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Traditional software-based protection methods are insecure against cloud 

operators/service providers related attacks. This is due to the fact that cloud service 

providers physically own the hardware that hosts users’ data and computation. Therefore, 

cloud computing is not achieving maximum growth since sensitive data are not going to 

be processed in the cloud. A hardware solution is the most valid method that would 

possibly tackle the problem and expand the use of cloud computing paradigm. In the 

literature, protecting users’ data in the cloud has been an active research area. Significant 

progress has been made in securing clients’ data in the cloud in the last few years. 

However, existing research either is mostly concerned with traditional attacks that are not 

targeting the new emerging threat (i.e. securing data from cloud providers and other users 

in the cloud) or lacks the practicality in the multi-tenant environment or suffering from 

security weaknesses and large performance overhead. In this dissertation, we propose 

FPGA-based solutions for securing users’ data from cloud providers and other various 

kinds of attacks. The proposed solutions are suitable for the multi-tenant nature of the 

cloud and are practical in terms of cost and performance. The proposed solutions in this 
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dissertation can target two primary areas: (1) securing sensitive data that are owned by a 

client who performs the computation on his data in the cloud, (2) securing sensitive data 

that are aggregated from multiple sources and processed in the cloud such as internet of 

things (IoT) data that is collected from IoT devices. We propose a secure way to 

aggregate and process such data in the cloud and give its software and FPGA 

implementation details. The results show that the proposed solutions integrate well with 

other cloud resources and can boot 15 times faster than booting a medium-size 

conventional virtual machine (VM) on the same cloud and their performance is 

comparable to a software processing plaintext data. For secure IoT data processing in the 

cloud, the results also show that our proposed solution is efficient in terms of resources 

and performance. 
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 ملخص الرسالة

 

 محمد عبدالقاهر احمد العسلي :الاسم الكامل

  العامةحلول هاردوير لحماية بيانات المستخدم في الحوسبة السحابية  : عنوان الرسالة

 علوم وهندسة الحاسب الآلي التخصص:

 2017 مايو :العلميةتاريخ الدرجة 

 

طرق الحماية التقليدية القائمة على البرمجيات غير آمنة ضد مشغلي السحابة والهجمات ذات الصلة. ويرجع ذلك إلى حقيقة أن 

والتي تقوم باداء العمليات عليها. ولذلك، فإن مقدمي الخدمات السحابية يمتلكون الأجهزة التي تستضيف بيانات المستخدمين 

الحوسبة السحابية لا تحقق أقصى قدر من النمو حيث ان البيانات الحساسة لن يتم وضعها في السحابة الالكترونية. استخدام 

ان حماية بيانات  الهاردوير هو الأسلوب الأكثر فعالية والذي من المحتمل أن يعالج المشكلة ويوسع استخدام الحوسبة السحابية.

المستخدمين في السحابة مجالا بحثيا نشطا وقد أحرز تقدم كبير في تأمين بيانات العملاء في السحابة في السنوات القليلة 

الماضية. ومع ذلك، فإن البحوث الحالية تتعلق في الغالب بالهجمات التقليدية التي لا تستهدف التهديد الجديد الناشئ )أي تأمين 

من مشغلي الخدمات السحابية وغيرهم من المستخدمين في السحابة( أو تفتقر إلى التطبيق العملي في بيئة السحابة  البيانات

 يطروحة، نقترح الحلول القائمة علالمتعددة أو تعاني من نقاط ضعف أمنية او اداء ضعيف يجعلها غير عملية. في هذه الأ

FPGA ابة وغيرها من أنواع مختلفة من الهجمات. الحلول المقترحة هي مناسبة لحماية بيانات المستخدمين من مشغلي السح

لطبيعة العمليات في السحابة وهي عملية من حيث التكلفة والأداء. يمكن للحلول المقترحة في هذه الرسالة أن تستهدف مجالين 

( تأمين 2لعمليات على بياناته في السحابة، )( تأمين البيانات الحساسة التي يملكها العميل الذي يقوم بإجراء ا1رئيسيين هما: )

البيانات الحساسة التي يتم تجميعها من مصادر متعددة ومعالجتها في السحابة مثل بيانات إنترنت الأشياء التي يتم جمعها من 

 فيذ الطريقة فيأجهزة مختلفة. واقترحنا طريقة آمنة لتجميع ومعالجة هذه البيانات في السحابة وفصلنا برامجها و تفاصيل تن

FPGA  مرة  15وأظهرت النتائج أن الحلول المقترحة تتكامل بشكل جيد مع موارد السحابة الأخرى ويمكن أن تبدأ أسرع ب

مقارنة بالبرمجيات الافتراضية التقليدية متوسطة الحجم على نفس السحابة وأداءها يمكن مقارنته مع معالجة البيانات الغير 

معالجة بيانات إنترنت الاشياء في السحابة، أظهرت النتائج أيضا أن حلنا المقترخ فعال من حيث استهلاك مشفرة. ولتحسين 

 . الموارد والاداء.
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1 CHAPTER  

INTRODUCTION 

1.1 Motivation 

Cloud computing is an emerging paradigm that has many benefits for users and 

enterprises. Reduction of capital costs, which is one of the essential benefits of cloud 

computing, makes cloud computing the ultimate choice for enterprises. However, cloud 

security is a major concern that makes cloud computing not appropriate for applications 

with sensitive data such as financial data processing, medical data and sensitive internet 

of things (IoT) data. Existing solutions either focus on protecting users' data against 

external or peer attacks only or lack a more robust attack model. There is an implied 

assumption that the cloud operator is a trusted entity. This leads many organizations with 

sensitive data not to process such data in the cloud. 

Current cloud infrastructures are not fully secured since the cloud provider has access to 

users’ data on the cloud servers. According to ESG Insider Threats Survey [1], insider 

attacks, which is carried by a staff in the cloud company, was ranked at third most 

dangerous attacks of the cloud. Also, 66% of all organizations are very vulnerable to 

insider attacks methods [1]. Furthermore, 53% of respondents of US State of Cybercrime 

Survey confessed that damages caused by the insider attacks affect their business more 

than outsider attacks [2]. For example, Ristenpart et al. outlines how a malicious insider 
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can extract RSA and AES keys in Amazon’s cloud by exploiting shared caches [3]. 

Another case occurred at Twitter when many companies documents were revealed by 

Twitter administrator’s account that was hacked by a malicious insider [4]. Therefore, 

there is a need for an effective solution that could build the trust between cloud service 

providers and the clients so that enterprises take advantage of the cloud to reduce their 

capital cost and economies of scale. 

  

1.2 Problem Definition and Dissertation Contributions 

The dissertation addresses the problem of protecting sensitive data processing in the 

cloud. The challenge of the problem is that the sensitive data need to be processed in a 

hardware resource owned by the cloud such that no one, even the hardware resource 

owner (i.e. the cloud provider), can disclose it while processing. The client outsources the 

sensitive data to be processed by hardware resources owned by the cloud, such as field-

programmable gate arrays (FPGAs), and under the cloud premises, uses software 

provided by the cloud to authenticate the hardware resource, securely sends the FPGA 

application that is owned (partially or totally) by the client or another party to the cloud 

and securely outsource the sensitive data. Securing sensitive data processing in the cloud 

is even more challenging when the data is collected from multiple sources (i.e. IoT 

devices) that are deployed in locations under the premises of some party and are owned 

by the client or another party.  

In this dissertation, FPGAs are utilized to secure sensitive data processing in the cloud. 

FPGAs can be integrated with other cloud HW resources to form flexible, scalable, 
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independent and secure compute resources within the cloud infrastructure. Therefore, 

clients can safely perform the computation of their sensitive data in the cloud in a secure 

manner while utilizing the benefits of the cloud and the fast and secure computation of 

the FPGAs. Sensitive data can be farmed out from the untrusted cloud servers to FPGAs, 

which are configured by the client’s application, for secure processing. Compared to 

conventional software-based systems, the attack surface is substantially smaller and 

better defined. This is because FPGA configuration does not require the involvement of 

operating systems, drivers or compilers, making them suitable to build security solution 

under more robust attack models and stronger security guarantees. Further, FPGAs can 

build more sophisticated solutions for modern machine-to-machine communication, IoT 

data processing and big data applications [5].  As utilizing FPGAs for data protection in 

the cloud is either limited or unsecured in the literature, there is a substantial need for an 

efficient and secure FPGA schemes to protect sensitive data in the cloud. Other CPU 

based attempts to solve this problem are not fully secure, not suitable for on-cloud IoT 

data protection and suffer from large overhead that make them impractical for medium 

and big data secure processing. 

Hence, the dissertation has the following main contributions to address the problem of 

securely processing sensitive data in the cloud: 

• An efficient and practical FPGA-based scheme for securing client sensitive data 

processing in the cloud from various kinds of attacks (including malicious cloud 

providers) which has a very little area overhead and can be efficiently integrated with 

other cloud resources. 
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• A scheme for protecting third party’s intellectual properties (IPs) in the cloud. The 

scheme facilitates the use of IPs from third parties in the client applications who is 

not necessarily a hardware expert. 

• A security scheme for securing IoT sensitive data processing in the cloud and a 

symmetric proxy re-encryption scheme for IoT data on-cloud transformation. The 

scheme is suitable for publish/subscribe systems. It was evaluated and a complete 

FPGA prototype for the scheme and the proxy re-encryption is presented in this 

dissertation. 

 

1.3 Dissertation Outline 

The rest of this dissertation is organized as follows: 

Chapter two presents a background in topics related to the contributions of this 

dissertation including cloud computing architectures, attack models and insider attacks in 

the cloud, an overview on trust in modern platforms, physically unclonable functions and 

proxy re-encryption. Chapter three reviews cloud computing security directions; 

including protecting users’ data from other tenants and protecting users’ data from the 

cloud provider. Chapter three also provides a literature review on the current research and 

products of trusted computing and secure processors. Chapter four presents an overview 

of the proposed security scheme for securing client data in the cloud. It also covers the 

FPGA implementation details and performance evaluation of our scheme. Chapter five 

covers the proposed scheme for IoT data protection in the cloud along with a symmetric 

proxy re-encryption to provide secure data transformation in the cloud environment. It 
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also describes the existing IoT business models and presents the experimental results of 

our proposed cloud-integrated IoT scheme. Chapter five also discusses the performance 

results of the software and hardware implementations of our symmetric proxy re-

encryption. Finally, the dissertation is concluded in chapter six. 
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2 CHAPTER  

BACKGROUND 

In this chapter, we give an overview of architectures and management aspects in recent 

cloud platforms. We will then discuss attack models and demonstrate how a malicious 

insider could utilize these architectures to carry out attacks to users’ virtual machines and 

data. Further, we will provide an overview of topics that are related to this dissertation 

such as trusted computing, physically unclonable functions and proxy re-encryption. 

 

2.1 Overview of Cloud Architectures and Management  

The architecture of a cloud computing can roughly be categorized into four layers: the 

application layer, the platform layer, the virtualization layer and the hardware layer as 

shown in Figure 1.  

The application layer: this layer is at the top of the hierarchy and consists of cloud 

applications. Cloud applications have the interesting characteristics of availability, lower 

operating cost compared to conventional applications, and automatic-scaling feature, 

which maintains applications’ availability and allows an application to scale its capacity 

up and down to satisfy its needs. 

The platform layer: operating systems and software framework lie in this layer. The 

goal of this layer is to make the deployment of the applications into the virtual machines 
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Figure 1: Cloud computing architecture [191]  

simpler. For example, Microsoft Azure works at the platform layer to provide support for 

storage, and database for applications in the application layer. 

The virtualization layer: Also known as the infrastructure layer, assigns computing 

resources and storage to the target virtual machine by dividing the hardware resources 

using virtualization technologies (called hypervisors) such as Xen [6] and KVM [7]. The 

virtualization layer is an important layer in the cloud computing architecture because it 

involves many recent topics related to the overall design of the cloud, such as dynamic 

resource allocation. Indeed, this layer is essential in terms of security of the cloud. As it is 

just above the hardware layer, any security solution would be brought down to the 

hardware layer. 

The hardware layer: the hardware layer is responsible for managing the hardware 

resources of the cloud, such as physical servers, power, cooling systems, routers, and 

switches. This layer is implemented as what is called data centers in practice. The data 

center consists of thousands of servers organized in racks. These racks are interconnected 

through switches and routers. 
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Cloud computing architecture is modular and every architectural layer is loosely coupled 

with the layers above or below. This modularity allows layers to change separately 

similar to the design of the OSI model for network protocols. Conceptually, each layer 

can be seen as a client of the layer below and each layer can be implemented as a service 

to the above layer. Though, clouds offer services, in practice, they are gathered into three 

categories: infrastructure as a service (IaaS), platform as a service (PaaS), and software as 

a service (SaaS). IaaS denotes the provisioning of resources infrastructure. PaaS is for 

providing operating systems and software development frameworks. SaaS provides 

applications over the Internet. Users interact with the cloud using the web interface, 

which shows the SaaS. Then, the requests from the users are processed and deployed by 

PaaS and IaaS [8]. The business model of cloud computing is shown in Figure 2. 

 

Figure 2: Business model of cloud computing 

 

End User 

Service Provider (SaaS) 

Infrastructure Provider (IaaS, PaaS) 

Web Interface 

Utility Computing 
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Mostly, the job of cloud providers is to manage the hardware resources, i.e. compute, 

network and storage resources that form the infrastructure of the cloud. Management of 

these resources can be classified into seven areas [9]: 

• Global scheduling of virtualized resources: refers to the system-wide monitoring 

of virtual resources and the underline hardware resources consistent with cloud 

providers goals. 

• Resource utilization estimation: This is necessary for both the cloud provider and 

the client because it increases the utilization of the physical and virtualized 

resources.  

• Resource pricing and profit maximization: This is due to the nature of pricing 

used in the cloud. As the resource consumption is decreased, the cost is also 

decreased and vice versa. Hence, resource pricing needs to be managed in a 

proper way. 

• Local scheduling of cloud resources: This type of scheduling is similar to 

operating system scheduler. It deals with one server, hosting multiple virtual 

machines, and schedules requests to the physical resources of the server such as 

CPU and memory. 

• Application scaling and provisioning: To increase the performance of the service 

for large applications. 

• Workload management: This is due to the fact the cloud user might be a business 

enterprise and hence the workload request from the enterprise users have to meet 

certain requirements from cloud user. 

• Cloud management systems: For feedback of resources to the cloud user. 
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2.2 Overview of Attack Models and Insider Attacks in the Cloud 

This section discusses attack models, which are classified into cryptographic attacks, 

network attacks and physical attacks, and cloud insider attacks as well as cloud 

cryptographic algorithms. 

 

 Cryptographic Attacks 

Known-plaintext attack (KPA) is a type of attack which assumes that the attacker has the 

ciphertext and at least a limited number of samples of the corresponding plaintext. An 

example of such attack is the use of the encrypted bitstream and the unencrypted 

bitstream to extract the key embedded in the Xilinx FPGAs [10]. 

In Chosen-plaintext attack (CPA), the attacker specifies an arbitrary input plaintext and 

forces the encryption engine to produce the resulted ciphertext. Using the plaintext and 

the corresponding ciphertext, the attacker can infer information about the encryption 

algorithm and the key used for encryption. As an example, consider a file storage system 

that uses the same key to encrypt/decrypt users’ files. The attacker can encrypt a file and 

obtain the corresponding encrypted file. Using these files, the attacker can extract the key 

used for encryption and use it to decrypt other users’ files. 

There are two types of chosen-plaintext attack, adaptive chosen-plaintext attack and batch 

chosen-plaintext attack. In the adaptive chosen-plaintext attack, the attacker can encrypt 

more plaintexts and obtain the ciphertexts of these plaintexts. The attacker has the 

opportunity to analyze the previous pairs before choosing a new plaintext as an input to 
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the encryption engine. In batch chosen-plaintext attack, the attacker encrypts all of the 

plaintext before obtaining any ciphertext. 

To differentiate between KPA and CPA, if the attacker is able to obtain a pair of plaintext 

and ciphertext, but not any specific pairs, then the attack is KPA and if the attacker is 

required to give input plaintext and obtain the corresponding ciphertext, then the attack is 

CPA. Note that KPA is a special kind of CPA. 

Ciphertext-only attack (COA) is a type of attacks in which it is assumed that the attacker 

can obtain the ciphertext only and the plaintext is not accessible by the attacker. COA can 

happen most likely in real life cryptanalysis. However, it is the weakest attack because 

the attacker lacks information and only the ciphertext is available for him. Therefore, 

COA is typically the hardest to design and at the same time the easiest to implement. 

Exhaustive key search or brute force attack is an example of COA, in which all keys are 

tried by the attacker until the correct key is found. The success of COA depends on the 

length of the key and does not depend only on the cipher strength or the type of the cipher 

being used.  

Chosen-ciphertext attack (CCA) is the opposite of CPA and the attacker chooses a 

ciphertext and obtains the corresponding plaintexts. This enables the attacker to 

investigate different portions of the plaintext state space and may enable him to find 

vulnerabilities. Types of CCA include lunchtime attack and adaptive chosen-ciphertext 

attack. The attacker in lunchtime attack have access to a limited ciphertexts and plaintexts 

pairs. The attacker in adaptive chosen-ciphertext attack can pick a sequence of 

ciphertexts to be decrypted and obtains the ciphertexts. For further steps, he has the 

chance to learn from the previous results and choose more effective next ciphertexts. 
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The open key attack model assumes that the attacker has some knowledge about the key 

used for encryption/decryption. Related-key attack is an attack of such model and the 

attacker uses a key that is related mathematically to the target key to encrypt the plaintext 

and access the ciphertext. Known-key distinguishing attack is another type of open key 

model and the attacker chooses a key and study the cipher and distinguishes between a 

random data and a ciphertext. 

 

 Network Attacks 

Network attacks include wiretapping, port scan, idle scan, man-in-the-middle, 

impersonation, replay, ARP poisoning, ping flood, ping of death and Smurf attacks. 

Wiretapping is a clear example of network attacks and is effective when the data sent is 

unencrypted. In port scan attack, the attacker sends packets to the victim machine while 

varying the port in every packet in attempt to know which ports are open and to identify 

the operating system and the services in the victim machine. Idle scan attack is a kind of 

port scan attack on TCP ports and the attacker sends packets to TCP ports using 

impersonated machines (i.e. machines with their identity stolen) to identify and learn the 

services on the victim machine. 

ARP (address resolution protocol) is used to identify the MAC address of the target 

machine. The sender machine broadcasts a message over the network containing the IP 

address of the target machine. The target machine sends a reply containing its MAC 

address. ARP poisoning attack occurs when the attacker replaces the MAC address in the 

reply message by his own MAC address; causing the sender machine to send the traffic 



 

 

13 

 

through the attacker machine. This attack is possible in local area networks that utilize 

ARP and can be used to launch other attacks such as denial of service attacks [11]. 

Ping flood is a type of denial of service attack in which an attacker sends ping packets to 

the victim machine as fast as possible without waiting for replies. The attack is more 

effective when the bandwidth of the attacker is more than the bandwidth of the victim. 

Ping of death happens when the attacker sends a ping packet that is larger than the bytes 

allowed by the IP protocol. The packet gets fragmented, sent and reassembled in the 

victim machine. When reassembled, buffer overflow occurs which causes system crash 

and allows injection of malicious code [12]. 

Internet Control Message Protocol (ICMP) is part of the internet protocol suite and is 

used to send control messages such as error and ping messages. The attacker in Smurf 

attack spoofs the IP address of the victim machine and broadcasts large ICMP messages 

to the network using this IP address. If number of machines in the network is large, the 

responses from these machines will flood the victim machine; causing denial of service 

[13]. 
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 Physical Attacks 

Physical attacks are divided into invasive, non-invasive and semi-invasive attacks [14]. 

Invasive attacks are hardware attacks that require manipulation of the physical properties 

of the chip. Non-invasive attacks are similar to invasive attacks but do not damage the 

chip package. Semi-invasive attacks are relatively new type of attacks that require 

depackaging the chip, similar to invasive attacks, but do not create contacts with internal 

chip lines. 

Invasive attacks require expensive equipment, knowledge and time. A well-known attack 

of this type is miroprobing; where a needle is attached onto the internal wires of the chip 

to extract the chip secrets. Non-invasive attacks require moderate level of equipment and 

knowledge to implement. Non-invasive attacks include side-channel, brute force, fault 

injection and data remanence attacks [15].  

Side-channel attack is any attack that use data about the encryption or decryption process 

to break the system such as using the noise created by encryption engines or measuring 

the time of various computations. Side channel attack includes, generally, cache, timing, 

power analysis and electromagnetic attacks. Cache attack is based on monitoring cache 

accesses made by the user in a shared environment such as cloud servers. Timing attack 

is based on measuring the time it takes to do the operation such as measuring how many 

cycles a memory access take to identify whether the access is read or write. Power 

analysis attack makes use of power consumption that is varied by the hardware during 

computation. Power analysis attacks is classified into simple power analysis (SPA) and 

differential power analysis (DPA). SPA obtains the information directly from the power 

consumption of the device (current versus time), while DPA obtains the information from 
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power variations by observing differences between traces of different operations and 

statistical analysis is applied to obtain the secrets from noisy measurements that are 

difficult to analyze using SPA. Electromagnetic attack is based on electromagnetic 

radiation, which can provide information about plaintexts and may directly disclose the 

plaintext and other information. Fault injection can be used to exploit the erroneous result 

or unexpected behavior of the chip to extract its secrets. Data remanence is the sensitive 

data that is read by the attacker but is supposed to be erased [15].  

Semi-invasive attacks use ultraviolet (UV) light, X-rays and other light sources to disturb 

chip operations and extract sensitive information. Attacks of this type include UV, optical 

fault injection, and optical side-channel Attack [16]. 

There are a number of attacks that are targeting FPGAs such as Reverse Engineering, 

Tampering, Cloning, Counterfeiting, and Crippling attacks. Reverse Engineering can 

cause bypassing security measures of the configuration. An adversary can study the 

configuration blocks and replace security components by his own malicious components 

in order to disclose configuration secrets and sensitive data. Tampering is a special type 

of reverse engineering, where the adversary modifies the configuration to gain access to 

its secret keys or interrupt its functionality or disclose its data. Hardware Trojans are a 

clear example of tampering [17]. Cloning attack occurs when an exact copy of the FPGA 

configuration is created by an adversary. Counterfeiting attack is an extension to the 

cloning attack and it occurs when all FPGAs of the same family and size are identical. 

Thus, a configuration made for one device can be used with another. This can be easily 

done in the cloud environment [18]. The details of the design do not need to be known by 

the attacker and the configuration is just regarded as a black-box reducing the effort of 
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compromising the FPGA to insert a snooping circuitry to disclose FPGA secrets and 

therefore disclose users’ data. Crippling attacks are similar to denial of service attacks on 

networked servers. The attacker re-configures the FPGA with an invalid configuration to 

bring the FPGA system offline [19]. 

 

 Insider Attacks in the Cloud 

How a malicious insider (MI), who could be an employee in the cloud, could carry 

attacks to users data of the cloud was reported by many survey publications, such as 

[20][21]. An MI could utilize the system to carry out various kinds of attacks depending 

on his position in the cloud. An administrator who can manage client’s virtual machines 

(VMs), for instance, can do anything to the VM he is managing. Similarly, an employee 

working in cloud hypervisors might inject a code to monitor all the activities of client’s 

VMs on the underlying hardware [20]. Memory Dump Scanning, Templates Poisoning 

and Snapshot Cracking are examples of exploiting client’s information in the cloud [21]. 

Dumping the memory to get sensitive information is called Memory Dump Scanning 

attack; the MI can easily dump the memory to a flash or external storage. Although the 

retrieved data would be large and sensitive data is concealed in hundreds of megabytes of 

data, the MI usually use techniques such as social engineering, which count on human 

communication and involves tricking them into breaking security measures, to extract the 

critical data. 

Cloud providers usually provide templates for the virtual machines images to be created 

from. The default templates and virtual machines that are deployed from an infected 
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template could be downloaded and analyzed by an employee; passively revealing VM 

owners’ sensitive data. This attack is relevant to many platforms and is also applicable to 

OpenStack which is the top open source cloud computing technology in 2014 [22]. 

Cloud providers manage the users and passwords of the VMs in a normal manner, 

assuming trust of their staff. Not all VMs disks are encrypted due to many difficulties 

facing disk encryption such as sharing resources with other tenants [23]. If an MI is a VM 

administrator, he can easily make an attack on that VM by simply reading all the required 

information from the unencrypted information. 

 

 Cryptographic Algorithms for Cloud Computing 

This section reviews cryptographic algorithms used or preferred in the cloud. According 

to Soofi et al. [24], most approaches are based on RSA encryption. 60% out of the 30% 

RSA encryption techniques results are validated by experiments. Figure 3 below depicts 

the use of encryption algorithms in the cloud. Patwal and Mittal [25] also reported that 

RSA, DES and AES are widely implemented in the cloud.  
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Figure 3: Percentage of use of various encryption algorithms in the cloud 

 

An algorithm called Diffie–Hellman–Merkle key exchange (DH) was invented by Ralph 

Merkle for sharing a key between two parties over unsecured channels [26], [27]. The 

secret key can then be used as a session key to encrypt/decrypt the data the two parties 

want to send/receive. The algorithm works as follows: 

Let the two parties be A and B. 

A and B agree on a prime number p and base g (which is normally a small number such 

as 2). 

A chooses an integer a and sends B ga mod p. 

B chooses an integer b and sends A gb mod p. 

A computes K = (gb mod p)a mod p 

B computes K = (ga mod p)b mod p 

A and B now share the secret K. 
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All values except a and b are non-secret and can be sent between the two parties. For 

example, if A and B agrees on p to be 23 and g to be 5, then A chooses a = 6 and sends B 

the value 8 and B chooses b = 15 and sends A the value 19. K then will be 196 mod 23 

=815 mod 23 = 2 which is the secret they now share. Ephemeral Diffie-Hellman can be 

used such that every time A and B share a secret, different shared key is created enabling 

what is called perfect forward secrecy, which means that even if the private keys are 

compromised, past communications are still secure. 

Leading cloud computing platforms use the DH such as OpenStack [28], which uses this 

algorithm for key sharing between its components. The DH is one of the best protocols of 

sharing keys between parties and in this dissertation, we make use of its basic principle 

for key sharing between FPGAs and other parties because of its lightweight computation 

which is suitable for cloud computing and IoT. 

  

2.3 Trusted Computing 

The Trusted Computing Group had developed the Trusted Computing (TC) technology. 

TC is an attempt to ensure that computers will behave as expected and this behavior 

would be enforced by hardware and software. The enforcement is achieved by including 

a special chip integrated with computers’ hardware, which includes unique, inaccessible 

by other components of the system, encryption keys. The concept of trusted computing 

leads to the fact that the hardware of the system is theoretically secure from all kinds of 

attacks, including its owner [29].  
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Trusted computing is implemented in practice as a hardware component attached to other 

hardware components of computer assets, in addition to software drivers. Trusted 

computing witnessed a remarkable success in personal computers. Unfortunately, it is in 

its early stages in cloud computing because the intention of trusted computing was not 

targeting virtualization [30]. The most common and most widely used hardware 

component is the trusted platform module (TPM). Hence, we will consider, in the 

following subsections, the TPM in our discussion and will discuss the implications of 

using the TPM in the cloud paradigm. 

 

 Trusted Platform Module  

The Trusted Platform Module (TPM) is a special chip issued by the Trusted Computing 

Group (TCG) to secure hardware by embedding cryptographic keys into devices. The 

TPM was developed to provide device identification, authentication, measurement, 

encryption, and device integrity. Software can use the TPM to authenticate hardware 

devices and the TPM is capable of monitoring and reporting configuration state by using 

the main bus of the computer from the point of computer power-up. 

A TPM has at least 16 Platform Configuration Registers (PCR registers), which are 

initialized to a known value when the machine is rebooted. The values of these registers 

cannot be arbitrarily set. The values of the PCR registers can be retrieved from the TPM 

by issuing the TPM Quote operation.  

The TPM is mainly used to create a foundation of trust of the software installed in the 

host where the device is present. A process called Static Root of Trust for Measurement 
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(SRTM) performs a chain of measurements, starting when the host platform is reset, of 

the components and configuration data involved in the system boot while the Dynamic 

Root of Trust Measurement (DRTM) is the process of taking the measurements while the 

system is running. Each component measures the next component before passing the 

control to it, forming what is called a Chain of Trust (CoT). The CoT, at least, involves 

the BIOS, the boot loader and the operating system kernel. The resulting measurements 

must be always the same unless the boot components are modified. The combination of 

the TPM Quote operation and the SRTM process, allows the remote attestation of the 

host [32]. An external attester can request a TPM Quote of the PCRs, and compare the 

obtained values with a baseline of the PCR values of the system generated when it was in 

a trusted state.  

There are three keys produced by the TPM; Endorsement Key (EK), Storage Root Key 

(SRK) and Attestation Identity Keys (AIK). The Endorsement Key is created by the TPM 

manufacturer and is never released outside of the TPM. EK is used to ensure that the data 

was encrypted by the TPM (the data can be trusted). A private EK which is used to 

encrypt the data can be proven to be from the TPM by using it to decrypt a value that has 

been encrypted with the public EK. When the TPM is initialized by the user, in the 

process of taking the TPM ownership, the SRK is generated. It is used to protect TPM 

keys created by applications, so that these keys cannot be used without the TPM (all the 

keys the user requests are produced by the SRK). Finally, the AIK are used as an alias of 

the EK for signing information produced by the TPM, e.g. the PCR register values issued 

after the TPM Quote operation. The problem with the TPM, in general, is the unsecured 
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bus between it and other computer components and most of the attacks are actually 

carried out from this unsecure bus [33].  

 

 Intel Trusted Execution Technology 

Intel’s Trusted Execution Technology [34] is a technology developed to provide 

attestation of a platform and the operating system running in that platform and to ensure 

that the OS starts in a trusted environment. TXT relies on the TPM and another chip to 

provide the measurements of the platform components and the software. TXT aim is to 

provide an isolated environment for VMs from untrusted software by providing the VM 

control over the platform while it is active. A warm system reset is performed by the 

authenticated code module (SINIT ACM) before starting the VM. The TPM measures the 

hardware and updates the SRTM registers and when the VM is initialized, it updates the 

DRTM registers. Therefore, the VM can start from a valid state and can execute in a 

trusted environment. Similar to the TPMs, TXT is vulnerable to physical DRAM attacks 

since DRAM encryption is not implemented. The System Management Mode (SMM) is 

the most privileged execution mode in which all executions are suspended and only a 

special software stored inside a firmware (stored in a ROM and is theoretically 

inaccessible by the operating system or applications) is executed. Several attacks were 

reported to the SMM such as [35]–[39], which leads to granting an attacker access to all 

computer software including accessing the TXT memory. 
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 Intel Software Guard Extensions (SGX) 

Intel SGX follows the approach in Figure 4 below. Data owner has the measurement of 

the initial state as he computes its hash locally by creating the exact container (or 

enclave) in his local machine. The attestation key (the private part of it) is used to sign 

the hash M, gA and gB and it is decrypted by the data owner by the AK public key, which 

is publicly available and is certified using the Endorsement Certificate (only the public 

key can verify information signed with the private key). The hash is done for the initial 

state only and any other code or data that will be received later will not be measured. 

After successfully attesting the container and sharing K using Diffie-Hellman key 

exchange, the data owner sends the code and the data encrypted to the enclave using K. 

 

 

Figure 4: Trusted platform proves to a remote data owner that it is communicating with the right 

container [40] 
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The Data owner creates an enclave in his local machine using ECREATE instruction, 

Figure 5. ECREATE instruction will result in reserving part of the virtual address space 

for the enclave, creating an isolated part in the Processor Reserved Memory (PRM) called 

enclave page cache (EPC) and its Metadata (EPCM). EPCM is used to store information 

about the enclave and its pages and to ensure that each EPC page belongs to exactly one 

enclave. 

 

 

Figure 5: Creating an enclave [41] 

 

Data owner then executes EADD instruction, Figure 6, to copy the required pages to the 

enclave area one by one. MRECNLAVE is a measurement register to store the 

measurement of the hash. EEXTEND instruction updates the enclave’s measurement 

Enclave 

page cache 
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(MRECNLAVE) used in the software attestation process. The SGX Enclave Control 

Structure (SECS) is inside the EPC and stores enclave metadata and is used by the CPU 

for the enclave identity. 

 

 

Figure 6: Copying enclave pages to the EPC [41] 

 

Other instructions are shown in Figure 7. The EINIT instruction marks the enclave’s 

SECS as initialized. Setting INIT to true means that EADD cannot be invoked on that 

enclave anymore and MRENCLAVE will hold the final measurement. The EENTER 

instruction is used to execute enclave code. The EEXIT instruction is used when the 

enclave code finishes performing its task to return the execution control to the process 

which invoked the enclave. 

Enclave 

page cache 
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Figure 7: Enclave instructions [41] 

 

The code and data are unencrypted inside the CPU package and if the code/data leaves 

the CPU package, they are encrypted using a symmetric key randomly generated on 

power up (Figure 8).  
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Figure 8: Code/data are encrypted outside the CPU package [41] 

 

To run the enclave in a remote host, the same procedures described above are done in the 

remote host. Hence, the same value of MRENCLAVE will be produce by the remote 

host. Data owner can remotely attest MRENCLAVE value and compare it with his own 

value. As a result of the remote attestation process (as in Figure 4), a symmetric key can 

be shared and this key can be used to send encrypted data to/from the enclave.  

 

2.4 Physically Unclonable Functions 

Physically unclonable functions (PUFs) topic is one of the hottest topics in the field of 

chip authentication and reconfigurable computing. PUFs are functions that make use of 

the manufacturing process variations to uniquely identify devices. These variations 

cannot be controlled and therefore making PUFs behavior and response unpredictable. 

Figure 9 shows how a PUF can be used for device authentication. An ideal PUF, when a 
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challenge is applied, should have a response that is unique (a device response should not 

match a response from another device), steady (when the same challenge is applied the 

device should give the same response), random (is based on uncontrolled variations and 

cannot be predicted) and tamper resistance (when the PUF is propped, it gives a different 

response).  

 

 

Figure 9: PUFs challenge response 

 

PUFs can be classified into two categories; PUFs using explicitly-introduced randomness 

and PUFs using intrinsic randomness. Optical PUF and Coating PUF are two different 

types of PUFs using explicitly-introduced randomness. Optical PUF was one of the first 

attempts in producing unique identifiers for integrated circuits (ICs) and is formed when 

a transparent material is doped and when a laser beam is induced to the material at certain 

angle, a unique and random pattern is formed. This pattern is very difficult to duplicate 

and therefore this type of PUFs is unclonable. Optical PUF is rather laborious because it 
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requires laser setup and a complex mechanical system to position the laser beam [42]. On 

the other side, Coating PUF is built when a network of wires is created on the top layer of 

an IC. The space between the wires is filled with a material and doped with dielectric 

particles randomly. Therefore, the capacitance between these wires would be random; 

creating a unique identifier for the device [43].  

PUFs using intrinsic randomness do not require modifications to the manufacturing 

process and therefore are highly attractive. PUFs of this type can be divided into a delay-

based PUFs and memory-based PUFs. Delay-based PUFs include Arbiter PUF [44], Ring 

oscillator PUF [45] and Glitch PUF [46] and memory-based PUFs include Butterfly PUF 

[47] and SRAM PUF [48]. Arbiter PUF is based on two parallel racing paths with an 

arbiter at the end of the two paths. A signal is applied simultaneously to the two paths and 

the resulting analog delay difference is processed by the arbiter to get the required digital 

value. Ring oscillator PUF utilize the delay characteristics of multiple ring oscillators and 

a comparison of them is made to produce the digital value. SRAM PUF and Butterfly 

PUF are called memory-based PUFs. SRAM PUF [49] makes use of the initial values of 

the SRAM cells as these initial values are different from chip to chip due to the variations 

in the manufacturing processes, in which the state of the bit at power up determines its 

initial value. Butterfly PUF is an emulation of SRAM PUF in FPGAs. 

PUFs in FPGAs include Arbiter PUF [44], Ring oscillator PUF [45]; enhanced by many 

other publications such as [50]–[53], Anderson PUF proposed by J.H. Anderson [54], 

Butterfly PUF [47], and SRAM PUF. Anderson PUF is considered as Glitch PUF and is 

based on the delay of lookup tables (LUTs) in shift register mode and carry chain 

multiplexers in the FPGA slices to extract the physical variations of FPGA devices. 
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SRAM PUF was made possible using recent Xilinx [55] and Altera devices [56]. In this 

dissertation, we assume the use of the SRAM PUF for generating random numbers as 

other PUFs are currently suffering from low stability, uniqueness, and entropy compared 

to SRAM PUF [57].  

Although many types of the PUFs can be implemented using most of nowadays FPGAs, 

we believe that most of these PUFs are still facing many drawbacks when used in FPGAs 

and we though recommend the use of SRAM PUFs as it is considered more appropriate 

for FPGAs and are already available in recent FPGA devices [56]. 

 

2.5 Proxy Re-encryption 

Proxy re-encryption (PRE) is a method for transforming a ciphertext c1 encrypted using a 

key (K1) to another ciphertext c2, which can be decrypted using a key (K2), without 

decrypting/disclosing the plaintext during the transformation. The benefit from such 

transformation is that the time for transformation is less compared to decrypt-then-

encrypt and the transformation does not expose the plaintext, which means that the entity 

that does the transformation (i.e. the proxy) is not necessarily trusted. PRE was first 

introduced by Mambo and Okamoto [58] and later Blaze, Bleumer, and Strauss [59] 

proposed the BBS scheme in which a semi-trusted proxy converts a ciphertext encrypted 

by user’s A public key to another ciphertext to be decrypted by user’s B private key. 

Semi-trusted in this context means that the proxy will correctly execute the code required 

for the conversion and does not mean that users A and B trust it partially. The conversion 

is possible when user A provides a re-encryption key to be used for the conversion. The 
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BBS was improved by Ateniese et al. [60] and many other public key based PREs were 

proposed such as [61] [62] [63] [64]. These public key based PRE methods are used 

when the delegator (user A) is for some reason unwilling to receive the data and want to 

give delegation to another party (user B) to decrypt the data without revealing his private 

key to user b or the semi-trusted proxy. For example, a manager wishes to give 

delegation for his employee to check his email messages without giving him his private 

key. The manager gives a re-encryption key to the email server so that the messages are 

converted by the email server and his employee can decrypt the data without fully 

trusting the email server or giving the employee the manger private key. Symmetric key 

based PRE scheme was proposed by Syalim et al. [65]. The scheme uses the all-or-

nothing transform [66] which means that the ciphertext cannot be decrypting if any part 

of it is missing. However, the scheme requires the generation of 8 keys to do the 

conversion and these keys had to be shared between the two communicating parties and 

the proxy; making the conversion complicated. The preferred properties of the PRE are: 

1- Unidirectional: a PRE scheme is unidirectional if the proxy is able to transfer 

delegator ciphertext to the delegatee ciphertext but not the opposite. 

2- Non-transitive: The proxy cannot give the delegation alone to a third user C from 

the re-encryption keys of users A and B. for example, user A gives re-encryption 

key (rK1) to delegate the rights to user B and user B gives re-encryption key 

(rK2) to delegate the rights to user C. Then the proxy cannot give the delegation 

rights of user A to user C by using rK1 and rK2. 

3- Collusion-resistant: if the proxy and another user collude, they cannot obtain the 

private key of the other party. 
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4- Non-interactive: when the private key of the delegatee is not required to create the 

re-encryption key, then the PRE is non-interactive. 

5- Multi-use/Single-use: if only the original ciphertext can be re-encrypted, then the 

PRE is single-use and the opposite is correct for multi-use. 

6- Key-privacy: if the identity of the delegator and the delegatee cannot be identified 

by the proxy from the re-encryption keys and the ciphertext, then the PRE is key-

private. 

7- Transparent: a PRE is transparent if the delegatee is unable to note the existence 

of the proxy between him and the delegator. 

8- Key-optimal: the PRE is key-optimal if it is required to store small amount of data 

(the private keys only). 

9- Temporary: if the delegator can delete the decryption rights after some time, then 

the PRE has the temporary property. 

  



 

 

33 

 

3 CHAPTER  

LITERATURE REVIEW 

In this chapter, we will discuss recent contributions related to securing users’ data in the 

cloud. This includes surveying the techniques published in securing users’ data from both 

other cloud clients and the cloud providers. We will also investigate recent advances in 

trusted computing as it is a fundamental topic in outsourced data secure processing. 

Finally, we explore secure processors and their implementation methods.  

 

3.1 Protecting Users’ Data from Other Users  

Protecting users’ data from other cloud users requires securing user’s virtual machines 

form other virtual machines in the same cloud server. There are two lines of research 

heavily investigated in the literature; securing hypervisors from being compromised and 

virtual machine isolation. 

Ferrie [67] described an attack scenario for identifying which hypervisor is being used to 

deploy the virtual machines. Leading hypervisors (QEMU, VirtualPC, Bochs, Parallels, 

Hydra and VMWare) were compromised using his scenario. The attack is based on 

specific unusual instructions that leads to raising exception that are not handled by the 

hypervisors. The work also provided a solution for each hypervisor by handling the 

unusual instructions. Similar attacks were also reported by Joanna [68] and Tobias [69]. 
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Louis and Jordan discussed some of the vulnerabilities related to granting access to users’ 

metadata in hypervisors [70]. Among these attacks, redirecting data flows using firewall 

Ports, utilizing user application interface, hooking calls to library and hooking system 

calls were illustrated in detail. 

Breaking the isolation between virtual machines is also carried out on the weak parts of 

the hypervisor. This attack causes Denial of Service, System halt, and memory overflow. 

Attacks similar to this one were reported in many contributions in the literature such as 

[71]–[73].  

Fog computing and decoy methods were used intensively to protect users' data in the 

cloud. Fog computing relies on making distributed cloud resources such that the cloud 

parts (storage and servers) can be geographically closer to the user. Fog computing was 

mentioned to be more secure because it places the data geographically close to the end 

user and therefore certain policies can be applied to restrict access to cloud resources to 

users in the same geographic area [74]–[77]. Decoy files/documents are trap files that are 

used to trap illegitimate user. The search behavior of an illegitimate user is random to 

some extent when entering the system and when the trap file is hit, it will fire an alarm. If 

the alarm is a false positive, the legitimate user will be challenged with a question and his 

legitimacy will be checked.  

Several attempts were carried out to tackle the attacks to users’ data from other users 

using Fog computing and Decoy method and these techniques are not helpful for tackling 

attacks from the providers of the cloud since the architecture of the cloud itself is being 

ignored as well as dumping the memory of cloud servers. Most previous studies are 

theoretical and are not directly related to commercial clouds. A common factor between 
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all of the attacks discussed in this section is that attackers utilize a weakness in the 

software such as the hypervisor. Therefore, these types of attacks targeting other virtual 

machines in the cloud are not new and are not specific to the cloud; unlike attacks from 

cloud staff. Attackers utilize vulnerabilities to attack users’ data and cloud providers 

close the vulnerabilities and this process continues until the probability of finding a 

vulnerability is close to zero. Many software attempts exist in the literature targeting 

these kinds of externally considered attacks which obviously assumes that cloud 

providers are trusted [78]–[83]. 

Table 1 summarizes the existing SW approaches for protecting data in the cloud. All 

approaches are not secure against cloud insider attacks and completely ignore attacks that 

read memory of the cloud servers such as reading the cryptographic keys of the client. 
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Table 1: Summery of SW approaches targeting data protection in the cloud 

Approach Publication Year HW 

Consider 

cloud 

insider 

Secure 

against 

physical 

attacks 

Cryptographically 

secure 

Fog 

Computing 

[84][85][77] 

[76] 
2012-2016    - 

Decoy files [74]–[76] 2014    - 

Neural 

networks 
[86]–[88] 2013-2014     

others 
[32], [89]–

[92] 
2013-2016     

 

3.2 Protecting Users’ Data from Cloud Providers  

Homomorphic encryption is the process of performing computation on ciphertext and the 

encrypted result when decrypted matches the expected result of the computation 

performed on plaintext [93]. Homomorphic encryption could be the solution to the 

problem of securing clients’ data in the cloud. However, to date, no homomorphic 

encryption algorithm that is computationally achievable has been developed [94]. From 

the cloud perspective, scalability of the solution is a major feature in the cloud and using 

homomorphic encryption systems with their computation cost would contradict this 

feature [95]. Furthermore, most of the new homomorphic encryption algorithms such as 

ad hoc polynomial approaches and bilinear pairing are not fully addressed and examined 
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by the cryptography community when compared to other popular algorithms such as RSA 

and AES [95].  

To protect circuit IPs (intellectual properties) of third parties and prevent cloning, FPGA 

vendors provide a symmetric key embedded on the FPGA to secure bitstreams. Clients 

use the vendor’s SW tool to encrypt their bitstreams (i.e. FPGA configuration) which 

would then be decrypted inside the FPGA. Data could also be included or initialized 

within the bitstream which makes it secure. After the data is processed, it can be readback 

as part of the bitstream (which is encrypted by the FPGA before it is outputted). Again, 

the vendor’s SW would decrypt the data for the client. There are many problems with this 

approach. First, these keys are only made available by the FPGA vendors to major clients 

only under very rigorous qualification requirements. Second, large data cannot be 

initialized in the FPGA due to limited space resources. Third, the configuration process is 

extremely slower than the FPGA’s processing speed which means that almost all of the 

time would be spent on transferring data in and out of the FPGA, thus wasting the 

FPGA’s processing power.  Finally, and most importantly, many successful attacks 

against such a method have been reported, either using Known-plaintext attack (KPA) 

[10] or other types of attack [96]–[104]. 

Eguro and Venkatesan proposed an FPFA-based security approach for cloud computing 

[95]. This approach implements the security components as Static Logic (i.e. fixed, non-

reconfigurable macros) inside the FPGA and makes use of RSA and its private key to 

form a root of trust (ROT) inside the FPGA. A certificate authority (CA) would certify 

the public and private keys for every FPGA. The private key is a crucial component from 

the security point of view because the FPGA is within the cloud and the key could be 
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obtained by reverse engineering the Static Logic or inserting a sniffing circuitry to sniff 

the private key since the RSA-based solution did not consider checking the integrity of 

the Static logic. 

Some researchers proposed providing trust for FPGA-based embedded systems by 

implementing a full Trusted Platform Module (TPM) [105] on the FPGA [106][107]. The 

use of TPMs assumes a secure channel and requires users to take ownership of the TPM 

and set a chain-of-trust. This is not only impractical in a multi-tenant cloud environment 

(where each user would need to take ownership of the TPM and set their own chain-of-

trust), but does not guard against Man-in-the-Middle (MiM) and replay attacks by a 

malicious cloud administrator. Analysis of virtualized TPMs (vTPMs) showed that they 

are less secure than physical TPMs (pTPMs) [108], even with a trusted host (i.e. the 

cloud). vTPMs have the same vulnerabilities to attacks by malicious cloud administrators 

as pTPMs.  

In [33], researchers proposed a data security model for users data that is similar to TPMs. 

They proposed augmenting the cloud’s servers with two types of chips that are paired 

(cryptographically) by the manufacturer; an FPGA as a processing chip and an ASIC as 

state chip that holds the state between power cycles (using non-volatile memory). The 

system guarantees integrity and freshness by maintaining a Merkle tree, which is a tree of 

hash values and the value of each node depends on the values of its child nodes, for 

user’s data in the cloud storage. However, no implementation was provided nor a 

performance evaluation. Furthermore, it is assumed that the FPGA is ‘securely’ packaged 

and that there is a secure channel between the state chip and the certificate authority. In 

addition, there were no key management policies for different users nor guarantees of 
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integrity of the configured circuitry. Similar to the conventional pTPMs, this model is not 

suitable for the multi-tenancy nature of the cloud and have similar vulnerabilities to 

attacks by malicious cloud administrators. 

A framework for users’ data privacy (mainly for Map-Reduce applications) in the cloud 

using the security features of current FPGAs and proxy re-encryption was proposed in 

[109]. It uses public/private keys for encrypting/decrypting a symmetric key to be shared 

between the user and the FPGAs in the cloud for the purpose of data 

encryption/decryption. It also uses the FPGA’s embedded symmetric keys for bitstream 

protection, which is not only not available for general users, but was already proven to be 

insecure against KPA as stated earlier. In addition, the proposed scheme requires a CA to 

certify FPGAs public keys as well as a proxy server to manage key re-encryption. The 

scheme assumes full trust in the cloud user (who will get access to the FPGA’s 

symmetric keys) and semi-trust in the proxy and cloud operator. This is another major 

drawback of this scheme. Further, it is not clear why a proxy re-encryption was needed 

since it does not seem to have a real impact on the security of this framework. 

Specifically, a proxy is not needed since both the FPGA and the user have their own 

public/private keys and if there is a need for scheduling more than one FPGA for the 

user, the cloud provider can just send the public key of each FPGA (that is certified by 

the CA) directly to the user.  
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3.3 Trusted Computing in the Cloud 

This section discusses the state-of-the-art in establishing trust in the cloud and reports the 

complexity of such establishment. It also describes Intel’s Software Guard Extensions 

(SGX) and its role in establishing trusted computing environment in remote hosts such as 

the cloud servers. 

Eisenbarth et al. proposed a reconfigurable architecture with TPMs [106]. The approach 

allows for scaling and updating the TPM functionalities and including it into the chain of 

trust which makes it possible to bind sensitive data to the reconfigurable hardware. This 

work used a fixed logic bitstream for enabling the root of trust and the FPGA boots from 

this bitstream. However, the problem of using partial reconfiguration to integrate the 

bitstream of the client with the fixed logic bitstream was not discussed. 

Developing a mechanism for the user to attest the state of the host by remotely attesting 

the TPM PCR registers was presented by Kekkonen et al. [110]. However, sharing the 

TPM among applications used by different users in the same platform was not addressed. 

The problem of extending trust to the cloud is an active area of research. Several 

publications attempted to propose trusted models for the cloud. In the rest of this 

subsection, we summarize these attempts and give our conclusions regarding trust in 

cloud computing environment. 

Santos et al. proposed the design of a trusted cloud computing platform (TCCP) that uses 

the TPM to provide trusted hardware [111]. However, the proposed platform was based 

on the TPM which is meant to be used per device and not per virtual machine. Another 

attempt to use the TPM in the cloud was addressed by Neisse et al. This work relies on 



 

 

41 

 

TPM to provide trusted computing, which is not suitable for multi-tenant nature of the 

cloud as stated earlier [112]. 

The virtualization of the TPM to bring its security properties to virtual environments is 

not direct due to its design and security constraints. This issue was discussed by Cucurull 

and Guasch [108] and an overview of virtualizing TPM in Xen QEMU virtualization 

solutions was provided. The idea of virtual TPM in Xen is simply an emulation of the 

TPM and there is a manger that control these emulations while QEMU uses the 

passthrough technique to achieve virtualization of the TPM. Passthrough is a simple 

method that passes all PCR registers of the TPM to the VM. Similar emulation was 

proposed by Bertholon et al. [113]. 

The possibility of using TPM to establish trust in Cloud Computing, between the cloud 

provider and the customers was also studied by Achemlal et al. [114]. Similar work was 

carried out by Berger and Caceres [115] and what they have proposed for virtualizing the 

TPM is shown in Figure 10. The disadvantage of this architecture is that TPM 

information sent to client VMs pass through the hypervisor which exposes the 

information to insider attacks. The proposed scheme by Berger and Caceres propagates 

the idea of the TPM to the software level which reduces the success of such methods. 

There are many similar attempts to establish trust in cloud computing including [116]–

[119]. 
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Figure 10: Virtual TPM Architecture of  [115]. 

 

Zic et al. [120] and Nepal et al. [116] proposed the Trusted Extension Device (TED) to 

enable mobile trust. Thilakanathan et al. used it to build the root of trust in the cloud 

[117] although one user was assumed for the TED to be integrated with the cloud servers, 

Figure 11. 

 

Figure 11: The abstracted architecture of the trusted extension device (TED) 

 

TPM offers a robust way for providing trust in single machines although there are several 

successful attacks reported in the literature. However, TPM is not suitable in its current 
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design for cloud computing due to the fact that TPM role has to be extended to the 

software level which contradicts the goal of the TPM. 

  

 Intel Software Guard Extensions  

Recently, Intel announced the Software Guard Extensions (SGX) [121], which is a set of 

instructions to extend Intel architecture. SGX instructions aim to provide security-

sensitive computation integrity and confidentiality guarantees where privileged software 

such as the operating system (OS), the kernel and hypervisors are untrusted. To provide 

integrity and confidentiality, SGX allows user-level code to allocate private regions of 

memory, called enclaves, that is protected from other processes; including processes 

running at higher privilege levels. SGX also provides software attestation, which is the 

process of proving to the user that his code is running in the intended trusted hardware. 

The TPM attestation covers all the software in the platform while the TXT attestation, 

discussed in Section 2.3.2, covers the VM code. SGX attestation covers only the private 

code and data inside an enclave. SGX does not prevent side-channel attacks such as 

Cache-timing attacks, Physical attacks and Microcode attacks [122]. Successful cache 

attacks were reported by many researchers including [123]–[126]. The problem of such 

attacks in the cloud is that an enclave has the power to control the server and other users 

in the same server would be compromised; spreading the attack to insiders and outsiders. 

Moreover, Intel SGX requires modification to the application using it which is not 

practical in all cases [127][40]. 
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3.4 Secure Processors  

In addition to Intel SGX, several secure processors were proposed in the literature. This 

section summarizes secure processors that are relevant to the topic of trusted computing.  

The Aegis secure processor [128] depends on a security kernel, which is a subset of the 

OS kernel, to isolate containers from each other by configuring the page tables used in 

address translation. The security kernel handles processes, virtual memory management, 

and hardware exceptions and uses processor’s features to protect itself from other 

components such as untrusted device drivers. Aegis’ security kernel is assumed to be a 

trusted part of the OS and it can evict the containers pages while verifying the paging 

operations correctness. This means that the OS can learn the memory access patterns of 

the container. Further, cache timing attacks can be carried on Aegis.  

The use of a trusted hypervisor to provide secure applications running untrusted systems 

was presented in the Bastion architecture [129]. The Bastion architecture allows the 

hypervisor to enforce the container to use specific memory locations by maintaining a 

Module State Table that stores a page table containing each physical memory page and its 

container and virtual address. The hypervisor checks that the virtual address used to map 

a physical memory page matches the virtual address associated with the physical address 

of this physical memory page in the Module State Table. Similar to other secure 

processors, the Bastion hypervisor is vulnerable to cache timing attacks and untrusted 

operating system can evict the container pages; allowing it to learn a container’s memory 

accesses. 

Sanctum [130] partition the DRAM into equal continuous regions to isolate the container 

and each DRAM region is allocated to exactly one container. Flush on context switches is 
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performed to isolate the containers in the caches. Sanctum relies on a trusted security 

monitor, similar to the SMM, to ensure that the container can only reference to a memory 

inside its DRAM partition. The container manages its page table and also handle its page 

faults, which means that the OS cannot learn the virtual address causing the page fault. 

The Sanctum design does not protect against any physical attack and focuses on software 

attacks. Also, Sanctum does not prevent fault-injection attacks and timing attacks. 

The Ascend [131] and Phantom [132] secure processors make use of the oblivious RAM. 

Oblivious RAM is a concept that performs the reads and writes simultaneously to hide 

the operation being performed and shuffles the RAM contents from time to time to avoid 

observing the patterns of accessing the memory locations. It follows that Ascend and 

Phantom do not suffer from attacks that probe the DRAM address bus and other attacks 

that attempts to learn memory access patterns of the containers. However, they incur 

large slowdown compared to other processors. It is worthwhile to mention that unlike 

SGX, which uses the Enhanced Privacy ID (EPID) [133] to preserve the privacy of the 

user using the SGX in a remote host, these secure processors did not guarantee the 

privacy of the user. The user can be tracked by the identity of the processor he is using. 

Table 2 depicts existing secure processors and their characteristics. These processors are 

not suitable for IoT data processing because they target securing the data and the code 

coming from one user, which is not the case in the IoT paradigm as the data is coming 

from multiple sources (i.e. IoT devices) and is processed by the code sent by the user. 
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Table 2: Summery of existing secure processors 

Processor Publication Year 

Secure 

against 

timing 

attacks 

Considers 

privacy of the 

client 

Secure 

against 

physical 

attacks 

Require 

modification to 

the OS 

SGX [121] 2015     

Aegis [128] 2003     

Bastion [129] 2010    
modification to 

the hypervisor 

Sanctum [130] 2016     

Ascend [131] 2012     

Phantom [132] 2013     

 

3.5 Summary and Discussion 

This section summarizes the findings of surveying the existing methods for securing 

users’ data in the cloud. Existing work in the literature is related to protecting users’ data 

from other users in the cloud and from external attacks while only few contributions 

considered protecting data from the cloud providers. In addition, most of them consider 

normal software approaches towards solving the problem which are not suitable in the 

absence of trusted computing in the cloud.  

For protecting users’ data from other users in the cloud, all the surveyed and possibly 

existing techniques are based on software approaches. The directions for these techniques 

include virtual machine isolation techniques and making cloud hypervisors more secure. 

In addition, Decoy and Fog computing methods were intensively published for this kind 
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of protection. Without doubts, these directions completely ignore the problem of 

protecting users’ data from cloud staff such as those who engineer and manage the 

hypervisors. 

There are several attempts found in the literature to protect data from cloud providers. 

These methods were hardware-based. However, no real implementation was reported and 

the proposed methods lack many factors to be implemented, discussed in detail in 

previous sections. These attempts do not consider trusted computing for their proposed 

methods. Providing trust for FPGAs is necessary if the FPGA is going to be put in the 

cloud. There is no relevant work proposed regarding this direction and mostly because 

FPGAs are used offline by the FPGA owner. Now, with the existence of FPGAs in the 

cloud for security, it will be mandatory to consider trust in the FPGAs and maintain the 

integrity of client’s applications running inside them. 

In traditional cryptography, encrypted data should be decrypted first to be processed. 

Fully Homomorphic Encryption (FHE) is a special type of cryptography that allows 

arbitrarily computation on encrypted data. This type of cryptography would allow for 

arbitrary computations on the cloud and the ability to store all data encrypted and 

performs computations on encrypted data. Unfortunately, as of today, FHE is not 

practical and introduce serious performance issues that would eliminate the original 

advantages of adopting cloud computing. 

Trusted computing in cloud computing is at its early stages. Trusted computing prevents 

devices owner from modifying the hardware of the devices which is exactly what the 

cloud needs to protect clients’ data. The concept of the cloud gives the clients the rights 

to prevent cloud providers from controlling their data in the cloud hardware. Trusted 
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computing fits well in personal devices while, up to now, it is not fitting well in the 

environment that is supposed to do (i.e. the cloud). Therefore, the concept of trusted 

computing should be the basis for developing new trusted models for the cloud (i.e. 

hardware approach as it is for the TPM). Though, trust computing in its current form is 

not be possible to emerge to the cloud because of the multi-tenant nature of the cloud. A 

new approach most probably would dominate. The problem of preventing cloud 

providers from disclosing users’ data had to be tackled in hardware as introduced by Intel 

SGX. However, Intel SGX suffers from poor performance for medium/big data sizes and 

suffers from various kinds of attacks such as side-channel attacks.  

In summary, Table 3 shows, in general, different approaches that can be utilized or 

proposed for securing data in the cloud. Most of these approaches are HW-based and all 

of them have vulnerabilities/ weaknesses that could lead to disclosing clients’ data in the 

cloud. Further, it is obvious that these approaches are not suitable for IoT data processing 

in the cloud. 
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Table 3: Summery of existing approaches that can be utilized for data protection in the cloud 
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SW     - - - 

Homomorphic       expensive 

TPM       
Not stuitable for virtualized 

environment 

TXT       
Cloud insider can break the 

security oracle 

FPGA-based [95]       

Cloud insider can modify the 

static logic and can 

imersonate the FPGA 

FPGA-based 

[109] 
      

The security infrastructure of 

the static logic is not secure 

SGX & other 

processors 
      

Suffer from timing attacks 

and incure large overhead 
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4 CHAPTER  

SECURING CLIENT DATA IN THE CLOUD USING 

FPGAs 

This chapter discusses our FPGA-based scheme for securing users’ data and applications 

in the cloud. This includes the protocols, and all the HW and SW components required to 

implement the proposed scheme. The chapter also discusses the benefits of the scheme 

such as perfect forward secrecy, FPGA authentication, a secure symmetric session key 

establishment between the on-cloud FPGA and the client, and user’s configuration 

integrity check while running in the cloud FPGA. The details of the complete proof-of-

concept prototype along with the cloud testbed for implementing the prototype is also 

provided; including resource utilization, Synopsys tool synthesis results area of about 

0.0265 mm2 in a state-of-the-art 16/14 nm fabrication technology if implemented as 

custom circuits on the FPGA (i.e. Hard Macros), and the boot time the FPGA take for the 

client to start using his/her application.   
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4.1 Introduction 

Cloud computing has proven to be of eminse benefits for individual users and enterprises. 

Reduction of capital costs, which is one of the essential benefits of cloud computing, 

makes cloud computing the ultimate choice for enterprises. However, protecting the 

integrity and privacy of users’ data is a major concern that hinders the adoption of cloud 

computing for applications with sensitive data such as financial data processing and 

medical data [134]. Existing solutions focus on protecting users' data against external or 

other users’ attacks only and they assume that the cloud provider is trusted. This leads 

many organizations with sensitive data not to process such data in the cloud [135] 

In this chapter, we discuss the proposed scheme for securing client data which has the 

following features: 

1. Practicality: The scheme does not use additional resources, other than the 

FPGA which is already deployed in the cloud [136], nor any special activities 

between the clients and the FPGA vendor. 

2. Secure client data processing: the scheme provides strong protection against a 

wide range of attacks including MiM attack, FPGA impersonation, replay 

attacks, etc. The scheme does not consider the cloud operator as a trusted 

party and it ensures the integrity of the client’ applications. It provides the 

standard overall protection as outlined in [137]. 

3. Suits the multi-tenant nature of the cloud. 

In Section 4.2, an overview of the proposed scheme is introduced including the protocol, 

its security analysis, and the related framework (HW and SW components). Experimental 
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results are presented in Section 4.3. This includes the complete cloud testbed 

implementation and the details of all components, their implementation details and 

performance figures. It also provides performance comparisons with conventional virtual 

machine boot times and other approaches such as Intel SGX. Section 4.4 demonstrates 

how our scheme can be used to protect intellectual properties (IPs) in the cloud. Finally, 

conclusions are presented in Section 4.5. 

 

4.2 The Proposed Scheme for Securing Client Data in the Cloud 

This dissertation presents a novel scheme that utilizes FPGAs to secure users’ data and 

applications in the cloud. The proposed scheme protects against various types of attacks, 

provides FPGA authentication, and ensures fixed logic and user’s application integrity, 

data confidentiality and configuration integrity. Architectures for integrating FPGAs into 

the cloud to implement the proposed scheme have also been developed and a complete 

prototype was implemented to evaluate the performance of the proposed scheme. It 

should be noted that the scope of our proposed FPGA-based secure cloud computing is 

different from existing published work on integrating heterogonous resources with 

OpenStack, namely the SAVI test-bed [138].  Our goal is to use FPGAs in the cloud to 

secure the clients’ data while SAVI test-bed aims to make FPGAs a resource for cloud 

providers to utilize. Our scheme is more closely related to the user’s side while SAVI 

test-bed is more closely related to the provider’s side. Our solution is also very scalable 

(paramount to any cloud-based computing), thus have great potential for secure cloud-

based computing as discussed also by other researchers [139]. 
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 Preliminary 

Assumptions: In this work, we assume that the on-cloud FPGA devices have the 

following capabilities that most of which already exist in current FPGAs:  

– Uniquely identifiable using any public identifier such as a printed serial number 

or other means such as a unique device DNA, similar to that found in Xilinx 

FPGAs [140]. This nonvolatile, unchangeable and permanently programmed 

value can be used to authenticate FPGAs running client’s configuration. However, 

device DNA alone is not suitable for device authentication as was illustrated in 

[141]. 

– External reconfiguration and readback ports are disabled [142]. External ports 

such as JTAG and SelectMAP are used to program FPGAs and to read back the 

configuration in its current state inside an FPGA for debugging purposes. 

– Configurable through an internal configuration access port (ICAP) such as in 

Xilinx devices [142]. An ICAP receives the configuration bit stream from the 

Static Logic and partially configures another portion of the FPGA. Hence, the 

FPGA should also support partial reconfiguration, 

– Supports readback of static configuration contents such as Look-Up-Tables, 

interconnects, and I/Os only, but cannot readback dynamic data such as RAM or 

Flip-Flop contents. 

– Have standard high-speed communication ports such as 100 Gigabit Ethernet to 

enable their in-cloud usage. 
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 FPGA Static Logic 

We assume that, in the future, FPGA manufacturers would provide adequate support for 

securing users’ data and applications on their FPGAs. Specifically, we assume that cloud-

based FPGAs would have the necessary static or fixed logic in the form of hard macros 

(i.e. non-configurable static logic) that supports different security schemes. These macros 

include a PUF and masking circuitry to generate random numbers to be used by the 

modular exponentiation circuit for Key generation, modular exponentiation circuit, AES 

block for Encryption/Decryption, SHA3 for hashing the b, authenticating the FPGA and 

hashing the configuration readback that is used by the client to ensure that his/her 

application is not modified, and a controller to coordinate the different activities. Figure 

12 shows these components and the connection between them and main state control is an 

FSM that controls the operation of these components. It should be noted that the 

proposed scheme could be implemented using current FPGAs that do not have the 

required Static Logic outlined above. The Static Logic in this case would be provided by 

the board manufacturer as pre-configured circuitry on FPGAs on tamper-proof boards 

and packages. Boards should be shipped with batteries and be powered constantly to 

maintain the Static Logic’s configuration. Users’ circuits, are placed into specific FPGA 

regions via partial reconfiguration. Only the input/output of the Encryption/Decryption 

would be made available to the users. This alternative solution allows anyone to make 

these boards and act as a trusted authority. 
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 The Overall Framework 

Notation: PUF-RN is the on-FPGA, n-bit, PUF-generated random number that is read 

once by the manufacturer and cannot be read again or altered. The session mask M, is 

also an n-bit random number generated by a trusted authority. M is used to generate an L-

bit random number b from the PUF-RN. RN is a secure random number generated by the 

client. Bit(client) is the partial bit stream representation of a client’s design. Config is the 

actual FPGA configuration obtained through readback using ICAP. Encryption of a 

message msg using a key k is denoted as MSG := Enc(msg,k) and the corresponding 

decryption as msg: =Dec(MSG,k). We use E_BIT(client) to denote encrypted bit streams: 

E_BIT(client) :=  Enc(Bit(client),k). F symbolizes an FPGA device. ID(F) is the 

identifier value and is used to uniquely refer to a specific FPGA. 

Involved parties: Figure 13 shows the parties involved in our proposed scheme. In 

addition to the client and the Cloud Provider (CP) who is providing FPGA-based 

processing as a service, the FPGA Vendor (FV) who sells FPGA devices to cloud 

Figure 12: The proposed FPGA structure and the components of the static logic. Dotted lines 

represent outputs. 
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operators also acts as a trusted authority (TA). It is not necessary that the FPGA 

manufacturer be the TA. Alternatively, an OEM (board) manufacturer could act as the 

TA. In this case, it will get the PUF-RN from the manufacturer.  

 

Figure 13: The proposed framework of the scheme.  

 

 The Security Protocol 

The proposed 10-steps protocol for securing users’ data on the cloud using FPGA 

processing is illustrated using the sequence diagram in Figure 14: 

• The client sends a request for a physical resource (i.e. the FPGA) to the CP. The 

CP assigns an FPGA for the client and sends back its identifier (ID(Fi)), 

• The client forwards the ID(Fi) to the TA, which has the value generated by the 

PUF and stored in the PUF-RN for each FPGA. The TA responds with the 

following FPGA authentication credentials; a session mask M (a random n-bit 

number with exactly L number of 1s), hash of the L-bit number b concatenated 

with ID(Fi), and the FPGA’s session key portion gb mod p. Note that both g and p 
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are public values with g usually being a small integer such as 2 and p being a 

prime number satisfying the conditions Length(b) ≥ length(p) and gb ≥ p, 

• The client forwards M and its own portion of the session key, ga mod p, to the CP 

and requests FPGA authentication credentials. Similarly, ga must be ≥ p, and 

Length(a) ≥ length(p). The FPGA will use M to generate b using the masking 

circuitry described in Section 4.2.5. The FPGA uses b to generate its portion of 

the session key, gb mod p, hash (b+ ID(Fi)), gb mod p and sends the result back to 

the client. The client can now authenticate the FPGA by comparing the values of 

Hash (b+ID(Fi)) and gb mod p received from the TA and CP. This prevents MiM 

and FPGA impersonation attacks [26]. Both parties now share the symmetric 

session key gab mod p, completing the Ephemeral Diffie–Hellman key exchange 

[26]. At this point a and b are destroyed by the client and the FPGA, respectively. 

In addition, the session key will be destroyed at the end of the session so as to 

achieve the desirable security feature of Perfect Forward Secrecy (PFS), 

• The client encrypts his/her circuit’s configuration bit stream Bit (client) using gab 

mod p, and sends it to the FPGA. The fixed logic on the FPGA will then decrypt 

it and use it to configure the FPGA through the ICAP, 

• To protect against any circuit tampering (e.g. HW Trojans or sniffing circuitry 

inserted on the FPGA), the client chooses a secure random value RN, encrypts it 

with the session key gab mod p and sends it to the FPGA requesting configuration 

readback. The Static Logic decrypts RN, reads back the FPGA configuration, 

hashes it with RN, encrypts with the session key, and sends it back to the client. 

The client can use this to validate the integrity of the FPGA. This check can be 
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repeated any number of times (with a new RN every time to prevent replay 

attacks), during the operation of the client’s circuit on the FPGA.  

The steps above are repeated for every session and M is never repeated. It should be 

noted that this scheme also supports 3rd-party provided circuit IPs (i.e. the circuit is 

provided by an IP vendor). In this case, to protect the circuit IPs, the IP vendor will 

encrypt the circuit IP(s) using a different Mask and key (obtained through similar steps), 

and perform the integrity checks. 
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Figure 14: The protocol sequence diagram. 

  

A slight variation on the protocol, Figure 15, could be made so that the TA does not need 

to compute gb mod p while still providing strong protection against MiM attacks. In this 

case, the FPGA sends the double hash Hash(Hash(b(M) + ID(Fi)) + gb mod p) along with 

gb mod p to the client. The client then computes the same double hash (using Hash(b(M) 

+ ID(Fi)) received from the TA and gb mod p received from the FPGA) to authenticate 

the FPGA. This version of the protocol requires slightly more cycles to compute the 

double hash but relieve the TA from performing the modular exponentiation operation. 
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Figure 15: A variant of the protocol. Double hashing is computed by the FPGA and the client to 

avoid sending gb mod p by the TA. 

  

 The Masking Circuitry 

The masking circuitry, as shown in Figure 16, consists of an n-bit PUF-RN and M 

registers (for instance 2048 bit) and an L-bit register for the produced b. M consists of 

exactly L-bit ones distributed randomly over the bit locations in the M register, as 

illustrated earlier in Figure 17. The M and PUF-RN registers are shifted/rotated right and 

the bit shifted from M is checked if it is equal to one or not. If the value is equal to one, 

the value of the bit shifted from PUF-RN is shifted to the b register, otherwise it is 
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discarded. Therefore, after n cycles, the b register will be holding the L-bit random 

number to be used in modular exponentiation for Diffie–Hellman key exchange and 

SHA3. To illustrate the operation of the masking circuitry, Figure 17 shows an example 

of producing a 4-bit b with n equals 8 and L equals 4. Note that since b is 4-bit, M 

contains exactly 4 1s.  

 

Figure 16: The masking circuitry. 

 

  

 

Figure 17: An example of producing an L-bits b from n-bits PUF-RN and M; n in this example 

equals 8 and L equals 4. 

 

Bit 

# 
M (8-bits with exactly 4 1s) 

PUF-RN (8-bits) 

b (4-bits) 
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The TA role in this masking is just a simple shuffle of the M upon new M request. Then, 

TA can send the resulting shuffle, i.e. M, to the client with the hash value of the register b 

that is resulted when using such produced M in the masking circuitry. The TA also 

implements its management database for preventing the repetition of Ms and tracking 

them for each client. A sample implementation of the TA can be found in Appendix D. 

 

 Security Analysis   

The proposed protocol as illustrated in Figure 14 and Figure 15 provides FPGA 

authentication, configuration integrity check and data confidentiality in the cloud 

environment. It provides one-way authentication only; the client authenticates the FPGA 

while the FPGA does not authenticate the client. The CP is responsible for authenticating 

the client. It also minimizes communication between the client and the TA. 

 As was explained above, the steps of the protocol are repeated for every session, the 

session mask (M) is never repeated for stronger protection and b is never disclosed as a 

plaintext to the client or to any other party. This enable the use of Ephemeral Diffie-

Hellman yielding Perfect Forward Secrecy (PFS). Therefore, even if the FPGA internal 

PUF-RN is leaked, all previously encrypted exchanges remain secure as the session keys 

cannot be re-created. Values of a and b are deleted by the Client and the FPGA, 

respectively, once each side establishes the session key. Also, all session keys are deleted 

at end of session. Furthermore, the width of the hash function output should be at least 

twice the size of the generated session key to provide strong collision resistance [143].  
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Figure 18 illustrates how FPGA impersonation is prevented by providing the hash of the 

b and the ID(Fi). Let an attacker (t) try to impersonate an FPGA with ID(Fi). The TA 

sends the client the hash Hash(b(M) + ID(Fi)) which must match the hash received from 

attacker t. In this case, the client receives Hash(b(M)* + ID(Fi)) and gt mod p which do 

not equal Hash(b(M) + ID(Fi)) and gb mod p. Hence, Fi impersonation by the Attacker (t) 

is prevented, and replaying the hash to be sent by the Fi is also prevented because M is 

never repeated.  Integrity checking is also secured through the use of the symmetric 

session key, and replaying it is prevented through the use of a newly client-generated RN. 

 

 

Figure 18: FPGA impersonation prevention. 

  

Figure 19 illustrates how the proposed scheme prevents MiM attacks by using the 

Ephemeral Diffie-Hellman. Such an attack would fail due to inability of the MiM to re-

compute the hash sent by the FPGA while providing the correct gb mod p. Exchanges 

between the client and the TA (messages 3 and 4 in Figure 19) can be protected by a 
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standard Secure Socket Layer (SSL) protocol. This prevents a MiM attacker from 

obtaining the hash and the gb mod p values sent by the TA to the client (message 4 in 

Figure 19) which are needed to launch a successful MiM attack.  

 

Figure 19: Man-in-the-middle attack prevention. 

 

Invasive attacks are useless as the effort to de-package and read out stored keys during 

operation from one device cannot be used with other devices due to the use of PUFs that 

generates unique PUF-RNs. The invasive physical attack requires very sophisticated 

capabilities that are only available to few states and major microelectronic manufacturing 

companies. The same level of difficulty is true for Fault attack [144]. 

Non-invasive (including side-channel attacks) and Semi-invasive attacks are also 

prevented since no key is used more than once and there are not enough data (traces) to 
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perform the analysis. Moreover, no plaintext version of any encrypted data is ever made 

available to any party other than the one who generated it. To protect most of the physical 

attacks against the masking circuitry, which is introduced in our scheme, the PUF-RN 

could be inverted and stored in another register, Figure 20, such that the power traces 

expose nothing more than a monotonically increasing current to the attacker. That is, 

every shift to the b and its complement registers produces the same current. Also, the 

values in these registers are shifted; adding the current of these shifts to the newly shifted 

bit and making the current monotonically increasing. 

 

Figure 20: A masking circuitry resistant to physical attacks 

 

For protecting other components of the static logic such as AES from physical attacks, 

several methods already exist for this purpose such as [145] [146] [147] [148]. Table 4 

summarizes the attacks discussed in Section 0 and our countermeasures against them. 

Most network attacks target denial of services (data confidentiality is guaranteed using 

our scheme) and they can also be mitigated using cloud protection services [149]. 
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Table 4: Attack types and our countermeasures 

Attack category Attack type Countermeasure 

Cryptographic 

attacks  

known-plaintext  AES is resistant to this attack and the 

session key is needed by the attacker. 

Also, plaintext is not exposed to any 

party. 

chosen-plaintext  AES is resistant to this attack and the 

session key is needed by the attacker. 

Also, plaintext is not exposed to any 

party. 

ciphertext-only  This attack is the hardest to achieve 

because the attacker has no knowledge 

of anything except the ciphertext.  

chosen-ciphertext  AES is resistant to this attack and the 

session key is needed by the attacker. 

Also, plaintext is not exposed to any 

party. 

related-key  This attack is prevented since the PUF is 

random, unpredicted and unclonable 

known-key distinguishing This attack is not possible as the attacker 

must be a client to send to the FPGA 

Network attacks 

wiretapping Since the data is encrypted, this attack is 

prevented 

port scan This attack is not applicable to FPGAs 

as the attacker gains nothing from 

scanning the ports 

idle scan This attack is not applicable to FPGAs 

as the attacker gains nothing from 

scanning the TCP ports in case TCP 
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protocol is used 

Man-in-the-middle MiM attack is prevented as shown in 

Figure 19 

impersonation FPGA impersonation is prevented as 

shown in Figure 18 

replay Replay attacks are prevented since M is 

never repeated and the use of client-

generated RN 

ARP poisoning ARP poisoning is prevented because the 

data is encrypted 

ping flood This attack is not applicable to FPGAs 

ping of death This attack is not applicable to FPGAs 

Smurf attack This attack is not applicable to FPGAs 

Physical attacks 

miroprobing This attack is expensive as discussed in 

this section 

side-

channel 

cache This attack is not applicable to FPGAs 

timing This attack is not applicable to FPGAs 

power analysis This attack is prevented using the 

masking circuitry in Figure 20 

electromagnetic This attack is prevented using the 

masking circuitry in Figure 20 

semi-invasive semi-invasive are prevented using the 

masking circuitry in Figure 20 

brute force This attack requires exponential time 

and can become infeasible if key length 

and hash function output are long 

enough 

fault injection This attack is expensive as discussed in 
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this section 

data remanence This attack is not applicable to FPGAs 

FPGA 

Reverse 

engineering 

Reverse engineering is prevented since 

readback is not possible 

tampering The Static Logic is installed by the TA 

and cannot be readback. The user 

application is sent to the FPGA in the 

cloud encrypted and it is decrypted 

inside the FPGA by the Static Logic 

after authenticating the FPGA. 

Furthermore, plaintext configuration is 

never obtained by any party other than 

the one that created it. Even if an 

attacker managed to install HW Trojans 

(after the clients configure their 

application), the repeated integrity 

checks would expose that to the client. 

cloning Our system prevents such an attack due 

to the use of PUFs, which produce a 

unique PUF-RN for every FPGA. 

Hence, cloning a configuration to 

another FPGA will result in incorrect b 

and the FPGA authentication will fail, as 

illustrated in Figure 19. In addition, the 

user can securely perform periodic 

integrity check to ensure that the FPGA 

is not modified while running the 

application. 

counterfeiting same countermeasures of cloning attack 

can be applied to prevent counterfeiting 

crippling This attack is prevented in our scheme 
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as the attacker must obtain the session 

key to send the invalid bitstream to the 

static logic for partial reconfiguration. 

Further, the static logic cannot be erased 

because external configuration is 

disabled. 

 

To verify the protocol and check if there are any vulnerabilities, a formal verification was 

carried. The tool used for verification is ProVerif, which is a well-known tool to verify 

security protocols [150]. ProVerif can analyze security protocols automatically under the 

assumption that the attacker is active; meaning that the attacker can send, receive and 

modify messages. ProVerif proves the secrecy (the attacker cannot obtain the secret), 

authentication and strong secrecy (the attacker cannot learn the changes made to the 

secret). The protocol was written using Pi calculus that is supported by ProVerif. The 

FPGA generation of the hash and gb mod p was done by the TA sending them to the 

FPGA so that the comparison in the client side is correct. The communication between 

the TA and the client/FPGA was secured using a shared key using DH. The output 

produced by ProVerif showed that our protocol is secure. The code of our protocol along 

with detailed comments can be found in appendix B. 
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4.3 Experimental Results 

In this section, the details of the FPGA prototype and the OpenStack cloud infrastructure 

are provided. The section introduces OpenStack and its components, integrating FPGAs 

with OpenStack components and the performance evaluation of our prototype.  

 

 Background on OpenStack 

OpenStack is a group of open source projects aimed to provide comprehensive cloud 

services. There are six main components of OpenStack summarized in this section 

including:  

1. OpenStack compute (called Nova): 

Nova is the component that manages the Infrastructure as a Service (IaaS) cloud 

computing platform. It includes drivers that interact with the underlying 

virtualization. Informally, it is the worker that deploy virtual machines in to the 

hosts by using the virtualization layer (hypervisors). Nova is the most complicated 

component of OpenStack [28] because it deals with external hypervisors. The 

components of nova compute are: 

– Nova-api: accepts and responds to user’s compute API calls 

– Nova-conductor: acts as an intermediary between the compute node and the 

database node. This is to make the communication to the database from the 

compute nodes more secure. 

– Nova-scheduler: takes VM requests from a common queue and determine to 

which host it should go. 
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– Nova-compute: creates and terminates VMs through hypervisor APIs such as 

KVM and Xen. 

2. OpenStack image (called Glance): 

Registering, discovering and retrieving virtual machines is done by using the 

glance component. This component is generally responsible for any operation 

related to the virtual machine image. 

3. OpenStack Networking (called Neutron): 

OpenStack Neutron is the network component of OpenStack. It is scalable and 

can be deployed in a separate server to scale the cloud. 

4. OpenStack Dashboard (called Horizon): 

OpenStack Horizon provides a graphical interface to the users and cloud 

administrators to access, monitor, and automate cloud resources.  

5. OpenStack identity (called Keystone): 

OpenStack Keystone is the identity management component of OpenStack and it 

authenticates the cloud components and cloud users. 

6. OpenStack block storage (called Cinder) and OpenStack object store (called 

Swift): 

OpenStack Cinder and Swift provide storage to OpenStack virtual machines. The 

difference between Cinder and Swift is that Swift is storing metadata related to 

objects while Cinder stores user data attached to a VM as blocks. 

These components are open source python codes and they communicate by using a 

central database installed in the controller node and use messaging software called rabbit 

to pass information between them. The relationship between the seven components is 
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complicated as illustrated in Figure 21. All components are connected to identity services 

and all components are accessible using the dashboard service.  

 

Figure 21: OpenStack Architecture shows the seven main components of OpenStack and 

communication between them [28] 
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 Testbed Implementation 

To evaluate the practicality and performance of the proposed scheme, a complete proof-

of-concept prototype of a cloud-based FPGA system has been implemented using 

OpenStack’s Juno release [151]. OpenStack was chosen because it is an open source, 

allowing it to be modified to integrate FPGAs into cloud infrastructure. It is currently 

used by about 70 % of cloud operators [152] and is highly ranked by researchers [153]. 

Figure 23 shows both, the logical cloud infrastructure as per OpenStack guide [28], and 

the implemented physical testbed. It consists of three nodes; Compute, Network, and 

Controller nodes. Two Intel PowerEdge servers each with 16 cores, 32 Gb of RAM and 

700GB hard disk were used for the compute and the network nodes while an i5 PC with 

4Gb of RAM and 500GB hard disk was used as a controller. Two Fixed Configuration 

Ethernet switches with 16 Gbps forwarding bandwidth, 32 Gbps switching bandwidth, 

and 64 MB/32MB DRAM/Flash memories provided the interconnection fabric within the 

cloud. SW1 is used for cloud management and SW2 is used for clients’ communications 

with their VMs and FPGAs. The cloud was attached to a LAN via the Network node as 

shown in Figure 23. There are two network interfaces in each of the Compute and 

Network nodes to setup the private networks necessary to setup the cloud. A 3rd interface 

is in the Network node for the virtual machines (VMs) to communicate externally and 

only one interface is needed in the Controller node to monitor the VM instances. Optional 

components are implemented in the compute node. The network and compute nodes 

contain br-int and br-ext (internal and external bridges, respectively) that are used to 

share the network interface to enable users to communicate with their virtual machines. 

No legacy networks were used in this work nor a storage network since storage is not 
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implemented separately. This basic setup can be easily scaled up to thousands of compute 

nodes and additional networking nodes as needed. 

A Xilinx Virtex-6 LX 550T FPGA prototyping board, Figure 22, (with 1 Gbps Ethernet 

ports) was attached to the cloud as an autonomous HW resource using Python scripts that 

implement the driver-agent model supported by OpenStack as outlined in details in [154]. 

The FPGA is then scheduled and assigned to a client as a conventional VM and all the 

client traffic are forwarded to it. 
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Figure 22: Xilinx Virtex 6 XC6VLX550T board 

 

A special user interface software that would run on a client’s workstation was developed.  

It manages the setup and operation of an FPGA-based computing node on the cloud. It 

handles all the communications between the client’s workstation and the on-cloud FPGA. 

Clients can use it to establish/manage a session on the cloud-based FPGA and handle all 

data transfers to/from the FPGA from/to the client’s workstation. It also handles all the 

messages with the TA (using a special port), performs the key generation, encryption and 

decryption of the FPGA’s configuration files, client’s data and results. The interface also 
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reports the total time elapsed in establishing the secure FPGA-based computing node on 

the cloud. The trusted authority’s server was emulated by a Python script running on the 

TA workstation on the LAN. It receives the client’s request, performs a random shuffle to 

produce M, compute gb mod p and the hash Hash(b(M) + ID(Fi)), and send them to the 

client. Since the TA is emulated within the same LAN as the client, Amazon cloud is 

‘pinged’ to estimate the latency of communicating with the TA. The Ping is done for 

different Amazon cloud locations using the CloudPing.info service [122]. On average, the 

ping command took around 290 ms from the testbed site. This represents the round-trip 

time taken to obtain the FPGA mask (M), gb mod p and the corresponding hash value 

from the TA. 
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Figure 23: The implemented OpenStack cloud. (a) OpenStack Cloud implementation logical 

architecture, (b) OpenStack Cloud implementation physical implementation. 

  

For prototyping purposes, the Static Logic blocks were implemented using the FPGA’s 

reconfigurable logic blocks. The Static Logic is made of the following components (a 

detailed description of the Static Logic components can be found in Appendix A): 
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1. A 512-bit SHA3 hashing block to support 256-bit session keys. This circuit 

was designed and implemented based on the Keccak sponge function reported 

in [155]. The design required major changes to make it routable and to 

pipeline it (mainly rounds steps), 

2. A 256-bit AES crypto-engine based on an OpenCores core by M. Litochevski, 

and L. Dongjun [156], 

3. An OpenCore implementation of the modular exponentiation block (modexp) 

based on the Square-and-Multiply algorithm by McQueen [157],  

4. The PUF as a 2048-bit register containing a random number, and the masking 

circuitry (as shown in Figure 16), 

5. A main FSM to control the various signals and interactions of the static logic. 

An abstracted drawing of the FSM is shown in Figure 26. 

6. An Ethernet controller and a state machine to handle the data flow between 

the components. Sending and receiving packets FSMs are shown in Figure 24 

and Figure 25 respectively. 
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Figure 24: Receiving packets FSM 
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Figure 25:  Sending packets FSM 
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The FPGA’s logic and memory utilization of the different Static Logic blocks are shown 

in Table 5 along with their maximum possible frequencies. These results show that even 

if the Static Logic components were to be implemented using the FPGA’s configurable 

resources they would consume relatively very low resources (~5% of LUTs, ~2.5% of 

flip-flops, ~1.1% of the available block RAMs, and ~0.5% of the available DSP 

multipliers). Prior work ([158]–[160]) reported similar results indicating that these types 

of functions can be implemented very efficiently on FPGAs.  

The Static Logic was also synthesized as a custom circuit to estimate its area if it was 

made as hard macros on the FPGA. The total gate count was 144,012 gates (total RAM 

Figure 26: Main FSM 
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and FFs count remain the same as the FPGA implementation).  Based on that, and to put 

this into perspective, the total area of the Static Logic as custom HW macros is estimated 

to be 0.0414 mm2 in a state-of-the-art 16/14 nm fabrication technology based on the 

International Technology Roadmap for Semiconductors (ITRS) [161]. A typical state-of-

the-art FPGA would have a die area from few hundred mm2 to around 2,000 mm2 [162]. 

As shown in Table 5, the Static Logic synthesized on the FPGA was also relatively fast. 

All components used the 100 MHz FPGA board clock since that was more than enough 

to handle the board’s 1 Gbps Ethernet traffic. The SHA3-512 achieved a throughput of 

237MB/s and a latency of 27 cycles to process 64B of data. Hence, the extra hashing step 

for the variant protocol of Figure 15 will only add 27 cycles to the authentication time. 

Similarly, the AES-256 module had a throughput of 235MB/s and 40 cycles latency for 

16B of data. In fact, it only takes 17ms to encrypt/decrypt a 4MB file. Modexp 

component is rarely used and it is used only at the beginning of the session. It takes less 

than 0.7ms to perform modular exponentiation for 256 bit base and exponent with the 

256 bit modulus. The latency of our basic masking circuitry is 2048 cycles for the 2048 

bit PUF-RN. These components can be easily operated at higher frequencies to handle 

higher bandwidth Ethernet links.  

Figure 27 illustrates the required behavior of the on-FPGA Static Logic. Upon receiving 

M and ga mod p from the Ethernet controller, M_valid and ga_mod_p_valid signals 

should go high for one clock cycle.  M_valid strobes the masking circuitry to produce b 

which would be used by the modexp and SHA3 modules to start producing gb mod p and 

the corresponding hashes. g was set to 2 and p to a 256 bit random number. Once 

Hash(b(M)+ID(Fi)) is ready, SHA3_out_valid signal should go high for one clock cycle. 
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Similarly, gb_mod_p_valid should go high for one cycle when gb mod p becomes valid. 

The FPGA can then receive the encrypted configuration, decrypts it, and then use the 

ICAP to configure the client partial region.  
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Table 5: Static Logic resource consumption. 

Static Logic LUTs FFs BRAMs DSP FMax (MHz) 

Full System 
16,546  

(4.81%) 

17,488 

(2.54%) 

14* 

(1.11%) 

4 

(0.46%) 
212.8 

SHA3-512 
7,573   

(2.20%) 

2,211 

(0.32%) 

0 

(0.00%) 

0 

(0.00%) 
273.9 

Ethernet 

Controller 

1,302 

(0.38%) 

1,045 

(0.15%) 

12 

(0.95%) 

0 

(0.00%) 
234.6 

AES-256 
4,068 

(1.18%) 

1,215 

(0.18%) 

2 

(0.16%) 

0 

(0.00%) 
264.0 

modexp 
6,816   

(1.98%) 

3,595 

(0.52%) 

0 

(0.00%) 

4 

(0.46%) 
130.6 

Masking 

circuitry 

3,100 

(0.90%) 

4,349 

(0.68%) 

0 

(0.00%) 

0 

(0.00%) 
430.3 

FSM 
2,488 

(0.72%) 

2,460 

(0.36%) 

0 

(0.00%) 

0 

(0.00%) 
413.6 

* ~ 264 Kb out of 22,752 Kb total. 

 

Figure 28 shows the actual signals obtained from the implemented prototype using Xilinx 

Chipscope (a technology that allows real-time monitoring of on-FPGA buses). Only the 

least 32 significant bits of each bus are displayed in Chipscope since the maximum 

triggers that can be shown in Chipscope is 256 bits. In addition, the signals were captured 

from three successive runs. In the 1st run (Figure 28(a), M is first received, then ga mod p 

is received, b is generated by the masking circuitry, then hash(b+ ID(Fi)) is computed and 

sent back to the client.  For the 2nd run, Figure 28(b), both M and b are set as constants to 
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the values that were sent/computed in the 1st run, then gb mod p is computed followed by 

gab mod p. However, since each modular exponentiation operation takes about 70,000 

cycles, ChipScope is only triggered before the last 100 cycles or so gb mod p generation 

(gab mod p generation is not shown). Finally, for the 3rd run, Figure 28(c) shows 

receiving the encrypted configuration and decrypting it (the Chipscope output cursor 

position shows the decrypted configuration synch word “665599AA”). As this Figure 

shows, the implemented Static Logic achieves the correct required behavior. 

 

 

Figure 27: The expected behavior of the Static Logic. 
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Figure 28: Chipscope screenshots showing the various signals of the implemented Static Logic. (a) 

Receiving M, ga mod p and producing the hash value, (b) gb mod p generation, (c) Receiving the 

encrypted partial configuration. The output cursor points to the beginning of the configuration 

(665599AA). 
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To evaluate the practicality of the proposed scheme, the setup time of an FPGA-based 

computing node on the cloud was measured and compared to conventional SW-based 

virtual-machines image boot time on the same cloud. Figure 29 shows a snapshot of the 

user interface SW. It shows the sequence of events to establish a secure session on the 

FPGA.  Table 6 shows the boot times for various virtual machine instances with CirrOS 

images on the OpenStack-based cloud implementation testbed. The boot requests were 

issued from a client workstation on the same LAN as the cloud testbed. CirrOS is a 12 

MB OpenStack small Linux based operating system image that is used for testing images 

in OpenStack clouds.  

As Table 6 shows, it took 41 seconds to boot a medium size VM within the same cloud. 

Using the same client-cloud configuration, a secure FPGA-based computing node (with 

10 MB configuration file) is booted in about 2.8 seconds as shown in Figure 29.  This is 

about 15 times faster than a medium size VM on the same cloud. Moreover, considering 

a client having an internet connection with a speed equals to the global average speed of 

the internet (i.e. 6.3Mb/s [163]) he/she can establish a session from his/her location to the 

on-cloud FPGA in about 14 seconds. 
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Figure 29: The user C# interface showing the message exchanged during session establishment. 

 

  

Table 6: Boot time (in seconds) for different virtual machine sizes on the implemented OpenStack 

cloud. 

VM Size Virtual cores RAM Disk Ephemeral Storage Boot time(sec) 

xlarge 8 16 GB 10 GB 160 GB 52 

large 4 8 GB 10 GB 80 GB 46 

medium 2 4 GB 10 GB 40 GB 41 

small 1 2 GB 10 GB 20 GB 34 

tiny 1 512 MB 1 GB 0 GB 30 

 

 

To evaluate the performance of our scheme and compare its time with Intel SGX, an 

image processor was used as a user application. The image processor was compiled from 

c using chips2 [164] and is performing images (bitmap format) edge detection using 

Sobel operator [165]. The processor was installed and connected with a python script to 
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send the images and receive the output. The design work at the Ethernet speed of at least 

80 Mbytes/s. The synthesis report of the image processor is in Table 7. 

 

Table 7: The image processor resource utilization 

FF 560 (0.0815 %) 

LUTs 1278 (0.3719 %) 

BRAMs 11 (1.7405 %) 

Frequency 199.233MHz 

 

The experiments for measuring SW (python) performance were carried on a Xeon 

machine with the following specifications; Intel Xeon CPU with 8 core 3.20GHz, 23.5 

GB of memory, 2 TB of disk, and 64-bit Ubuntu 14.04 OS. The experiments were carried 

over 1G bits of data and Table 8 reports the time it takes for different percentage of the 

1G bits of data, where normal python script time to process the data in plaintext is 6.03 

seconds. FPGA_1GE is an FPGA with 1 Gbps Ethernet and FPGA_10GE is an FPGA 

with 10 Gbps Ethernet.  Compared to Intel SGX results obtained from [166], our solution 

is much faster for larger data making it more suitable in terms of performance to cloud 

applications and streaming analytics. Results of [166] depicted that a data larger than 8 

MB (which is the L3 cache size) will make the SGX 5.5x slower due to the overhead of 

cryptographic operations performed while the data leaves the CPU package and a data 

beyond 92 MB (which is close to the maximum size of 128 MB of the EPC of Intel SGX) 

will cause Intel SGX to be 200x slower due to the overhead associated with Intel SGX 

page swapping. An alternative method for processing data larger than 92 MB using Intel 
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SGX is to keep the data encrypted out of the SXG enclave and the client application 

enters the enclave when needed. This includes calling the enclave, reading the encrypted 

data, decrypting it inside the enclave, processing the data, encrypting the results, exiting 

the enclave and writing the enclave data back to the disk. This way, the data may be 

processed in smaller chunks; reducing the overhead associated with larger data and 

avoiding page swapping. However, entering the enclave to process sensitive data is 

highly dependent on the application using the enclave. Also, entering and leaving the 

enclave is costly as illustrated by Zhao et al. [127] and considering an enclave call per 

8000 instructions leads to an overhead of 467% compared to executing instructions 

without calling an enclave. In our comparison, we assume the overhead of processing 

chunks greater than 8 MB and less than or equal to 90 MB to be 5.5x as this is the 

minimum slowdown reported in [166]. This slowdown is also reasonable for streaming 

applications (like our image processor) that has no data dependency, which makes it 

possible to divide the data into chunks less than 92 MB. 
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Table 8: Performance comparison with Intel SGX 

  

Time (sec) 

Data size 

(MB) 
% from 1Gb SGX FPGA_1GE FPGA_10GE 

134.22 100 33.18 5.03 3.52 

120.80 90 29.86 4.53 3.17 

107.37 80 26.54 4.03 2.82 

93.95 70 23.23 3.52 2.47 

80.53 60 19.91 3.02 2.11 

67.11 50 16.59 2.52 1.76 

53.69 40 13.27 2.01 1.41 

40.27 30 9.95 1.51 1.06 

26.84 20 6.64 1.01 0.70 

13.42 10 3.32 0.50 0.35 

12.08 9 2.99 0.45 0.32 

10.74 8 2.65 0.40 0.28 

9.40 7 2.32 0.35 0.25 

8.05 6 1.99 0.30 0.21 

6.71 5 0.06 0.25 0.18 

5.37 4 0.05 0.20 0.14 

4.03 3 0.04 0.15 0.11 

2.68 2 0.02 0.10 0.07 

1.34 1 0.01 0.05 0.04 



 

 

92 

 

 

4.4 Client’s Circuit Intellectual Properties on the Cloud 

The problem of protecting Client’s Circuit IPs in the cloud is unique and different than 

protecting the IP in an FPGA owned by a client. The client is the party that sends the 

encrypted configuration to the cloud (including his application and the IP). Normally, 

protecting an IP in an FPGA owned by a client (i.e. one client) involves ensuring that 

only the FPGA that is supposed to use the IP is configured (i.e. prevent cloning the IP), 

which is not the case for the on-cloud FPGA as the FPGA assigned to the client is 

unknown to the IP core vendor (CV). Our scheme discussed in previous sections can be 

used to protect the IP core in the cloud from any party, including the client and the cloud 

provider. The scheme needs to be modified, as in Figure 30, to be used for protecting 

third party IPs. Basically, a static logic is needed to receive the IPs and it contains a 

controller that controls the masking circuitry and the ICAP interface for partial 

reconfiguration and a decryption module to decrypt the IP and its key. The steps needed 

to securely partially configure the on-cloud FPGA are as follows: 

1. CV enrolls IP to the TA by providing the key IP_key.  

2. TA encrypts the key using b that is produced by applying a mask m. 

3. TA sends the user M, the encrypted IP_key (Enc(IP_key))and hash of b. 

4. CV sends the IP encrypted using IP_key to the client. 

5. The user sends M to FPGA i. 

6. FPGA i generates b. 

7. User sends Enc(IP_key). 

8. FPGA decrypts Enc(IP_key). 
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9. Users sends encrypted IP. 

10. FPGA decrypts it and uses ICAP to configure the partial region of the IP. 

 

 

Figure 30: The framework for protecting IPs in the cloud 

 

The CV might need to check for integrity of its IP while running in the FPGA and a new 

mechanism should be developed to provide such checking. In our scheme, the hash of the 

IP should be sent to the client encrypted using the CV private key so that only the CV can 

decrypt the hash. 

The infrastructure for this modified scheme is similar to the original scheme when used 

for protecting client data who use IPs in his design from third parties, and only the main 

state control should be modified to accept more than one M and to store the CV’s private 

key. It is observed that this modified scheme is extending our proposed original scheme 

to the visualized FPGAs where multiple clients’ configuration can securely run in one 
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FPGA in the cloud. The FPGA static logic should be the same and only the FPGA 

management would be changed, as discussed by Stuart Byma and steffan [154]. 

 

4.5 Conclusions 

In this work, a new FPGA-based scheme for securing users’ data (and applications) in 

clouds is proposed. It was shown that the proposed protocol for establishing a secure 

session on a cloud’s FPGA provides strong protection against various types of attack. A 

complete proof-of-concept prototype implementation of the scheme showed that it is 

feasible even with existing FPGAs, simple to implement, efficient in terms of resource 

utilization and takes less time to boot as compared to conventional software-based virtual 

machines.  The proposed scheme achieves perfect forward secrecy, provides 

authentication of the on-cloud FPGAs by the clients and integrity checking of client 

configuration to prevent any modification and/or other FPGA related attacks such as 

reverse engineering and cloning. 
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5 CHAPTER  

SECURE DATA PROCESSING FOR CLOUD-

INTEGRATED INTERNET OF THINGS USING FPGAS 

In this chapter, we describe our novel scheme to secure IoT data processing in the cloud 

from various kinds of attacks, including attacks from insiders. This includes the 

protocols, and all the HW and SW components required to implement the proposed 

scheme. The scheme achieves perfect forward secrecy, provides FPGA authentication, a 

secure way to establish a symmetric session key between the on-cloud FPGA, the IoT 

device and the client, and user’s configuration integrity check while running in the cloud 

FPGA. Furthermore, a symmetric proxy re-encryption (PRE) is proposed to suite the 

publish/subscribe systems of IoT. Not only does the implementation show the feasibility 

of the proposed scheme (in terms of applicability to current FPGAs), but it shows that it 

has very efficient resource utilization. Furthermore, synthesis results showed that this 

infrastructure logic would take a total area of about 0.0380 mm2 in a state-of-the-art 

16/14 nm fabrication technology if implemented as custom circuits on the FPGA (i.e. 

Hard Macros).  Experiments also showed that our proposed PRE is best suited in FPGAs 

for better performance. Our PRE takes less than 6 seconds to transform a ciphertext of 

size 1 Gb in SW and about 1 second in FPGAs using 1 Gbps Ethernet. 



 

 

96 

 

5.1 Introduction  

Internet of things (IoT) is penetrating to all physical fields, including homes, 

manufacturers and urban spaces, and is expected to dramatically grow in near future. 

According to Gartner report [167], IoT devices are expected to reach around 21 billion by 

2020. This massive number generates a massive amount of data that need to be stored, 

aggregated and processed to make a value of the data produced by the IoT devices. 

Securing sensitive data collected from IoT devices is a crucial issue that needs to be 

considered and is one of the top issues in IoT ecosystems [168]. 

The amount of data collected from IoT devices is very large and the cloud is the natural 

paradigm for storing and processing such huge data. In fact, leading cloud companies 

already developed platforms for IoT such as Amazon AWS IoT [169], Microsoft Azure 

IoT Suite [170], and IBM Watson Internet of Things [171]. To this end, cloud computing 

can be thought as a marketplace for many services that share and handle the data. When it 

comes to the security of the data, it is the responsibility of the marketplace owner to 

provide adequate infrastructure for securing the data and it is the responsibility of the data 

owner to maintain the security of his data and use the right infrastructure in the cloud.  

In addition, IoT follow the publish/subscribe fashion and data come from multiple 

sources (publishers) and can be processed by any cloud component (subscriber). To 

secure such data in the cloud, a symmetric proxy re-encryption is needed to convert 

publisher’s ciphertext to a ciphertext that can be decrypted by the subscriber(s). The 

proxy re-encryption is needed to avoid decrypting the ciphertext while converting it and 

the proxy re-encryption should be symmetric to allow using symmetric encryption which 

is more efficient as compared to asymmetric encryption. 
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However, the cloud is not fully secure for sensitive data of IoT devices, especially from 

insider attacks. Sensitive data requires much security mechanisms than any other security 

critical systems requires such as banks systems. Factories might be damaged and people 

might be injured or even die when such sensitive data is compromised. In the cloud, the 

IoT data becomes more valuable and more exposed to attacks when aggregated and 

processed to be presented.  

Compared to conventional software-based systems, FPGA configuration does not require 

the involvement of operating systems, drivers or compilers, making them suitable to build 

security solution under more robust attack models and stronger security guarantees. 

FPGA holds potential to deliver more sophisticated solutions for modern machine-to-

machine communication and big data applications [5]. FPGAs can be used to process 

data in the edge (near the IoT devices) or can be integrated with other cloud HW 

resources to form flexible, scalable, independent and secure compute resources within the 

cloud infrastructure. Therefore, clients can securely use FPGAs to perform the 

computation of their sensitive IoT data in the cloud in a secure manner while utilizing the 

benefits of the cloud and the fast and secure computation of the FPGAs.  

In this work, a novel scheme that utilizes FPGAs to secure IoT data processing and 

secure the applications that use them in the cloud is proposed. The proposed scheme 

protects against various types of attacks, provides FPGA authentication, ensures fixed 

logic and user’s application integrity, and data confidentiality. Architectures for 

integrating FPGAs into the cloud to implement the proposed scheme have also been 

developed. Furthermore, a symmetric proxy re-encryption has been developed that suits 

processing IoT data in the cloud. We also provide a complete prototype of our scheme 
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and the proxy re-encryption in FPGAs and discuss their performance in detail. Our 

solution is scalable (paramount to any cloud-based computing), thus have great potential 

for secure cloud-based computing as discussed also by other researchers [139]. 

In Section 5.2 various business IoT architectures are reviewed and in Section 5.3 an 

overview of the proposed scheme is introduced, including the protocol, its security 

analysis, the related framework (HW and SW components), and the proposed proxy re-

encryption. Experimental results are presented in Section 5.4. This includes the complete 

implementation of the proposed scheme and proxy re-encryption in FPGAs and the 

details of all components, their implementation details and performance figures. It also 

provides performance comparisons between our FPGA-based proxy re-encryption and a 

software version of it implemented in python. Finally, conclusions are presented in 

Section 5.5. 

 

5.2 Cloud-Integrated IoT Security Models 

In this section, we discuss business cloud-integrated IoT platforms including Microsoft’s, 

IBM’s, Google’s, Amazon’s and Intel’s IoT platforms. The business models are studied 

because there are no clear research directions when it comes to IoT in the cloud. 

Figure 31 shows the architecture of Microsoft Azure cloud for IoT [172]. There are three 

parties in this architecture, the IoT client (the IoT device), the cloud and the client 

(personal mobile devices and business systems). The client is connected to the cloud and 

gives actions (commands) to the IoT device through the cloud (there is no direct channel 

between the client and the IoT device).  
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The Components of the cloud are: 

• Cloud gateway: A cloud gateway is a system that enables remote communication 

from and to the IoT devices. 

• Provisioning API: to make the device known to the cloud. It includes registering 

and removing the device from the cloud, activating and deactivating the device. 

• Stream processors: typically moving or routing data without any transformation. 

• Device state store: stores IoT device information such as its ID and registry 

record. 

• App backend: The application back end implements the required business logic of 

the solution. 

• Solution UX: The solution user experience typically includes a website, but can 

also include web services and APIs with a graphical user interface in the form of a 

mobile or desktop app. 

• Business integration connectors and gateway(s): The business integration is 

responsible for the integration of the IoT environment into downstream business 

systems. Typical examples include service billing, customer support. 

• In addition to these components, Microsoft developed the data factory component 

[3] that is used for data transformation and distribution (e.g. MapReduce).  
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Figure 31: Microsoft's Internet of Things security architecture [172] 

 

The IBM [173], Google [174], Intel [175] and Amazon [169] IoT architectures are 

similar to the Microsoft’s architecture and they use what they call pipelines to collect and 

aggregate data from the IoT devices. It can be seen from these architectures that the flow 

is similar and only the way of handling is different from provider to provider. Further, the 

data collected from the IoT devices are pre-processed and converted to be processed by 

an application backend.  

Research on IoT security falls mainly into efficiently authenticating IoT devices and 

securing the end-to-end communication. Due to the impracticality of standard security 

solutions for authenticating the constrained IoT devices, lightweight authentication 

methods were proposed. These methods include homomorphism [176], Elliptic Curve 

Cryptography (ECC) [177] and DTLS protocol based authentication [178]. Commercial 

cloud based IoT platforms use industry-standard protocols such as TLS and X.509 to 

secure communication between the IoT devices and the cloud [172]. In addition, several 

lightweight communication protocols were proposed; including protocols based on public 
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key infrastructure [179], IPv6/6LoWPAN [180], integrating DTLS and CoAP [181] and 

SSL [182]. Researchers have also proposed various IoT security architectures and 

discussed technologies that can be used to support IoT security. Layered security 

architectures were proposed [183] [184] for IoT security and a security verification. The 

layers cover various techniques related to IoT security such as key management, 

encryption oracles and access control. These architectures conceptually cover various 

attacks and mitigation techniques in each layer. A middleware was proposed in [185] to 

meet the scalability and the high number of heterogeneous devices of the IoT system. The 

middleware mainly targeted developing a security algorithm to tackle packet sniffing, 

man-in-the-middle attack and identity spoofing in the IoT environment. An architecture 

based on lightweight identity based cryptography (LIBC) with elliptic curve 

cryptography (ECC) was proposed in [186] to solve security issues related to cloud-

integrated internet of things environment. However, these architectures neither 

considered attacks from inside the cloud nor provided any or complete implementations 

to demonstrate their practicality. 

 

5.3 The Proposed Scheme 

In this section, we discuss our scheme that is compliant to the architectures discussed in 

earlier section. Particularly, we target the IoT data handling with the security added and 

we also consider the data transformation in secure manner. 
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In this work, we assume that the on-cloud FPGA devices have the following capabilities, 

similar to the capabilities assumed in Chapter 4, most of which already exist in current 

FPGAs:  

– Uniquely identifiable using any public identifier such as a printed serial number 

or other means such as a unique device DNA, similar to that found in Xilinx 

FPGAs [140]. This nonvolatile, unchangeable and permanently programmed 

value can be used to authenticate FPGAs running client’s configuration. However, 

device DNA alone is not suitable for device authentication as was illustrated in 

[141]. 

– External reconfiguration and readback ports are disabled [142]. External ports 

such as JTAG and SelectMAP are used to program FPGAs and to read back the 

configuration in its current state inside an FPGA for debugging purposes. 

– Configurable through an internal configuration access port (ICAP) such as in 

Xilinx devices [142]. An ICAP receives the configuration bit stream from the 

Static Logic and partially configures another portion of the FPGA. Hence, the 

FPGA should also support partial reconfiguration, 

– Supports readback of static configuration contents such as Look-Up-Tables, 

interconnects, and I/Os only, but cannot readback dynamic data such as RAM or 

Flip-Flop contents. 

– Have standard high-speed communication ports such as 100 Gigabit Ethernet to 

enable their in-cloud usage. 

We use IoT device to refer to IoT capable device, constrained IoT device or IoT gateway. 

In case the IoT device is constrained, the IoT gateway is responsible for communicating 
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with the cloud and the FPGAs. Client application and client are used interchangeably in 

this work. 

Figure 32 shows the parties involved in our proposed scheme. In addition to the client, 

the IoT device and the Cloud Provider (CP) who is providing FPGA-based processing as 

a service, the FPGA Vendor (FV) who sells FPGA devices to cloud operators also acts as 

a trusted authority (TA). It is not necessary that the FPGA manufacturer is the TA. 

Alternatively, an OEM (board) manufacturer could act as the TA. In this case, it will get 

the PUF-RN from the manufacturer. The cloud is positioned between the clients’ 

applications and the IoT devices and is used for data store and processing and also for 

command forwarding, as we consider that there is no direct communication between the 

client application and the IoT device (similar to the cloud business models of Microsoft 

[172] and IBM [171] for IoT). Therefore, IoT devices receive commands from the cloud 

and send data to the cloud to be stored and processed and can be viewed by the clients’ 

applications. The processing is secured in the cloud using the FPGAs. Data 

transformation is handled by the proxy. The trusted authority is an important party that is 

used to facilitate authentication and secret sharing among the communicating parties. 



 

 

104 

 

 

Figure 32: The framework of the proposed scheme.  

 

 Description of the Proposed Symmetric Proxy Re-encryption 

In order to handle the data from IoT device in the cloud, the cloud takes several steps to 

make a value of the data that usually comes from different IoT devices and get collected, 

stored, aggregated, and processed to form the final result. When the data is encrypted, the 

cloud processing backend would have to use different keys for each data they process and 

similarly the IoT device needs to send the data encrypted to a specific processing 

component which is not suitable for the cloud computing paradigm. Therefore, we 

propose a proxy re-encryption (PRE) that would be in the cloud and would transfer the 

data encrypted by the IoT devices keys to a data encrypted by the processing components 

keys and would make it possible to transform IoT data to be processed by any processing 

component without the need to resend the data by the IoT device. 

The proxy re-encryption is shown in Figure 33. User A wants to authorize user B to 

decrypt the data that is stored or going to be stored in the cloud in the format data* gr 
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mod p, where gr mod p is user’s A private key. User A and B first share a session key gab 

mod p using Diffie-Hellman (DH) key exchange [26]. User A then sends the re-

encryption key (rK) to the proxy that is residing in the cloud. The rK is computed by 

multiplying the session key by the multiplicative modular inverse of the IoT device 

private key (gr mod p). The proxy uses the rK to convert the data by multiplying the data 

by rK and sends the result to user B. The data is now converted to the format data* gab 

mod p and user B can decrypt the data by dividing it by the shared session key (gab mod 

p). Observe that the scheme allows any number of users to share the data produced by 

user A. The division is done using the multiplicative modular inverse and all operation is 

done with the mod taken and hence the data going in/out to/from the proxy is of the same 

size. The proof of security of our scheme is straight forward and follows directly from the 

proof of BBS proxy re-encryption [59].  

The PRE can be used in the cloud for IoT data processing assuming that user A is an IoT 

device and user B is an on-cloud FPGA(s). Therefore, the proxy and the FPGA are in the 

cloud and they are geographically close to each other, which makes the conversion fast. 

The only operations that need communication outside the cloud are the FPGA 

authentication and the sharing of a session key with it. It is worthwhile to mention that 

using shared key in the PRE is a valid property in our case of using the PRE for IoT data 

conversion in the cloud since sharing the key should be performed between the IoT 

device and the on-cloud FPGA. 

The properties of the PRE discussed in Section 2.5 that are important in the cloud with 

FPGAs are highlighted below: 

1- Unidirectional: this property is not required in our case. 
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2- Non-transitive: this is achieved in our PRE as the re-encryption key must be 

provided by the delegator. 

3- Collusion-resistant: this is not important property in the cloud environment and 

with the use of FPGAs. 

4- Non-interactive: The private key is needed to establish a session with the IoT 

device and our PRE is symmetric. 

5- Multi-use/Single-use: this property is not needed in the cloud. 

6- Key-privacy: our proxy is part of the pipeline infrastructure in the cloud and this 

property is not needed as the identity of the IoT device and the FPGA is handled 

by other cloud components rather than the proxy. 

7- Transparent: our PRE is transparent. 

8- Key-optimal: our PRE is key-optimal. 

9- Temporary: our PRE has temporary property. 

Our symmetric proxy re-encryption scheme brings the following advantages when 

processing IoT data in the cloud: 

– The whole process depends on key sharing and not on the data management, 

– The scheme is suitable for both the IoT ecosystems and the multi-tenant nature of 

the cloud computing. Any authorized party can use the data without the data 

source involvement, 

– The FPGAs and IoT devices remain as a worker or as a resource and they are not 

directly involved in data sharing with applications. 
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– The PRE makes it possible to secure the publish/subscribe system of the IoT 

devices and the on-cloud FPGAs. 

 

 

 The Proposed Security Protocol 

The proposed protocol for securing the communication between the client application, the 

IoT devices, and the on-cloud FPGA is illustrated using the sequence diagram in Figure 

34. The client application is a piece of software that is responsible for authenticating the 

FPGA, securely sharing keys with the FPGA, securely sending configuration bitstream 

and checking the configuration integrity while the configuration bitstream is running in 

the FPGA. On the IoT device side, the IoT device also needs to authenticate the FPGA 

and share a key with it. The IoT data is stored in the cloud using one key (gr mod p) and 

the IoT device gives delegation for the authenticated FPGA to decrypt and process the 

data. 

Figure 33: The proposed symmetric proxy re-encryption 
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– The protocol is initiated by the client who sends a request for a physical resource 

(i.e. the FPGA) to the CP. The FPGA is assigned to one client and can receive 

data from multiple IoT devices. The CP assigns an FPGA for the client and sends 

back its identifier (ID(Fi)) (step 1 and step 2 in Figure 34), 

– The client forwards the ID(Fi) to the TA which responds with the following 

FPGA authentication credentials; a session mask M that consists of an n-bit 

random number with exactly L number of 1s, hash of the corresponding L-bit 

number b concatenated with ID(Fi), and the FPGA’s session key portion (gb mod 

p) (step 3 and step 4 in Figure 34). Note that both g and p are public values with g 

usually being a small integer such as 2 and p being a prime number satisfying the 

condition gb ≥ p. Similarly, ga must be ≥ p, 

– The client forwards M and its own portion of the session key, ga mod p, to the CP 

and requests FPGA authentication credentials. The FPGA will use M to generate 

b using the masking circuitry (step 5 in Figure 34). The FPGA uses b to generate 

its portion of the session key, (gb mod p), computes Hash(b+ID(Fi)), and sends 

the result back to the client (step 6 in Figure 34). The client can now authenticate 

the FPGA by comparing the values of Hash (b+ID(Fi)) and (gb mod p) received 

from the TA and CP. This prevents MiM and FPGA impersonation attacks [26]. 

Both parties now share the symmetric session key gab mod p, completing the 

Ephemeral Diffie–Hellman key exchange. At this point, a and b are destroyed by 

the client and the FPGA, respectively. In addition, the session key will be 

destroyed at the end of the session to achieve the desirable security feature of 

Perfect Forward Secrecy (PFS), 
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– The client sends his/her circuit’s configuration bitstream Bit(client) encrypted 

using gab mod p and the fixed logic on the FPGA will then decrypt it and use it to 

configure the FPGA through the ICAP (step 7 in Figure 34), 

– The CP broadcasts the ID of the FPGA to the client’s IoT device. The IoT device 

then sends the FPGA ID to the TA and the TA responds with a new mask (M1) 

along with the hash and the key portion of the Diffie-Hellman key exchange (gb1 

mod p). The IoT device requests FPGA authentication by sending M1 and its 

Diffie-Hellman key exchange portion (ga1 mod p) to the FPGA. The FPGA 

responds by providing the hash and the (gb1 mod p). The IoT device can then 

compare the hashes and keys portions received from both the TA and the FPGA 

(steps 8-12 in Figure 34). If there is a match, the session will be established. 

Otherwise, it will be terminated, 

– The FPGA encrypts the key (b1), which is generated by the PUF circuitry, using 

the session key established (ga1b1 mod p) and sends it to the IoT device (step 13 in 

Figure 34). The IoT device sends the re-encryption key (rK1 = b1/gr mod p) to the 

on-cloud proxy which in turn transforms the IoT device data that is encrypted 

using (gr mod p) to be encrypted using b1 as in the scheme discussed in Figure 33 

and sends the re-encrypted data to the FPGA (step 14 and step 15 in Figure 34). 

The FPGA receives M1 from the CP and regenerates b1 and decrypts the data and 

sends the result to the client after encrypting it using the session key (gab mod p). 

The value b1 is regenerated to avoid storing large number of keys thereby 

eliminates the need for memory resources needed to store the keys and allowing 

any number of IoT devices to process their data in the FPGA, 
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– To protect against any circuit tampering (e.g. HW Trojans or sniffing circuitry 

inserted on the FPGA), the client chooses a secure random value RN, encrypts it 

with the gab mod p and sends it to the FPGA requesting configuration readback. 

The Static Logic decrypts RN, reads back the FPGA configuration, hashes it with 

RN, encrypts with the session key, and sends it back to the client (steps 17 and 18 

in Figure 34). The client can use this to validate the integrity of the FPGA. This 

check can be repeated any number of times (with a new RN every time to prevent 

replay attacks), during the operation of the client’s circuit on the FPGA.  
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Figure 34: The sequence diagram of the protocol.  
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The steps above are repeated for every session and M is never repeated. For step 13 in 

Figure 34, b1 could be XORed with a private static FPGA number and the resulted key 

would be sent to the IoT devices instead of b1 to avoid exposing b1 outside the FPGA. It 

should be noted that this scheme also supports 3rd-party provided circuit IPs (i.e. the 

circuit is provided by an IP vendor). In this case, to protect the circuit IPs, the IP vendor 

will encrypt the circuit IP(s) using a different Mask and key obtained through similar 

steps, and perform the integrity checks. 
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 Security Analysis 

This section, similar to section 4.2.6, summarizes the possible attacks of our IoT scheme 

and the countermeasures the scheme is providing. Table 9 summarizes most popular 

attacks and describes what protection mechanism our scheme can provide to prevent 

these attacks. 

ProVerif [187] was used for automatic verification of the proposed protocol and to ensure 

that the protocol does not suffer from any vulnerabilities. The following assumptions 

were made: 

• We modeled the interactions between the IoT-device and the FPGA as this also 

models the interactions between the client and the FPGA, 

• The attacker has access to all communication channels except for private 

channels, 

• To verify the match of the hash values received from the TA and the FPGA in the 

IoT device side, these values are sent to the IoT device and the FPGA. The FPGA 

then send the value received from the TA to the IoT device to emulate the 

operations of the b generation and its corresponding hash value, 

• The channel between the IoT device/FPGA and the TA is private, 

• The attacker is active which means that the attacker has full access to all messages 

and can send or replay messages in the communication channels. 

Appendix C shows the ProVerif code of our proposed protocol which consists of the 

following parts: 

• Channels involved and adversary model are in lines 3-8, 
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• Encryption/decryption and hash functions models are in lines 9-16, 

• The TA operations are in lines 19-22, 

• The IoT-device operations are in lines 23-29, 

• The FPGA operations are in lines 30-34. 

The results of this ProVerif code shows that the query is true; indicating that the protocol 

is free from vulnerabilities. 

 

Table 9: Summery of countermeasure against most popular attacks 

Attack category Attacker Countermeasures 

Malicious proxy 
malicious 

insider 

This attack is ineffective because the data is not decrypted 

by the proxy and the attacker sees encrypted data only. 

Proxy and IoT 

device collusion  

malicious 

insider who 

impersonates 

the IoT device 

If the proxy and the IoT device collude by impersonating 

the IoT device, the scheme is still secure since the b key is 

known to the attacker and different key is used every 

session. 

Proxy and 

FPGA collusion 

malicious 

insider who 

impersonates 

the FPGA 

This attack is prevented by using the PUF-RN which is 

known to the FPGA and the TA only. Further, the private 

key of the IoT device is not exposed to any party, including 

the FPGA. 

Cryptographic 

attacks 

assumed to be a 

malicious 

insider who 

tries to break 

the 

cryptographic 

oracle and 

obtains the 

No plaintext version of any encrypted data is ever made 

available to any party other than the one who generated it 

(i.e. any data outside the FPGA is encrypted).  open key 

attack model is prevented using the PUF, which produces 

random uncorrelated numbers from which the key is 

generated. In addition, the steps of the protocol are 

repeated for every session, the session mask (M) is never 

repeated for stronger protection, and b is never disclosed as 
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session key 

established 

between the 

client/IoT 

device and the 

FPGA. 

a plaintext to the client or to any other party. 

Network attacks 

assumed to be a 

malicious 

insider/outsider 

attempting to 

impersonate the 

FPGA and/or 

obtain sensitive 

data. 

impersonation Prevented as shown in Figure 18 

MiM Prevented as shown in Figure 19 

replay Replaying the values to be sent by the 

FPGA is prevented because M is never 

repeated.  Integrity checking is also 

secured through the use of the symmetric 

session key, and replaying it is prevented 

through the use of the newly client-

generated random number (RN). 

Physical and 

FPGA attacks 

assumed to be a 

malicious 

insider that has 

access to the 

FPGA devices 

in the datacenter 

and is trying to 

obtain the 

device secrets 

and the IoT 

sensitive data. 

invasive 

Damage the FPGA and any divulged 

secrets such as the PUF-RN are useless 

because it is only unique to that FPGA. 

non-invasive 

All blocks of the static logic have constant 

processing time (i.e. cycles). Similarly, 

Power and Electromagnetic Radiation 

analysis attacks are mitigated due to the 

use of differential PUF-RN circuitry and 

similar techniques for the security 

components such as the RSA [188]; the 

power/electromagnetic profiles do not 

depend on the value of b or the shared 

key. 

semi-invasive 
The required knowledge and equipment 

are beyond a malicious insider. 
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5.4 Results and Discussion 

In this section, we describe the FPGA implementation of the proposed protocol and 

report its resource overhead as well as the PRE performance of both software and FPGA 

implementation.  

 

 FPGA Implementation 

To evaluate the practicality and performance of the proposed scheme, a complete proof-

of-concept prototype of an FPGA system has been implemented. A Xilinx Virtex-6 LX 

550T FPGA prototyping board (with 1 Gbps Ethernet ports) was used for the prototype. 

For prototyping purposes, the Static Logic blocks were implemented using the FPGA’s 

reconfigurable logic blocks. The Static Logic is made of the following components: 

– A 512-bit SHA3 hashing block to support 256-bit session keys. This circuit was 

designed and implemented based on the Keccak sponge function reported in 

[155]. The design required major changes to make it routable and to pipeline it 

(mainly rounds steps), 

– A 256-bit modular multiplier based on the interleaved modular multiplication 

algorithm [189], 

– An OpenCore implementation of the modular exponentiation block (modexp) 

based on the Square-and-Multiply algorithm by McQueen [157]. The modexp was 

also used to implement the multiplicative modular inverse,  

– The PUF as a 2048-bit register containing a random number, and the masking 

circuitry (as shown in Figure 16), 
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– An FSM, Figure 35, to control the components of the static logic. 

– An Ethernet controller and a state machine to handle the data flow between the 

components.  

 

  

Figure 35: Main FSM of the IoT scheme 
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The FPGA’s logic and memory utilization of the different Static Logic blocks is shown in 

Table 10 along with their maximum possible frequencies. These results show that even if 

the Static Logic components were to be implemented using the FPGA’s configurable 

resources they would consume relatively very low resources (~5% of LUTs, ~2.8% of 

flip-flops, ~1.9% of the available block RAMs, and ~3.4% of the available DSP 

multipliers). Prior work ([158] [159] [160]) reported similar results indicating that these 

types of functions can be implemented very efficiently on FPGAs.  

The Static Logic was also synthesized as a custom circuit to estimate its area if it was 

made as hard macros on the FPGA. The total gate count was 112,877 gates (total RAM 

and FFs count remain the same as the FPGA implementation).  Based on that, and to put 

this into perspective, the total area of the Static Logic as custom HW macros is estimated 

to be 0. 0380 mm2 in a state-of-the-art 16/14 nm fabrication technology based on the 

International Technology Roadmap for Semiconductors (ITRS) [161]. A typical state-of-

the-art FPGA would have a die area from few hundred mm2 to around 2,000 mm2 [162]. 

As shown in Table 10, the Static Logic synthesized on the FPGA was also relatively fast. 

All components used the 100 MHz FPGA board clock since that was more than enough 

to handle the board’s 1 Gbps Ethernet traffic. The SHA3-512 achieved a throughput of 

237MB/s and a latency of 27 cycles to process 64B of data. Similarly, the 256-bit 

modular multiplier takes 256 cycles to process 256 bits of data and can be enhanced by 

making multiple copies of it to work in parallel as will be discussed in Section 3.2 below. 

Modexp component is rarely used and it is used only at the beginning of the session and 

when calculating the modular multiplicative inverse of b using Fermat's little theorem as 

in equation (1). It takes less than 0.7ms to perform modular exponentiation for 256-bit 
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base and exponent with the 256-bit modulus. The latency of our basic masking circuitry 

is 2048 cycles for the 2048 bit PUF-RN. These components can be easily operated at 

higher frequencies to handle higher bandwidth Ethernet links.  

 

Table 10: Resource utilization of the Static Logic 

Static 

Logic 
LUTs FFs BRAMs DSP 

FMax 

(MHz) 

Full 

System 

17,386 19,443 12* 29 
234.9 

(5.06%) (2.83%) (1.89%) (3.36%) 

SHA3-

512 

7,573 2,211 0 3 

273.9 

(2.20%) (0.32%) (0.00%) (0.35%) 

Ethernet 1,302 1,045 12 19 

234.6 

Controller (0.38%) (0.15%) (1.89%) (2.20%) 

Enc-Dec 

2,107 773 0 0 

134.7 

(0.61%) (0.11%) (0.00%) (0.00%) 

modexp 

6,816 3,595 0 0 

130.6 

(1.98%) (0.52%) (0.00%) (0.00%) 

Masking 3,340 4,349 0 2 

430.3 

circuitry (0.68%) (0.68%) (0.00%) (0.23%) 

FSM 

2,488 2,460 0 2 

413.6 

(0.72%) (0.36%) (0.00%) (0.23%) 

* ~ 264 Kb out of 22,752 Kb total. 

 

𝑎 . 𝑎𝑞−2 ≡ 1 (𝑚𝑜𝑑 𝑞)                (1) 
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Figure 36 shows the actual signals obtained from the implemented prototype using Xilinx 

Chipscope (a technology that allows real-time monitoring of on-FPGA buses). The 

capturing is done for establishing a session with an IoT device, which takes more steps 

than that establishing a session with the client as shown in Figure 34. Only the least 32 

significant bits of each bus are displayed in Chipscope since the maximum triggers that 

can be shown in Chipscope is 256 bits. In addition, the signals were captured from three 

successive runs and the values should match the values in the example in Table 11. In the 

1st run (Figure 36(a), M is first received, then ga mod p is received.  For the 2nd run, 

Figure 36(b), both M and ga mod p are set as their values in the first run as in Table 11, 

then b is generated by the masking circuitry, then hash(b+ ID(Fi)) is computed and sent 

back to the client. The third run (Figure 36(c)) is triggered when encrypted data is valid 

thereby capturing the values of gb mod p followed by gab mod p followed by the 

encrypted b that is sent to the IoT device. Figure 36(c) also shows the encrypted data and 

the decrypted data along with their valid signals. The encrypted data is supposed to be the 

same as re_data in Table 11. More snapshots of the design and its different components 

can be found in Appendix A.  
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Table 11: keys and hash values Examples 

Name 
Size in 

bits 
Value 

g 2 0x3 

q 256 0xd0a6b524f46f5a59520d3efcba360545d911e748700ff141b7414405bcd22c0b 

r 256 0x1b1ba9a04575d309395ed00546339621904dafe5094ed826d081af26407f00a2 

gr 256 0x1302d7d599d1ec79d677e7eee28c6b565841563b17f6f3146aebc36a6382d841 

a 256 0x14bb28715d971d180f7055e2098e1a8a2ff67c4090afc649dc69f2424f62ccec 

b 256 0xa78fa95736cab7d8031b46104c08a0ff0786b067ffdd011fd24fd330977b67d4 

ga 256 0x4b058bb3c58c38662bb2b8eb58534a24cba7e5194cedcb61c1f9cf5b0d890e78 

gb 256 0xf343a2e3522bba046a7ded8510fd2d17b6ac9faa0cb96f346a21b9668bd3164 

gab 256 0x6c528c1cef10ae5184e3f2a0f752b5fbb004928e80811282233b9847d3212e99 

data 256 0x1111111111111111111111111111111111111111111111111111111111111111 

gr*data 256 0x7d36a1a577e3b7aedc9a8fcafc0baa6628bf27ed613db443cb0e1984cbf6150 

rK 256 0x6e81c5e894ddb9371b6833cca4a8c39a96f79159d38ea7eee941cd9014063bb8 

re_data 256 0x78c9acbd53051363d7cb66ff097e2bf568ec52055b878311360594f27612d5ea 

Enc_b 256 0x97b894cce3b431462322142fec06a5d517b139ce288d92195336247f7ccf7c4f 

ID 64 0xffffffffffffffff 

SHA3(

b+ID) 
512 

0xa5ecac8593f8561a7475e729ea89aa4f118b8472260356587a3aaa804667a332791f

cb9bc8f7b1fa429286925c6e7a3abf7e22c7381f624d4046afd49a96ea12 
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Figure 36: Chipscope screenshots showing the operations of the implemented Static Logic on the FPGA. (a) 

Receiving M, ga mod p, (b) Producing b and the hash values, (c) Producing gb mod p, gab mod p, encrypted b and 

receiving the encrypted data and decrypting it. 
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 PRE Implementation 

The PRE was also implemented in another Virtex 6 LX 550T FPGA. The proxy design 

can be installed once in an untrusted manner since the data is not decrypted in the FPGA. 

Our FPGA-based proxy consists of an Ethernet controller that receives TCP packets, 256-

bit modular multiplier, and an FSM to receive the rK key and accumulate the data into 

256 bits chunks to be multiplied by the rK. The components of the FPGA along with their 

maximum proxy are shown in Table 12. The synthesis results suggest that our proxy can 

be implemented in low-cost FPGAs and there could be many multipliers working in 

parallel. For a 1 Gbps Ethernet link, 10 bits can be processed every cycle. For this reason, 

we decided to make a BRAMS for buffering the data that is received/sent from/to 

Ethernet link and 10 multipliers to work in parallel such that 250 bits of the product result 

are outputted every cycle, ignoring the latency off filling the BRAMs and computing the 

first product result at the beginning.          

Table 12: FPGA resource usage by the PRE Logic. 

PRE 

Logic 
LUTs FFs BRAMs DSP 

FMax 

(MHz) 

Full 

System 

21068 

(6.13%) 

8534 

(1.24%) 

12 

(1.89%) 

21 

(2.43%) 
135 

ModMult 

x 10 

2,107 

(0.61%) 

773 

(0.11%) 

0 

(0.00%) 

0 

(0.00%) 
134.7 

Ethernet 

Controller 

1,302 

(0.38%) 

1,045 

(0.15%) 

12 

(1.89%) 

19 

(2.20%) 
234.6 

FSM 
266 

(0.07%) 

260 

(0.03%) 

0 

(0.00%) 

2 

(0.23%) 
274.6 
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Figure 37 shows an example of our implemented proxy for the result and signals of one 

multiplier. The image is triggered when the rk_valid signal goes high and it shows the 

data_valid signal goes high. The last signal of the image is the result_valid signal and it 

goes high when the result is ready or when in an ideal state. The rK is as in the example 

in Table 11 and the data is what is received from the IoT device (gr mod p*data). 

 

 

 Performance Evaluation 

Our proxy re-encryption can be seen as a packet processer since nothing more receiving 

the data and outputting the converted result is required. The natural way for 

implementing packet processors is the FPGAs as explained in more details in [190]. 

To evaluate the performance of our FPGA implementation of the proxy, we compare it 

with a software-based version implemented in python 2.7 (the script can be found in 

Appendix D). We used a workstation with Intel Xeon CPU with 8 core 3.20GHz, 23.5 

GB of memory, 2 TB of disk, and 64-bit Ubuntu 14.04 OS. To evaluate the software 

performance, two experiments were carried out. The first experiment is to make the data 

Figure 37: Chipscope image showing the operations of the PRE 
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available for the SW in arrays which means the data is entirely in the memory. For 

precise measurement of the time of the SW version, the measurements were repeated 

10000 times and the average of 10 runs was taken; producing the 1000 measurements in 

Figure 40 for 1Mb of data. The minimum time was set to be the actual value and the 

maximum time was set to be the experimental value and the percentage error was 

calculated and found to be 2.76% only.  

The second experiment was carried out by measuring the performance of the SW by 

reading the data from the disk to model the actual performance as it is the case when the 

SW runs in the cloud. Figure 42 shows the trend line of 1Mb of data. The percentage 

error was found to be 3.80% only. 

The FPGA implementation makes use of the data initialized in the BRAMs. Based on 

these setups, Figure 38 shows the time it takes in seconds for both experiments and the 

for the FPGA and Figure 39 and Figure 41 depict the speedup of the FPGA 

implementation over the SW implementations. Reading the data from the disk is about 

1.76x slower compared to reading the data from the memory. It can be noticed from 

Figure 42 that there are some small jumps due to accessing the disk. The speedup is 

shown in Figure 39 and Figure 41 for both experiments. The FPGA implementation is, on 

average, 5.8 times faster than the SW implementation while the data in memory and 

about 10.26 times faster than the SW implementation when the data is read from the disk. 

Given the speedup obtained, if the Ethernet link speed is 10 Gbps instead of 1 Gbps, the 

speedup will be about 58 when the data is read from the memory and about 102.6 when 

the data is read from the disk.  
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Figure 38: Time comparison of the PRE FPGA implementation and the SW PRE. In the SW 

implementation, the data is read from the memory and SW-HDD means that the data is read from 

the disk. 

 

  

 

Figure 39: The speedup obtained by our PRE FPGA implementation over PRE SW 

implementation. The data is read from the memory. 
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Figure 40: The time of the python PRE over 1000 runs. The data is read from the memory. 

  

 

Figure 41: The speedup obtained by our PRE FPGA implementation over PRE SW 

implementation. The data is read from the disk. 
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Figure 42: The time of the python PRE over 1000 runs. The data is read from the disk. 

 

5.5 Conclusions 

In this work, a new FPGA-based scheme for securing IoT data in clouds is proposed, 

including a symmetric proxy re-encryption. It was shown that the proposed protocol for 

establishing a secure session on a cloud’s FPGA provides strong protection against 

various types of attack. A complete proof-of-concept prototype implementation of the 

scheme showed that it is feasible even with existing FPGAs, simple to implement, 

efficient in terms of resource utilization and suites the publish/subscribe model.  The 

proposed scheme achieves perfect forward secrecy, provides authentication of the on-

cloud FPGAs by the clients and integrity checking of client configuration to prevent any 

modification and/or other FPGA related attacks such as reverse-engineering and cloning. 
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6 CHAPTER  

CONCLUSION AND FUTURE WORK 

In this dissertation, we studied the existing techniques for the problem of securing client 

data in the cloud. Based on this, we proposed a novel scheme based on FPGAs to tackle 

this problem. We developed all the SW/HW components of the scheme and proposed 

protocols to securely communicate with the on-cloud FPGAs. We also showed that our 

scheme can be easily integrated in the cloud as a cloud resource with a boot time that is 

15x faster than booting a conventional VM. We also showed that in terms of 

performance, our solution is faster and more secure than existing solutions such as Intel 

SGX. 

Moreover, we extend the space of our solutions to more challenging security situations 

such as securing IoT data in the cloud. The results depicted that our scheme for handling 

IoT data is efficient in terms of FPGA resource overhead and performance. We also 

handle securely the transformation of encrypted IoT data in the cloud by proposing a 

symmetric proxy re-encryption. Our proxy re-encryption performance was reported and 

suggested that it is best suited for FPGAs to perform the transformation, which is at least 

6x faster than Xeon machines when using the 1G Ethernet and is at least 60x faster when 

using the 10G Ethernet. 

This work can be extended in many ways. It opens huge opportunities for many 

contributions. An obvious extension is using our work for securing client data for 

virtualized FPGAs. Another extension is IP protection in the cloud environment. Further, 
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exploiting FPGAs for application that can be parallelized such that the benefits of 

security and speed can be combined by using our schemes. For IoT and smart grids, our 

solutions can be extended to function as a web services in the FPGAs and exhibit the 

machine-to-machine communication, in which FPGAs are well suited for and is expected 

to dominate in this field since the FPGAs brings the flexibility for bringing the 

computation closer to the edge allowing the IoT data sent to the cloud to reduce in size. 
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APPENDICES 

APPENDIX A: FPGA Implementation and Simulation 

a. Client Data Protection Scheme Components 

 

RXD input  8-bit bus for receiving data from the Ethernet chip 

RX input Unused signal 

RXDV input Valid signal for the received data 

RXER input Error signal for the received data 

TXD output 8-bit bus for transmitting data to the Ethernet chip 

TX output Unused signal 

TXEN output Enable signal for data transmission 

TXER output Error signal for the Transmitted data  

Figure A 1:  Top module inputs/outputs 
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Figure A 2: Implementation of the design placed in Xilinx Virtex 6 device. 

 

 

Figure A 3: Simulation of the top module of the design 
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TX_STB input Transmit strobe  

RX_STB output Receive strobe  

Figure A 4: Ethernet controller block 
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Figure A 5: Ethernet controller simulation (1) transmitting a packet (2) receiving a packet. 

 

1 
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DOA input 16-bit bus for data received from the Ethernet controller 

Start_End input Signal to start/end the session 

AES_key_valid input Signal to indicate that the AES can encrypt/decrypt the data 

busy output Signal to indicate that the FSM is not able to receive new data 

from the Ethernet controller 

AES_start output Signal is used for the AES key expansion which is performed 

at the beginning of the session.  

Enc_Dec output Signal for the AES to encrypt or decrypt the data 

Figure A 6: Main FSM module 
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Figure A 7: Protocol block and inputs/outputs 

 

 

Figure A 8: Image processor module 
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i_key_mode input 2-bit bus for specifying the key length (0 = 128; 1 = 192; 2 = 256) 

o_data_valid output data output valid 

o_ready output indicates AES is ready for new input data at the next clock cycle  

Figure A 9: AES module 
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byte_num input Number of bytes per block 

is last input Signal to indicate the last block 

buffer_full output Unused signal. For debugging purposes 

Figure A 10: SHA3 module  

 

 

Figure A 12: The output of SHA3 when out_ready goes high 

 

 

Figure A 11: The operations of SHA3 
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Figure A 13: The result of SHA3 

 

Figure A 14: Modular exponentiation module 
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Figure A 15: The operations of modexp, producing 3b mod p (b is exp and p is mod in the figure) 

 

 

Figure A 16: The operations of modexp, producing 3ab mod p  

 

Figure A 17: Masking circuitry module 

 

 

 

 

Figure A 18: The operations of the masking circuitry 
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Figure A 19: Simplified view of the top components 
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b. IoT Scheme Implementation Related Components: 

 

Figure A 20: Main FSM module 
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Figure A 21: Protocol module 



 

 

167 

 

 

Figure A 22: Modular multiplication module 

 

 

Figure A 23: Encrypting and decrypting data; all other values are also shown such as M, b, etc. 
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Figure A 24: The value of the encrypted data zoomed 

 

 

Figure A 25: The value of decrypted data zoomed 

 

 

 

 



 

 

169 

 

 

Figure A 26: The operations of modexp, producing the multiplicative modular inverse of b 

 

 

Figure A 27: The operations of the modular multiplication 
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APPENDIX B: ProVerif Code for the client sensitive data 

protection protocol 

(* Diffie-Hellman without signatures resists active attacks 

A -> B : e^n0 

         B -> A : e^n1 

           A and B compute the key as k = (e^n0)^n1 = (e^n1)^n0 

         A -> B : {s}k 

*) 

free c.(*a channel used to send/receive messages between the parties *) 

free c1. (*a channel used to send/receive messages between the TA and the client/FPGA 

*) 

private free s. (*a message to be send securely upon executing the protocol *) 

(* active adversary *) 

param attacker = active. (*Active means that the attacker can intercept messages send 

,receive or modify messages *) 

(* Shared key cryptography *) 

fun enc/2. (*encryption function with 2 inputs *) 

reduc dec(enc(x,y),y) = x. (*the corresponding decryption*) 

fun hash/1. (* the hash function with 1 input *) 

(* Diffie-Hellman functions *) 

fun f/2. (*a function used to represent gab=gba *) 

fun g/1. (*the exponent ion function *) 
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equation f(x,g(y)) = f(y,g(x)). (*the corresponding equation of the function f *) 

(* Test whether message s is secret *) 

query attacker:s. 

(* The TA process *) 

let TA = new n00; new b; new n1;   

(*using channel c1 to share a key with the client and the FPGA*) 

         (out(c1,g(n00))  | in(c1,x11); let k = f(n00,x11) in out(c1, 

enc(g(n1),k));out(c1,enc(hash(b),k))). 

(*The client process *)    

let client = new n0; new n11;  

(*sharing a key with the TA *) 

         (out(c1,g(n11)) | in(c1,xx);  

                         let k = f(n11,xx) in  

                         in (c1,m);  

(*receiving gb and hash(b) from the TA *) 

                         let gb_TA = dec(m,k) in 

  in (c1,m1);  

                         let hash_b = dec(m,k) in 

(*receiving gb and hash(b) from the FPGA *)  

   out(c,g(n0)) ; in(c,gb_FPGA)| in(c,hash_FPGA); 

(*authenticating the FPGA *) 

   if gb_TA=gb_FPGA then 

  ( 
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   if hash_b=hash_FPGA then 

(*if authentication done, send the message s *) 

   let k1 = f(n0,gb_TA) in out(c, enc(s,k1)) 

   ) 

   else 

  ( 

   0) 

  ). 

(*The FPGA process *) 

let FPGA =  new n01;  

(*sharing a key with the TA *) 

         (out(c1,g(n01)) | in(c1,yy);  

                      let k = f(n01,yy) in  

                         in (c1,m1);  

(*receiving gb and hash(b) from the TA *) 

                         let gb = dec(m1,k) in 

   in (c1,m2);  

                         let hash_b1 = dec(m2,k) in 

   in(c,x0);  

                         let k1 = f(gb,x0) in  

(*sending gb and hash(b) to the client*) 

   out(c,gb); 

   out(c,hash_b1); 
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                         in (c,m3);  

(*receiving the message s  from the client *) 

                         let s3 = dec(m3,k1) in 0). 

 

process TA | client| FPGA 
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APPENDIX C: Proverif code for the IoT sensitive data 

protection protocol 

1. (* Diffie-Hellman representation 

2. A -> B : e^n0 

B -> A : e^n1 

A and B compute the key as k = (e^n0)^n1 = (e^n1)^n0 

3. A -> B : {s}k *) 

4. free c.(*a channel used to send/receive messages between the parties *) 

5. free c1. (*a channel used to send/receive messages between the TA and the 

IoT_device/FPGA *) 

6. private free s. (*a message to be send securely upon executing the protocol *) 

7. (* active adversary *) 

8. param attacker = active. (*Active means that the attacker can intercept messages send 

,receive or modify messages *) 

9. (* Shared key cryptography *) 

10. fun enc/2. (*encryption function with 2 inputs *) 

11. reduc dec(enc(x,y),y) = x. (*the corresponding decryption*) 

12. fun hash/1. (* the hash function with 1 input *) 

13. (* Diffie-Hellman functions *) 

14. fun f/2. (*a function used to represent gab=gba *) 

15. fun g/1. (*the exponent ion function *) 

16. equation f(x,g(y)) = f(y,g(x)). (*the corresponding equation of the function f *) 

17. (* Test whether message s is secret *) 

18. query attacker:s. 

19. (* The TA process *) 

20. let TA = new n00; new b;  

21. (*using channel c1 to share a key with the IoT_device and the FPGA*) 

22. (out(c1,g(n00))  | in(c1,x11); let k = f(n00,x11) in out(c1, 

enc(g(n1),k));out(c1,enc(hash(b),k))). 

23. (*The IoT_device process *)    

24. let IoT_device = new n0; new n11;  

25. (*sharing a key with the TA *)          

26. (*receiving gb and hash(b) from the TA *) 

let gb_TA = in (c1,m);  

let hash_b = in (c1,h) in 

27. (*receiving gb and hash(b) from the FPGA *)  

out(c,g(n0)) ; in(c,gb_FPGA)| in(c,hash_FPGA); 

28. (*authenticating the FPGA *) 

if gb_TA=gb_FPGA then 

( 

if hash_b=hash_FPGA then 

29. (*if authentication done, send the message s *) 
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let k1 = f(n0,gb_TA) in out(c, enc(s,k1)) 

)else(0)). 

30. (*The FPGA process *) 

31. let FPGA =  new n01;  

32. (*receiving gb and hash(b) from the TA and receiving ga from the client *) 

let gb = in (c1,m);  

let hash_b1 = in (c1,h); in 

in(c,x0);  

let k1 = f(gb,x0) in  

33. (*sending gb and hash(b) to the IoT_device*) 

out(c,gb); 

out(c,hash_b1); 

in (c,m3);  

34. (*receiving the message s  from the IoT_device *) 

let s3 = dec(m3,k1) in 0). 

35. process TA | IoT_device | FPGA 
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APPENDIX D: Python Scripts 

The TA: 

import numpy as np 

import random 

import math  

from keccak import * 

g = 3 

p = pow(2,256) 

import socket  

# create a socket object 

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)  

 

# get local machine name 

IOTdevice_IP = "" 

IOTdevice_port = 9998 

s.bind((IOTdevice_IP, IOTdevice_port))  

s.listen(1) 

conn, addr = s.accept() 

print 'Connection address:', addr 

# Receive FPGA ID 

FPGA_ID = conn.recv(1024)  

N = 2048 
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K = 256 #K ones 

M = np.array([0] * (N-K) + [1] * K) 

zeros = ['0']*(N-K) 

ones = ['1']*K 

M = zeros+ones 

random.shuffle(M) 

 

with open('RN.txt') as f: 

    arr01 = f.readline() 

# with open('mask.txt') as f: 

    # arr02 = f.readline() 

RN=list(arr01) 

# arr2=list(arr02) 

#print((int(''.join(M), 2))) 

ii=0 

b=[0]*256 

for i in range(0, len(M)): 

    if(M[i]=='1'): 

  b[ii]=RN[i] 

  ii=ii+1 

#print(b) 

#print ii 

#print(''.join(b)) 
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print(int(''.join(b), 2)) 

#print p 

gb =pow(g,int(''.join(b), 2),p) 

#print str(gb) 

# SHA3 operatins 

pt = (str(int(''.join(b), 2))+FPGA_ID).decode('ascii') 

H = Keccak512(pt).hexdigest() 

#print pt 

#print H 

# Send M 

conn.send(''.join(M)) #int(''.join(M), 2) 

#M=bin(M) 

#print (''.join(M)) 

# Send gb 

conn.send(str(gb)+" "+H)  

#print str(gb) 

# Send H 

#conn.send(H) 

 

conn.close() 

print "TA" 

The Proxy: 

 def invmod(a, p): 
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    ''' 

    The multiplicitive inverse of a in the integers modulo p. 

    Return b s.t. 

    a * b == 1 mod p 

    ''' 

    return pow(a,p-2,p) 

 

g=3 

q=   0xd0a6b524f46f5a59520d3efcba360545d911e748700ff141b7414405bcd22c0b 

r=   0x1b1ba9a04575d309395ed00546339621904dafe5094ed826d081af26407f00a2 

gr=  0x1302d7d599d1ec79d677e7eee28c6b565841563b17f6f3146aebc36a6382d841 

a=   0x14bb28715d971d180f7055e2098e1a8a2ff67c4090afc649dc69f2424f62ccec 

ga=  0x4b058bb3c58c38662bb2b8eb58534a24cba7e5194cedcb61c1f9cf5b0d890e78 

gb=  0xf343a2e3522bba046a7ded8510fd2d17b6ac9faa0cb96f346a21b9668bd3164 

gab= 0x6c528c1cef10ae5184e3f2a0f752b5fbb004928e80811282233b9847d3212e99 

 

data=0x1111111111111111111111111111111111111111111111111111111111111111 

rK=(ga*invmod(gr,q))%q# to be sent to the proxy 

E_data=(data*gr)%q 

Re_E_data=(E_data*rK)%q# to be performed  the proxy 

D_data=(Re_E_data*invmod(ga,q))%q 

  

print hex(D_data) 
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