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Motion planning is one of the fundamental research problems for autonomous

systems where some agents have to carryout certain tasks in a complex environ-

ment. Some recent research areas involving motion planning are found in self

driving cars, computer games, autonomous robots for exploration, surveillance

and emergency situations etc. Typically, motion planning needs to be done locally

at agent’s onboard computing systems. An important aspect of motion planning is

collision avoidance of the agents with their environment. Such problems have been

well studied in the literature. Typically, the nonlinear avoidance constraints are

non-convex. Thus, the optimal motion planning of multiple agents in the presence

of dynamic obstacles is an NP-Hard problem [1]. Additionally, the solution of

such problems may be computationally very expensive and eventually may not be

practical to be performed on the on-board computing system of the agent. In this

xi



thesis, we present a novel algorithm for motion planning in mutli-agent dynamic

environment. It is assumed that the agents can obtain the surface information

and velocities of other agents and obstacles present in some vicinity around them.

Additionally, it is assumed that the agents cannot communicate with each other.

A novel mathematical formulation is developed using the above information. The

algorithm runs locally by each agent for its trajectory planning. The algorithm

has been successfully tested in various single and multi agent dynamic scenarios.

The algorithm is also designed to avoids oscillations in various complex scenarios.

Some simplifications for 2-D and 3-D cases have been presented at the end which

further reduce the computation times of the proposed algorithm.
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 مخلص الرسالة

 

 الاسم الكامل: حسيΐ طاهر

Δفي تخطيط الحرك ΕلياϤالع Ιبحو :Δالرسال ϥعنوا 

 ظمالΘخصص: هنΪسΔ الصناعΔ والن

 :ΔرجΪ7˺˹˻مايو  ˻˻تاريخ ال 

 
هييي    بعييي  اϥ حيييي ساسييييΔ بحثييييΔ ايعييΪ مسيييالΔ لييينظم الϤسيييΘ لΔ الاجسييياي فيييي احركيييΔ تخطيييط 
 لحركيييΔاΘخطييييط خاصيييΔ بال حΪيثيييΙΔ الابحيييالا  بعييي  الϤ ييياي فيييي بي يييΔ مع يييΪ   تنفييي الاجسييياي
سيييييياراΕ ال ييييييا،  ال اتييييييΔت ،لعييييياΏ الكϤسييييييوترت الروبوتييييياΕ الϤسيييييΘ لΔ ل سΘكشيييييا   تشيييييϤل 

 الϤركيييΐ سيييΐالحركيييΔ محلييييا فيييي الحاتخطييييط  ييييΘموالϤراقسيييΔ وحيييالاΕ الطيييوارد اليييخ  عيييا، ت 
  Θاي   )الجسييييم وكيلالعليييين مييييΪالاصييييط ΐتجنيييي Δفييييي تخطيييييط الحركيييي Δال اميييي ΐميييي  الجواليييي

بي Θ يييا  وقيييΪ ،رسيييش هييي   الϤشييياكل بشيييكل جييييΪ فيييي ا ،Ώ   بالاجسييياي الا يييرو الΘϤواجيييΪ  فيييي
Θخطييييط   وهكييي ات فييي ϥ الΔ طييييΔ  يييير محΪبيييقييييو،  يييير  -عيييا، -لΘجنيييΐ الاصيييطΪاي لسيييΘعϤل

مΘحركيييييΔ او اجسييييياي ، يييييرو وجيييييو، ع سييييياΕ حاليييييΔ مΘعيييييΪ،  فيييييي  ،جسيييييايلحركيييييΔ ا مثيييييل 
(Δيناميكيييي،   Δو،هيييي مشيييكلΪالحييي  ،ΪعيييΘشييياكل مϤاكثييير مييي  ال Δصيييعوب ΕاΫ [˺ Δبالإضييياف  ]

جييΪا حسييابيات وفييي ل ايييΔ الϤطييا  قييΪ لا  Ϊ يكييوϥ حييل مثييل هيي   الϤشيياكل مكليي إليين Ϋليي ت قيي
  فييييي هيييي   وكيييييلالعليييين مييييΘ   الϤركييييΐ سييييΐاالحيكييييوϥ ميييي  العϤلييييي ،ϥ يييييΘم تنفييييي ها عليييين 

 Δيناميكيييي، Δفيييي بي ييي Δخطييييط الحركيييΘل  ΪييييΪج Δي  واردمييييΪت ل يييΔالاجسيييايا طروحييي  ،ΪعيييΘم  
 Δالل فييييي هيييي   الخواردمييييي ϥ،  ييييرΘكنيييي جسييييمفϤهي  Εسييييط  عيييي  الحصييييوى عليييين معلومييييا

 Εوجييييو،  فييييي ا  الاجسييييايوسييييرعاϤال Εإليييين الحييييي  ييييرو والع سييييا Δحيط بييييه  بالإضييييافϤال
الΘواصيييل ميييا بعبييي ا اليييسع   تيييم تطيييوير صييييا Δ   يييالا يϤكن الاجسيييايفΘييير  ،ϥ لΫلييي ت 

ر محلييييا مييي  قسيييل اΕ الϤييي كور  ،عييي    الخواردمييييΔ تيييΪرياضييييΔ جΪييييΪ  باسيييΘخΪاي الϤعلوميييا
  وقيييΪ تيييم ا Θسيييار الخواردمييييΔ بنجيييا  فيييي سييييناريوهاΕ ،يناميكييييΔ لΘخطييييط مسيييار  جسيييمكيييل 

ر،، الخواردمييييΔ ،يبيييا لΘجنيييΐ الΘييي   تيييم تصيييϤيمالاجسيييايمΘعيييΫ  ،ΪاΕ جسيييم واحيييΪ وا يييرو 
حيييالاΕ بعييي  الΘسسييييط ل فيييي الن اييييΔ وقيييΪ قيييΪمشفيييي سييييناريوهاΕ مع يييΪ  مخΘلفيييΔ   الحركيييي

 حساΏ الخواردميΔ الΘ ϤرحΔ  دم  ،كثر للي مϤا  ΫاΕ بعΪ ثنائي و ث ثيΔ الابعا،

 



CHAPTER 1

INTRODUCTION

In pursuit of the technological advancement, man has always been striving to

create more and more efficient processes and systems. Automation is one of the

most prominent factors in the overall technological revolution in 20th and 21st

centuries. Not only does it save time, energy and labor but also improves quality

and accuracy.

The ever growing demands for precision with tighter profit margins make the

study of optimality in the automation of processes, an important area of research.

Motion planning is one the most significant aspects of autonomous systems which

is why it still continues to be the area of interest for researchers, especially for the

past three to four decades.

1.1 Background

The motion planning problem has its origins from the trajectory optimization

problem. Its roots can be traced back more than three centuries ago when, a
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Swiss mathematician, Johann Bernoulli invited all the renowned mathematicians

of the time to solve a problem famously known as “Brachystochrone” [1] (which

is a trajectory optimization problem by minimizing the time of traverse). For

the next couple of centuries, scientists and mathematicians continued to study

this problem by the method of calculus of variations [1], [2]. Later on, with the

advent of computers, other techniques related to the subject of optimal control

were developed [1], [3]-[5].

Motion planning is one the most significant attributes of autonomous systems

and still continues to be an active area of research for the past few decades.

Some early applications of motion planning were found in trajectory optimization

problems related to rocket propulsion and space exploration[2, 3]. Furthermore,

automation in the manufacturing industry brought forward new ways that could

be explored using the motion planning techniques [4, 5, 6, 7, 8, 9]. Recent ap-

plications of motion planning can be seen in diverse research areas like machine

learning, advanced manufacturing processes, puzzle solutions, computer graphics,

games, navigation in self-driving cars and Autonomous Unmanned Vehicles (AUV)

[8, 9]. These applications are typical examples of trajectory planning where mul-

tiple decision making agents are planning their motion in a common environment.

Most of these applications occur in large, dynamic and complicated environments

where global information is difficult to obtain and each agent may have to rely on

the information obtained in some nearby vicinity. The agents may or may not be

able to communicate with each other and the environment may also contain static

2



or dynamic obstacles of any shape. Therefore, the problem becomes difficult to

solve due to the above mentioned issues and, typically, onboard motion planning

algorithms must be developed that can be deployed locally on the agents (limited

resources).

1.2 Motivation

In spite of the wide variety of problems being addressed by motion planning, new

possibilities still continue to emerge, particularly due to the revolutionary im-

provement in drone technology. For instance, one key area is logistics which is

usually the most critical and expensive component of any supply chain. With the

expansion of internet and its usage, a lot of retail business has shifted online. Big

companies like DHL and Amazon are putting in huge investments in the research

of AUVs capable of planning the optimal route to numerous customer locations

and thus managing the delivery of goods. Likewise, remote controlled drones are

common these days for surveillance purposes. Enabling these machines to make

requisite decisions for trajectory planning and perform required surveillance tasks

autonomously, doesn’t seem to be far from now. Flying machines can also be

used in emergency situations like firefighting, rescue operations, bomb disposal,

first-aid delivery, fog and smog prevention etc. Similarly, the progression in nan-

otechnology, nanofabrication and microelectronics has significantly reduced the

size of onboard embedded computing systems. This opens further avenues for the

research and development of miniature robots and mechanisms, capable of making
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decisions and performing complicated tasks in the areas that cannot be accessed

otherwise. One such application is in the field of medicine where such miniature

agents can plan their motion while moving with the blood stream or in the intesti-

nal canal of the human body to reach the assigned target location and perform

a certain task like operating a tumor. In all of the above discussed areas, the

onboard motion planning specially performed in dynamic environment is a com-

plicated task and the algorithms developed thus far to deal with such problems are

either computationally very expensive or compromise too much on the optimality.

Of course, most of the above applications are available with only local nearby

knowledge of the environment and, therefore, global optimal solutions in these

situations may not be expected. However, techniques may be explored which can

provide better results in terms of optimality and also reduce the computational

complexity as compared to the available onboard motion planning methods.

1.3 Computational Complexities

Motion planning for single agent in the presence of static obstacles can be modeled

as a mathematical programming problem. The difficulty arises due to the presence

of collision avoidance constraint as shown in Equation (1.1) which makes the

problem non-convex:

||pa − qi||m ≥ D (1.1)

where, pa and qi are the current positions of the agent a and obstacle i respectively,

|| • ||m is the mth norm and D is the minimum distance between their centers to

4



avoid the collision. In addition to that, motion planning in the presence of dynamic

obstacles becomes a combination of path planning and velocity planning problems

[10]. The dynamic motion planning problem where each agent is modeled as a

point among multiple moving bodies with bounded velocity is proven to be a

NP-hard problem [1].

The onboard motion planning specially performed in dynamic environment

is a complicated task. Current algorithms developed thus far to deal with such

problems are either computationally very expensive or compromise too much on

the optimality (shortest path).

The trajectory planning algorithms give some set of finite transformations

that can be applied to an agent from its initial to the goal location. The set of all

possible transformations that may move an agent from initial location to any other

location is referred as state space or Configuration Space (C-space) [8]. In simple

words, C-space is actually how the agent sees and understands its environment

and primarily depends on how the problem is modeled. Obviously, there is a lot

of unnecessary detail in the environment and therefore, the problem should be

formulated in a way that it uses the available information efficiently and thus,

may be optimized with the limited onboard resources. The model of the problem

also depends on the available sensors on the agent that give information about

the environment. The algorithm should find the best sequence of transformations

that yields the optimal trajectory to the target.
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1.4 Structure of Thesis

In this thesis report, a novel algorithm is presented in multi agent multi obstacle

scenario. The report is structured as follows; Chapter 2 presents the comparison

of motion planning algorithms in literature along with some related problems

and limitations. Detailed methodology is covered in Chapter 3, which includes

problem statement, mathematical formulation and the proposed algorithm to find

collision free trajectories for each agent in multi agent and multi obstacle dynamic

environment. The algorithm is tested by simulating various scenarios and the

results are presented in Chapter 5. The report is concluded in Chapter 6 with

details regarding its applicability in real life motion planning problems.

1.5 Problem Statement

We are given with N number of agents present in an environment with k number

of obstacles. The agents are assumed to be spherical in shape with radius ri of the

ith agent and are capable of holonomic motion. The agents have the information of

their respective target locations. The obstacles present in the environment may be

static or dynamic. The agents have the capability to recognize the obstacles that

are present in some vicinity of radius si. Specifically, each agent can obtain the

surface edge information of the obstacles and other agents present in its vicinity.

Each agent is also capable of acquiring the velocities vi and wj of every ith agent

and jth obstacle respectively (that are present in its sensor’s vicinity). The agents

may not be able to communicate with each other and the position and velocity

6



information as mentioned above is assumed to be available only due to the agent’s

own sensing capability.

Given the above scenario, the agents need to plan their motion while moving

through this dynamic environment. As evident from the description above, the

agents do not have global information of the environment and therefore may not

be able to find the global optimal paths. Also as stated earlier, even if the global

information is available, finding global optimal paths in such situations is a NP-

hard problem [1]. The objective is to have an algorithm in place which can find

collision free paths of traverse for each agent. Furthermore, the algorithm should

be fast and simple enough to suit the limited onboard computational capability

of the agents.
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CHAPTER 2

LITERATURE REVIEW

The algorithms developed thus far for motion planning can be classified into 4

types: mathematical programming algorithms, Artificial Potential Field methods

(APF), sampling based methods and reactive or sensor based methods. The math-

ematical programming techniques use the usual Operations Research (OR) models

such as Mixed Integer Linear Programming (MILP) or Mixed Integer Quadratic

Programming (MIQP) to find optimal trajectories. On the other hand, APFs

construct a virtual force function which produces a force field creating attrac-

tive force towards the target and repulsive force away from the obstacles. Hence,

the resultant force guides the agent with collision free motion towards its target.

The concept was first introduced in [11] and was later on applied for robotic arm

mechanisms. In contrast to the above, sampling based algorithms can address

complicated motion planning problems and the challenges faced by potential field

methods may be solved by them, especially where a complicated multi degree of

freedom motion is required. The reactive methods utilize the local information

8



available to the agent in its nearby vicinity. These methods are generally suitable

for onboard path planning where computational resources are limited.

2.1 Mathematical Programming Models

A classical way to model multi agent path planning problems with no obstacle

is discussed in [12]. The problem is solved by a quadratic programming model

that minimizes the thrust required for each agent to traverse a collision free path

and reach the known target location. The difficulty arises due to the presence of

collision avoidance constraints which are typically non-convex. These are linearly

approximated with sequential convex programming approach to find collision free

paths. The method is further extended with an Incremental Sequential Convex

Programming (ISCP) approach in [13] with both coupled and decoupled varia-

tions. ISCP slightly improves the results presented in [12] in terms of computa-

tional time and gives feasible solutions even in non-convex shaped environments.

However, these techniques are computationally expensive methods and perform

poorly in the presence of dynamic agents. The reverse convex constraints as pre-

sented in Equation (1.1) have been well studied in the literature and algorithms

have been suggested for finding optimal solutions specifically for convex problems

with only one additional reverse convex constraint [14, 15]. However, these tech-

niques are inappropriate for multi agent dynamic environments where numerous

such constraints may be present and the feasible space may become complicated

enough to be analyzed for global optimality. MILP models can also be used for
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non-convex optimization such as in [16], where the usual quadratic cost function

is expressed as weighted norm-1 instead of the positive definite weighting matri-

ces and each obstacle as a polytope. Each of the linear constraints forming these

polytopes is associated with an integer variable so that the non-convex feasible

space can be searched for the optimal path. A similar formulation, for a set of

spacecraft travelling in space, is presented in [17] that avoids collision (plume im-

pingement) with other spacecraft and obstacles. A slightly different variation of

[17] is presented in [18] where multi agent motion planning problem is formulated

as Mixed Integer Non Linear Programming (MINLP) model and later converted

to MILP by obtaining schedules that form upper and lower bounds on optimal

solution via solving two MILP problems. Two point boundary value problems are

solved to find minimum and maximum times taken by each agent to traverse a

segment by putting constraints on accelerations and finding achievable final ve-

locities. Motion planning in quadrotors is also an application of Mixed Integer

Programming (MIP) models where the trajectories are planned in 3-D space, for

instance in [19]. MIQP model is presented as an extension of MILP. The control

inputs for position, roll, pitch and yaw angles are optimized for each of the discrete

time instants and piece-wise smooth polynomial functions are used at the end to

synthesize smooth trajectories so that they can be followed accurately. Also, Leg-

endre polynomials are used as basis functions to ensure numerical stability of the

solver. The MIP techniques may render optimal or near optimal solutions, but

are computationally very expensive due to the presence of integer variables. The
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problem dimensionality increases exponentially with increasing number of agents

and huge computational resources and time may be required for optimization. Ad-

ditionally, mathematical programming techniques require central computing and

sensing capabilities which may not be feasible for many real world applications.

2.2 Potential Field Methods

The numerical complexities faced by the mathematical programming models may

be avoided by another set of methods known as Artificial Potential Field (APF)

(first introduced in [11]). The collision free trajectory is obtained by introducing

a virtual force field function which depends on the location and shape of target

and obstacles. APF methods provide a simple procedure of collision avoidance in

motion planning problems but their mathematical analysis shows some limitations

making them unsuitable for some real world applications. One difficulty is the

trapping of algorithm in local minima which occurs in situations when the forces

due to attractive fields and repulsive fields balance out. This may be caused due

to the relative location of target and obstacles with respect to the agent or the

obstacle shape or size. Second issue is the limitation of motion between the closely

spaced obstacles. This is due to the reason that repulsive forces produced by the

obstacles are high enough to overcome the attractive forces even when the space

between the obstacles allows robot motion. Third issue is the oscillating motion,

while moving near the obstacles and narrow passages [20].

The issue of local minima has been investigated with detailed mathematical
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analysis (for example see [21]). The study of Hessian of the potential field func-

tion shows its non-convexity particularly near the obstacles. So, the navigation

functions are constructed by incorporating certain parameters in the potential

function in a way that local maxima only occurs at the boundary of the active

space. First, a Boolean combination of sets are used to transform the Euclidean

space and then scalar conditioning functions are introduced to level out the non-

convexity to some extent. But tweaking these parameters for different scenarios

may become impractical for dynamic environment and get very complicated even

for static environments. Typically, the onboard computing system of the agent

may not be capable to handle the complex scenarios.

Attempts have also been made to address the issue of oscillations while mov-

ing through narrow passages, for example in [22] where the grid histogram model

of the environment is reduced to one dimensional polar histogram. Similarly, a

Newtonian Potential Field (NPF) based model has been proposed in [23], where

a uniform charge distribution on the boundaries of polygonal regions is assumed

that can be derived in closed form. The representation of charge distribution

in closed form avoids computationally expensive numerical evaluation of repul-

sion which requires discretization of regions’ boundaries. The repulsive forces are

minimized by a gradient search method and then a local planning algorithm is

used to find collision free paths in nearby vicinity that are latter connected to

obtain the global path. This method may produce oscillation free motion through

narrow passages but cannot address the issues related to the existence of local min-
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ima. Another issue faced by APF methods is Goal Non-Reachable with Obstacles

Nearby (GNRON), which is because of the non-convexity of potential function in

the presence of obstacles near goal position. To ensure that global minimum of

potential function lies only at the goal position, an additional function is intro-

duced in the potential field expression that depends on the distances of goal and

obstacles from the agent’s position [24].

APF approaches may also be extended to address dynamic motion planning

problems requiring soft landing of agents on moving targets. Such problems may

be addressed by incorporating velocities, in addition to the positions, of targets

and obstacles in the potential function. A similar model is presented in [25] which

is later formulated with non-holonomic differential constraints and the algorithm

is applied in different scenarios of multi agent dynamic environment problems.

This approach may provide feasible solutions but assumes the environment to be

dynamic enough such that the issue of local minima does not persist for long.

Different local planning methods and heuristics are proposed for dealing with the

local minima issues, however, there seems to be no inherent solution to it. An even

bigger complication is to find out whether the agent is trapped in local minima or

is it just trying to oscillate because of the overall motion of target and obstacles.

The potential field methods have been applied in several real scenarios like [26]

where multiple soccer playing robots are present. However, these methods may

require sophisticated sensing systems to accurately capture the environmental de-

tails so that the requisite force fields are generated. Also, the issues of optimality
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of path and being stuck into local minima still persist. Although, these chal-

lenges have been addressed through some heuristic methods and regression based

techniques, their pratical use is a complicated task. The situation complicates

even further when the obstacles and target may even be moving in a multi agent

environment and this simplistic model of the motion planning problem may not

achieve the desired results [27, 28].

2.3 Sampling Based Methods

In contrast to the above, sampling based algorithms can address complicated mo-

tion planning problems and the challenges faced by the exact methods may be

solved by them, especially where a complicated multi degree of freedom motion is

higher dimensional motion is required. Sampling based algorithms generally con-

sist of two steps; first is to acquire a probabilistic sample of configuration space and

second is to search for the desired trajectories by an appropriate metaheuristic.

Two of the most well-known classical sampling based algorithms are Probabilistic

Road Maps (PRMs) and Rapidly exploring Random Trees (RRTs). Roadmaps

define the configuration space topology by developing a network of collision free

trajectories and PRMs are simply the Monte-Carlo evolution of the roadmaps.

On the other hand, incremental search methods such as dynamic programming,

A*, bi-directional search etc. evolved into randomized methods like RRT. PRMs

evolved from the concept of expansive spaces where, the sampling is expanded in

only relevant portion of the configuration space. Such methods have been applied
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in multi-degree complex robotic movements especially in the maintainability of

automotive industry [29]. Alternatively, RRTs randomly explore the environment

by biasing the search through random sampled points in unexplored portion of the

state space and are specifically designed to handle problems with non-holonomic

constraints and high degree of freedom [30, 31]. Several versions of RRTs such as

single RRT planners, bi-directional planners and few other approaches have been

studied and presented for various practical applications with non-linear models of

three, seven and nine dimensions (due to the inclusion of kinematic variables and

constraints) [31, 32]. The RRT and PRM based methods are only probabilisti-

cally complete [33], i.e., the probability that they return a solution if one exists

increases with the number of samples. For instance, when RRTs are run multiple

times, they show a considerable improvement in the solution quality with lower

cost paths although they may not converge to the optimal solution [34]. Also,

they are proven not to be asymptotically optimal and for simplified PRMs, where

optimality may not be the concern, they are computationally expensive [35]. To

deal with bigger configuration spaces with higher memory requirements, RRT* is

extended as RRT* Fixed Nodes [36] by limiting the memory requirements using

node removal procedure. The optimality is comparable to RRT* with limited

memory resources. RRTs may also be used in multi agent problems where each

agent may have its own RRT instance which makes the search process time con-

suming. RRG, an extension of RRT [37], is another way to deal with multi agent

problems where each agent develops a random sub-graph biased towards its goal
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node and then different sub-graphs are connected together in a network. Although

RRG is computationally more expensive than RRTs, it is better in terms of opti-

mality and overall processing time as it is run individually on each agent. PRMs

have also been used with Dynamic Robot Networks (DRN) [38] in dynamic mo-

tion planning problems but heavily relies on robot network communication for

environment sampling.

Another group of sampling based methods is of Artificial Intelligence (AI) al-

gorithms such as A*, D*, focused D*, LPA*, D* Lite etc. [39]. The environment

may be modeled using regular grids, irregular grids, navigation mesh, visibility

graph and veronoi diagram. These graphing methods are more suitable to 2-D

environments. The computationally expensive environmental sampling in AI al-

gorithms may be improved to some extent by using the concept of super nodes

where each super node represents a group of connected sub-graphs [40]. AI meth-

ods have also been extended for 3-D spaces as well [41]. Another set of algorithms

are based on meta-heuristic methods like: Ant-Colony (ACO), Simulated Anneal-

ing (SA) and Genetic Algorithms (GA) [39]. Some recent work in the literature on

evolutionary algorithms is presented in [42, 43, 44, 45]. The performance of GA is

analyzed in [43] in large sized grid environments with various crossover and muta-

tion probabilities. It performs similar to A* and it is concluded that GA may be

used to improve the existing solutions obtained by A*. Similarly, SA is compared

with A* and GA, and it is shown to give near optimal solution for large grids [44].

A hybrid method is suggested in [45] to combine ACO and GA. The algorithm
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looks for near optimal solution through an improved version of ACO and then

tries to improve solution quality using GA. The main advantage of metaheuristics

is their solution efficiency but same results may not be reproduced because of their

stochastic nature [39]. Although, the convergence in sampling based algorithms

requires many samples, they may still be used as heuristic methods for escaping

the local minima issues.

In contrast to all the above discussed methods, reactive methods plan motion

by only using the local information available to the agent in its nearby vicin-

ity. Such methods are suitable for onboard path planning where computational

resources are limited. The issue of local minima faced by previous methods is

solved by certain sensors based methods [46] that work similar to the boundary

following approach found in the bug algorithms. The algorithm uses instant goal

approach that combines the lower level boundary following approach with the

higher level path planning algorithm to find trajectory of the agent. This helps

in planning path when obstacles boundaries are far away and the algorithm does

not get stuck in local minimas. Another similar sensor based method is named

as Nav [47]. Using the same principle, the agent moves straight towards the tar-

get and starts to track obstacles boundaries when the obstacle is detected. To

deal with the issue of loops trap, the potential function which guides the agent

towards its target includes an indicator whose value increases whenever the agent

is trapped in a loop. The algorithm is able to solve navigation problem with min-

imal information and does not require self-localization which is computationally
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expensive. However, there is no systematic way to detect the of loop traps without

any self-localization mechanism. Some biological immune systems inspired fuzzy

models have also been proposed to deal with the local minima trap [48]. The

method is referred to as reactive immune networks in which the affinity functions

are defined by the same idea used in APF methods, i.e., creating a repulsive and

attractive force using obstacles and target respectively. Detection of the trap of

local minima is done by analyzing the change in movement angle of motion of the

agent. An algorithm is developed to obtain virtual targets and this information

in combination with the reactive immune network leads the agent out of the trap.

2.4 Reactive Methods

Some reactive methods also use the concept of collision cones. The concept was

first suggested in [10] where it is assumed that the agent can acquire velocity

information of objects in the environment and based on that, a set of collision

cones are constructed. If the current velocity vector of the agent falls into any of

these cones, the collision will occur. Collision cones are used to model the real

map and are then transformed into virtual maps by transforming each obstacle as

a virtual robot. Collision is detected by analyzing these cones and the requisite

change in agent velocity or its angle is done [49]. These changes are incorporated

in the differential motion parameters to obtain the required motion. The diffi-

culty arises in the presence of cluttered environment and narrow passages when

there are too many collision cones and there should be a mechanism in place to
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decide the priority of obstacle to be avoided. As already discussed, the problem

becomes non-convex as some optimal velocity needs to be searched in a set of

non-convex collision cones. Bearing angles, which can easily be obtained through

camera sensors data, may also be used like collision cones for navigation by air or

sea [50]. These methods may be simple to implement and effective for very small

number of obstacles but are infeasible for cluttered environments. The reactive

methods have also been suggested for non-holonomic motion planning [51]. If

global information is not available, then the reactive methods relies on boundary

tracking with similar results as in some previously discussed methods. Reactive

path planning techniques are generally greedy type algorithms, but the idea of col-

lision cones provides a sound mathematical foundation of the problem for further

optimization. Therefore, such ideas have been extended with some mathemat-

ical programming techniques to avoid collision in multi agent environment, for

example in [52]. The problem is first modeled with non-convex collision cones.

Later, hyperspaces are chosen such that only feasible velocities are left and require

minimum deviation from the agent’s preferred velocity. Thus, the non-convex fea-

sible space is approximated into convex polytope. Each agent solves a quadratic

objective function to avoid collision in multi agent dynamic environment. The al-

gorithm is further improved with Hybrid Reciprocal Velocity Obstalces (HRVO)

to deal with some issues related to oscillations in agents [53].
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2.5 Limitations

The mathematical programming methods mostly assume the availability of global

information, which is not possible for many the real world applications. Also,

these methods require considerable computational resources to run the optimiza-

tion solvers and, therefore, may not be suitable for limited onboard computational

capabilities. Potential field methods also typically require global information of

the environment. Moreover, the performance of the sampling based method de-

pends upon the number of samples. These methods also have additional limi-

tations of getting stuck into local minima and oscillations which are difficult to

address. Sampling based methods may address the above issues but generally

require a pre-processing step to acquire sampled topology of the environment.

For multi agent dynamic environments, the sampling of environment in each time

instant becomes a challenging task.

The reactive planning methods require limited computational resources and,

therefore, are suitable for onboard motion planning applications. However, these

methods also have some limitations. Simple reactive methods cannot find effi-

cient trajectories and may only be used in addition to some other planning algo-

rithm. They are greedy algorithms and may get stuck in local minima especially

in cluttered environments. Reactive methods in combination with optimization

techniques may render good solution quality but may require high computational

capabilities for onboard optimization. Also, non-convexity of the collision cones

may be avoided by convex approximation of the feasible space but doing this is
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itself a cumbersome task.
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CHAPTER 3

METHODOLOGY

This chapter presents the proposed algorithm in detail. Initially, the problem

scenario has been established in Section 1.5 with all the assumptions and initial

conditions. Based on the problem statement, the mathematical formulation is

presented in Section 3.1 for the case of single agent multi obstacles in 2-D dynamic

environment. Section 3.2 elaborates the extension of the proposed model for 3-D

environment. A search heuristic is then developed for the agent’s velocity that

generates a collision free trajectory. The model is later extended for multi agent

environments, where all the agents simultaneously find collision free trajectories.

3.1 Formulation for 2-Dimensional Scenario

Consider a scenario where an agent is present in a multi agent and multi obstacle

dynamic environment. The agent is assumed to be able to gather boundary / edge

information of other agents and the obstacles that are present in its vicinity. A 2-

D pictorial representation of single agent and multiple obstacles scenario is shown
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in Figure (3.1), where the agent has obtained the velocities and surface edges of

the obstacles present in its vicinity. The edge information of each jth obstacle

present in the vicinity of the agent can be obtained by forming two vectors, Rj

and Lj, showing relative position of the right and left edges of its surface from

the center of the agent respectively (the agent’s center is considered as the origin

of the vector space). In order to avoid collision with an obstacle, the center of the

Target

Obst - 2

Obst - 1

Obst - 3

w2

w1

w3

Agent

R
1

L1

L2 R2

R3

L3

Figure 3.1: Single agent multiple obstacles scenario, where wj is the current
velocity of jth obstacle

agent should always remain at some distance away from the obstacles. The set of

all such minimum distances, thus, form Collision Spaces (CS) which depend on

the dimensions of the agent and each obstacle. The collision spaces with respect

to each obstacle can be conveniently formed by taking the following Minkowski

sum (See Figure (3.2)):

A⊕ Pj = {a+ pj|a ∈ A,pj ∈ Pj} (3.1)
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where A and Pj are the vector spaces representing the shape of the agent and the

jth obstacle respectively. It is important to point out here that the agent may
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R
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O

Figure 3.2: Collision spaces represented by the region enclosed by dotted circles
around each obstacle

not be able to find the minkowski sum due to the sensory limitations, however,

the model of the problem presented here does not require the agent to identify all

the elements of CS for the collision avoidance. Each pair of vectors, Rj and Lj

for each obstacle as illustrated in figure 3.2, can be used in combination with the

sum as obtained in Equation (3.1) to form the collision cone (CC). The agent will

not collide with any of the obstacles in a future time, if and only if, its current

relative velocity vectors lie outside of the CC formed by the edge vectors of all the

obstacles in its vicinity [10]. A smaller rectangular region from Figure (3.2) has

been chosen to show the formation of the CC w.r.t Obstacle-1 (see Figure (3.3)).

Vectors R1 and L1 can be used together with the agent’s radius, r, to find vectors

24



aR1 and aL1 respectively in the right angled triangles shown in Figure (3.3).
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Figure 3.3: Construction of the collision cones using simple geometry

The CC thus formed by these two vectors is convex. Similar CCs can be

constructed with respect to all the obstacles detected by the agent. The agent’s

relative velocity, cj, w.r.t to each of the jth obstacle should exist in a non-convex

space outside of all the CCs in order to avoid collision with any of the obstacles,

which is shown mathematically as:

cj = c−wj 6∈ CC (3.2)

where,

CC = {x : x = λRj
aRj

+ λLj
aLj
| λRj

, λLj
≥ 0} ∀j (3.3)

3.1.1 Method-1

Let sj represent the vector for each agent from the center of the agent to the

center of each of the jth obstacle. Let any one of the two edge vectors of the CC
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represented in Figure (3.3) be represented by Ej for the jth obstacle. It can be

seen that the new relative velocity vector of the agent, cj w.r.t each of the jth

obstacle will generate a collision free trajectory, if and only if, the relative velocity

cj lies outside of the CCs. In order for this to happen, the following condition

must satisfy for the agent w.r.t each of the jth obstacle:

cos(αj) ≥ cos(γj) (3.4)

where, αj is the angle between sj and Ej and γj is the angle between sj and cj

∀j. The above constraint can also be written in the following form:

sTj Ej

||Ej||
≥

sTj cj

||cj||
(3.5)

In order to find the agent’s velocity which covers maximum distance in the

direction of it’s target such that the agent’s relative velocities w.r.t each obstacle

lie outside of all the CCs, the following formulation must be solved:
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max cTT

s.t :

sT
1
E1

||E1||
−

sT
1
c1

||c1||
≥ 0

. . .
...

sTj Ej

||Ej||
−

sTj cj

||cj||
≥ 0

. . .
...

sTkEk

||Ek||
−

sTk ck
||ck||

≥ 0

(3.6)

where, cj = c−wj and Ej represents any of the edge vectors of the CCs, ∀j.

The agent will have a collision free trajectory, if and only if, the constraints

given in Formulation (3.6) are feasible. The constraints given in Formulation (3.6)

forms a non-linear optimization problem. Its solution techniques will be discussed

in the subsequent chapters.

3.1.2 Method-2

Using Equations (3.2) and (3.3), following set of constraints can be written for

the agent’s relative velocity w.r.t Obstacle-1:

A1λ1 6= c1 (3.7)

where A1 =

[

aR1 aL1

]

,λ1 =









λR1

λL1









such that λ1 ∈ Rm and the column vectors

aR1 , aL1 ∈ Rn. The above system holds true, if and only if, the following system
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does not have a solution:

A1λ1 = c1, λ1 ≥ 0 (3.8)

According to the Farkas’s lemma, if the system in Equation (3.8) does not

have a solution, then the following system must have a solution (and vice versa):

A1
TX1 ≤ 0

c1
TX1 > 0

(3.9)

The feasible space created by the above system of inequalities for Obstacle-1
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Figure 3.4: Shaded area shows the set of hyperspaces creating feasible space
formed by the two collision cone vectors of Obstacle-1 and vector c

is shown in Figure (3.4). Again, it can be seen that the new relative velocity

vector of the agent, c1, will generate a collision free trajectory with respect to

Obstacle-1, if and only if, the above set of constraints in Equation (3.9) has a
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Figure 3.5: Obstacles moving with velocity, wj, and CCs formed by their respec-
tive vectors

solution. The vector c1 in Figure (3.4) is outside the collision cone and therefore,

the hyperspaces formed by the vectors have a solution, i.e,. they form a feasible

space.

Equation (3.9) forms a block of set of constraints required to check the feasi-

bility of agent’s new velocity with respect to one obstacle. Similar CCs can also

be formed for the other obstacles as shown in Figure (3.5). The problem can be

formulated as a maximization problem, where the objective is to find the nearest

possible agent’s velocity vector c in the direction of its target.

Each CC can be used to form the set of half spaces for each jth obstacle and

then formulated in a blocked structured form as presented in Formulation (3.10).

The constraints in Formulation (3.10) will be feasible, if and only if, all cj are

outside their respective collision cones.
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max cTT

s.t :

aT
R1
X1 ≤ 0

aT
L1
X1 ≤ 0

−cT
1
X1 ≤ −ε

. . .
...

aT
Rj
Xj ≤ 0

aT
Lj
Xj ≤ 0

−cTj Xj ≤ −ε

. . .
...

aT
Rk
Xk ≤ 0

aT
Lk
Xk ≤ 0

−cTkXk ≤ −ε

(3.10)

where, T is the target vector w.r.t the agent’s current position, cj = c−wj, ∀j,

and ε is a small positive scalar. Every 3rd constraint in each block of the above

formulation has bi-linear terms which makes the above formulation non-convex.

3.2 Formulation for 3-Dimensional Scenario

Formulation for 3-D scenario can be done in the same way as 2-D. However unlike

in 2-D, the CC created by obstacles in 3-D scenarios form non-linear convex conic
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sets. Such a cone for a single agent and single obstacle is shown in Figure (3.6).

Figure 3.6: 3-D convex collision cone constituting the set of all collision velocities

Method-1 Formulation (3.6) can be used without any change for 3-D scenario

as well. However, each of the 3-D non-linear CC form a set of uncountable number

of edge vectors out of which any vector may be chosen as Ej in Formulation (3.6).

For Method-2, the CC of an obstacle may also be approximated by the space

enclosed by m number of hyperplanes. The CC for the scenario in Figure (3.6) is

approximated with 5 hyperplanes as shown in Figure (3.7). Such CC can also be

represented by the convex combinations of the edge vectors aq formed by each pair

of the intersecting hyperplanes from all the set of hyperplanes for each obstacle

in 3-D scenario.

It is assumed for such cases that the edge vectors aq ∀q such thatmax{q} = m,

are already available. Thus, Formulation (3.10) that was developed for the 2-D
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Figure 3.7: 5 hyperplanes approximating CC for one obstacle

case can now be extended for 3-D as follows:
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max cTT

s.t :

aT
11
X1 ≤ 0

...
...

aT
m1

X1 ≤ 0

−cT
1
X1 ≤ −ε

. . .
...

aT
1j
Xj ≤ 0

...
...

aT
mj
Xj ≤ 0

−cTj Xj ≤ −ε

. . .
...

aT
1k
Xk ≤ 0

...
...

aT
mk

Xk ≤ 0

−cTkXk ≤ −ε

(3.11)

Solving the above model gives us the agent’s velocity that maximizes the mo-

tion of the agent in the direction of its target.
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3.3 Kinodynamic Constraints

The agent’s new velocity vector c should be chosen such that it satisfies the

agent’s kinodynamic constraints. The agent’s current acceleration, ga, and its

current velocity, va, determines its future velocity, c, in the next iteration after

τ time step. Both ga and va are bounded and the kinodynamic constraints on

acceleration and velocity can be written as follows:

vmin ≤ ||c||2 ≤ vmax (3.12)

amin ≤ ||ga||2 ≤ amax (3.13)

c = τga + va (3.14)

where amin and vmin are the lower bounds, while amax and vmax are the upper

bounds on agent’s current acceleration and future velocity after τ time step, re-

spectively.

3.4 Solution Techniques

3.4.1 Solution by McCormick Envelopes

McCormick Envelopes are used to obtain convex relaxation of the above formu-

lations. The lower and upper bounds of bi-linear variables are used to find linear

hyperplanes that approximate each bi-linear term [54]. The newly transformed

linear and convex form of the original problem, thus, guarantees global optimal

34



solution. However, the new approximate linear constraints are typically tight if

one of the bi-linear variables is binary.

In order to use McCormick Envelopes for the solution of Method-2 in For-

mulation (3.10) and Formulation (3.11), Xj ∀j cannot be considered as binary.

Considering c as binary variable will force the motion of the agent in one of

the two directions of the x and y axes only and that too in static environment,

wj = 0 ∀j.

3.4.2 Solution by Heuristic Search

Both Method-1 and Method-2 can also be solved by a heuristic search method.

A finite set of the possible values of the agent’s new velocity vector c, can be

obtained by discretizing the set of the agent’s kinodynamic constraints. The

problem, thus, converts into an LP which can be used to check the feasibility

all its constraints. The velocity vector c that satisfies all the constraints and

maximizes the objective function in Formulation 3.10 can be chosen to obtain an

efficient collision free trajectory for the agent. The algorithm for the search of the

agent’s new velocity vector c is presented in Chapter 4 in detail.

Although the size of the constraint matrix formed in the above LP increases

with the increase in the number of obstacles, the sparse structure of the constraint

matrix significantly reduces the solution time. The solution speed also improves

as the optimization of the above LP is not the prime intention here rather it is

just to check the feasibility, which is usually done in the pre-processing step.
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CHAPTER 4

ALGORITHMS

This chapter presents the details of the proposed algorithm. First, to show the

basic working of the LP model formulated in the previous section, an algorithm is

presented in Algorithm (1), which utilizes a greedy approach to find the feasible

velocity vector c and may create stalling in some scenarios. Next, the proposed

randomized greedy algorithm is presented wherein, a smart approach is used to

avoid the phenomenon of stalling while keeping intact the speed of the solution.

Some simplifications of the proposed model are also discussed in Section 4.1.6 that

may significantly improve the computation times for 2-D and a special case of 3-D

scenarios.

4.1 Developing the Algorithm

In the following subsections, the proposed algorithms are presented. The basic

algorithm, called Greedy Algorithm is presented first. Then the limitations of

the basic algorithm is enhanced and improved algorithm is proposed in the latter
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subsections.

4.1.1 Greedy Algorithm

The solution procedure of Formulation (3.10) can be seen in Algorithm (1). All the

edge vectors, aRj
and aLj

are obtained for each jth obstacle in the agent’s vicinity.

According to Equations (3.12), (3.13) and (3.14), a uniform random sample of

the Possible Velocity Space (PVS) is generated. These possible velocity vectors

are then stored according to the descending order of their dot products with the

relative target vector of the agent, Za. Algorithm (1) selects the velocity that

produces maximum motion in the direction of the target while avoiding collision

with the obstacles in its vicinity in any future time.

As shown in Algorithm (1), the sorted velocity vectors from the sampled PVS

are tested for feasibility and the first feasible velocity is chosen as c.

4.1.2 Stalling Phenomenon

The phenomenon of stalling can be explained with the example as shown in Fig-

ure (4.1). In order to move as close as possible to the target from position O,

the only two best possibilities are to move in either of the direction of the edge

vectors, aR and aL. Let us suppose that using Algorithm (1), the agent finds aR

as its most feasible direction of motion. Hence, O and O′ show the agent’s initial

location and the location it moved in one iteration of τ time-step respectively.

The target in this case is closer to the agent w.r.t the center of an imaginary circle
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Figure 4.1: Stalling in a single agent - multi static obstacle case

formed by the two tangents, which are represented by the two extreme edge vec-

tors, aR and aL, of the obstacles. In such a scenario, following conditions always

hold:

a′

R

T
Z′

a < aR
TZa (4.1)

a′

L

T
Z′

a > aL
TZa (4.2)

where Za and Z′

a are vectors from the agents locations O and O′ to the target

respectively. As per the above results, the algorithm has found a better direction

to move and the greedy approach as explained earlier will results in the agent

to change its direction abruptly in the very next iteration. The criterion for the

selection of c in Algorithm (1) will stall the agent’s motion. Stalling may be

avoided by enforcing the agent not to change the direction of its velocity very

rapidly as compared to its previous velocity. Constraining the agent’s velocity in
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this manner may also help to reduce mechanical jerks on the system and produce

smooth trajectories.

Thus, the following additional constraint is put on agent’s velocity to avoid

stalling and rapid changes in the direction of its velocity:

cTva ≥ 0 (4.3)

where va is the agent’s current velocity.

4.1.3 Proposed Algorithm

For static environments, it can be easily seen that if there exists a collision free

path, the c vector in the direction of at least one of the edge vectors of the obstacles

must be feasible. Therefore, all the possibilities of the edge vector directions are

first tested for feasibility in the PVS. For this, the agent’s acceleration constraints

as given by Equation (3.13) are assumed to be such that a nominal velocity with

the magnitude of at least, µa, is possible to achieve in any direction from the

current velocity, va.

The edge vectors are sorted, similar to other possible velocity vectors from

PVS, in descending order of their dot product with the target vector. If there

comes a situation when the new velocity c in the direction of some edge vector is

feasible but does not satisfy the constraint in Equation (4.3), it is neglected and

the search continues. The next vector from the sorted edge vectors stack is chosen

for feasibility test as given in Algorithm (2).
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The algorithm not only finds collision free trajectories in an efficient manner

but also avoids stalling situations. However, it is not desirable to use the edge

vectors created by the obstacles that are moving away from the agent, in a direc-

tion opposite to the direction of the target. Similarly, for cases where no solution

is found due to the presence of obstacles all around the agent, the edge vectors

of the farthest obstacle may be neglected and the algorithm be repeated until a

solution is obtained. If no solution is obtained after considerable reduction of scan

radius, then agent will be assigned a zero velocity.

Same strategy can be applied for the multi-agent scenario where each agent

considers all the agents around it as obstacles (since the agents are assumed to

have no communication protocol between them). Most of the recent trajectory

planning algorithms in dynamic environments are computationally very expen-

sive and may require global information to effectively plan the trajectories. Our

algorithm is designed to effectively deal with dynamic situations where global in-

formation may not be available. Such methods are practical in scenarios where

acquiring global information is difficult and expensive, and may require huge on-

board computational resources. For cases where global information is available, it

may be incorporated in the proposed algorithm by updating the target value for

each agent at each time period.
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4.1.4 Oscillations in Mutli Agent Scenarios

Velocity Obstacles (VO) in general may render collision free motion, but face the

problem of oscillation in multi agent scenarios [53]. Therefore, HRVO had been

introduced to avoid the phenomenon of oscillations or ‘reciprocal dance’. Similar

oscillations are observed in multi agent scenarios for the algorithm proposed in

Algorithm (2), as its formulation is developed on the basis of VO as well. A simi-

lar technique as proposed in [53] has been incorporated in Algorithm (2) to avoid

the oscillations. However, instead of shifting the original VO cones for all other

agents as done in [53], we just multiply our Edge Vector Stack (EVS) generated

by the left edges of each obstacle with a factor of 0.5. The multiplication reduces

the magnitudes of all left EVS by half as compared to their right counterparts.

Now, when the overall EVS (right & left) is sorted, the agent’s motion to the right

edge side of any other agent / obstacle is given priority over the left side while

the collision free velocity is being searched for in Algorithm (2). This selection

procedure of the collision free velocity direction not only generates smooth tra-

jectories but also saves computational effort. Additionally, in contrast to HRVO,

the above approach does not require the agents to have the sensing capabilities

to distinguish between an agent and an obstacle.

4.1.5 Special Case

A special case of Algorithm (2) with the above modifications is the case of

multi agents moving to their antipodal positions, while initially present on the
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periphery of a circle, when the agent sensing vicinity includes all the neighbouring

agents around it. In such cases, the agents initially come closer to each other

while moving to the center of the circle in a spiral shaped trajectory and then

keep moving in the circular direction. The circular motion continues until all the

agents are in front of their targets with no other agents in between them and

each agent can then move straight to its target. It is important to note that

such trajectories will always guarantee collision free motion for the case of multi

agents present on the periphery of some circle. Figure (4.2) shows the resulting

motion in the above discussed special case for 10 agents and compares to the

case when the agents have a smaller sensing vicinity (cannot recognize all other

agents). The agents move to their antipodal positions with different trajectories.

Figure 4.2: (a) Initial positions of the agents. (b) Trajectories with limited
sensing. (c) Trajectories with full sensing

The phenomenon explained above may not always happen perfectly as the

agents sometimes get too close to each other while moving inwards towards the

center of the circle and some random collision free velocity from PVS in Algo-
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rithm (2) may be chosen to avoid future collision which disturbs the smooth

circular motion in Figure (4.2-c). This phenomenon is shown in Figure (4.3) for

100 agents in circle moving to their antipodal positions.

Figure 4.3: (a) Initial positions of the agents. (b) Distorted Circle

Most of the renowned industrial optimization solvers such as CPLEX, employ

various pre-processing techniques to reduce the complexity of the problem before

starting the optimization iterations. The pre-processing step performs basic checks

for problem’s feasibility, constraints’ redundancy, fixed variables etc. As stated

earlier, our proposed algorithm is designed in a way that it requires no simplex

iteration and its feasibility check (which is the sole purpose of solving the LP)

is always achieved in the presolve step of CPLEX. This definitely gives us the

motivation to investigate the presolve methods available in the literature so that

the optimization solver may be avoided altogether to further improve computation

times for the proposed algorithm.
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A comprehensive survey of the presolve techniques is given in [55] where simple

presolving methods are first presented to address tightening of constraints, redun-

dancy and in-feasibility by checking the empty columns, fixed variables, singleton

rows etc. Forcing and dominated constraints and columns are then identified to

check the in-feasibility of the LP. However, our proposed formulation has unre-

stricted variables and the above discussed presolve methods may not be directly

applicable for our case. Similarly, an algorithm to reduce problem dimensions

has been presented in [56] where similar issues as in [55] are addressed. Addi-

tionally, [57] presents ways to make the constraint matrix sparser and proposes a

Primal-Dual method to analyze the LP before applying the Interior Point method.

4.1.6 Primal-Dual Relationship

The dual of the formulation presented for Method-2 has been analyzed in this

section. Initially, Formulation (3.10) is converted to its dual to investigate what

simplifications can be made to improve computation times of our algorithm. As

described earlier that setting the agent’s new velocity vector c as constant in

Formulation (3.10) converts the fomulation into an LP problem. It’s dual can be

written as follows:

min
k

∑

j=1

[0 0 − ε]TUj ∀j
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s.t :

D1U1 ≥ 0

. . .
...

DjUj ≥ 0

. . .
...

DkUk ≥ 0

(4.4)

where Dj =

[

aRj
aLj
− cj

]

,Uj =

















uRj

uLj

ucj

















and all elements of Uj ≥ 0 ∀j

Similar to the primal formulation, the above dual is obtained in a blocked

structured homogeneous form.

4.1.7 Simplification for 2-D

We know that when dual problem is in homogeneous form, the dual will always be

unbounded when the primal is in-feasible. It can be observed that the objective

value has a negative sign. In order to make Formulation (4.4) as unbounded, uRj

and uLj
should satisfy their non-negativity constraints when ucj is a very large

number. To analyze this, we take ucj to the right hand side and rewrite the jth

block of constraints from the above dual as follows:

aRxj
uRj

+ aLxj
uLj

= cxj
ucj

aRyjuRj
+ aLyjuLj

= cyjucj

(4.5)
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We convert the inequality constraints in Formulation (4.4) to equality constraints

because both the constraints in Equations (4.5) can be considered as binding when

the jth block of constraints in the dual is unbounded. If we replace ucj with a

very large number say L, the above set of equations will transform as follows:

aRxj
uRj

+ aLxj
uLj

= cxj
L

aRyjuRj
+ aLyjuLj

= cyjL

(4.6)

Using Cramer’s rule, we can find the closed form solution for uRj
and uLj

as

follows:

uRj
= L

∣

∣

∣

∣

∣

∣

∣

∣

cxj
aLxj

cyj aLyj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

aRxj
aLxj

aRyj aLyj

∣

∣

∣

∣

∣

∣

∣

∣

(4.7)

uLj
= L

∣

∣

∣

∣

∣

∣

∣

∣

aRxj
cxj

aRyj cyj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

aRxj
aLxj

aRyj aLyj

∣

∣

∣

∣

∣

∣

∣

∣

(4.8)

As we know that L is a very large positive number, its value can be ignored

from the above equations as its value is not detrimental in finding signs of the

dual variables. Also, it can be proven that the determinants in the denominator

in Equations (4.7) & (4.8) will always be non-negative.
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Proof. The determinants in the denominator of Equations 4.7 and 4.8 are

non-negative.

Let

M =

∣

∣

∣

∣

∣

∣

∣

∣

aRxj
aLxj

aRyj aLyj

∣

∣

∣

∣

∣

∣

∣

∣

= aRxj
aLyj − aRyjaLxj

(4.9)

where aRj
=









aRxj

aRyj









and aLj
=









aLxj

aLyj









represent the left and the right edge

vectors respectively, formed by the obstacle in a 2-D environment. Lets consider

a simple case where aRj
=









a

0









is in the positive x direction, a ≥ 0, and it’s y

component is zero. This is shown in Figure (4.4). Now the vector, aLj
=









x

y









will lie on the left of aRj
if and only if, x is unrestricted and y ≥ 0. In such case,

Equation (4.9) will simplify to:

M =

∣

∣

∣

∣

∣

∣

∣

∣

a x

0 y

∣

∣

∣

∣

∣

∣

∣

∣

= ay − 0 = ay ≥ 0 (4.10)

Now, if the whole system is rotated in a counter-clockwise direction by some angle

θ, aRj
and aLj

will transform as follows:

a
′

Rj
=









cosθ −sinθ

sinθ cosθ

















a

0









=









acosθ

asinθ









(4.11)
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Figure 4.4: Orientation of the right and left edge vectors

a
′

Lj
=









cosθ −sinθ

sinθ cosθ

















x

y









=









xcosθ − ysinθ

xsinθ + ycosθ









(4.12)

From Equations (4.11) & (4.12), the new value of M can be represented as:

M =

∣

∣

∣

∣

∣

∣

∣

∣

acosθ xcosθ − ysinθ

asinθ xsinθ + ycosθ

∣

∣

∣

∣

∣

∣

∣

∣

= axcosθsinθ + aycos2θ − axcosθsinθ + aysin2θ

= ay(cos2θ + sin2θ) = ay ≥ 0

(4.13)

This proves that as long as aLj
fulfills the above conditions and is on the left of

aRj
, M will always be a positive number which means that M is not detrimental

in finding signs of the dual variables in Equations (4.7) & (4.8) and can be ignored

from the equations.

The resulting equations simplify to just finding out the determinants of two

2 × 2 matrices for each obstacle. However, it should be noted that the above

simplifications will only work for the 2-D case.

The above simplifications can be programmed to run in a loop for all j blocks

48



of dual constraints and the loop is executed by changing values of the agent’s

velocity until the time any of the dual variable has a non-negative sign for any jth

block of dual constraints (meaning those set of dual variables are unbounded which

implies that the constraints in jth block of the original problem are infeasible).

4.1.8 Simplification for Special Case

Similar to above, we can find the dual variables in closed form for 3-D scenario.

Lets suppose that the surface of the jth spherical obstacle in the vicinity of the

agent is approximated by three edge vectors, namely; a1j
, a2j

and a3j
as shown

in the Figure (4.5). As compared to the 2-D case, where we had the two edge

vectors making tangents to the right and left edges of the obstacles, we now have

three hyperplanes making tangent to the obstacle from three different points in

the 3-D case. The intersection of the three tangent hyperplanes give us three edge

vectors as shown in Figure (4.5).

By using the Cramer’s rule again, the solution of dual variables can be found

as follows:
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Figure 4.5: Orientation of the right and left edge vectors. The outer light grey
sphere represents the CS for this obstacle
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(4.14)
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(4.16)

Again, the dual variable signs can be calculated to check the feasibility of the

primal problem.

4.1.9 Limitations of the Dual Approach

The dual approach may give good results in terms of the computation times in 2-D

and in a special case of 3-D environment where the surface of each of the obstacles

is approximated using only three vectors. However, approximating each of the

obstacle’s surface with only three hyperplanes gives a very loose approximation,

specially in dense scenarios. Therefore, when more than n number of edge vectors
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are required to approximate each obstacle in n-dimensional environments, the

solution of the dual variables cannot be found in closed form. In such cases, the

original algorithm as presented in Algorithm (2) may be used as it is.

4.2 Comparison of Method-1 & Method-2

For 2-D scenario, there are only two edge vectors required for each obstacle. If

Method-1 is used in the proposed algorithm, its computational complexity for a

particular choice of the agent’s velocity will be O(9n) for n number of obstacles

as there is a dot product and norm-2 to be solved in each of the constraints in

Formulation (3.6).

On the other hand, if Method-2 is used in 2-D scenario, the computational

complexity slightly reduces. It has been proven in Section (4.1.7) for Method-2

that if the right and left edge vectors for each obstacle are arranged in a special

way in Equations (4.7) & (4.8), the determinants in their denominators will always

be positive hence not having any influence on the signs of the dual variables.

Therefore, the dual approach reduces the problem of 2-D to just solving a 2 × 2

determinant for each of the dual variables. Computational complexity to find out

the signs for each pair of the dual variables for any particular choice of the agent’s

velocity will be O(6n) for n number of obstacles.

For 3-D scenarios, Method-1 may be more efficient in terms of computational

complexity as compared to Method-2 but assumes that the center vectors sj are

easily available at hand. The calculation of vectors sj is dependant on the set of
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edge vectors that form the continuous CC for each of the jth obstacle. Accurate

calculation of sj is crucial for the success of Method-1, and may end up increasing

the computational burden of the algorithm.
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Algorithm 1: Greedy Algorithm

Input:
ra ← Agent’s radius;
pa ← Agent’s current location;
Ta ← Agent’s target location;
Sa ← Agent’s velocity sample size;

1 while ||Ta − pa||2 ≥ ξ do
/* ξ is a small positive scalar */

2 Za ← Ta − pa;
Data: Obtain the edge vectors aRj

, aLj
and the velocity vector wj for

each jth obstacle present in the agent’s vicinity such that,
‖qj − pa‖2 < ‖Za‖2 ∀j

/* Generate uniform random sample of possible velocities

according to Eq. (3.12), (3.13) and (3.14) */

3 PVS ←rand(Sa,2);
4 PVS ← sort(PVS,dot(PVS[i ],Za));
5 for i=1 to rows of PVS do
6 c← PVS[i ];
7 Formulate LP as in Eq. (3.10);
8 Solve LP;
9 if LP is feasible then

10 Solution for c is found;
11 break out of for loop;

12 else
13 c← 0

14 va ← c;
15 ϕ← runtime of current while loop;
16 Wait(τ − ϕ); /* where τ > ϕ */

/* Update agent’s position */

17 pa ← τva + pa;
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Algorithm 2: Proposed Algorithm

Input: Same procedure for the parameters ra, pa, Ta, Sa and va as in
Algorithm (1)

1 while ||Ta − pa||2 ≥ ξ do
Data: Same as in Algorithm (1)

2 Repeat steps 3 to 5 of Algorithm (1);
/* Edge Vector Stack (EVS) */

3 EVS ← aRj
, aLj

∀j;
/* Arrange all EVS stack in descending order of the dot

product with Za */

4 EVS ← sort(EVS,dot(EVS[2j ],Za));
5 for i=0 to rows of (EVS + PVS) do
6 if i = 0 then c← µa × (Za/||Za||2);
7 else if i ≤ 2j then
8 c← µa × (EVS[i ]/||EVS[i ]||2);
9 else

10 c← PVS[i-2j ];

11 Repeat steps 7 and 8 of Algorithm (1);
12 if LP is feasible ∧ cTva ≥ 0 then
13 Repeat steps 10 and 11 of Algorithm (1);
14 else
15 c← 0

16 Repeat steps 14 and 17 of Algorithm (1);
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CHAPTER 5

RESULTS & COMPARISONS

5.1 Experimental Results

The proposed algorithm has been tested for numerous single and multi agent

situations with obstacles. The performance has also been compared with other

known reactive path planning methods such as APF, Reciprocal Velocities, Hy-

brid Reciprocal Velocities and ClearPath. In this section, results of the following

simulated scenarios are presented to show the efficiency of the algorithm:

1. Static Complicated Scenarios

(a) Exploration Scenarios

(b) U-shaped scenarios with Non-Linear Velocity Obstacles (NLVO).

2. Multi Agent Dense and Dynamic Scenarios

(a) Multi Agents with Randomly Moving Obstacles
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(b) Multi Agent scenarios with evenly placed agents on the periphery of a

circle and the agents have to navigate to their antipodal positions on

the circle.

(c) Multi Agent scenario with evenly placed agents on the periphery of a

3-D helix

5.1.1 Static Complicated Scenarios

Exploration Scenarios

As discussed in Section 4.1.3, situations in which the agent is surrounded by the

obstacles generate infeasible space and the algorithm will not find any solution.

However, there may exist a solution if the obstacles are not evenly located around

the agent. In such cases, the CC of the farthest obstacle is neglected to enable the

agent to explore the environment. A spiral maze scenario is shown in Figure (5.1).

The algorithm may not find a solution initially in a particular time instant but

as the constraints on CC of the farthest obstacles are relaxed, the agent finds its

way out of the spiral maze to its target.

A more complicated maze scenario is shown in Figure (5.2) where the agent’s

sensing vicinity is set to a small number similar to the width of the passage ways of

the maze. Reducing the agents sensing radius results in tracking of the wall which

enables the agent to navigate to its target. However, such scenarios typically

require global path planning methods and since the presented algorithm is a local

planning method, it may not be able to find a feasible path in all similar scenarios.
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Figure 5.1: Agent (shown in red) found the trajectory to navigate outside the
spiral maze

U-Shaped Scenarios with NLVO

Local planning methods are typically greedy in nature and may face phenomenon

of stalling as explained in Section 4.1.2. However, the inclusion of an additional

constraint given by Equation (4.3) in the proposed algorithm enables it to handle

situations, similar to the one shown in Figure (5.4) where some static obstacles are

positioned in a U-Shaped structure. Additionally, there are 2 moving obstacles

having non-linear velocity profiles. Initially, Obstacle-1 is outside while Obstacle-2

and the agent are inside the U-shaped structure. The y-component of the velocity

of Obstacle-1 is constant and is in negative y direction while its x-component

accelerates constantly in the positive x direction. Obstacle-2 has a sinusoidal

velocity profile which moves it out of the U-shaped structure. The instances of
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Figure 5.2: Agent navigates to the target located inside the complicated maze
structure

the moving obstacles and the agent are printed with the index number of each

iteration to show their motion w.r.t time.

Comparison with APF

As discussed in Section 2.2, the APF methods are known to inherently get stuck

in local minima situations. Also, the attractive and repulsive forces generated by

the target and the obstacles respectively, usually generate trajectories that may

not ensure shortest path even in simple scenarios. As can be seen in Figures(5.1)

& (5.2), our proposed algorithm generates efficient (shortest path) trajectories
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even in very complicated scenarios and therefore, outperforms many versions of

the APF methods.

Figure 5.3: (a) Disturbed trajectory of the agent while moving to the target in a
close corridor with APF method. (b) APF method causing the agent to get stuck
in a local minima situation inside a U-Shaped structure

The agent first tries to avoid collision with Obstacle-1 by changing its direction

of motion in the positive x direction. However, as the agent proceeds with its

motion after iteration number 5, it slightly changes its direction of motion and

reduces the speed to avoid a potential future collision with both Obstacle-1 and

Obstacle-2 (see iteration 9-13 in Figure (5.4)) and reaches its target.
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Figure 5.4: Agent navigates to the target located inside the complicated maze
structure

5.1.2 Multi Agent Dense & Dynamic Scenarios

Multi Agents with Randomly Moving Obstacles

The algorithm also performs well in dense and dynamic scenarios. One such sce-

nario is presented in Figure (5.5), where 4 agents are present among 80 randomly

positioned, randomly sized (radius = 3.5 - 4.5 units) and randomly moving ob-

stacles inside the area formed by a square of sides 100 units each. The agents are
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positioned at the corner of the square while each of their targets are located at

diagonally opposite corners. The agents locally find collision free trajectories and

reach to their targets as shown in Figure (5.5).

Figure 5.5: 4 agents initially located at corners of a square of sides 100 units each
in a dense environment with 80 randomly placed and randomly moving obstacles.
The agents locally find collision free trajectories to reach to their targets located
diagonally opposite to the agents’ initial position

Multi Agents in Circle

The proposed algorithm has also been tested for scenarios typically used as bench-

mark for multi agent dense situations. The agents, initially located on the periph-

ery of a circle, have to move to their antipodal positions while avoiding collisions

from other agents. Figure (5.6) shows one such scenario where 50 agents are sym-

metrically placed at the periphery of a circle and are shown to navigate to their

antipodal positions on the circle. The agents are first seen to converge at around

the center of the circle and then effectively avoid collision to navigate to their

respective targets.

The number of collisions per time step and the computation times are shown

in Figures (5.7) & (5.8) respectively, for multi agent simulations ranging from 10

agents to 1000 agents. First, we take full sensing such that all other agents are

considered in the agent’s vicinity. The graph shows that as the number of agents
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Figure 5.6: 50 agents initially located symmetrically on the periphery of a circle
with their targets located at the antipodal position of their initial location.

increase, the computation time per agent also increases.

However, if the agents within some vicinity are considered, then the com-

putational time converges to a specific value with increasing number of agents.

Figure (5.8) shows computational times for the circular vicinity of radius 50 units

for each agent in all the mentioned multi agent scenarios.

The proposed algorithm experiences very few collisions (almost negligible).

The number of collisions are also presented in Figure (5.9):

The algorithm performs very well to avoid the collisions. It can be observed

that the average number of collisions in each time step are very small and almost

negligible.

Multi Agents in 3-D Helix

A similar experiment to the above has been performed in 3-D case. All the agents

are assumed to be spherical lying on the circumference of a helix. The agents

have to move to their antipodal positions (exact opposite side on the helix) with

collision free trajectories.
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Figure 5.7: Average computation time for each agent per time step with full
sensing (all agents are considered in the vicinity)

All the agents’ bodies are modeled with 3 edge vectors each. The algorithm is

tested with 10, 16 and 30 agents and no collisions have been reported. Illustration

in Figure (5.10) shows the setup of the experiment.

Comparison of Efficiency with HRVO & ClearPath

We compare our results of the antipodal scenarios with HRVO and ClearPath.

ClearPath is a highly parallel algorithm that exploits certain parallel processing

techniques to reduce computation time of the agents [58]. HRVO uses ClearPath

together with some modification in the formation of the velocity obstacles cones.

The resulting algorithm (HRVO) tries to minimize the oscillations and collisions

in the agents’ motion with minimum possible computation times [53].

Table (5.1) compares the collision results of the antipodal scenarios for the pro-
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Figure 5.8: Average computation time for each agent per time step with limited
sensing (agents within a circular vicinity of radius 50 units) are considered

posed algorithm with HRVO and ClearPath. Our algorithm generates trajectories

with significantly reduced collisions (almost negligible).

No. of Collisions per Time Step
No. of Agents Proposed Algorithm HRVO
10 0.0000 0
100 0.0016 0.18
200 0.0010 0.93
300 0.0014 1.93
400 0.0014 3.05
500 0.0019 4.36
1000 0.0019 15.14

Table 5.1: Comparison of Proposed Algorithm with HRVO
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Figure 5.9: Average no. of collisions in each time step

Comparison of Computational Complexity with HRVO & ClearPath

As far as computation times are concerned, Figure (5.7) shows that the computa-

tion times of the proposed algorithm are considerably high as compared to those

reported in [53] by HRVO. However, it may be noted that it may not be feasible

to compare the computation times of our algorithm with HRVO or ClearPath due

to the difference in programming languages and code implementations [59]. As

for 2-D case, the LP check in Algorithm (2) has been proved to reduce to two

simple matrix multiplications. The proposed algorithm is better in terms of the

computational complexity as compared to HRVO and ClearPath. In HRVO /

ClearPath, first the intersection points for all the lines of all cones are obtained

by mathematically solving the simultaneous equations in a loop which is a doubly-

nested loop whose complexity will be O(n2). Then for each of these intersection
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points are tested to see if they are inside any of the other cones which is another

O(n) test. On the other hand, for 2-D case the computational complexity of the

proposed algorithm is much better as given in Section (4.2).

Furthermore, with similar parallel processing techniques as in [58], we hope

to further improve the results of computation times as reported in [53] with our

proposed algorithm.

5.2 Comments on Experimental Results

5.2.1 Collision Avoidance

The proposed algorithm finds the relative velocity of the agent that is outside of

all the CCs. Ideally, there should be no collisions when such relative velocities are

found. However as per Figure (5.9), the collisions do occur in dense scenarios. The

reason is that in dense scenarios when the agent is surrounded by other agents or

obstacles from all sides, the algorithm starts to ignore the obstacles farthest away

from it in its calculations. This is done uptil a certain minimum sensing radius.

If still no collision free velocity is found, the algorithm returns zero velocity which

makes the agent to stop in its position and ultimately may collide with the other

approaching obstacle. Secondly, two agents very close to each other in a dense

scenario may end up with zero velocity in a particular iteration which will be used

in the very next iteration input velocities. Both considering each others velocity

as zero, may plan a trajectory where collision may happen in the next iteration.
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5.2.2 Effect of Surrounding Dimensions

The performance of the algorithm is generally independent of the surrounding en-

vironmental dimensions. The only limiting factor related to the dimensions of the

environment is the density of the agents and obstacles present in the environment.

The collision may happen for dense scenarios as discussed above but other than

that, the algorithm is consistent with its performance. The relative velocity of

the agent w.r.t its surroundings lying outside of all the CCs will ensure collision

avoidance.

5.2.3 Effect of Surrounding Speeds

Collisions may also happen if the time for an approaching obstacle is lesser than

the computation time required to find the collision free velocity due to the high

speed of the obstacle. This scenario may also occur in dense situations when the

agent keeps ignoring the furthest obstacles until some collision free velocity is

found and a collision may occur while the agent is busy doing its computations.

Such aspects of the experiment are related to the performance capabilities of

the on-board system which is out of the scope of this thesis.
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Figure 5.10: 16 agents initially located symmetrically on the periphery of a helix
with their targets located at the antipodal position of their initial location.
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CHAPTER 6

CONCLUSION

Motion planning is an important area of research for autonomous systems. In

spite of the considerable research literature available on motion planning, it still

continues to be an active area of research. Primarily, the motion planning for mul-

tiple agents in dynamic environment is a challenging task, both computationally

and sensing capability wise.

The mathematical programming approaches available in the literature are com-

putationally very expensive and may not be feasible to be run locally on the lim-

ited onboard resources of the agent. Secondly, these methods typically require

global information which may not be feasible to obtain in most of the real life

applications. Some reactive and sampling based methods try to reduce the above

computational complexities but may face issues such as finding efficient trajecto-

ries (shortest path), getting stuck in local minima situations.

A novel algorithm has been presented in this thesis which not only finds ef-

ficient collision free trajectories in multi agent dynamic scenarios but also saves
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computational effort specially in 2-D and a special case of 3-D scenarios. The

algorithm has been tested with different single and multi agent simulated sce-

narios and compared with the several reactive algorithms already found in the

literature. The algorithm performs better in terms of efficiency of trajectories in

single complex agent scenarios and significantly reduces the number of collisions

in mutli agent dense scenarios.

Some simplifications have also been proposed for 2-D and 3-D cases improving

the computational complexity of the algorithm and making it possible to avoid

using LP solver in Algorithm (2). Secondly, the algorithm presented in the report

assumes all agents and obstacles to be of spherical shape but may easily be im-

plemented for regular shaped objects as well with some possible extensions and

approximations.
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