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A cluster space control provides a simple concept for controlling and maintaining
a multi-robot formation. Model uncertainty, velocity saturation, and model non-
linearity are critical challenges in such multi-robot systems. Designing a robust
and an adaptive controller is fueled by these challenges. In this thesis, the multi
non-holonomic robot formation with a cluster space approach was studied, by de-
riving the multi non-holonomaic robot cluster dynamic model. Then based on this
model, adaptive sliding mode control (SMC) algorithms were developed to over-
come the model’s uncertainty and nonlinearity. These robust SMC' algorithms are
the normal SMC, the adaptive SMC, and the artificial fuzzy adaptive SMC. The
proposed approaches are studied, based on their responses’ speed and performance

while the existence of an external disturbance. Also, this thesis studies the effect of
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the robot velocity saturation and the limits on the cluster space. These limits are
represented as diamond and elliptical models, then based on these models a model
predictive controller (MPC) is used to minimize the saturation effects by tuning
the formation controller gains. The proposed algorithms were validated through
simulation and real experimentation and the results show considerable improve-

ments.
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CHAPTER 1

INTRODUCTION

Cooperative control of multi-agent systems has attracted considerable research
interest over the last decade, owing to the augmented capabilities that such sys-
tems offer during automation tasks. Some of these capabilities include increased
coverage, speed, repeatability, precision, redundancy and strength, as well as the
ability to withstand extreme conditions [1]. This allows multi-robot systems to
be used in many automation applications, including sensor deployment, scouting,
fire fighting, rescue and recovery and military applications, as well as environ-
mental protection and surveys, such as oil spill disasters. One potential industrial
application is seismic sensor deployment robots: a group of robot will deploy
more that 70 thousand sensors daily, instead of deploying them manually as with
the traditional method. As a research group we have a pending patent for this
application.

In all of these applications simultaneous motion coordination and formation

control is one of the key challenges when using multi-robot systems. Formation



control is crucial, especially when the sensors coverage and capabilities are limited.
In such a case, formation allows each robot to focus its sensors towards a certain
portion of the area of interest [2]. For example, a robot-scout benefits from a
formation by directing the sensors of each robot towards achieving the maximum
coverage area [3].

From the literature, there are three main control frameworks used in robot
formation: leader-follower, null space, and cluster space. The well known leader-
follower concept has been extensively studied to design control strategies for robot
formation, where the follower robots have to follow a virtual position relative to
the leader (for example see [4-6]). Recently, several related research issues have
been investigated. For instance, optimizing the path planning in a leader-follower
formation with obstacle avoidance and its suitability for real-time implementation
has been presented in [7]. Model uncertainty was addressed in [8-10]. The null
space approach is a task-based formation control concept, where each requirement
is considered as a task. For example the spacing between the robot is considered
to be a task; the center of the group is another task, and the robot target following
is a separate task, and so on. See [11-14].

The third control method uses the cluster space approach, where the group
of robots are considered as one entity, called a cluster. This cluster has its own
dynamic states (called the cluster space). The cluster states are a function of the
robots states (called the robot space). The control commands are calculated at

the cluster level. Based on that, cluster commands are translated to robot space



commands by applying inverse kinematics and using the specific Jacobean ma-
trix. Thus, each robot has its own command derived from the clusters command.
Therefore, using the cluster space framework makes the control design simpler, as
opposed to dealing with numerous robot entities as in the virtual-leader concept
(see [15-19]). Many research questions were addressed in the literature; the ob-
stacle avoidance problem was studied by [1,16]; a behavioral intelligent controller
was proposed by [20]; and the cluster space approach was applied to vessel control
for a military purposes in [21-23], ( these vessels have nonholonomic dynamics).
However, designing a model-based controller for a group of nonholonomic robots
is still an active field of research.

Nonholonomic robots are robots that have constraints on their velocities; for
more see [24]. Most mobile robots are nonholonomic. For example, the two-wheel
differential robot is considered to be a nonholonomic robot because it only moves

toward the direction of its heading angle.

1.1 Preliminaries

1.1.1 Classification of multi robot control approaches
The existing literature can be classified into two categories based on command

source

Centralised Centralized Controllers: information from all of the nodes is col-

lected at a single end (or a central processor), the appropriate control input for



each node is computed and transmitted to the corresponding nodes.

Decentralized Distributed Controllers: rather than having a central proces-
sor, each node has its own implementation of the controller. A single node can
exchange information with its neighboring nodes only.

On the other hand, we can classify the existing work based on the control

concept into three classes:

Leader and follower control concept A virtual vehicle is constructed such
that its trajectory converges with the reference trajectory of the follower. Position

tracking control is designed for the follower to track the virtual vehicle.

Cluster space approach The cluster space approach considers the group of
robots to be one entity and calculates the control commands in the cluster level
so the group of robots can be conducted as one big robot. After that, these
cluster commands are translated into robot space commands by applying inverse
kinematics and using the specific Jacobean matrix. Thus, each robot has its own

command which is derived from the cluster command.

Null space approach This approach proposes a task based controller for the
group of robots. These tasks are the obstacle avoidance task, distribution on a
certain format task, the target tracking task, and the last task is maintaining
equal distance between each other. They are performed according to the desired

priority. As a result, the highest priority task will have the highest control weight.



1.2 Literature Survey

According to table 1.1 the cluster space approach is still new and needs further re-
search. Many challenges need more investigation with the cluster space approach,
such as using non-linear robots, model uncertainty, the need for an adaptive con-
trol algorithm and intelligent controllers. In this section, a survey of these chal-
lenges will be presented, starting with the case for using the nonholonomic robot
type in a multi-robot formation.

Nonholonomic robots are robots that have constraints on their velocities; for
more see [24]. Most mobile robots are nonholonomic. For example, the two-
wheel differential robot is considered to be a nonholonomic robot because it only
moves toward the direction of its heading angle. Also this velocity constraint is
considered a nonlinearity and it makes controlling such robots more challenging.

In the literature, the problem of multi-nonholonomic cluster formation control
has been tackled by adding a fast inner control loop to change the robot heading
angle toward the desired motion profile, while the outer controller handles the
formation and tracking tasks [1,25]. However, having two control loops makes the
system more complicated, and gives a generally slower time response. The outer
controller always assumes that the robot is heading to the target (which is not
always true) causing the tracking performance to decrease.

Moreover, the majority of the proposed controllers were velocity-based con-
trollers; therefore, the acceleration is not considered as a state to be controlled,

and this leads to neglecting the uncertainty in the robots mass and inertia. To



solve this issue a recent approach [23] proposed a dynamic-based controller for the
cluster space approach, where the acceleration and dynamic model of the cluster
space robots were considered in the controller design. In [23] a feedback lineariza-
tion algorithm was proposed. However, the proposed approach assumed that the
robots were holonomic robots.

Control of single nonholonomic robots has seen extensive research activity
during the past few years. On the other hand, the cluster space control of multi-
nonholonomic robots is still under investigation and, to our knowledge, a robust
model-based control of such a system has not been addressed.

Behavior control methods are developed to tackle complex control problems
that autonomous robots encounter in an unfamiliar real-world environment [26].
The behavior controller has a general set of constraints that allow robots to react
in a certain domain [27]. Based on these constraints the robot will select the
appropriate response, which is called a "behavior’, task or routine. A hierarchy
of distributed behaviors was tackled in the literature to fulfill a given goal with
different scenarios. In order to switch between these behaviors, a fuzzy logic
technique was used since it does not need a precise model and it is based on
logistic commands that make it suitable for representing the behavior selection
criteria or constraints [26,28,29]. For example, the behavior-based control has
been implemented for a soccer playing robot in [29] and was used in navigation
and coordination control in [26, 28,30, 31]. However, these methods were not

applied to multi-robot clusters.



A behavioral fuzzy controller for null space was studied in [32]. However,
to our knowledge, it has never been implemented in a cluster space concept.
Also, in the literature, a classical PID controller was proposed with the behavior-
based controller. Issues like disturbance effects, robot nonlinearity, and actuator
saturation were not considered. The nonlinearity issue is important, especially
when using a group of nonlinear robots. It is important to note that the actuator
saturation issue can make the formation of a group of robots unstable. One of
the recommended solutions to deal with these issues is the use of fuzzy adaptive
controllers [33-36].

Still, the robots velocity saturation is a practical challenge that affects the
formation control in a cluster space of differential drive robots. The usage of the
Model Predictive Controller (MPC) is a preferred approach in the literature to
overcome actuator saturation and model uncertainties where the cluster space is
considered to be a highly non-linear and coupled system. Previous work tackled
the issue of saturation with other formation concepts, for example, the leader-
follower approach [37] proposed an MPC for the virtual leader approach. [38,39]
proposed an MPC framework with a neural network for compressing the robot
communication packets. Also, the null space concept [13] proposed an intelligent
method to deal with the saturation by a saturation management technique where
the higher priority task will be served. However, this method used a one dimension
saturation limits. The saturation limit is usually presented in one dimension [40]

which is not an exact saturation representation of the differential drive robot



saturation, a recent work [41] presented the velocity saturation of the differential
drive robot as a diamond shape domain. Based on that domain and using the
proposed MPC a new approach is presented in this work to overcome the issue of
velocity saturation.

Previous works applied cluster space with different types of robots, i.e. the
unmanned vessel fleets [16], [21], Arial robots [18] and wheeled land robots.

Also, in order to overcome the environmental obstacles and enemies, formation
shape switching for the multi-robot was proposed. This method was proposed for
the leader-follower approach (e.g. [42-44] ). This may also be applied to the cluster
concept.

Practical networking issues and their impacts were also studied such as lim-
ited bandwidth [38], time delay [45] , packet loss, and maximum coverage area
with wireless networks [46-48]. Considerable work has been done in these fields
considering the leader-follower approach. However, there is a gap in the cluster
space approach.

Disturbance and uncertainties are common challenges for the control designer;
these issues are usually unmeasured and may cause instability. Adaptive and
robust controllers, such as the fuzzy sliding mode controllers are used to solve
such challenges [8]. Developing a hybrid intelligent approach to a multi-robot
system is shown in [49]. Another work [9] tackles the uncertainties of the leader-

follower approach.



Table 1.1: Literature survey

Approaches
Research directions

Leader follower | Cluster space | Null space
Singularity problems - [50] -
Uncertainty issues 8,9] - [51]
Network issues (limited bandwidth,

38, 48] - [52]
Time delay, Area coverage )
Formation Shapes Switching

(42, 44] - 53]
and fault tolerance
Actuator saturation [41] - [13]
Model based controllers [54] (23] [55]
Adaptive controllers [8-10] - [32]
Under actuated robot [56] - [11]
Obstacle avoidance 57, 58] [1,16] 159

1.3 Problem statement

The literature survey shows that the cluster approach is still under investigation.

Consequently, many issues need to be investigated:

e The derivation of the dynamic model for a non-holonomic multi-robot was

tackled in this thesis.

e Studying and developing a hybrid intelligent controller that makes the



cluster space approach more robust to disturbances and the systems non-

linearity.

e Investigating the problem of actuator saturation that may lead to unstable

cluster.

e Designing a Robust controller to tackle the uncertainties in the system.

1.4 Steps and control methodology

e Studying the dynamics of the cluster space with the non-holonomic robots
group, starting from the robot space to find the cluster space dynamics.
This can be implemented by extending the work in [23], in which the dy-
namics model of the cluster space is derived in a Lagrangian framework. An
extension was done by developing an adaptive robust sliding mode controller

for the formation control of the cluster.

e Extending the SMC into a fuzzy adaptive SMC. Adding the fuzzy adaptive
term has improved the SMC performance, the response will be faster than

the standard SMC and the adaptive SMC.

e [nvestigating the actuator saturation problem; From the literature, a graph-
ical method has been used with a leader-follower to study the actuator satu-
ration problem [41]. By extending this approach to the cluster space method,
we ended up with a model predictive controller (MPC) that can deal with

the saturation problems.
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e A behavioral adaptive intelligent controller is proposed in order to improve
the cluster space dynamics. This behavioral controller will give a higher

priority to the formation task than the to target following task.

1.5 Significance of Research

The major contributions of this thesis can be summarized in the following points:

Developing a behavior-based formation controller with the cluster space.

e Extending the dynamic model of the cluster of robots to a cluster of non-

holonomic robots.

e Developing an SMC and an adaptive SMC for the cluster formation to over-

come the nonlinearity, model uncertainty, and external disturbances effects.

e Improving the SMC by adding to it the fuzzy adaptive controller. As a
result, the response of the fuzzy adaptive SMC is faster than the standard

adaptive SMC and the SMC.

e Investigating the velocity saturation of the robots in the cluster space and

developing an MPC controller to minimize its effect.

1.6 Experimental setup

Two Lego EV3 WMRs were used in the experiments to validate and implement

the control strategy. The WMRs (see Figure 1.1) are equipped with a 32-bit, 48
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Mhz ARM9 CPU with 16MB flash memory and 64MB RAM, Bluetooth and Wi-
Fi transceivers, and two servo motors with encoders with 1 degrees of resolution.
A PC interface with the SIMULINK program is also required to transmit the
control signal by means of wi-fi protocol. SIMULINK has a powerful feature
called External Mode. This feature is useful for on-line monitoring and tuning of
the EV3 WMR’s controller. A two-level control structure is used: a high-level and
a low-level. The high-level controller is the sliding mode controller, operating in
the central PC, which sends and receives command /data to and from the WMRs
low-level controller. The low-level controller is a PID inner loop for controlling
wheel speeds. Based on the proposed control algorithm, the central PC receives
the location feedback from each robot; then the PC calculates the error and control
signals and sends the velocity commands to each robot. The low-level controller
on the robot receives the commands from the PC and relays these signals to
the motors. Then the encoders provide measurements for the feedback. The
actual time of a one-loop process depends on the robot sampling time (set to
25ms) plus the wi-fi delay time, which is dependent on the computer speed and
network usage. The robot localization is achieved by using the encoders only.
The WMRs use EV3 servo motors that have a gear reduction mechanism in order
to increase the torque and decrease the maximum output speed. However, this
gear mechanism has a backlash issue, which introduces a nonlinear behavior due
to small gaps between the mating gear teeth. Once the servo motor changes its

direction the backlash effect occurs, causing the servo to have a certain rotation

12



without being translated to actual wheel rotation. This issue can be mitigated by
adding backlash compensation. Thus, when the servo motor changes its rotation

direction a certain value is subtracted from the encoder reading.

Figure 1.1: Lego EV3 WMRs

1.7 Thesis organization

The rest of the thesis is as follows: chapter 2 is a preliminary, discussing the cluster
space formation framework and the nonholonomic robot model used, and it pro-
poses the nonholonomic cluster model. The third chapter proposes the behavioral
kinematic controller. The fourth chapter proposes the sliding mode controller and
gives the simulation results, as well as experimental results. Chapter 5 presents
the potential of using fuzzy adaptive SMC and shows the experimental and sim-
ulation results. Chapter 6 discusses the velocity saturation issue and proposes
a model based controller and then showing experimental and simulation results.
Chapter 7 is the conclusion and future work. Finally, it gives the appendices of
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the published journal papers from the thesis work.
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CHAPTER 2

CLUSTER SPACE

REPRESENTATION OF NON

HOLONOMIC ROBOTS

2.1 Preliminaries

In this section fundamental definitions and mathematical models are presented;
the Nonholonomic robot kinematic model is presented, followed by the mathe-
matical representation of the cluster framework, after that the dynamical models
for a single nonholonomic robot and the general cluster model with nonholonomic

robots are presented.
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2.1.1 Nonholonomic robot dynamics

We consider a wheeled mobile robot (WMR), with two driven wheels and a passive

caster wheel , whose schematic model is shown in 2.1.

Mobile
robot

Figure 2.1: A WMR model, where q is the WMR’s heading angle, point C is the
robots center of gravity, d is the distance between the wheels line and C and p is
the wheel radius

The state-space model of the considered kinematic vehicle with the associated

nonholonomic constraints (rolling with no slipping) is given by equation 2.1, where

v and w are the heading and rotational velocities variables:

T cos(q) 0
v

g | = | sin(g) O . (2.1)
w

q 0o 1

2.1.2 Overview of cluster space framework

In order to implement the cluster space for two robots, an appropriate set of

cluster variables are chosen to represent the shape of the cluster. As shown in
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Figure 2.2, the proposed cluster variables are ¢ =

(ZEC, Ye, Q07 dC7 qi, QQ) and the

corresponding robot space are 11 = (x1,41,¢1) and 79 (22, Y2, g2). The following

equations 2.2 show the relation between the cluster space and the robot space

variables, which can be presented as ¢ = f(r).

in [19] .

Figure 2.2: Cluster space and robot space variables

_ x1+x2
Te = 2
_ Y1ty2
Ye - 2

Q. =tany ™! (y1 — Yo, 1 — 32) + 5,

d. = %\/(Z/l —1n)° + (21 — 32)°,

Similar developments are found

(2.2)

Where (z.,y.) is the center of the cluster; ). is the cluster heading and d. is the

spacing between the robots from the cluster center. The corresponding Jacobian

matrix is :
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0.5 0 0 0.5 0 0

0 05 0 0 0.5 0
—(y;—yz) (1‘16—1:02) 0 (yl;yz) —(x;—xz) 0
' (@1-z2)  (n—w2) (g —(@1—22) —(@i-w) | ’
& & = €2
0 0 1 0 0 0
0 0 0 0 0 1

where € = (21— 22)"+ (31 — )" and e = 2\/(901 —25)" + (y1 — y2)", and é = Ji

2.1.3 Three robot cluster

In this subsection a three-robot cluster was developed. The selected cluster vari-
ables are (z., Ye, Qc, Bes Ges Pe, Q15 @2, G3); see Figure (2.3) and for more details refer

to [17].

X

v

Figure 2.3: 3-robot system configuration
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2.2 Cluster space dynamics of nonholonomic

robots

In this section, the model representation of the cluster of nonholonomic robots
will be derived. In particular, the coupling between the cluster states will be

highlighted, owing to its importance in the overall control design.

2.2.1 Single nonholonomic robot modeling

The starting point will be the classical modeling of a single nonholonomic robot
in equation 2.3, this model is a modified version of [60] model. Since the local
axis is relocated in the modified version to be at the center between the wheels.
Followed by a generalization to address the case of n robot and the cluster space

model.

M(r)#+0b(r,7)+g(r)+74=B(r)r — AT (r) \. (2.3)

According to Figure(2.1), r = [z,y,q]" and M (r) € R3*3 denotes the positive
definite symmetric inertia matrix; b(r,7) € R3 is a combination of Coriolis,
centripetal and friction terms; g (r) € 33! represents the gravitational forces; 74
is the bounded unknown disturbances, and 7 € R2*! is the motors’ torque vector.
A (r) € RV represents the constraint matrix that is multiplied with the Lagrange

multiplier A € ®*! and the constraint equation is A (r) 7 = 0, where
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m 0 —mdsin(q)
M (r) = 0 m mdcos(q) |>

—mdsin(q) mdcos(q) I+ md?

0 0 mdg?cos(q) cos(q) cos(q)

b(r,r)=10 0 mdg sin(q) |9 (r)=0,B(r) = 3, | sin(q) sin(q)

00 0 L —L
— sin(q)
1
T = and AT (r) = cos(q)
T2
0

Let S, (r) € R%** be a full rank matrix such that S} (r) A (r) = 0 such that

cos(q) 0
Sr(r) =1 sin(q) 0

0 1

And in the case of having i € ® = 1,2,--- ,n robots we have different models

such that:
M (ri)7s + bi(ri, 1) + gi(ri) + 74 = Bi(ri)mi — AL (ri) ;.

And S,(r;) € 13*? be a full rank matrix such that ST (r;) AT (r;) =0

2.2.2 Cluster space modeling

To select the cluster space states, several conditions should be considered. The
cluster states should describe the function of the application, such as formation

control. The number of cluster Degrees of Freedom (DOF) should be equal to
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the number of the robot space DOF. The cluster dynamics can be calculated by

transforming the robot space dynamics through the Jacobian matrix by ¢ = J(r)7r.

Cluster space dynamics Starting from the robot space dynamics with n

robots, equation 2.4 is given as .

M(r)i +b(r,7) + G(r) + 74 = B(r)F — A X, (2.4)
where
Ml 03><3 . O3><3
o ° M2 03><3
M(?“) = )
° ° O3><3
° ° ° M,,

51(7”1, f1)
b(r, 7) = ;

bn(rna 7an)

Bl O3><2 03><2

° B 03><2

E(T) = 9
° ° 03><2
° ° ° B,

21



Starting with robot space dynamics, the holonomic cluster dynamics in equation
2.5 were derived by [23]; based on that the nonholonomic robot cluster dynamics

are found in equation 2.6, and the coupling between the cluster states can be

represented in u(c, ¢)

A(c)e+ plc, ¢) +ple) + 14 = Br(c)T.

A(e)é+ (e, ¢) + ple) + 1a = Ble)T — a’ (),

where

and the constraint equation will be o (c)¢ = 0; let

22
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5;1 03X2 . 03x2

° 5%2 O3x2

O3x2

° ° ° Sy,
such that ST (c)a’(c) = 0 and accordingly it is possible to find an auxiliary
V(t) such that ¢ = S.(c)V(t) where V(t) = [v,wy, -+ v, w;, -+, Uy, wy] and

v;, w; are the heading and the angular velocities of the nonholonomic robots.

Followng the derivation we get equation 2.7

é= SV (t) + S.(V (). (2.7)

and by multiplying both sides of equation 2.7 with ST (c) we arrive at equation

2.8

ml

HV +FE+71,=T7, (2.8)

where
H = (S1(c)B(0)) " ST(e)A(€)S(0),
B = (S7(0)8()) ™ ST(0) (MAS)V (1) + ple, &) + P(c) ).

Td = Hf7 f € §R2ﬂ><1’ f = [fllaf217f127f227"' 7f1-n7f2~n]-

Now we have a reduced order dynamic equation for the cluster space with no
Lagrange multiplier term.
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CHAPTER 3

BEHAVIORAL INTELLIGENT

KINEMATIC CONTROLLERS

Motivated by the gaps in the literature and the appealing nature of fuzzy ap-
proach, this chapter proposes a novel behavior and adaptive fuzzy control algo-
rithm (BAFC) for cluster space control. The proposed study considers two com-
peting behaviors, which are target following and formation shape preservation.
The algorithm is simple, easy to implement, and its control approach performs
tasks based on their importance. In this proposed novel BAFC, the position error
and its rate of change are both considered as inputs to the fuzzy logic control tun-
ing algorithm. This will in turn improve the controllers dynamical performance
in an adaptive manner. The task-based control algorithms consider the robots
actuator power allocated to one task at a time. This may help in solving the
actuator saturation issue.

In this chapter, non-holonomic robots are considered owing to the fact that
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the majority of wheeled robots are constrained in motion (wheels rotate with-
out slipping). The implementation of the new control approach on Lego EV3
WDMRs wheeled robot is also presented. The control strategy is implemented using
Simulink. Real-time communication between robots and controller is established

through a Wi-Fi link.

3.1 Control Architecture

As shown in Figure 3.1, the proposed cluster space controller, which consists of
a closed loop controller with an adaptive fuzzy tuner that changes the controller
parameters.

This scheme measures the robots states and converts it into cluster space
states. The conversion is implemented by comparing cluster position and velocities
with the desired trajectory values and outputting cluster velocities. These output
cluster velocities are then translated into commands and sent to the robots. The

following steps show the control procedure;

¢
Cq Fuzzy PD — eyrel i A; 1 Y I

v

Figure 3.1: Cluster space control architecture where Ar is the robot commands
and J is the Jacobian Matrix
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Step 1: Calculating the error in the cluster variables using equation 3.1

jféd - )(c
Yo —Ye
E, = (3.1)
Cgcd - Cgc
dcd - dc

Step 2: differentiate the error using equation 3.2

dE,

B -
dt

Where E, and E, are (4 x 1) vectors,

Step 3: Adapt the values of Kp diagonal matrix (4 x 4), and Kd diagonal
matrix (4 x 4) by implementing the fuzzy functions as given in equations 3.3 and
3.4:

K, =K, + AK, [E E} (3.3)

fuzzy

Kg= Kq+ AK, [E E] (3.4)

fuzzy

Where K, and K, are the proportional and integral constant controller gains

and
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AI(p |:Eca Eci| — [AKpXm AKch; AKme A}(pdc] )

fuzzy

AK,y [EcyEc] = [AKixe, AKaye, AKgge, AKgae)

fuzzy

Kp - [KPXQ Kch7 Kme Kpdc] s

Kd - [Kch: Kcha KdQca Kddc] )
Kp - Wch;Fch»KmeKpdc] )

Fd - [Fcha Fde Fdch Kddc] .
Step 4: applying the Cluster fuzzy PD controller commands using 3.5

Cema = KpEe. + K B, (3.5)

Where C.,,,g = [AX., AY., AQ., AdC]T . Note that AQ,. should be in the range of
[—m, 7]
Step 5: The cluster controller commands are translated into robot velocities

by calculating the velocity inverse kinematics using the Jacobian matrix as in

equations 3.6: Ar = J 'Ac

AXy = AX, 4+ Adcos(Qc — §) — dcAQ.sin(Qc — F)

AY) = AY, + Adsin(Q. — %) + deAQ. cos(Q. — %)

2

(3.6)
AXy = AX. — Adcos(Q. — §) — d.AQ.sin(Qc — §)

2

AY, = AY, — Adsin(Qc — %) + d.AQ, COS(QC — %)
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Step 6: The Low level controller (WMRs controller):

Eil - AXH
Ei? - AK)

(3.7)
Eiz = Q. — Qia,

Eiy = Qia — ¢;.

Where i=1,2 indicates the robot index.

Qid = tanl(gf) (3.8)

The robot commands can be calculated using equation 3.9

uyn = \/ E% + E% cos(Eu),

Ujp = ki Eiz + ki By

(3.9)

Where 0 < k;, and wu;; is the head speed and u;s is the orientation speed.

3.2 The Fuzzy controller design:

As described in Figure 3.2, the body of the fuzzy controllers consists of

1. Input fuzzification (crisp-to-fuzzy conversion), 2. Fuzzy rule base (linguistic
knowledge base), 3. Inference engine and Output defuzzification (fuzzy-to-crisp
conversion).

The fuzzy inference engine simulates the fuzzy rules using the input variables.
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In order to achieve the foregoing objectives, two main methods are generally
used: Mamdani’s method and Sugeno method. Mamdani is the first known fuzzy
inference system, which consists of fuzzification, rule evaluation, aggregation of
the rule outputs, and defuzzification. The main difference between Mamdani-
method and Sugeno-method is how the crisp output is generated from the fuzzy
inputs. While Mamdani uses the defuzzification of a fuzzy output, Sugeno uses a

weighted average function to get the crisp output.

Crisp Input Crisp output
—] —_— Inference Mechanisim — —

Defuzzification

Fuzzification

Rule base

Figure 3.2: Fuzzy control parts

In this work, Mamdani’s method has been adopted, which is the commonly
used inference engine. The proposed fuzzy approach starts with applying the
fuzzyfication step to get the fuzzy values from the crisp inputs. These fuzzy
values are represented in the fuzzy membership functions (see Figure 3.3 and
3.4). Next, the fuzzy rules are simulated on the fuzzy inputs as shown in Tables
3.1, 3.2 and 3.3, such that N (Negative), P (Positive), S (Small), M (Mediaum)
and B (Big). In this case, the fuzzy inputs are the error terms, derivatives of the
errors on the cluster space and the priority value P. The fuzzy outputs are the

controller tuning parameters AK, and AK, [61] .
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Table 3.1: The fuzzy rules of AK, provided that P is low

AK, E,
NB[NM[NS[ Z | PS [PM] PB
NB | PB | PB|PM |PM | PS | Z | Z
NM | PB [ PB [PM | PS | PS | Z | NS
NS [PM |PM |[PM | PS | Z | NS | NS
E. | Z |[PM|PN|PS| Z | NS|NM|NM
PS | PS | PS| Z | NS | NS |NM | NM
PM | PS | Z | NS | NM | NM |NM | NB
PB | Z | Z |NM|NM|NM| NB | NB

Table 3.2: The fuzzy rules of AK,; Provided that P is low

AKy E.

NB|NM| NS| Z | PS |PM|PB

NB|PS| NS |NB|NB|NB|NM|PS

NM|PS|NS|NB|NM| NM| NS | Z

NS | Z | NS/ NM|NM| NS | NS | Z

E. Z Z | NS| NS|NS|NS|NS| Z
PS |PB| PS | PS|PS|PS| PS |PB

PM | PB | PM | PM|PM| PS | PS |PB

PB | PB | PM | PM | PM| PS | PS | PB

Table 3.3: The Fuzzy Rules of P
AK, AK, P

Low High

The fuzzy values | Rules form tables 3.1 and 3.2 | NB
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NB NM NS z PS PM PB

Figure 3.3: The member ship function of normalized E, E, AK,, AK,

Low High

input variable "P"

Figure 3.4: The Membership function for the Priority input P

3.3 BAFC structure

Figure 3.5 shows the BAFC graphical structure for a two robot-cluster presented
in equations (3.3 and 3.4). The priority is achieved by using the max function.
The higher control gain from the higher priority states will be passed. Therefore,
if the output of the max is high then the fuzzy model will output a low control
gain. And if no high gain is applied to the higher priority states, then the max
function will return low signal. By so doing, the fuzzy model will give this state
the priority to adapt its errors. The small triangles are the scaling constants that
may be selected by trial and error or by applying an evolutionary approach such

as Genetic Algorithm.
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Figure 3.5: The BAFC structure for a two-robot cluster
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Remark 1 1 PD controller is used in this case as an example of the classical

controllers. classical controller, especially PID type, can also be selected.

Remark 2 2 The proposed fuzzy model s a hybrid adaptive system. This means
that the fuzzy model is simulated in a discrete time, while the robots dynamic model
15 simulated in the continuous time. Therefore, the fuzzy model should be slower

than the robots model during the simulation.

3.4 Stability Proof

For the stability test Lyapunov theory is used as follows: Let

E.=Cy—C. (3.10)
E.=C;—C. (3.11)
and
t
Coma = / (KpEc+KdEch) (3.12)

0
Theorem Consider the mobile non-holonomic system (1). If the control com-
mand defined in 3.12 is applied to the mobile robot then the position and the

velocity tracking errors in equations ( 3.10, 3.11) converge to zero.
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Proof

Starting from equations (8)-(10), the cluster states error and its derivative E,, E,
are defined as in as in equations 3.10,3.11 and 3.12.
Coma = K, B, + K45, where K,, K, > 0 and [E E] < K, K, Substi-

tuting E, from equation 3.12 into equation 3.5 leads to

Ee=Cq— K, (Ca— O) Ky (Ca= C) (3.13)
. Cy—K,E,
== s (3.14)
L = ECTEC7

And ¢ = K, E. + KdEc. Then by substitution we arrive at:

E,= (¢4 — K,B. — K4E,)

Then I = (B éq — BT <—KpEc - KdEC>).

Now the equilibrium point is , so by considering the following Lyapunov function

candidate

1
V =-E'E,
2 &

With V (ﬁ) — 0, Computing the derivative dV/dt

dV .
— =ETE,. =
dt ¢

ETC, — E'K,E.
14+ Ky

Accoding to Lyapunov theorem, the system is stable if V(ﬁ) =0, dV(ﬁ)/dt =0
and dV/dt < 0 Since —E'K,E. < —Anin(K,)||E||> and 1 + K, > 0 where
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Amin(K,) is the minimum eigenvalues of the controller gain K, then dV/dt < 0

is true when equation 3.15 is satisfied, and accordingly the system is stable.

|
A(Kp)

|EL| < (3.15)

Remark 3 & The above proof is for general PD control gains. When using fuzzy
logic tuning, the PD controller becomes mnonlinear. A necessary and sufficient
condition for stability is to always verify that K, > 0 and (I + K4) > 0. However,
in practice, actuator saturation or heterogeneous characteristics of the robots may
lead to instability. The first issue is well known in the literature. The latter is due
to the coupling created within the cluster between the robots and the inability of
some robots to keep up with the cluster. This issue will be investigated in a future

work....

3.5 Simulation Results

3.5.1 Two-robot simulation

In this case, disturbance was added to the second robot between a time frame
of 1 — 3 sec. Also, there is an existence of an initial condition error. There-
fore, the controller should overcome two challenges: the initial condition and the
disturbances. And also the controller’s objective is to give more priority to the
formation shape than to the target-following task, in addition to the adaptability

of the controller gain based on the changes in the states errors and errors velocity.
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As seen in Figure 3.6, the BAFCs the response of the shape states (d. and Q)

are better than the classical controller.

Errorin }(c ()

Errorin ‘YC (m)

-5
Time(sec)
1 :
— Y :
E E NI
@U =" L E
e P
5 5
5 ] S Y S S S
3 -3
0 2 4 ] 8 0 2 4 ] 8
Time(sec) Time(sec)

Figure 3.6: A comparison between the classical PD controller and BAFC. The
solid blue lines are the system response with classical PD controller, and the
dashed red lines are BAFC responses.

3.5.2 Three-robot simulation

The dynamics of three-robot cluster are presented in [17]. The BAFC structure
is similar to the one with two robots but with more fuzzy models. In this case,
disturbances were added to both robot 2 and robot 3 between 4-8 sec. And also,
there is existence of an initial condition error. Therefore, the controller should be
able to overcome two challenges: the initial condition error and the disturbances.

The controller’s objective is to give priority to formation shape over target follow-
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Robots motion
10 T T T T T T I
: : : Rabot ane position
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: : : The Desired Cluster path

Y axis(m)

Hawis (m)

Figure 3.7: Robots motion with Fuzzy adaptive cluster controller

ing. In addition, BAFC adapts the controller gain based on the changes in the
states errors and errors in velocity. Figures in 3.8 show the comparison between
the classical PD controller and the BAFC. The results show better performance
in q., p. states, as depicted in Figure 3.8a,Figure 3.8b). These improvements are
apparent in the transient response even with both the initial condition and the
disturbance challenges. ¢.,p. are considered as the shape states and they are
given the highest priority among the system states followed by £., Q., X. and Y,
sequentially. As a result, ¢.,p. should have better responses with BAFC than
the classical controller. Other potential advantages of BAFC over the classical
approach are the actuators energy consumption and the max control values. As
shown in Figure 3.9, the max absolute value of the control signal with the clas-
sical controller is 266 and with BAFC is 115. This means that BAFC is better

in dealing with actuator saturation than the classical controller, and this will in
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turn minimize the effects of actuators saturation problem. Therefore, BAFC re-
quires a smaller actuator to be used in the Robots. This observation is arguably
correct because BAFC controller allocates the energy to one objective at a time
rather than to two conflicting objectives. This conflict may result to increase of

the control energy and may cause instability.

3.6 Experimental setup

The Lego EV3 WMRs are used in the experiments. Those WMRs (see Figure
1.1) have a 32-bit, For more details about the experimental setup refer to section

1.6.

3.6.1 Experiment test

Two WMRs move from initial positions [z, vy, q] for the first robot: [0.2,0,7/2]
and [0, 0, 7/2] for the second robot. The desired path is Q. = 7/2,z. = 0.5, y. =
0.1t,d. = 0.3 in the cluster space that is equal to x;y = 0.8,y = 0.1t,q; =
/2,9 = 0.2,y = 0.1t,qo = 7/2 in the robot space, where t is the time, (see
3.10). In order to show the disturbance effects on each controller a software
disturbance is added to Robot 2. This disturbance will hold Robot 2 for 90 sec
with no movement see Figure 3.10 (a-c). The comparison now is based on how the
other robot (Robot 1) will behave using both approaches (classical PD controller
and the proposed BAFC).

Comparing the standard PD controller response (see Figure 3.11) with the
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fuzzy PD controller (see Figure 3.12), the BAFC gives more priority to the shape
than the standard PD. Figure 3.13 shows the improved shape dynamics (the clus-
ter angle and the distance between the robots) with the proposed BAFC con-
troller when compared with the standard one. The Odometer uncertainties cause
an accumulated error which can be lessened by calibrating the odometry equa-

tions [62,63]. Also, adding a sensor-like compass can greatly reduce this error [64].

3.7 Chapter summary

Cluster space concept for controlling multi-robot systems is useful in simplifying
the formation problem. In this work, an adaptive fuzzy controller is designed
to improve the dynamics of the cluster space controllers. The cluster space dy-
namics were divided into two main groups based on their tasks or behaviors: the
formation shape states and the target following states. Therefore, the BAFC
gives more priority to the formation shape states than the target following states.
BAFC adapts the controller gain based on the states errors and error in veloc-
ities. Simulations and experimental results show that the proposed behavioral
adaptive technique has a significant potential. Formation dynamics are improved
in addition to having lower actuator input in the robot cluster, which helps with
actuator saturation issues. Using BAFC, the control designer has the flexibility
to select the states priority and design an error-based adaptive controller. There
are many extension to this work while keeping its easy implementation features.

For instance, future work may tackle clusters with larger number of heterogeneous
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robots and apply intelligent methods to overcome the singularities in the cluster
dynamics in addition to addressing the behavior-based obstacle avoidance prob-
lem. Fault tolerant cluster control is another area where study of the effect of
faults and how to guarantee the performance of the cluster. In this area, division
of the cluster to many sub-clusters could be sought. Effect of actuator could be

formally addressed and quantified.
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(b) Robot 1 start moving While Robot2 is forced to
(a) Initial Position hold

(d) Robot 2 is working now and the group start moving
(C) Robot 1 is waiting and keeping the formation to the target position

Figure 3.10: experiment with two WMRs
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CHAPTER 4

SLIDING MODE

CONTROLLER FOR

NON-HOLONOMIC

MULTI-ROBOT CLUSTER

A sliding-mode controller is a nonlinear robust model-based controller, where the
system dynamics are forced to stay on a stable surface. This surface is a function
of the system states; to guarantee reaching the sliding surface and to address
the uncertainty, a robustifying term is added to the controller algorithm. When
designing a sliding mode controller for the nonholonomic robot motion, constraints
should be considered; hence selecting the sliding surface is not a trivial problem.
In [65] a sliding mode controller was developed for a nonholonomic robot in the

polar coordinates. The use of polar coordinates can simplify the sliding surface
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selection; however this controller has some singularity issues around the origin and
adds constraints on the motion postures and velocities. In [66] these constraints
were eliminated. However, the proposed controller is still unstable around the
origin and it needs to transform the robot coordination to a polar coordination,
which is not commonly used in robotics. In order to tackle the singularity issue of
the polar coordinate, [67] proposed a sliding mode controller over the Cartesian
coordinate. However, because of the sliding surface constraints, the control input
has limitations on the mobile robots movement. Recently, a modified version of
the last controller was proposed by [68] where an approaching angle sliding surface
was proposed to address the control constraints.

In this chapter, the latest adaptive sliding mode controller [69,70] is extended
to a formation control of a group of nonholonomic robots in a cluster space. The
proposed adaptive robust controller addresses the issue of model uncertainties, as
well as the system’s nonlinear dynamics. Those issues are common in real-life
applications where there are constraints on the robots motion that is transformed
into a nonlinear behavior, while the model parameters either vary in time or are
uncertain. The chapter begins with presenting the cluster model of nonholonomic
robots [23] and provides the necessary changes to include the nonholonomic case.
The chapter reports the experimental implementation of the proposed scheme on

a real ground robot connected to a central controller using a Wi-Fi network.
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4.1 Controller design

In this section the adaptive SMC is presented: The error signal calculation, then
the sliding surface selection, followed by the adaptive SMC and the controller
diagram. This development is done for a two-robot cluster as an example, but the

same procedure can be done for a cluster with any number of robots.

4.1.1 The cluster profile errors

The formation error in the cluster spaces is found as follows; Starting with defining
¢ = (Qes Tes Yoy des 1, @2) Ca = (Qeds Teds Yeds deds Q1a; G2a), where ¢g is the desired
cluster variables and c is the actual cluster variables. The error signal is Ac =
W(ecq — ¢) where W is a positive weighting diagonal matrix. The robot space
commands are transformed from the cluster space signals to robot space signals
by multiplying them with the inverse of the jacobian matrix, as Ar = J~'Ac where
Ar = [Axy, Ayy, A0y, Axo, Ays, ABy]T and Ar; = [Ax;, Ay;, AG;]T, in order to deal
with the nonholonomic constraints, the robot space commands are modified as the
following; Ar = [Axy, Ay, 010, Axo, Ayo, 02.]T and Ar; = [Axy, Ay;, 0;]7 where
Ay;

0;e = tan, 1( Ax'_) — ¢;, then a transformation of the robot commands from a global

3

frame to a robot frame is done by using the following rotational transformation;

Tie cos(q;) sin(g;) O
Tie = | yie | = | —sin(g) cos(g;) 0 Ar;.
Oie O O 1
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Figure 4.1: Cluster location errors

where (2, y;e and ;) are shown in Figure 4.1. Then by defining V; = [v;, wi]T,
Via = [Via, wid]T that the v;, w; are the actual robot heading and rotational robot’s
velocities and v;4, w;q are the desired robot heading and rotational Robot’s veloc-

ities. It was found in [60,69,70] that the derivatives of the robot profile errors can

be found as shown in equation 4.1

Tje YieW; — V; + Vig €0S(bse)
Tie = | e | = —TieW; + Vigsin(b;.) . (4.1)
éie Wiqg — W;

4.1.2 Sliding mode derivation

In this section, a model-based sliding-mode controller (SMC) is developed. The

first step in designing an SMC is selecting a sliding surface where the system
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dynamics are stable; this sliding surface is a function of the system states.

Designing the sliding surface for a single robot Starting, from the classi-
cal kinematic controller given by [71], we get the following velocity controller in

equation 4.2

Ve V14 €08(01¢) + k11w1e
Wi, wig + k12v1ay1e + ki3viasin(fye)
ve=| i | = : : (4.2)
Une Und COS(Qne) + kn1$ne
Wne Wnd + kn2vndyne + anUnd Sin(ene)
where k;1, ki, kig > 0,i|i = 1,--- ,n . Thus, the error in the robots’ kinematics is
defined as:
ec(t) - [ecl (t)u ec2(t)7 t 7602n]T - Uc(t) - U(t),
é.(t) = 0.(t) — 0(t),
where
U1
w1
v =
Up,
Wp,
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Then a Pl-type sliding surface is selected, as in equation 4.3. The adaptive integral
component offers a fast convergence of the sliding surface than the standard SMC

and a smooth control of the system resulting in zero steady-state error [72].

s1(t)

S9 (t)

S1. (t)

s(t) = — )+ / eo(t)dt, (4.3)

S9.i (t)

Sl.n(t)

So.n (t)

Where ¢ is a positive integer. So, if the system is on the sliding surface

t
s(t) = 0,e.(t) = —¢ [e.(t)dt and if t — oo then e, — 0. In order to have the

0
control signal, the derivation of the sliding surface is found in equation 4.4.

§(t) = [0e(t) = H (7eq — E)] + Be.(t) = 0. (4.4)
Then by rearranging equation 4.4 we arrive at equation 4.5

Teg = H [0c(t) + e (t)] + E. (4.5)
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Now 7., can keep the system inside the surface. But what if the system dynamics
are already outside the surface? In order to guarantee the stability in that case,
another control signal 7, should push the system dynamics onto the sliding surface;
this mechanism is called the reachability law or a robustifying term. Now the new

control signal 7 is a combination of 7., + 7, as shown in equation 4.6

T = H [0.(t) + Pec(t) + K - sgn(s)] + E, (4.6)
K, O 0
o - 0 0
where K = {K; | K; > 0}
L0 K
0 0 0 K,

and the sgn(s(t)) = [sgn(s1(t)), sgn(ss(t)), - -+, sgn(son)]

The uncertainty of the system is a function of the disturbance 7; and the uncer-
tainty in the model itself, such that the error in the dynamical model and the

actual model is §:
6(t) =AH Y7 — E)+ H (-AE)+ H 'z,

Now the dynamic of the system can be written as in equation 4.7

v=H (1 —E)+9. (4.7)

However, using the sign function in the reaction law is not preferred for practical

work, and this is due to the issue of chattering. Therefore, the error function
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erf(s) is used instead.

7= H[0(t) + Beo(t) + K - erf(s)] + E. (4.8)

4.1.3 Adaptive sliding mode

Theorem 4.1 Assuming the adaptive law as shown in equation 4.9

10 - 0 o1s1erf(s1) 0 e 0
. 0 ’5)/2 e 0 0 0959er f(sg) - -- 0
= = 5
0 0 - 4 0 0 oo opSperf(sy)
) S (4.9)
where p; € R > 0 and the final controller signal is in equation 4.10
r = H [in(t) + Bect) + 4 er f(s) + E. (4.10)

*

The estimated error is defined as : 4(t) = 5(t) — v*.

Proof Using the Lyapunov function: let L = L; + Lo + L3 such that
L(0) = L1(0) = Ly(0) = L3(0) = 0 and L, Ly, Ly, L3 > 0 for inputs other than 0,

where

Ly =130y (o3 4+ g2 + oped),

Ly = 35" (0)s(0) + 1 300, (£52).
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Ls=ELTE..

Based on the Lyapunov theory, the system is stable if and only if L < 0. After

derivation we get
L=, <—ki11’?e - k‘3v+1§2(9)>’

Ly=sT5+ 50" (gi:yfyl>

Now L; < 0. And after substituting 4 based on 5 = 4.
Ly = " [=Ferf(s) = 0] + Xy (£34:)
Ly = 7 [~ +7)erf(s) = 0] + Ly (£37%),
Ly = sT [—*erf(s) — 8] + S [’yi (i% — sl-erf(si)ﬂ.

And once the adaptive equation is substituted, the resultant Lo is given as

Ly = s" [=y"erf(s) = 4],

Ly = le si[=yierf(si) — 6] < — le 0] sier f(si) (% = |64])-
And the Ly < 0 can be guaranteed by selecting v* > |4].
The Ls derivation is
Ly=E'E,,
where E, = (¢q — ¢), E. = (¢q — ¢) and ¢ = WE,. By substitution we the arrive
at:
E.=(¢a— WE)
Then Ls = (E,N¢y — E'WE,).
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Knowing that —E,"WE, < —Xpin(W)||E.||, the L3 < 0 provided that

| BT < i~

As a result, the derivative of the Lyapunov function is L < 0 and the stability is

proved.

4.1.4 Control diagram

In this subsection the control diagram is presented. Figure 4.2 shows the adaptive

sliding mode controller.

Desired 'i'd
Trajectory 8= 1
Ca C

i'd
cq F<AE: Ac[ -1 |Ar To | velocity |Ye €c Fl 3 T=Teq+7r E Cluster of
(<) J T Eontrol Sliding |—— b
> olitralier surface L = H[i(t) + Be(t) +/P._¢-r,r (s +E Robots

¥i = pisierf(s;)

| [y |

{FO) |
Figure 4.2: The proposed adaptive SMC diagram

4.2 Simulation Results

4.2.1 Two robot simulation

Based on the control law established in Section 4.1.3, a simulation using MAT-
LABQ is implemented on the cluster of two mobile robots. The cluster space of
two nonholonomic robots was used. The sinusoidal desired trajectory was applied

as follows:
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Teq = D cos(0.3t),

Yea = 15sin(0.1%),
Qeq = tan™! (%).
Let K = [10,2,10,2] and the initial position of the mobile robots are set as
(x1,71,q1) = (1,0,0) and (z2,y2,¢2) = (0,0,0). The simulation results are shown
in Figure (4.3) and Figure (4.4). Figure (4.3) illustrates the trajectory tracking
result for the sinusoidal function. The actual trajectory reaches the desired line
quickly. In Figure (4.4) a disturbance was introduced after 20 sec; the results of
the SMC and adaptive SMC were compared by comparing the tracking error in
the cluster states xzc, yc, Qc and dc , respectively. And in figure 4.5 the adaptive
parameters response’s are shown changing in the transient zone, the adapting
velocity depends on the adaptation constants. According to the simulation results,

the sinusoidal trajectory tracking shows good performance, especially with the

adaptive term. This validates the sliding control algorithm by simulation.
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Figure 4.3: Adaptive SMC control path tracking profile
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Figure 4.6: 3-robot system configuration

4.2.2 Simulation results of 3-robot system

In this subsection a three-robot cluster was simulated with the same refer-
ence trajectory presented in subsection 4.2.1. The selected cluster spaces are
(Tey Yoo Qey Bes Ges Pes @15 G2, q3); see Figure (4.6) and for more details refer to [17].
The simulation results (see Figure (4.7)) show good performance of the proposed

algorithm.
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4.3 Experimental application

The Lego EV3 WMRs are used in the experiments. Those WMRs (see Figure
1.1) have a 32-bit, For more details about the experimental setup refer to section

1.6.

Practical issues The output from the centralized controller is the desired
wheel’s torque, but due to the braking behavior of the EV3 servo motor, ( when
the motor has zero input) the wheel will stop abruptly. This braking is an addi-
tional variable that is not considered when developing the sliding mode controller.
To improve the response the following solution has been used: 1) add an integra-
tor filter to the controller output torque, and the output signal of this filter is
then considered to be a velocity command; 2) instead of using a voltage or power
signal to control the servo motor, the velocity command is sent to an inner speed
loop controller. Accordingly, the servo motor will follow a torque equal to the
sliding mode torque multiplied by some design constant, which is found through

trial and error. For more, see Figure (4.8), where W4 is the velocity command.
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Figure 4.8: Using an integrator to change an SMC command to a velocity com-
mand calculation and the inner loop diagram

4.3.1 Experiment test

Two WMRs move from initial positions (x,y,q), which for the first robot is
(0.2,0,%) and (0,0, %) for the second robot. The desired path is Q. = 7,2, =
0.3,y. = 0.1t and d. = 0.25 in the cluster space which is equivalent to z; =
0.55,51 = 0.1t,q1 = 5,22 = 0.05,y2 = 0.1¢ and ¢o = 7 in the robot space, where t
is the time ( see Figure 4.9). The dynamic parameters are assumed to be nominal
values. so the robot mass is 0.5kg, the robot inertia is 0.0025 kg.m?, the wheel
diameter is 56mm and the distance between the wheels is 11.8cm .

The experimental results are shown in Figures (4.10 and 4.11) . Figure (4.10)
illustrates the trajectory tracking result for a line trajectory with SMC. The ac-

tual trajectory reaches the desired line quickly; however, chattering can be easily
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seen in the actual robots’ trajectory. This chattering was due to the uncertainty
of the robots” model and the untuned controller parameters. Figure (4.11) shows
the actual trajectory with the adaptive SMC, and the chattering effects are elim-
inated with the adaptive controller. Figure (4.12) shows the comparison between
the SMC and the adaptive SMC based on the cluster states tracking x., y., Q. and
dc,respectively. According to the experimental results for the line trajectory track-
ing, the trajectory can remain stable and robust despite the uncertainty in the

robot’s inertia and mass. This validates the proposed algorithms experimentally.

Robotl and robot2 are moving to approach the desired D. Robotl and robot2 are moving now in the cluster with the
formation desired formation

Figure 4.9: Experimental cluster space control on a 2-robot system
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Figure 4.10: Experimental movement trajectory of a cluster of two robot with
SMC
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Figure 4.12: The experimental desired and actual cluster dynamics states xc,yc,Qc
and dc, and a comparison between the SMC and the adaptive SMC

4.4 Chapter summary

This chapter proposed a model-based multi nonholonomic robot controller in the
cluster space by developing an adaptive sliding mode control algorithm. This
includes the presentation of the mathematical model of the nonholonomic multi-
robot cluster, and the design of the sliding surface function and of the control
law. According to the simulation and experimental results, the proposed adaptive
sliding mode control is an important method to deal with a cluster of multi-

robots in which uncertainties and nonlinearities exist. In spite of large highly
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nonlinear dynamics, the robots’ cluster shows that the posture converges to the
desired trajectory. Future work may investigate clusters with a larger number
of heterogeneous robots and apply intelligent methods like neural networks and
fuzzy logic and to overcome the singularities in the cluster dynamics, in addition

to addressing the obstacle avoidance problem.
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CHAPTER 5

FUZZY ADAPTIVE SLIDING

MODE CLUSTER SPACE

CONTROL OF A

NONHOLONOMIC

MULTI-ROBOT SYSTEM

5.1 Introduction

In [73] an adaptive SMC is proposed to overcome the uncertainty issues in the
cluster space model. However, this adaptive law is derivative based. and this
may lead to making the system sensitive to noise. Furthermore, it results in a

time delay to tune the controller parameters. Because of that, we need a more
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reliable and faster tuning approach. One major approach is the artificial intelligent
fuzzy adaptive method. In this method, the SMC parameters will be tuned using
fuzzy rules. From the literature, this technique has been used several times with
the sliding mode controller for different robotics applications. [70] proposed a
fuzzy adaptive sliding mode controller for the single wheeled mobile robot. In
addition, [74] proposed using fuzzy logic to overcome the chattering in the sliding
mode controller. Furthermore, the leader-follower concept in [75,76] used a fuzzy
sliding mode controller to tackle the model uncertainty issue. [77] proposed using
a fuzzy sliding mode to control multi-robot using the graph theory approach.
Also [78] used fuzzy logic for tuning the sliding mode controller, in addition to
using the error and its derivative as inputs to the fuzzy logic to enhance the
performance of the controller.

In this chapter, the latest multi-robot formation control using the adaptive
sliding mode controller [73] is extended by adding intelligent fuzzy adaptive sliding
mode formation control of a group of nonholonomic robots in a cluster space.
This addition is similar to [78] which was used to improve the performance of
the SMC. The proposed adaptive robust controller addresses the issue of model
uncertainties, as well as the systems nonlinear dynamics. Those issues are common
in real-life applications where there are constraints on the robots motion that are
transformed into a nonlinear behavior, while the model parameters either vary in
time or are uncertain.The chapter reports the experimental implementation of the

proposed scheme on a real ground robot connected to a central controller using a
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wi-fi network.

5.2 Controller design

In this section the fuzzy adaptive SMC is presented as follows: first the error signal
calculation, then the sliding surface selection, followed by the fuzzy adaptive SMC
and the controller diagram. As an example, this development is done for a two-
robot cluster, while the same procedure is done for a cluster with any number
of robots. Regarding the cluster space, dynamic model refers to the authors’

previous work [73].

5.2.1 The cluster profile errors

The formation error in the cluster spaces is found by the following: Starting
with defining ¢ = (@¢, ye, Qc, des @1, 42), €4 = (Teds Yeds Qeds ded, Qrds G24), Where cq is
the desired cluster spaces and c¢ is the actual cluster spaces. The error signal is
Ac = W(eq—c) where W is a positive weighting diagonal matrix. The robot space
commands are transformed from the cluster space signals into robot space signals
by multiplying them with the inverse of the Jacobian matrix, as Ar = J'Ac
where Ar = [Azy, Ayy, A0y, Axy, Ao, Aby]T and Ar; = [Az;, Ay, AG;]T, in order
to deal with the nonholonomic constraints the robot space commands are modified
as follows; Ar = [Azy, Ayy, 01e, Axa, Ays, Oo]T and Ar; = [Axy, Ay;, 0;.]7 where
0;c = tan, 1(2—22) — ¢; then a transformation of the robot commands from a global

frame to a robot frame is done by using the following rotational transformation;
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Tie cos(q;) sin(g;) O

Tie = | yie | = | —sin(g) cos(q) 0 | A

Oie 0 0 1

Figure 5.1: Cluster location errors

where (Z;e, y;e and 0;.) are shown in Figure 5.1. Then by defining V; = [vi,wi]T,
Via = [Via, wid]T where the v;, w; are the actual robot heading and rotational robot’s
velocities respectively and v;q, w;q are the desired robot heading and rotational

robot’s velocities respectively. It was shown in [60,69, 70] that the derivative of

the robot profile errors can be found by equation 5.1

Tie YieW; — V; + Vig c0S(bse)
Tie = | e | = —ZieW; + Vg sin(f;e) : (5.1)
9ie Wiq — Wy
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5.2.2 Sliding mode derivation

In this section, a model-based sliding mode controller (SMC) is developed. The

first step in designing an SMC is selecting a sliding surface where the system

dynamics are stable; this sliding surface is a function of the system states.

Designing the sliding surface for a single robot Starting from the classi-

cal kinematic controller given by [71], we get the following velocity controller in

equation 5.2

V1e v14€08(01e) + K1121e
Wi Wig + k1201aY1e + k13014 8in(6ye)
Ve = (5.2)
Une Und COS(@ne) + knlxne
Wne Wnd + kn2vndyne + kn3vnd Sin(ene)
where k;1, ko, kig > 0,ii = 1,--- ,n . Thus, the error in the robots’ kinematics is
defined as:
ec(t) = [ecl (t)a 602(t)a : 7602-71] - Uc(t) - U(t>7
éc(t) = v.(t) — (1),
where

72



U1

Un

Wn

Then a PI-type sliding surface is selected, as in equation 5.3. The adaptive integral
component offers a faster convergence of the sliding surface than the standard SMC

and a smooth control of the system resulting in a zero steady-state error [72].

S1 (t)

sa(t)

S1. (t)

S92, (t)

Sl.n(t)

Sg.n(t)

Where (3 is a positive integer. Consequently, if the system is on the sliding surface
t

s(t) = 0,e.(t) = =B [ e (t)dt and if t — oo then e. — 0. In order to have the
0

control signal, the derivation of the sliding surface is found in equation 5.4.

5(t) = [0o(t) — H (7o — E)] + Beo(t) = 0. (5.4)
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Then by rearranging equation 5.4 we arrive at equation 5.5

Teq = H [0c(t) + Pec(t)] + E. (5.5)

Now 7., can keep the system inside the surface. But what if the system dynamics
are already outside the surface? In order to guarantee the stability in that case,
another control signal 7, should push the system dynamics onto the sliding surface;
this mechanism is called the reachability law or a robustifying term. Now the new

control signal 7 is a combination of 7., + 7, as shown in equation 5.6

T = H [0.(t) + Pe.(t) + K - sgn(s)] + E, (5.6)
K, O 0
o - 0 0
where K = {K; | K; > 0}
L0 K
0 0 0 K,

and the sgn(s(t)) = [sgn(s1(t)), sgn(ss(t)), - -+, sgn(saon)]

The uncertainty of the system is a function in the disturbance 7; and the uncer-

tainty in the model itself, such that:
§(t)=AH Y (1 — E)+ HY(—AE) + H ',

Now the dynamic of the system can be written as in equation 5.7

v =H Y1 —E)+0. (5.7)
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However, using the sign function in the reaction law is not preferred for practical
work, and this is due to the issue of chattering. Therefore, the error function

erf(s) is used instead.

7= H [0:(t) + Bec(t) + K - erf(s)] + E. (5.8)

5.2.3 Fuzzy Adaptive sliding mode

Theorem 5.1 Assuming the fuzzy adaptive law as in equation 5.9

0 ~ -+ 0
v = : (5.9)
0 0 -

where v; > 0 and function of s;,s; using the fuzzy rule in table 5.1. The final

controller signal is given in equation 5.10

Table 5.1: The fuzzy rules of ~;

Vi S;

NB | NS| Z | PS | PB

N| KB | KB | KM | KM | KM

s$; | Z | KB|KM| KS | KM | KB

P| KM | KM | KM | KB | KB

Figure 5.2 shows the fuzzy logic structure of the v function, and the input
member-ship functions for both s; and s; are shown in Figure 5.3, and the mem-
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bership function for the output v are shown in Figure 5.4, the names of the member

ship function are similar to the names in chapter 3.

(mamdani)

15 rules

System a: 2 inputs, 1 outputs, 15 rules

Figure 5.2: Fuzzy structure

Degree of membership

-1 -0.5 0 0.5 1
s,ds

Figure 5.3: The membership function for the s; and §;
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Figure 5.4: The membership function for the output ~;

T = H[0:(t) + Be.(t) +v-erf(s) + E. (5.10)

Proof Using the Lypunov function: let L = L; + Ly + L3 such that
L(0) = L1(0) = Ly(0) = L3(0) = 0 and L, Ly, Ly, L3 > 0 for inputs other than 0,

where

n 1—cos(0;e
L, = %Zizl (mfe +yi+ %»
Ly = %ST(t)S(t) + % Z?:1 (%’2)7
Ls=FE"E..

Based on the Lyapunov theory, the system is stable if and only if L < 0. After
derivation we get
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r o n 2 k¢3vid sin2 (91'6)
Ly=300 (_kilxie I Ta—
L2 = STS.

Now L; < 0. And knowing thaty; is always positive according to its membership

function.
Ly = sT [—yerf(s) — d]),

And the L, < 0 can be guaranteed by selecting v > |d]. which is obtained by the

fuzzy rules

Figure 5.5: The fuzzy surface

The L3 derivation is
LS - ECTEw
where E, = (¢4 — ¢), E, = (¢q — ¢) and ¢ = W E,. By substitution we arrive at:
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E. = (éa— WE,)
Then Ls = (E,T¢q — E."WE,).
Knowing that —E."WE, < —Apin(W)|| E¢||?, the Ls < 0 provided that
IE.|T < 5 llall

min(W) ’

As a result, the derivative of the Lyapunov function is L < 0 and the stability is

proved.

5.2.4 Control diagram

In this subsection the control diagram is presented. Figure 5.6 shows the adaptive

sliding mode controller.

t::lx::rrl Cu =1 I L]
e [ L | e

= @_0_1 = I_m__| T I—"-IJ:!‘Z‘.,T.L

T=Ty+T, %
+ Cluster of Robots
= M0 0) + .rs.-,m),ﬁvrrts]] +E ®

<
4

y =f fuzzy(s,$}

|| Fr) LI

Figure 5.6: The proposed fuzzy adaptive SMC diagram

5.3 Simulation Results

In this section the simulation validation is presented, statring with the two-robot
cluster simulation and ending with three-robot simulation. The simulation was

done using matlab.
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5.3.1 Two-robot simulation

Based on the control law established in Section 5.2.3, a simulation using MAT-
LAB@ is implemented on the cluster of two mobile robots. The cluster space of
two nonholonomic robots was used. The sinusoidal desired trajectory was applied

as follows:
Teq = Hcos(0.3t),

Yea = 15sin(0.1¢),

dyed

Qeq = tan™! (dl’—d>

Let K = [10,2,10,2] and the initial position of the mobile robots are set as
(x1,91,q1) = (1,0,0) and (z2,9s,¢2) = (0,0,0). The simulation results are shown
in Figure (5.7) and Figure (5.8). Figure (5.7) illustrates the trajectory tracking
result for the sinusoidal function. The actual trajectory reaches the desired line
quickly. In Figure (5.8) a disturbance was introduced after 20 sec; the perfor-
mances of the SMC, adaptive SMC and fuzzy adaptive SMC were compared to
each other by comparing the tracking error in the cluster states xc, yc, Qc and dc ,
respectively. According to the simulation results, the sinusoidal trajectory track-
ing performs well, especially with the adaptive term. This validates the sliding

control algorithm by simulation.
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Figure 5.7: Fuzzy Adaptive SMC control path tracking profile

81



T
Adaptive SMC
x<° normal SMC
< fuzzy adaptive SMC
0 1 P o L - |
0 5 10 15 20 25 30
Time (sec)
4 T \
Adaptive SMC
-© ol normal SMC |
< fuzzy adaptive SMC
0 ‘ ANVATAVAN . ‘
0 5 10 15 20 25 30
Time (sec)
2 T \
Adaptive SMC
o’ 1k normal SMC |
< fuzzy adaptive SMC
0 L W P
0 5 10 15 20 25 30
Time (sec)
2 T T T
Adaptive SMC
<° 1L M/J/\\/\M\ normal SMC |
< fuzzy adaptive SMC
0 @Gm\t\ ! ! ., 1
0 5 10 15 20 25 30

Time (sec)

Figure 5.8: Comparison between Adaptive SMC and standard SMC and fuzzy
adaptive SMC with disturbance injected after 10 sec

5.3.2 Simulation results of 3-robot system

In this subsection a three-robot cluster was simulated with the same refer-

ence trajectory presented in subsection 5.3.1.

The selected cluster spaces are

(Tey Yoo Qey Bes Ges Pes @15 G2, q3); see Figure (5.9) and for more details refer to [17].

The simulation results (see Figure (5.10)) show that the fuzzy SMC is at least

30% faster than the adaptive SMC.
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Figure 5.9: 3-robot system configuration
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Figure 5.10: Adaptive SMC control path tracking profile

5.4 Experimental application

Lego EV3 WMRs were used in the experiments to validate and implement the
control strategy. The WMRs (see Figure 5.11) are equipped with a 32-bit, 48
Mhz ARM9 CPU with 16MB flash memory and 64MB RAM, Bluetooth and wi-fi
transceivers, and two servo motors with encoders with 1 degrees of resolution.
A PC interface with the SIMULINK program is also required to transmit the

control signal by means of wi-fi protocol. SIMULINK has a powerful feature
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called External Mode. This feature is useful for on-line monitoring and tuning of
the EV3 WMR’s controller. A two-level control structure is used: a high-level and
low-level. The high-level controller is the sliding mode controller, operating in the
central PC, which sends and receives commands /data to and from the WMRs
low-level controller. The low-level controller is a PID inner loop for controlling
wheel speeds.

Based on the proposed control algorithm, the central PC receives the location
feedback from each robot; then the PC calculates the error and control signals and
sends the velocity commands to each robot. The low-level controller on the robot
receives the commands from the PC and relays these signals to the motors. The
encoders provide measurements for the feedback. The actual time of a one-loop
process depends on the robot sampling time (set to 25ms) plus the wi-fi delay
time, which it is dependent on the computer speed and network usage. The robot
localization is achieved by using the encoders only. The WMRs use EV3 servo
motors that have a gear reduction mechanism in order to increase the torque and
decrease the maximum output speed. However, this gear mechanism has a back-
lash issue, which introduces a nonlinear behavior due to small gaps between the
mating gear teeth. Once the servo motor changes its direction the backlash effect
occurs, causing the servo to have a certain rotation without being translated to
actual wheel rotation. This issue can be mitigated by adding backlash compen-
sation. Thus, when the servo motor changes its rotation direction a certain value

found by trial and error is subtracted from the encoder reading.
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Practical issues The output from the centralized controller is the desired
wheel’s torque, but due to the braking behavior of the EV3 servo motor, ( when
the motor has zero input) the wheel will stop abruptly. This braking is an addi-
tional variable that is not considered when developing the sliding mode controller.
To improve the response the following solution has been used: 1) add an integra-
tor filter to the controller output torque, and the output signal of this filter is
then considered to be a velocity command; 2) instead of using a voltage or power
signal to control the servo motor, the velocity command is sent to an inner speed
loop controller. Accordingly, the servo motor will follow a torque equal to the
sliding mode torque multiplied by some design constant, which is found through

trial and error. For more, see Figure (5.11), where W4 is the velocity command.

-~ ——

Speed Control ﬂ . speed Control | ﬂ ;
E A v :

Figure 5.11: Using an integrator to change a fuzzy SMC command to a velocity
command calculation and the inner loop diagram
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5.4.1 Experiment test

Two WMRs move from their initial positions (z,v, ¢q), which for the first robot
is (0.2,0,%) and (0,0, §) for the second robot. The desired path is Q. = F,z. =
0.3,y. = 0.1t and d. = 0.25 in the cluster space which is equivalent to z; =
0.55,51 = 0.1t,q1 = 5,22 = 0.05,y2 = 0.1¢ and ¢o = 7 in the robot space, where t
is the time ( see Figure 5.12). The dynamic parameters are assumed to be nominal
values. So the robot mass is 0.5kg, the robot inertia is 0.0025 kg.m?, the wheel
diameter is 56mm and the distance between the wheels is 11.8cm .

The experimental results are shown in Figures (5.13 and 5.14) . Figure (5.13)
illustrates the trajectory tracking result for a line trajectory with fuzzy adaptive
SMC. The actual trajectory reaches the desired line quickly. Figure (5.14) shows
the comparison between the fuzzy adaptive SMC and the adaptive SMC based
on the cluster states tracking x.,v., Q. and dc,respectively. According to the
experimental results for the line trajectory tracking, the trajectory can remain
stable and robust despite uncertainty in the robot’s inertia and mass. and due to
the fast fuzzy logic controller tuning the performance of the adaptive fuzzy SMC
is faster than the standard adaptive SMC. This validates the proposed algorithms

experimentally.

5.5 Chapter summary

This chapter proposed a model-based multi nonholonomic robot controller in the

cluster space by developing a fuzzy adaptive sliding mode control algorithm. This
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C. Robotl and robot2 are moving to approach the desired D. Robotl and robot2 are moving now in the cluster with the

Figure 5.12: Experimental cluster space control on a 2-robot system
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Figure 5.13: Experimental profile tracking results of a two robot cluster with fuzzy
adaptive SMC
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Figure 5.14: A comparison between the tracking errors with adaptive SMC and
fuzzy adaptive SMC

includes the design of fuzzy logic algorithm and of the control law. According to
the simulation and the experimental results, the proposed fuzzy adaptive sliding
mode control is an important method to deal with a cluster of multi-robots and
it is superior to the adaptive sliding mode controller [73] in tuning speed and
performance, (as well as uncertainties and nonlinearities which exist). Future
work may investigate clusters with a larger number of heterogeneous robots and
apply intelligent methods like neural networks and fuzzy logic to overcome the

singularities in the cluster dynamics.
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CHAPTER 6

MPC CONTROLLER FOR

ACTUATOR SATURATION

ISSUE WITH CLUSTER SPACE

6.1 Introduction

In this work, the MPC is used in order to achieve the maximum usage of the
velocity domain for stabilizing the multi-robot formation shape and then carrying
out the target following task. This is done by giving more weight to the clus-
ter formation shape states over the target following states. The chapter reports
an experimental implementation of the proposed scheme on a real ground robot
connected to a central controller using a wi-fi network.

The remainder of this chapter is organized as follows: section 6.2, the robot

velocity saturation is discussed. Then the model-based controller is proposed. The
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simulation results are discussed in Section 6.4 and the experimental validation and

results are presented in section 6.5. And ending up with concludes the chapter.

6.2 Differential Robot velocity constraints

6.2.1 Diamond shape velocity constraint

As shown in Figure 2.1, our nonholonomic robots’ differential drive type is con-
sidered in this work. Let w, and w; represent the right and left wheel angular
velocities. It is assumed that the wheels velocities are subjected to |w, ;| < a with
a being the angular velocity limit. The nonholonomic differential drive robot has
the heading velocity v and the angular velocity w which are related to the wheels’

angular velocities by

v=(w,+w)/2, w=(w,—w)/(20) (6.1)

Accordingly the heading and the angular velocities are bounded by

|/ + [Yw|a < 1 (6.2)

where ¥ = L/2 the half of the distance between the wheels. Figure 6.1a illustrates

the velocities domain in a diamond shape.

91



(a) Differential drive mobile robot velocities domain (b) Ellipse shape for robot velocities domain

Figure 6.1: Differential drive velocities domain’s

However the diamond shape has sharp corners and the dv/dw is undefined
on these sharp corners, which may affect the optimization search. consequently
for simplicity and for improving the optimization process speed an ellipse shape

equation (6.3) is proposed instead of the diamond shape. See figure 6.1b

(v/b)* + (w/a)* =1 (6.3)

where 0 is a constant that is propotional with the max heading velocity, a = L x b

and L is defined in figure 2.1
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6.3 Controller design

In this section, the MPC controller is presented as follows: first the error signal
calculation, then kinematic controller design, followed by the MPC and finally
the controller diagram.As an example this development is done for a two-robot

cluster, while the same procedure is done for a cluster with any number of robots.

6.3.1 The cluster profile errors

The formation error in the cluster spaces is found as follows; starting with defining
¢ = (Tes Yo, Qey dey @1, G2), Ca = (Tea, Yeds Qeas ded; Quas goa), Where cq is the desired
cluster space and c is the actual cluster spaces. The error signal is Ac = W (cq—c)
where W is a positive weighting diagonal matrix. The robot space commands
are transformed from the cluster space signals to robot space signals by mul-
tiplying them with the inverse of the Jacobian matrix, as Ar = J~'Ac where
Ar = [Axy, Ay, ABy, Axo, Ayy, ABy]T and Ar; = [Ax;, Ay;, AG;)T, in order to
deal with the nonholonomic constraints the robot space commands are modified
as follows; Ar = [Azy, Ayi, O1e, Ao, Aya, Oo]7 and Ar; = [Axy, Ay;, 0;]7 where
Ay;

0;e = tan, 1( Ax'_) — ¢; then a transformation of the robot commands from a global

3

frame to a robot frame is achieved by using the following rotational transforma-

tion;
- Tie - - cos(q;) sin(g) O -
Tie = | ye | = | —sin(g) cos(qg) O Ar;.
Ose 0 0 1
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Figure 6.2: Cluster location errors

where (2, y;e and ;) are shown in Figure 6.2. It was found in [60, 69, 70] that

the derivative of the robot profile errors can be found by equation 6.4.

Tie YieW; — V; + Vig €08 (bse)
Tie = | e | = —TieW; + Vigsin(b;,) : (6.4)
éie Wig — Wy

6.3.2 Kinematic Controller

In this section, a kinematic-based controller is presented. Starting, from the

classical kinematic controller given by [70,73,79], we get the following velocity
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controller in equation 6.5.

(T V14 €08(b1c) + K1121e
Wie wig + kigviagyie + ki3via sin(fse)
Ve = = : (6.5)
Une Und COS(@HE) + knlzne
Wne Wnd + anUndyne + kn3vnd Sin(ene)
where k1, ki, kig > 0,ili = 1,--+ ,n. Thus, the error in the robots’ kinematics is
defined as:
ec(t) - [ecl (t)a 602(t)a : 7662-71] - Uc(t) - U(t),
é.(t) = 0.(t) — 0(t),
where
U1
w1
v =
Un
W,

6.3.3 MPC Controller

The cluster error signal is F. = ¢4 — ¢, however, due to the nonholonomic con-
straints the cluster angular errors ¢;y — ¢; are replaced with 6;. that represent the

stabilizing angular errors for the nonholonomic model. As a result of this, the
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new cluster error matrix is

Ecn - (EC, ‘9167 926)

minimize H = |Ec,(X(7),U(7))]. (6.6)

T=t

Subjected to c(t + 1) = f(X(¢),U(t)) and equation (6.3), where X (t) = [c, ¢] and
U(t) = [Ec(t), Ec(t)], and T is the time interval. So the optimization function
will minimize H based on the selection of the control command v.(¢) shown in

equation 6.5.

Stability Proof

Using the Lyapunov function: let L = L; + Ly such that L(0) = L,(0) =
Ly(0) =0 and L, Ly, Ly > 0 for inputs other than 0, where L; is the Lyapunouv
funtion for the robot level controller, and the L, is the lyapunov function for the

cluster controller.

L= 130 (o8 4+ g2 + epd),
L,=FE"E,.

And the command with be generated in the cluster space controler then trans-
formed to robot space controller by using the Jacobian matrix such that r, =
J1Ac.

Based on the Lyapunov theory, the system is stable if and only if L < 0. After
derivation we get
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; n i30iq 5in® (e
Ly=5%7", (—kﬂI?e — Figvia s {Bie) dkﬁ © ));
Now Ll < 0 provided that v,y > 0. The Ly derivation is
L2 - EcTEca

where E. = (¢q — ¢), E. = (¢qg — ¢) and ¢ = WE,. By substitution we the arrive

at:

E.=(¢q—WE,)

Then Ly, = (E,N¢y — ESWE,).

Knowing that —E,WE, < —Xnn(W)||E.||?, the Ly < 0 provided that

|E.|* < % And the Jacobian matrix J(t) is not singular at ¢

As aresult, the derivative of the Lyapunov function is L < 0 and this completes

the proof.

6.3.4 Control diagram

In this subsection the control diagram is presented. Figure 6.3 shows the MPC

controller.
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Figure 6.3: The proposed MPC diagram

6.4 Simulation Results

6.4.1 Two robot simulation

Based on the control law established in Section 6.3.4, a simulation using MAT-
LABQ@ is implemented on the cluster of two mobile robots. The cluster space of
two nonholonomic robots was used. The desired sinusoidal trajectory was applied

as follows:
Zeq = 10 cos(0.03t),
Yea = 30sin(0.01¢),
Qea = tan™" (ii—zj).

Let k;ji = [0.1,5,0.1,0.1,5,0.1] and the initial position of the mobile robots are
set as (x1,v1,q1) = (1,0,0) and (x2,y2,q2) = (0,0,0). The simulation results are
shown in Figure (6.4) and Figure (6.5). Figure (6.4) illustrates the trajectory
tracking result for the sinusoidal function. The actual trajectory with the MPC

reaches the desired line quickly, however, the robots were late when the profile in-
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cludes turns. In Figure (6.5) a comparison is made with three cases. The first one
shows the profile error of the cluster response with a normal kinematic controller
and zero velocity saturation, the second one presents the response with velocity
saturation, and the third one shows the proposed MPC with the existence of the
saturation. The results of the MPC and the kinematic controller are compared
to each other based on the tracking error in the cluster states xc, yc, Qc and dc,
respectively. This shows an improvement with the MPC over the kinematic con-
troller with the existence of the saturation. According to the simulation results,
the sinusoidal trajectory tracking shows better response with MPC in the satura-
tion case compared with the kinimatic controller. This simulation validates the

MPC control algorithm.

6.5 Experimental application

Lego EV3 WMRs were used in the experiments to validate and implement the
control strategy. The WMRs (see Figure 6.6) are equipped with a 32-bit, 48
Mhz ARM9 CPU with 16MB flash memory and 64MB RAM, Bluetooth and wi-
fi transceivers, and two servo motors with encoders with 1 degree of resolution.
A PC interface with the SIMULINK program is also required to transmit the
control signal by means of wi-fi protocol. SIMULINK has a powerful feature
called 'External Mode’. This feature is useful for on-line monitoring and tuning
of the EV3 WMR’s controller. A two-level control structure is used: high-level and

low-level. The high-level controller is the sliding mode controller, performed in
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Figure 6.4: MPC control path tracking profile

the central PC, which sends and receives commands /data to and from the WMRs
low-level controller. The low-level controller is a PID inner loop for controlling
wheel speeds. The 2014 version MatLab was used. However, as far as the authors
know, the newer versions of MatLab don’t allow for the simultaneous operation
of the multi-robot with the simulink.

Based on the proposed control algorithm, the central PC receives the location
feedback from each robot; then the PC calculates the error and control signals and
sends the velocity commands to each robot. The low-level controller on the robot
receives the commands from the PC and relays these signals to the motors. The

encoders provide measurements for the feedback. The actual time of a one-loop
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Figure 6.5: Comparison between kinimatic with and without saturation and MPC
with saturation

process depends on the robot sampling time (set to 50ms) plus the wi-fi delay
time, which is dependent on the computer speed and network usage. The robot
localization is achieved by using the encoders only. The WMRs use EV3 servo
motors that have a gear reduction mechanism in order to increase the torque
and decrease the maximum output speed. However, this gear mechanism has a
backlash issue, which introduces a nonlinear behavior due to small gaps between
the mating gear teeth. Once the servo motor changes its direction the backlash
effect occurs, causing the servo to have a certain degree of rotation without this
being translated to actual wheel rotation. This issue can be mitigated by adding
backlash compensation. Thus, when the servo motor changes its rotation direction
a certain value is subtracted from the encoder reading. For more details about

the practical issues please refer to the author’s work [73]
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Figure 6.6: MPC velocity error is filtered using an integrator to get a velocity
command that is sent to the robot inner loop diagram

6.5.1 Experiment test

Two WMRs move from their initial positions (z,y,q), which for the first robot
is (0.2,0,%) and (0,0,%) for the second robot. The desired path is Q. =
5:7. = 0.3,y = 0.01¢ and d. = 0.25 in the cluster space which is equivalent
to xy = 0.55,51 = 0.01¢,q; = 5,22 = 0.05,92 = 0.01¢ and g = 5 in the robot
space, where t is the time ( see Figure 6.7). The dynamic parameters are assumed
to be nominal values. The robot mass is 0.5kg, the robot inertia is 0.0025 kg.m?,
the wheel diameter is 56mm and the distance between the wheels is 11.8cm .

In order to minimize the processing time during the practical experiment, the

developed MPC predicts only one step ahead and calculates the optimum con-

troller gain accordingly. The number of controller variables is four which helps to
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decrease the processing time. The experimental results are shown in Figure (77?).
Figure (6.8) illustrates the trajectory tracking result for a line trajectory with a
kinematic controller with out velocity saturation. The actual trajectory reaches
the desired line quickly; however, Figure (6.9) shows the actual trajectory of the
cluster driven by the kinematic controller with velocity saturation. Figure 6.10
also shows the actual trajectory of the cluster with the MPC controller and it is
very apparent that the MPC shows a better formation recovery than the classi-
cal controller. Figure (6.11) shows the comparison between these three controller
based on the errors in the cluster states tracking z.,y., Q. and dc,respectively.
The MPC gives priority to the formation recovery over the target following task.
Due to this the MPC is better in the case of saturation , for example the error in
x axis converge 50% faster with MPC compared with the kinimiatic controller .

This validates the proposed algorithms experimentally.
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C. Robotl and robot2 are moving to approach the desired D. Robotl and robot2 are moving now in the cluster with the
formation desired formation

Figure 6.7: Experimental cluster space control on a 2-robot system
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Figure 6.8: Experimental movement trajectory of a cluster of two robot with
Kinimatic controller and without velocity saturation
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Figure 6.9: Experimental movement trajectory of a cluster of two robot with
Kinimatic controller and robot velocity saturation
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Figure 6.10: Experimental movement trajectory of a cluster of two robot with
MPC and robot velocity saturation
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Figure 6.11: The experimental trajectory errors of the cluster dynamics states
xc,yc,Qc and de, and a comparison between the kinimatic with/without velocity
saturation and MPC with velocity saturation

6.6 Chapter summary

This chapter proposed a model predictive controller for a multi-differential drive
robot in the cluster space. This controller overcomes the velocity saturation issue,
using an optimization algorithm the controller weights are tuned to minimize the
cluster formation and target following tasks. According to the simulation and
experimental results, the proposed MPC is an important method to deal with a

cluster of multi-robots in which the velocity’s saturation and model nonlinearities
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exist. In spite of an effective velocity saturation, the robots’ cluster shows that the

posture converges to the desired trajectory better that with the classical controller.
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CHAPTER 7

CONCLUSION AND FUTURE

WORK

In this thesis, the multi nonholonomic robot formation with cluster space concept
was studied. This study includes the dynamic model derivation and formation
controllers derivations. Four different controllers were presented in this work.
The first one is the behavioral adaptive controller which is used to give a higher
priority to the formation task over the target following task. This controller
was developed with an artificial fuzzy logic controller that allows it to take a
behavioral action such as tuning the formation controller based on the priority
list. The second controller is the robust sliding mode controller. This controller is
robust against the model uncertainties and nonlinearities. Furthermore, for auto
tuning this SMC an adaptive law is added, the resultant adaptive SMC shows
improved performance with external disturbances. Also, an artificial fuzzy logic

adaptive law was added to the SMC in order to get a faster tuning SMC than
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the standard adaptive SMC. The fifth controller is a model predictive controller,
which was developed to tackle the velocity saturation effects of the nonholonomic
robots. The MPC optimizes the kinematic controller gains so that the effect of
saturation is minimized.

The developed controllers were validated by simulation and experimental tests.
The results show a considerable improvement in their usage.

Future work may be conducted to tackle the communication issues such as the
limited bandwidth and wireless coverage issues. Additional future work should be
conducted to tackle the case of a non homogeneous group of robots. For example,
the case where a ground robot and drones are in the same cluster. Finally, the

formation switching of cluster shapes and its application should be studied.
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Cooperation between autonomous robot vehicles holds several promising advantages like robustness,
adaptability, configurability, and scalability. Coordination between the different robots and the individual
relative motion represent both the main challenges especially when dealing with formation control and
maintenance. Cluster space control provides a simple concept for controlling multi-agent formation. In
the classical approach, formation control is the unique task for the multi-agent system. In this paper, the
development and application of a novel Behavioral Adaptive Fuzzy-based Cluster Space Control (BAFC) to
non-holonomic robots is presented. By applying a fuzzy priority control approach, BAFC deals with two
conflicting tasks: formation maintenance and target following. Using priority rules, the fuzzy approach is
used to adapt the controller and therefore the behavior of the system, taking into accounts the errors in
the formation states and the target following states. The control approach is easy to implement and has
been implemented in this paper using SIMULINK real-time platform. The communication between the
different agents and the controller is established through Wi-Fi link. Both simulation and experimental
results demonstrate the behavioral response where the robot performs the higher priority tasks first.
This new approach shows a great performance with a lower control signal when benchmarked with

previously known results in the literature.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In addition to their ability to withstand extreme environment
conditions, robotic systems can provide more speed, precision,
repeatability and strength to any automated tasks such as sen-
sor deployment, mapping, rescue like firefighting and surveillance
to name just a few. However, a vast majority of applications use
robots with individually assigned tasks. Hence, each robot operates
independently from all other robots and is dedicated to achieve a
particular task. Interest is growing in the use of multi-robot systems
to push forward the limits of capabilities and improve individual
work efficiency of each robot. The use of multi-robot systems pro-
vides great features such as flexibility, configurability, redundancy,
increased coverage, throughput, and spatially diverse functionali-
ties [1].

Multi-agent systems have many features but also several chal-
lenges. One of the key challenges they are facing is the simultaneous
coordination of motion and formation control. Formation control is

* Corresponding author.
E-mail addresses: selferik@kfupm.edu.sa, sami.elferik@gmail.com (S. El Ferik),
mtnasir@kfupm.edu.sa (M. Tariq Nasir), ubaroudi@kfupm.edu.sa (U. Baroudi).

http://dx.doi.org/10.1016/j.as0c.2016.03.018
1568-4946/© 2016 Elsevier B.V. All rights reserved.

important especially when sensors’ coverage and/or capabilities are
limited. In the case of sensors coverage, formation allows each robot
to concentrate its sensors on a region of the area of interest [2]. For
example, robot scout benefits from a formation by directing the
sensors of each robot towards achieving maximum area coverage
[3]. Several approaches have been proposed to address formation
control. The concept of virtual leader in the leader—follower frame-
work has been extensively studied in designing control strategies
(see for example Refs. [4-6]). Comparison of different methods
to optimize the path planning in leader—follower formation with
obstacle avoidance and their suitability for real-time implementa-
tion has been presented in Ref. [7].

Cluster-space is another approach for formation control and
maintenance (see Refs. [8-12]). This control method considers the
group of robots as single entity and therefore, calculates the control
commands at the cluster level. The main aspect of such approach
is that the group of robots is perceived as one big robot. Once
determined, cluster commands are translated to robot space com-
mands by applying inverse kinematics and using the appropriate
Jacobean matrix allowing each robot to have its own command that
is derived from the cluster’s command. By doing so, the control pro-
cess is made simpler than dealing with many robot entities as in
the virtual-leader framework.
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x Lt

Fig. 1. WMR model, g is the WMRs heading angle, and X,Y are the robot center
location.

Cluster space control can be centralized or decentralized. A
centralized cluster space control is currently being implemented.
Decentralized implementations are also possible [13]. However,
the cluster space controller has its own challenges such as singu-
larity problems—due to the Jacobean matrix of the cluster-to-robot
space becoming singular [14], collision avoidance issues [15], and
also the effects of the actuator nonlinearities on robot mobility
which has the potential to put all the cluster in an unstable mode.
Another similar approach is the null space algorithm. This is a task-
based control algorithm for a group of multi-robots [16,17]. Null
space approach is similar to the cluster space in the sense that it
considers the robot group as one entity, but has some differences
in the mathematical representation of the group dynamics.

Design of intelligent and adaptive controllers are crucial to
improve the performance of the cluster while addressing issues like
nonlinearity, uncertainty, faults, and external disturbances. Fuzzy
control method is a promising intelligent method since it does not
require the availability of a precise model. For instance, The study
in Ref. [18] developed a grey-prediction self-organizing fuzzy con-
troller to address active suspension systems control. Experimental
results demonstrate the effectiveness of the approach when com-
pared to self-organizing fuzzy controllers. Neuro-fuzzy techniques
are used in Ref. [19] to optimize the control of robot navigation
through combination of rules. A good review of fuzzy systems and
their applications can be found in Ref. [20]. On the other hand,

Ca Fuzzy PD Cm“ AR

Controller

h

Y

Fig. 2. Cluster space and robot space variables.

behavior control methods have been developed to tackle complex
control problems that autonomous robots encounter in an unfa-
miliar real-world environment [21]. The behavior controller has
general set of constraints that allow robots to react in a certain
domain [22]. Based on these constraints the robot will select the
appropriate response called behavior, task or routine. A hierarchy
of distributed behaviors was tackled in the literature to fulfill a
given goal with different scenarios. In order to switch between
these behaviors, fuzzy logic technique was used since, in addi-
tion to the fact that it does not need a precise model, it is based
on logistic commands that makes it suitable for representing the
behavior selection criteria or constraints [21,23,24]. For example,
behavior-based control has been tackled for soccer playing robot in
Ref.[24] and was used in navigation and coordination control in Ref.
[21,23,25,26]. However, these methods were not applied to multi-
robot clusters. Behavioral-fuzzy controller for the null space has
been proposed in Ref. [27]. However, to our knowledge it has never
been implemented in cluster space control framework. Also, in
literature, a classical PID controller was proposed as the behavior-
based controller. Issues like disturbance effects, robots nonlinearity
or actuator saturation are not yet considered. The nonlinearity issue
is important especially when having a group of nonlinear robots
dynamics. Equally important, actuator saturation issues can make
the formation of the group of robots completely unstable. One of the
recommended solutions to deal with these issues is fuzzy adaptive
controllers [28-31].

Motivated by the research gaps in the literature and by the
appealing nature of the fuzzy approach owing to its features,
this paper proposes a novel behavior-fuzzy-based adaptive con-
trol algorithm (BAFC) for cluster space control. The present study
considers two competing behaviors, which are target following and
formation maintenance and control. The algorithm is simple, easy

Fig. 3. Cluster space control architecture where AR is the robot commands and J is the Jacobian Matrix.
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Fig. 4. Fuzzy control parts.

to implement, and its control approach accomplishes tasks based
on their level of importance. In this proposed novel BAFC, the posi-
tion error and its rate of change are both considered as inputs to
the fuzzy logic control tuning algorithm. This will in turn improve
the controller’s performance in an adaptive manner. The task-based
control algorithms considers the robots actuator power allocated to
one task at a time. This may help in solving the actuator saturation
issue.

In addition, cluster space concept has been applied on different
types of robots, the unmanned vessel fleets [9,32], aerial robots and
ground robots [11]. In this paper, non-holonomic robots are con-
sidered owing to the fact that the majority of wheeled robots are
constrained in motion (wheels rotate without slipping). The imple-
mentation of the new control approach on Lego EV3 WMRs wheeled
robot is also presented. The control strategy is implemented using

NB NM NS
1

0.5

-1 -0.8 -0.6 -0.4 -0.2

SIMULINK. Real-time communication between robots and the con-
troller is established through a Wi-Fi link.

The rest of the paper is organized as follows. Section 2 introduces
the kinematics and dynamics of non-holonomic robot as well as the
definition of multi-robot cluster control. In Section 3, the adaptive
fuzzy-based trajectory-tracking controller is presented with its sta-
bility proof. The simulation results are discussed in Section 4 and
the experimental validation and results are presented in Section 5.
Section 6 concludes the paper and discusses future work.

2. Non-holonomic robot dynamics

A wheeled mobile robot (WMR) with two driven wheels (in the
rear part) and a passive castor wheel (in the front)is considered. The
schematic model is shown in Fig. 1 (see Ref. [5] for more details).

The state-space model of the considered kinematic vehicle with
the associated non-holonomic constraints (rolling with no slipping)
is given by Eq. (1):

X(t) = uy(t) cos(6(t))

Y = uq(t)sin(6(t)) (1)
q(t) = ua(t)
PS PM PB
0.2 0.4 0.6 0.8 1

Fig. 5. The member ship function of normalized E, E, AK,, AKj.

Low High
1
0.5
0 o
-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1

input variable "P"

Fig. 6. The Membership function for the Priority input P.
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Fig. 7. The BAFC structure for two robot cluster.

2.1. Cluster space design

In order to implement the cluster space for two robots, an appro-
priate set of cluster variables are chosen to represent the shape
of the cluster. As shown in Fig. 2, the proposed cluster variables
are (Qc,Xc,Ye,dc) and the corresponding robot space are (X1,Y1,41),
(X2,Y2,92). The following Egs. (2)-(5) shows the relation between
the cluster space and the robot space variables.

_ X1+ X3

Xc 5 (2)
i+ Y,
Vo= 022 3)
Q= tany Yy — V2. X~ Xo) + 5 @
1
de = 5 V(Y1 = Y2 + (X1 ~ X (5)

where (X, Y¢) is the center of the cluster; Q. is the cluster heading
and d. is the spacing between the robots from the cluster center.

3. Control architecture

As shown in Fig. 3, the proposed cluster space controller, which
is, consists of a closed loop controller with an adaptive fuzzy tuner
that changes the controller parameters.

This scheme measures the robots states and converts it into
cluster space states. The conversion is implemented by comparing
cluster position and velocities with the desired trajectory values
and outputting cluster velocities. These output cluster velocities
are then translated into commands and sent to the robots. The
following steps show the control procedure;

Step 1: calculating the error in the cluster variables using Eq. (6)

Xcd = Xc
Yo - Y.
E - [o c (6)
Qcg — Qc
dcd - dc
Step 2: differentiate the error using Eq. (7)
. dE.

where E; and E. are (1 x 4) vectors,
Step 3: adapt the values of Kj, (1 x 4), and Ky (1 x 4) by imple-
menting the fuzzy functions as given in Egs. (8) and (9):

Kp =Kp + AKp { Ec, Ec}fuzzy (8)
Kq =Ky + AKg{Ec, Ec } fuzzy 9)

whereK, and Ky are the proportional and integral constant con-
troller gains and

AKp{Ec. Ec}q . = [AKpxe, AKpye, AKpge, AKpgc|
AKq{Ec, Ec} fuzzy = [ AKgxe, AKaye, AKage, AKyqc |
Ky = [Kpxe, Kpve, Kpacs Kpac ]
Ka = [Kaxe, Kaye: Kages Kaae ]
Ky = [I_(pXu Kpye: Kpc, deC]
Ky = [Rch’ Kaye, Kage Rddc]

More details on the fuzzy model structure is presented in Section
3.1.
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Step4: applying the Cluster fuzzy PD controller commands using
Eq. (8)
Cemd = KpEc + K4Ec (10)

where Cemg = [AXc, AYe, AQc, Adc]". Note that AQ. should be in
the range of [, 7].

Step 5: the cluster controller commands are translated into
robot velocities by calculating the velocity inverse kinematics as
in Egs. (11)-(14):

AX =AXC+Adcos(ch%)7chQ¢sin(Q57%) (11)
AY, :Ayc+Adsin(Qc—§)+dCAQCcos(QC—g) (12)
AX2=AxcfAdcos(chg)+chchin(chg) (13)
AY, = AY — Adsin(Qc — %) — d.AQc cos(Qc — g) (14)
Step 6: the low level controller (WMRs controller):

En = AX; (15)
Ep = AY; (16)
Eiz =Qc — Qig (17)
Eig = Qg — qi (18)
where i=1,2 indicates the robot index.

Qq = tan"! <5> (19)

Ei

The robot commands in Eq. (1) can be calculated using Egs. (20)
and (21)

Uiy = \/@COS(EM) (20)

U = kiEj3 (21)

where 0<k;, where u4 is the head speed and uj is the orientation
speed.

3.1. The Fuzzy controller design

As described in Fig. 4, the body of the fuzzy controllers consists
of

1. Input fuzzification (crisp-to-fuzzy conversion).

2. Fuzzy rule base (linguistic knowledge base).

3. Inference engine and Output defuzzification (fuzzy-to-crisp con-
version).

The fuzzy inference engine simulates the fuzzy rules using the
input variables. In order to achieve the foregoing objectives, two
main methods are generally used: Mamdani’s method and Sugeno’s
method. Mamdani’s method is the first known fuzzy inference sys-
tem, which consists of fuzzification, rule evaluation, aggregation of
the rule outputs, and defuzzification. The main difference between
Mamdani’s method and Sugeno’s method is in the way crisp out-
put is generated from the fuzzy inputs. While Mamdani’s method
uses the defuzzification of a fuzzy output, Sugeno’s method uses a
weighted average function to get the crisp output.

In this work, Mamdani’s method has been adopted, which is
the commonly used inference engine. The proposed fuzzy approach
starts with applying the defuzzification step to get the fuzzy values
from the crisp inputs. These fuzzy values are represented in the
fuzzy membership functions (see Figs. 5 and 6). Next, the fuzzy rules
are simulated on the fuzzy inputs as shown in Tables 1-3. In this
case, the fuzzy inputs are the error terms, derivatives of the errors

Table 1
The fuzzy rules of AK, provided that Pis low.
AK, EC
NB NM NX z PS PM PB
E NB PB PB PM PM PS Z Z
NM PB PB PM PS PS zZ NS
NS PM PM PM PS z NS NS
z PM PN PS z NS NM NM
PS PS PS z NS NS NM NM
PM PS z NS NM NM NM NB
PB z z NM NM NM NB NB
Table 2
The fuzzy rules of AK, provided that P is low.
AKy EC
NB NM NS z PS PM PB
E NB PS NS NB NB NB NM PS
NM PS NS NB NM NM NS z
NS z NS NM NM NS NS z
Z Z NS NS NS NS NS Z
PS PB PS PS PS PS PS PB
PM PB PM PM PM PS PS PB
PB PB PM PM PM PS PS PB
Table 3
The fuzzy rules of P.
Kp/Kd p
Low High

All the fuzzy values Rules form Tables 1 and 2 NB

on the cluster space and the priority value P. The fuzzy outputs are
the controller tuning parameters AK, and AKy [33].

3.2. BAFC structure

Fig. 7 shows the BAFC graphical structure for two robots clus-
ter presented in Egs. (8) and (9). The priority is achieved using by
the max function. The higher control gain from the higher priority
states will be passed. Therefore, if the output of the max is high then
the fuzzy model will output a low control gain. And if no high gain
is applied to the higher priority states, then the max function will
return low signal. By so doing, the fuzzy model will give this state
the priority to adapt its errors. The small triangles are the scaling
constants that may be selected by try and error or by applying an
evolutionary approach such as Genetic Algorithm.

Remark 1. PD controller is used in this case as an example of the
classical controllers. Any controller, especially PID type, can also be
selected.

Remark 2. The proposed fuzzy model is a hybrid adaptive system.
This means that the fuzzy model is simulated in a discrete time,
while the robots dynamic model is simulated in the continuous
time. Therefore, the fuzzy model should be slower than the robots
model during the simulation.

3.3. Stability proof

Let
Ec=Cy—C (22a)
Ec=C—C (22b)
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and

t

Cemd = / KpEc + KgEcdt
0

(23)

Theorem 1. Consider the mobile non-holonomic system (1).If the
control command defined in Eq. (23) is applied to the mobile robot
then the position and the velocity tracking errors (22a) and (22b)
converge to zero.

Proof. Starting from Eqgs. (8)-(10), the cluster states error and its
derivative Ec, E. are defined as in as in Egs. (22a), (22b) and (23),

Cemd = KpEe + K4Ec

PD controller
Adaptive Fuzzy PD controller
0 —

i

Error in P, (m)
A
| ——

Time(sec)

Fig. 10. Comparison between the BAFC and the Normal PD controller with p, state.

where Kp, K4 > 0 and {Ec, Ec}fuzzy <Kp, Ky.
Substituting E. from Eq. (23) into Eq. (10) leads to

Ee = Cq— Kp(Cq — C) — Kg(C4 - ©)

. Cy—KpEc
Ee=—7 Ky (24)
where Kp,K; >0. Now the equilibrium point is Ec=

[0O OO ]T, so by considering the following Lyapunov function
candidate

V= %ECTEC (25)

134



S. El Ferik et al. / Applied Soft Computing 44 (2016) 117-127 123

/AR Y
/AR
=

) )
/

\/ —— PD controller

Adaptive Fuzzy PD controller

0 5 10 15
Time(sec)

Fig. 11. Comparison between the BAFC and the Normal PD controller with g. state.

15 :
PD controller
1 N Adaptive Fuzzy PD controller
f~__ \
o5 / N\
.5 i U\
5 f \ N
£ \
© I7
ol
=
2
fim}
-1 [
1.5
-2
0 5 10 15

Time(sec)

Fig. 12. Comparison between the BAFC and the Normal PD controller with . state.

with V(B) = 0. Computing the derivative ‘é—‘{

dv _ EI'Cc — EIKyE.

—_ = T} =
EcEe 1+Ky (26)

dt

According to Lyapunov theorem, the system is stable ifV(B) =
0,dV(0)/dt = 0 and dV/dt < 0. Since —EfKpEc < —Amin(Kp)IIEc|®
and I + Ky > 0 where A, (Kp) is the minimum eigenvalues of the
controller gain K, then dV/dt < Ois true when Eq. (27) is satisfied,
and accordingly the system is stable.

I1Call
)”min(Kp)

Remark 3. The above proof is for general PD control gains. When
using fuzzy logic tuning, the PD controller becomes nonlinear. A
necessary and sufficient condition for stability is to always verify
that K, >0 and (I+K;)>0. However, in practice, actuator saturation
or heterogeneous characteristics of the robots may lead to instabil-
ity. The first issue is well known in the literature. The latter is due
to the coupling created within the cluster between the robots and
the inability of some robots to keep up with the cluster. This issue
will be investigated in a future work.

IET) < (27)
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Fig. 13. Comparison between the BAFC and the Normal PD controller with Q; state.
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4. Simulation results
4.1. Two robot simulation

In this case, disturbance was added to robot 2 during a time
frame of 1-3s. Also, there is an existence of an initial condition
error. Therefore, the controller should overcome two challenges:
the initial condition and the disturbances. And also the controller’s
objective is to give more priority to the formation shape than the
target following, in addition to the adaptability of the controller
gain based on the changes in the states errors and errors velocity.
As seenin Fig. 8, the BAFC’s the response of the shape states (d. and
Qc) are better than the classical controller (Fig. 9).

4.2. Three robot simulation

The dynamics of three robots cluster are presented in Ref. [10].
The BAFC structure is similar to the one with two robots but with
more fuzzy models. In this case, disturbances were added to both
robot 2 and robot 3 between 4-8 s. And also, there is existence of an
initial condition error. Therefore, the controller should be able to
overcome two challenges: the initial condition error and the distur-
bances. The controller’s objective is to give priority to the formation
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shape more than the target following. In addition, BAFC adapts the
controller gain based on the changes in the states errors and errors
velocity. Figs. 10-15 show the comparison between the classical
controller and the BAFC. The results show better performance in
qc, Pc states, as depicted in Figs. 10 and 11. These improvements
are apparent in the transient response even with both the initial
condition and the disturbance challenges. g, p. are considered as
the shape states and they are given the highest priority among the
system states followed by B¢, Qc, Xc and Y. sequentially. As a result,
qc, Pc should have better responses with BAFC than the classical
controller.

Other potential advantages of BAFC over the classical approach
are the actuators energy consumption and the max control val-
ues. As shown in Fig. 16, the max absolute value of the control
signal with the classical controller is 266 and with BAFCis 115. This
means that BAFC is better in dealing with actuator saturation than
the classical controller, and this will in turn minimize the effects of
actuators saturation problem. Therefore, BAFC requires a smaller
actuator to be used in the Robots. This observation is arguably cor-
rect because BAFC controller allocates the energy to one objective
at a time rather than to two conflicting objectives. This conflict may
result to increase of the control energy and may cause instability.

Fig. 17. Lego EV3 WMRs.

5. Experimental setup

The Lego EV3 WMRs are used in the experiments. Those WMRs
(seeFig.17)have a 32-bit,48 Mhz ARM9CPU with 16MB flash mem-
ory and 64MB RAM, Bluetooth and Wi-Fi transceivers, and two
servo motors with encoders +1° resolution. A PC interface with
SIMULINK program is also required to transmit the control signal
by means of Wi-Fi protocol. The SIMULINK has a powerful fea-
ture called External Mode. This feature is useful for monitoring
and tuning the EV3 WMRs controller online. A Two-level controller
structure uses High level and Low level controllers. The high level-
controller is in the center PC, which enables the WMRs to send and
receive data/command to and from the central PC.

Based on the proposed control algorithm, the central PC receives
the location feedback from each robot, it then calculates the error
and control signals and sends the command to each robot. The
low-level controller on the robot CPU (simply a closed loop speed
controller) receives the commands from the PC and relays these
signals to the motors. The encoders provide special measurements
for the feedback. The actual time of one loop process depends on the
robot sampling time (set to 25 ms) and the Wi-Fi delay time, which
is dependent on the computer speed and the network usage. The
Robot localization is achieved by using the encoders.

5.1. Experiment test

Two WMRs moves from initial positions [x, y, q] for the first
robot[0.2,0, 3] and [0,0, 3| for the second robot. The desired
path is Qc = &, xc=0.5, yc=0.1t, dc=0.3 in the cluster space that
isequal tox; =0.8,y1=0.1t,q; = §,x,=0.2,y,=0.1t, g2 = 5 in the
robot space, where t is the time, (see Fig. 18). In order to show
the disturbance effects on each controller a software disturbance is
added to Robot 2. This disturbance will hold Robot 2 for 90 s with
no movement see Fig. 18(A-C). The comparison now is based on
how the other robot (Robot 1) will behave using both approaches
(classical PD controller and the proposed BAFC).

Comparing the normal PD controller response (see Fig. 19) with
the fuzzy PD controller (see Fig. 20), the BAFC gives more priority
to the shape than the normal PD. Fig. 21 shows the improved shape
dynamics (the cluster angle and the distance between the robots)
with the proposed BAFC controller when compared with the normal
one.The Odometer uncertainties cause an accumulated error which
can be lessened by calibrating the odometry equations [34,35]. Also,
adding a sensor-like compass can greatly reduce this error [36].
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6. Conclusion

Cluster space concept for controlling multi-robot systems is use-
ful in simplifying the formation problem. In this work, an adaptive
fuzzy controller is designed to improve the dynamics of the clus-
ter space controllers. The cluster space dynamics were divided into

Xaxis (m)

Fig. 20. Experimental robots motions with fuzzy PD controller.
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two main groups based on their tasks or behaviors: the formation
shape states and the target following states. Therefore, BAFC gives
more priority to the formation shape states than the target fol-
lowing states. BAFC adapts the controller gain based on the states
errors and also velocities errors. Simulations and experimental
results show that the proposed behavioral adaptive technique has
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Fig. 21. Experimental results.

a significant potential. Formation dynamics have been improved
in addition to having lower actuator input in the robot cluster,
which helps with actuator saturation issues. Using BAFC, the control
designer has the flexibility to select the states priority and design an
error based adaptive controller. There are many extensions that can
be considered for this work, while keeping its easy implementation
features. For instance, future work may tackle clusters with larger
number of heterogeneous robots and apply intelligent methods to
overcome the singularities in the cluster dynamics in addition to
addressing the behavior-based obstacle avoidance problem. Fault
tolerant cluster control is another area where study of the effect of
faults and how to guarantee the performance of the cluster. In this
area, division of the cluster to many sub-cluster could be sought.
Effect of actuator could be formally addressed and quantified.
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Abstract: The study proposes a novel adaptive and robust model-based sliding-mode controller for multi-robot system in cluster
space. The study considers non-holonomic robots, which are commonly used in several real-life applications. The proposed
controller is robust to uncertainties and external disturbances. Simulation and experimental tests show the potential of this
approach. The experimental validation was done using Lego EV3 robots connected through Wi-Fi link.

1 Introduction

Cooperative control of multi-agent systems has attracted
considerable research interest during the past few decades, owing
to the augmented capabilities that such systems offer during
automation tasks. Some of these capabilities include increased
coverage, speed, repeatability, precision, redundancy and strength,
as well as the ability to withstand extreme conditions [1]. This
allows multi-robot systems to be used in many automation
applications, including sensor deployment, scouting, fire fighting,
rescue and recovery and military applications, as well as
environmental protection and surveys, such as oil spill disasters.

Simultaneous motion coordination and formation control is one
of the key challenges in multi-robot systems' behaviour. Formation
control is crucial, especially when the sensors' coverage and
capabilities are limited. In such a case, formation allows each robot
to focus its sensors towards a certain portion of the area of interest
[2]. For example, a robot-scout benefits from a formation by
directing the sensors of each robot towards achieving a maximum
coverage area [3].

From the literature, there are three main control frameworks
used in robot formation: leader—follower, null space, and cluster
space. The well-known leader—follower concept has been
extensively studied to design control strategies for robot formation,
where the follower robots should follow a virtual position relative
to the leader (for examples, see [4-6]). Recently, several related
research issues have been recently investigated. For instance,
optimising the path planning in a leader—follower formation with
obstacle avoidance and its suitability for real-time implementation
has been presented in [7], model uncertainty was addressed in [8—
10]. The null space approach is a task-based formation control
concept, where each requirement is considered as a task. For
example the spacing between the robot is considered as a task; the
centre of the group is another task, and the robot target following is
a separate task and so on. See [11-14].

The third control method uses the cluster space approach, where
the group of robots are considered as one entity, called a cluster.
This cluster has its own dynamic states (called the cluster space).
The cluster states are a function of the robots' states (called the
robot space). The control commands are calculated at the cluster
level. Based on that, cluster commands are translated to robot
space commands by applying inverse kinematics and using the
specific Jacobean matrix. Thus, each robot has its own command
derived from the cluster's command. Therefore, using the cluster
space framework makes the control design simpler, as opposed to
dealing with many robot entities as in the virtual-leader concept
(see [15-19]). Many research questions were addressed in the
literature; the obstacle avoidance problem was studied by [1, 16]; a
behavioural intelligent controller was proposed by El Ferik et al.
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[20]; the cluster space approach was applied to vessel control for a
military purposes in [21-23], and these vessels have non-
holonomic dynamics. However, designing a mode-based controller
for a group of non-holonomic robots is still an active field of
research.

Non-holonomic robots are robots that have constraints on their
motion; for more see [24]. Most mobile robots are non-holonomic.
For example, the two-wheel differential robot is considered a non-
holonomic robot because it only moves towards the direction of its
heading angle.

In the literature, the problem of multi-non-holonomic cluster
formation control has been tackled by adding a fast inner control
loop to change the robot-heading angle towards the desired motion
profile, while the outer controller handles the formation and
tracking tasks [1, 25]. However, having two control loops makes
the system more complicated, gives a generally slower time
response, and the outer controller always assumes that the robot is
heading to the target, which is not always true-causing the tracking
performance to decrease.

Moreover, the majority of the proposed controllers were
velocity-based controllers; therefore, the acceleration is not
considered as a state to be controlled, and this leads to neglecting
the uncertainty in the robot's mass and inertia. To solve this issue a
recent approach [23] proposed a dynamic-based controller for the
cluster space approach, where the acceleration and dynamic model
of the cluster space robots were considered in the controller design.
In [23], a feedback linearisation algorithm was proposed. However,
the proposed approach assumed that the robots were holonomic
robots.

Control of single non-holonomic robots has seen extensive
research activity during the past few years. On the other hand,
cluster space control of multi-non-holonomic robots is still under
investigation and, to our knowledge, a robust model-based control
of such a system has not been addressed

A sliding mode controller (SMC) is a non-linear robust model-
based controller, where the system dynamics are forced to stay on a
stable surface. This surface is a function of the system states; to
guarantee reaching the sliding surface and to address the
uncertainty, a robustifying term is added to the controller
algorithm. When designing a SMC for the non-holonomic robot
motion, constraints should be considered; hence selecting the
sliding surface is not a trivial problem. In [26], a SMC was
developed for a non-holonomic robot in the polar coordinates. The
use of polar coordinates can simplify the sliding surface selection;
however, this controller has some singularity issues around the
origin and adds constraints on the motion postures and velocities.
In [27], these constraints were eliminated. However, the proposed
controller is still unstable around the origin and it needs to

141



Mobile
robot

X

Fig. 1 WMR model, where q is the WMR's heading angle, point ¢ is the
robot's centre of gravity, d is the distance between the wheels line and ¢ and
p is the wheel radius

transform the robot coordination to a polar coordination, which is
not commonly used in robotics. In order to tackle the singularity
issue of the polar coordinate [28] proposed a SMC over the
Cartesian coordinate. However, because of the sliding surface
constraints, the control input has limitations on the mobile robot's
movement. Recently, a modified version of the last controller was
proposed by Lee et al. [29] where an approaching angle sliding
surface was proposed to address the control constraints.

In this paper, the latest adaptive SMC [30, 31] is extended to a
formation control of a group of non-holonomic robots using cluster
control owing to its simple formation control principle feature.The
non-holonomic robot considered in this research is commonly used
in practice such as unmanned vessels, drones, and mobile robots,
this type still needs more investigation in the area of multi-robot
formation control. The proposed adaptive robust controller
addresses the issue of model uncertainties, as well as the system's
non-linear dynamics. Those issues are common in real-life
applications where there are constraints on the robot's motion that
is transformed into a non-linear behaviour, while the model
parameters either time varying or are uncertain. SMC is a robust
controller that has the ability to overcome uncertainties and
disturbances. However, the closed-loop dynamic suffers from a
known chattering problem caused by the signum function which is
needed to satisfy the reachability condition. In our work, the error
function erf(.) is used to approximate the signum function. Unlike
saturation function, this approximation does not suffer from the
boundary layer problem. However, the quality of the
approximation depends on the selection of a design parameter (a).
Targeting implementation of the algorithm on a real system, the
present controller proposes PI-SMC to overcome uncertainties in
parameters, uncertainties in the dynamic, as well as external
disturbances. PI-SMC has been employed to increase the
sensitivity and robustness of the controller to uncertainties and
disturbance. Lego EV3 WMRs robots and MATLAB environment
have been selected to implement the new control approach. EV3 is
a very flexible platform, compatible with MATLAB, and equipped
with Wi-Fi and Bluetooth links to connect with the central
controller. It allows rapid prototyping.

The paper begins with presenting the cluster model of non-
holonomic robots [23] and provides the necessary changes to
include the non-holonomic case. the paper reports the experimental
implementation of the proposed scheme on a real ground robot
connected to a central controller using a Wi-Fi network.

The remainder of the paper is organised as follows: Section 2
introduces the kinematics and dynamics of a non-holonomic robot,
and defines multi-robot cluster control. In Section 3, cluster
dynamics is derived. In Section 4, the SMC is proposed. The
simulation results are discussed in Section 4 and the experimental

2

validation and results are presented in Section 5. Section 6
concludes the paper and discusses about future work.

2 Preliminaries

In this section, fundamental definitions and mathematical models
are presented. The Nonholonomic robot kinematic model is
presented, followed by the mathematical representation of the
cluster framework, after that the dynamical models for a single
non-holonomic robot and the general cluster model with non-
holonomic robots are presented.

2.1 Non-holonomic robot dynamics

We consider a wheeled mobile robot (WMR), with two driven
wheels and a passive caster wheel, whose schematic model is
shown in Fig. 1.

The state-space model of the considered kinematic vehicle with
the associated non-holonomic constraints (rolling with no slipping)
is given by (1), where vandw are the heading and rotational
velocities variables:

x cos(q) O v
y|=|sin(e) 0 [W] 1
q 0 1

2.2 Overview of cluster space framework

In order to implement the cluster space for two robots, an
appropriate set of cluster variables are chosen to represent the
shape of the cluster. As shown in Fig. 2, the proposed cluster
variables are (Q.X,Y.d.q;,q,) and the corresponding robot
space are (x,,y,,q,) and (X, ¥, q,). The following (2) show the
relation between the cluster space and the robot space variables,
which can be presented as ¢ = f(r). Similar developments are
found in [19].

X, +x
x, = 12 z'
»ty
Yo =75
- s
Qc = tan, l(yl_yz'xl_xz)-l'jt (2)

1
d. = 72 .- YZ)Z +(x, - xz)zr
49 =qy
@ =4
Where (x,,y,) is the centre of the cluster; Q. is the cluster heading

and d, is the spacing between the robots from the cluster centre.
The corresponding Jacobian matrix is:

0.5 0 0 0.5 0 0
0 0.5 0 0 0.5 0
_(yl_yz) (xl_xz) 0 (yl yz) _(xl_xz) 0
J €, €, € €
(xl_xz) (Y1_yz) 0 _(x1_xz) _(Y1_)’2) 0’
€ € € €
0 0 1 0 0
0 0 0 0 0
where 6= —x) '+ —y) and

€= 2y(x, — xz)z + _yz)z'

IET Control Theory Appl.
© The Institution of Engineering and Technology 2016

142



Fig. 2 Cluster space and robot space variables

3 Cluster space dynamics of non-holonomic
robots

In this section, the model representation of the cluster of non-
holonomic robots will be derived. In particular, the coupling
between the cluster states will be highlighted, owing to its
importance in the overall control design.

3.1 Single non-holonomic robot modelling

The starting point will be the classical modelling of a single non-
holonomic robot in (3), this model is a modified version of [32]
model. Since the local axis is relocated in the modified version to
be in the centre between the wheels. Followed by a generalisation
to address the case of n robot and the cluster space model.

M(r)# + b(r, ) + g(r) + 74 = B(r)t — A"(") 1. 3)

According to Fig. 1, 7 = [x,y,q]" and M(r) € R*** denotes the
positive-definite symmetric inertia matrix; b(r,7) € R*™** is a
combination of Coriolis, centripetal and friction terms;
g(r) € R**" represents the gravitational forces; 7, is the bounded
unknown disturbances, and T € R**"' is the motors' torques.
A(r) € RV’ represents the constraint matrix that is multiplied with
the Lagrange multiplier 2 € R'*", and the constraint equation is
A(r)r = 0, where

m 0 —mdsin(q)
M(r) = 0 m mdcos(q) |,
—mdsin(q) mdcos(q) I+ md’
0 0 mdg‘cos(q)
b(r,7)=[0 0 mdg’sin(q)|, 9(@) =0,
0 0 0
cos(q) cos(q)
B(r) = 5,|sin(@) sin(q)|
L -L
—sin(q)
T= Tl and AT(r) = cos(q)
: 0

Let S,(r) € ®**’ be a full rank matrix such that ST(r)AT(r) = 0

cos(q) O
such that S.(r) = |sin(q) 0]
0 1

In the case of having i € i = 1,2, .., n robots we have different
models such that:

M(r)7; + by(r,7) + g,(r) + 74 = B,(r)T; — AiT(Ti)Ai-
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S,.(r) € R**? be a full-rank matrix such that S™,(r)A} () = 0.

3.2 Cluster space modelling

To select the cluster space states, several conditions should be
considered. The cluster states should describe the function of the
application, such as formation control. The number of cluster
degrees of freedom (DOF) should be equal to the number of the
robot space DOF. The cluster dynamics can be calculated by
transforming the robot space dynamics through the Jacobian matrix
by ¢ = J(r)r.

Cluster space dynamics Starting from the robot space dynamics
with n robots, (4) is given as.

M) +b(r,?) +g0) +1y=BOT-44 @)
where
M 03 x3 03 x3
1
o M 03 x3 :
M(r) = ’ :
03 x3
M"l
b,(ry, 7))
E(T, T) = ’
b, (7, 7))
B 03 x2 03 x2
1
B B 03 x2
B(r) = : ol
03 x2
Bn
AT 03*1 03x1
1
3 . AT 031 :
AT(r) = ’ 3x1|
N i
AT
2= [A-2,]%
T=[1,7,].

Starting with robot space dynamics, the holonomic cluster
dynamics in (5) were derived by Mas and Kitts[23]; based on that
the non-holonomic robot cluster dynamics are found in (6), and the
coupling between the cluster states can be represented in u(c, ¢)

A(C)¢ + (e, €) +p(e) + 14 = B()T, ©)
A(c)c + u(c,¢) + p(c) + 74 = B(c)T — a’(o), (6)
where

AQ) = JT@M@)) @),
u(c, &) = J"@)b(r,¥) — A©)j (r, )7,
p(©) =J (Mg, B)=J"(B®),
a'(c) = JT@A' (),

and the constraint equation will be a’(c)¢ = 0; let

Srl 03 X2 03 X2
. STZ 03)(2 :
s@=s-0 T )
S

™m
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Fig. 3 Cluster location errors

such that S:(c)aT(c) = 0 and accordingly it is possible to find
an auxiliary V(t) such that ¢=5.(c)V(t), where
V() = [vywy, e ¥y Wy ooy U, W, ], and v; and w; are the heading
and the angular velocities of the non-holonomic robots.

Following the derivation we get (7)

&= S(V(E) +SLV(D), @)
and by multiplying both sides of (7) with SI(C} we arrive at (8)
HV+E+1,=7, ®)
where

H = (S](©OB(0)) 'ST(A©)S,(c),
E = (S}(0)B(0))'SHOA©S V(L) + ulc, €) + P(C)),
T4 = Hf,f € ERZ'nMrf =[fivfovfr2fon ""fl n!fz n]'

Now we have a reduced order dynamic equation for the cluster
space with no Lagrange multiplier term.

4 Controller design

In this section, the adaptive SMC is presented. The error signal
calculation, then the sliding surface selection, followed by the
adaptive SMC and the controller diagram. This development is
done for two-robot cluster as an example, which the same
procedure is done for a cluster with any number of robots.

4.1 Cluster profile errors

The formation error in the cluster spaces are found as the
following. Starting with defining ¢ = (Q, %, Y. doq1 q),
g = Qca Xetr Year Ve Ty D2q0)> Where ¢y is the desired cluster
spaces and c is the actual cluster spaces. The error signal is

4

Ac = W(cy — c), where W is a positive weighting diagonal matrix.
The robot space commands are transformed from the cluster space
signals to robot space signals by multiplying it with the inverse of
the Jacobian matrix, as Ar = J7'Ac, where
Ar = [Ax,, Ay, A8, Ax,, Ay, A8,)" and Ar; = [Ax, Ay, A8,]", in
order to deal with the non-holonomic constraints the robot space
commands are modified as the following:
Ar = [Ax, Ay, 6., Ax,, Ay, GZE]T and Ar; = [Ax, Ay, Gie]T, where
0,, = tan;'(Ay;/Ax;) — q; then a transformation of the robot

commands from a global frame to a robot frame is done by using
the following rotational transformation:

1e’

Xie cos(q;) sin(g) O
Tie = [YVie| = |—sin(q) cos(q) OfAr,
6, 0 0o 1

where (x;,y;, and@,,) are shown in Fig. 3. Then by defining
V,=[v,w]", V,y = [v;,w;y]" that the v, w; are the actual robot
heading and rotational robot's velocities and v;4, w;, are the desired

robot heading and rotational Robot's velocities. It was found in
[30-32] that the derivative of the robot profile errors can be found

by (9)

Xie YieW; — V; + v;4c05(0;,)
T = Vie| = | —X;W; +v;5in(6;,) |. )
B Wig — Wi

4.2 Sliding-mode derivation

In this section, a model-based SMC is developed. The first step in
designing an SMC is selecting a sliding surface where the system
dynamics are stable; this sliding surface is a function of the system
states.

IET Control Theory Appl.
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For Designing the sliding surface for a single robot: Starting,
from the classical kinematic controller given by Chen et al. [33],
we get the following velocity controller in (10):

v, v,4c0s(6,,) + ki x,,

W, Wi+ kv Ve + Ki3v,gsin(é,,)
vo=|1i|= : ,  (10)

Vpe V,4€05(0,,.) + K X,

Wie|  [Wna T KnoVnaVne + Kn3Vnasin(6,,,)

where k;, k;,, k;, > 0,i|i =1, ..,n. Thus, the error in the robots'
kinematics is defined as:

ec(t) = [ecl(t)' ecz(t)' v ecz»n]T = Uc(t) - U(t),
é.(t) = v(t) —v(®),

where
Ul
Wl

Un

Wn

Then a PI-type sliding surface is selected, as in (11). The adaptive
integral component offers a fast convergence of the sliding surface
than the normal SMC and a smooth control of the system resulting
in zero steady-state error [34].

5:(8)
5,(t)

5.0

SO=15, ®

= e+ [ e, an

e
5;.n(8)

where £ is a positive integer. Hence, if the system is on the sliding
surface

s(t) =0,e(t) = — [?f;ec(t)dt and if t — oo then e, — 0. In
order to have the control signal, the derivation of the sliding
surface is found in (12).

s(0) = [p.) —H'T - E)] + e (t) = 0. (12)
Then by rearranging (12) we arrive at (13)
Teq = H[D(8) + Be (D] + E. (13)

Now 7,q can keep the system inside the surface. But what if the

system dynamics are already outside the surface? In order to
guarantee the stability in that case, another control signal 7, should

push the system dynamics onto the sliding surface; this mechanism
is called the reachability law or a robustifying term. Now the new
control signal 7 is a combination of 7, + 7, as shown in (14)

Toq = H[0o(6) + Be (t) + K - sgn(s)] + E, 14)

where
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=
=}
o

{K;1 K, >0}

and the sgn(s(t)) = [sgn(s,(t)), sgn(s,(t)), .. sgn(s, ,)]
The uncertainty of the system is a function in the disturbance 7,
and the uncertainty in the model itself, such that:

§(t) =AH '(t—E) + H'(— AE) + H'zy.
Now the dynamic of the system can be written as in (15)

v=H'(t—E)+5§. (15)
However, using the signum function in the reaction law is not
preferred for practical work, and this is due to the issue of
chattering. Therefore, the error function erf(s) is used instead.

Toq = H[0o(8) + Be (8) + K - erf(s)] + E. (16)

The error function has the following form:

erf(x) = ﬁj{: exp(—a’)da.

The function has the ability to approximate the sign(x) function,
while guaranteeing a smooth dynamic that allows for a reduction of
chattering. The more the gain is selected high the closer is the
function to sign(x). One should note that |erf(x)| is approximately
equal to 1 when |x| = 2/a. In sliding-mode control, the signum
allows the error state vector to reach the sliding surface in a finite
time. Thus it is only active to bring the error state dynamic to the
sliding surface. Once on the surface, its value is defined as zero
and has no impact on the error dynamic to reach zero. The error
function ensures the same reachability condition with a smoother
behaviour close to the sliding surface. Its use do not impact the
convergence of the error dynamic to zero for the function is
vanishes at zero.

The advantage of PI sliding mode is its ability to drive the error
to zero by driving the states to the sliding surface. In [34], PI-SMC
provides the ability to overcome the error caused by approximating
the signum function by a saturation function. This is called the
boundary layer technique known to reduce chattering. He also
needs such controller to increase the robustness and insensitivity to
uncertainty.

In this work, the use of the erf(.) to approximate the signum
function does not suffer from the boundary layer problem as the
function is smoother. However, the fact that the switching depends
on the selection of the parameter as explained previously. As we
are seeking implementation of the algorithm on a real system, the
controller has to be able to overcome uncertainties in parameters,
uncertainties in the dynamic as well as external disturbances.
Therefore, in order to increase the sensitivity and robustness of the
controller to uncertainties and disturbance, PI has been employed.

4.3 Adaptive sliding mode

Theorem 1: Assuming the adaptive law as in (17)
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0,s,erf(s,) 0 0 The L, derivation is
0 stzerf(sz) 0 . .
. : . . ’ L3 = ECTEC'
0 0 @nSnerf(s,) where E, = (cq — ¢), E, = (¢4 — ¢) and ¢ = WE,. By substitution
we the arrive at:
where g; > 0 and the final controller signal is in (18)
. . E = (¢q—WE)),
Toq = H[0.(t) + Be () +7 - erf(s)] + E. (18) Then L, = (B¢, — E,'WE,)
3 c [ c/*

The estimate error is define as : y(t) = ¥ (t) — y".

Proof: Using the Lypunov function: let L = L, + L, + L, such that
L(0)=L,(0)=L,(0)=L,(0)=0andL,L,L,L;>0 for inputs
other than 0, where

1 & 1 —cos(6,,)
L= iz (xl?e +y?e + k%le),
i=1 i2
— l T l L l~z
L=25'Os® +3 3 7D,

L,=EE,.

Based on the Lypunov theory, the system is stable if and only if
L < 0. After derivation we get

. n k,v,,sin’(6,
L, = Z (= ke, — %(“-’))

i=1 i2

: . Sl
L,= sTs + Z (=vy)-
i=1 Qi

y

Now L, < 0, and after substituting y based on }7 = y
: T A L1
L,=s"[—yerf(s) = 8]+ ) (El’ﬂ’i)v
i=1 Qi
; T ~ S s
Ly=s[— (@ +y)erf(s) - 6] + Z (Eyi‘yi):
i=1 Qi

L= s"l-yerf(s) = 81+ 3 i i serf(s)].

Once the adaptive equation is substituted the resultant L, is given
as

Knowing that —EWE, < — A, (W) I E.I’, the L,<0
provided that
el
T d
V<7 o

As a result, the derivative of the Lyapunov function is L < 0 and
the stability is proved. In addition, since the reachability condition
is satisfied, the tracking dynamic will reach the sliding surfaces in
a finite time. Thus the sliding variable s; > 0 as t — oo and

consequently y; = 0, for i = 1,..,n. Accordingly, e, — 0 and y; is
bounded and reaches steady-state. This completes the proof. o

4.4 Control diagram

In this subsection, the control diagram is presented. Fig. 4 shows
the adaptive SMC.

5 Simulation results
5.1 Two-robot simulation
Based on the control law established in Section 4.3, a simulation
using MATLAB@ is implemented on the cluster of two mobile

robots. The cluster space of two non-holonomic robots was used.
The sinusoidal desired trajectory was applied as follows:

X.q = 5c0s(0.3t),
Yeq = 15sin(0.1¢),

dx
=tan"'(=—2).
QCd (dycd)

Let K =[10,2,10, 2] and the initial position of the mobile robots
are set as (x,¥y,q,) =(1,0,0) and (x,¥,q,) = (0,0,0). The
simulation results are shown in Figs. 54 and b. Fig. 5a illustrates
the trajectory tracking result for the sinusoidal function. The actual
trajectory reaches the desired line quickly. In Fig. 5b, a disturbance
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Fig. 5 Cluster space control of a two-robot system

(a) Adaptive SMC control path-tracking profile, (5) Comparison between SMC and adaptive SMC with disturbance injected after 20's, (¢) Adaptive parameters response

was introduced after 20s; the results of the SMC and adaptive
SMC were compared by comparing the tracking error in the cluster
states xc,yc, Qc, and dc, respectively. In Fig. 5c, the adaptive
parameter's responses are shown changing in the transient zone, the
adapting velocity depends on the adaptive constants. According to
the simulation results, the sinusoidal trajectory tracking shows
good performance, especially with the adaptive term. This
validates the sliding control algorithm by simulation.

5.2 Simulation results of three-robot system

In this subsection, a three-robot cluster was simulated with the
same reference trajectory presented in Section 5.1. The selected
cluster spaces are (X, ¥, Qo B o P G142 5); see Fig. 6a and for
more details see [17]. The simulation results (see Fig. 6b) show
good performance of the proposed algorithm.

6 Experimental application

Lego EV3 WMRs were used in the experiments to validate and
implement the control strategy. The WMRs (see Fig. 7) are
equipped with a 32-bit, 48 Mhz ARM9 CPU with 16 MB flash
memory and 64 MB RAM, Bluetooth and Wi-Fi transceivers, and
two servo motors with encoders with 1 degrees of resolution. A PC
interface with SIMULINK program is also required to transmit the
control signal by means of Wi-Fi protocol. SIMULINK has a
powerful feature called External Mode. This feature is useful for
online monitoring and tuning of the EV3 WMR's controller. A two-

IET Control Theory Appl.
© The Institution of Engineering and Technology 2016

level control structure is used: high-level and low-level. The high-
level controller is the SMC, performed in the central PC, which
sends and receives command/data to and from the WMRs low-
level controller. The low-level controller is a PID inner loop for
controlling wheel speeds.

Based on the proposed control algorithm, the central PC
receives the location feedback from each robot; then the PC
calculates the error and control signals and sends the velocity
commands to each robot. The low-level controller on the robot
receives the commands from the PC and relays these signals to the
motors. The encoders provide measurements for the feedback. The
actual time of a one-loop process depends on the robot sampling
time (set to 25 ms) plus the WiFi delay time, which it is dependent
on the computer speed and network usage. The robot localisation is
achieved by using the encoders only. The WMRs use EV3 servo
motors that have a gear reduction mechanism in order to increase
the torque and decrease the maximum output speed. However, this
gear mechanism has a backlash issue, which introduces a non-
linear behaviour due to small gaps between the mating gear teeth.
Once the servo motor changes its direction the backlash effect
occurs, causing the servo to have a certain rotation without being
translated to actual wheel rotation. This issue can be mitigated by
adding backlash compensation. Thus, when the servo motor
changes its rotation direction a certain value is subtracted from the
encoder reading.

Practical issues: The output from the centralised controller is
the desired wheel's torque, but due to the braking behaviour of the
EV3 servo motor, ( when the motor has zero input) the wheel will

7

147



Eiath

a

Fig. 6 Cluster space control of a three-robot system
(a) Three-robot system configuration, (b) Adaptive SMC control path-tracking profile

A.
ey gk - J ))))

Speed Control Speed Control

Fig. 7 Using an integrator to change an SMC command to a velocity command calculation and the inner loop diagram

stop abruptly. This braking is an additional variable that is not then considered to be a velocity command; ii. instead of using a
considered when developing the SMC. To improve the response voltage or power signal to control the servo motor, the velocity
the following solution has been used: i. add an integrator filter to command is sent to an inner speed loop controller. Accordingly, the
the controller output torque, and the output signal of this filter is servo motor will follow a torque equal to the sliding-mode torque
8 IET Control Theory Appl.

© The Institution of Engineering and Technology 2016
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Fig. 8 Experimental results two-robot system

(a) Experimental cluster space control on a two-robot system, (h) Experimental movement trajectory of a cluster of two robot with SMC, (¢) Experimental movement trajectory of a
cluster of two robot with adaptive SMC, (d) Experimental desired and actual cluster dynamics states x, ¥, Q. and d, and a comparison between the SMC and the adaptive SMC

multiplied by some design constant, which is found through trial
and error. For more, see Fig. 7, where W, is the velocity
command, s is the constant found by trial and error, and W, is the
actual wheel rotational velocity.

6.1 Experiment test

Two WMRs move from initial positions (x,y,q), which for the
first robot is (0.2,0,7/2) and (0, 0,7/2) for the second robot. The
desired path is Q. = m/2,x, = 0.3,y. = 0.1t and d. = 0.25 in the
cluster space, which is equivalent to
x, = 0.55,y, = 0.1t,q, = 7,x, = 0.05,y, = 0.1tand q, = 7/2 in
the robot space, where t is the time (see Fig. 8a). The dynamic
parameters are assumed to be nominal values. Hence, the robot
mass is 0.5kg, the robot inertial is 0.0025 kg.mz, the wheel
diameter is 56 mm, and the distance between the wheels is
11.8 cm.

The experimental results are shown Figs. 8b and c. Fig. 8b
illustrates the trajectory tracking result for a line trajectory with
SMC. The actual trajectory reaches the desired line quickly;
however, chattering can be easily seen in the actual robots'
trajectory. This chattering was due to the uncertainty of the robots'
model and the untuned controller parameters. Fig. 8¢ shows the
actual trajectory with the adaptive SMC, and the chattering effects
are eliminated with the adaptive controller. Fig. 84 shows the
comparison between the SMC and the adaptive SMC based on the

IET Control Theory Appl.
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cluster states tracking x,y, Q. and dc, respectively. According to
the experimental results for the line trajectory tracking, the
trajectory can remain stable and robust despite uncertainty in the
robot's inertia and mass. This validates the proposed algorithms
experimentally.

7 Conclusion

This paper proposed a model-based multi non-holonomic robot
controller in the cluster space by developing an adaptive sliding-
mode control algorithm. This includes the presentation of the
mathematical model of the non-holonomic multi-robot cluster, and
the design of the sliding surface function and of the control law.
According to the simulation and experimental results, the proposed
adaptive sliding mode control is an important method to deal with a
cluster of multi-robots in which uncertainties and non-linearities
exist. In spite of large highly non-linear dynamics, the robots'
cluster shows that the posture converges to the desired trajectory.
Future work may investigate clusters with a larger number of
heterogeneous robots and apply intelligent methods such as neural
networks and fuzzy logic to overcome the singularities in the
cluster dynamics, in addition to addressing the obstacle avoidance
problem.
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