CSE5(𝑠𝑑)  509.09 172.40 48.35 19.76 7.42 4.37 3.61 2.26 1.96 

MEC0.1,0.5,37.42  498.38 80.13 35.52 24.05 18.86 13.79 11.19 9.55 8.41 

MEC0.25,0.5,20.18  502.01 83.75 30.88 18.87 13.88 9.60 7.59 6.40 5.59 

MEC0.5,0.5,11.2  507.95 100.26 30.74 16.63 11.45 7.29 5.52 4.54 3.91 
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Figure 3.2: ARL comparison of Assorted Chart with (a) Shewhart, EWMA, and CUSUM; (b) CSE; (c) MEC; 

(d) varying 𝒌 and 𝝀; 

3.3.3. Performance Analysis based on overall measures 

Besides 𝐴𝑅𝐿 (used as performance measure at a particular shift), there are some important 

measures such as 𝐸𝑄𝐿, 𝑅𝐴𝑅𝐿 and 𝑃𝐶𝐼 that are used to evaluate overall performance. The 

details of these performance measure have been discussed in Section 1.4. A comparative 

analysis (among proposed, classical and modified control charting strategies) based on 

these measures is presented in Table 3.8.  
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• The assorted chart with 𝑘 = 1.25 and 𝜆 = 0.05 is considered as benchmark chart 

based on minimum 𝐸𝑄𝐿 result (i.e. 10.50). For the other competing charts, the 

EQLs are 36.74, 11.85, 14.27,11.81 and 16.47.  

• The 𝑅𝐴𝑅𝐿 of assorted chart is equal to 1 while the 𝑅𝐴𝑅𝐿 of contending charts are 

3.82, 1.14, 1.32, 1.13 and 1.19. These results depict that the performance of the 

proposed chart is better than all other competing control charting strategies.  

• As the proposed 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑1.25,0.05 chart has minimum 𝐸𝑄𝐿 (i.e.10.50) so it is 

considered as benchmark chart. The 𝑃𝐶𝐼 is defined as the ratio between the 𝐸𝑄𝐿 of 

a chart and 𝐸𝑄𝐿 of benchmark chart. 

• The proposed  𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑1.25,0.05  chart has 𝑃𝐶𝐼 is equal to 1 while all others 

competing charts have 𝑃𝐶𝐼 greater than 1 (3.50, 1.13, 1.36, 1.12 and 1.57) which 

shows the superiority of the proposed 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑1.25,0.05  chart. 

• To check the sensitivity of the proposed 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑1.25,0.05 chart and competing 

charts on different ranges of shifts from 0.25 to 3, we have calculated Sequential 

Extra Quadratic Loss (𝑆𝐸𝑄𝐿) for proposed and competing charts. The results depict 

that the detection ability of proposed 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑1.25,0.05 chart is better than all others 

contending charts (cf. Table 3.9 and Figure 3.3). 
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Table 3.8:  Comparison of EQL, RARL and PCI 

𝐴
𝑠𝑠
𝑜
𝑟𝑡
𝑒𝑑

𝑘
,𝜆
  

𝑘 λ EQL RARL PCI 

0.25 
0.25 11.81 1.19 1.19 
0.38 12.47 1.25 1.26 
0.55 13.37 1.33 1.35 

0.5 
0.25 12.06 1.23 1.22 
0.38 12.56 1.28 1.27 
0.55 13.06 1.33 1.32 

0.75 

0.05 9.92 1.001 1.002 
0.13 11.49 1.18 1.16 
0.25 12.92 1.35 1.31 
0.38 13.52 1.41 1.36 
0.55 13.92 1.45 1.41 

1 
0.05 9.98 1.01 1.01 
0.13 11.47 1.18 1.16 
0.25 13.35 1.40 1.35 

1.25 
0.05 9.90 1.00 1.00 
0.13 11.48 1.18 1.16 
0.25 13.39 1.40 1.35 

Shewhart3.09  34.66 3.82 3.50 

EWMA0.25,2.998  11.31 1.14 1.14 

CUSUM0.5,5.06  13.46 1.32 1.36 

CSE4(𝑠𝑑)  11.26 1.13 1.14 

CSE4.5(𝑠𝑑)  11.51 1.15 1.16 

CSE5(𝑠𝑑)  11.63 1.16 1.17 

MEC0.1,0.5,37.42  22.85 1.73 3.39 

MEC0.25,0.5,20.18  16.47 1.35 2.34 

MEC0.5,0.5,11.2  13.17 1.19 1.76 
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Table 3.9: SEQL comparison at 𝑨𝑹𝑳𝟎 = 𝟓𝟎𝟎 

 Control Charts       
δ 

0.25 0.5 0.75 1 1.5 2 2.5 3 

𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑1.25,0.05  3.34 5.23 6.13 6.74 7.67 8.44 9.16 9.90 

Shewhart3.09  11.67 24.25 34.21 39.72 42.24 40.31 37.40 34.66 

EWMA0.25,2.998  5.37 8.40 9.53 9.50 9.22 9.71 10.42 11.31 

CUSUM0.5,5.06  4.50 6.91 7.84 8.41 9.52 10.60 11.89 13.46 

CSE4.5(𝑠𝑑)  5.35 8.36 9.46 9.44 9.15 9.89 10.73 11.51 

MEC0.5,0.5,11.2  3.13 5.05 6.20 7.26 9.48 11.92 14.58 17.45 
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Figure 3.3: SEQL comparison of proposed and competing charts 

 

3.4. Application: Monitoring the amount of pH characteristics  

In this section, an application of our proposed chart to monitor the amount of potential 

Hydrogen (pH) characteristic in water at Aquatic Ecotoxicology laboratory is illustrated. 

The pH values of water were recorded regularly from 1st April to 30th May 2016 and 

resulting data are provided in Table 3.10. 
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Table 3.10: pH values 

Days 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

pH value 8.2 8.2 8.2 8.19 8.25 8.19 8.19 8.34 8.12 8.29 8.25 8.12 8.19 8.3 8.25 

Days 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

pH value 8.2 8.2 8.2 8.15 8.25 8.29 8.3 8.3 8.28 8.27 8.19 8.28 8.3 8.4 8.3 

Days 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

pH value 8.11 8.35 8.22 8.24 8.29 8.3 8.15 8.14 8.24 8.11 8.13 8.11 8.15 8.14 8.2 

Days 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

pH value 8.36 8.26 8.11 8.32 8.11 8.33 8.42 8.32 8.41 8.39 8.37 8.31 8.29 8.26 8.27 

 

3.4.1. Data description  

The toxic effects of chemicals on aquatic organisms especially on mysids are examined 

and tested in ecotoxicology lab. The lab has its own sophisticated environment and 

functionality. The living environment of mysids consists of four characteristic parameters 

including lab temperature, pH, salinity and dissolved oxygen (DO) of circulating water. 

Mysids are small shrimps having carapace and usually, their length is about 1 cm. Mysids 

inhibit in fresh and salt water. Extensively, Mysids have been used as an indicator of spices 

in water toxicity tests Miller et al. (1990) for many years and are commonly brought up or 

cultured in the lab. In the Ecotoxicology lab mysids are growing up in water tanks (4x3x2 

cubic feet) in fresh and salted water. The culture system of mysids is showing Figure 3.4. 

The fresh & salted water is circulated through supply lines. The suction and filtration pump 

work 22 hours/day to keep water fresh and free from algae. Mysids are being fed by lab 

supervisor twice a day (morning and afternoon). The average values of water characteristic 

in the lab are (cf. Marini (2003): 

• Temperature 23.8 0C / 750F 

• Light 75 foot -candle / 941.775 LUX 

• pH 8.2 
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• Ammonia(NH3) 0.1 mg/Liter 

• Salinity 20 - 22ppt 

 

Figure 3.4: Mysids culture system 

 

3.4.2. Application of different control chart on pH characteristics  

The reproduction system of mysids depends upon four main factors of water (Salinity, 

Temperature, Dissolved oxygen (DO) and pH). Our aim here is to monitor the pH value of 

water in lab using the proposed and other competing charts of this study. The average value 

of pH (cf. Marini (2003)) for mysids is 8.2 with standard deviations 0.1. Using this 

information and the data given in Table 3.10, we have constructed the following control 

charts with their respective settings as listed below: 
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• The proposed chart (𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑1.25,0.05 ) with charting constant (ℎ𝑐 = 2.4721, 𝐿𝑒 =

2.9700 and 𝑐𝑠 = 3.3567) and 𝑈𝐶𝐿 = 1; 

• The Shewhart chart with charting constant (𝐾 = 3.0892)  and control limits 

(𝐿𝐶𝐿 = 7.8917 and 𝑈𝐶𝐿 = 8.5098 );  

• The CUSUM chart with sensitivity parameter (𝑘 = 1.25), control limit coefficient 

(ℎ = 2.1053)  and (𝑈𝐶𝐿 = 0.2105); 

• The EWMA chart with sensitivity parameter (𝜆 = 0.05) and control limit 

coefficient (𝐿 = 2.6150) with varying limits. 

The implementation of these charts on pH data of Table 3.10 is portrayed in the form of 

Figure 3.5 (𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑 , Shewhart, CUSUM and EWMA). The IC region contains first 50 

number of days and OOC region starting from 51st to 60th number of days as shown in 

graphical representation. The OOC points are indicated by red color in all figures. The 

detection summary of these charts is given as: 

Table 3.11: Detection Summary 

Control Chart OOC detections False Alarms 

The Proposed Assorted 6 0 

Shewhart 0 0 

CUSUM 4 0 

EWMA 7 4 
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It is evident from the detection ability of the charts that Shewhart appeared as the least 

efficient chart, followed by CUSUM and EWMA. It is to be noted that EWMA chart has 

detected seven but at the cost of high false alarms as may be seen in the summary Table 

3.11. The proposed chart (𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑1.25,0.05 ) perfumed the best in detecting OOC points. 

The reason for this superiority order relates to the amount of shift in the real process. As 

the aim of proposed chart is to detect small, medium and large shift in the process so it 

takes edge over other charts in detecting OOC scenarios.   

 For these OOC signals, we investigated the process in search of the assignable cause(s) 

and found that water suction and filtration pumps were not functioning properly. The 

variations in the pH value of water affect the reproduction system of mysids. Usually, the 

daily production of juveniles in each water tank should be between 80 to 90. But, due to 

the high value of pH, the production rate was decreased by almost 15%.  
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Figure 3.5: Graphical representation of Assorted, Shewhart, CUSUM and EWMA chart on pH data 

 

 

3.4.3. Application through data perturbation on pH data. 

There may be one or more sources of assignable causes (such as water suction and filtration 

pumps not functioning properly, cleaning of the water tanks and salinity of the water) to 

generate OOC points in the process. These causes may lead to small, medium and/or large 

amounts of shifts depending on their intensity.  In order to cover different potential causes 

of OOC scenarios, we have distorted the given data-set through data perturbation                         

(cf. Liu and Kargupta (2006) and Kargupta et al. (2005)).  We have perturbed the data 

using small, moderate and large amounts of distortions and applied the proposed assorted 

and other classical charts of this study.  The graphical and tabular representation of the 
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resulting charts and their detection abilities are presented in Figures 3.6 - 3.8 and Table 

3.12. From these results, it is obvious that the performance of the proposed Assorted chart 

is better than the competing Shewhart, CUSUM and EWMA control charts for to detect all 

type of shifts (0.75𝜎, 1.4𝜎 and 3𝜎) as may be seen form Table 3.12 and Figures 3.6-3.8. 

Table 3.12: Detection summary through data perturbation 

Control Chart OOC detections False Alarms Shift 

The Proposed Assorted 8 0 0.75𝜎 

Shewhart 0 0 0.75𝜎 

CUSUM 0 0 0.75𝜎 

EWMA 7 3 0.75𝜎 

The Proposed Assorted 15 0 1.4𝜎 

Shewhart 0 0 1.4𝜎 

CUSUM 3 0 1.4𝜎 

EWMA 15 3 1.4𝜎 

The Proposed Assorted 15 0 3𝜎 

Shewhart 5 0 3𝜎 

CUSUM 15 0 3𝜎 

EWMA 15 3 3𝜎 
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Figure 3.6: Graphical comparison at shift=0.75𝝈 
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Figure 3.7: Graphical comparison at shift=1.4𝝈 
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Figure 3.8: Graphical comparison at shift=3𝝈 

 

3.5. Summary and Concluding Remarks 

The classical Shewhart control chart is a memoryless control chart that is used to detect 

large shift while CUSUM and EWMA are memory charts that are used to detect a moderate 

and small shift in process parameters. We have proposed an assorted approach to detect a 

small, medium and large shift in a single control chart. Using the performance measures  

𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐸𝑄𝐿, 𝑆𝐸𝑄𝐿, 𝑅𝐴𝑅𝐿 and 𝑃𝐶𝐼 we have evaluated the performance of the 

proposed chart. We have compared the proposed assorted chart with some existing 

counterparts including the traditional charts (Shewhart, CUSUM and EWMA) and some 

modified charts (CSE and MEC).  

A detailed performance analysis advocated that the proposed chart is sensitive for all types 

of shifts i.e. small, moderate and large. The sensitivity of the proposed assorted chart 

depends on 𝑘 and 𝜆. The ability of the proposed chart increases with decrease in λ at a 

specific choice of 𝑘 and it is true for all values of 𝑘 and vice versa. We have noticed that 

the performance of proposed 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 control chart at 𝑘 = 1.25 and 𝜆 = 0.05 is best 



72 

 

in terms of different run length properties. The Assorted chart with 𝑘 = 1.25 and 𝜆 = 0.05 

is considered as benchmark chart based on minimum 𝐸𝑄𝐿 as compared to others competing 

charts. The 𝑅𝐴𝑅𝐿 and for 𝑃𝐶𝐼 of contending charts are greater than 1 which shows that the 

performance of proposed chart is best among Shewhart, CUSUM, EWMA, CSE and MEC 

charts. Further, 𝑆𝐸𝑄𝐿 is calculated to investigate the performance of the aforementioned 

charts at different amounts of shifts and it also supports the proposed chart. A real 

application of the proposed and other competing charts is presented in ecotoxicology lab 

to monitor pH value. The said application also supports the findings in favor of our 

proposed assorted technique to monitor location parameter.  
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Chapter 4                                                                                                

AN ASSORTED CONTROL CHART FOR MONITORING 

DISPERSION 

The monitoring of process variability is very important to get optimal output from any 

process. In Statistical Process Control toolkit, control charts are one of the important tools 

to monitor process variability.  Mostly, three types of control charts are applied to observe 

the disturbances in the process variations. Large turbulences are detected efficiently by 

Shewhart R and Shewhart S control charts whereas, for small and medium instabilities, 

cumulative sum and exponentially weighted moving average control charts with some 

transformation are used. This chapter proposes an assorted approach to monitor small, 

medium and large disturbances in process variability. The said objective is met by using 

the well-known max approach. For the evaluation of the proposed assorted control chart, 

we have used various measures like average run length, sequential extra quadratic loss, 

extra quadratic loss, sequential relative average run length and relative average run length. 

A comparison of the assorted control chart is presented with some typical charts including 

the Shewhart R, Shewhart S, the EWMA of 𝑙𝑛𝑆2, the CUSUM of 𝑙𝑛𝑆2, the CUSUM R, 

the 𝜒 CUSUM, the 𝑃𝜎 CUSUM, and the CUSUM S charts. 

4.1. Introduction 

The quality of a process is determined by different parameters such as location, shape, and 

dispersion. The dispersion parameter is of prime importance as the stability of other 

parameters (like location) depends on dispersion. Generally, dispersion charts are used for 

two main reasons (i) if the variation in process increases, there is a possibility that more 
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defective units will be produced (ii) if the variation in the process decreases than more units 

will be near the target value and hence process capability will also increase. These changes 

can be quickly detected by dispersion charts. These charts are also important while 

interpreting the results of a location chart because they assume that standard deviation 

remains constant. 

The Shewhart range R chart and Shewhart S chart are used to monitor process variability 

of small subgroup sizes. Page (1963) introduced CUSUM chart to monitor process 

variability among different subgroups.  Many authors have evaluated the performance of 

CUSUM and EWMA control charts that were based on the subgroup standard deviation 

(cf. Truph and Ncube (1987) and Ng and Case (1989)). One sided EWMA control chart 

based on the natural log was suggested by Crowder and Hamilton (1992) to monitor 

subgroup variance. Chang and Gen (1995) have proposed CUSUM chart based on the 

logarithmic transformation of the subgroup variance. Amin et al. (1999) proposed a 

MaxMin EWMA chart to monitor process variability. Acosta-Mejia et al. (1999) have 

discussed and compared several control charts to monitor variation in the process. 

Castagliola (2005) proposed a new two sided 𝑆2 chart based on logarithmic transformation 

for monitoring variation in the process. A new CUSUM-𝑆2 to monitor the process variation 

was proposed by Castagliola (2009). 

As we have seen the aforementioned assorted approach is very effective to monitor process 

location, the same may be true for other parameters. Now with the same spirit of assorted 

structure, we propose a new one-sided control chart called “𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆” control 

chart to monitor the process variability. The aim of this chapter is to enhance the detection 

ability of simple linear profile parameters by a newly assorted control chart based on Max 
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statistics. The outlined of rest of the chapter is as follows: in sub section 4.1.1- 4.1.8, a 

brief discussion on existing methods to monitor process dispersion. In section 4.2, proposed 

structure of one sided 𝑆2 Assorted control chart. The performance and comparative 

analysis of proposed with the existing control charting strategies are discussed in Section 

4.3. An implementation of proposed and competing charts on a real-life application is 

discussed in Section4.4. The concluding remarks are given in the Section 4.5. 

4.1.1. The Shewhart R Chart 

The Shewhart R chart (cf. Montgomery (2012)) is used to control the process variability 

for small sample size group (sample size less than or equal to 10).  Let 𝑅1, 𝑅2, …… , 𝑅𝑚 be 

the ranges of 𝑚 samples. 

Since 𝑅 = 𝑊𝜎 , the standard deviation of 𝑅 is defined as  

𝜎𝑅 = 𝑑3𝜎,  

where  𝑑3 is the standard deviation of W. The 3-sgima control limit of R chart is 

𝑈𝐶𝐿 = �̅� + 3𝑑3
�̅�

𝑑2
 

4.1.2. The Shewhart S Chart 

The Shewhart S chart (cf. Montgomery (2012)) is used to monitor the standard deviation 

(𝜎) in the process. Assume that at disposition there are 𝑚 prelimnary samples each of size 

𝑛,  and let 𝑠𝑖 be the standard deviation of 𝑖𝑡ℎ sample. Then the average of 𝑚 standard 

deviation is defined as 
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�̅� =
1

𝑚
∑𝑠𝑖

𝑚

𝑖=𝑖

 

The upper control limit of Shewhart S chart is  

𝑈𝐶𝐿 = �̅� + 3
�̅�

𝑐4
√1 − 𝑐42,  

 

4.1.3. The EWMA 𝒍𝒏𝑺𝟐 control chart 

For the monitoring of process variance, Crowder and Hamilton (1992) were apply the 

EWMA scheme to the normal approximation of natural logarithmic (
𝑆2

𝜎02
)  where 𝜎0

2 is the 

IC process variance. To enhance the efficiency for monitoring the process variability, they 

readjust the EWMA statistic to 0 if it is less than 0. The readjustment of smaller EWMA 

statistics to 0 definitely may improve the EWMA statistic inertia problem and increase its 

detection ability. They used the following EWMA statistic 

𝐸𝑊𝑀𝐴𝑖  =  𝑚𝑎𝑥 {(1 −  𝜆)𝐸𝑊𝑀𝐴𝑖−1  +  𝜆𝑙𝑛(𝑆𝑖
2), 𝑙𝑛( 𝜎0

2)} 

where  𝐸𝑊𝑀𝐴0 =  𝑙𝑛( 𝜎0
2), 𝜆 is the smoothing constant, 𝜎0

2 = 1 and 𝑆𝑖
2 is the sample 

variance. The upper control limit of EWMA statistic is 

𝑈𝐶𝐿 = 𝐿𝜎𝐸𝑊𝑀𝐴 

where 𝐿 is the charting constant and 𝜎𝐸𝑊𝑀𝐴 = √
𝜆

2−𝜆
[
2

𝑛−1
+

2

(𝑛−1)2
+

4

3(𝑛−1)3
−

16

15(𝑛−1)5
] 
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4.1.4. The CUSUM 𝒍𝒏𝑺𝟐 control chart 

Chang and Gan (1995) proposed one sided CUSUM 𝑙𝑛𝑆2 control chart to monitor process 

variance. The CUSUM statistic used in this study is given by 

𝐶𝑖 = 𝑚𝑎𝑥{0, 𝑙𝑛𝑆𝑖
2 − 𝑘 + 𝐶𝑖−1}, 𝑖 = 1,2, …. 

where  𝐶0 = 𝑢  for 0 ≤ 𝑢 < ℎ and 𝑆𝑖
2 is the sample variance. The out-of-control signal is 

issues at the first 𝑖 𝐶𝑖 ≥ ℎ. 

4.1.5. The 𝝌 − CUSUM control chart 

Wilson and Hilferty (1931) was proposed a CUSUM control chart based on a 

transformation for the monitoring of process variability. They proved that (
𝜒𝑛
2

𝑛
)

1

3
 is 

approximately follow normal distribution with mean 1 −  2/(9𝑛) and variance 2/(9𝑛). 

Further, if the observations are independent and identical distributed 𝑁(𝜇, 𝜎) then 

𝜒𝑖 =
(
𝑆𝑖
2

𝜎0
2)

1
3
−(1− 

2

9(𝑛−1)
)

√
2

9(𝑛−1)

, 

will follow an approximately standard normal distribution when 𝜎 = 𝜎0. The CUSUM 

statistic used in this study is 

𝐶𝑖
+ = 𝑚𝑎𝑥{0, 𝜒𝑖 − 𝑘 + 𝐶𝑖−1

+ } 

where 𝐶0
+ ≥ 0 and 𝑘 is the reference value. The control limit of this statistic greater than 

ℎ. For a specific (i.e. 𝐴𝑅𝐿0 = 200) the value of ℎ = 4.28 and 𝑘 = 0.38. 
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4.1.6. The 𝑷𝝈 CUSUM control chart 

The same approximation which was applied in 𝜒 − CUSUM, also used for 𝑃𝜎 CUSUM 

control chart. The following statistic is used in this study 

𝐶𝑖
+ = 𝑚𝑎𝑥{0, 𝜒𝑖 − 𝑘 + 𝐶𝑖−1

+ } 

The reference value for 𝑃𝜎 CUSUM can be obtained as 

𝑘 =
1

2
[{(𝜎0+

2 𝜎0
2⁄ )
1
3⁄ − 1} {1 − 

2

9(𝑛−1)
} √

2

9(𝑛−1)
⁄  ]  

where 𝐶0
+ ≥ 0 and control limit of this statistic is greater than ℎ. For a specific (i.e. 𝐴𝑅𝐿0 =

200) the value of ℎ = 4.28 and 𝑘 = 0.38. 

4.1.7. The CUSUM R control chart 

Page (1963) proposed CUSUM chart on subgroup range to monitor the process variability. 

The plotting statistic used in this study is  𝑆𝑟 = ∑ (𝑥𝑖 − 𝑘)
𝑟
𝑖=1 . The quantity 𝑘 is called 

reference value and ℎ is the control limit. 

4.1.8. The CUSUM S control chart 

Tuprah and Ncube (1987) proposed CUSUM S control chart to monitor the process 

dispersion. The statistic used in this study is given below 

𝐶𝑖 = 𝑚𝑎𝑥{0, 𝑆𝑖 − 𝑘 + 𝐶𝑖−1}, 𝑖 = 1,2, …. 

where 𝑆𝑖 is the sample standard deviation, 𝐶0 = 0 and 𝑘 is the reference value. Immediate 

corrective action is taken if 𝐶𝑖 > ℎ, where ℎ is the decision interval. 
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4.2. The design structure of one-sided 𝑺𝟐 − 𝑨𝒔𝒔𝒐𝒓𝒕𝒆𝒅𝒌,𝝀 chart  

In this segment, we proposed an assorted approach to detect large, medium and small 

variations in the process in a single control chart namely one-sided 𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 

control chart. The proposed 𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 is designed for the upward detection in the 

process variability. Assume that 𝑋 is normally distributed random 

variable 𝑋𝑖𝑗~𝑁(𝜇0, (𝛿1𝜎0)),  𝑖 = 1,2, …… ..  and 𝑗 = 1,2, … . , 𝑛  

𝛿1 = 1 corresponds to an IC situation. 

𝛿1 ≠ 1 means that some variations exist in the process. 

Mathematically, shift can be defined as 

𝛿1 =
𝜎1
𝜎0

 

where 𝜎0 is IC standard deviation. 

𝜎1 is OOC standard deviation. 

The sample variance is defined as 

𝑆𝑖
2 =

∑ (𝑋𝑖−�̅�𝑖)
2𝑛

𝑖=1

𝑛−1
, 

We define the following statistic that may be used for the detection of the large, medium 

and small amount of shift in the process variance. 

𝑉𝑖 = 𝜙−1 [𝐻 {
(𝑛−1)𝑠2

𝜎0
2 , 𝑛 − 1}] ~N (0,1) 

where 𝐻 is CDF of chi-square distribution and 𝑛 denotes the sample size (n=5 is used in 

this study).  

Let 𝑼 be the statistic of the 𝑺𝟐 − 𝑨𝒔𝒔𝒐𝒓𝒕𝒆𝒅𝒌,𝝀 chart to detect large shift in the process 

variability. It is defined as:   
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𝑼𝟏𝒊 = 
𝑽𝒊

𝑪𝒔
                                                           (4.1) 

where  𝑐𝑠 is the control limit coefficient for Shewhart control chart. 

To detect the moderate shift in the process variability the following statistic is used    

𝑼𝟐𝒊
+ = 𝐦𝐚𝐱[𝟎, 𝑽𝒊 − 𝒌 + 𝑼𝟐𝒊−𝟏

+ ] 𝒉𝒄⁄   ,                                     (4.2) 

where ℎ𝑐 is the control limit coefficient for CUSUM control chart. 

Similarly, the following statistic is used to detect the small shift in the process variance    

𝑼𝟑𝒊 = (𝝀𝑽𝒊 + (𝟏 − 𝝀)𝑼𝟑𝒊−𝟏) 𝑳𝒆√
𝝀

𝟐−𝝀
[𝟏 − (𝟏 − 𝝀)𝟐𝒊]⁄                                 (4.3) 

where 𝐿𝑒 is the control limit coefficient for EWMA. The value sensitivity parameter 𝜆 is 

lies between 0 and 1. 

The plotting statistic of proposed chart is defined as:  

𝑈 =  max (𝑈1𝑖, 𝑈2𝑖
+ , 𝑈3𝑖)                                            (4.4) 

In Eq. (4.4) 𝑈 is the maximum value of three statistics as discussed above and plotted with 

respect to time. Because 𝑈 is the function of standardized max statistics, therefore, it will 

always have positive value. The upper control limit of 𝑈 is defined as: 

𝑼𝑪𝑳 = 𝑼 > 𝟏.      (4.5) 

The sensitivity of the 𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑 control chart depends on the selection of (𝑘, 𝜆). 

Different combinations of sensitivity parameters (𝑘, 𝜆) are used in the proposed 

𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 chart. To detect large, medium and small shift in process location three types 

of charting constants are incorporated in this study. Table 4.1 portrays the ranges of 

sensitivity parameters for different categories of shifts. 
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Table 4.1: Ranges of sensitivity parameters for different categories of shift for 𝑺𝟐 − 𝑨𝒔𝒔𝒐𝒓𝒕𝒆𝒅 chart 

Sensitivity 

Parameter 

Category of shift 

Small Medium Large 

λ 0.05 to 0.15 0.16 to 0.25 0.4 to 1 

𝑘 0.1 to 0.25 0.26 to 0.5 More than 0.5 

 

When the process is in IC state (i.e. 𝛿1 = 1) we fix 𝐴𝑅𝐿0 at a specific level such as 200. In 

order to fix the 𝐴𝑅𝐿0 of the proposed 𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 control chart we need to set the 

control limit coefficients (ℎ𝑐, 𝐿𝑒 , 𝑐𝑠)  used with reference to Eqs. 4.1-4.3. For the said 

purpose, we have used several combinations of sensitivity parameters (𝑘, 𝜆) and worked 

out the triplets (ℎ𝑐, 𝐿𝑒 , 𝑐𝑠) for our proposed control chart. The resulting control charting 

constants/coefficients (ℎ𝑐, 𝐿𝑒 , 𝑐𝑠) are provided in Table 4.2 at some useful combination of 

(𝑘, 𝜆) for 𝐴𝑅𝐿0=200. One may work out the same for other choices of 𝐴𝑅𝐿0. The charting 

constants highlighted in bold in Table 4.2 are selected as an optimum choice because it has 

lowest EQL (i.e. 13.21) (cf. Table 4.3). The graphical representation of 𝐴𝑅𝐿0 = 200 with 

different combination of (𝑘, 𝜆) is portrayed in Figure 4.1. 
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Table 4.2: Charting Constant at 𝑨𝑹𝑳𝟎 = 𝟐𝟎𝟎 

Case 𝑘 λ 
𝐴𝑅𝐿0 = 200 

ℎ𝑐   𝐿𝑒   𝑐𝑠 

1 

0.1 

0.25 11.3000 2.7000 2.8230 

2 0.40 11.3000 2.7900 2.8300 

3 0.55 11.3000 2.8000 2.8300 

4 

0.25 

0.25 6.9500 2.7000 2.8300 

5 0.40 6.9500 2.7900 2.8300 

6 0.55 6.9500 2.8020 2.8300 

7 

0.5 

0.05 4.2490 2.2150 2.8350 

8 0.4 4.2470 2.7900 2.8300 

9 0.55 4.2100 2.7950 2.8200 

10 

1 

0.05 2.2298 2.2100 2.8295 

11 0.15 2.2260 2.5700 2.8100 

12 0.55 2.2160 2.7400 2.7600 

13 

1.5 

0.05 1.3950 2.5200 2.8000 

14 0.15 1.3900 2.5400 2.8000 

15 0.25 1.3900 2.6000 2.8100 
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Table 4.3: ARL and EQL of 𝑺𝟐 − 𝑨𝒔𝒔𝒐𝒓𝒕𝒆𝒅 chart for Case 1 to Case 15. 

Shift 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1.05 74.01 77.01 77.13 79.35 81.89 80.29 74.06 91.45 90.83 74.31 81.80 98.48 76.28 84.04 87.44 

1.10 39.77 40.54 40.74 40.63 41.21 41.24 38.32 47.76 47.02 37.88 41.96 52.81 38.18 41.59 45.39 

1.15 25.22 25.88 26.58 24.65 24.72 25.44 23.80 27.75 27.45 23.15 25.32 32.01 23.90 25.16 26.92 

1.20 17.59 18.36 19.01 17.06 17.49 17.66 16.61 18.31 18.09 16.27 17.33 21.38 16.70 16.92 17.80 

1.25 13.25 13.74 14.22 12.70 12.93 13.06 12.49 13.24 13.44 12.49 12.39 14.82 12.55 12.25 12.88 

1.30 10.36 10.76 11.34 9.85 10.21 10.38 9.99 10.08 10.27 9.74 9.54 11.03 10.04 9.77 10.07 

1.35 8.31 8.72 9.30 8.14 8.22 8.51 8.21 8.15 8.03 8.15 7.82 8.68 8.35 7.83 8.03 

1.40 6.93 7.28 7.67 6.81 6.82 7.08 6.98 6.69 6.72 6.89 6.55 6.99 7.04 6.59 6.58 

1.45 5.88 6.18 6.42 5.80 5.89 6.06 5.94 5.79 5.83 5.85 5.67 5.80 6.06 5.66 5.59 

1.50 5.13 5.30 5.49 5.10 5.13 5.27 5.26 5.02 4.94 5.09 4.94 5.09 5.34 4.98 4.89 

1.55 4.51 4.69 4.79 4.49 4.50 4.65 4.63 4.43 4.42 4.58 4.36 4.42 4.67 4.36 4.32 

1.60 4.01 4.08 4.21 4.06 4.05 4.13 4.17 3.97 3.96 4.04 3.92 3.96 4.22 4.01 3.88 

1.65 3.69 3.69 3.84 3.63 3.66 3.72 3.81 3.62 3.53 3.64 3.56 3.52 3.76 3.61 3.53 

1.70 3.36 3.36 3.43 3.35 3.31 3.36 3.49 3.31 3.26 3.31 3.24 3.20 3.44 3.31 3.22 

1.75 3.06 3.10 3.15 3.08 3.04 3.08 3.17 3.00 3.00 3.06 2.97 2.94 3.14 3.05 2.97 

1.80 2.87 2.87 2.88 2.88 2.80 2.87 2.96 2.84 2.79 2.84 2.73 2.73 2.98 2.81 2.79 

1.85 2.69 2.68 2.63 2.67 2.62 2.65 2.78 2.64 2.61 2.63 2.58 2.54 2.73 2.61 2.57 

1.90 2.50 2.45 2.56 2.52 2.50 2.50 2.58 2.46 2.46 2.48 2.41 2.37 2.54 2.48 2.44 

1.95 2.40 2.34 2.37 2.38 2.33 2.34 2.47 2.33 2.29 2.32 2.32 2.24 2.40 2.32 2.28 

2.00 2.24 2.22 2.27 2.23 2.18 2.21 2.31 2.19 2.21 2.22 2.19 2.12 2.26 2.20 2.17 

2.05 2.12 2.14 2.11 2.13 2.10 2.11 2.19 2.12 2.11 2.11 2.10 2.03 2.14 2.12 2.08 

2.10 2.02 2.02 2.01 2.04 2.01 2.02 2.06 1.99 2.00 1.99 2.01 1.94 2.06 2.00 1.99 

2.15 1.94 1.92 1.94 1.96 1.94 1.94 2.00 1.92 1.91 1.92 1.91 1.86 1.95 1.94 1.91 

2.30 1.76 1.72 1.74 1.75 1.72 1.74 1.79 1.73 1.71 1.73 1.69 1.69 1.76 1.74 1.71 

2.35 1.71 1.68 1.67 1.69 1.67 1.67 1.71 1.67 1.66 1.65 1.66 1.63 1.70 1.67 1.67 

2.40 1.64 1.62 1.64 1.62 1.63 1.63 1.66 1.61 1.61 1.61 1.62 1.58 1.62 1.62 1.62 

2.45 1.59 1.59 1.58 1.58 1.57 1.58 1.63 1.57 1.57 1.58 1.58 1.54 1.61 1.59 1.57 

2.50 1.55 1.53 1.54 1.55 1.53 1.53 1.58 1.54 1.54 1.53 1.51 1.51 1.55 1.53 1.53 

2.55 1.52 1.50 1.51 1.50 1.50 1.51 1.54 1.50 1.49 1.50 1.49 1.46 1.52 1.48 1.51 

2.60 1.48 1.48 1.47 1.49 1.47 1.48 1.51 1.47 1.48 1.47 1.46 1.45 1.47 1.48 1.46 

2.70 1.42 1.41 1.41 1.44 1.41 1.42 1.44 1.41 1.40 1.40 1.41 1.39 1.43 1.42 1.39 

2.75 1.40 1.38 1.39 1.39 1.38 1.38 1.42 1.39 1.38 1.38 1.38 1.36 1.38 1.39 1.38 

2.80 1.36 1.37 1.37 1.37 1.36 1.36 1.38 1.36 1.36 1.37 1.35 1.34 1.36 1.36 1.37 

2.85 1.36 1.35 1.34 1.35 1.35 1.34 1.37 1.34 1.34 1.34 1.33 1.32 1.33 1.33 1.34 

2.90 1.32 1.32 1.32 1.32 1.32 1.33 1.33 1.33 1.31 1.32 1.32 1.30 1.31 1.32 1.30 

2.95 1.30 1.30 1.29 1.31 1.30 1.30 1.33 1.30 1.30 1.30 1.30 1.29 1.30 1.30 1.30 

3.00 1.30 1.29 1.29 1.30 1.29 1.29 1.30 1.28 1.29 1.27 1.28 1.27 1.29 1.27 1.29 

EQL 13.52 13.72 13.93 13.52 13.57 13.69 13.52 14.01 13.93 13.21 13.41 14.49 13.47 13.48 13.71 
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Figure 4.1: ARL comparison of 𝑺𝟐 − 𝑨𝒔𝒔𝒐𝒓𝒕𝒆𝒅 𝒌,𝝀 Chart for: (a) varying values of 𝒌 and fixed 𝝀 at 𝑨𝑹𝑳𝟎 =

𝟐𝟎𝟎; (b) varying values of 𝝀 and fixed 𝒌 at 𝑨𝑹𝑳𝟎 = 𝟐𝟎𝟎; (c) varying values of 𝝀 and 𝒌 at 𝑨𝑹𝑳𝟎 = 𝟐𝟎𝟎; (d) 

varying values of 𝒌 and 𝝀 at 𝑨𝑹𝑳𝟎 = 𝟐𝟎𝟎; 

 

4.3. Performance evaluations and comparisons 

In this section, performance evaluations and comparisons of the proposed                                   

𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆  chart and other competing charts are discussed. The competing charts 

include the 𝑆ℎ𝑒𝑤ℎ𝑎𝑟𝑡 𝑅, and 𝑆ℎ𝑒𝑤ℎ𝑎𝑟𝑡 𝑆, 𝑡ℎ𝑒 𝐸𝑊𝑀𝐴 𝑜𝑓 𝑙𝑛𝑆2, 𝑡ℎ𝑒 𝐶𝑈𝑆𝑈𝑀 𝑜𝑓 𝑙𝑛𝑆2, 

𝑡ℎ𝑒 𝐶𝑈𝑆𝑈𝑀 𝑅, 𝑡ℎ𝑒 𝜒 𝐶𝑈𝑆𝑈𝑀, 𝑡ℎ𝑒 𝑃𝜎  𝐶𝑈𝑆𝑈𝑀, and 𝑡ℎ𝑒 𝐶𝑈𝑆𝑈𝑀 𝑆 𝑐ℎ𝑎𝑟𝑡𝑠. We have used 

different performance measure based on run length including 𝐴𝑅𝐿, 𝐸𝑄𝐿, 𝑆𝐸𝑄𝐿, 𝑅𝐴𝑅𝐿, and 

𝑆𝑅𝐴𝑅𝐿. In order to evaluate these measures, we have used Monte Carlo simulations (for 
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ARL) and numerical integration for other measures (𝐸𝑄𝐿, 𝑆𝐸𝑄𝐿, and 𝑅𝐴𝑅𝐿 ). The 

computational algorithm for these measures is given as: (i) Generation of random sample 

from normal distribution with sample size (i.e. 𝑛 = 5 ); (ii) computation of the sample 

statistics (i.e. sample variance and then 𝑉𝑖) ; (iii) set the control limits using the description 

given in Section 4.2; (iv) using steps (i)–(iii), implement the procedural steps of ARL 

depending on the choices of λ and 𝑘 (cf. Table 4.3); (v) based on the results of step (iv) for 

ARL as function of 𝛿1: integrate the ARL values over the entire 𝛿 range by using an 

appropriate numerical integration technique (like Simpson or Trapezoidal) (this results into 

EQL value); (vi) repeat steps (iv) and (v) for all the charts; (vii) based on the results of step 

(vi), take the ratio of the ARL of a particular chart by the ARL of the benchmark chart (the 

usual one in this study), divide with the range of 𝛿1 values and then integrate the output 

over the entire 𝛿1 range using an appropriate numerical integration technique (like Simpson 

or Trapezoidal) (this results into RARL values). 

4.3.1. Performance analysis of 𝑺𝟐 − 𝑨𝒔𝒔𝒐𝒓𝒕𝒆𝒅𝒌,𝝀 control chart  

The performance of proposed 𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 control chart is evaluated in terms of ARL 

and EQL for varying combination of 𝑘, 𝜆 and 𝛿1. The resulting outcomes are presented in 

Tables 4.3 at 𝐴𝑅𝐿0=200. In addition to the tabular results, we have produced some useful 

graphical displays based on ARLs and are provided in Figure 4.1 The results advocate the 

following: 

• The proposed chart is sensitive for all types of shifts i.e. small, moderate and large 

(cf. Table 4.3). 
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• The sensitivity of the proposed chart increases with a decrease in λ at a specific 

choice of 𝑘 and it is true for all values of 𝑘. 

• The sensitivity of the proposed chart increases with a decrease in 𝑘 at a specific 

choice of λ and it is true for all values of λ (cf. Table 4.3). 

• The case 10 is the optimal choice because it has minimum ARL (cf. Figure 4.1 (d)) 

and EQL (i.e.13.21). The charting constants of this case are (ℎ𝑐 = 2.2298, 𝐿𝑒 =

2.2100 , 𝑐𝑠 = 2.8295) with sensitivity parameter 𝑘 = 1.00 and λ=0.05 at 

𝐴𝑅𝐿0=200. 

• Four different types of charts are portrayed in Graph (a) shows the comparison of 

ARL values at 𝐴𝑅𝐿0 = 200 with fixed value λ=0.40 and varying 𝑘 for different 

amounts of shifts ranging from 1.05 to 1.5.  Graph (b) shows the comparison of 

ARL values at 𝐴𝑅𝐿0 = 200 with fixed value 𝑘=1.00 and varying λ  for different 

amounts of shifts ranging from 1.05 to 1.5. In Graph (c) and (d) shows that varying 

𝑘 and λ are used to detect small and moderate amount of shift and vice versa. The 

results depicted that the 𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑1.00,0.05 has minimum 𝐴𝑅𝐿.   

4.3.2. Comparative analysis 

In this section, performance evaluations and comparisons of the 𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 and 

some other competing charts are discussed. The competing charts include the Shewhart R, 

Shewhart S, the EWMA of 𝑙𝑛𝑆2, the CUSUM of 𝑙𝑛𝑆2, the CUSUM R, the 𝜒 CUSUM, the 

𝑃𝜎 CUSUM, and the CUSUM S charts. We have used different performance measures 

based on run length including 𝐴𝑅𝐿, 𝑆𝐸𝑄𝐿, 𝐸𝑄𝐿, 𝑅𝐴𝑅𝐿 and 𝑆𝑅𝐴𝑅𝐿. In order to evaluate 



87 

 

these measures, we have covered different OOC situations by considering varying values 

of shift (𝛿1) given in Table 4.4 

• The 𝐴𝑅𝐿𝑠 comparison of the proposed 𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 chart with different 

competing charting charts is described in Figure 4.2. 

• The 𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 chart with 𝑘 = 1.00 and 𝜆 = 0.05 is considered as 

benchmark chart based on minimum 𝐸𝑄𝐿 result (i.e. 25.56). The 𝐸𝑄𝐿𝑠 of other 

competing charts are 34.65, 32.96, 28.40, 28.32, 28.14, 27.34, 27.42 and 27.33.  

• Because 𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑 is conceived as a benchmark chart so it 𝑅𝐴𝑅𝐿 is equal to 

1. All contending charts have RARLs (1.42, 1.32, 1.21, 1.21, 1.20, 1.13,1.14 and 

1.16) greater than 1, which shows the superiority of the proposed charts.  

• As we have seen that proposed chart has lowest 𝐸𝑄𝐿. To check the sensitivity of 

the 𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑1,0.05 chart and competing charts on each amount of shift. We 

should determine Sequential Extra Quadratic Loss (𝑆𝐸𝑄𝐿). The results in Table 4.4 

and in Figure 4.3 depicts that the performance of proposed chart at each amount of 

shift is better than all competing charts. 

• The results advocate that the detection ability of 𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑1,0.05 chart based 

on 𝐴𝑅𝐿, 𝑆𝐸𝑄𝐿, 𝐸𝑄𝐿, 𝑆𝑅𝐴𝑅𝐿 and 𝑅𝐴𝑅𝐿 is better than competing charts discussed 

in this study. 
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Table 4.4: Performance comparison based on ARL, EQL, and RARL of 𝑺𝟐 − 𝑨𝒔𝒔𝒐𝒓𝒕𝒆𝒅 and others competing 

charts 

Chart 
 

                                              𝛿1 

1.10 1.20 1.30 1.40 1.50 2.00 

Shewhart- R 

ARL 68.75 30.72 16.55 10.20 6.96 2.40 

SEQL 141.68 102.69 80.50 66.37 56.66 34.65 

SRARL 1.40 1.63 1.68 1.66 1.61 1.42 

Shewhart- S 

ARL 65.10 28.30 15.10 9.20 6.30 2.40 

SEQL 139.43 99.59 77.44 63.52 54.04 32.96 

SRARL 1.36 1.54 1.57 1.54 1.49 1.32 

EWMA 𝑙𝑛𝑆2 

ARL 43.00 18.10 11.00 7.60 6.00 3.20 

SEQL 126.01 82.53 62.46 51.03 43.66 28.40 

SRARL 1.06 1.09 1.10 1.11 1.11 1.21 

CUSUM 𝑙𝑛𝑆2 

ARL 42.94 18.07 10.75 7.63 5.98 3.18 

SEQL 125.94 82.46 62.34 50.89 43.55 28.32 

SRARL 1.07 1.09 1.09 1.10 1.11 1.21 

CUSUM R 

ARL 40.40 17.60 10.82 7.81 6.13 3.13 

SEQL 125.34 81.22 61.42 50.27 43.12 28.14 

SRARL 1.03 1.05 1.06 1.08 1.09 1.20 

CUSUM S 

ARL 38.80 16.85 10.36 7.50 5.85 3.01 

SEQL 123.77 79.69 60.08 49.09 42.06 27.33 

SRARL 1.01 1.02 1.03 1.04 1.05 1.16 

𝜒 CUSUM 

ARL 41.04 17.17 10.23 7.26 5.66 2.90 

SEQL 125.17 81.18 61.12 49.78 42.52 27.34 

SRARL 1.04 1.06 1.05 1.05 1.06 1.13 

𝑃𝜎  CUSUM 

ARL 41.04 17.15 10.21 7.24 5.65 2.98 

SEQL 125.37 81.27 61.17 49.81 42.54 27.42 

SRARL 1.04 1.06 1.05 1.05 1.06 1.14 

𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑 

ARL 37.87 16.27 9.74 6.89 5.09 2.21 

SEQL 122.91 78.77 59.16 48.11 40.99 25.56 

SRARL 1 1 1 1 1 1 
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Figure 4.2: ARL comparison of 𝑺𝟐 − 𝑨𝒔𝒔𝒐𝒓𝒕𝒆𝒅 𝟏.𝟎,𝟎.𝟎𝟓 Chart with: (a) Shewhart- R and Shewhart- S; (b) 

EWMA 𝒍𝒏𝑺𝟐 and CUSUM 𝒍𝒏𝑺𝟐; (c) CUSUM R and CUSUM S; (d)𝝌 CUSUM and 𝑷𝝈 CUSUM; 
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Figure 4.3: SEQL comparison of 𝑺𝟐 − 𝑨𝒔𝒔𝒐𝒓𝒕𝒆𝒅 𝟏.𝟎,𝟎.𝟎𝟓 Chart with: (a) Shewhart- R and Shewhart- S; (b) 

EWMA 𝒍𝒏𝑺𝟐 and CUSUM 𝒍𝒏𝑺𝟐; (c) CUSUM R and CUSUM S; (d)𝝌 CUSUM and 𝑷𝝈 CUSUM; 

 

4.4. Application: Monitoring the Flow Width Measurements  

In this section, an application of our proposed chart to monitor the flow width 

measurements (in microns) for the Hard-Bake Process is illustrated.  For the IC process, 

25 samples, each of size five is taken. (cf. Montgomery (2012)). 
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4.4.1. Application of Proposed and other charts  

We have constructed the following control charts of Hard-Bake measurements process data 

(cf. Montgomery (2012)) with their respective settings (such that 𝐴𝑅𝐿0 = 200) as listed 

below: 

• The proposed 𝑆2 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑1.0,0.05  chart with charting constant (ℎ𝑐 = 2.2298, 𝐿𝑒 =

2.2100 and 𝑐𝑠 = 2.8295) and 𝑈𝐶𝐿 = 1; 

• The 𝑆2 Shewhart chart with charting constant (𝐾 = 3.84)  and upper control limits 

(𝑈𝐶𝐿 = 0.07277 );  

• The 𝑆2 CUSUM chart with sensitivity parameter (𝑘 = 1.0), control limit 

coefficient (ℎ = 1.88)  and (𝑈𝐶𝐿 = 1.88); 

• The 𝑆2 EWMA chart with sensitivity parameter (𝜆 = 0.05) and control limit 

coefficient (𝐿 = 1.81) and (𝑈𝐶𝐿 = 0.2898);. 

The graphical implementation of these charts on Hard-Break measurements data is 

portrayed in Figure 4.4. The IC region contains first 25 and we have seen that neither a 

single OOC point nor a false alarm exist.  
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Table 4.5: Detection Summary 

Control Chart OOC detections False Alarms 

𝑆2Assorted 0 0 

𝑆2Shewhart 0 0 

𝑆2CUSUM 0 0 

𝑆2EWMA 0 0 

  

It is evident from the detection ability of the proposed 𝑆2Assorted, 𝑆2 Shewhart, 𝑆2 

CUSUM and 𝑆2 EWMA charts have equal detection ability when process is IC.  

 

Figure 4.4: Graphical representation of 𝑺𝟐Assorted, 𝑺𝟐 Shewhart, 𝑺𝟐 CUSUM and 𝑺𝟐 EWMA charts 
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4.4.2. Application through data perturbation  

The data perturbation technique is used for monitoring the future production of the control 

charts. It will use after established a set of reliable control limits. From Hard-Bake 

measurement process 25 new sample were collected and plotted immediately after IC 

region. We have perturbed the data using small (1.1𝜎), moderate (1.5𝜎), and large (2𝜎).   

amounts of distortions and applied the proposed assorted and other charts of this study.  

The graphical and tabular representation of the resulting charts and their detection abilities 

are presented in Figures 4.5 - 4.7 and Table 4.6. Form these results, it is obvious that the 

performance of the proposed 𝑆2Assorted chart is better than the competing 𝑆2 Shewhart 

and 𝑆2 CUSUM charts while 𝑆2 EWMA detect more OOC points because it has 𝜆 = 0.05  

which is targeted small amount of shift (1.1𝜎). At medium amount of shift (1.5𝜎) the 

detection ability of 𝑆2Assorted chart is better than its competing charts. At large shift the 

proposed 𝑆2Assorted chart detect OOC point on first sample while EWMA detect first 

OOC point on third sample. From graphical and tabular results, we have seen that our 

proposed 𝑆2Assorted chart performed well in all types of shifts. 
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Table 4.6: Detection summary through data perturbation 

Control Chart OOC detections False Alarms Shift 

𝑆2Assorted 1 0 1.1𝜎 

𝑆2Shewhart 0 0 1.1𝜎 

𝑆2CUSUM 0 0 1.1𝜎 

𝑆2EWMA 5 0 1.1𝜎 

𝑆2Assorted 19 0 1.5𝜎 

𝑆2Shewhart 2 0 1.5𝜎 

𝑆2CUSUM 17 0 1.5𝜎 

𝑆2EWMA 19 0 1.5𝜎 

𝑆2Assorted 24 0 2𝜎 

𝑆2Shewhart 13 0 2𝜎 

𝑆2CUSUM 25 0 2𝜎 

𝑆2EWMA 22 0 2𝜎 
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Figure 4.5: Graphical comparison at shift=1.1𝝈 
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Figure 4.6: Graphical comparison at shift=1.5𝝈 
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Figure 4.7: Graphical comparison at shift=2𝝈 

4.5. Summary and Concluding Remarks 

The Shewhart R and Shewhart S are the basic control charts used to detect large shift while 

CUSUM 𝑙𝑛𝑆2 and EWMA  𝑙𝑛𝑆2  charts are used to detect moderate and small shift in 

process variation. We have proposed an assorted approach (𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆) to detect 

small, medium and large variability in the process in a single control chart. We have 

evaluated the performance of the proposed 𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 chart by using the well-

known measures such as 𝐴𝑅𝐿, 𝐸𝑄𝐿, 𝑆𝐸𝑄𝐿, and 𝑅𝐴𝑅𝐿. We have compared the proposed 

assorted chart with some existing counterparts including the Shewhart R, Shewhart S, the 

EWMA of 𝑙𝑛𝑆2, the CUSUM of 𝑙𝑛𝑆2, the CUSUM R, the 𝜒 CUSUM, the 𝑃𝜎 CUSUM, 

and the CUSUM S charts. 

A detailed performance analysis advocated that the proposed 𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 chart is 

sensitive for all types of shifts i.e. small, moderate and large. The sensitivity of the 
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proposed 𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 chart depends on 𝑘 and 𝜆. The ability of the proposed chart 

increases with decrease in λ at a specific choice of 𝑘 and it is true for all values of 𝑘 and 

vice versa. We have noticed that the performance of proposed 𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 control 

chart at 𝑘 = 1.0 and 𝜆 = 0.05 is best in terms of different run length properties. The      

𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 chart with 𝑘 = 1.0 and 𝜆 = 0.05 is considered as benchmark chart 

based on minimum 𝐸𝑄𝐿 as compared to others competing charts. The 𝑅𝐴𝑅𝐿 of contending 

charts are greater than for 1 which shows that the performance of proposed chart is best 

among the Shewhart R, Shewhart S, the EWMA of 𝑙𝑛𝑆2, the CUSUM of 𝑙𝑛𝑆2, the 

CUSUM R, the 𝜒 CUSUM, the 𝑃𝜎 CUSUM, and the CUSUM S charts. Further, 𝑆𝐸𝑄𝐿 is 

calculated to investigate the performance of the aforementioned charts at different amounts 

of shifts and it also supports the proposed chart.  
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Chapter 5                                                                                                       

AN ASSORTED APPROACH FOR MONITORING SIMPLE 

LINEAR PROFILES 

In manufacturing and nonmanufacturing processes, there exist a relationship between 

quality and quality characteristics of a product and process. This association is known as a 

profile. The nature of profile depends on the variable of interest which may be linear or 

nonlinear. So far, a lot of studies have been done to monitor linear profile parameters by 

different researchers. The well-known study for monitoring the linear profile parameters 

including intercept, slope and error variance are multivariate 𝑇2, Shewhart_3, EWMA_3, 

CUSUM_3 and EWMA/R charts. This chapter proposes a new assorted control chart to 

monitor linear profile parameters. The performance and comparison of proposed chart with 

existing approaches are evaluated using some useful performance measures such as 

𝐴𝑅𝐿, 𝑅𝐴𝑅𝐿, 𝑆𝑅𝐴𝑅𝐿, 𝐸𝑄𝐿 and 𝑆𝐸𝑄𝐿.  

5.1. Introduction 

In the modern era, new technology is systematically emerging all around us particularly in 

the field of consumer behavior. Buyers are becoming more technology smart with the 

passage of time. There is competition among manufacturers to fulfill the demands of their 

loyal customers. On the other hand, customers want high-quality product with cheapest 

price. It is an uphill task for organizations to retain customers and deliver according to their 

wish. There is an inverse relationship between quality of a product and variations in the 

product.  
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In SPC, control charts play a significant role to monitor the variable of interest in the 

process. Sometimes, the nature of a process is described in a connection between a 

dependent variable and at least one independent variable, which is alluded to as a profile. 

Several examples of linear profiles are discussed by different researchers such as Kang and 

Albin (2000), Woodall et al. (2004), Mahmood and Woodall (2004), Wang and Tsung 

(2005), Zou et al. (2007) and Riaz et al. (2017). Different strategies are produced to monitor 

simple linear profiles in both Phases I and II. In Phase I, one assesses the process stability 

and estimates its parameters on the basis of historical data. However, the purpose of Phase 

II examination is to identify disturbance in the process parameters at the earliest. 

The aim of this chapter is to enhance the detection ability of simple linear profile 

parameters by a newly assorted control chart based on Max statistics. The outline of rest 

of the chapter is as follows: in section 5.2, a brief discussion on existing methods to monitor 

simple linear profile parameters is given; in section 5.3, proposed structure of assorted 

control chart is provided; the performance and comparative analysis of proposed with the 

existing control charting strategies are discussed in section 5.4; the implementation of 

Assorted_3 chart is demonstrated in section 5.5 and concluding remarks are given in the 

section 5.6. 

5.2. Simple linear profile methods 

In this chapter, equation (2.1) and (2.2) with its properties are used as original and 

transformed model respectively. The detail discussion on simple linear profiles and 

different methods to monitor simple linear profile parameters are described in section 2.2.  
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5.2.1. The CUSUM_3 chart 

Saghaei et al. (2009) proposed three distinct CUSUM control charts to monitor intercept, 

slope and error variance separately. The proposed method is known as CUSUM_3. The 

three individual statistics are given as 

 For intercept: {
𝐶𝑈𝑆𝑈𝑀𝐼(𝑗)

+ = max [0, 𝑏0𝑗 − (𝐵0 + 𝑘𝐼) + 𝐶𝑈𝑆𝑈𝑀𝐼(𝑗−1)
+ ]

𝐶𝑈𝑆𝑈𝑀𝐼(𝑗)
− = max [0, (𝐵0 + 𝑘𝐼) − 𝑏0𝑗 + 𝐶𝑈𝑆𝑈𝑀𝐼(𝑗−1)

− ]
, 

For slope: {
𝐶𝑈𝑆𝑈𝑀𝑆(𝑗)

+ = max [0, 𝑏1𝑗 − (𝐵1 + 𝑘𝑆) + 𝐶𝑈𝑆𝑈𝑀𝑆(𝑗−1)
+ ]

𝐶𝑈𝑆𝑈𝑀𝑆(𝑗)
− = max [0, (𝐵1 + 𝑘𝑆) − 𝑏1𝑗 + 𝐶𝑈𝑆𝑈𝑀𝑆(𝑗−1)

− ]
, 

For error variance: {
𝐶𝑈𝑆𝑈𝑀𝐸(𝑗)

+ = max [0,𝑀𝑆𝐸𝑗 − 𝑘𝐸 + 𝐶𝑈𝑆𝑈𝑀𝐸(𝑗−1)
+ ]

𝐶𝑈𝑆𝑈𝑀𝐸(𝑗)
− = min [0,𝑀𝑆𝐸𝑗 − 𝑘𝐸 + 𝐶𝑈𝑆𝑈𝑀𝐸(𝑗−1)

− ]
, 

where  

𝐶𝑈𝑆𝑈𝑀𝐼(0)
+ = 𝐶𝑈𝑆𝑈𝑀𝐼(0)

− = 𝐶𝑈𝑆𝑈𝑀𝑆(0)
+ = 𝐶𝑈𝑆𝑈𝑀𝑆(0)

− = 𝐶𝑈𝑆𝑈𝑀𝐸(0)
+ = 𝐶𝑈𝑆𝑈𝑀𝐸(0)

− = 0 

𝑘𝐼: intercept reference value, 𝑘𝑆: slope reference value and 𝑘𝐸: error variance reference 

value. 

The decision interval for intercept, slope and error variance is same as of classical CUSUM. 

5.3. Structure of Assorted_3 control chart and Computation of 𝑨𝑹𝑳 

Assume that we have paired observation (𝑋𝑖, 𝑌𝑖𝑗) for the jth random sample collected with 

respect to time. Then the simple linear regression model with intercept (𝛽0) and slope (𝛽1) 

(already have discussed in Section 2.2) will have the following original model  

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖𝑗      (55.1) 
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where 𝑖 = 1,2, …… , 𝑛 and 𝜖𝑖𝑗 is random error term that follows normal distribution with 

mean (𝜇) zero and variance (𝜎2). The OLS estimates of the linear regression parameters 

are described in Section 2.2. Usually, simple linear profile parameters are monitored in 

simultaneous structure which requires the assumption of independence between the 

parameters. To meet such assumption, coded method is an effective way which requires a 

transformation on 𝑋𝑖 values (i.e. 𝑋𝑖
∗ = 𝑋𝑖 − �̅�). The coded form of equation (5.1) is defined 

as: 

𝒀𝒊𝒋 = 𝑩𝟎 + 𝑩𝟏𝑿𝒊
∗ + 𝝐𝒊𝒋               (55.2)       

where 𝒊 = 𝟏, 𝟐,…… , 𝒏. 

It is noted that Equation (5.2) is referred as transformed model, where intercept of 

transformed model is 𝐵0 = 𝛽0 + 𝛽1�̅� + 𝛽𝜎�̅� and slope of transformed model is estimated 

by 𝐵1 = (𝛽1 + 𝛽𝜎)𝑋𝑖
∗, where the shifts in the slope (𝛽) of Equation (5.1) are considered 

in terms of 𝜎. Further, in the same line, one may obtain OLS estimates of transformed 

model (𝑏0𝑗, 𝑏1𝑗) and their properties.  

In the Assorted_3 control chart for monitoring the intercept of transformed model, the 

estimate of intercept, 𝑏0𝑗, is used to compute the assorted statistics.  

Assorted statistic for intercept:

{
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1
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||
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where 𝑐𝑠 , ℎ𝑐 and 𝐿𝑒  are the charting constants for the Shewhart, CUSUM and EWMA 

control chart. The statistics of CUSUM are 𝐶𝑖(𝐼)
+  and 𝐶𝑖(𝐼)

−  where 𝑘 is the reference value. 

𝐶𝑖(𝐼)
+ = 𝑚𝑎𝑥 [0, 𝑏0𝑗 − 𝐵0 − 𝑘𝜎√[

1

𝑛
+

𝑋′̅̅̅̅
2

𝑆𝑋𝑋
] + 𝐶𝑖−1(𝐼)

+ ], 

𝐶𝑖(𝐼)
− = 𝑚𝑎𝑥 [0,−(𝑏0𝑗 − 𝐵0) − 𝑘𝜎√[

1

𝑛
+

𝑋′̅̅̅̅
2

𝑆𝑋𝑋
] + 𝐶𝑖−1(𝐼)

− ], 

The EWMA statistic is given below and 𝜆 is sensitivity parameter 

𝑍𝑖(𝐼) = 𝜆𝑏0𝑗 + (1 − 𝜆)𝑍𝑖−1(𝐼) ,   

The overall statistic of assorted control chart for intercept is denoted by 𝑇(𝐼) is given 

below 

𝑻(𝑰) = 𝒎𝒂𝒙[𝑻𝟏(𝑰),  𝑻𝟐(𝑰)
+  ,  𝑻𝟐(𝑰)

− , 𝑻𝟑(𝑰)  ]                                 (5.3) 

For monitoring the slope of transformed model, the estimate of slope, 𝑏1𝑗, is used to 

compute the assorted statistics. 

Assorted statistic for slope:

{
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where    𝐶𝑖(𝑆)
+ = 𝑚𝑎𝑥 [0, 𝑏1𝑗 − 𝐵1 − 𝑘𝜎√

1

𝑆𝑋′𝑋′
+ 𝐶𝑖−1(𝑆)

+ ], 
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𝐶𝑖(𝑆)
− = 𝑚𝑎𝑥 [0,−(𝑏1𝑗 − 𝐵1) − 𝑘𝜎√

1

𝑆𝑋′𝑋′
+ 𝐶𝑖−1(𝑆)

− ], 

and   𝑍𝑖(𝑆) = 𝜆𝑏1𝑗 + (1 − 𝜆)𝑍𝑖−1(𝑆).  

The overall statistic of assorted control chart for slope is denoted by 𝑇(𝑆) is given below 

𝑻(𝑺) = 𝒎𝒂𝒙[𝑻𝟏(𝑺),  𝑻𝟐(𝐒)
+  ,  𝑻𝟐(𝑺)

− , 𝑻𝟑(𝑺)  ]                                     (5.4) 

For monitoring the error variance, the estimate of slope, 휀𝑖𝑗, is used to compute the assorted 

statistics. 

Assorted statistic for error variance:

{
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, 

where    𝑀𝑆𝐸 = −0.7882 + 2.1089 × log𝑒  (
𝜀𝑖𝑗
2

𝑛−2
+ 0.6261) is the transformed mean 

square error, CUSUM and EWMA statistics are given below 

𝐶𝑖(𝐸)
+ = 𝑚𝑎𝑥[0,𝑀𝑆𝐸 − 𝑘𝜎 + 𝐶𝑖−1(𝐸)

+ ] 

𝐶𝑖(𝐸)
− = 𝑚𝑎𝑥[0,−𝑀𝑆𝐸 − 𝑘𝜎 + 𝐶𝑖−1(𝐸)

− ] 

  𝑍𝑖(𝐸) = 𝜆𝑀𝑆𝐸 + (1 − 𝜆)𝑍𝑖−1(𝐸)    

The overall statistic of assorted control chart for error variance is denoted by 𝑇(𝐸) is given 

below 

𝑻(𝑬) = 𝒎𝒂𝒙[𝑻𝟏(𝑬),  𝑻𝟐(𝑬)
+  ,  𝑻𝟐(𝑬)

− , 𝑻𝟑(𝑬)  ]                                       (5.5) 

Hence, the final plotting statistics for assorted control chart is given below  

𝑻(𝒐𝒗𝒆𝒓𝒍𝒍) = 𝒎𝒂𝒙[𝑻(𝑰), 𝑻(𝑺), 𝑻(𝑬)  ]      (5.6) 
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In Eq. (5.4) 𝑇(𝑜𝑣𝑒𝑟𝑙𝑙)  is the maximum value of three assorted statistics as discussed above 

and plotted with respect to time. Because 𝑇(𝑜𝑣𝑒𝑟𝑙𝑙) is the function of standardized max 

statistics, therefore, it will always have positive value. The upper control limit of 𝑻(𝒐𝒗𝒆𝒓𝒍𝒍)  

is defined as: 

𝑼𝑪𝑳 = 𝑻(𝒐𝒗𝒆𝒓𝒍𝒍) > 𝟏.      (5.5) 

The sensitivity of the 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑_3 control chart depends on the selection of (𝑘, 𝜆). 

Different combinations of sensitivity parameters (𝑘, 𝜆) are used in the proposed 

𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑_3 chart. To detect large, medium and small shift in linear profile parameters 

three types of charting constants are incorporated in this study. 

Table 3.1 Ranges of sensitivity parameters for different categories of shift portrays the 

ranges of sensitivity parameters for different categories of shifts. 

 Table 5.1: Ranges of sensitivity parameters for different categories of shift 

Sensitivity 

Parameter 

Category of shift 

Small Medium Large 

λ 0.03 to 0.2 0.21 to 0.5 0.51 to 1 

𝑘 0.1 to 0.75 0.76 to 1.5 more than 1.5 

 

When the linear profile model is in IC state (i.e. 𝜑 = 𝛽 = 𝛿 = 0 and 𝛾 = 1 ) we fix overall 

𝐴𝑅𝐿0 at specific level such as 200. In order to fix the overall 𝐴𝑅𝐿0 of the proposed 

𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑_3 control chart we need to determine the control limit coefficients (ℎ𝑐, 𝐿𝑒 , 𝑐𝑠) 

with reference to Eqs 5.1-5.4. For the said purpose, we have used several combinations of 

sensitivity parameters (𝑘, 𝜆) and worked out the triplets (ℎ𝑐 , 𝐿𝑒 , 𝑐𝑠) for our proposed 

control chart. The resulting control charting constants/coefficients (ℎ𝑐, 𝐿𝑒 , 𝑐𝑠) are provided 

in Table 5.2 at some useful combination of (𝑘, 𝜆) for overall 𝐴𝑅𝐿0=200. The outcomes of 

proposed charts are described as: 
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• The case 15 having sensitivity parameters (i.e. 𝑘 = 1.25 and 𝜆 = 0.05) with 

charting constants (ℎ𝑐 = 2.722548, 𝐿𝑒 = 3.188036 , 𝑐𝑠 = 3.528191) is an 

optimal choice because it has minimum EQL (3.340). 

• The ARL and EQL of all cases are portrayed in Table 5.3. 

• The sensitivity of the proposed Assorted_3 chart increases with a decrease in λ at a 

specific choice of 𝑘 and it is true for all values of 𝑘. 

• The sensitivity of the proposed Assorted_3 chart increases with a decrease in 𝑘 at 

a specific choice of λ and it is true for all values of λ (cf. Table 5.3). 

Table 5.2: Charting constant for 𝑨𝑹𝑳𝟎 = 𝟐𝟎𝟎 

Case 𝑘 λ ℎ𝑐  𝐿𝑒 𝑐𝑠 

1 

0.25 

0.25 11.57075 3.461273 3.518018 

2 0.38 11.57075 3.495503 3.518018 

3 0.55 11.57075 3.511677 3.518018 

4 

0.5 

0.25 6.421674 3.414323 3.473969 

5 0.38 6.431839 3.452829 3.476706 

6 0.55 6.431839 3.469855 3.476706 

7 

0.75 

0.05 4.566855 3.182446 3.523721 

8 0.13 4.439271 3.321801 3.472589 

9 0.25 4.370697 3.383178 3.444825 

10 0.38 4.370697 3.419843 3.444825 

11 0.55 4.380133 3.441441 3.448658 

12 

1 

0.05 3.446544 3.189418 3.529296 

13 0.13 3.367723 3.338557 3.487365 

14 0.25 3.281446 3.379014 3.440934 

15 

1.25 

0.05 2.722548 3.188036 3.528191 

16 0.13 2.65931 3.336629 3.485664 

17 0.25 2.594751 3.379852 3.441717 
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 Table 5.3: ARL and EQL of proposed Assorted_3 chart 

Case ARL EQL 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
 

1 51.842 18.303 9.394 5.560 3.702 2.733 2.147 1.765 1.501 1.310 3.861 

2 52.326 19.120 10.323 6.182 4.038 2.889 2.222 1.811 1.525 1.328 4.060 

3 53.236 19.829 11.172 7.053 4.624 3.203 2.373 1.875 1.554 1.341 4.350 

4 68.363 17.603 8.535 5.237 3.600 2.663 2.102 1.732 1.475 1.289 3.770 

5 69.446 18.053 8.872 5.512 3.801 2.797 2.175 1.776 1.498 1.308 3.900 

6 70.259 18.382 9.165 5.824 4.055 2.984 2.291 1.831 1.532 1.320 4.050 

7 49.246 15.633 7.533 4.517 3.161 2.385 1.891 1.581 1.362 1.212 3.360 

8 68.679 17.428 8.062 4.867 3.369 2.533 2.011 1.669 1.431 1.258 3.610 

9 87.020 21.154 8.774 5.143 3.525 2.623 2.075 1.709 1.459 1.280 3.840 

10 91.783 22.193 9.076 5.304 3.658 2.717 2.143 1.746 1.481 1.297 3.960 

11 94.632 22.807 9.323 5.467 3.789 2.817 2.209 1.796 1.510 1.309 4.070 

12 49.701 15.701 7.532 4.523 3.157 2.384 1.905 1.590 1.367 1.213 3.370 

13 70.171 17.706 8.140 4.918 3.401 2.550 2.023 1.676 1.434 1.263 3.640 

14 93.492 23.822 9.353 5.241 3.517 2.625 2.071 1.705 1.454 1.279 3.930 

15 48.717 14.696 7.337 4.511 3.154 2.383 1.905 1.585 1.367 1.215 3.340 

16 69.939 17.721 8.147 4.904 3.394 2.545 2.022 1.677 1.434 1.264 3.640 

17 95.000 24.040 9.447 5.287 3.547 2.626 2.072 1.710 1.458 1.280 3.950 

 

5.4. Performance evaluations and comparisons 

In this section, the performance of assorted control chart is evaluated and compared with 

existing control charts in the literature. An IC linear profile model (𝑖. 𝑒. 𝑌𝑖𝑗 = 3 + 2𝑋𝑖 +

𝜖𝑖𝑗) discussed by Kang and Albin (2000) utilized in this study with fixed sample size 

(𝑛 = 4) and (𝑋𝑖 = 2, 4, 6, 8). The performance of proposed chart is compared with 

Shewhart_3, 𝑇2, CUSUM_3, EWMA/R, EWMA_3 and PM_3. Further, the transformed 

model given in Equation (2.2) with 𝐵0 = 13 + 5(𝛽𝜎) and 𝐵1 = (2 + 𝛽𝜎)𝑋𝑖
∗ is defined as 

𝑌𝑖𝑗 = 𝐵0 + 𝐵1𝑋𝑖
∗ + 𝜖𝑖𝑗. where 𝑋𝑖

∗ = −3,−1, 1, 3. To calculate 𝐴𝑅𝐿 values by Monte Carlo 

simulation with 106 iterations have done in R-language. For performance evaluations, we 

have considered four types of shifts in different parameters as listed below in Table 5.4. 
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 Table 5.4: Four types of Shifts introduced in proposed study 

Type of 

Shifts 
Notation Amounts of Shifts 

In intercept 

of 

transformed 

model 

𝐵0 to 𝐵0 +𝜑𝜎 𝜑 = 0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0 

In slope of 

original 

model 
𝛽1 to 𝛽1 + 𝛽𝜎 𝛽 = 0.025,0.05,0.075,0.1,0.125,0.15,0.175,0.2,0.225,0.25 

In slope of 

transformed 

model 

𝐵1 to 𝐵1 + 𝛿𝜎 𝛿 = 0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0 

In error 

variance of 

original 

model 

𝜎 to  𝛾𝜎 𝛾 = 1.2,1.4,1.6,1.8,2,2.2,2.4,2.6,2.8,3.0 

 

5.4.1. Shift in intercept of transformed model 

The OOC ARL (𝐴𝑅𝐿1) values of proposed and its counterpart charts are shown in Table 

5.4 for shift in intercept (𝑩𝟎 to 𝑩𝟎 +𝝋𝝈). The performance of PM_3 chart is best to detect 

small shifts (i.e. ϕ=0.2 and ϕ=0.4) while the detection ability of proposed chart at moderate 

and large shift is most proficient. The minimum 𝐴𝑅𝐿1 values at different amounts of shifts 

in intercept is highlighted in bold numbers. CUSUM_3 has the minimum value (3.10) of 

𝐴𝑅𝐿1 at ϕ=1.0. The aim of this study is to see the overall best detection ability of a chart. 

The chart has minimum 𝐸𝑄𝐿 value is considered as a best chart. So, based on 𝐸𝑄𝐿  

proposed chart has minimum 𝐸𝑄𝐿 value (3.11) and shown graphical in Figure 5.1. Hence, 

proposed chart is considered as a benchmark chart. Also, the 𝑅𝐴𝑅𝐿 value of proposed chart 

is equal to 1. As all other charts have  𝑅𝐴𝑅𝐿 > 1 which shows that the detection ability of 

the Assorted_3 chart is superior from all other charts.  
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Table 5.5 Performance comparison based on ARL under shift in intercept (𝑩𝟎 to 𝑩𝟎 +𝝋𝝈) 

Chart  ϕ 

0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 

Shewhart_3 

ARL 151.40 77.90 33.80 15.50 7.70 4.30 2.70 1.90 1.50 1.20 

SEQL 3.03 6.14 8.20 8.91 8.89 8.57 8.16 7.78 7.45 7.19 

SRARL 2.05 3.13 3.74 3.81 3.64 3.39 3.13 2.90 2.71 2.54 

T2 

ARL 137.70 63.50 28.00 13.20 6.90 4.00 2.60 1.80 1.50 1.20 

SEQL 2.75 5.29 6.90 7.49 7.53 7.33 7.06 6.78 6.55 6.38 

SRARL 1.91 2.75 3.19 3.24 3.10 2.90 2.71 2.53 2.37 2.24 

CUSUM_3 

ARL 72.10 20.30 8.20 4.60 3.10 2.40 1.91 1.60 1.40 1.30 

SEQL 1.44 2.25 2.54 2.64 2.72 2.81 2.92 3.04 3.19 3.35 

SRARL 1.24 1.34 1.31 1.25 1.20 1.16 1.14 1.12 1.11 1.11 

EWMA/R 

ARL 66.50 17.70 8.40 5.40 3.90 3.20 2.70 2.30 2.10 1.90 

SEQL 1.33 2.04 2.33 2.56 2.78 3.03 3.30 3.59 3.90 4.23 

SRARL 1.18 1.23 1.22 1.20 1.21 1.22 1.24 1.27 1.29 1.32 

EWMA_3 

ARL 59.10 16.20 7.90 5.10 3.80 3.10 2.60 2.30 2.10 1.90 

SEQL 1.18 1.83 2.13 2.36 2.59 2.85 3.13 3.42 3.75 4.09 

SRARL 1.11 1.13 1.12 1.12 1.13 1.15 1.17 1.20 1.24 1.27 

PM_3 

ARL 30.34 12.53 7.36 5.09 3.86 3.09 2.58 2.22 1.95 1.75 

SEQL 0.61 1.11 1.51 1.87 2.21 2.53 2.85 3.17 3.48 3.80 

SRARL 0.81 0.77 0.83 0.89 0.94 1.00 1.04 1.09 1.12 1.15 

Assorted_3 

ARL 48.70 14.68 7.31 4.52 3.16 2.39 1.90 1.58 1.37 1.21 

SEQL 0.97 1.56 1.87 2.09 2.28 2.45 2.61 2.77 2.93 3.11 

SRARL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

5.4.2. Shift in slope of original model 

The results of OOC ARL (𝐴𝑅𝐿1), 𝑆𝐸𝑄𝐿 and 𝑆𝑅𝐴𝑅𝐿 are portrayed in Table 5.5 under shift 

in slope of original model. The results of mentioned performance measure are quite 

interested. From small to moderate shift in slope (i.e. 𝛽 = 0.025 𝑡𝑜 0.10) the detection 

ability of PM_3 chart is better than all other charts while when shift is increased from 0.10 

to onwards up to 0.25 the Assorted_3 charts performed well. The Shewhart_3 and Hoteling 

𝑇2 charts have worst detection ability.  Again, the Assorted_3 chart has the minimum 𝐸𝑄𝐿 
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value (see Figure 5.1) so it is considered as a benchmark chart. The 𝑅𝐴𝑅𝐿 values show that 

approximately PM_3 and Assorted_3 charts have equal detection ability because both have 

same 𝑅𝐴𝑅𝐿=1 

Table 5.6 Performance comparison based on ARL under shift in slope (𝜷𝟏 to 𝜷𝟏 + 𝜷𝝈) 

Chart  
β 

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 

Shewhart_3 

ARL 178.300 125.000 79.200 46.700 27.900 17.100 10.900 7.100 5.000 3.600 

SEQL 0.056 0.134 0.216 0.276 0.311 0.327 0.332 0.329 0.322 0.314 

SRARL 1.481 2.236 3.010 3.509 3.724 3.753 3.676 3.542 3.387 3.228 

T2 

ARL 166.000 105.600 60.700 34.500 20.100 12.200 7.800 5.200 3.700 2.700 

SEQL 0.052 0.118 0.179 0.220 0.242 0.251 0.252 0.248 0.243 0.236 

SRARL 1.414 2.012 2.558 2.861 2.958 2.931 2.840 2.721 2.594 2.469 

EWMA/R 

ARL 119.000 43.900 19.800 11.300 7.700 5.800 4.700 3.900 3.400 3.000 

SEQL 0.037 0.065 0.080 0.088 0.094 0.099 0.104 0.110 0.116 0.123 

SRARL 1.414 1.258 1.286 1.272 1.254 1.243 1.240 1.243 1.250 1.260 

EWMA_3 

ARL 101.600 36.500 17.000 10.300 7.200 5.500 4.500 3.800 3.300 2.900 

SEQL 0.032 0.055 0.068 0.075 0.082 0.088 0.094 0.100 0.107 0.114 

SRARL 1.059 1.103 1.113 1.107 1.104 1.106 1.115 1.128 1.143 1.160 

CUSUM_3 

ARL 85.700 37.800 19.000 11.100 7.200 5.000 3.900 3.100 2.600 2.300 

SEQL 0.027 0.050 0.067 0.078 0.084 0.089 0.093 0.097 0.100 0.104 

SRARL 0.972 1.025 1.090 1.116 1.120 1.111 1.100 1.090 1.082 1.078 

PM_3 

ARL 48.200 21.430 12.940 9.070 6.830 5.430 4.490 3.820 3.300 2.920 

SEQL 0.015 0.028 0.040 0.050 0.060 0.069 0.078 0.086 0.094 0.102 

SRARL 0.765 0.687 0.712 0.757 0.805 0.852 0.895 0.936 0.973 1.007 

Assorted_3 

ARL 90.841 31.112 15.533 9.509 6.552 4.834 3.771 3.055 2.552 2.186 

SEQL 0.028 0.048 0.059 0.067 0.074 0.079 0.084 0.088 0.092 0.096 

SRARL 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 

5.4.3. Shift in error variance of original model 

Table 5.6 presented the results of 𝐴𝑅𝐿1, 𝑆𝐸𝑄𝐿 and 𝑆𝑅𝐴𝑅𝐿 under shift in error variance. 

The detection ability of Assorted_3 chart at small and moderate shift is significantly better 

among all other mentioned charts. Although, at large amount of shift the performance of 

CUSUM_3 is slightly better than Assorted_3 chart. The minimum 𝐴𝑅𝐿1 is highlighted in 
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bold numbers. Assorted_3 chart has minimum 𝐸𝑄𝐿 value so it is considered as benchmark 

chart. The detection ability of CUSUM_3 chart better than all other charts except 

Assorted_3 chart. The graphical presentation of 𝑆𝐸𝑄𝐿 is portrayed in Figure 5.1. 

Table 5.7 Performance comparison based on ARL under shift in error variance (𝝈 to  𝜸𝝈) 

Chart  γ 

1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 

Shewhart_3 

ARL 40.10 13.50 6.50 4.00 2.80 2.20 1.80 1.60 1.50 1.40 

SEQL 128.87 85.49 64.17 51.83 43.88 38.39 34.41 31.43 29.19 27.49 

SRARL 1.25 1.38 1.40 1.39 1.36 1.32 1.29 1.26 1.24 1.22 

T2 

ARL 39.60 14.90 7.90 5.10 3.80 3.00 2.50 2.20 2.00 1.80 

SEQL 128.51 85.81 65.45 53.68 46.12 40.91 37.13 34.32 32.20 30.57 

SRARL 1.24 1.41 1.50 1.54 1.56 1.56 1.55 1.54 1.53 1.52 

EWMA/R 

ARL 34.30 12.00 6.10 3.90 2.90 2.30 1.90 1.70 1.50 1.40 

SEQL 124.70 80.58 60.24 48.71 41.39 36.39 32.77 30.07 28.02 26.44 

SRARL 1.14 1.23 1.26 1.26 1.25 1.25 1.24 1.22 1.21 1.19 

EWMA_3 

ARL 33.50 12.70 7.20 5.10 3.90 3.20 2.80 2.50 2.30 2.10 

SEQL 124.12 80.34 60.78 49.96 43.18 38.57 35.32 32.97 31.25 29.97 

SRARL 1.12 1.23 1.32 1.38 1.44 1.47 1.50 1.52 1.53 1.54 

CUSUM_3 

ARL 31.20 9.40 4.80 3.20 2.40 2.00 1.70 1.50 1.40 1.30 

SEQL 122.46 77.07 56.49 45.20 38.16 33.40 30.02 27.51 25.63 24.20 

SRARL 1.08 1.10 1.08 1.07 1.06 1.05 1.05 1.04 1.03 1.03 

PM_3 

ARL 24.81 9.82 5.61 3.90 2.99 2.42 2.06 1.81 1.65 1.50 

SEQL 117.86 72.67 54.05 43.91 37.59 33.30 30.22 27.95 26.25 24.94 

SRARL 0.96 0.99 1.04 1.09 1.12 1.14 1.16 1.16 1.17 1.17 

Assorted_3 

ARL 26.90 8.84 4.70 3.11 2.37 1.95 1.69 1.52 1.39 1.31 

SEQL 119.37 73.69 54.02 43.28 36.58 32.06 28.85 26.49 24.72 23.38 

SRARL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

5.4.4. Shift in slope of transformed model 

In this study, the positive amount of shift is used in the slope of transformed model. Kang 

and Albin (2000) used the same amount of shift in negative numbers. The OOC ARL values 

and other performance measures such as 𝐸𝑄𝐿 and 𝑅𝐴𝑅𝐿 of proposed and others chart are 

given in Table 5.7. Although, the PM_3 has minimum 𝐴𝑅𝐿1 (10.83) at 𝛿 = 0.2. But, for 

all the amount of shifts the performance of Assorted_3 chart is best. The 𝐸𝑄𝐿 of proposed 

chart is equal to 0.65 which is minimum from all other charts (see Figure 5.1). So, it is 
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considered as benchmark chart. The 𝑅𝐴𝑅𝐿 of all other charts is not less than 1 which shows 

the inferiority of these charts.  

Table 5.8 Shift in slope transformed model 

Chart  
 

   𝛿     
  0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

EWMA/R 

ARL 76.7 33.7 15.3 7.5 4.2 2.6 1.8 1.4 1.2 

SEQL 1.53 2.04 2.21 2.2 2.12 2.02 1.92 1.83 1.76 

SRARL 3.67 4.43 4.53 4.31 4 3.69 3.41 3.17 2.96 

Shewhart_3 

ARL 64.29 25.29 11.08 5.42 3.06 2.03 1.49 1.24 1.10 

SEQL 1.28 1.66 1.75 1.72 1.63 1.55 1.47 1.42 1.38 

SRARL 3.15 3.68 3.65 3.42 3.15 2.89 2.67 2.50 2.34 

T2 

ARL 52.2 21.2 9.6 4.9 2.9 1.9 1.5 1.2 1.1 

SEQL 1.04 1.36 1.45 1.44 1.39 1.33 1.28 1.25 1.23 

SRARL 2.66 3.07 3.06 2.89 2.68 2.48 2.31 2.17 2.05 

EWMA_3 

ARL 13.1 6.6 4.4 3.3 2.7 2.3 2.1 1.9 1.7 

SEQL 0.26 0.36 0.43 0.5 0.57 0.63 0.71 0.79 0.87 

SRARL 1.04 1.06 1.07 1.1 1.13 1.17 1.2 1.24 1.27 

CUSUM_3 

ARL 12.4 7.9 5.8 4.6 3.8 3.3 2.9 2.6 2.4 

SEQL 0.26 0.37 0.48 0.59 0.7 0.82 0.93 1.05 1.17 

SRARL 1.01 1.06 1.15 1.25 1.34 1.43 1.51 1.58 1.64 

PM_3 

ARL 10.83 6.4 4.43 3.36 2.7 2.27 1.96 1.73 1.53 

SEQL 0.22 0.31 0.4 0.47 0.54 0.61 0.69 0.76 0.83 

SRARL 0.95 0.96 0.99 1.04 1.09 1.13 1.16 1.19 1.21 

Assorted_3 

ARL 12.1 6.05 3.76 2.66 2.02 1.63 1.38 1.21 1.1 

SEQL 0.24 0.33 0.39 0.44 0.48 0.52 0.56 0.6 0.65 

SRARL 1 1 1 1 1 1 1 1 1 
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Figure 5.1: SEQL of four types of shifts 

 

5.5. Application of proposed chart on Thermal Management of 

Diamond-Copper composites 

Thermal management of high-performance electronic devices is the key to their efficient 

and continued working. The average size of electronic devices is decreasing day by day 

with the decreasing size of the transistor. Each electronic process produces waste heat in 

the component. In overall, thermal density (heat produced per unit area) of electronic 

devices is increasing with the level of miniaturization. The waste heat produced must be 

carried away from the component without disturbing the electronic operation of the 

electronic component and the device. 

One solution to this problem is to have a high thermal conductivity substrate for the device. 

Its high thermal conductivity will enable fast extraction of waste heat from the device. So, 
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high thermal conductivity metals like copper, silver or aluminum (for copper ~ 400 W/mK) 

seems a good solution for the substrate material. However, the thermal expansion behavior 

of the substrate should be comparable to that of the parent device. So that any rise or 

decrease in temperature of the system produce comparable thermal expansion, otherwise 

large difference in thermal expansion will produce stresses at the interface and may lead to 

delamination. The thermal expansion coefficient of electronic devices has low value (for 

silicon ~ 5 m/mK) while that of the mentioned metals is very high in comparison (for 

copper ~ 16 m/mK). Therefore, metals alone are not compatible with most of the electronic 

devices. Hence for the substrate, a high thermal conductivity and a low thermal expansion 

are desired. 

Ceramic materials are generally very low in their thermal expansion coefficient plus they 

have a wide range of thermal conductivity available. For example, diamond has a very high 

thermal conductivity of 2000 W/mK with a thermal expansion coefficient of only ~ 2 

m/mK. A composite of diamond particles and copper metal may produce a combination of 

high thermal conductivity and a thermal expansion coefficient comparable to that of 

electronic devices. Mostly, the researchers have adopted powder metallurgy route for 

making the diamond-copper composites.  

Briefly, in powder metallurgy, powders are consolidated with a combination of mechanical 

pressure and high temperature. The treatment of powders at high temperature is called as 

sintering. Conventional sintering is the type of powder metallurgy route in which the 

powders are mixed, cold compacted at room temperature by pressing the mixed powders 

in a die and then sintered at high temperature in the desired environment. The effective 

thermal conductivity and thermal expansion coefficients are mainly affected by the volume 
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fraction of diamond and the densification of the composite. Densification is the ratio of 

actual density to the theoretical density of the composite sample. In other words, 

densification is an inverse measure of the porosity in the composite sample. A densification 

closer to 100% means the lower volume of porosity and improved effective thermal 

properties. 

In this study, diamond-copper composites were produced by conventional sintering route. 

The pressure of cold compaction (PCC) is an important parameter which affects the final 

properties of the composite. The composite samples were sintered following the same 

sintering cycle. The volume fraction of diamond particles was 10% and the sintering was 

carried out at 900 °C for 2 hours in a vacuum environment. The only independent variable 

was PCC. The composite samples were cold compacted at five different levels of pressure 

i.e. 425, 450, 475, 500 and 525 MPa. The dependent variable was the densification of the 

diamond-copper composite. The densification was measured 24 times by an apparatus 

based on Archimedes’ principle.  
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5.5.1. Implementation of Assorted_3 chart 

In this study, we have considered the independent variable (PCC) (𝑋 = 425,450,475,500 

and 525) and densification (Y) as a dependent variable. The implementation of Assorted_3 

chart needs the following steps. 

Step 1: We have total 120 sample values (24 profiles). The IC regression model based on 

24 profiles is  

𝑌 = 86.899 + 0.00972𝑋 + 휀.  (original model) 

Step 2:  Further, to gain the assumption of independence between parameters, we 

transformed the 𝑋 values in 𝑋′ by using 𝑋′ = 𝑋 − �̅�,  

𝑋′ = −50,−25, 0, 25, 50 

𝑌 = 91.518 + 0.00972𝑋′ + 휀.  (transformed model) 

Step 3: The selected charting constants for proposed chart is given below 

For Assorted_3: {

𝑘 = 1.25 , 𝜆 = 0.05
  ℎ𝑐 = 2.7225
𝐿𝑒 = 3.1880
  𝑐𝑠 = 3.5281

, 

Step 4:  We have plotted our proposed statistics for each parameter (i.e. Intercept, slope 

and error variance) against their upper control limit (i.e. 𝑈𝐶𝐿 = 1). The proposed 

𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑_3 chart for IC process (for 24 profiles) is portrayed in Figure 5.2. 
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Figure 5.2: The performance of Assorted_3 chart for IC process 

Step 5: When a turbulence occurs in the data set due to increase the PCC after 16th sample 

profile. The densification of the diamond-copper composite is affected. We can see the 

performance of our proposed Assorted_3 chart versus CUSUM_3, EWMA_3 and 

Shewhart_3 chart in Figure 5.3-5.6 respectively. The summary of detection ability of these 

charts is presented in Table 5.9. The following results reveal that our proposed Assorted_3 

chart have better detection ability to monitor simple linear profile parameters.  

It is evident from the detection ability of the charts that CUSUM_3 and EWMA_3 appeared 

as the least efficient chart. It is to be noted that Shewhart_3 chart has detected one OOC 

point but at the cost of four false alarms as may be seen in the summary Table 5.9. The 

proposed Assorted_3 chart perfumed the best in detecting OOC points. The reason for this 

superiority order relates to the amount of shift in the real process. As the aim of proposed 

chart is to detect small, medium and large shift in the process so it takes edge over other 

charts in detecting OOC scenarios.   
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 For these OOC signals, we investigated the process in search of the assignable cause(s) 

and found that there are some technical issues (voltage ampere) occur in PCC. Due to this 

reason densification is changed and some OOC points detected by our proposed chart.  

Table 5.9: Detection Summary 

Control 
Charts 

Slope Intercept Error Variance 

OOC 
Detection 

False 
Alarms 

OOC 
Detection 

False 
Alarms 

OOC 
Detection 

False 
Alarms 

Assorted_3 0 0 5 0 0 0 

Shewhart_3 1 4 0 0 0 0 

CUSUM_3 0 0 0 0 0 0 

EWMA_3 0 0 0 0 0 0 

 

 

Figure 5.3: The performance of Assorted_3 chart for OOC process 
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Figure 5.4: The performance of Shewhart_3 Chart for OOC process 
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Figure 5.5: The performance of CUSUM_3 Chart for OOC process 
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Figure 5.6: The performance of EWMA_3 Chart for OOC process 
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The diamond-copper composite is portrayed in Figure 5.7;(a) at 500 PCC while when PCC 

is increased we can observe, a blister on the diamond-copper composite in Figure 5.7 (b). 

Further, this blister is investigated by scanning electron microscopy (SEM) (cf. Figure 5.7 

(c and d))  

 

Figure 5.7: Impact of increasing PCC 

5.6. Conclusions  

The monitoring of simple linear profile parameters is an emerging field in SPC. Several 

approaches have been developed to monitor the simple linear profile parameters such as 

EWMA/R, Hotelling 𝑇2,  EWMA_3, CUSUM_3 and PM_3. We have proposed an 

Assorted_3 approach to monitor simple linear profile parameters. Using the performance 

measures such as  𝐴𝑅𝐿, 𝐸𝑄𝐿, 𝑆𝐸𝑄𝐿, 𝑅𝐴𝑅𝐿 and 𝑆𝑅𝐴𝑅𝐿, we have evaluated and compared 

the performance of the proposed Assorted_3 chart with some existing counterparts charts 

aforementioned. 

A detailed performance analysis urged that the proposed Assorted_3 chart is sensitive for 

monitoring linear profile parameters including intercept, slope and error variance at 

different amounts of shifts. We have found that the performance of proposed Assorted_3 
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control chart at 𝑘 = 1.25 and 𝜆 = 0.05 is best in terms of different run length properties. 

The 𝑅𝐴𝑅𝐿 of contending charts are greater than 1 which shows that the performance of 

proposed Assorted_3 chart is best among EWMA/R, Hotelling 𝑇2,  EWMA_3, CUSUM_3 

and PM_3 charts. Further, 𝑆𝐸𝑄𝐿 is calculated to investigate the performance of the said 

charts at different amounts of shifts and it also supports the proposed Assorted_3 chart. A 

real application of the Assorted_3 chart is also presented to affirms the findings in favor of 

our proposed Assorted_3 chart to monitor simple linear profile parameters. 
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Chapter 6                                                                              

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

The monitoring of study variable which is linearly related to another ancillary variable is 

known as simple linear profiles. A number of control charting structures based on memory 

or memoryless type structures are available for the simultaneous monitoring of linear 

profile parameters. The most famous simple linear profile monitoring approaches are 

(EWMA/R, the Hotelling 𝑇2, EWMA_3, Shewhart_3, CUSUM_3). Recently, a memory 

type structure based on progressive mean was introduced as an efficient chart as compared 

to existing memory type structures (EWMA) and CUSUM). 

So, in Chapter 2 with the inspiration of progressive mean structure, a control chart is 

developed to monitor simple linear profile parameters under progressive mean setup. The 

performance of proposed chart is evaluated on the basis of well-known performance 

measures such as 𝐴𝑅𝐿, 𝐸𝑄𝐿, 𝑆𝐸𝑄𝐿, 𝑅𝐴𝑅𝐿 and 𝑆𝑅𝐴𝑅𝐿. The results depict that the detection 

ability of PM_3 chart is best among the existing approaches to monitor simple linear profile 

parameters such as slope, intercept and error variance. 

There are two approaches of control charts exists in literature recognized as classical 

(Shewhart, CUSUM, and EWMA) and modified control charts. To enhance the detection 

ability of classical approaches at different amount of shift (i.e. small, medium and large) 

several modifications are available in the literature. In Chapter 3, a new control chart 

technique is proposed to detect large, medium and small turbulences in the process location 

based on max approach in a sole control chart. The performance of 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 control 

chart is evaluated by 𝐴𝑅𝐿, 𝑅𝐴𝑅𝐿, 𝐸𝑄𝐿 and 𝑃𝐶𝐼 . The comparison of proposed 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 
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chart versus classical and modified control charts are also portrayed. The comparative 

analysis concludes that the 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 chart outperform well to detect turbulences as 

compared to classical and some modified approaches.    

In Chapter 4, a new control chart technique is proposed to detect large, medium and small 

turbulences in the process dispersion based on max approach in a sole control chart. The 

performance of 𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 control chart is evaluated by 𝐴𝑅𝐿, 𝑆𝐸𝑄𝐿, 𝐸𝑄𝐿, 𝑅𝐴𝑅𝐿,  

and SRARL . The comparison of proposed 𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 chart versus competing 

charts are presented and results depicted that the performance of proposed                           

𝑆2 − 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 chart is better than all others contending chats.  

In Chapter 5, the idea of assorted control chart is employed to monitor simple linear profile 

parameters. So, each parameter of linear profile parameter is shaped in max approach and 

finally the overall assorted statistic plotted against its control limits. There were existing 

12 individual statistics existing. The proposed control chart than compare with existing 

approaches to monitor simple linear profile parameters and results conclude that the 

detection ability of assorted control chart to monitor simple linear profile parameter is 

outclass from all other existing approaches such as Shewhart_3, Hotelling 𝑇2, EWMA/R, 

EWMA_3, CUSUM_3 and PM_3.  

6.1. Future recommendations 

✓ In future, one may extend simultaneous monitoring of linear profiles under 

progressive setup study to multiple linear/nonlinear regression models. 

✓ The 𝐴𝑠𝑠𝑜𝑟𝑡𝑒𝑑𝑘,𝜆 control chart can also be applied for the monitoring of process 

location and dispersion in multivariate control charts. 
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✓ Joint monitoring of linear profile. 

✓ The study in Chapter 5 based on univariate and linear profile monitoring, one may 

extend this idea into multivariate and nonlinear profile monitoring. 
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Appendix A 

Properties of linear profile parameters under progressive setup 

As discussed in Section 2.2.1.5 that the progressive mean is the cumulative mean of the 

variable so the progressive mean of the Intercept term may be obtained by, 

𝑃𝑀𝐼(𝑖) =
∑ 𝑏0𝑗
𝑖
𝑗=1

𝑖
=
𝑏01 + 𝑏02 +⋯+ 𝑏0𝑖

𝑖
 

by taking expectation 

 

𝐸(𝑃𝑀𝐼(𝑖)) = 𝐸 (
𝑏01 + 𝑏02 +⋯+ 𝑏0𝑖

𝑖
) =

𝐸(𝑏01) + 𝐸(𝑏02) + ⋯+ 𝐸(𝑏0𝑖)

𝑖
 

 

as we know that 𝐸(𝑏01) = 𝐵0, so 

 

𝐸(𝑃𝑀𝐼(𝑖)) =
𝐵0 + 𝐵0 +⋯+𝐵0

𝑖
 

𝐸(𝑃𝑀𝐼(𝑖)) =
𝑖(𝐵0)

𝑖
= 𝐵0 

Similarly, one may also get the mean of slope and mean square error under progressive 

mean setup such as,   

𝐸(𝑃𝑀𝑆(𝑖)) = 𝐵1;  𝐸(𝑃𝑀𝐸(𝑖)) = 𝜎
2 

The variance of the slope parameter under progressive mean setup is obtain by 

𝑉𝑎𝑟(𝑃𝑀𝑆(𝑖)) = 𝑉𝑎𝑟 (
∑ 𝑏1𝑗
𝑖
𝑗=1

𝑖
) 

𝑉𝑎𝑟(𝑃𝑀𝑆(𝑖)) =
1

𝑖2
[∑𝑉𝑎𝑟(𝑏1𝑗)

𝑖

𝑗=1

] +∑𝐶𝑜𝑣(𝑏1𝑗, 𝑏1𝑖)

𝑗≠𝑖

 

 



128 

 

As we know that  

𝑉𝑎𝑟(𝑏1𝑗) =
𝜎2

𝑆𝑋𝑋
   and 𝐶𝑜𝑣(𝑏1𝑗 , 𝑏1𝑖) = 0 

Then the variance of the slope parameter under progressive mean structure is 

𝑉𝑎𝑟(𝑃𝑀𝑆(𝑖)) =
1

𝑖2
{
𝜎2

𝑆𝑋𝑋
+
𝜎2

𝑆𝑋𝑋
+⋯+

𝜎2

𝑆𝑋𝑋
} 

𝑉𝑎𝑟(𝑃𝑀𝑆(𝑖)) =
1

𝑖2
{𝑖 (

𝜎2

𝑆𝑋𝑋
)} =

𝜎2

𝑖
(
1

𝑆𝑋𝑋
) 

Similarly, the variance of the progressive intercept term may be obtained as  

𝑉𝑎𝑟(𝑃𝑀𝐼(𝑖)) =
𝜎2

𝑖
(
1

𝑛
) 

As we know that the mean square error (𝑀𝑆𝐸) is an unbiased estimator of error variance 

which has following properties. 

𝑀𝑆𝐸~
𝜎2

𝑛−2
𝜒2

(𝑛−2)
, 

𝐸(𝑀𝑆𝐸) =
𝜎2

𝑛−2
𝐸 [𝜒2

(𝑛−2)
] =

𝜎2

𝑛−2
(𝑛 − 2) = 𝜎2, 

𝑉𝑎𝑟(𝑀𝑆𝐸) = (
𝜎2

𝑛−2
)
2

𝑉𝑎𝑟 [𝜒2
(𝑛−2)

] = (
𝜎2

𝑛−2
)
2

2(𝑛 − 2) =
2

𝑛−2
𝜎4, 

So, the variance of 𝑃𝑀𝐸(𝑖) is obtained as follows 

𝑉𝑎𝑟(𝑃𝑀𝐸(𝑖)) =
2

𝑛 − 2
𝜎4 
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Appendix B 

The properties of pH characteristic value of data are given below. The probability plot in 

Figure B-1 portrayed that the dataset satisfied the normality assumption. Also, the value of 

Anderson-Darling (AD) test statistic for normality is equal to 0.589 with P-value=0.119. 
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Figure B-6.1:  Probability plot of pH value of water 

 

The descriptive summary of given data is described in Figure B-2. The histogram 

suggested that the distribution of the data is bell shaped (i.e. normal). 
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Figure B-6.2: Graphical and descriptive summary of pH value of water 
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Appendix C 

The probability plot of diamond-copper composite densification is portrayed in Figure C-

1. The value of Anderson-Darling (AD) test statistic for normality is equal to 0.336 with 

P-value=0.504 which shows that the given dataset satisfies the normality assumption. 
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Figure C-1: Diamond-copper composite densification 

 

The descriptive summary of given data is described in Figure C-2. The histogram 

suggested that the distribution of the data is bell shaped (i.e. normal). 
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Figure C-2: Descriptive Summary 
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