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tional methodologies under different settings. Our results showed that the pro-

posed methods excel the existing methods under different conditions. In addition,

we have used practical datasets from real world processes and implemented our

proposed techniques to show their application in real processes.
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كبير في جودة النموذج المعني. طرق التقدير المعروفة المستخدمة في نمذجة الثر لأا له يحصائإي نموذج أطريقة تقدير معالم 

قترحنا إطروحة، ناسبة تحت بعض الظروف. في هذه الأمعظم الظواهر هي طرق تقليدية. هذه الطرق التقليدية ربما لا تكون م

 في المرحلة الثانية (linear profile)داء مخططات الظاهرة الخطية أيضا تحققنا من أ, ARCHج ذطريقة التقدير المنكمش لنمو

ستخدام طرق التقدير المختلفة في إولي. بجانب التحقق من الأختبار الإ طريقة و (Restrictedستخدام طريقة التقدير المقيد )إب

 ولى.ختلاف في المرحلة الأات معامل الإداء مخططأ

شارة و متوسط حتمالية للإ، الإأستخدام مقاييس مختلفة تتضمن متوسط مربعات الخطإب ةداء الطرق المقترحأقمنا بالتحقق من 

ن الطرق المقترحة تتفوق أظهرت النتائج أ تحت الظروف المختلفة. طول المدى. قمنا بمقارنة نتائجنا مع بعض الطرق المعروفة

ستخدمنا بيانات حقيقة من عمليات واقعية و قمنا بتطبيق الطرق إلى ذلك، إالمختلفة. علاوة على الطرق الموجودة تحت الظروف 

 .المقترحة عليها
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CHAPTER 1

INTRODUCTION AND

LITERATURE REVIEW

1.1 Introduction

Statistical models are used to represent the relationship between the real world

phenomena, consequently, practitioners will be able to study and investigate the

characteristics of these relationships. As these models incorporate variant types

of phenomena; some of these phenomena play the role of responses or dependent

variables and the others represent the predictors or independent variables.

After the mid of the twentieth century, statistical science shown vast development

and it has been adopted in most of the day-today’s activities. For instance, among

the most flourishing disciplines that use statistical modeling as a backbone are:

� Financial markets: statistics is used widely in the business industry as a

1



modeling tool for some phenomena such as, forecasting the volatility, infla-

tion rate, foreign exchange rates, etc. A set of time series models are incor-

porated, such as Autoregressive Integrated Moving Average(ARIMA), Gen-

eralized Autoregressive Conditional Heteroscedastic (GARCH) and other

models.

� Quality control: in manufacturing, statistics has been involved as a mon-

itoring tool, it offers Statistical Process Control (SPC) approach to monitor

and manage the assignable causes of variation in manufacturing or service.

SPC has been applied in variant applications, such as medicine, business, en-

gineering and social sciences. Control charts are the most widely used SPC

toolkit, it is used to monitor location, dispersion, Coefficient of Variation

(CV), intercept, slope, etc.

Generally, statistical models can be represented mathematically as

y = f(X,β) + ε, (1.1)

where y = (y1, . . . , yn) is n×1 vector of responses or outcomes of the phenomenon

whose variation is being studied, X = (x1, . . . , xq) represent n× q predictors or

the inputs or causes, β = (β1, . . . , βq) is an unknown q × 1 vector of param-

eters and ε = (ε1, . . . , εn) is n × 1 vector of unobserved error term. So, models

explain the effects that the independent variables have on the dependent variables.
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In order to perform statistical tests on the model’s parameters in (1.1), the un-

known quantities should be estimated. Usually, practitioners estimate the un-

known parameters based on the sample information while, others use the sam-

ple and non-sample information. Finding a consistent model by using any non-

sample information has a vital role in making inferences and predictions about

the behaviour of estimators. The non-sample information is known by uncertain

prior information (UPI), and injecting the UPIs into the estimators is known by

Bayesian statistical methods.

When an estimator is obtained using sample information without any non-sample

information, it is referred as unrestricted estimator (UE) and denoted by βU .

Usually in case of βU , the corresponding model is recognized as a full model, be-

cause all the parameters are included even though some of them may not have

a significant effect, in contrast, suppose that the UPI is available, and we be-

lieve some of the parameters are not important, in such cases, the UPI can be

formulated in the form of the following linear hypothesis

H0 : Rβ = r, (1.2)

where R is m × q known matrix of rank(m) (m 6 q), r is an m × 1 vector of

known constants, q is the total number of parameters in (1.1) and m is number

of parameters with significant effect in (1.1).

A family of estimation strategies that involve the use of the non-sample infor-

mation have been introduced in the literature, they outperform the traditional

3



estimators under particular conditions by considering the mean squared error and

the risk of the estimators as criteria.

There has been many studies in the area of efficient estimation relying on the work

of Bancroft (1944) and Hansen (1982) that was known by the preliminary test es-

timator that uses UPI in addition to the sample information. Then, Stein et al.

(1956) introduced an improvement of the preliminary test of Bancroft, known as

shrinkage estimator or Stein-rule for multivariate normal population that domi-

nates the usual maximum likelihood estimator under the squared error loss crite-

rion.

In this thesis we propose an improved estimation strategies for the parameters of

some statistical models. We consider processes with constant variances as well

as non-constant variances. In the state of processes with non-constant variances,

we propose efficient estimators for some time series models, in particular, ARCH

model. In addition to that, we investigate different estimators for the CV of

a process with applications in control chart. Alternatively, under the state of

constant variances processes we consider more efficient estimators of linear profile

monitoring.

In the following subsections, we consider alternative estimation strategies of β

when some UPIs are available.
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1.1.1 Restricted estimator

When the UPI(s) is formulated as the hypothesis in (1.2), in which it shows that

there are some of the given parameters are zeros or, there is a restriction on some

parameters. Then, the estimated parameters under such UPI criteria is known as

restricted estimator (R) and is denoted simply by βR.

1.1.2 Pretest estimator

The pretest estimate of β, denoted by βPT is defined by:

βPT =


βU , if Ln > Ln,α,

βR, if Ln < Ln,α,

(1.3)

where Ln is a suitable test statistics for testing the hypothesis in (1.2), and Ln,α

as the α-critical value from the distribution of Ln.

The pretest estimator is a binary choice function, it chooses βU if the null hypoth-

esis is rejected and βR if the test fails to reject the null hypothesis. Alternatively,

βPT can be written as follows,

βPT = βRI(L 6 Lα) + βUI(L > Lα)

= βU − (βU − βR)I(L 6 Lα), (1.4)

where I(A) is an indicator function of the set A.
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1.1.3 Shrinkage estimator

The shrinkage estimator of Stein et al. (1956), denoted by βS, is defined by:

βS = βR +

[
1− m− 2

Ln

]
(βU − βR),m > 3. (1.5)

It is clear that βS is not a binary choice anymore, whether H0 is rejected or

not, shrinkage estimator is a smoothed function of βU and βR. So, βS does not

represent a convex combination of the two choices, and suffers from a phenomena

known as over-shrinkage, which happens when Ln is smaller than (m − 2) and

hence, unexpected signs for some of the estimated parameters may be obtained.

1.1.4 Positive shrinkage estimator

A modified version of James-Stein estimator has been proposed by Stein (1966)

to overcome the phenomena of over-shrinkage estimator, it is known as positive

shrinkage part, denoted by βS+, and defined by:

βS+ = βU +

[
1− m− 2

Ln

]+

(βU − βR),m > 3, (1.6)

where Z+ = max(0, Z).

More useful discussion about shrinkage strategies can be found in Bancroft (1944);

Stein (1956); Khan and Hoque (2002); Khan et al. (2005); Saleh (2006); Ahmed

et al. (2015); Al-Momani et al. (2016).
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1.2 Literature Review

In the following subsections we give an introductory literature review of the topics

we will discuss in the forthcoming chapters.

1.2.1 GARCH model

As volatility forecasting is an important financial matter, a precise and accurate

volatility forecast is essential to traders, investors and financial analysts. Before

1980s econometricians were relying on ARIMA models to model the financial time

series, whereas these models enforce some distributional constrains such as, linear-

ity, normality and the constant variance. In contrast, many financial time series

exhibit fat tails, leverage effect, long memory and variances change over time and

large (small) changes tend to be followed by small (large) changes of either sign.

Hence, financial time series violate the assumptions of ARIMA models. Engle

(1982) was the pioneer who proposed a stationary non-linear model for the eco-

nomical time series. He introduced Autoregressive Conditionally Heteroscedastic

(ARCH) model, where it is the conditional variance of a series {yk} that changes

according to an autoregressive-type process.

Since the early of 1980s; ARCH model has been vastly adopted in the modeling

of time series with non-constant conditional variance. Reasons that urged for

the large usage of ARCH model in time series analysis are: the time-varying

conditional variance of ARCH model provides a more natural measure of risk

and uncertainty, in addition, the statistical properties of ARCH model appear
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to provide a parsimonious and accurate characteristics of a lot of economic time

series. Engle’s model recognizes the difference between the unconditional and the

conditional variance by allowing the latter to change over time as a function of

past errors. For more details see Engle (1982); Bollerslev (1986).

1.2.2 Linear Profiles

Many studies have been carried out to improve control charts for linear profil-

ing, for example, Kang and Albin (2000) introduced two control chart struc-

tures to monitor a semiconductor manufacturing that was formulated as a simple

linear regression with known coefficients. They used multivariate T 2 chart and

EWMA/Range(R) chart (i.e., EWMA chart in conjunction with R chart to mon-

itor the mean and the variation respectively). Their charts based on the bivariate

normality assumptions of the least square estimators. Kim et al. (2003) proposed

a control chart as combination of three univariate EWMA charts to monitor the

intercept, slope and the standard deviation in phase II simultaneously as the run

length coming from the first chart to signal. The idea behind using simultaneous

monitoring of the three charts is that at least one of three parameters would di-

rectly affects the state of the process. They transformed the predictor variable to

give an average zero, that will get rid of the dependency between the intercept

and the slope. Hence, having a control chart for each parameter led to easier

diagnosis of the process change than the control chart of Kang and Albin (2000).
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1.2.3 CV Control chart in phase I

Many researchers have contributed in the development of the CV control charts

structures, for example Kang et al. (2007) were the pioneers who introduced She-

whart control charts to monitor the CV. Hong et al. (2008) proposed EWMA con-

trol chart as an improvement of Kang et al. (2007) method, their results showed a

significant improvement in the detection of small shifts. Castagliola et al. (2011)

suggested two one-sided EWMA charts based on the squared CV as the moni-

toring statistic, it showed an improvement compared to the chart proposed by

Hong et al. (2008). Calzada and Scariano (2013) suggested a control chart for

monitoring CV which performed better than the method of Kang et al. (2007).

1.3 Thesis Organization and Contributions

In this thesis, we elaborate the problem of finding efficient estimators in different

environments as it has a central importance in all statistical models. We extend

the general framework of the restricted, preliminary test, shrinkage estimation

strategies in some time series models and linear profile when UPI is available. We

also study the characteristics of different CV estimator and their impact in the

performance of CV control charts in phase I.

The highlights of our contribution in this thesis are organized and summarized as

follow

Chapter 2 is dedicated to apply the shrinkage estimation strategies on the ARCH

model. This chapter was organized as follows: We list some the preliminary def-
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initions of some conceptual terminologies that will be used in the forthcoming

sections, with a definition of ARCH model and some related formulas. Next, We

discuss the parameters estimation. Then we introduced the concept of restricted,

pretest and shrinkage estimations of ARCH model. Hence, we derive the asymp-

totic properties of the estimators and compare their performances using the risk

analysis and the mean square error in the next one. A simulation study was con-

ducted to assure the analytical results. A conclusion is provided at the end of this

chapter.

In chapter 3, we consider restricted and pretest estimation strategies for the sim-

ple linear regression with applications in the linear profiling. At the beginning

of this chapter we introduced terminologies and assumptions of the simple linear

regression. We propose the restricted and pretest estimations of simple linear re-

gression model. Based on those estimators, we construct the limits of our control

charts. We propose the strategy of performance evaluation of the different con-

trol charting structures via the average run length (ARL). We conduct extensive

simulation study and discuss the results of our proposed estimators. A real world

example was considered to assure our simulated results. We close this chapter by

a summary and conclusion.

In Chapter 4, we study the performance of different CV control charts for process

monitoring in phase I. We give a brief introduction and literature review of the

CV control charts. Different estimators of CV have been used to construct control

charts to monitor the CV in phase I. We illustrate the steps of our simulation
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study, then we report our results and the associated discussion. A real world

example is considered as a case study for our simulated results. Finally, we wrap

up the chapter by reporting the most important findings of the chapter with the

associated recommendation.

In Chapter 5, we summarize the results of the thesis and present recommendations

for the future work.

The contributions in this dissertation are summarized as follows:

1. We propose the restricted, pretest, and shrinkage estimators for estimating

the volatility in ARCH model. We indicate the importance of using the

prior information in producing a sub-model, which carefully represents the

data, and reduces the model complexity.

2. Analytical results on the risks and biases of the restricted, pretest, shrink-

age and full model estimators are derived in terms of distributional biases

and risks. The mean squared error matrices of these estimators are also

derived and compared analytically and numerically with respect to the OLS

estimator.

3. We utilize the restricted and pretest estimators to estimate the parameters

of simple linear profile, then drive the control charts for linear profile moni-

toring. Then, we investigate the performance of the control charts for linear

profile monitoring in phase II.

4. Finally, we investigate the effect of different CV estimators in the perfor-

mance of the CV control charts in phase I.

11



CHAPTER 2

SHRINKAGE ESTIMATION OF

THE ARCH MODEL

2.1 Introduction

Modeling and forecasting financial markets is a motivating and urging issue for

both the investors and researchers. Financial markets are extremely manipulated

by a number of factors such as, interest rates, political issues, inflation rates,

foreign exchange rates, etc. In particular, stock markets are characterized by un-

certainty. Hence, the phenomena is volatile and complex to be forecasted as these

manipulation factors have serious consequences on the financial markets.

McNees (1980) reported that the inherited randomness or uncertainty associated

with different forecasting regimes vary immensely overtime. He also documented

that the large and small errors tend to cluster together in contiguous regimes.
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Therefore, a model with a forecasted variance that may change overtime is needed.

At the beginning of the 1960s, many researchers were keen to study the changes

in variance, but they were using informal procedures to tackle this problem. For

example, Fama (1965) used recursive estimates of the variance overtime. Klein

(1977) obtained an estimation of variance by constructing the five-period moving

variance about the ten-period moving-mean of annual inflation rate. Khan (1977)

utilized the notion of variability rather than variance and used the absolute value

of the first difference of the inflation rate. Engle (1983) compared the empiri-

cal work of using time-series to measure shifts in the variance overtime with the

ARCH estimates for U.S. data.

Tsay (2002) reported that ARCH model encounters weaknesses and drawbacks

with some types of economical time series as: the assumption that positive and

negative shocks have the same effects on the volatility, because it depends on the

square of the previous shocks. Second, it only provides a way to describe the

behavior of the conditional variance but it gives no indication about what causes

such behavior to occur. Also, the model is likely to over-predict the volatility

because it responds slowly to large isolated shocks to the return series.

To overcome the weaknesses and drawbacks of ARCH model, Bollerslev & Taylor

(1986) independently generalized Engel’s model to Generalized ARCH (GARCH)
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as more realistic. The model had inspired the researchers to develop more so-

phisticated models for modeling the volatility of the financial time series (e.g.,

EGARCH, GJR-GARCH, F-CHARCH and etc). For more details about sophisti-

cated models, the reader is referred to Fama (1965); Engle and Bollerslev (1986);

Bollerslev (1986); Taylor (1986); Satchell and Knight (2002); Francq and Ziköıan

(2010).

The rest of the chapter is organized as follows: Section 2.2 contains preliminary

definitions of some conceptual terminologies that will be used in the forthcoming

sections. Section 2.3 presents the definition of ARCH model and some related

formulas. Section 2.4 discusses the parameters estimation of ARCH model. Sec-

tion 2.5 is dedicated to introduce the concept of restricted, pretest and shrinkage

estimations of ARCH model. We derive the asymptotic properties of the esti-

mators in Section 2.6. We compare the performance of the estimators using the

risk analysis and the mean square error in Section 2.7 and 2.8, respectively. We

conduct extensive simulation study for our selected model and demonstrate the

application of the proposed estimators in real life problems in Section 2.9. We

close this chapter by conclusion in Section 2.10.

2.2 Preliminary definitions

In this section and the next one, we will list some definitions from Francq and

Ziköıan (2010), that will be used in the forthcoming parts of this chapter.
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Definition 2.1 The process {Yt} is said to be strictly stationary if the vectors

(y1, . . . , yk) and (y1+h, . . . , yk+h) have the same joint distribution, ∀K,h ∈ N.

Definition 2.2 The process {Yt} is said to be second-order stationary if:

1. E(y2
t ) <∞,∀t ∈ Z,

2. E(yt) < m,∀t ∈ Z,

3. cov(yt, yt+h) = γy(h),∀t, h ∈ Z,

where γy(h) is called the autcovariance of y at time h.

Remark 1 Autocorrelation function (ACF) of {yt} is defined by

ρy(h) =
γy(h)

γy(0)
,

where γy(h) is the autocovariance between yt at yt+h and t+ h,

and γy(0) is the autocovariance of yt at time zero.

Definition 2.3 If {rt} is a financial time series, e.g, asset prices, stock index,

exchange rate, share prices, etc. Instead of analyzing (rt) which is often display

non-stationary we take log(rt),

yt = log( rt
rt−1

) = log(1 + rt−rt−1

rt−1
), t = 0, . . . , n,

and by Taylor-expansion about zero, yt ≈ rt−rt−1

rt−1
.

Definition 2.4 A time series {yt} is said to be white noise if its observations are

uncorrelated and has a constant variance.
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Definition 2.5 A time series {yt} is a weak white noise process if it is second-

order stationary with mean zero and ACF given by

ρ(h) =


1, when h = 0,

0, when h 6= 0.

Definition 2.6 An Autoregressive model of order q (AR(q)) represents a type

of random process, where it describes a certain time-varying processes in manu-

facturing, medicine, economics, etc. The model specifies that the output variable

depends linearly on its own previous values with additional stochastic term.

yt = µ+ φ1yt−1 + · · ·+ φqyt−q + εt.

Definition 2.7 (Martingale difference) Let {Zi} be a K-dimensional stochas-

tic process (K ≥ 0) and let xi ∈ Zi (with xi = zi if k=1). The stochastic process

{xi} is a martingale with respect to {zi}.

E(Xi|Zi−1, Zi−2, . . . ) = Xi−1, for i = . . . ,−1, 0, 1, . . .

If {Xi} is a martingale with respect to {Zi} for every Xi ∈ Zi then we simply say

that {Zi} is a martingale.

Definition 2.8 (Nonanticipative solution) The process {yt} such that yt is

measurable function of the variable ηt−s, s ≥ 0. For such process σt is independent
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of the σ-field generated by {ηt+h, h ≥ 0} and yt is independent of the σ-field

generated by {ηt+h, h ≥ 0}.

Definition 2.9 Invertibility A time series model is invertible if it can be writ-

ten as AR model. The essential concept is whether the innovations/noises can be

inverted into a representation of past observations. Alternatively, An n×n square

matrix A is called invertible (also nonsingular or non-degenerate) if there exists

an n× n square matrix B such that

AB = BA = In

The thesis mainly deals with invertible matrices.

2.3 GARCH model

Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model. Here

we introduce the GARCH model, and consider the existence of strictly stationary

solution to this model.

Definition 2.10 A process {Yt} is called strong GARCH(p,q) process with respect

to εt if

√
yt = σtεt, (2.1)

σ2
t = ω +

q∑
i=0

αiyt−i +

p∑
j=0

βjσ
2
t−i, (2.2)
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where εt is the error term, distributed independently and identically with mean 0

and variance 1, ω > 0, αi ≥ 0, βj ≥ 0 are unknown constants, ∀ i=1,. . . , q and

j=1,. . . ,p, and σ2
t = V ar(

√
yt|
√
yt−1).

The process {Yt} can be represented in a matrix form as

Yt = bt + AtYt−1, (2.3)

where Yt =



yt

...

yt−q+1

σ2
t

...

σ2
t−p+1



∈ Rp+q, bt =



ωε2t

0

...

ω

0

...

0



∈ Rp+q,
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and At =



α1ε
2
t α2ε

2
t . . . αqε

2
t β1ε

2
t . . . βpε

2
t

1 0 . . . 0 0 . . . 0

0 1 . . . 0 0 . . . 0

. . .
. . . . . . . . .

. . . . . .

0 1 . . . 0 0 . . . 0

α1 . . . αq β1 . . . βp

0 . . . 0 1 0 . . . 0

0 . . . 0 0 1 . . . 0

...
. . .

...
...

...
. . . 0

0 . . . 0 0 0 . . . 0



∈ R(p+q)(p+q).

Definition 2.11 The necessary and sufficient condition for the existence of a

strictly stationary solution to GARCH(p, q) is that γ < 0,

where γ is the top lyapunov exponent of the sequence (At), t ∈ Z defined in the ma-

trices representation of GARCH model. When strictly stationary solution exists,

it is unique.

γ = lim
t→∞

1

t
log||AtAt−1 . . . A1||.

If the GARCH model hold the following two conditions

ω > 0,

q∑
i=1

αi +

p∑
j=1

βj < 1,

then it is called a second-order stationary and the unique strictly stationary solu-
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tion of the model is weak white noise.

In this thesis we will focus on a special case of GARCH(p, q) when p = 0, the

model is known as Autoregressive Conditional Hetoscedasticity (ARCH) model.

That is, GARCH(0, q) is equivalent to ARCH(q). The ARCH(q) is given by

√
yt = σtεt, (2.4)

σ2
t = ω +

q∑
i=1

αiyt−i, (2.5)

where εt, ω, αi, σ
2 are the same as in Definition 2.10.

ARCH(q) can be represented in a matrix form as follows

Yt = bt + AtYt−1, (2.6)

where Yt =


yt

...

yt−q+1

 ∈ Rq,bt =


ωε2t

...

0

 ∈ Rq,
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and

At =



α1ε
2
t α2ε

2
t . . . αqε

2
t

1 0 . . . 0

0 1 . . . 0

...
. . . . . .

...

0 1 . . . 0

α1 . . . . . . αq



∈ Rq×q.

Similarly, if ARCH(q) holds the conditions ω > 0 and
∑q

i=1 αi < 1 then, the

uniquely strictly stationary solution of the model is a weak white noise.

2.4 Estimating ARCH(q) parameters

Following Francq and Ziköıan (2010), the Ordinary least squares (OLS) method

will be used to estimate the parameters of ARCH(q). OLS method uses the

autoregressive representation on the squares of the observed process and no dis-

tributional assumptions are needed for the error term (εt).

By using Definition 2.6, the AR(q) representation can be obtained by applying

some mathematical transformations as follows

ut = yt − σ2
t , (2.7)

where (ut,Ft) is the sequence containing a martingale difference when E(yt) =
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σ2
t <∞, denoting by Ft the σ−field generated by {ys : s ≤ t}

By substituting σ2
t from Equation (2.7) in Equation (2.5), we get

yt − ut = ω +

q∑
i=1

αiyt−i,

yt = ω +

q∑
i=1

αiyt−i + ut. (2.8)

The true parameter will be denoted by θ0, where θ0 = (ω, α1, . . . , αq)
′.

Assume we observe
√
y1, . . . ,

√
yn, observations of length n from a process {Yt}

and considering
√
y0, . . . ,

√
y1−q as initial values of the process, these initial values

can be chosen to be zeros. By introducing the vector Yt−1 = (1, yt−1, . . . , yt−q)
′,

we can rewrite Equation (2.8) as a linear system as follows

yt = Y′t−1θ0 + ut, t = 1, . . . n, (2.9)

and in a matrix format as

Y = Xθ0 + U, (2.10)

where

Y =


y1

...

yn


n×1

, X =


1 y0 . . . y−q+1

...
...

. . .
...

1 yn−1 . . . yn−q


n×q

=


Y′0

...

Y′n−1


n×1

,U =


u1

...

un


n×1

.
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2.4.1 Estimation of the parameter θ

Assuming X is of full rank; X ′X is invertible, then the OLS estimator is given by

θ̂
U

= argmin||Y−Xθ||2 = (X ′X)−1X ′Y. (2.11)

OLS estimator of θ is known as the best linear unbiased estimator (BLUE). In the

forthcoming sections we will refer to this estimator as the unrestricted estimator

(UE) or simply by θ̂
U

.

2.4.2 Estimation of σ2
0

Assuming that εt follows normal distribution with mean 0 and variance σ2
0 and

with the following conditions:

1. {Yt} is nonanticipative strictly stationary solution of the ARCH model in

(2.4).

2. E(yt) < +∞.

3. P(yt = 1) 6= 1.

4. E(y2
t ) < +∞,

The first assumption guarantee that the series is convergent. The second assump-

tion guarantee the existence of the variance. Assumption 3 that the law of yt is

non-degenerate allows us to identify the parameters. We need assumption 4 for

the asymptotic normality of the OLS estimator that the fourth moment is exist.
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Then σ2
0 is estimated by σ̂2

0, where

σ̂2
0 =

1

n− q − 1
||Y−Xθ̂||2

=
1

n− q − 1

n∑
t=1

{yt − ω̂ −
q∑
i=1

α̂iyt−i}2, (2.12)

where ω̂, α̂1, . . . , α̂q are estimated by Equation (2.11).

2.4.3 Estimation of the information matrices

Following Francq and Ziköıan (2010) define A & B as

A = E(Yt−1Y
′
t−1), B = E(σ4

tYt−1Y
′
t−1),

where

1. A & B have the same length q × q.

2. A & B are invertible.

Then, the estimates of A & B denoted by Â, B̂ are respectively given by:

Â =
1

n

n∑
t=1

Yt−1Y
′
t−1, (2.13)

B̂ =
1

n

n∑
t=1

σ̂4
tYt−1Y

′
t−1, (2.14)

where σ̂2
t = Y′t−1θ̂

U
. The fourth order moment of process εt =

√
yt
σt

, is E(ε4t ); that

is also consistently estimated by µ̂4 = 1
n

∑n
i=1

y2t
σ̂4
t
.
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2.4.4 Asymptotic distribution of the OLS estimator

Weiss (1986) was one of the pioneer who discussed the properties of maximum

likelihood and least squares estimates of the parameters of ARCH models, and also

the properties of various tests of the model that are available. He did not assume

that the errors are normally distributed. Another attractive way to estimate

consistent and efficient estimators for ARCH model was introduced by Rich et al.

(1991), they utilized the generalized method of moments of Hansen (1982) and

considering the asymptotic normal distribution. Francq et al. (2004) and Francq

and Zaköıan (2012) had proved the consistency and asymptotic normality of OLS.

In this subsection, we list two theorems by Francq and Ziköıan (2010) about the

consistency and the asymptotic normality of OLS estimator for θ.

Theorem 2.1 (Francq and Ziköıan, 2010) Consistency of OLS of ARCH

model: If θ̂
U

is a sequence of estimators satisfying the OLS solution for ARCH

under the assumptions (1)-(4) in Section 2.4.2, then

θ̂
U P−→ θ, σ̂2 P−→ σ2as n −→∞, (2.15)

that is θ̂
U

is a consistent estimator for θ

Theorem 2.2 (Francq and Ziköıan, 2010) Referring to A & B given in equation

(2.13) and (2.14), we have

√
n(θ̂

U
− θ)

L−→ Nq
(

0, (µ̂4 − 1)A−1BA−1

)
, (2.16)
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where µ̂4 = E(ε4t ), θ̂
U

has asymptotic multivariate normal distribution, and L

denotes convergence in distribution.

2.5 Improved Estimation Strategies

In this section we will consider different estimation methods of θ when some

UPIs are available. The UPIs states that there is a set of linear restrictions on

these coefficients. Hence, the resulting estimation methods are functions of the

unrestricted estimator and the restricted estimator.

2.5.1 Restricted estimator

The UPI(s) can be formulated as a hypothesis, some parameters are nuisance.

Suppose that the UPI is given by th hypothesis in (1.2)

Under the restrictions given in (1.2), the method uses Lagrange Multiplier for

each restriction. The method minimizes the following function,

f(X,θ) = (Y−Xθ)′(Y−Xθ)− λ′(r −Rθ), (2.17)

with respect to θ and λ as follows:

f(X,θ) = Y′Y− θX ′Y−Y′Xθ + θ′X ′Xθ + λ′(r −Rθ)

= Y′Y− 2θX ′Y + θ′X ′Xθ + λ′(r −Rθ).
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∂f(X,θ)

∂θ
= −2X ′Y + 2X ′Xθ + λ′R = 0. (2.18)

∂f(X,θ)

∂λ
= Rθ − r = 0. (2.19)

By multiplying Equation (2.18) by R(X ′X)−1, and solve the equation for λ.

−2R(X ′X)−1X ′Y + 2R(X ′X)−1(X ′X)θ +R(X ′X)−1λ′R = 0.

R(X ′X)−1λ′R′ = 2R(X ′X)−1X ′Y− 2Rθ

= 2Rθ̂
U
− 2Rθ.

λ = (R(X ′X)−1λ′R′)−1(2Rθ̂
U
− 2Rθ)

= 2(R(X ′X)−1λ′R′)−1(Rθ̂
U
− r). (2.20)

then substituting λ from (2.20) in (2.18), to obtain

−2X ′Y + 2X ′Xθ +R′[−2(R(X ′X)−1R′)−1(r −Rθ)] = 0.

X ′Xθ = X ′Y−R′[R(X ′X)−1R′]−1(r −Rθ).

θ̂
R

= (X ′X)−1X ′Y + (X ′X)−1R′[R(X ′X)−1R′]−1(r −Rθ)

= θ̂
U
− (X ′X)−1R′[R(X ′X)−1R′]−1(Rθ − r). (2.21)
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The estimator in Equation (2.21) is the restricted estimator (θ̂
R

), it is a biased

estimator for θ unless the restriction given in Equation (1.2) is true.

Theorem 2.3 The wald test statistic for testing the hypothesis in Equation (1.2)

is given by

Ln = (Rθ̂
U
− r)′[R(V ar(θ̂

U
))R′]−1(Rθ̂

U
− r)

= (Rθ̂
U
− r)′[σ2R(X ′X)−1R′]−1(Rθ̂

U
− r)

=
(Rθ̂

U
− r)′[R(X ′X)−1R′]−1(Rθ̂

U
− r)

σ̂2
, (2.22)

where σ̂2 is estimated in Equation (2.12) and it can be shown that Ln
L−→ χ2(m).

2.5.2 Pretest estimator

The pretest estimate of θ, denoted by θ̂
PT

is defined by:

θ̂
PT

=


θ̂
U
, if Ln > Ln,α,

θ̂
R
, if Ln < Ln,α,

(2.23)

where Ln as given in Equation (2.22), and Ln,α as the α-critical value from the

distribution of Ln.

The pretest can be written as

θ̂
PT

= θ̂
R
I(L 6 Lα) + θ̂

U
I(L > Lα)

= θ̂
U
− (θ̂

U
− θ̂

R
)I(L 6 Lα), (2.24)
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2.5.3 Shrinkage estimator

The shrinkage estimator (θ̂
S
) is defined by:

θ̂
S

= θ̂
R

+

[
1− m− 2

Ln

]
(θ̂

U
− θ̂

R
),m > 3. (2.25)

Which is a continuous smoothed-function of θ̂
U

and θ̂
R

2.5.4 Positive shrinkage estimator

It is a modified version of James-Stein estimator and defined by:

θ̂
S+

= θ̂
U

+

[
1− m− 2

Ln

]+

(θ̂
U
− θ̂

R
),m > 3, (2.26)

where Z+ = max(0, Z).

2.6 Asymptotic Results

In this section we will study the asymptotic behavior of the proposed estimators,

θ̂
U
, θ̂

R
, θ̂

PT
, θ̂

S
, θ̂

S+
. We will show that the restricted and unrestricted estima-

tors are jointly asymptotically normal. In addition, we will define and extract

expressions for the asymptotic distributional quadratic bias, the asymptotic mean

squared error matrix, and the asymptotic quadratic risk of the estimators relying

on the joint normality of θ̂
U

and θ̂
R

.
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2.6.1 Joint normality of the unrestricted and restricted

estimators

The asymptotic distribution of all the estimators under the hypothesis (1.2) are

the same. Hence, we will study the asymptotic properties under a class of local

alternatives that is given by

H(n) : Rθ = r +
ξ√
n
, (2.27)

where ξ is a q × 1 fixed vector in Rq. If we set ξ = 0, then the local alternative

becomes as in (1.2), which is the linear hypothesis representing the candidate null

subspace.

Some distributional results involving the estimators θ̂
U

and θ̂
R

are given in the

following theorem.

Theorem 2.4 Under the local alternatives in (2.27) and the regularity conditions

(1)− (4) appeared in Section (2.4.2), and assuming that

(
(X ′q×nXn×q)

n

)
P−→ Cq×q, (2.28)

as n −→∞, where C is positive definite matrix (p.d.m). Then, we have

(1) T
(1)
n =

√
n(θ̂

U
− θ)

L−→ T (1) ∼ Nq
(

0, σ2C−1

)
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(2) T
(2)
n =

√
n(θ̂

R
− θ)

L−→ T (2) ∼ Nq
(
− δ, σ2[C−1 − A]

)
(3) T

(3)
n =

√
n(θ̂

U
− θ̂

R
)
L−→ T (3) ∼ Nq

(
δ, σ2A

)

(4)

 T
(1)
n

Rθ̂
U
− r

 L−→

 T (1)

Rθ − r

 ∼ N2q

((
0

Rθ − r

)
, σ2

 C−1 C−1R′

RC−1 RC−1R′

)

(5)

T
(1)
n

T
(3)
n

 L−→

T (1)

T (3)

 ∼ N2q

(0

δ

 , σ2

C−1 A

A A

)

(6)

T
(2)
n

T
(3)
n

 L−→

T (2)

T (3)

 ∼ N2q

(−δ
δ

 , σ2

C−1 − A 0

0 A

),

where, A = C−1R′[RC−1R′]−1RC−1, δ = C−1R′[RC−1R′]−1(Rθ − r).

Proofs:

1. The proof follows from Francq et al. (2004); Francq and Zaköıan (2012);

Weiss (1986).

2.

T (2)
n =

√
n(θ̂

R
− θ) =

√
n{θ̂

U
+ C−1R′[RC−1R′]−1(r −Rθ̂

U
)− θ}

=
√
n(θ̂

U
− θ) +

√
n{C−1R′[RC−1R′]−1(r −Rθ̂

U
)}

=
√
n(θ̂

U
− θ)−

√
n{C−1R′[RC−1R′]−1(R(θ̂

U
− θ)

+Rθ − r)}

=
√
n(θ̂

U
− θ)− C−1R′[RC−1R′]−1R

√
n(θ̂

U
− θ) +
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C−1R′[RC−1R′]−1
√
n(Rθ − r)

= T (1)
n + C−1R′[RC−1R′]−1RT (1)

n − C−1R′[RC−1R′]−1
√
n(Rθ − r)

=

[
Iq − C−1R′[RC−1R′]−1R

]
T (1)
n −

√
n{C−1R′[RC−1R′]−1(Rθ − r)},

where I is the identity matrix.

T
(2)
n is a linear combination in T

(1)
n , that can be represented in a matrix

format as, T
(2)
n = A2T

(1)
n −B2, where A2 and B2 are given as follow

A2 =

[
Iq − C−1R′[RC−1R′]−1R

]
q×q
,B2 =

[
C−1R′[RC−1R′]−1(Rθ − r)

]
q×1

.

From Theorem (2.4) part (1), as n −→ ∞, T (2)
n

L−→ T (2) and by Slutsky’s

Theorem,

T (2)
n

L−→ T (2) ∼ Nq
(
µ(2),Σ(2)

)
, (2.29)

with µ(2) and Σ(2) are given by

µ(2) = −C−1R′[RC−1R′]−1(Rθ − r)

= −δ,

Σ(2) = σ2C−1 − 2σ2A+ C−1R′[RC−1R′]−1Rσ2C−1[RC−1R′]−1RC−1

= σ2[C−1 − 2A+ A]

= σ2[C−1 − A].
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3.

T (3)
n =

√
n(θ̂

U
− θ̂

R
)

=
√
n

(
θ̂
U
− [θ̂

U
+ C−1R′[RC−1R′]−1(r −Rθ)]

)
=
√
n

(
C−1R′[RC−1R′]−1(θ̂

U
− r)

)
=
√
n

(
C−1R′[RC−1R′]−1(R(θ̂

U
− θ) +Rθ − r)

)
= C−1R′[RC−1R′]−1R

√
n(θ̂

U
− θ) + C−1R′[RC−1R′]−1(Rθ − r)

=

[
C−1R′[RC−1R′]−1R

]
T (1)
n + C−1R′[RC−1R′]−1(Rθ − r).

T
(3)
n is a linear combination in T

(1)
n . It can be represented in a matrix format

as T
(3)
n = A3T

(1)
n + B3, where A3 and B3 are given as,

A2 =

[
C−1R′[RC−1R′]−1R

]
q×q
,B2 =

[
C−1R′[RC−1R′]−1(Rθ − r)

]
q×1

.

Therefore, as T
(1)
n is normally distributed, by Theorem (2.4) part (1), T

(3)
n

L−→

T (3), and by Slutsky’s Theorem we get the following result

T (3)
n

L−→ T (3) ∼ Nq
(
µ(3),Σ(3)

)
. (2.30)

The mean µ(3) and the variance Σ(3) are given as follow:

µ(3) = C−1R′[RC−1R′]−1(Rθ − r)

= δ.
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Σ(3) = σ2C−1R′[RC−1R′]−1RC−1

= σ2A.

4. T
(1)
n and Z = Rθ̂

U
− r are a linear combination on T

(1)
n , their equations can

be represented in a matrix format T = A4T
(1)
n +B4 as follow:

T
(1)
n

Z

 =


√
n(θ̂

U
− θ)

√
n(Rθ̂

U
− r)

 =


√
n(θ̂

U
− θ)

√
n(R(θ̂

U
− θ) +Rθ − r)



=


√
n(θ̂

U
− θ)

√
n(R(θ̂

U
− θ))

+

 0q

(Rθ − r)



=

 Iq

Im

√n(θ̂
U
− θ) +

 0q

(Rθ − r)



=

 Iq

Im

T (1)
n +

 0q

(Rθ − r)

 .

where 0 is a q × 1 vector of zeros. A4 and B4 are given as follow,

A4 =

Iq

Iq


(q+m)×q

,B4 =

 0q

Rθ − r


(q+m)×1

.

Therefore, by Theorem (2.4) part (1) and Slutsky’s Theorem. We get the
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following result,

 T
(1)
n

Rθ̂
U
− h

 L−→

 T (1)

Rθ − h

 ∼ N2q

(
µ(4),Σ(4)

)
. (2.31)

The joint distribution follows multivariate normal with mean µ(4) and variance-

covariance matrix Σ(4) are given as follow:

µ(4) =

 0

Rθ − r

 .

Σ(4) = σ2

 C−1 C−1R′

RC−1 RC−1R′

 .

5. T
(1)
n and T

(3)
n are a linear combination in T

(1)
n , and their equations can be

represent in a matrix format T 12
n = A5T

(1)
n +B5 as follows:

T
(1)
n

T
(3)
n

 =


√
n(θ̂

U
− θ)

√
n((θ̂

U
− θ̂

R
))

 .

From Theorem (2.4) part (3), T
(3)
n can be represented as

T (3)
n = [C−1R′[RC−1R′]−1R]T (1)

n − C−1R′[RC−1R′]−1ξ

=

 Iq

C−1R′[RC−1R′]−1R

T (1)
n −

 θ

C−1R′[RC−1R′]−1ξ

 ,
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where A3 and B3 are given as follow

A5 =

 Iq

C−1R′[RC−1R′]−1R


(2q)×q

,B5 =

 θ

C−1R′[RC−1R′]−1ξ


(2q)×1

.

As T
(1)
n and T

(3)
n are linear combinations on T

(1)
n , by Theorem (2.4) and

Slutsky’s Theorem. We get the following result,

T
(1)
n

T
(3)
n

 L−→

T (1)

T (3)

 ∼ N2q

(
µ(5),Σ(5)

)
. (2.32)

The joint distribution follows multivariate normal with mean µ(5) and variance-

covariance matrix Σ(5) that are given as follow

µ(5) =

 0

C−1R′[RC−1R′]−1(Rθ − r)

 =

 0

−δ

 .

Σ(5) = σ2

C−1 A

A A

 .

6. T
(2)
n and T

(3)
n are linear combinations on T

(1)
n , and their equations can be

represent in a matrix format T 23
n = A6T

(1)
n +B6 as follows

T
(2)
n

T
(3)
n

 =


√
n(θ̂

R
− θ)

√
n((θ̂

U
− θ̂

R
))
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=

[Iq − C−1R′[RC−1R′]−1R]θ̂
U

+ [C−1R′[RC−1R′]−1(r −Rθ)]

[C−1R′[RC−1R′]−1R]θ̂
U
− C−1R′[RC−1R′]−1(Rθ − r)



=

Iq − C−1R′[RC−1R′]−1R

C−1R′[RC−1R′]−1R

T (1)
n +

C−1R′[RC−1R′]−1(r −Rθ)

C−1R′[RC−1R′]−1(Rθ − r)

 ,

where A6 and B6 are given as follow

A6 =

Iq − C−1R′[RC−1R′]−1R

C−1R′[RC−1R′]−1R


(2q)×(2q)

,

B6 =

−C−1R′[RC−1R′]−1(Rθ − r)

C−1R′[RC−1R′]−1(Rθ − r)


(2q)×1

.

As T
(2)
n and T

(3)
n are linear combination in T

(1)
n , by Theorem (2.4) part (1)

and Slutsky’s Theorem. We get the following result,

T
(2)
n

T
(3)
n

 L−→

T (2)

T (3)

 ∼ N2q

(
µ(6),Σ(6)

)
. (2.33)

The joint distribution follows multivariate normal with mean µ(6) and variance-

covariance matrix Σ(6) that are given as follow:

µ(6) =

−C−1R′[RC−1R′]−1(Rθ − r)

C−1R′(RC−1R′)−1(Rθ − r)

 =

−δ
δ

 .
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Σ(6) = σ2

C−1 − A 0

0 A

 .

2.6.2 Asymptotic Bias and Quadratic Bias

In this subsection we will define and extract the asymptotic distributional bias and

quadratic bias. Assuming local alternatives in (2.27), and under the assumptions

of Theorem (2.4), the asymptotic distributional bias bi(θ̂
∗
), and quadratic bias

Bi(θ̂
∗
), where θ̂

∗
∈ {θ̂

U
, θ̂

R
, θ̂

PT
, θ̂

S
, θ̂

S+
} are given in the following theorem.

Theorem 2.5 Under the assumptions of Theorem (2.4) and the local alternatives

in (2.27), we have

(1) b1(θ̂
U

) = 0, B1(θ̂
U

) = 0.

(2) b2(θ̂
R

) = −C−1R′[RC−1R′]−1(Rθ − r) = −δ,

B2(θ̂
R

) =
δ́Cδ

σ2
= ∆2.

(3) b3(θ̂
R

) = C−1R′[RC−1R′]−1(Rθ − r)Gm+2(χ2
m(α); ∆2)

= −δGm+2(χ2
m(α); ∆2),

B3(θ̂
PT

) = ∆2[Gm+2(χ2
m(α); ∆2)]2.

(4) b4(θ̂
S
) = −(m− 2)(C−1Ŕ[RC−1R′]−1(Rθ − r))E(χ−2

m+2(∆2))

= −(m− 2)δE(χ−2
m+2(∆2)),

B4(θ̂
S
) = (m− 2)2∆2[E(χ−2

m+2(∆2))]2.

(5) b5(θ̂
S+

) = C−1R′[RC−1R′]−1(Rθ − r)
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= −δ{(m− 2)E[[χ−2
m (∆2)]−1I(χ−2

m (∆2) ≤ (m− 2))]

−d1E[χ−2
m (∆2)]−1 −Gm+2(χ2

m(α); ∆2)},

B5(θ̂
S+

) = ∆2{(m− 2)E[[χ−2
m (∆2)]−1I(χ−2

m (∆2) ≤ (m− 2))]

−(m− 2)E[χ−2
m (∆2)]−1 −Gm+2(χ2

m(α); ∆2)},

where ∆2 is the non-centrality parameter, Gm(Lα; ∆2) is the non-central chi-

square distribution function with q-degrees of freedom and non-centrality parame-

ter ∆2.

Proofs:

(1) b1(θ̂
U

) = E(T (1)) = 0, by Theorem (2.4) part (1).

(2) b2(θ̂
R

) = E(T (2)) = −C−1R′[RC−1R′]−1(Rθ − r) = −δ,

by Theorem (2.4) part (2).

B2(θ̂
R

) = ∆2.

(3)
√
n(θ̂

PT
− θ) =

√
n

(
θ̂
U
− (θ̂

U
− θ̂

R
)I(L ≤ Lα)− θ

)
=
√
n(θ̂

U
− θ)−

√
n(θ̂

U
− θ̂

R
)I(L ≤ Lα)

= T (1)
n +

(√
n(X ′X)−1R′[RC−1R′]−1

(r −Rθ)I(L ≤ Lα)

)
,

As n −→ ∞, with Slutsky’s Theorem we have Ln
L−→ L ∼ χ2

m and Ln,α
L−→ L ∼
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χ2
m(α) then,

√
n(θ̂

PT
− θ) = C−1R′[RC−1R′]−1(r −Rθ)Gm+2(χ2

m(α); ∆2)

= −δGm+2(χ2
m(α); ∆2)

B3(θ̂
PT

) = ∆2[Gm+2(χ2
m(α); ∆2)]2.

(4) Note that,

√
n(θ̂

S
− θ) =

√
n(θ̂

U
− θ − (m− 2)((θ̂

U
− θ̂

R
))L−1

n )

=
√
n(θ̂

U
− θ)− (m− 2)

√
n((θ̂

U
− θ̂

R
))L−1

n

= T (1)
n − (m− 2)T (3)

n L−1
n

= −m(m− 2)δE(Gm+2(χ2
m(α); ∆2)).

B4(θ̂
S
) = m2(m− 2)2∆2E[(χ−2

m+2(∆2))]2.

(5) Also, note that

√
n(θ̂

S+
− θ) =

√
n(θ̂

S
− θ)−

√
n[((θ̂

U
− θ̂

R
))I(Ln ≤ (m− 2))]

+(m− 2)
√
n[((θ̂

U
− θ̂

R
))L−1

n ILn ≤ (m− 2)].

The first term is given by (4), the second term equals δ(Gm+2(χ2
m(α); ∆2)) and

the third term can be written as

δ(m− 2)E[[χ−2
m (∆2)]−1I(χ−2

m (∆2) ≤ (m− 2))]
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Hence,

√
n(θ̂

S+
− θ) = δGm+2(χ2

m(α); ∆2)− δ(Gm+2(χ2
m(α); ∆2))−

δ(m− 2)E[[χ−2
m (∆2)]−1I(χ−2

m (∆2) ≤ (m− 2))]

= −δ{(m− 2)E[[χ−2
m (∆2)]−1I(χ−2

m (∆2) ≤ (m− 2))]

−(m− 2)E[χ−2
m (∆2)]−1 −Gm+2(χ2

m(α); ∆2)}.

B(θ̂
S+

) = ∆2{(m− 2)E[[χ−2
m (∆2)]−1I(χ−2

m (∆2) ≤ (m− 2))]

−(m− 2)E[χ−2
m (∆2)]−1 −Gm+2(χ2

m(α); ∆2)}.

2.6.3 Quadratic Weighted risks

In this subsection we will extract the asymptotic quadratic weighted risks and

the asymptotic mean squared error matrix. For any estimator θ̂
∗

of θ, define the

quadratic loss as

L(θ̂
∗
,θ) = n(θ̂

∗
− θ)′W (θ̂

∗
− θ),

= tr

{
W (n(θ̂

∗
− θ)(θ̂

∗
− θ)′)

}
, (2.34)

where W is a positive semidefinite matrix of order q × q, and tr(A) is the trace

of the matrix A. In the context of statistical estimation, the risk involved in

estimating a particular parameter is a measure of the degree to which the estimate

is likely to be inaccurate.
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The asymptotic mean squared error matrix M(θ̂
∗
), is given by

M(θ̂
∗
) = E(n(θ̂

∗
− θ)′(θ̂

∗
− θ)), (2.35)

and the asymptotic quadratic risk (AQR), is defined as

R(θ̂
∗
,W ) = E[n(θ̂

∗
− θ)′W (θ̂

∗
− θ)]

= tr[WM(θ̂
∗
)]. (2.36)

The asymptotic quadratic weighted risks and the asymptotic mean squared error

matrices are given in the following theorem.

Theorem 2.6 Under the assumptions of Theorem (2.4), we have

(1) M1(θ̂
U

) = σ2C−1,

R1(θ̂
U
,W ) = σ2tr(WC−1).

(2) M2(θ̂
R

) = σ2[C−1 − A] + δδ́,

R2(θ̂
R
,W ) = σ2tr(WA) + δW δ́.

(3) M3(θ̂
PT

) = σ2[C−1 − AGm+2(χ2
m(α); ∆2)] + δδ́{2Gm+2(χ2

m(α); ∆2)

−Gm+4(χ2
m(α); ∆2)},

R3(θ̂
PT
,W ) = σ2tr(WC−1)− σ2tr(WA)Gm+2(χ2

m(α); ∆2) +

2δW δ́{Gm+2(χ2
m(α); ∆2)−Gm+4(χ2

m(α); ∆2)}.

(4) M4(θ̂
S
) = σ2C−1 − (m− 2)σ2A{2E[χ−4

m+4(∆2)]− (m− 2)
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E[χ−4
m+2(∆2)]}+ (m− 2)(m+ 2)δδ′E[χ−4

m+4(∆2)],

R4(θ̂
S
,W ) = σ2tr(WC−1)− σ2(m− 2)tr(WA)× {2E[χ−4

m+4(∆2)]− (m

−2)E[χ−4
m+2(∆2)]}+ (m− 2)(m+ 2)δWδ′E[χ−4

m+4(∆2)].

(5) M5(θ̂
S+

) = M4(θ̂
S
)− σ2AE[(1− (m− 2)χ2

(m+2)(∆
2))2I(χ2

(m+2)(∆
2)

< (m− 2))] + δδ′
{

2E[(1− (m− 2)χ−2
m+2(∆2))I(χ−2

m+2(∆2)

< (m− 2))− E[(1− (m− 2)χ−2
m+4(∆2))2(χ2

m+4(∆2)

< (m− 2))]

}
,

R5(θ̂
S+
,W ) = R4(θ̂

S
,W )− σ2(C−1 − A)E[(1− (m− 2)χ−2

m+2(∆2))2

I(χ−2
m+2(∆2) < (m− 2)] + δWδ′

{
2E[(1− (m− 2)χ2

m+4(∆2))

I(χ2
m+4(∆2) < (m− 2))]− E[(1− (m− 2)χ−2

m+4(∆2))2

I(χ2
m+4(∆2) < (m− 2))]

}
.

Proofs:

1. Note that

n(θ̂
U
− θ)(θ̂

U
− θ)′ = T (1)

n T (1)′
n .

Therefore, by Theorem (2.4) part (1) we have

M1(θ̂
U

) = E[n(θ̂
U
− θ)(θ̂

U
− θ)′] = σ2C−1

R1(θ̂
U
,W ) = tr(W (σ2C−1)) = σ2tr(WC−1).
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2. Also note that

n(θ̂
R
− θ)(θ̂

R
− θ)′ = T (2)

n T (2)′
n .

Then, by Theorem (2.4) part (2) we have

M2(θ̂
R

) = E[n(θ̂
R
− θ)(θ̂

R
− θ)′]

= E
{
n{(θ̂

U
− θ)− C−1Ŕ[RC−1R′]−1(Rθ − r)}

{(θ̂
U
− θ)− C−1Ŕ[RC−1R′]−1(Rθ − r)}′

}
= σ2C−1 + C−1R′[RC−1R′]−1E{(Rθ̂

U
− r)(Rθ̂

U
− r)′} ×

[RC−1R′]−1RC−1 − 2C−1R′[RC−1R′]−1 × E{(Rθ̂
U
− r)

(Rθ̂
U
− r)′}

= σ2C−1 + C−1R′[RC−1R′]−1{σ2(RC−1R′) + (Rθ − r)(Rθ

−r)′} × [RC−1R′]−1RC−1 − 2σ2C−1R′[RC−1R′]−1RC−1

= σ2C−1 − σ2C−1R′[RC−1R′]−1RC−1 + δδ́

= σ2[C−1 − A] + δδ́.

R2(θ̂
R
,W ) = σ2tr(W (C−1 − A)) + δW δ́.

3.

n(θ̂
PT
− θ)(θ̂

PT
− θ)′ = n{(θ̂

U
− θ)− (θ̂

U
− θ̂

R
)I(Ln < Ln,α)}{

(θ̂
U
− θ)− (θ̂

U
− θ̂

R
)I(Ln < Ln,α)}′

= n(θ̂
U
− θ)(θ̂

U
− θ)′ + n[(θ̂

U
− θ̂

R
)(θ̂

U
− θ̂

R
)′
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I2(Ln < Ln,α)]− 2n[(θ̂
U
− θ)(θ̂

U
− θ̂

R
)

I(Ln < Ln,α)]

= T (1)
n T (1)′

n + T (3)
n T (3)′

n I2(Ln < Ln,α). (2.37)

From Saleh (2006); Al-Momani (2013), as n −→∞, M3(θ̂
PT

) is given as

M3(θ̂
PT

) = E

(
T (1)
n T (1)′

n + T (3)
n T (3)′

n I2(Ln < Ln,α)

)
= E1 + E2 + E3.

The first term is given by Theorem (2.4) part (1),

E1 = E(T (1)T (1)′) = σ2C−1

E2 = E(T (3)T (3)′I2(Ln < Ln,α; ∆2))

= σ2AGm+2(χ2
m(α); ∆2) + δδ́Gm+2(χ2

m(α); ∆2)−Gm+4(χ2
m(α); ∆2)

E3 = −2E

{
E{T (3)T (3)′I2(Ln < Ln,α; ∆2)|T (3)}

}
= −2E2 + 2δδ́Gm+2(χ2

m(α); ∆2).

Hence,

M3(θ̂
PT

) = σ2[C−1 − AGm+2(χ2
m(α); ∆2)] +

δδ́{2Gm+2(χ2
m(α); ∆2)−Gm+4(χ2

m(α); ∆2)}.

R3(θ̂
PT
,W ) = tr(WM3(θ̂

PT
))
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tr
(
W (σ2[C−1 − AGm+2(χ2

m(α); ∆2)] +

δδ́{2Gm+2(χ2
m(α); ∆2)−Gm+4(χ2

m(α); ∆2)})
)

= σ2tr(WC−1)− σ2tr(WA)Gm+2(χ2
m(α); ∆2) +

2δW δ́{Gm+2(χ2
m(α); ∆2)−Gm+4(χ2

m(α); ∆2)}.

4. Also, note that

n(θ̂
S
− θ)(θ̂

S
− θ)′ = n(θ̂

U
− (m− 2)(θ̂

U
− θ̂

R
)L−1

n − θ)

(θ̂
U
− (m− 2)(θ̂

U
− θ̂

R
)L−1

n − θ)′

= n(θ̂
U
− θ)(θ̂

U
− θ)′ + n(m− 2)2(θ̂

U
− θ̂

R
)(θ̂

U

−θ̂
R

)′L−2
n − 2n(m− 2)(θ̂

U
− θ̂

R
)(θ̂

U
− θ̂

R
)′L−1

n

= T (1)
n T (1)′

n + (m− 2)2T (3)
n T (3)′

n L−2
n − 2(m− 2)T (1)

n

T (3)′
n L−2

n .

Therefore, as n −→∞, M4(θ̂
S
) = E1 + E2 + E3,

where

E1 = E(T (1)T (1)′) = σ2C−1

E2 = (m− 2)2E(T (3)T (3)′L−2
n )

= (m− 2)2σ2AE(χ−4
m+2(∆2)) + (m− 2)2δδE(χ−4

m+4(∆2))

E3 = −2(m− 2)E{T (1)T (3)′L−1
n }
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= −2(m− 2)E{T (1)T (3)′L−1
n |T (3)

n }

= −2(m− 2){E(T (1)T (3)′L−1
n )− δE(T (3)′

n L−1
n )}

= −2(m− 2)σ2AE(χ−2
m+2(∆2))− 2(m− 2)δδ{E(χ−2

m+4(∆2))−

E(χ−2
m+2(∆2))}.

Then,

M4(θ̂
S
) = σ2C−1 − (m− 2)σ2A{2E[χ−4

m+4(∆2)]− (m− 2)E[χ−4
m+2(∆2)]}

+(m− 2)(m+ 2)δδ′E[χ−4
m+4(∆2)].

R4(θ̂
S
,W ) = tr(M4(θ̂

S
))

= σ2tr(WC−1)− σ2(m− 2)tr(WA)× {2E[χ−4
m+4(∆2)]− (m

−2)E[χ−4
m+2(∆2)]}+ (m− 2)(m+ 2)δWδ′E[χ−4

m+4(∆2)].

5. Note that

n(θ̂
S+
− θ)(θ̂

S+
− θ)′ = n[θ̂

S
− (1− (m− 2)L−1)ILn < (m− 2)

(θ̂
U
− θ̂

R
)− θ][θ̂

S
− (1− (m− 2)L−1)ILn

< (m− 2)(θ̂
U
− θ̂

R
)− θ]′

= n(θ̂
S
− θ)(θ̂

S
− θ)′ + n(θ̂

U
− θ̂

R
)(θ̂

U
− θ̂

R
)′

(1− (m− 2)L−1
n )2I(Ln < (m− 2))− 2n(θ̂

S
− θ)

(θ̂
S
− θ)′(1− (m− 2)L−1

n )I(Ln < (m− 2))

= −2T (2)
n T (3)′

n (1− (m− 2)L−1
n )I(Ln < (m− 2))−
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2T (3)
n T (3)′

n (1− (m− 2)L−1
n )2I(Ln < (m− 2)).

Therefore, as n −→∞, M5(θ̂
S+

) = E1 + E2 + E3,

where

E1 = M4(θ̂
S
)

E2 = E{T (3)T (3)′(1− (m− 2)L−1)I(L < (m− 2))}

= σ2AE{(1− (m− 2)χ−2
m+2(∆2))2I(χ2

m+2(∆2) < (m− 2))}

+δδE{(1− (m− 2)χ−2
m+4(∆2))2I(χ2

m+4(∆2) < (m− 2))}

E3 = −2E(T (2))E(T (3)′(1− (m− 2)L−1)I(L < (m− 2)))

−2E(T (3)T (3)′(1− (m− 2)L−1)I(L < (m− 2)))

= 2δδE{(1− (m− 2)χ−2
m+2(∆2))I(χ2

m+2(∆2) < (m− 2))}

2σ2AE{(1− (m− 2)χ−2
m+2(∆2))I(χ2

m+2(∆2) < (m− 2))}

−2δδE{(1− (m− 2)χ−2
m+4(∆2))I(χ2

m+4(∆2) < (m− 2))}.

M5(θ̂
S+

) = M4(θ̂
S
)− σ2AE[(1− (m− 2)χ2

(m+2)(∆
2))2I(χ2

(m+2)(∆
2) <

(m− 2))] + δδ′
{

2E[(1− (m− 2)χ−2
m+2(∆2))I(χ−2

m+2(∆2) <

(m− 2))− E[(1− (m− 2)χ−2
m+4(∆2))2(χ2

m+4(∆2)

< (m− 2))]

}
.

R5(θ̂
S+
,W ) = tr(M5(θ̂

S+
))
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= R4(θ̂
S
,W )− σ2(C−1 − A)E[(1− (m− 2)χ−2

m+2(∆2))2

I(χ−2
m+2(∆2) < (m− 2)] + δWδ′

{
2E[(1− (m− 2)

χ2
m+4(∆2))I(χ2

m+4(∆2) < (m− 2))]− E[(1− (m− 2)

χ−2
m+4(∆2))2I(χ2

m+4(∆2) < (m− 2))]

}
.

2.7 Risk Analysis of the Estimators

In this subsection we will discuss and investigate the asymptotic weighted risk of

the estimators using the loss function defined in (2.34).

2.7.1 Comparison of θ̂
U

and θ̂
R

It is clear that the risk of θ̂
U

is constant, whereas the risk of θ̂
R

depends on δ′Wδ,

hence the difference in their risks is

R1(θ̂
U
,W )−R2(θ̂

R
,W ) = σ2tr(WC−1)− σ2tr[WC−1R′[RC−1R′]−1RC−1]

+δ′Wδ.

Note that C−1/2R′[RC−1R′]−1RC−1/2 is a symmetric idempotent matrix with rank

m(≤ q). Therefore, by Courant’s Theorem; see Theorem A.1, there exists an

orthogonal matrix Γ such that

ΓC−1/2R′[RC−1R′]−1RC−1/2Γ′ =

(Im 0

0 0

)
,
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and

ΓC−1/2WC−1/2Γ′ =

(A11 A12

A′12 A22

)
.

Then

tr

[
W{C−1R′[RC−1R′]−1RC−1}

]
= tr

[
{ΓC−1/2WC−1/2Γ′}{ΓC−1/2

R′[RC−1R′]−1RC−1/2Γ′}
]

= tr

{[A11 A12

A21 A22

][Im 0

0 0

]}
= tr(A11). (2.38)

δ′Wδ = (Rθ − r)′[RC−1R′]−1RC−1WC−1R′[RC−1R′]−1

(Rθ − r)

= [ΓC1/2θ − ΓC−1/2R′[RC−1R′]−1r]−1

× [ΓC−1/2R′[RC−1R′]−1RC−1/2Γ′]

[ΓC−1/2WC−1/2Γ′]

× [ΓC−1/2R′[RC−1R′]−1RC−1/2Γ′]

× [ΓC1/2θ − ΓC−1/2R′[RC−1R′]−1r]

= η′
(Im 0

0 0

)(A11 A12

A21 A22

)(Im 0

0 0

)
η

= η′1A11η1, (2.39)
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where

η = ΓC1/2θ − ΓC−1/2R′[RC−1R′]−1r =

(η1

η2

)
.

Thus, using (2.38) and (2.39) we obtain

R2(θ̂
R
,W ) = σ2tr(WC−1)− σ2tr(A11) + η′1A11η1.

By Courant’s Theorem, we say

Chmin(A11) ≤ η′1A11η1

η′1η1

≤ Chmax(A11),

or

σ2∆2Chmin(A11) ≤ η′1A11η1 ≤ σ2∆2Chmax(A11),

where Chmin(A11), Chmax(A11) are respectively the minimum and the maximum

characteristic roots of A11, and ∆2 = η′1η1/σ
2, so,

R1(θ̂
U

;W )− σ2tr(A11) + Chmax(A11) ≤ R2(θ̂
R
,W ) ≤ R1(θ̂

U
,W )−

σ2tr(A11) + Chmax(A11), (2.40)

where ∆2 = 0, the bounds are equal. Therefore, the previous inequality indicates

that θ̂
R

performs better than θ̂
U

where

∆2 ≤ tr(A11)

Chmax(A11)
,
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whereas θ̂
U

performs better than θ̂
R

whenever

∆2 ≥ tr(A11)

Chmin(A11)
.

For W = C, we see θ̂
R

performs better than θ̂
U

in the interval [0, m] and outside

this interval θ̂
U

performs better than θ̂
R

.

2.7.2 Comparison of θ̂
PT

and θ̂
U

The risk difference is given by:

R1(θ̂
U
,W )−R3(θ̂

PT
,W ) = σ2tr(A11)Gm+2(χ2

m(α); ∆2)−

2(η′1A11η1)

{
Gm+2(χ2

m(α); ∆2)

−Gm+4(χ2
m(α); ∆2)

}
. (2.41)

The right hand side of (2.41) is non-negative whenever

∆2 ≤ tr(A11)

Chmin(A11)

Gm+2(χ2
m(α); ∆2)

{2Gm+2(χ2
m(α); ∆2)−Gm+4(χ2

m(α); ∆2)}
,

in this range θ̂
PT

performs better than θ̂
U

, whereas, θ̂
U

performs better than θ̂
PT

whenever

∆2 ≥ tr(A11)

Chmin(A11)

Gm+2(χ2
m(α); ∆2)

{2Gm+2(χ2
m(α); ∆2)−Gm+4(χ2

m(α); ∆2)}
.

Under the hypothesis (1.2), θ̂
PT

is superior to θ̂
U

.
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2.7.3 Comparison of θ̂
S

and θ̂
U

The risk difference is given by

R1(θ̂
U
,W )−R4(θ̂

S
,W ) = σ2(m− 2)(m+ 2)tr(A11){(m− 2)E(χ−4

(m+2)(∆
2)

)}+

[
1− (m+ 2)(η′1A11η1)

2σ2∆2tr(A11)

]
(2∆2)E[χ−4

m+4(∆2)].

the risk difference is positive whenever

tr(A11)

Chmax(A11)
≥ m+ 2

2
.

Note that A11 involves the matrix W, hence, θ̂
S

dominates θ̂
U

. As ∆2 −→ ∞,

the risk difference approaches to 0 from below.

2.7.4 Comparison of θ̂
S

and θ̂
S+

The risk difference is given by:

R4(θ̂
S
,W )−R5(θ̂

S+
,W ) = σ2(C−1 − A)E[(1− (m− 2)χ−2

m+2(∆2))2

I(χ−2
m+2(∆2) < (m− 2)] + δWδ′

{
2E[(1

−(m− 2)χ2
m+4(∆2))I(χ2

m+4(∆2) < (m−

2))]− E[(1− (m− 2)χ−2
m+4(∆2))2

I(χ2
m+4(∆2) < (m− 2))]

}
.
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The right hand side of the previous equation is positive semidefinite, since the ex-

pected value of the non-negative random variable is non-negative by the indicator

function

[0 < χ−2
m+2(∆2) < (m− 2)]←→ [(m− 2)χ−2

m+2(∆2)− 1] ≥ 0,

see (Saleh, 2006, p.360). Hence, we get

E[((m− 2)χ−2
m+2(∆2)− 1)I(χ−2

m+2(∆2) < (m− 2))] ≥ 0,

and for all ∆2,

R5(θ̂
S+
,W ) ≤ R4(θ̂

S
,W ),

and θ̂
S+

not only assures inadmissibility of θ̂
S

but also provides a simple superior

estimator.

As a result we can conclude that

R5(θ̂
S+
,W ) ≤ R4(θ̂

S
,W ) ≤ R1(θ̂

U
,W ).

which means that θ̂
S+

is uniformly dominates the unrestricted estimate.

2.8 MSE-Matrix Analysis of the Estimator

In this section we compare the array of estimators with respect to the unrestricted

estimator in term of their mean squared error. Comparisons are given below in
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the rest of the subsections.

2.8.1 Comparison of θ̂
R

and θ̂
U

M1(θ̂
U

)−M2(θ̂
R

) = σ2C−1 − σ2C−1 + σ2A− δ′δ.

The MSE difference matrix is positive semidefinite whenever for a nonzero vector

` = (`1, . . . , `q)
′ of length q, we have

`′[M1(θ̂
U

)−M2(θ̂
R

)]` ≥ 0.

That is,

σ2`′[C−1R′[RC−1R′]−1R′C−1]` ≥ `′δδ′`.

Therefore, we have

`′δδ′`

σ2`′C−1`
≤ σ2`′[C−1R′[RC−1R′]−1R′C−1]`

σ2`′C−1`
.

Hence,

∆2 = Max
`

`′δδ′`

σ2`′C−1`
≤Max[`]`′[C−1R′[RC−1R′]−1R′C−1]`

∆2 ≤ ChMax
`′[R′[RC−1R′]−1R′C−1]`

`′C−1`
= 1.
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Since C−1/2R′[RC−1R′]−1R′C−1/2 is an idempotent matrix with maximum char-

acteristic value or eigenvalue equals to 1. Thus, M1(θ̂
U

) − M2(θ̂
R

) is positive

semidefinite matrix if and only if ∆2 ≤ 1. Therefore, θ̂
R

performs better than

θ̂
U

when ∆2 ≤ 1; otherwise, θ̂
U

performs better than θ̂
R

. The range of the

domination of θ̂
R

over θ̂
U

is bigger in term of risks.

If W = C, the range of the domination is [0,m] and m ≥ 0. The MSE-based

relative efficiency (MRE) of θ̂
R

with respect to θ̂
U

is meaningless, since

MRE(θ̂
R
, θ̂

U
) = |Iq −R′[RC−1R′]−1R′C−1 − σ−2Cδδ′|−1/q = 0.

while the relative risk efficiency (RRE) is different from 0 and given by

RRE(θ̂
R
, θ̂

U
) =

[
1− A11

tr(WC−1)
+

η′1A11η1

tr(WC−1)

]−1

.

2.8.2 Comparison of θ̂
PT

and θ̂
U

M1(θ̂
U

)−M3(θ̂
PT

) = σ2

(
C−1R′[RC−1R′]−1RC−1

)−1

Gm+2(χ2
m(α); ∆2)

= δδ′
{

2Gm+2(χ2
m(α); ∆2)−Gm+4(χ2

m(α); ∆2)

}
(2.42)

The MSE in (2.42) is p.s.d. if for any non-zero vector ` we have

σ2`′
(
C−1R′[RC−1R′]−1RC−1

)−1

`Gm+2(χ2
m(α); ∆2)

−(`′δδ′`)

{
2Gm+2(χ2

m(α); ∆2)−Gm+4(χ2
m(α); ∆2)

}
≥ 0.
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Therefore, we can write the previous inequality as

(`′δδ′`)

{
2Gm+2(χ2

m(α); ∆2)−Gm+4(χ2
m(α); ∆2)

}
≤ σ2`′

[
C−1R′[RC−1R′]−1

RC−1

]−1

`Gm+2(χ2
m(α);

∆2)

`′δδ′`

{
2Gm+2(χ2

m(α); ∆2)σ2`′
{
C−1R′[RC−1R′]−1RC−1

}
`

}
≤

{
2Gm+2(χ2

m(α);

∆2)−Gm+4(

χ2
m(α); ∆2)

}

`′δδ′` ≤
σ2`′

{
C−1R′[RC−1R′]−1RC−1

}
`2Gm+2(χ2

m(α); ∆2){
2Gm+2(χ2

m(α); ∆2)−Gm+4(χ2
m(α); ∆2)

}
`′C−1`

.

By taking the maximum overall non-zero vectors ` we obtain

∆2 = Max
`

`′δδ′`

∆2 ≤ Max

σ2`′
{
C−1R′[RC−1R′]−1RC−1

}
`2Gm+2(χ2

m(α); ∆2){
2Gm+2(χ2

m(α); ∆2)−Gm+4(χ2
m(α); ∆2)

}
`′C−1`

(2.43)

∆2 ≤ 2Gm+2(χ2
m(α); ∆2){

2Gm+2(χ2
m(α); ∆2)−Gm+4(χ2

m(α); ∆2)

} ≤ 0.

This mean θ̂
PT

performs better than θ̂
U

in the range of ∆2 that is given by
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(2.43), otherwise θ̂
U

is superior to θ̂
PT

. The range of domination of θ̂
PT

over

θ̂
U

is bigger in case of risk analysis. If W = C, the range of ∆2 is ≤ m. The

risk-based efficiency of θ̂
PT

relative to θ̂
U

is given by

RER(θ̂
PT
, θ̂

U
) =

[
1− tr(A11)

tr(WC−1)
Gm+2(χ2

m(α); ∆2) +
δ′1A11δ1

tr(WC−1)

×
{

2Gm+2(χ2
m(α); ∆2)−Gm+4(χ2

m(α); ∆2)

}]−1

. (2.44)

If W = C, then (2.44) reduces to

m

[
m− 2mGm+2(χ2

m(α); ∆2) + ∆2

{
2Gm+2(χ2

m(α); ∆2)−Gm+4(χ2
m(α); ∆2)

}]−1

.

Thus, the risk efficiency of θ̂
PT

is bigger than θ̂
U

whenever,

∆2 ≤ mGm+2(χ2
m(α); ∆2){

2Gm+2(χ2
m(α); ∆2)−Gm+4(χ2

m(α); ∆2)

} .

The MSE-based efficiency of θ̂
PT

relative to θ̂
U

is given by

MRE(θ̂
PT
, θ̂

U
) =

∣∣∣∣Iq − {R′[RC−1R′]−1RC−1}mGm+2(χ2
m(α); ∆2) +

σ−2Cδδ′
{

2Gm+2(χ2
m(α); ∆2)−Gm+4(χ2

m(α); ∆2)

}∣∣∣∣−1/q

=

[
1−Gm+2(χ2

m(α); ∆2) + ∆2

{
2Gm+2(χ2

m(α); ∆2)−

Gm+4(χ2
m(α); ∆2)

}]−1

×
{

1−Gm+2(χ2
m(α); ∆2)

}}q−1/q

.
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Thus, MRE of θ̂
PT

is bigger than θ̂
U

whenever,

∆2 ≤ {1−mGm+2(χ2
m(α); ∆2)}

q−1
q − {1−mGm+2(χ2

m(α); ∆2)}{
2Gm+2(χ2

m(α); ∆2)−Gm+4(χ2
m(α); ∆2)

} .

2.8.3 Comparison of θ̂
S

and θ̂
U

We compare θ̂
S

and θ̂
U

. The MSE difference in this case is

M1(θ̂
U

)−M4(θ̂
R

) = (m− 2)(m+ 2)σ2

{
C−1R′[RC−1R′]−1RC−1

}
×
{

(m− 2)E(χ−4
m+2(∆2)) + 2∆2E(χ−4

m+4(∆2))

}
−(m− 2)(m+ 2)2δδ′E(χ−4

m+4(∆2)).

The difference is p.s.d. For a given nonzero vector ` we have

m(m− 2)σ2

{
`′C−1R′[RC−1R′]−1RC−1`

}
×
{

(m− 2)E(χ−4
m+2(∆2)) +

2∆2E(χ−4
m+4(∆2))

}
− (m− 2)(m+ 2)2(`′δδ′`)E(χ−4

m+4(∆2)) ≥ 0.

which implies

m∆2E(χ−4
m+4(∆2)) ≤ (m− 2)E(χ−4

m+2(∆2)),

but it does not hold for all ∆2. Thus, the performance of θ̂
S

compared with θ̂
U

varies.

59



In this case, the MSE(θ̂
S
, θ̂

U
) is given by:

MSE(θ̂
S
, θ̂

U
) =

∣∣∣∣Iq −m(m− 2)R′[RC−1R′]−1RC−1

{
(m− 2)E(χ−4

m+2(∆2)) +

2∆2E(χ−4
m+4(∆2))

}
−m(m− 2)(m+ 2)Cδδ′E(χ−4

m+4(∆2))

∣∣∣∣−1/q

=

(
1−m(m− 2)

{
(m− 2)E(χ−4

m+2(∆2)) + 2∆2E(χ−4
m+2(∆2))

}
+m(m− 2)(m+ 2)2∆2E(χ−4

m+4(∆2))

)−1

×
(

1−m(m− 2){
(m− 2)× E(χ−4

m+2(∆2)) + 2∆2E(χ−4
m+2(∆2))

})q−1/q

.

2.8.4 Comparison of θ̂
S

and θ̂
S+

The comparison between θ̂
S

and θ̂
S+

with respect to their MSE starts by taking

their difference as follows

M4(θ̂
S
)−M5(θ̂

S+
) = σ2AE[(1− (m− 2)χ2

(m+2)(∆
2))2I(χ2

(m+2)(∆
2) < (m− 2))]

+δδ′
{

2E[(1− (m− 2)χ−2
m+2(∆2))I(χ−2

m+2(∆2) < (m− 2))

−E[(1− (m− 2)χ−2
m+4(∆2))2(χ2

m+4(∆2) < (m− 2))]

}
.

The MSE difference is positive semidefinite for all ∆2, and hence, θ̂
S+

dominates

θ̂
S

uniformly.
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2.9 Numerical Studies

In this section we will carry out numerical study to investigate the performance

of the proposed estimators. In the first subsection we aim to examine the relative

performance of the restricted, pretest and shrinkage estimators, while appointing

the unrestricted estimator as a benchmark for comparison using Monte Carlo

simulation. A real dataset from S&P500 stock market will be used to compare

the performance of the estimators to confirm the analytical results obtained in

the previous section.

2.9.1 Monte Carlo simulation experiments

The Monte Carlo simulation experiments will be conducted to compare the re-

stricted, pretest and shrinkage estimators with respect to the unrestricted estima-

tor. The following algorithm is used for the Monte Carlo simulation

1. We consider the model in Equation (2.9), we partition θ as θ = (θ1,θ2),

where θ1 is a (q−m+1)×1 of non-zeros and θ2 is m×1 vector of zeros. We

define the parameter ∆2 = ||θ−θ0||, where θ0 = (θ1,0),θ = (θ1,0 + δ) and

||.|| denotes the Euclidian norm. In addition, ∆2 = ||δ||, where this vector

of alternative values was chosen to vary from 0 to .55 and m = 3, 4, 5, 9, 12

and 15.

2. Generate an error term (ηt) from standard normal distribution.

3. Generate X matrix of size n × (q + 1) with initial values simulated from
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standard normal distribution with n = 30, 50, 75, 100 and 150.

4. Estimate a matrix Unx1 = (η2 − 1) ∗Xθ0.

5. Estimate the Vector Y = Xθ0 +U

6. Estimate the unrestricted, restricted, pretest, shrinkage and positive shrink-

age estimators using the formulas in (2.11), (2.21), (2.24), (2.25) and (2.26)

respectively.

7. Compute the simulated mean squared errors (SMSE) for each estimator by

using the following formula

SMSE(θ̂
∗
) =

q+1∑
i=1

(θ̂
∗
− θ)2, (2.45)

where θ̂∗ denotes any one of {θ̂
U
, θ̂

R
, θ̂

PT
, θ̂

S
, θ̂

S+
}.

8. Repeat the steps (2) - (7) for K-times, we see K = 3000 is suitable to obtain

stable results.

9. Compute the simulated relative efficiency (SRE) as follows

SRE(θ̂
U
, θ̂∗) =

SMSE(θ̂
U

)

SMSE(θ̂∗)
, (2.46)

where θ̂
U

is appointed as benchmark. A value greater than one of the

SRE(θ̂
U
, θ̂∗) indicates that θ̂∗ performs better than θ̂

U
and vice versa.

The results of these simulations are reported in Figures 2.1 to 2.5 and Tables
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2.1 to 2.30. The numerical results effectively assured our analytical results that

positive shrinkage estimator plays as a safeguard against the high risks associated

with the reduced model that we get under the set of local alternatives. θ̂
R

shows

the best performance under the null space and it degrades towards zero as the

value of ∆2 goes way from the null space.

As the value of ∆2 increases, the superiority changes from θ̂
R

to θ̂
PT
, θ̂

S
and θ̂

S+
.

θ̂
S+

dominantly superior others as it works as a safeguard against the high risks

associated with the reduced model as we go away from the null space.
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Figure 2.1: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when m = 3 and q = 8 and different sample sizes.
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Figure 2.2: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when m = 4 and q = 9 and different sample sizes.
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Figure 2.3: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when m = 5 and q = 10 and different sample sizes.
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Figure 2.4: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when m = 9 and q = 14 and different sample sizes.
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Figure 2.5: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when the sample size is n = 150 and different values
of q and m.
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Table 2.1: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 30, q= 8; m = 3.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 2.104136 1.75143 1.212327 1.290395

0.05 2.000851 1.713064 1.199043 1.276196

0.1 1.887176 1.645324 1.197501 1.248848

0.15 1.715757 1.512479 1.137894 1.218756

0.2 1.576797 1.392189 1.126848 1.169788

0.25 1.462254 1.287964 1.105508 1.139124

0.3 1.333649 1.203817 1.08871 1.11034

0.35 1.20728 1.09457 1.058294 1.074054

0.4 1.064451 1.028872 1.026928 1.044556

0.45 0.9659671 0.9713615 1.022277 1.029468

0.5 0.8726239 0.9399235 1.009984 1.01308

0.55 0.8173684 0.9431094 1.009244 1.011075
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Table 2.2: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 30; q = 9, m = 4.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 2.552432 2.10818 1.417582 1.576352

0.05 2.37206 1.963409 1.381515 1.524656

0.1 2.240254 1.864241 1.348298 1.483403

0.15 2.121926 1.727952 1.325107 1.418309

0.2 1.891001 1.612841 1.295939 1.359839

0.25 1.792557 1.491379 1.250461 1.296639

0.3 1.641709 1.358783 1.213037 1.245442

0.35 1.404039 1.231871 1.151993 1.174427

0.4 1.278358 1.113461 1.109727 1.121834

0.45 1.147132 1.040114 1.075861 1.083542

0.5 1.004951 1.001396 1.05717 1.060852

0.55 0.8955249 0.9746145 1.041071 1.044665

70



Table 2.3: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 30; q = 10, m = 5.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 3.19693 2.386291 1.664032 1.872871

0.05 3.008924 2.297271 1.659515 1.836073

0.1 2.83329 2.182789 1.605118 1.781506

0.15 2.689897 2.01671 1.543177 1.676339

0.2 2.406686 1.900087 1.493938 1.602759

0.25 2.218949 1.737851 1.449061 1.510199

0.3 2.015128 1.520739 1.366071 1.413886

0.35 1.715963 1.380165 1.275106 1.31308

0.4 1.588221 1.243347 1.219897 1.24266

0.45 1.36578 1.146735 1.161197 1.17826

0.5 1.242981 1.066013 1.122433 1.133555

0.55 1.043152 1.010785 1.090618 1.09904
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Table 2.4: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 30; q = 14, m = 9.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 6.570444 3.714694 2.52844 3.524378

0.05 6.479066 3.276733 2.457829 3.315546

0.1 5.758203 3.400918 2.533253 3.195185

0.15 5.578326 3.198912 2.427677 2.943745

0.2 4.983793 2.666512 2.360153 2.717917

0.25 4.416597 2.527606 2.252278 2.522882

0.3 3.774371 2.138715 2.066209 2.23338

0.35 3.26916 1.849453 1.868957 2.003584

0.4 2.648351 1.651983 1.710846 1.802083

0.45 2.307191 1.432443 1.562174 1.629432

0.5 1.956187 1.278753 1.44684 1.489495

0.55 1.618764 1.16775 1.338616 1.371167

72



Table 2.5: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 30; q = 17, m = 12.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 11.56614 4.579641 2.780781 5.183608

0.05 11.23318 4.364053 2.836567 4.902555

0.1 10.12542 4.055135 2.865431 4.658327

0.15 9.014248 3.672961 2.77225 4.282353

0.2 8.273367 3.120334 2.596316 3.7534

0.25 7.064858 3.006406 2.707284 3.50152

0.3 5.793548 2.563277 2.530572 3.01126

0.35 5.094857 2.079782 2.244242 2.581886

0.4 4.294406 1.902884 2.112954 2.3792

0.45 3.420984 1.686259 1.904184 2.092347

0.5 2.883215 1.50193 1.771854 1.889444

0.55 2.296521 1.398146 1.641466 1.731688
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Table 2.6: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 30; q = 20, m = 15.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 22.39156 4.719919 2.456481 6.82472

0.05 21.40142 4.71492 2.584493 6.725844

0.1 20.8785 3.926422 2.483605 5.712119

0.15 17.84861 3.920784 2.68171 5.828242

0.2 15.02462 3.627244 2.776626 5.244147

0.25 12.874 3.190111 2.772309 4.622105

0.3 10.33621 2.756811 2.658384 4.021372

0.35 8.607472 2.785741 2.655128 3.73402

0.4 6.769556 2.320744 2.445546 3.230603

0.45 5.897395 1.90544 2.286864 2.791506

0.5 4.504014 1.893761 2.155251 2.567587

0.55 3.292715 1.699549 1.929789 2.251823
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Table 2.7: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 50; q = 8, m = 3.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 1.882182 1.653836 1.206535 1.260334

0.05 1.749729 1.565952 1.167519 1.229073

0.1 1.553288 1.432243 1.105353 1.188944

0.15 1.409113 1.28453 1.10962 1.140861

0.2 1.261267 1.170865 1.066763 1.104972

0.25 1.099433 1.044018 1.041126 1.05896

0.3 0.9776256 0.9732809 1.024985 1.032685

0.35 0.8877122 0.9322131 1.003082 1.010527

0.4 0.7678225 0.8920633 0.9928294 0.9943561

0.45 0.7071472 0.9034118 0.990522 0.9914094

0.5 0.6344332 0.9265624 0.9874288 0.9895817

0.55 0.6120487 0.9571493 0.9942591 0.9941987
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Table 2.8: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 50; q = 9, m = 4.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 2.171119 1.834962 1.349146 1.472984

0.05 2.026735 1.789136 1.352465 1.439959

0.1 1.827369 1.607491 1.288889 1.365121

0.15 1.669108 1.460511 1.230362 1.297549

0.2 1.481711 1.306889 1.178118 1.222372

0.25 1.311158 1.169433 1.126586 1.149812

0.3 1.185095 1.086448 1.093197 1.107856

0.35 1.058446 1.015057 1.05734 1.064759

0.4 0.9138158 0.9427188 1.024243 1.029423

0.45 0.7927976 0.9352463 1.007685 1.008829

0.5 0.7439466 0.9500719 1.006205 1.00702

0.55 0.7058621 0.9661377 1.009567 1.009567
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Table 2.9: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 50; q = 10, m = 5.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 2.541064 2.12368 1.553523 1.727573

0.05 2.40837 1.990078 1.526387 1.662402

0.1 2.278273 1.936847 1.497703 1.598629

0.15 2.011187 1.73772 1.398808 1.49352

0.2 1.830201 1.491114 1.343199 1.382542

0.25 1.605171 1.367598 1.256944 1.296355

0.3 1.396491 1.198939 1.179778 1.196838

0.35 1.211252 1.099238 1.129024 1.140911

0.4 1.075062 1.019603 1.080762 1.085827

0.45 0.9138245 0.9612503 1.039274 1.044057

0.5 0.8349521 0.9552649 1.027019 1.028082

0.55 0.781798 0.9683618 1.026952 1.027879
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Table 2.10: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 50; q = 14, m = 9.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 4.486833 3.290393 2.477851 2.912986

0.05 4.226516 2.938553 2.369133 2.714898

0.1 3.931467 2.686199 2.281303 2.50434

0.15 3.419301 2.399681 2.097122 2.276157

0.2 3.1057 2.210063 2.007958 2.118729

0.25 2.612945 1.805309 1.774699 1.836494

0.3 2.31034 1.597015 1.637872 1.677474

0.35 1.873885 1.367114 1.456707 1.482842

0.4 1.56022 1.198444 1.327181 1.341412

0.45 1.367787 1.083035 1.241605 1.248497

0.5 1.135317 1.02707 1.179943 1.182288

0.55 1.021177 1.000179 1.144313 1.146352
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Table 2.11: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 50; q = 17, m = 12.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 6.208332 4.078501 3.04343 4.001418

0.05 5.915682 3.965545 3.106717 3.821898

0.1 5.28637 3.772884 2.973924 3.5125

0.15 4.950642 3.283239 2.888126 3.216175

0.2 4.300543 2.817087 2.671101 2.863527

0.25 3.592303 2.219502 2.271017 2.397794

0.3 2.938706 1.862945 2.019143 2.096186

0.35 2.479259 1.610415 1.800123 1.838457

0.4 1.963996 1.398207 1.595079 1.619561

0.45 1.669845 1.21235 1.429908 1.450006

0.5 1.412281 1.105109 1.331624 1.344331

0.55 1.266492 1.047176 1.283201 1.288707
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Table 2.12: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 50; q = 20, m = 15.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 9.32338 4.783295 3.909768 5.516804

0.05 8.699592 4.496532 3.823275 5.13735

0.1 7.711028 4.198651 3.572021 4.611336

0.15 6.698563 3.812773 3.490226 4.118101

0.2 5.927034 3.085762 3.202275 3.612886

0.25 4.684158 2.845323 2.849568 3.112489

0.3 3.962361 2.262005 2.527749 2.655628

0.35 3.351782 1.847312 2.198956 2.28267

0.4 2.668381 1.487449 1.873695 1.92832

0.45 2.052024 1.353243 1.66426 1.69221

0.5 1.753301 1.201978 1.523656 1.542565

0.55 1.432978 1.104897 1.409367 1.417963
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Table 2.13: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 75; q = 8, m = 3.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 1.708045 1.528128 1.166605 1.225358

0.05 1.572873 1.428245 1.109689 1.194354

0.1 1.402505 1.323098 1.089511 1.154417

0.15 1.238036 1.161954 1.071315 1.10389

0.2 1.058511 1.028451 1.033583 1.055637

0.25 0.9317579 0.9529123 1.015174 1.026648

0.3 0.8095086 0.895206 1.000675 1.005337

0.35 0.7121585 0.8838709 0.9900654 0.9910169

0.4 0.6334416 0.9071845 0.9876936 0.9876393

0.45 0.5718482 0.940628 0.9869446 0.9870273

0.5 0.5364263 0.9714434 0.9894097 0.9891165

0.55 0.5203594 0.990723 0.9959126 0.9959157
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Table 2.14: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 75; q = 9, m = 4.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 1.959433 1.771842 1.324188 1.433697

0.05 1.837986 1.660852 1.298758 1.38039

0.1 1.648833 1.474169 1.229679 1.301567

0.15 1.484233 1.319725 1.187219 1.228621

0.2 1.259127 1.163186 1.127985 1.152469

0.25 1.108219 1.050436 1.083793 1.095984

0.3 0.9441927 0.9673276 1.041267 1.047841

0.35 0.8298637 0.9324421 1.017409 1.019823

0.4 0.7248615 0.9260339 0.9996599 1.000393

0.45 0.6464553 0.9541238 0.9928472 0.9931473

0.5 0.5911707 0.9743389 0.9919731 0.9919799

0.55 0.577166 0.9916975 1.001956 1.001959
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Table 2.15: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 75; q = 10, m = 5.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 2.253583 1.940645 1.50847 1.641068

0.05 2.128641 1.878727 1.452945 1.581418

0.1 1.928781 1.671173 1.396331 1.478343

0.15 1.675827 1.472372 1.307822 1.363313

0.2 1.490223 1.30604 1.227463 1.264964

0.25 1.294344 1.149628 1.153976 1.175831

0.3 1.093737 1.018715 1.08728 1.098143

0.35 0.9470151 0.9686145 1.049705 1.054391

0.4 0.8284425 0.9426387 1.022143 1.023528

0.45 0.7326094 0.9491431 1.007023 1.007535

0.5 0.6615012 0.9697087 1.002835 1.003109

0.55 0.6355173 0.9886514 1.009129 1.009131
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Table 2.16: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 75; q = 14, m = 9.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 3.625941 2.941088 2.277902 2.58721

0.05 3.471273 2.613353 2.185218 2.422271

0.1 3.14895 2.513692 2.100793 2.274217

0.15 2.761006 2.095308 1.908082 2.002396

0.2 2.322751 1.772961 1.709852 1.762402

0.25 2.026751 1.500568 1.556204 1.580846

0.3 1.704233 1.280528 1.392081 1.40563

0.35 1.419944 1.128169 1.27306 1.282751

0.4 1.157549 1.01849 1.172188 1.175079

0.45 0.9953561 0.9807035 1.113279 1.114822

0.5 0.8771407 0.9824674 1.090304 1.090609

0.55 0.8347648 0.9887283 1.083265 1.083325
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Table 2.17: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 75; q = 17, m = 12.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 4.933363 3.551064 2.872862 3.439751

0.05 4.522742 3.408877 2.802273 3.229221

0.1 4.222907 3.066553 2.734878 2.972459

0.15 3.59337 2.650341 2.458894 2.595418

0.2 3.125018 2.141906 2.18718 2.262111

0.25 2.558208 1.743795 1.874911 1.91622

0.3 2.145908 1.425394 1.648214 1.671107

0.35 1.772969 1.244623 1.468698 1.481734

0.4 1.433532 1.098156 1.319206 1.325151

0.45 1.172748 1.0241 1.215544 1.218476

0.5 1.058164 0.9945946 1.174938 1.175692

0.55 0.9679932 0.9970074 1.162675 1.162767
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Table 2.18: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 75; q = 20, m = 15.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 6.715262 4.284339 3.600641 4.45134

0.05 6.191224 4.107053 3.476219 4.172438

0.1 5.503218 3.495781 3.286069 3.694906

0.15 4.884118 3.129364 3.033851 3.285467

0.2 3.901818 2.657661 2.64774 2.784566

0.25 3.310599 2.086963 2.315774 2.381371

0.3 2.637253 1.64394 1.932123 1.974214

0.35 2.093146 1.396842 1.682464 1.70472

0.4 1.734586 1.194101 1.509476 1.515363

0.45 1.375824 1.060782 1.329813 1.334842

0.5 1.17665 1.016126 1.272354 1.273967

0.55 1.108257 1.005829 1.25249 1.253168
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Table 2.19: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 100; q = 8, m = 3.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 1.689623 1.522832 1.165546 1.221807

0.05 1.502754 1.389101 1.111834 1.178527

0.1 1.330774 1.246462 1.087371 1.130186

0.15 1.131937 1.071715 1.056249 1.079169

0.2 0.9642133 0.9621126 1.021533 1.036476

0.25 0.8293624 0.8914788 1.005864 1.01149

0.3 0.7283002 0.8792115 0.9932157 0.9974269

0.35 0.6220229 0.898049 0.9865939 0.9874183

0.4 0.5441814 0.9385519 0.986167 0.986666

0.45 0.4955462 0.9721512 0.9884045 0.9884188

0.5 0.461804 0.9935837 0.9910515 0.9910655

0.55 0.4613039 0.9987832 0.9968983 0.9968983
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Table 2.20: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 100; q = 9, m = 4.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 1.921002 1.680018 1.307754 1.41131

0.05 1.738347 1.562874 1.261516 1.344955

0.1 1.520288 1.382005 1.198846 1.258695

0.15 1.320435 1.20125 1.142059 1.178929

0.2 1.155533 1.074014 1.095872 1.116503

0.25 0.9759147 0.9644159 1.052604 1.059665

0.3 0.8276594 0.9249392 1.023633 1.026309

0.35 0.718031 0.9326677 1.006739 1.007242

0.4 0.6287244 0.9504103 0.9967858 0.9969687

0.45 0.5458691 0.9762056 0.9901502 0.9901625

0.5 0.506812 0.9919778 0.9938089 0.9938089

0.55 0.4955322 0.9991259 1.000486 1.000486
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Table 2.21: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 100; q = 10, m = 5.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 2.201394 1.879692 1.490101 1.613406

0.05 2.016624 1.755261 1.419729 1.535381

0.1 1.814858 1.593274 1.348454 1.429631

0.15 1.51229 1.331728 1.248739 1.293509

0.2 1.301205 1.176845 1.175817 1.199959

0.25 1.115804 1.026795 1.104911 1.116647

0.3 0.9397393 0.9667597 1.059998 1.064146

0.35 0.8052039 0.9371567 1.024378 1.025436

0.4 0.695397 0.9444294 1.00562 1.006224

0.45 0.6134931 0.9683479 0.995822 0.996081

0.5 0.568228 0.9907401 1.000558 1.000698

0.55 0.5539776 0.9984419 1.006116 1.006116
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Table 2.22: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 100; q = 14, m = 9.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 3.362558 2.715125 2.207016 2.469648

0.05 3.180076 2.470276 2.103871 2.313258

0.1 2.805073 2.222492 1.955457 2.082409

0.15 2.355347 1.851086 1.752095 1.820634

0.2 2.050234 1.526583 1.562336 1.600541

0.25 1.697006 1.294622 1.415253 1.43038

0.3 1.395405 1.116006 1.268908 1.278939

0.35 1.13287 1.011956 1.169818 1.171569

0.4 0.9668882 0.976799 1.104245 1.105343

0.45 0.8356316 0.9747509 1.069331 1.069667

0.5 0.7467799 0.9881934 1.054973 1.055167

0.55 0.7166567 0.9971307 1.058156 1.058156
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Table 2.23: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 100; q = 17, m = 12.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 4.43088 3.27463 2.766701 3.207631

0.05 4.11634 3.109288 2.663808 2.977821

0.1 3.720197 2.62855 2.461541 2.655149

0.15 3.095008 2.204722 2.193741 2.286788

0.2 2.531603 1.821711 1.917159 1.958865

0.25 2.165444 1.483952 1.676365 1.702791

0.3 1.812373 1.267352 1.49423 1.503122

0.35 1.391551 1.08783 1.305243 1.309878

0.4 1.175262 1.008068 1.212269 1.213557

0.45 0.9646022 0.9851524 1.138375 1.138277

0.5 0.8830812 0.9912316 1.118158 1.118197

0.55 0.842786 0.9966471 1.115186 1.115186
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Table 2.24: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 100; q = 20, m = 15.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 5.491058 4.03833 3.302268 3.999251

0.05 5.406529 3.850217 3.342387 3.854964

0.1 4.642768 3.263637 3.021934 3.331345

0.15 3.940119 2.677068 2.668403 2.823668

0.2 3.267766 2.158094 2.315572 2.392805

0.25 2.617454 1.692915 1.963917 1.994736

0.3 2.096242 1.38874 1.678962 1.695164

0.35 1.686941 1.18703 1.474871 1.480418

0.4 1.344196 1.046984 1.315158 1.317441

0.45 1.111987 1.000457 1.228497 1.229518

0.5 0.9826225 0.9884691 1.177656 1.177767

0.55 0.9676562 0.9989364 1.192927 1.192981
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Table 2.25: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 150; q = 8, m = 3.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 1.60248 1.460381 1.152673 1.20594

0.05 1.434098 1.33347 1.120526 1.165833

0.1 1.217712 1.155216 1.078434 1.110463

0.15 1.01674 0.9837865 1.036749 1.049975

0.2 0.8643125 0.9029896 1.016373 1.021822

0.25 0.734031 0.8868909 1.003648 1.007231

0.3 0.6200795 0.9199448 0.9998953 1.000348

0.35 0.5312845 0.9641733 0.9964615 0.996488

0.4 0.4672182 0.9850532 0.9944729 0.9944729

0.45 0.4121031 0.9971681 0.9953903 0.9953903

0.5 0.3844723 0.9997288 0.9966524 0.9966524

0.55 0.3778178 1 0.9993655 0.9993655
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Table 2.26: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 150; q = 9, m = 4.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 1.8392 1.642166 1.286065 1.389952

0.05 1.611729 1.460241 1.233019 1.303376

0.1 1.433187 1.289656 1.173058 1.225483

0.15 1.176647 1.089676 1.110051 1.132783

0.2 0.99477 0.9828568 1.072444 1.081058

0.25 0.8195542 0.9270918 1.032682 1.033914

0.3 0.6892106 0.9230542 1.014586 1.015016

0.35 0.5990257 0.9654686 1.007061 1.007195

0.4 0.525813 0.9858188 0.9998248 0.9998266

0.45 0.4554265 0.9980538 0.9970104 0.9970104

0.5 0.4205218 0.9998923 0.9984857 0.9984857

0.55 0.4102188 1 1.002351 1.002351

94



Table 2.27: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 150; q = 10, m = 5.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 2.085569 1.826796 1.461794 1.574239

0.05 1.845638 1.642225 1.367814 1.464578

0.1 1.584206 1.410293 1.265932 1.342726

0.15 1.330872 1.192565 1.202448 1.226626

0.2 1.127554 1.042165 1.129781 1.140541

0.25 0.9251077 0.9504701 1.071915 1.076595

0.3 0.7762226 0.933986 1.034519 1.036174

0.35 0.662528 0.9598565 1.016503 1.016701

0.4 0.5640421 0.9831989 1.005443 1.005449

0.45 0.4982335 0.9957216 0.9992659 0.9992659

0.5 0.4530251 0.9994732 1.000064 1.000064

0.55 0.4443944 0.9999005 1.004121 1.004121
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Table 2.28: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 150; q = 14, m = 9.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 3.112598 2.533301 2.074431 2.317666

0.05 2.807332 2.347496 1.999747 2.165119

0.1 2.481315 1.970791 1.825715 1.926868

0.15 1.990209 1.540452 1.576878 1.62194

0.2 1.62588 1.274571 1.405946 1.427307

0.25 1.335971 1.093076 1.276201 1.28233

0.3 1.072017 0.9991179 1.167321 1.168787

0.35 0.8862027 0.9760577 1.09938 1.099379

0.4 0.7428506 0.982382 1.056417 1.056449

0.45 0.6560518 0.9933149 1.035235 1.035235

0.5 0.5822771 0.9985969 1.029191 1.029191

0.55 0.574454 0.9999541 1.038207 1.038207
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Table 2.29: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 150; q = 17, m = 12.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 3.912052 2.935993 2.588664 2.916345

0.05 3.548694 2.787348 2.463699 2.713697

0.1 3.041092 2.363813 2.2386 2.357956

0.15 2.545059 1.837276 1.917341 1.983205

0.2 2.057217 1.494066 1.665647 1.695456

0.25 1.656286 1.220775 1.455748 1.464451

0.3 1.351405 1.073701 1.308394 1.311866

0.35 1.081617 0.9964053 1.191725 1.192198

0.4 0.8872752 0.9878561 1.11908 1.119096

0.45 0.7408562 0.9921211 1.0756 1.0756

0.5 0.6908329 0.9984562 1.070453 1.070453

0.55 0.6653772 0.9999684 1.070942 1.070942
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Table 2.30: Simulated relative efficiency of the restricted, pretest and shrinkage

estimators with respect to θ̂
U

when n = 150; q = 20, m = 15.

∆2 θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

0 4.757122 3.458535 3.11706 3.599373

0.05 4.510583 3.278694 3.004409 3.369066

0.1 3.710512 2.684621 2.670762 2.846881

0.15 3.160508 2.175446 2.310845 2.397222

0.2 2.510573 1.720939 1.970721 2.005301

0.25 2.011936 1.354044 1.666108 1.677449

0.3 1.601107 1.13138 1.445671 1.45126

0.35 1.28998 1.025637 1.294568 1.295846

0.4 1.007923 0.9939973 1.18677 1.186926

0.45 0.8478734 0.9891063 1.125042 1.125062

0.5 0.756721 0.9976797 1.106322 1.106322

0.55 0.7663377 0.9998741 1.120029 1.120029

2.9.2 Application on Standard & Poor 500 (SP500) stock

market

The ”sp500dge” dataset contains daily closing prices of the Standard & Poor 500

(SP500) stock market; that has been used by Ding et al. (1993). The dataset is

also available in fGarch/R-package produced by Wuertz et al. (2008).

Following the illustrative example of Ding et al. (1993), we took the most recent
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returns as our targeted subset from December 3, 1988 to August 30, 1991. It

contains 1000 daily returns (i.e, the official work days in the financial market is

252).

To fit ARCH model, at first we conduct Lagrange-Multiplier (LM) test to check

the effect of ARCH, for more details about this test, the reader is referred to Tsay

(2006). Then, we fit ARCH model with an adequate order considering that all

the coefficients should be significant at that order. We found that order q = 12 is

an adequate selection for our data, it represents the full model that given by the

formula (2.47). Therefore, from fitting the full model we obtain the unrestricted

estimator (θ̂
U

).

√
yt = σtεt, εt ∼ N(0, 1), σ2

t = ω + α1yt−1 + · · ·+ αqyt−q. (2.47)

In order to get the UPI from the data; we use AIC and BIC selection criteria to

pick the significant order under the forward selection strategy, the selected order

under the auxiliary information of AIC and BIC represents the reduced model

that given by formula (2.48). Consequently, from the reduced model we compute

the restricted estimator (θ̂
R

).

√
yt = σtεt, εt ∼ N(0, 1), σ2

t = ω + α1yt−1 + · · ·+ αq−m+1yt−q−m+1. (2.48)

Later on, we compute the pretest, Shrinkage and positive Shrinkage estimator.
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To assess the performance of the estimators, we use the relative efficiency of the

mean squared error (RMSE) with respect to the true parameters θ, that will be

estimated by θ̂
∗
. The approach is based on bootstrapping method similar to that

been introduced by Freedman et al. (1981)

After fitting the full model on the original data, the procedure is conducted in

two steps. First,

1. Select a sample of size n from the residuals of the full model, say R1, . . . , Rn

with replacement.

2. Compute the observations Y ∗1 , . . . , Y
∗
n as follow

Y ∗i = Ŷi +Ri, i = 1, . . . , n, (2.49)

where Ŷi is the ith fitted observation from the full model applied on the

original data, and Ri is the ith residual in (1).

3. Fit ARCH model on Y ∗i to obtain θ̂
U

boot(1).

4. Repeat steps (1) - (3) K times, where K is chosen arbitrary to get stable

results. We found that K = 3000 worked well.

5. Take the average of the K iterations, that will represent the true parameter

θ.

After the true parameters’ vector has been estimated in the previous step, the

second step is conducted as follows
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1. Select a sample of size n from the residuals of the full model, say R1, . . . , Rn

with replacement.

2. Compute Y ∗1 , . . . , Y
∗
n as follow

Y ∗i = Ŷi +Ri, i = 1, . . . , n, (2.50)

where Ŷi is the ith fitted observation from the full model applied on the

original data, and Ri is the ith residual in (1).

3. Fit both full and reduced models, and compute θ̂
U

boot(1) and θ̂
R

boot(1), then,

obtain θ̂
PT

boot(1), θ̂
S

boot(1) and θ̂
S+

boot(1).

4. Compute the predicted values Ŷ ∗i using the estimated parameters of all

estimators

Ŷ ∗i (1) = Xθ̂boot(1),

where θ̂
∗
boot(1) ∈ {θ̂

U

boot(1), θ̂
R

boot(1), θ̂
PT

boot(1), θ̂
S

boot(1), θ̂
S+

boot(1)}.

5. Compute the mean squared error of Bootstrapping (MSEB) based on the

true θ as follow

MSEBθ̂
∗
boot(1) =

n∑
i=1

(θ̂
∗
boot(1)− θ̂

∗
)2. (2.51)

6. Repeat steps (1) - (5) a number of times, say K until obtains stable results.
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We found K = 3000 is reasonable number of iterations.

7. Compute the relative efficiency of the mean squared error (RMSE) as follows,

RMSE(θ∗) =
Average of MSEB for θ̂

U

Average of MSEB for θ̂
∗ . (2.52)

Results of the RMSEs for our data are reported in Table 2.31.

Table 2.31: Relative MSE with respect to θ̂
U

for S&P500 stock market daily
closing prices.

Estimator θ̂
R

θ̂
PT

θ̂
S

θ̂
S+

RMSE 1.1236 1.0010 1.0236 1.0382

It is clear that θ̂
R

outperforms all other estimators, which indicates that it is

optimum if the null hypothesis is correct. θ̂
S+

comes the second, then θ̂
S
. θ̂

PT

performs better than θ̂
U

, even though it was the worst among the other estimators.

This may be an indication that the AIC/BIC selection criteria worked quite well

on this data set.

2.10 Conclusion

In this chapter, we proposed the pretest and James-Stein shrinkage estimators

for the parameter’s vector θ for the ARCH model. These estimators were com-

pared analytically via the asymptotic quadratic risk and asymptotic mean square

error matrices, and numerically using simulated and real datasets to confirm our

analytical results.
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Our analytical and numerical results showed that, in general, the class of the

proposed estimators safeguard against the high risks associated with the reduced

model that we get under the set of local alternatives, where the reduced model in

some cases may not be the right choice.

Our findings indicate that, it is better to use the positive James-Stein estimator

as it outperforms all other estimators. To get a UPI, we used AIC, BIC selection

criteria to select the reduced model.
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CHAPTER 3

ON EFFICIENT ESTIMATION

STRATEGIES IN

MONITORING OF LINEAR

PROFILES

3.1 Introduction

In many industries, variable of interest can be modeled by a relation between a

response variable and one or more predictor variables. The functional form of this

relationship is denoted as profile and is addressed by different authors with fixed

and random predictor variables.

We consider control charts for the parameters of the simple linear regression model

is known as linear profiling. Control charts mainly are classified based on their
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sensitivity to the shifts: memory less control charts, such as Shewhart chart, it

is effective in monitoring of large shifts as it makes the use of the current sample

information. In contrast, memory control charts, such as Exponentially Weighted

Moving Average (EWMA) and Cumulative Sum (CUSUM) charts are both use

the past and present information about the process which makes them effective

in the detection of small and moderate shifts. From practical perspective, moni-

toring a process using control charts consists of two parts: Phase I (retrospective

phase) and Phase II (monitoring phase). In phase I, a dataset is collected from

the targeted process under stable conditions that represents the in-control state

of the process to construct the control limits and investigate their reliability to

monitor the process in the future. Phase II employs the control limits from phase

I to monitor the process.

In many manufacturing situations practitioners are interested in characterizing

the quality of a process by a relationship between the response variable (Y) and

one or more explanatory variables (X) instead of a single quality characteristic,

this state is known as a profile or a function. Profile monitoring mainly aims at

checking the stability of this relationship.

yij = β0 + β1xi + eij, (3.1)

where eij is the error component associated with the response variable. Errors are

independently and identically distributed as normal random variables with mean
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zero and variance σ2. Considering phase II state, where the process is in-control,

the parameters β0, β1, σ
2 are assumed to be known.

Gupta et al. (2006) compared the performance of two control charts for linear

profiling in phase II. Their first control charting scheme was proposed by Crowder

and Hamilton (1992) that is known as the classical calibration method to monitor

the deviation from the regression line. The second one is known as the individ-

ual monitoring of linear profile parameters of Kim et al. (2003). Results showed

that Crowder & Hamilton’s method performed poorly compared to Kim’s scheme.

Noorossana et al. (2010) proposed the use of three control chart schemes for Phase

II monitoring of multivariate simple linear profiles. The results revealed that their

schemes were effective in detecting the shifts in the process parameters.

Recently, Ding et al. (2017) proposed a novel control chart for jointly monitoring

the linear profile, location shifts in the latent continuous distribution, and the

random explanatory variables. Their simulated results revealed that the proposed

chart was efficient in detecting abnormalities and was robust to various latent

distributions. For more details about linear profiling, the reader is referred to

Stover and Brill (1998); Aggarwal et al. (1999); Kang and Albin (2000); Ding

et al. (2017); Riaz et al. (2017).

The purpose of this study is to introduce more efficient estimation strategies to
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estimate the linear profile coefficients that will lead to detect the shifts quickly.

We employ the estimation strategies introduced by Khan and Hoque (2002); Khan

et al. (2005); Al-Momani et al. (2016). Our results are compared with the results

of Kim et al. (2003).

The rest of the chapter is organized as follows: Section 3.2 contains some concep-

tual terminologies and assumptions of the simple linear regression. Section 3.3 is

dedicated to introduce the concept of restricted and pretest estimations of simple

linear regression model. We construct the limits of our control charts in Section

3.4. Then, in Section 3.5, we propose the strategy of performance evaluation of

the different control charting structures. We conduct extensive simulation study

and discuss the results of our proposed estimators in Section 3.6. Section 3.7

represents a real world example that assures our simulated results. The chapter

will be rapped up by summary and conclusion in Section 3.8.

3.2 Simple Linear regression model

The estimation of the unknown parameters in statistical inference has seen much

concern from statisticians. Before the involvement of Bayesian statistics widely

as an estimation strategy, the slope and intercept parameters of linear regression

model were estimated by using the maximum likelihood estimator (MLE) or least

square estimator (LSE), as they are very common in the literature. Such estimates

are completely relay on sample information and disregard any other kind of non-

sample prior information in their definition as in Bayesian context.
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Consider a linear regression model with intercept and slope parameters β0 and

β1 respectively. Assume that we have a set of samples that has been collected

each of size n, the observations were given in a form of explanatory variable x

and response variable y as (xij, yij), i = 1, . . . , n and j = 1, . . . , N , where N is

the number of samples. The model for the jth sample is given by the following

regression equation

yij = β0 + β1xi + eij, (3.2)

where e is the error component associated with the response variable. Errors are

independently and identically distributed as normal random variables with mean

zero and variance σ2. Considering phase II state, where the process is in-control,

the parameters β0, β1, σ
2 are assumed to be known.

For the jth sample, the MLE estimator of β0 and β1 are given as follow

βU0j = ȳj − βU1jx̄j (3.3)

βU1j =

∑n
i=1(xij − x̄j)yij∑n
i=1(xij − x̄j)2

, (3.4)

where x̄j =
∑n

i=1 xij
n

and ȳj =
∑n

i=1 yij
n

,

βU0j and βU1j have a bivariate normal distribution with the mean and variance-

covariance given as follow

µ =

β0

β1

 , Σ =
σ2

n

1 +
nx̄2j
Q
−nx̄j

Q

−nx̄2j
Q

n
Q

 ,
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where Q = x′
jxj − 1

n
(1′

nxj)
2.

The LSE of σ2 of the model in (3.2) is estimated by S2, that is given as follows

S2 =
(y − ŷ)′(y − ŷ)

n− 2
, (3.5)

where ŷj = βU0j + βU1jxj.

This unbiased estimator of σ2 follows the χ2 distribution with (n-2) degrees of

freedom.

Assuming that the UPI of the parameters is available, either from previous studies

or from practical experience of the researchers or experts. The UPI may be ex-

pressed in the form of a null hypothesis. First we obtain the MLE βU
j = (βU0j, β

U
1j)

of the unknown parameter β = (β0, β1). Then, we estimate the parameters under

the null hypothesis which is called the restricted estimator βR
j = (βR0j, β

R
1j). Based

on the unrestricted and the restricted estimator, the preliminary test estimator

of the unknown parameters denoted by βPT
j = (βPT0j , β

PT
1j ) is obtained. Details

about theses estimators are given in the following section.

3.3 Efficient estimation strategies

By considering the simple linear regression model of the jth sample defined in

(3.2), the model can be represent in a matrix form as

Y = Xβ + e, (3.6)
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where β =

[
β0j β1j

]
1×2

,X =


1 x1j

...
...

1 xnj


n×2

and e =


e1j

...

enj


n×1

,

E(e) = 0 and E(ee′) = σ2In, where In is the identity matrix of order n.

Based on sample information only, the unrestricted estimators of the slope and

the intercept are the usual MLE. For more details about the MLE estimates of the

slope and intercept, the reader is referred to Khan and Hoque (2002); Kim et al.

(2003); Khan et al. (2005); ?. The proposed estimators are given the forthcoming

subsections.

3.3.1 Slope parameter

Assuming the UPI of the slope parameter is given by the following null hypothesis

H0 : β1 = β10. (3.7)

Our target is to incorporate both the sample information and the UPI to estimate

the slope.

The LRT test statistics for testing the hypothesis using the jth sample in (3.7) is

given by

Lj =
Sxxj(β

U
1j − β10)2

S2
j

. (3.8)

The statistic follows central F-distribution with degree of freedom (1, n−2) under

the null hypotheses (3.7), whereas under the alternative hypothesis H1 : β1 6= β10
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it follows non-central F-distribution with (1, n− 2) degrees of freedom with non-

centrality parameter 1
2
∆2, where

∆2 =
Sxxj(β1 − β10)2

σ2
. (3.9)

Usually ∆2 is the departure constant from the null-hypothesis.

Following Khan and Hoque (2002); Saleh (2006), we found the proposed estimators

to estimate the slope parameter (β1) as follow

Restricted estimator of the slope

It is a simple linear combination of βU1j and β10 and given as

βR1j(d) = dβU1j + (1− d)β10. 0 ≤ d ≤ 1, (3.10)

where d is the degree of distrust in the hypothesis (3.7). Here, d = 0, means there

is no distrust in H0 or βR1j(d = 0) = β10, while d = 1 means there is a complete

distrust in the H0 and we get βR1j(d = 1) = βU1j.

βR1j(d) is normally distributed with mean (µ) and variance (σ2R
1j ) given as

µ = dβ1 + (1− d)β10 (3.11)

σ2R
1j =

σ2

Sxxj
[d2 + (1− d)2∆2] + [

σ√
Sxxj

(1− d)∆]2. (3.12)

As a result, the biasness (B) and mean square error (MSE) based on the jth
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sample are given as follow

B(βR1j) = − σ√
Sxxj

(1− d)∆ (3.13)

MSE(βR1j) =
σ2

Sxxj
[d2 + (1− d)2∆2] (3.14)

Preliminary test estimation of the slope

The preliminary test uses the test statistics defined in (3.8) and the pretest esti-

mate of the slope parameter β1, denoted by βPT1j using the jth sample, and defined

as

βPT1j (d) = βU1j − (1− d)(βU1j − β10)I(Lj < Fα), (3.15)

where Fα is a one-sided (1−α)-level critical value from F -distribution with (1, n

- 2) degrees of freedom.

The mean, the biasness (B) and mean square error (MSE) of βPT1j (d) are given by

E(βPT1j (d)) = E(βU1j)− (1− d)E

[
(βU1j − β10)I(Lj < Fα)

]
= β1 − (1− d)

σ√
Sxxj

E

(√
Sxxj(β

U
1j − β10)

σ
I(
Sxxj(β

U
1j − β10)2

S2
nj

< Fα)

)
(3.16)

B(βPT1j (d)) = −(1− d)(β1 − β10)G3,n−2(
1

3
Fα; ∆2) (3.17)

MSE(βPT1j (d)) =
σ2

Sxxj

[
1− (1− d)2G3,n−2(

1

3
Fα; ∆2) + (1− d)∆2

{
2G3,n−2(

1

3
Fα; ∆2)− 5G5,n−2(

1

5
Fα; ∆2)

}]
(3.18)
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where Gm1,m2(.; ∆2) is the non-central F-distribution with (m1,m2) degrees of

freedom and non-centrality parameter ∆2.

For the proofs about these formulas the reader is referred to Khan and Hoque

(2002); Saleh (2006).

3.3.2 Intercept parameter

For estimating the intercept parameter, we use the UPI provided in (3.7) with the

same test statistics.

Following Khan et al. (2005); Saleh (2006), in the forthcoming two subsections,

efficient estimators of the intercept will be discussed.

Restricted estimator of the intercept

Consider the MLE estimate of the intercept βU1j = ȳj − βU1jx̄j, and the UPI given

in (3.7). The restricted estimator of the slope is given by

βR0j(d) = dβU0j + (1− d)(ȳj − β10x̄j), 0 ≤ d ≤ 1. (3.19)

The restricted estimator βR0j(d) is normally distributed with mean (µR0 ) and vari-

ance (σ2R
0j ) given as

µR0 = β0 + (1− d)β1x̄j. (3.20)

σ2R
0j = σ2

{
d2{ 1

n
+

x̄2
j

Sxxj
}+ (1− d)2 x̄j∆

2

Sxxj

}
−[

x̄jσ√
Sxxj

(1− d)∆]2. (3.21)
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As a result, the biasness and MSE are given as

B(βR0j(d)) =
x̄jσ√
Sxxj

(1− d)∆. (3.22)

MSE(βR0j(d)) = σ2

{
d2{ 1

n
+

x̄2
j

Sxxj
}+ (1− d)2 x̄j∆

2

Sxxj

}
. (3.23)

Preliminary test estimator of the intercept

By using the combination of the unrestricted and the restricted estimators of the

intercept parameter, besides employing the UPI given in (3.7), the preliminary

test estimate is defined as follows

βR0j(d) = βU0j + βU1jx̄j(1− d)I(Lj < Fα) (3.24)

Fα is the (1− α)% quantile of a central F -distribution with (1, n− 2) degrees of

freedom.

The mean, the biasness and the mean squared error (MSE) for the pretest esti-

mator of the intercept parameter are given below:

E(βPT0j (d)) = β0 + (1− d)x̄j
σ√
Sxxj

E

[√
Sxxjβ

U
1j

σ

I(

√
Sxxjβ

U
1j

2

S2
nj

< Fα)

]
. (3.25)

B(βPT0j (d)) = (1− d)x̄β1G3,n−2(
1

3
Fα,∆

2). (3.26)

MSE(βPT0j (d)) = σ2{ 1

n
+

x̄2
j

Sxxj
}+ (1− d)2x̄2

jE(βU1j
2
I(Lj < Fα))

+2x̄j(1− d)E(βU1j(β
U
0j − β0)I(Lj < Fα)) (3.27)
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Proofs of the results are available in Khan et al. (2005); Saleh (2006).

3.3.3 Residuals

Following Kang and Albin (2000); Kim et al. (2003), to extract the residuals of a

simple linear regression model at the jth sample can be achieved by the following

formula

eij = yij − β∗0j − β∗1jxi, i = 1, . . . , n (3.28)

where β∗0j ∈ {βU0j, βR0j, βPT0j } and β∗1j ∈ {βU1j, βR1j, βPT1j }.

The average of the residuals at the jth sample can be formulated as follows

ēj =

∑n
i=1 eij
n

, (3.29)

Residuals are independent and normally distributed random variables with mean

equal zero and variance σ2, where σ2 is estimated by

MSEj =

∑n
i=1 e

2
ij

n− 2
. (3.30)

MSEj is unbiased estimator for σ2. In literature, the natural log of MSEj is used

more than MSEj, hence we will use ln(MSEj) as a measure of error variance. An

approximation of the variance of ln(MSEj) due to Crowder and Hamilton (1992)

is given by

V ar(ln(MSEj)) ≈
2

n− 2
+

2

(n− 2)2
+

4

3(n− 2)3
− 16

15(n− 2)5
. (3.31)
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For more details about the error variance, the reader is referred to Crowder and

Hamilton (1992); Kang and Albin (2000); Kim et al. (2003); Maravelakis and

Castagliola (2009); Huwang et al. (2010).

3.4 Monitoring linear profile coefficients in phase

II

In this section we will discuss the structures of control charts that can be used in

the monitoring of the linear profile parameters. The Slope and the intercept will

be monitored with addition to the residuals.

As the slope and the intercept are correlated, it will be complex to study their

performance simultaneously. The out-of-control signal might come from a shift

in the intercept or slope or both of them together. Therefor, initially we should

make them uncorrelated, then monitor the parameters simultaneously. Following

Kim et al. (2003), we eliminate the correlation between the slope and the intercept

before constructing the control charts for linear profiles, that can be achieved by

replacing X by X ′ = (X − X̄). So that the mean of the adjusted-X is zero. After

the adjustment, the model in (3.3) will be as

Y = X ′β + e, (3.32)
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where X =


1 x′1

...
...

1 x′n


n×2

β =

[
β0 + β1x̄ β1

]
1×2

, e =


e1

...

en


n×1

,

and the value of each term is similar to the model in (3.3). Hence, we can conduct

separate control chart to monitor each parameter without any problem that might

result if the estimators were correlated.

To construct the EWMA structure for monitoring the intercept (β0), we use the

estimate of β0 at sample j; β∗0j, then compute the EWMA statistics as follows

EWMA[j] = λβ∗0j + (1− λ)EWMA[j − 1], j = 1, 2, . . . (3.33)

where 0 < λ ≤ 1 is a smoothing constant and EWMA[0] = β0.

The out-of-control signal of monitoring the parameter is given when EWMA[j] <

LCL or EWMA[j] > UCL, where LCL and UCL are the lower control limit and

the upper control limit respectively. The value of LCL and UCL are relying on

the MSE of the estimator, and are given by

LCL = β0 − L

√
MSE(β∗0j)λ

(2− λ)n
, and UCL = β0 + L

√
MSE(β∗0j)λ

(2− λ)n
, (3.34)

where MSE(β∗0j) ∈ {MSE(βU0j),MSE(βR0j),MSE(βPT0j )} and L is chosen arbi-

trary to give specified in-control average run length (ARL).

Similarly, to construct the EWMA structure for monitoring the slope (β1), we use

the estimate of β1 at sample j; β∗1j ∈ {βU1j, βR1j, βPT1j }, then compute the EWMA
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statistics as follows

EWMA[j] = λβ∗1j + (1− λ)EWMA[j − 1], (3.35)

where EWMA[0] = β1.

The LCL and UCL are given as follow

LCL = β1 − L

√
MSE(β∗1j)λ

(2− λ)n
, and UCL = β1 + L

√
MSE(β∗1j)λ

(2− λ)n
. (3.36)

Finally, to construct the EWMA structure for monitoring the error variance (σ2),

we use the estimate of σ2 at sample j; MSEj, then compute the EWMA statistics

as follows

EWMA[j] = max{λln(MSEj) + (1− λ)EWMA[j − 1], ln(σ2
0)}, (3.37)

where EWMA[0] = ln(σ2
0).

It is more significant to detect the increases in the error variance, therefore we

well focus on UCL; see Lawless (2002); Kim et al. (2003). UCL uses the estimated

MSE of ln(MSEj) as defined in (3.31) that is given by

UCL = L

√
V ar(ln(MSEj))λ

(2− λ)n
, (3.38)

As we adopted the EWMA control chart structure, we will come up with two

proposed control charts that are by
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1. EWMAR : this control chart will use the EWMA structure with the re-

stricted estimators.

2. EWMAPT : this control chart will use the EWMA structure with the pretest

estimators.

3.5 Performance evaluation of charts in phase II

In this section we compare and contrast the efficiency of our proposed control

charts in Phase II against the control charts that proposed by Kim et al. (2003),

we compare the performance of the ARL. We adopted the same example used in

their simulation study.

We used the underlying in-control linear profile model used by Kim et al. (2003);

Kang and Albin (2000). The model is given by

Yij = 3 + 2Xi + eij, (3.39)

where β0 = 3, β1 = 2 and eij are i.i.d. normally distributed random variables

with mean zero and variance one. Xi where taken arbitrary for the purpose of

comparison with the previous proposed methods, hence Xi = {2, 4, 6, 8}.

As we mentioned in the previous section, we start by adjusting the values of the

explanatory variable. So, X ′i = {−3,−1, 1, 3} with x̄ = 0, the model is represented

as

Yij = 13 + 2X ′i + eij, (3.40)
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Table 3.1: Control chart multiplier L to fix ARL0 = 200 for EWMAR and
EWMAPT control charts with different values of d.

d
Chart Estimator 0.1 0.25 0.5 0.75 0.95

EWMAR

βR0 3.8552 4.137 3.084 3.82 3.16
βR
1 3.498 3.283 3.1 3.039 3.028

MSE 1.624 1.504 1.407 1.374 1.368

EWMAPT

βPT0 3.8552 3.25 3.086 3.016 3.005
βPT1 3.498 4.75 3.625 3.139 3.028
MSE 1.624 1.492 1.407 1.373 1.368

As our proposed estimators are biased estimators, following Montgomery (2009),

the biasness should be removed. To setup of the control limits for the unrestricted

estimator we followed Kim et al. (2003), as they chose L for each control chart

separately in order to get the in-control ARL(ARL0) = 584. As a result, they

got the joint ARL0 = 200 for the simultaneous monitoring for all the parameters.

The values of L as reported by Kim et al. (2003) are given as: intercept (βU0 ), L =

3.0156, the Slope (βU1 ), L = 3.0109, and for the error variance (MSE), L = 1.3723.

Following the same methodology with the new estimation strategies, we choose L

that will give ARL0 = 200 under the simultaneous monitoring. Some values of

the constant L for some cases are given in Table 3.1.

A 10,000 replications has been used in our simulation study to estimate each ARL

that will assure for getting stable results. In our simulation, we considered four

different types of shifts. We started by introducing shifts into the intercept (β0),

slope (β1) and the error variance, besides that, we introduced negative shifts into
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the slope. Similarly to Kim et al. (2003), the description of these shifts is given

as follows:

1. Shifts for the intercept δ = (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2) in model

(3.40),

2. Shifts for the slope δ=(0.025, 0.050, 0.075, 0.100, 0.125, 0.150, 0.175, 0.200,

0.225, 0.250) in model (3.39),

3. Shifts for error variance γ = (1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4,2.6, 2.8,and 3.0)

in model (3.39),

4. Negative shifts for the slope δ = (-1, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4,-0.3, -0.2)

in model (3.40).

All our results in tables and figures are based on ARL = 200.

3.6 Discussion and comparative analysis

In this section we are trying to investigate the performance of our proposed meth-

ods and compare the results under different shifts with the results reported by

Kim et al. (2003). All the control charts under the in-control state (the null

hypothesis) have the same ARL, which is modified regarding to the value of L.

To study the performance of the control charts under the shifts of the intercept

(β0), the results are reported in Tables 3.2-3.6 and Figures 3.1-3.3. The different

values of shifts have introduced into the intercept in term of σ as β0 + δσ. From

the results, it is clear that the performance of our proposed methods did not excel
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Table 3.2: ARL, MDRL and SDRL comparisons for d = 0.95 under intercept
shifts from β0 to β0 + δσ

EWMA 3 EWMAR EWMAPT
δ ARL MDRL SDRL ARL MDRL SDRL ARL MDRL SDRL

0.2 59.1 43 53.84 58.13 43 53.15 58.02 42 52.97
0.4 16.2 13 11.53 16.05 13 11.43 16.13 13 11.52
0.6 7.9 7 4.18 7.88 7 4.10 7.86 7 4.08
0.8 5.1 5 2.14 5.15 5 2.16 5.14 5 2.16
1 3.8 4 1.36 3.9 4 1.34 3.79 4 1.33

1.2 3.1 3 0.95 3.058 3 0.96 3.07 3 0.96
1.4 2.6 2 0.73 2.59 2 0.72 2.58 2 0.72
1.6 2.3 2 0.57 2.27 2 0.57 2.27 2 0.57
1.8 2.1 2 0.47 2.04 2 0.46 2.05 2 0.46
2 1.9 2 0.43 1.89 2 0.43 1.89 2 0.44

the performance of EWMA 3, this is due to the phenomena of adjusting our ex-

planatory variable to have a zero mean to get rid of the autocorrelation between

the intercept and the slope, where βU0 = βR = βPT0 = Ȳ .

As we use an approximate control limits instead of the exact limits of the original

EWMA control chart, they slightly delay in the detection of shifts occurring with

the first samples, for more details, see Stefan (1999).

Tables 3.7-3.11 and Figures 3.4-3.6 depict the performance of our proposed meth-

ods compared to EWMA 3 under the shifts introduced into the slope a function of

σ as β1 = δσ. The performance of our proposed methods significantly are relying

on the value of the distrust parameter (d). The large values of d means that we

are more distrust in the null hypothesis and the performance approach towards

EWMA 3 which are typically equal when d = 1.
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Table 3.3: ARL, MDRL and SDRL comparisons for d = 0.75 under intercept
shifts from β0 to β0 + δσ

EWMA 3 EWMAR EWMAPT
δ ARL MDRL SDRL ARL MDRL SDRL ARL MDRL SDRL

0.2 59.1 72 94.8 58.7 43 53.8 58.3 42 53.6
0.4 16.2 28 31.4 16.3 13 11.6 16.3 13 11.6
0.6 7.9 14 12 7.9 7 4.1 7.9 7 4.1
0.8 5.1 9 6 5.2 5 2.2 5.2 5 2.2
1 3.8 6 3.5 3.8 4 1.3 3.8 4 1.3

1.2 3.1 5 2.3 3.1 3 1 3.1 3 1
1.4 2.6 4 1.7 2.6 2 0.7 2.6 2 0.7
1.6 2.3 4 1.3 2.3 2 0.6 2.3 2 0.6
1.8 2.1 3 1 2.1 2 0.5 2.1 2 0.5
2 1.9 3 0.9 1.9 2 0.4 1.9 2 0.4

Table 3.4: ARL, MDRL and SDRL comparisons for d = 0.5 under intercept shifts
from β0 to β0 + δσ

EWMA 3 EWMAR EWMAPT
δ ARL MDRL SDRL ARL MDRL SDRL ARL MDRL SDRL

0.2 59.1 43 53.8 63.5 56 72.1 63.7 46 58.7
0.4 16.2 13 11.5 17.3 16 15.1 17.2 14 12.3
0.6 7.9 7 4.2 8.3 8 5 8.3 7 4.5
0.8 5.1 5 2.1 5.3 5 2.4 5.3 5 2.2
1 3.8 4 1.4 3.9 4 1.5 3.9 4 1.4

1.2 3.1 3 1 3.2 3 1 3.2 3 1
1.4 2.6 2 0.7 2.7 3 0.8 2.7 3 0.7
1.6 2.3 2 0.6 2.3 2 0.6 2.3 2 0.6
1.8 2.1 2 0.5 2.1 2 0.5 2.1 2 0.5
2 1.9 2 0.4 1.9 2 0.4 1.9 2 0.4
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Table 3.5: ARL, MDRL and SDRL comparisons for d = 0.25 under intercept
shifts from β0 to β0 + δσ

EWMA 3 EWMAR EWMAPT
δ ARL MDRL SDRL ARL MDRL SDRL ARL MDRL SDRL

0.2 59.1 43 53.8 77.8 70 93.7 58.3 55 69.2
0.4 16.2 13 11.5 20.4 20 19 16.3 16 14.7
0.6 7.9 7 4.2 9.3 9 6 7.9 8 5
0.8 5.1 5 2.1 5.8 6 2.8 5.2 5 2.4
1 3.8 4 1.4 4.2 4 1.6 3.8 4 1.5

1.2 3.1 3 1 3.4 3 1.1 3.1 3 1
1.4 2.6 2 0.7 2.8 3 0.8 2.6 3 0.8
1.6 2.3 2 0.6 2.5 3 0.7 2.3 2 0.6
1.8 2.1 2 0.5 2.2 2 0.5 2.1 2 0.5
2 1.9 2 0.4 2 2 0.4 1.9 2 0.4

Table 3.6: ARL, MDRL and SDRL comparisons for d = 0.1 under intercept shifts
from β0 to β0 + δσ

EWMA 3 EWMAR EWMAPT
δ ARL MDRL SDRL ARL MDRL SDRL ARL MDRL SDRL

0.2 59.1 43 53.8 99.5 46 58.3 63.7 45.7 57.8
0.4 16.2 13 11.5 25.2 14 12.5 17.2 13.9 12.4
0.6 7.9 7 4.2 10.7 7 4.4 8.3 7 4.4
0.8 5.1 5 2.1 6.4 5 2.2 5.3 5 2.2
1 3.8 4 1.4 4.6 4 1.4 3.9 4 1.4

1.2 3.1 3 1 3.6 3 1 3.2 3 1
1.4 2.6 2 0.7 3 3 0.7 2.7 2.9 0.7
1.6 2.3 2 0.6 2.6 2 0.6 2.3 2 0.6
1.8 2.1 2 0.5 2.3 2 0.5 2.1 2 0.5
2 1.9 2 0.4 2.1 2 0.4 1.9 2 0.4
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Figure 3.1: ARL comparisons under intercept shifts from β0 to β0 + δσ
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Figure 3.2: ARL comparisons under intercept Shifts from β0 to β0 + δσ
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Figure 3.3: ARL comparisons under intercept Shifts from β0 to β0 + δσ

Our proposed methods uniformly excel EWMA 3 with smaller values of d, where

we are more trust in the null hypothesis over the entire range of shifts considered.

The performance of the restricted estimator outperforms the other estimators

under the small amount of shifts and its performance decays with moderate and

big shifts.

Tables 3.12-3.16 and Figures 3.7-3.9 show the ARL performance of our proposed

methods compared to EWMA 3 chart for detecting out-control state in σ under

a range of shifts that are expressed in terem of σ as γσ. Our proposed meth-

ods outperform EWMA 3 under smaller shifts, whereas under larger shifts all the

methods approximately have the same performance. Addition to that, the degree

of the distrust has a significant impact on the performance of the proposed meth-

ods as the methods with the smaller degree of the distrust excelled the methods

with the larger degree of the distrust.
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Table 3.7: ARL, MDRL and SDRL comparisons for d = 0.95 under slope shifts
from β1 to β1 + δσ

EWMA 3 EWMAR EWMAPT
δ ARL MDRL SDRL ARL MDRL SDRL ARL MDRL SDRL

0.025 101.6 72 94.82 99.62 70.5 93.54 99.22 119 165.73

0.05 36.5 28 31.38 36.65 27 31.05 35.86 87 114.19

0.075 17 14 12.01 16.8 14 11.79 16.8 55 72.79

0.1 10.3 9 5.98 10.13 9 5.95 10.2 37 43.22

0.125 7.2 6 3.49 7.03 6 3.38 7.07 24 27.34

0.15 5.5 5 2.31 5.46 5 2.32 5.36 18 17.21

0.175 4.5 4 1.72 4.42 4 1.67 4.43 14 12.03

0.2 3.8 4 1.29 3.74 4 1.29 3.72 11 8.74

0.225 3.3 3 1.04 3.24 3 1.02 3.24 9 6.40

0.25 2.9 3 0.86 2.9 3 0.85 2.89 8 4.90

Table 3.8: ARL, MDRL and SDRL comparisons for d = 0.75 under slope shifts
from β1 to β1 + δσ

EWMA 3 EWMAR EWMAPT
δ ARL MDRL SDRL ARL MDRL SDRL ARL MDRL SDRL

0.025 101.6 72 94.8 95.9 68 90.5 97.7 118 164.1
0.05 36.5 28 31.4 34.8 26 29.1 35.4 87 116.5
0.075 17 14 12.0 16.1 13 11.2 16.5 56 74.5
0.1 10.3 9 6.0 9.7 8 5.4 10.0 37 44.5

0.125 7.2 6 3.5 6.9 6 3.3 7.0 25 28.5
0.15 5.5 5 2.3 5.3 5 2.1 5.4 18 17.7
0.175 4.5 4 1.7 4.3 4 1.6 4.4 14 12.6
0.2 3.8 4 1.3 3.7 3 1.2 3.8 11 8.9

0.225 3.3 3 1.0 3.2 3 1.0 3.2 9 6.6
0.25 2.9 3 0.9 2.9 3 0.8 2.9 8 5.1
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Table 3.9: ARL, MDRL and SDRL comparisons for d = 0.5 under slope shifts
from β1 to β1 + δσ

EWMA 3 EWMAR EWMAPT
δ ARL MDRL SDRL ARL MDRL SDRL ARL MDRL SDRL

0.025 101.6 72 94.8 88.79 63 82.80 95.2 123 170.40
0.05 36.5 28 31.4 29.75 23 24.17 33.13 98 135.38
0.075 17 14 12.0 14.06 12 9.04 15.53 71 94.58
0.1 10.3 9 6.0 8.56 8 4.39 9.43 48 61.90

0.125 7.2 6 3.5 6.11 6 2.63 6.66 34 40.79
0.15 5.5 5 2.3 4.77 4 1.76 5.14 25 28.00
0.175 4.5 4 1.7 3.95 4 1.28 4.23 19 19.22
0.2 3.8 4 1.3 3.39 3 1.01 3.6 15 13.43

0.225 3.3 3 1.0 2.99 3 0.83 3.15 12 9.68
0.25 2.9 3 0.9 2.67 3 0.69 2.79 10 7.54

Table 3.10: ARL, MDRL and SDRL comparisons for d = 0.25 under slope Shifts
from β1 to β1 + δσ

EWMA 3 EWMAR EWMAPT
δ ARL MDRL SDRL ARL MDRL SDRL ARL MDRL SDRL

0.025 101.6 72 94.8 58.64 42 53.40 69.38 121 170.6
0.05 36.5 28 31.4 14.8 12 9.54 20.23 107 145.2
0.075 17 14 12.0 7.2 6 3.38 9.65 82 112.4
0.1 10.3 9 6.0 4.76 4 1.75 6.15 61 79.2

0.125 7.2 6 3.5 3.59 3 1.11 4.49 45 58.8
0.15 5.5 5 2.3 2.9 3 0.79 3.55 35 42.5
0.175 4.5 4 1.7 2.48 2 0.62 2.99 27 32.2
0.2 3.8 4 1.3 2.19 2 0.47 2.59 22 24.3

0.225 3.3 3 1.0 2 2 0.38 2.33 19 20.1
0.25 2.9 3 0.9 1.9 2 0.39 2.15 16 16.2
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Table 3.11: ARL, MDRL and SDRL comparisons for d = 0.1 under slope Shifts
from β1 to β1 + δσ

EWMA 3 EWMAR EWMAPT
δ ARL MDRL SDRL ARL MDRL SDRL ARL MDRL SDRL

0.025 101.6 72 94.8 12.19 10 7.19 21.13 16.2 15.96
0.05 36.5 28 31.4 3.97 4 1.29 7.22 6.4 4.30
0.075 17 14 12.0 2.48 2 0.62 3.93 3.2 1.76
0.1 10.3 9 6.0 1.96 2 0.35 2.79 2.7 0.91

0.125 7.2 6 3.5 1.6 2 0.49 2.16 2.4 0.79
0.15 5.5 5 2.3 1.19 1 0.39 1.62 1.4 0.58
0.175 4.5 4 1.7 1.02 1 0.15 1.37 1.3 0.30
0.2 3.8 4 1.3 1 1 0.03 1.28 1.3 0.15

0.225 3.3 3 1.0 1 1 0.00 1.23 1.2 0.10
0.25 2.9 3 0.9 1 1 0.00 1.19 1.2 0.09
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Figure 3.4: ARL comparisons under slope Shifts from β1 to β1 + δσ
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Figure 3.5: ARL comparisons under slope Shifts from β1 to β1 + δσ
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Figure 3.6: ARL comparisons under slope Shifts from β1 to β1 + δσ
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Table 3.12: ARL, MDRL and SDRL comparisons for d = 0.95 under standard
deviation shifts from σ to γσ

EWMA 3 EWMAR EWMAPT
γ ARL MDRL SDRL ARL MDRL SDRL ARL MDRL SDRL

1.2 33.5 24 30.36 33.21 24 30.27 33.09 24 30.07
1.4 12.7 10 10.10 12.7 10 10.12 12.72 10 10.06
1.6 7.2 6 5.16 7.28 6 5.11 7.3 6 5.08
1.8 5.1 4 3.21 5.1 4 3.17 5.09 4 3.16
2 3.9 3 2.20 3.92 3 2.19 3.94 3 2.19

2.2 3.2 3 1.69 3.27 3 1.72 3.26 3 1.67
2.4 2.8 3 1.42 2.85 3 1.43 2.83 2 1.41
2.6 2.5 2 1.20 2.5 2 1.21 2.52 2 1.25
2.8 2.3 2 1.08 2.25 2 1.08 2.24 2 1.05
3 2.1 2 0.96 2.08 2 0.95 2.06 2 0.96

Table 3.13: ARL, MDRL and SDRL comparisons for d = 0.75 under standard
deviation shifts from σ to γσ

EWMA 3 EWMAR EWMAPT
γ ARL MDRL SDRL ARL MDRL SDRL ARL MDRL SDRL

1.2 33.5 24 30.36 31.98 23 28.87 32.32 23 29.16
1.4 12.7 10 10.10 12.27 9 9.59 12.37 9 9.77
1.6 7.2 6 5.16 7.04 6 4.76 7.06 6 4.82
1.8 5.1 4 3.21 4.95 4 3.01 4.98 4 3.04
2 3.9 3 2.20 3.88 3 2.10 3.89 3 2.15

2.2 3.2 3 1.69 3.2 3 1.62 3.19 3 1.63
2.4 2.8 3 1.42 2.8 2 1.33 2.81 3 1.34
2.6 2.5 2 1.20 2.49 2 1.16 2.49 2 1.16
2.8 2.3 2 1.08 2.23 2 1.03 2.25 2 1.04
3 2.1 2 0.96 2.04 2 0.92 2.04 2 0.91
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Table 3.14: ARL, MDRL and SDRL comparisons for d = 0.5 under standard
deviation shifts from σ to γσ

EWMA 3 EWMAR EWMAPT
γ ARL MDRL SDRL ARL MDRL SDRL ARL MDRL SDRL

1.2 33.5 24 30.36 28.53 21 24.74 29.59 22 26.01
1.4 12.7 10 10.10 10.87 9 7.94 11.34 9 8.63
1.6 7.2 6 5.16 6.4 5 4.06 6.54 5 4.30
1.8 5.1 4 3.21 4.65 4 2.57 4.74 4 2.75
2 3.9 3 2.20 3.68 3 1.87 3.75 3 2.02

2.2 3.2 3 1.69 3.11 3 1.45 3.13 3 1.51
2.4 2.8 3 1.42 2.7 2 1.20 2.74 2 1.26
2.6 2.5 2 1.20 2.42 2 1.04 2.47 2 1.06
2.8 2.3 2 1.08 2.2 2 0.93 2.25 2 0.96
3 2.1 2 0.96 2.04 2 0.85 2.09 2 0.89

Table 3.15: ARL, MDRL and SDRL comparisons for d = 0.25 under standard
deviation shifts from σ to γσ

EWMA 3 EWMAR EWMAPT
γ ARL MDRL SDRL ARL MDRL SDRL ARL MDRL SDRL

1.2 33.5 24 30.36 23.91 18 19.84 33.09 19 21.96
1.4 12.7 10 10.10 9.51 8 6.46 12.72 8 7.09
1.6 7.2 6 5.16 5.99 5 3.40 7.3 5 3.62
1.8 5.1 4 3.21 4.38 4 2.20 5.09 4 2.43
2 3.9 3 2.20 3.58 3 1.65 3.94 3 1.82

2.2 3.2 3 1.69 3.07 3 1.31 3.26 3 1.40
2.4 2.8 3 1.42 2.7 2 1.09 2.83 2 1.18
2.6 2.5 2 1.20 2.46 2 0.97 2.52 2 1.02
2.8 2.3 2 1.08 2.24 2 0.85 2.24 2 0.88
3 2.1 2 0.96 2.09 2 0.80 2.06 2 0.82
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Table 3.16: ARL, MDRL and SDRL comparisons for d = 0.1 under standard
deviation shifts from σ to γσ

EWMA 3 EWMAR EWMAPT
γ ARL MDRL SDRL ARL MDRL SDRL ARL MDRL SDRL

1.2 33.5 24 30.36 22.71 17 18.43 32.32 17.7 19.62
1.4 12.7 10 10.10 9.34 8 6.06 12.37 8.2 6.46
1.6 7.2 6 5.16 5.99 5 3.23 7.06 5.1 3.43
1.8 5.1 4 3.21 4.45 4 2.14 4.98 4 2.25
2 3.9 3 2.20 3.65 3 1.61 3.89 3 1.67

2.2 3.2 3 1.69 3.15 3 1.28 3.19 3 1.32
2.4 2.8 3 1.42 2.81 3 1.09 2.81 3 1.12
2.6 2.5 2 1.20 2.55 2 0.95 2.49 2 0.97
2.8 2.3 2 1.08 2.34 2 0.83 2.25 2 0.86
3 2.1 2 0.96 2.19 2 0.79 2.04 2 0.80
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Figure 3.7: ARL comparisons under standard deviation shifts from σ to γσ.
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Figure 3.8: ARL comparisons under standard deviation shifts from σ to γσ.
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Figure 3.9: ARL comparisons under standard deviation shifts from σ to γσ.
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Table 3.17: ARL, MDRL and SDRL comparisons for d = 0.95 under slope shifts
from β1 to β1 + δσ

EWMA 3 EWMAR EWMAPT
δ ARL MDRL SDRL ARL MDRL SDRL ARL MDRL SDRL

-0.2 13.1 11 8.58 12.17 4 1.28 12.58 11 8.62
-0.3 6.6 6 3.22 6.18 2 0.62 6.4 6 3.23
-0.4 4.4 4 1.72 4.16 2 0.43 4.28 4 1.68
-0.5 3.3 3 1.07 3.17 1 0.50 3.26 3 1.09
-0.6 2.7 3 0.77 2.58 1 0.36 2.65 3 0.78
-0.7 2.3 2 0.59 2.23 1 0.15 2.29 2 0.60
-0.8 2.1 2 0.46 1.99 1 0.04 2.05 2 0.47
-0.9 1.9 2 0.44 1.81 1 0 1.87 2 0.43
-1 1.7 2 0.47 1.63 1 0 1.7 2 0.47

Table 3.18: ARL, MDRL and SDRL comparisons for d = 0.75 under slope shifts
from β1 to β1 + δσ

EWMA 3 EWMAR EWMAPT
δ ARL MDRL SDRL ARL MDRL SDRL ARL MDRL SDRL

-0.2 13.1 11 8.58 8.19 3 1.23 10.16 87 116.45
-0.3 6.6 6 3.22 4.46 2 0.60 5.34 56 74.50
-0.4 4.4 4 1.72 3.12 2 0.42 3.73 37 44.48
-0.5 3.3 3 1.07 2.46 2 0.50 2.91 25 28.53
-0.6 2.7 3 0.77 2.09 1 0.36 2.45 18 17.69
-0.7 2.3 2 0.59 1.84 1 0.14 2.17 14 12.62
-0.8 2.1 2 0.46 1.62 1 0.02 1.99 11 8.89
-0.9 1.9 2 0.44 1.38 1 0.00 1.84 9 6.55
-1 1.7 2 0.47 1.19 1 0.00 1.7 8 5.05

Table 3.19: ARL, MDRL and SDRL comparisons for d = 0.5 under slope shifts
from β1 to β1 + δσ

EWMA 3 EWMAR EWMAPT
δ ARL MDRL SDRL ARL MDRL SDRL ARL MDRL SDRL

-0.2 13.1 11 8.58 4.57 3 1.01 8.94 98.00 135.38
-0.3 6.6 6 3.22 2.81 2 0.50 4.72 71.00 94.58
-0.4 4.4 4 1.72 2.11 2 0.39 3.4 48.00 61.90
-0.5 3.3 3 1.07 1.77 1 0.49 2.74 34.00 40.79
-0.6 2.7 3 0.77 1.41 1 0.27 2.34 25.00 28.00
-0.7 2.3 2 0.59 1.13 1 0.06 2.13 19.00 19.22
-0.8 2.1 2 0.46 1.02 1 0.01 2.02 15.00 13.43
-0.9 1.9 2 0.44 1 1 0.00 1.96 12.00 9.68
-1 1.7 2 0.47 1 1 0.00 1.91 10.00 7.54
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Table 3.20: ARL, MDRL and SDRL comparisons for d = 0.25 under slope shifts
from β1 to β1 + δσ

EWMA 3 EWMAR EWMAPT
δ ARL MDRL SDRL ARL MDRL SDRL ARL MDRL SDRL

-0.2 13.1 11 8.58 2.21 2 0.47 12.58 22.00 24.40
-0.3 6.6 6 3.22 1.54 2 0.50 6.4 12.00 11.59
-0.4 4.4 4 1.72 1.05 1 0.20 4.28 8.00 6.11
-0.5 3.3 3 1.07 1 1 0.01 3.26 6.00 3.24
-0.6 2.7 3 0.77 1 1 0 2.65 5.00 2.13
-0.7 2.3 2 0.59 1 1 0 2.29 4.00 1.57
-0.8 2.1 2 0.46 1 1 0 2.05 3.00 1.17
-0.9 1.9 2 0.44 1 1 0 1.87 3.00 0.93
-1 1.7 2 0.47 1 1 0 1.7 2.00 0.73

Table 3.21: ARL, MDRL and SDRL comparisons for d = 0.1 under slope shifts
from β1 to β1 + δσ

EWMA 3 EWMAR EWMAPT
δ ARL MDRL SDRL ARL MDRL SDRL ARL MDRL SDRL

-0.2 13.1 11 8.58 1 1 0.022 10.16 2.00 0.88
-0.3 6.6 6 3.22 1 1 0 5.34 1.50 0.32
-0.4 4.4 4 1.72 1 1 0 3.73 1.30 0.17
-0.5 3.3 3 1.07 1 1 0 2.91 1.20 0.11
-0.6 2.7 3 0.77 1 1 0 2.45 1.20 0.08
-0.7 2.3 2 0.59 1 1 0 2.17 1.10 0.06
-0.8 2.1 2 0.46 1 1 0 1.99 1.10 0.05
-0.9 1.9 2 0.44 1 1 0 1.84 1.10 0.04
-1 1.7 2 0.47 1 1 0 1.7 1.10 0.05

136



● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

0
1

2
3

4
5

d = 0.95

δ

lo
g(

A
R

L)

● EWMA_3
EWMAR

EWMAPT

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

0
1

2
3

4
5

d = 0.75

δ

lo
g(

A
R

L)

● EWMA_3
EWMAR

EWMAPT

Figure 3.10: ARL comparisons under slope Shifts from β1 to β1 + δσ
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Figure 3.11: ARL comparisons under slope Shifts from β1 to β1 + δσ
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Figure 3.12: ARL comparisons under slope Shifts from β1 to β1 + δσ

3.7 Illustrative example

In this section, illustrations with the real-life example of linear profiles in the oil

industry is discussed.

3.7.1 Darcy law of single-phase flow

Very early, Darcy (1856) investigated the flow of water (single-phase) through

sand filter, and throughout his experiment he concluded the following points:

� The flow rate is directly proportional to the difference of water levels in the

two manometers.

� The flow rate is directly proportional to the cross-sectional area of the sand

pack.

� The flow rate is inversely proportional to the length of the pack.
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Figure 3.13: Darcy law of the flow of water through sand filter.

The water level in the manometer can be represented as the pressure head at that

point, so the levels difference can be replaced by the pressure difference. The

following figure shows the experimental setup of Darcy. The outcomes of Darcy

experiment is summarized in the following formula:

q = C
A

L
(h1 − h2), (3.41)

where q is the measured flow rate, A is the cross-sectional area, L is the Length,

h is the Level of water and C is the proportionality constant.
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3.7.2 multiphase flow

The term of multiphase flow refers to flow of any fluid consists of more than

one phase or component with different chemical properties through a pipe or

channel simultaneously. This term was coined lately by Soo et al. (1969) and

it comprises of fluid dynamics motion of multiple phases. Multiphase flow is

commonly seen in industrial processes such as pipeline transportation, fluidized

beds and power plants. Liquid-liquid flows have many important applications in

a diverse range of process industries in the petroleum production particularly,

where oil and water are often produced and transported together. A typical

multiphase oil-water two-phase flow is often encountered in petroleum industries,

and measuring their process parameters (especially individual flow rate of oil and

water) is an important issue in oil exploitation and transportation. Analogously

in multiphase flow, probably the key toward understanding the phenomena of

pressure drop behavior in oil field industries in order to optimize between the

huge costs of production and transportation. For more details, the reader refers

to Elobeid et al. (2016).

3.7.3 Experimental setup and data description

The experiment of two-phase flow has been conducted in the laboratories of

Petroleum and Geological sciences college at KFUPM, Dhahran, Saudi Arabia.

The experiment was designed to investigate the influence of some additives on the

flow behavior of water, oil and air mixture. The loop contains two 200-liter barrels
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for water and oil respectively, besides an air connection instrument to supply the

air. The flow rate of the feed streams was measured and adjusted by regulating

valves.

The feed pumps for the liquids (oil and water) are rotary pumps equipped with

axial face sealing. Water, air and oil can be separated in the separator or using

cyclone and separator which are connected to the outlet of the test section. The

test section was made of stainless steel tube with an outer diameter of 0.5 inch

and an inner diameter of 0.4 inch. Its total length is approximately 5 m divided

into two straight horizontal sections separated by elbows (90 degree elbow). The

horizontal sections are equipped with differential pressure transducer to measure

the pressure drop inside the test section. At the end of the test section an acrylic

section of 20 cm allows the visible inspection of the flow behavior. After having

passed the test section, the fluid can be directed to the phase separator where

water and oil can be separated by gravity or alternatively to the cyclone whose

outlet is connected to the phase separator. The sketch layout of the experiment

is given is the following figure.

The generated air-water two-phase flow is circulated through the flow loop using

a vertical centrifugal pump that can provide a maximum flow rate of 40 liter/min

of water. On the other hand, the air is introduced to the system using a pressure

regulator connected at the inlet of the compressed air. The flow rate of the water

is measured using an electromagnetic flow meter and an accurate pressure trans-

ducer is used to measure the differential pressure drop over 1.5 millibar long and
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Figure 3.14: Two-phase experimental setup

mounted about 3.5 millibar downstream the mixing section.

The data acquisition procedure is carried out for better and more accurate data

gathering. We targeted a group of the experimental observations at 25◦ Celsius,

54 different measurements of Q and ∆P has been collected, preliminary investi-

gations has been conducted on the gathered data to assure that it satisfies the

regression model properties. There exist 18 levels of the volume flow rate (in

liter/min) that equal 2.5, 3.8, 5.6, 7.2, 8.9, 10.6, 12.3, 13.9, 18.6, 20.3, 22.3, 24.0,

21.4, 22.2, 23.1, 24.3, 25.7 and 26.7. In the stated study, we consider the dif-

ference of pressure in two point (∆P ) as a dependent variable and the flow rate

(Q) as an independent variable. We used an approach based on bootstrapping

method similar to that been introduced by Freedman et al. (1981), and repeated
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Table 3.22: The values of the constant L

EWMA 3 EWMAR EWMAPT
Intercept 2.997 3.137 3.009
slope 2.992 2.973 3.005
MSE 65.897 66.32 65.91

the scenario for 10000 iterations to extract the true parameters for our model.

The flow rate (Q) is direct proportion to the difference of pressure in two points

(∆P ) and the model mathematically is represented as

∆P = −43.46 + 25.37 ∗Q (3.42)

The model in (3.42) is considered as a reference to the relationship between the

flow rate (Q) and the difference of pressure in two points (∆P ) with σ equals 48.9.

3.7.4 Implementation of EWMAR and EWMAPT charts

To monitor the flow rate (Q) as it is a direct proportion to the difference of

pressure in two points (∆P ), we estimated the model in (3.42), and then proceed

with the following steps:

� From bootstrapping, we found the value of the distrust constant d = 0.0524.

� We transformed the flow rate (Q) into Q′ = (Q− Q̄).

� Following Riaz et al. (2017) we fixed the value of λ = 0.2. We also fixed the

value of ARL0 = 200 with the associated L given in Table 3.22.
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Table 3.23: Control limits for each control chart

EWMA 3 EWMAR EWMAPT

Intercept
LCL 358.6052 358.6989 358.7782
UCL 381.6548 381.5611 381.4818

slope
LCL 25.32463 25.32673 24.33698
UCL 26.84755 25.47537 26.46302

MSE UCL 8.01482 8.066268 8.0642

� For the diagnosis purpose, the plotting statistics were plotted against the

control limits given in Table 3.23.

The findings of diagnose has been plotted in Figure 3.15-3.17. As it shown in the

figures, the results assure our findings in the simulation part. For the intercept

parameter, as we mentioned, there is no significant improvement in under the

different estimation strategy as we standardized our explanatory variable. For the

slope and the error variance, it is clear that EWMAPT and EWMAR excelled

EWMA 3 to detect the shift in the fluid’s pressure difference (∆P ) regarding to

the associate changes in the flow rate.

3.8 Summary and conclusions

In this chapter, we discussed different charts using restricted and pretest estima-

tion methods and proposed new control charts based on the two estimators and

we compared their performance with EWMA 3 via ARL.

The results showed that, the EWMAR control chart outperforms all the other

control charts under the different values of shifts in the slope and the error variance

of the considered linear profile. In contrast, the three control charts performed
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Figure 3.15: EWMA 3
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Figure 3.16: EWMAR
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Figure 3.17: EWMAPT

similarly under the intercept shifts of the linear profile, that was due to the useless

of the UPI that caused by the adjusted explanatory variable.

Overall, EWMAR performs better under smaller values of d and small shifts,

whereas EWMAPT with smaller values of d was the worse. Under the larger

values of d, EWMAR and EWMAPT approach to EWMA 3 and they perform

similarly when d = 0.
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CHAPTER 4

THE PERFORMANCE OF

PHASE I COEFFICIENT OF

VARIATION CONTROL

CHARTS FOR PROCESS

MONITORING

4.1 Introduction

In many cases, while the process is in-control, it has a constant mean and variance.

In such cases X̄ control chart can be used to monitor the mean and S or R control

charts can be used to monitor the dispersion. Recently, control charting techniques

have been adopted in many applications such as education, health, finance, etc.
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where the mean and the standard deviation might be non constant even though

the process is operating in-control. Hence, the situation urged us to introduce the

CV control charts for monitoring relative dispersion.

In recent years, researchers investigated the monitoring of location and scale pa-

rameters in phase I, for example, Yang et al. (2006) studied Phase I sample size

impact on the false signal rate of the X̄ chart. Schoonhoven and Does (2012) stud-

ied the influence of estimating the standard deviation in phase I on the behavior

of the control chart in phase II for dispersion monitoring. Abbasi et al. (2015)

investigated the efficiency of Shewhart chart in phase I to monitor the variability

by considering normal and non-normal processes.

However, many literatures have investigated the CV control charts in phase II,

the performance of CV control charts in phase I has not been investigated in SPC

literature so far. Therefore, the purpose of this study is to evaluate and investi-

gate the performance of different CV estimators to study the probability to signal

(PTS) of the CV control charts in phase I, as similar to the studies of location

and dispersion, done by Abbasi et al. (2015); Jensen et al. (2006); Jones-Farmer

and Champ (2010).

The organization of this chapter is as follows: Section 4.2 presents monitoring of

the CV in phase I. Section 4.3 describes the simulation study. Section 4.4 contains

the results and discussion and gives comparisons of different charting structures.
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The chapter is wrapped up by conclusions and recommendations in Section 4.6.

4.2 Monitoring of process CV in phase I

Assume that we have a process (X) with mean (µ > 0) and standard deviation

(σ). By definition, the CV of X is defined as

γ =
σ

µ
. (4.1)

which is a standardized measure of dispersion of the process X. More details about

the CV properties are available in Calzada and Scariano (2013).

The CV estimator is a standardized measure of dispersion of the quality char-

acteristic of X. According to Everitt (1998), the CV can be used in a variety

of real world applications; for example, to express the precision of an assay in

the analytical chemistry, conducting quality assurance studies in engineering and

determining the volatility of bonds in economic. In addition, the CV has many

advantages over the other dispersion estimators, such as the standard deviation,

because the standard deviation of data is always understood in the context of

the mean of the data. In contrast, it is unlike the standard deviation, it can not

be used directly to establish confidence intervals for the process mean. For more

details about the CV properties, the reader is referred to Calzada and Scariano

(2013). From the practical aspects, the parameter in Equation (??) is inapplica-

ble because it relies on parameters σ and µ. Hence, it is more practical to use an
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estimator of γ that will take the advantage of using a sample from the process.

Consider historical data containing a sample of size n, and let Xij, i = 1, . . . , n; j =

1, . . . ,m represents the ith historical observation from the process X, with standard

deviation and mean X̄j and Sj, respectively. Then, the CV of the process X is

defined as

Wj =
Sj
X̄j

. (4.2)

In many practical aspects, the estimator in Equation (4.2) might not be efficient

estimator of CV for many reasons, such as, under very small sample sizes, the

existence of extreme points inside the sample, the sample is heterogeneous, as well

as when the sample follows non-normal distribution. For more details, the reader

is referred to Sokal and Rohlf (1995). Phase I data sets are usually contaminated

with extreme points. These contaminations may be a part of a particular sample

or may be distributed across the historical dataset. The goal of Phase I analysis

is to detect/remove any inconsistent observations so that the Phase II limits can

be based on a clean dataset. In this study, we will also propose a new sensitive

estimator of CV that is defined as

Vj =
Rj

X̃j

, (4.3)

where, X̃j is the sample median and Rj is the usual range estimator defined as:

Rj = x(n)j − x(1)j , where X(1)j and X(n)j represent the extreme observations in

the data vector X.
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4.2.1 Control chart structure

In this subsection, we propose different control chart structures for monitoring

the CV in Phase I. Similarly to the structure of R chart, we follow Montgomery

(2009); Schoonhoven and Does (2012); Abbasi et al. (2015) to introduce our new

charting structures. Suppose a historical dataset contains m samples each of size

n. After estimating CV by using either W or V, different control chart structures

are described below

UCL = W̄ + LW̄
d3W̄

d2W̄

W̄

W̄ chart : CL = W̄ (4.4)

LCL = W̄ − LW̄
d3W̄

d2W̄

W̄

UCL = W̃ + LW̃
d3W̃

d2W̃

W̃

W̃ chart : CL = W̃ (4.5)

LCL = W̃ − LW̃
d3W̃

d2W̃

W̃

UCL = Wp + LWp

d3Wp

d2Wp

Wp

Wpchart : CL = Wp (4.6)

LCL = Wp − LWp

d3Wp

d2Wp

Wp

For the monitoring purposes, Wj is used as a plotting statistics for the above three

control charts.
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UCL = V̄ + LV̄
d3V̄

d2V̄

V̄

V̄ chart : CL = V̄ (4.7)

LCL = V̄ − LV̄
d3V̄

d2V̄

V̄

UCL = Ṽ + LṼ
d3Ṽ

d2Ṽ

Ṽ

Ṽ chart : CL = W̃ (4.8)

LCL = Ṽ − LṼ
d3Ṽ

d2Ṽ

Ṽ

UCL = Vp + LVp
d3Vp

d2Vp

Vp

Vpchart : CL = Vp (4.9)

LCL = Vp − LVp
d3Vp

d2Vp

Vp

For the monitoring purposes, Vj is used as a plotting statistics for the above three

control charts. In addition, W̄ =
∑m

i=1
Wi

m
, V̄ =

∑m
i=1

Vi
m

, the pooled estimate of

Connett and Wong Lee (1990) are Wp =

√∑m
i=1

W 2
i

m
and Vp =

√∑m
i=1

V 2
i

m
. Also,

W̃ and W̃ are the median of m samples of Wi and Vj, respectively.

The constants d2W̄ , d3W̄ , d2V̄ , d3V̄ , d2W̃ , d3W̃ , d2Ṽ , d3Ṽ , d2Wp , d3Wp , d2Vp , d3Vp are avail-

able in Table A.1 .
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4.3 Simulation study

To investigate the performance of the various control chart schemes that have

been considered in Section 4.2, we performed a comprehensive simulation study

considering Phase I of SPC. In practice, samples are collected from a process in

a form of rational subgroups. As the historical data contains m subgroups each

of size n, hence, in this study, we considered m = 30 and n = 5, 10 and 15.

The observations come from normal distribution N (µ, µ ∗ γ0), where µ = 500 and

γ0 = 0.05. It is frequent to get extreme observations/samples in Phase I data set

and the aim of Phase I is to detect these contaminations efficiently and quickly.

To check the detection ability of CV charts, we introduced two contaminated

scenarios in Phase I following Schoonhoven et al. (2011); Schoonhoven and Does

(2012); Abbasi et al. (2015), as given below.

� A model for localized CV disturbances in which observations in m1 samples

are drawn from N (µ, µ∗γ1) distribution, with γ1 = γ0 + δγ0, δ represent the

shift in γ0, and m1 = 3, 6, 9,or 12.

� A model for diffuse symmetric CV disturbances in which each observation

has (1− p)% probability of being drawn from the N (µ, µ ∗ γ0) distribution

and p% probability of being drawn from the N (µ, µ ∗ γ1) distribution, with

p = 5%,10%,15% or 20%.

The multipliers L of the control charts structure (described in Section 4.2) are

appropriately chosen in order to give a constant false alarm probability (FAP)

(α), where α = 1 − (1 − α∗)m, α∗ is the probability to signal from one sample.
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More details about FAP can be found in Jones-Farmer and Champ (2010); Shiau

and Sun (2010). Later, we use respective sample statistic (i.e., W or V) as the

monitoring statistic to inspect any out-of-control signals. The values of L under

the considered m and n, are chosen to fix the FAP(α) = 0.01 for all the control

charts, as reported in Table 4.1. This procedure is repeated 100,000 times for

getting the probability to signal.

Table 4.1: Control chart multiplier L to fix FAP at 0.01 for all the control charts.

n W̄ W̃ Wp V̄ Ṽ Vp

5 3.873 4.287 1.209 4.07 4.48 1.256

10 3.72 3.99 0.818 4.25 4.61 0.922

15 3.63 3.88 0.66 4.53 5 0.81

4.4 Results and discussion

In this section, we provide a comprehensive report of the results from the sim-

ulation study conducted in Section 4.3. From the performance comparison per-

spective, the control chart that gives higher probability to signal is considered

better than the other control charts. The findings are reported in the forthcoming

paragraphs.

Figure 4.1 and Figure 4.2 show the probability to signal of the control charts

in presence of localized CV disturbances with subgroup sizes n = 5 and 10. The

results showed that the W̃ and Ṽ control charts dominantly performed better than
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the other control charts. WP and VP control charts showed the worst performance

in detecting the localized disturbances. Addition to that, the larger subgroup size

(n) gave higher probability to signal with all the control charts.

Figure 4.1: The PTS of CV charts with localized CV disturbances, n = 5, γ0 = .05
and m = 30.
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Figure 4.2: The PTS of CV charts with localized CV disturbances, n = 10, γ0 =
.05 and m = 30.

Figure 4.3 and Figure 4.4 show the probability to signal of the control charts with

diffuse symmetric CV disturbances for subgroup sizes n = 5 and 10. Relaying on

the depicted plots, it is clear that the Wp and Ṽ control charts are showing far

higher PTS as compared to the other charts when n = 5. At this sample size Vp

and W̄ are showing the worst performance at different level of p. For large sample

sizes (n = 10 ), again Wp and Ṽ are performing better as compared to the other

charts for δ < 3. For large values of δ, W̄ and Ṽ are better choices. In general
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we can say that Wp and Ṽ are the best charts for the detection of the diffuse

symmetric CV disturbances.

Figure 4.3: The PTS of the CV charts with diffuse symmetric CV disturbances,
n = 5, γ0 = .05 and m = 30.
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Figure 4.4: The PTS of the CV charts with diffuse symmetric CV disturbances,
n = 10, γ0 = .05 and m = 30.

4.4.1 The effect of n, CV (γ) and m on PTS

We will investigate the effect of sample size (n), γ, and number of subgroups (m)

on PTS. To save space, we will only investigate W̃ chart for varying levels of m,

γ and n. similar investigations can be carried out for other charts.

Effect of the sample size (n)
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The effect of the sample size (n) on the performance of W̃ has been depicted

in Table 4.2. In order to be able to study the effect of the subgroup size, we

considered the number of subgroups m = 30, γ0 = 0.05, localized CV disturbances

m1 = 6 and the diffuse symmetric CV disturbances p = 10%. By Calculating the

PTS for the W̃ control chart we observed that the probability of detecting more

localized CV disturbance increase with the subgroup size.

Table 4.2: The effect of the size of subgroup in the PTS of W̃ with localized CV
disturbances, m = 30, γ0 = 0.05

m1 = 3 m1 = 6

δ n = 5 n = 10 n = 15 n = 5 n = 10 n = 15

0.25 0.0235 0.044 0.0754 0.0359 0.0628 0.0933

0.5 0.1062 0.2488 0.4132 0.1468 0.3458 0.5583

0.75 0.2559 0.5583 0.7445 0.3619 0.7329 0.9098

1 0.4328 0.7691 0.8881 0.6026 0.9232 0.9845

1.5 0.7127 0.9114 0.9478 0.8838 0.9915 0.9977

2 0.8374 0.9442 0.9558 0.9644 0.9973 0.9986

3 0.9192 0.956 0.9577 0.9931 0.9986 0.9988

4 0.9415 0.9574 0.9578 0.9969 0.9987 0.9988

5 0.9496 0.9577 0.9578 0.998 0.9988 0.9988

m1 = 9 m1 = 12

Shift n = 5 n = 10 n = 15 n = 5 n = 10 n = 15

0.25 0.0371 0.066 0.1021 0.0366 0.059 0.0947
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0.5 0.1555 0.3556 0.5792 0.1432 0.3052 0.4998

0.75 0.3839 0.7699 0.9448 0.343 0.713 0.9221

1 0.6313 0.9559 0.9961 0.5878 0.942 0.9967

1.5 0.9245 0.9987 0.9999 0.9081 0.9993 1.0000

2 0.9872 0.9999 1.0000 0.988 1.0000 1.0000

3 0.9992 1.0000 1.0000 0.9998 1.0000 1.0000

4 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000

5 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

Table 4.3: The effect of the size of subgroup in the PTS of W̃ with diffuse sym-
metric CV disturbances, m = 30, γ0 = 0.05

p = 5% p = 10%

Shift n = 5 n = 10 n = 15 n = 5 n = 10 n = 15

0.25 0.0136 0.012 0.0102 0.0178 0.0131 0.0131

0.5 0.0283 0.0187 0.0205 0.0376 0.026 0.0266

0.75 0.0632 0.041 0.0374 0.0887 0.0584 0.0529

1 0.122 0.0859 0.0803 0.1783 0.1236 0.105

1.5 0.3037 0.2401 0.2043 0.4066 0.3039 0.2551

2 0.4923 0.4086 0.3574 0.6303 0.5007 0.4195

3 0.7602 0.6824 0.6171 0.8795 0.7663 0.6408

4 0.883 0.8269 0.7606 0.9628 0.8852 0.7528

5 0.9376 0.9009 0.839 0.9862 0.9303 0.8111
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p = 15% p = 20%

Shift n = 5 n = 10 n = 15 n = 5 n = 10 n = 15

0.25 0.0168 0.0122 0.0131 0.0203 0.0115 0.0153

0.5 0.0462 0.0328 0.028 0.0511 0.0344 0.0308

0.75 0.0983 0.0672 0.0598 0.1129 0.069 0.0657

1 0.2023 0.1397 0.118 0.2108 0.1397 0.1239

1.5 0.446 0.3232 0.2618 0.45 0.3074 0.2432

2 0.6732 0.5069 0.3963 0.6569 0.4536 0.3464

3 0.9054 0.7353 0.5806 0.8878 0.6462 0.4893

4 0.9752 0.8375 0.6726 0.9621 0.7361 0.5781

5 0.9919 0.8819 0.7271 0.9831 0.7731 0.6315

Effect of γ

To study the effect of γ on the performance of the W̃ control chart, the values

of γ0 = 0.05, 0.1,and 0.15 have been examined. We considered the subgroup size

(n=5 ), number of subgroups (m = 30 ) and the amount of disturbances (m1 = 3

and p = 5%), the results are summarized in Figure 4.5. The results showed that

γ had a low impact on the performance of the W̃ control chart. We can also

observe that the PTS is higher in the detection of the localized CV disturbances

as compared to the diffuse symmetric CV disturbances.
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(a) Localized CV disturbances (m1 = 3) (b) Diffuse symmetric CV disturbances (p = 5%)

Figure 4.5: The effect of the CV (γ) in the PTS of W̃ chart, m = 30, n = 5

Effect of the number of subgroups

Finally, to evaluate the effect of the number of subgroups (m) on the performance

of the W̃ chart, we studied the performance under n = 5, γ0 = 0.05,m = 20, 30, 50

and 75. Hence, different amount of disturbances have been considered, m1 = 3

and 9 as the localized CV disturbances and p = 5% and 15% as the diffuse sym-

metric CV disturbances.

As the results of the W̃ control chart with different number of subgroups are de-

picted in Figures 4.6-4.7 with m1 = 3 and p = 5%, the performance under the

localized CV disturbances was resistant to the different values of m. In contrast,

the performance under the diffuse symmetric CV disturbances was drastically af-

fected by the number of subgroups, where the performance increased by increasing

the number of subgroups.
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Figure 4.6 shows the effect of number of subgroups on detection of the localized

CV disturbances. We can observe that when m1 is small (m1 = 3), there seems no

effect on the PTS at different levels of m. When m1 = 9 the probability increase

as m increases.

Similarly, the PTS for the detection of diffuse symmetric CV disturbances is plot-

ted in Figure 4.7. Again we can observe that the PTS of the W̃ chart increases

as number of subgroups (m) increases.

(a) Localized CV disturbances (m1 = 3) (b) Diffuse symmetric CV disturbances (p = 5%)

Figure 4.6: The effect of the number of subgroups in the PTS of W̃ with γ0 =
0.05, n = 5.
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(a) Localized CV disturbances (m1 = 9) (b) Diffuse symmetric CV disturbances (p =

15%)

Figure 4.7: The effect of the number of subgroups in the PTS of W̃ with γ0 =
0.05, n = 5

4.4.2 Simulation experiment

In this part we formulated a numerical experiment to examine our control charting

structures. We considered 30 subgroups each with size 5. We considered the in-

control CV(γ0) is 0.05 and µ = 500. Besides, the consideration of the two types

of sample contamination: i) Localized CV disturbances with m1 = 9, ii) diffuse

symmetric CV disturbances p=20% both with δ = 2.5. The experiment was

conducted as follow

1. Generated a sample of 30 subgroups each of size 5. Then, estimate the

control limits as they have been discussed previously by fixing FAP (α) =

0.01.
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2. Generate a new sample for plotting purposes, 30 subgroups each of size 5.

The contamination was introduced as:

� Localized disturbances: 21 subgroups from N (µ, µ ∗ γ0) and the last 9

subgroups as contaminated from N (µ, µ ∗ (γ0 + γ0 ∗ δ)).

� Diffuse symmetric disturbances: 150 observations, 85% (128) from

N (µ, µ ∗ γ0) and 15% (22) from N (µ, µ ∗ (γ0 + γ0 ∗ δ)), then distribute

these observations randomly into 30 subgroups.

3. Estimate 30 plotting statistics (Wj) from the samples estimated in the pre-

vious step regarding to the disturbance technique.

Figure 4.8 shows the case of samples contaminated with localized CV disturbances.

It is clear that W̃ charting structure was able declare out-of-control signal at sam-

ple points as soon as the process goes out-of-control where 7 points are supposed

to be out-of-control. The second charting structure was W̄ , it was able to detect

3 points out-of-control while it failed on detecting the other out-of-control points.

Wp was the less performance control chart, it was able just to detect only one

point out-of-control.

The case of the diffuse symmetric CV disturbances is depicted in Figure 4.9. The

results show less number of out-of-control points has been detected, W̃ is still the

preference control chart but it detected 3 points out-of-control, then followed by

W̄ chart and it was able to detect only one point out-of-control. Wp was failed to

detect any out-of-control that our dataset contained.
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Figure 4.8: The CV Control Charts of the numerical experiment with localized
CV disturbances.

Figure 4.9: The CV Control Charts of the numerical experiment with diffuse
symmetric CV disturbances.
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4.5 Real life example

A manufacturing process has been considered as an illustrative example. A

Tunisian company manufacturing zinc alloy parts for the sanitary sector had pro-

vided a dataset of a die-casting hot chamber process. The dataset is available

in Castagliola et al. (2013). The characteristic of interest is the weight of scrap

zinc alloy (in grams) to be removed between the molding process and continuous-

coating for the surface.

Phase I has been investigated by Castagliola et al. (2013) and others, their results

revealed that the proportion between the standard deviation (s) and the mean

(µ) of the scrap alloy weight is constant. Their preliminary results were based on

a dataset of 30 samples each of size 5.

We utilized the same dataset to initiate the control limits of W̄ , W̃ and Wp charts

as they have been discussed in Section 4.2. To estimate the in-control CV (γ0), we

followed Connett and Wong Lee (1990); Castagliola et al. (2013), the associated

estimates are reported as

γ̄0 =
∑30

i=1
γ̂i
30

= 0.00974

γ̃0 = median(γ̂i) = 0.00935

Wp =
√∑30

i=1
γ̂i
30

= 0.01085
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To fix FAP (α) = 0.01, the values of the multiplier L and dW̄2, dW̄3, dW̃2, dW̃3, dWp2

and dWp3 are given in Table 4.4.

Table 4.4: The values of the constant multipliers of die casting hot chamber
process.

Chart L d2 d3

W̄ 3.853 0.9366 0.3415

W̃ 4.31 0.9177 0.3514

Wp 1.21 0.502 0.5042

The graphical display of the considered control charts is provided in Figure 4.10.

The sample numbers are shown on the horizontal axis, whereas the sample statis-

tic Wj is plotted on the vertical axis. The figure shows the lower control limit

(LCL), upper control limit (UCL) and the central line (CL) of each chart of W̄ , W̃

and Wp charts are represented by the dashed (− − − − −), dotted (. . . . . . ) and

solid (—) horizontal lines, respectively.

It is evident from Figure 4.10 that there is no charting structure was able to

declare any out-of-control signal at sample points, this might be due to the sym-

metry in our dataset and there is no contamination in the dataset. As a result,

we can conclude that under the normal conditions when the dataset is symmetric

all the charting structures perform similarly.

It is an evident from Figure 4.10 that there is no charting structure was able
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to declare any out-of-control signal at sample points, this might be due to the

symmetry in our dataset and there is no contamination in the dataset. As a

result, we can conclude that under the normal conditions when the dataset is

symmetric all the charting structures perform similarly.

Figure 4.10: The CV Control Charts of die casting hot chamber process.

4.6 Summary and conclusion

This study has investigated the choice of an appropriate control charting struc-

ture for efficient monitoring of process CV parameter in phase I. We studied the

performance of different CV control charting structures under the effect of two

types of CV disturbances. However, all the estimators performed almost similarly

under small disturbances, the results showed that the W̃ and Ṽ control charts

performed better than the other control charts. The results showed that, γ did

not have a significant impact on the performance of W̃ control chart, the localized
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CV disturbances with large subgroup size gave the highest PTS and the diffuse

symmetric CV disturbances with small subgroup size gave the highest PTS. Re-

garding to the impact of the number of subgroups (m), the PTS with the large

values of the localized CV disturbances did not vary with the different values of

m. In contrast, the PTS under the diffuse symmetric CV disturbances was dras-

tically been effected by m. Finally, the W̃ and Ṽ control charts have shown the

best ability of detecting the out-of-control subgroups in phase I under the differ-

ent types of disturbances. It might be used as a powerful tool by quality control

practitioners and researchers for efficient monitoring and decision making in their

practice.
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CHAPTER 5

CONCLUSION AND FUTURE

RESEARCH

In this thesis, we studied different estimation strategies for some statistical models.

Particularly, we considered ARCH model, simple linear regression models with

applications in statistical quality control and the CV parameter under different

environments.

The following estimation strategies are discussed in this thesis

1. Application and comparison of restricted (βR
1 ), pretest (βPT ), James-Stein

shrinkage (βS) and positive James-Stein shrinkage (βS+) estimators for the

ARCH model.

2. Application and comparison of restricted and pretest estimators of the sim-

ple linear regression model that was carried out by Khan and Hoque (2002);

Khan et al. (2005), then they have been used to construct efficient control

charts for simultaneous linear profiling.
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3. We studied the effect of different CV estimators in the performance of the

CV control charts in phase I.

We compared the performance of the proposed estimators with the classical MLE

estimate when a UPI is available. We extracted the UPI by using model selection

criteria, particularly we used AIC and BIC criteria.

We summarize the findings as follow:

In Chapter 2, we proposed restricted, pretest and shrinkage estimators for a vector

of parameters θ in the ARCH model, the estimators were driven under the gen-

eral linear restriction Rθ = r. We drove the joint asymptotic distribution of the

unrestricted and restricted estimator then, we obtained the asymptotic quadratic

risks, the quadratic biases and the asymptotic quadratic mean square error of the

proposed estimators. We conducted analytical comparisons of the relative domi-

nance of these estimators with respect to the unrestricted estimator of θ. We also

carried out an intensive Monte Carlo simulation study by considering different sce-

narios to compare these estimators in terms of their relative mean squared errors.

A real world problem has been considered as a case study, we tried to forecast

the volatility in Standard & Poor 500 (SP500) stock market data, we selected the

sub-model via stepwise selection procedures based on the AIC and BIC criteria.

Our findings indicate that, it is better to use the positive James-Stein estimator

as it outperforms all other estimators.
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In chapter 3, we introduced the idea of the Bayesian statistics in the SPC by involv-

ing the available UPI into the parameters estimation, we adopted the restricted

and the pretest estimators of the simple linear regression model to constructed

the control charts of linear profile under EWMA structure. As a result, we came

up with two control charts EWMAR and EWMAPT . The results showed that,

the EWMAR control chart outperforms all the other control charts under the dif-

ferent values of shifts in the slope and the error variance of the considered linear

profile. In contrast, the traditional control chart (EWMA 3) and the proposed

control charts performed similarly under the shifts in the linear profile intercept,

that was due to the useless of the UPI that caused by the adjusted explanatory

variable. Overall, EWMAR performed better under smaller values of distrust con-

stant d and small shifts, whereas EWMAPT with the smaller values of d was the

worse. Under the larger values of d, the performance of EWMAR and EWMAPT

dropped towards the performance of EWMA 3 and they performed similarly when

d = 0.

In chapter 4, we investigated the choice of an appropriate control charting struc-

ture for efficient monitoring of process CV parameter in phase I. We studied the

performance of different CV control chart structures under the effect of two types

of CV disturbances, and three location estimators where used in the control charts

structures. The probability to signal was used as the performance measure. The

W̃ and Vp charts showed the best ability for detecting the out-of-control subgroups
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in phase I under different types of disturbances. W̃ can be used as a powerful tool

by quality control practitioners and researchers for efficient monitoring of the CV

in phase I.

5.1 Future Research

There is an urgent demand to extend the shrinkage estimation strategy to the

other models in GARCH family. In addition, we will consider more sophisticated

cases of the corresponding errors term in each model.

For our future research in Chapter 3, we may consider the linear profile with

variable values for the predictor instead of taking constant values. Researchers

may also consider the linear profile of multiple linear regression in order to take

the advantage of shrinkage estimation strategies. However it is complicated to use

the simultaneous linear profiling without removing the correlation between the

intercept and the slope, we may investigate the structures of the control charts

without removing their correlation in order to take the advantage of the restricted

and the pretest under the shifts in the intercept.

In Chapter 4, it is recommended to investigate the performance of the proposed

control charts with the CV disturbances generated from fat-tailed probability

distributions.
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Appendix

A.1 Courant Theorem

Theorem A.1 (Courant Theorem). Let λ1, . . . , λn be the characteristic roots of

an n× n matrix A such that min λi = λ1, max λi = λn, and let v1, . . . , vn be the

characteristic vectors. Then A = λ1v1v
′
1 + · · · + λnvnv

′
n, I = v1v

′
1 + · · · + vnv

′
n:

Sup (x
′Ax
xx′

) = λn and Inf (x
′Ax
xx′

) = λ1. Hence,

Chmin(A) ≤ x′Ax

xx′
≤ Chmax(A), (A.1)

where

min
i
λi = Chmin(A) and max

i
λi = Chmax(A). (A.2)

175



A.2 Adjustment Constants (d2 and d3)

Table A.1: Control chart coefficients d2 and d3 for different CV control charts.

5 10 15

γ 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15

d2W̄ 0.9451 0.9439 0.9483 0.97 0.9735 0.9743 0.9844 0.9843 0.9834

d3W̄ 0.3423 0.3427 0.3499 0.2315 0.2343 0.2368 0.1889 0.1892 0.192

d2W̃ 0.921 0.9132 0.9158 0.9613 0.9634 0.9621 0.9768 0.9772 0.9765

d3W̃ 0.3474 0.3433 0.3504 0.2336 0.2351 0.2412 0.1878 0.187 0.1894

d2Wp 0.4999 0.5009 0.5025 0.4999 0.5001 0.5014 0.5 0.4999 0.5007

d3Wp 0.502 0.5031 0.5048 0.5009 0.5011 0.5024 0.5006 0.5006 0.5014

d2V̄ 2.3395 2.3366 2.3506 3.0690 3.0811 3.0895 3.4829 3.4789 3.4790

d3V̄ 0.8692 0.8736 0.8983 0.7970 0.8042 0.8191 0.7625 0.7668 0.7802

d2Ṽ 2.2682 2.2497 2.2584 3.0200 3.0197 3.0268 3.4239 3.4185 3.4204

d3Ṽ 0.8717 0.8639 0.8902 0.8030 0.7952 0.8184 0.7503 0.7462 0.7635

d2Vp 1.2405 1.2448 1.2512 1.5892 1.5908 1.5955 1.7763 1.7774 1.7814

d3Vp 1.2459 1.2506 1.2573 1.5928 1.5946 1.5994 1.7792 1.7805 1.7845
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