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Software systems are often developed in a way that good practices of the object-

oriented paradigm are not fulfilled, causing the occurrence of specific dis-harmonies

which called code smells. Code bad smells are indicators of poor solutions in a

fragment of code that propose a potential problem needs to pay attention in code

or design. On the other hand, design patterns are intended to catalogue the best

practices for developing object-oriented software systems. Although apparently

widely divergent, there may be an co-occurrence relation between design patterns

and code smells, since this phenomenon is sometimes mentioned in studies in the

field of software engineering, albeit discreetly. Hence, this work carries out an

investigative study and analysis with the intention of identifying the relationship

ix



between design patterns and code smells in systems, that may happen due to

the inadequate use of design patterns. The work is aimed to have the following

purposes: (1) to evaluate empirically if the presence of design patterns connects

to the presence of code smells in the class level. (2) to evaluate empirically if the

relation between each category of design pattern and code smells would hold as in

the class level. (3) to evaluate empirically the relation between individual design

patterns and code smells. To accomplish this work, we first perform a literature

review in order to understand the recent states concerning design patterns and

code smells, then, we accomplish an empirical study using twenty design patterns

and thirteen code smells in ten small-size to medium-size, open source Java sys-

tems. Specifically, we evaluate statistically the presence of design patterns and

their possible usage effects on code smells that lead to their co-occurrences. The

study is conducted through three levels: (1) Class level, (2) Design Pattern Cat-

egory level. (3) Pattern level. Association rules are applied to extract the strong

rules that describe the relation between pattern-smell pairs. The observed rela-

tionship concludes that classes participating in design patterns display less smell

proneness and smell density than classes not participating in design patterns in

the majority of systems. It was discovered that every one of the different cate-

gories acts in the same way in terms of smell proneness. This observation tends

towards the conclusion that the adoption of any of the design patterns might pro-

duce the same reliable software. By examining the presence of individual smells

in code, it is possible to discover the most common ones: Blob, God Class and

x



External Duplication. The majority of the important rules we discovered com-

bine the presence of a design pattern, and the absence of a code smell. There

are rules, however, which represent patterns that are linked with certain smells.

Singleton, State, Strategy, Adapter and Decorator are some of the patterns that

are generally not collocated with smells, while for Command and Memento this

association is significantly weaker. Command patterns are linked to the Blob,

External Duplication and God Class smells, whereas the Memento patterns are

connected with Blob and External Duplication, with the God Class being the ex-

ception. In fact, design patterns misuse could potentially facilitate the production

of bad smells. The most noteworthy cases were the co-occurrences of the Com-

mand design pattern with the Blob and the God Class. Although professional

developing of software systems is cataloged in design patterns, this observation

could be utilized to pay developers’ attention for the possible undesired sound

effects when design patterns are applied inadequately.
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ملخص الرسالة

 محمود عبدالكريم الفاضل :الاسم الكامل

التقييم الكمي للفعالية الوظيفية لأنماط التصميم وتأثيرها على وجود عيوب الرماز :عنوان الرسالة

 علوم الحاسب الآلي:التخصص

2017 مايو :تاريخ الدرجة العلمية  

قد مما ، التوجه غرضية البرمجة في الجيدة للممارسات ملائمة غير بطريقة غالبا يتم البرمجيات أنظمة تطوير إن

 التعليمات من جزء في الحلول ضعف مؤشرات هي الرماز عيوب. الرماز بعيوب يسمى ما حدوث في تسببي

 أخرى، ناحية من. التصميم أو البرمجية التعليمات في الاهتمام إيلاء إلى تحتاج محتملة مشكلة تقترح التي البرمجية

 علاقة هناك تكون قد. التوجه غرضية برمجيات أنظمة لتطوير  الأفضل الفهرسة إلى تهدف التصميم أنماط فإن

 الخاصة الدراسات في الأحيان بعض في مذكورة الظاهرة هذه أن حيث الرماز، وعيوب التصميم أنماط بين مشتركة

 أنماط بين العلاقة تحديد بقصد  والتقييم التحليل بعملية يقوم العمل هذا فإن وبالتالي،. البرمجيات هندسة مجال في

 ويهدف. التصميم لأنماط الخاطئ الاستخدام بسبب تحدث قد التي البرمجيات، أنظمة في الرماز عيوبو التصميم

 مستوى في الرماز عيوب بوجود يتصل قد التصميم أنماط وجود كان إذا ما التجريبي التقييم( 1: )يلي ما إلى العمل

 هي لما مشابهة الرماز وعيوب التصميم أنماط فئات من فئة كل بين العلاقة كانت إذا ما التجريبي التقييم( 2. )الصف

 هذا لإنجاز . الرماز وعيوب حدة على تصميم نمط كل بين للعلاقة التجريبي التقييم( 3. )الصف مستوى في عليه

 تجريبية دراسة ببناء قمنا, لاحقاً, زالرما عيوبو التصميم طبأنما الصلة ذات المرجعية للدراسات بمسح العمل،قمنا

 التحديد، وجه على .الحجم متوسطة إلى صغيرة مابين تتراوح Javaبلغة  المصدر مفتوحة برمجية أنظمة 10 على

ً بتقييم علاقة الوجود المشترك بين أنماط التصميم وعيوب الرماز. تم إنجاز العمل من خلال ثلاث  قمنا إحصائيا

اط التصميم على من أنم( مرحلة كل نمط 3) .( مرحلة فئات أنماط التصميم2ف. )( مرحلة تصميم الصفو1مراحل: )

لى أنتخلصُ النتائج إ .ميم وعيوب الرمازحدة. تم تطبيق قواعد الترابط لاستخراج العلاقات القوية بين أنماط التص

ماز أقل من تلك التي تعرضها الصفوف الغير مشاركةالصفوف المشاركة في أنماط التصميم تعرض عيوباً في الر



في أنماط التصميم وذلك في غالبية الأنظمة البرمجية المستخدمة في هذه الدراسة. بلإضافة لذلك, يجدر الإشارة إلى

ماط أن أنماط التصميم لها نفس التأثير على عيوب الرماز. إن هذه النتيجة قد تدل على أن اعتماد أي فئة من فئات أن

البرنامج من ناحية جودة الوثوقية. من خلال دراسة عيوب الرماز يمكن اكتشاف العيوب التصميم قد ينتج نفس 

. إن غالبية قواعد الترابطBlob, God Class, External Duplicationالأكثر شيوعا في هذه الدراسة: 

إلى عدم وجود عيوب في الرماز. من جهة التي تم اكتشافها تشير إلى أن وجود أنماط التصميم في الصفوف يقود

التصميم لها علاقة  أنماط حيث أن بعض أخرى, فإن هناك بعض قواعد الترابط التي أظهرت عكس النتيجة السابقة

 Singleton, State, Strategy, Adapter and Decoratorوثيقة ببعض عيوب الرماز. أنمام التصميم: 

 ,Commandابط بينها وبين عيوب الرماز فيما أظهرت أنماط التصميم: أظهرت بشكل فعّال أنه لا يوجد تر

Memento :العلاقة الوثيقة بينها وبين بعض عيوب الرماز وبالأخص Blob, God Class, External 

Duplicationمن  قد يفضي إلى حدوث عيوب في الرماز. . في الواقع فإن الاستخدام الخاطئ لأنماط التصميم

على الرغم من . Blob, God Classوعيبي الرماز   Commandالجدير بالذكر قوة العلاقة بين نمط التصميم 

المهنية الاحترافية التي يشُار إاليها عند استخدام أنماط التصميم, فإن النتائج الملاحظة في هذه الدراسة يمكن أن 

ه التأثيرات الغير مرغوب بها والناتجة عن تطبيق أنماط باتجالدفع اهتمام المطورين البرمجيين كحافز تسُتخدم 

التصميم بشكل غير مناسب.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Design patterns (DPs) are general reusable structures and features to recurring

problems in a software design [3]. They aim to increase flexibility, maintainability

and reusability. Thus, a design pattern is a guide of solving problems in systems.

Design Pattern usage has a great influence on the software quality attributes

i.e. maintainability including changeability and understandability, reusability and

fault proneness. They have been cataloged for reusability purposes [3]. DPs

are classified into three categories, structural patterns, behavioral patterns and

creational patterns. The GoF book [3] of design patterns is a good resource of

object oriented design practices. There are 23 DPs scattered among the three

categories.

Since their inception, design patterns have been employed by designers and

developers who realized how patterns could improve development. There is broad

proof that design patterns may affect software quality attributes positively and
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negatively [4, 5, 6, 7]. Therefore, design patterns are typically beneficial, pro-

vided that they are properly implemented. On the other hand, as design patterns

became trendy, they are used by software developers as an exploratory means.

The inappropriate employment of design patterns can lead software system code

to flaws, i.e. bad smells. Bad smells are signs of a lack design in a part of code

that presents a problem in a system design or code [1]. Fowler’s book [1] sets the

foundation stone of the code smells where 22 code smells have been identified.

Fowler has defined the code smells as code blocks need refactoring. Kerievsky [8]

and Marinescu et al. [9] expanded a set of bad smells. Kerievsky [8] called atten-

tion to the use of DPs as a refactoring method to resolve code smells which are

called disharmonies. Marinescu et al. [9] provided a guide of bad smells referred

as "disharmonies". Fouste et al. [10] stated that code smells are better tool for

developer than metrics, since they depend on a specific programming style. On

the other hand, metrics are used to detect over code smells. In the context of

our study, the essential objective is to explore if there is a link between design

patterns and code smells. However, based on the conducted literature, studies

have rarely addressed the relationships between design patterns and code smells

sufficiently. In this line, we aim to analyze these cases in order to aid designers

and developers to better use design patterns. Our ultimate goal is to discover the

possible connections between design patterns and code smells.

2



1.2 Research Problem

Software design is becoming an important factor which combines classes and pat-

terns. Design patterns play an important role in terms of software design quality.

Producing good quality design concerns software designers. On the other hand,

design flaws may hamper the aimed purpose. Some flaws known as bad code smells

identified by Fowler [1] are poor solutions to recurring design problems. According

to the literature, the characteristics of design patterns structure i.e. complexity

may have relationships with code smells. The study of the relationships between

design patterns and code smells can provide deeper insights into the impact on

the quality of the design. However, the co-occurrence of design pattern and code

smell has not been fully analyzed and need to be investigated further due to the

following reasons:

• The functional effectiveness of design patterns on code smells has a conjec-

ture in the state of the art, and so needs to be fulfilled.

• Only high level (class level) is evaluated, which lead to a need of evaluating

the other levels i.e category level and pattern level.

1.3 Research Motivation

At first glance, while design patterns are associated with good software design and

code, bad smells define lack of design or any code flaw. When design patterns are

not used in a proper, they may degrade the system performance and also turn code

3



more complex unnecessarily manner [5, 11, 12, 13]. This work aims at identifying

design patterns inappropriate employments and their consequences. In order to

focus on a specific scope, this work exploits the occurrence of bad smells in code

that is part of a design pattern.

Design patterns and code smells are topics of periodic research. Despite this

frequency, they are rarely investigated in the same research context since they

represent antagonistic structures. Therefore, the first step is to understand how

studies relate these topics. Among these studies, some tools [9, 14, 15, 16] have

been proposed to spot code parts for refactoring to DPs. Some other studies [17,

18] propose the relationship between DPs and code smells in terms of structural

relationship.

Moreover, some conjectures in the literature recommend that using design pat-

terns is not always the preferred choice. In addition, the improper employment of a

DP can yet initiate code smells [4, 11, 19]. For instance, McNatt et al. [19] analyzed

the advantages and disadvantages that affect quality attributes like maintainabil-

ity, factorability, and reusability. Design patterns have their place, but their in-

adequate use may increase complexity and decrease some quality attributes. The

main purpose of this thesis is to empirically evaluate the relationship between

design patterns and code smells in software engineering systems.

4



1.4 Problem Statement

In order to cover the objectives of this work, functional effectiveness of design

patterns on code smells is evaluated in different granularity levels, as follows:

• Design Level

This level empirically evaluates the differences of functional effectiveness be-

tween classes involved in any design pattern and classes that are not involved

in any design patterns in terms of smell proneness and smell density i.e.

(Smelly Design Pattern(SDP) versus Smelly non-Design Pattern(SnDP)).

• Category Level

This level empirically evaluates the differences of functional effectiveness

among classes that involve in different categories of design patterns in terms

of smell proneness.

• Pattern Level

This level empirically evaluates the functional effectiveness of classes that

involve in a specific single design pattern individually, in terms of smells.

According to the previous levels, we formulate the research questions to be an-

swered as the following:

RQ1:Are design pattern classes more smell-prone than the non-design pattern

classes in software systems?

RQ2:Do code smells have significant differences when they present in the

different categories of design pattern classes?

5



RQ3:Are the participant classes in a specific individual design pattern more

smell-prone in specific smells than other ones?

1.5 Research Methodology

This section describes the research approach as follows:

Phase 1: Comprehensive Literature Review

A comprehensive literature review is conducted to survey the existence empirical

evidence that addressed the quality of design patterns specially design pattern

modularity, smell proneness and smell density.

Phase 2: Identifying popular design patterns detection tools

This phase identifies a tool or more that help in detecting instances of design

patterns. To do so, the available popular tools are identified. Then these tools

are evaluated. After that, one or more of these tools are chosen to be used in this

research.

Phase 3: Identifying popular code smells detection tools

The objective of this phase is to identify a tool or more that help in detecting

instances of code smells. To do so, the available popular tools are identified. Then

these tools are evaluated. After that, one or more of these tools are chosen to be

used in this research.

Phase 4: Data collection and experimental setup

After conducting a survey for the literature of the existing empirical evidence and
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tools, the data needed for conducting this study is collected and prepared. A

group of Java open source systems are prepared for this study. For each class in

these systems, the code smells and design patterns data are collected and pre-

pared.

Phase 5: Empirical evaluation of the functional effectiveness of design

patterns on code smell proneness in object oriented systems

This work studies the functional properties i.e. modularity of design patterns to

be evaluated in terms of code smells. First, the classes in the subject systems

are separated into two clusters: a cluster of participant classes and another one

of non-participant classes in the design patterns. Then for each group, the func-

tional effectiveness of classes is evaluated and compared in terms of presence of

code smells. After that, the effectiveness properties of each category of the design

patterns is evaluated and compared.

1.6 Thesis Objectives

The objective of conducting this research work is evaluating the functional ef-

fectiveness of design patterns in object oriented systems on the presence of code

smells. Some sub-objectives can be extracted as follows:

1. Empirical evaluation of code smell-proneness and smell density in design

pattern classes versus non-design pattern classes.

2. Empirical evaluation of code smell-proneness in design pattern classes versus
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non-design pattern classes in each category of the design patterns(creational,

structural and behavioral).

3. Empirical evaluation of code smell-proneness for the individual design pat-

terns.

1.7 Thesis Contributions

As an expected result of the work presented in this thesis, the following contribu-

tions can be highlighted:

• A literature review detaching how studies relate design patterns and bad

smells, revealing the lack of studies focusing on the co-occurrence between

design patterns and bad smells. This provides the academic community with

the state of the art in this field.

• Empirical evaluation of the relationship between design patterns and code

smells in the class design level.

• Empirical evaluation of the differences among design pattern categories in

terms of smell proneness.

• Empirical evaluation of the differences among individual design patterns in

terms of smell proneness.

• Apply data mining techniques to identify real instances of design pattern

and bad smell co-occurrences.
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• Submitting a paper to a high quality ISI journal.

1.8 Thesis Outline

The reminder of this work is structured as follows. Chapter 2 presents the technical

background. The literature review is presented in Chapter 3. Chapter 4 describes

the experiment setup of the work. Chapter 5 highlights the experimental results

and discussion of the results. Finally, Chapter 6 concludes the thesis, lists the

limitations of the work proposed, and recommends a set of directions in which

future work can be conducted.
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CHAPTER 2

BACKGROUND

The correct understanding of a research work begins with the understanding of

the concepts related to it. This chapter presents relevant concepts for this research

work. Section 2.1 presents some examples of design patterns where as Section 2.2

introduces and presents some examples of code smells.

2.1 Design Patterns

In 1994, Gamma at al. [3] have written the book of design patterns: "Design

Patterns-Elements of Reusable Object Oriented Software" (also known as Gang of

Four, or GOF) [3]. 23 DPs are spread among three categories: Creational, Struc-

tural and Behavioural. Design patterns are considered as recurring solutions to a

design problem in a particular scenario i.e. improve reusability and reduce cou-

pling [5]. Moreover, DPs can ease communication among team members by using

terminology instead of using traditional explanatory [6]. They became popular for

using in software design. However, an excessive use of DP in a wrong manner may
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cause a design problem and hence, introduce a problem in code. There exist three

categories of design patterns, Creational, Structural, and Behavioural. Creational

design patterns are design patterns that deal with creating objects so that the

created objects serve some purpose that suitable to the situation like controlling

the object creation. Builder, Factory Method and Prototype are some examples of

Creational design pattern. Structural design patterns are design techniques that

facilitate software design by identifying simple ways to realize relationships among

the different entities. Adapter, Bridge Composite are considered as Structural de-

sign patterns. Behavioral design patterns are communication patterns. These

patterns ease and increase the flexibility of communication. Command, Iterator

and Memento belong to the Behavioural category. In the context of this work,

Command design pattern is explained in details. The study by Fehmi et al. [20]

observed that Command design pattern plays a correcting role of code smells i.e.

SwissArmyKnife. As an example, we will be explaining Command design pattern

which is used in several studies.

Command pattern is a behavioral design pattern driven by data. Its intent

is to wrap a request as a command and pass it to an invoker object. Command

design pattern consists of several classes where each class is playing different role

as follows: (1) Command, (2) Concrete-Command, (3) Client, (4) Invoker, and (5)

Receiver. A real example of Command DP is included in WebMail system [2].

Figure 2.1 illustrates part of Command class diagram in WebMail system.
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Figure 2.1: Representation of Command Design Pattern in WebMail system [2]

As shown in Figure 2.1, the URLHandler is the interface which represents the

Command i.e. abstract command. On the other hand, three concrete classes as

commands implement that interface using handleURL( ) method. These con-

crete commands instantiate an object of Storage class. Storage class plays as the

classic receiver class in Command DP. As shown in Figure 2.1, the method han-

dleURL( ) is the corresponding method to the classic method called "execute"

in the traditional definition of Command DP.

2.2 Code Smells

Code smells can be referred as problems that appear in a fragment of code that

make software hard to maintain and change [1]. Several classifications have been

associated with bad smells such as code smells and design smells [21]. Anti-

patterns are other concepts which can be linked to code smells. Fehmi et al. [20]

stated that code smells are more related to the inner scope of classes while anti-

patterns are related to the relationships included among classes. Webster [22]
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has written the first book on anti-patterns in 1995. 40 anti-patterns have been

described by Brown et al. [23]. According to Brown et al., anti-patterns represent

bad designs when they are employed in massive manners. So, in this work, we

consider code smells and anti-patterns as synonyms. For example, Blob anti-

pattern which was introduced by Brown et al. [23] is similar to Large Class smell

introduced by Fowler et al. [1]. To get more understanding of code smells, we

introduce a small story which is experienced by Liliana [24]. Liliana is an expert

programmer that participated in developing Tomcat project1. When Liliana tried

to add functionality to JNDIrealm class in the project, she reported a problem

that belongs to that class. The class JNDIrealm has multiple methods that look

like in Listing 2.1.

Listing 2.1: Java code includes Data Clumps smell

boolean compareCredential(DirContext context , String credentials)
{

/* sync since super . digest () does this same thing */
synchronized( th i s )
password = password.substring (5);
md.reset ();
String digestedPassword = new String ((md.digest ()));
validated = password.equals(digestedPassword );

}

The code in Listing 2.1 has the parameters: context and credentials. In fact,

Liliana discovered during her inspection of the code that these parameters ap-

pear together in the parameters list of other seven methods. Consequently, she

concluded that an encapsulation does fit in this case. According to her, this was
1http://tomcat.apache.org/
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beneficial because productivity will improve accordingly. The case where Liliana

noticed a problem is a smell called: Data Clumps. Data Clumps is a smell where

it appears when a group of objects are used together in different places through

out code. This smell might need an attention since it makes software difficult to

maintain because if any changes of an object from the group are needed, there

should be a need to examine every location where the group of objects appear to

check if it needs a change.

Another important code smell is Duplicated Code. According to Zhang et

al. [25], Duplicated Code smell can occur very common in systems since Fowler

et al. [1] identified code smells (2000 to 2009 inclusive). This fact supports the

idea of Fowler et al. [1] that "Number one in the stink parade is duplicated code".

Code Duplication can also be in two or more totally unrelated classes or even in

unrelated software systems as stated in Oliveira et al [26]. This situation is the

hardest to be detected and definitely the most difficult to be refactored. Most of

smells which identified in the literature have been proposed by Fowler [1]. More

smells have been subsequently proposed by Emen at al. [27]. A list of some

interesting smells is shown in Table 2.1

2.3 Design Pattern Detection Tools

Software quality attributes are expensive activities in software engineering. For

instance, in order to achieve the maintainability tasks, reverse engineering can

play an important role. Reverse engineering provides an abstract view from a
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Table 2.1: Java code smells proposed by Fowler [1]

Smell Name Smell Description

Duplicated Code Identical code appears in more than one place.
Feature Envy When a method makes too many calls to other classes

to obtain data or functionality, Feature Envy is in the
air.

Message Chain Occur when a sequence of message calls or temporary
variables present to get a desired object.

Switch State-
ment

When the same switch statement or ("if...else if...else
if") is duplicated across a system.

Long Method When a method is too long which makes it difficult to
understand and so maintain.

Large/God
Class

A class contains too many instance variables and so too
many responsibilities.

Primitive Obses-
sion

A program uses primitives like int and strings instead
of domain-specific objects which simplify code.

Comments Heavily commented code indicates often bad codes.
Refactor the code so the comments become well unnec-
essary.

Data Clumps Bunches of data that hang around together and might
need to be made into their own object.
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subject system. Also, design patterns detection is a task which is obtained by

reverse engineering in order to identify the patterns that have been applied in a

system. For this purpose, many tools have been proposed in the literature. There

are many characteristics that should be available in the tool or in the combination

of tools that are going to be used to collect design patterns data information for

our work. These characteristics are as follows:

• Be able to work on Java source code since that the subject systems are in

Java.

• At least half of the patterns in each category should be covered. This is

because that one of our objectives of conducting this study is to compare

the difference in smell proneness among the different categories of software

design patterns.

• A high level of detection accuracy is required (at least 90%). This is be-

cause a low level of detection accuracy will negatively affect the planned

experiments. There are two essential metrics to evaluate the tool accuracy,

precision and recall. They are calculated as follows:

Precision =
|{existing code smells}

⋂
{detected code smells}|

|{detected code smells}|
(2.1)

Recall =
|{existing code smells}

⋂
{detected code smells}|

|{existing code smells}|
(2.2)

Figure 2.2 depicts the relation between detected and existing code smells in

a system.
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Figure 2.2: Relationships between detected and existing smells in a system

There are many DP detection tools in the literature. The following sections

present 11 tools that work on Java language source code. These tools are as

follows:

2.3.1 DeMIMIA

DeMIMIA [28] is a semi-automatic tool for identifying pattern-like micro-architecture

in Java source code. This tool ensures the traceability of the pattern like micro-

architecture between design and implementation. There are three layers involved

in the process of DeMIMA. The first and the second layer are to recover an ab-

stract model from the source code. The third layer is to detect patterns from the

recovered abstract model [28]. Among DeMIMIA tool advantages, it can provide

information related to dependencies of classes in a system.

In evaluating the suitability of this tool for our work, it was found that this tool

is not suitable. It can be seen in Table 2.2 (page 22) that the precision of this

tool is too low i.e. 34%. This is expected to affect the results of our work. So,
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this tool will not be considered.

2.3.2 DP-Miner

DP-Miner [29] is another tool that aim to detect design patterns by defining the

structural characteristics of each design pattern. These characteristics are repre-

sented in terms of weights and in a matrix. The discovery process includes three

major processes: structural analysis, behavioral analysis and semantic analysis.

In evaluating the suitability of this tool for our work, it was found that this tool

has a good precision and recall. However, as it can be seen in Table 2.2, this

tool is designed to detect a very few number of design patterns: Adapter/Com-

mand, Bridge, Composite and State/Strategy. At the same time, this tool does

not differentiate between the instances of Adapter and Command and between

the instances of State and Strategy. So, this tool is not considered in our work.

2.3.3 DPRE

DPRE tool [30] is a two-phase design pattern detection tool. In the first phase, a

coarse grained level recovery process is applied to the source code. In this level,

the structure of the design patterns is considered and a parsing technique for

visual language is utilized as well. In the second phase, a fine grain validation is

applied to the retrieved instances in the first phase [30]. The tool has reported a

good precision percentages. It reaches %97 in some cases. However, there are two

problems in this tool. First, this tool detects structural design patterns only. This
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violates the second characteristic mentioned in the beginning of Section 2.3. The

second problem (as shown in Table 2.2) is that the precision rate of this tool varies

from 62% to 97% and the recall rate is not mentioned. The achieved precision

rate is not enough to obtain accurate results and the recall rate is not mentioned

to make sure that this tool retrieves only true pattern instances.

2.3.4 FUJABA

FUJABA tool [31] utilizes fuzzy logic and abstract syntax graph to recover design

patterns. Different graphs are used to model different design variants models. The

fuzzy logic utilizes to cope with the implementation variants by identifying fuzzy

rules. They are defined together to handle the implementation variants by giving

a degree of belief to test whether a pattern is found or not [31]. On one hand,

the tool detects all GoF’s patterns in [3] which is a very good advantage. On the

other hand, this tool is not evaluated with any performance measures as it can be

seen in Table 2.2.

2.3.5 MARRPLE

MARRPLE tool [32] is a design patterns detection tool that consists of four dif-

ferent components. The first component is the information detector engine which

collects the required information for pattern detection. The second component is

the jointer which extracts the potential design patterns. The third component is

the classifier which validates the retrieved design patterns. The last component
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is the output generator which is responsible for providing the user with the final

output [32].

This tool can detect three patterns only: Abstract Factory, Composite and Visi-

tor. This is not suitable for this work as mentioned in the second characteristic of

the required tool in the beginning of Section 2.3. Also, it can be seen in Table 2.2

that the performance measures of this tool is not satisfying enough.

2.3.6 Pinot

Pinot [33] is a tool that reclassify design patterns into different categories claiming

that this reclassification facilitates design pattern detection. They use light-weight

static analysis for analyzing programs. The tool is not used in this study. The

reason for that is the absence of precision and recall rates or any other performance

measure of this tool as it can be seen in Table 2.2. So, this tool is not suitable for

this work.

2.3.7 PTIDEJ

The PTIDEJ tool [34] is a design pattern detection tool which is developed by

PTIDEJ group in Canada. This tool uses constraints solving with explanation

to detect design patterns. The tool starts with detecting design patterns that

exactly match the predefined instances. Then the constraints are relaxed to allow

for detecting more patterns.

As it can be seen in Table 2.2, the tool has very high recall. However, the precision
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rates are low. The group of PTIDEJ has validated some design patterns data

which detected by the tool.

2.3.8 Tsantalis

Tsantalis is a design pattern detection tool that use similarity scoring between

graph vertices to detect design patterns. It also exploits the fact that a design

pattern resides in one or more hierarchy [35]. The tools is used commonly in many

studies of the literature [36]. It has reported very high precision and recall, 100%

and 95%, respectively. However, There are two reasons which lead us to avoid

using the tool in our work. First, although this tool can detect 13 patterns, we

can only benefit from 9 patterns as it can be seen in Table 2.2. This is because

this tool cannot differentiate between the instances of Adapter and Command

patterns and between the instances of State and Strategy patterns. The second

reason is that this tool does not extract all patterns information. Also, this tool

cannot extract all the roles in each design pattern.

2.3.9 SPQR

Smith et al. [37] presented a design pattern detection tool called SPQR. The

developers of this tool use formal denotational semantics to encode design pattern

elements and to encode the rules by which these elements are combined to form

design patterns. Also, these semantics are used to encode the structural and

behavioral relationships among the elements of design patterns. In evaluating the
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suitability of this tool for our work, it was found that this tool is not suitable.

First of all, this tool can only detect one pattern which is the Decorator as it can

be seen in Table 2.2. Secondly, this tool does not provide any verification for its

performance metrics.

2.3.10 Web of Pattern(WOP)

WOP tool is presented by Dietrich et al. [38] to detect design patterns in software

systems. In this tool, an ontology language is used to define design patterns and to

create a web of patterns. Then an algorithm for finding exact matches is applied

to extract the instances of design patterns. The constraints can also be relaxed

to retrieve more potential instances [38]. This tool detects 4 patterns: Abstract

Factory, Bridge, Strategy and Adapter. Moreover, the precision and recall rates,

57.3% and 54.5% respectively, are not satisfying as it can be seen in Table 2.2.

Hence, the tool is not considered in this work.

2.3.11 DPJF

DPJF is a tool for detecting occurrences of design patterns in Java programs [39].

The acronym DPJF stands for Detection of Patterns by Joining Forces, reflecting

that the unusually good results of DPJF are achieved by a novel combination of

various well-known static analysis techniques (forces). Nevertheless, we can only

benefit from 8 patterns as seen in Table 2.2. Also, this tool does not extract

all patterns information i.e this tool cannot extract all the roles in each design
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pattern. Interestingly, DPJF [39] and Tsantalis [35] tools have reported very high

rates. For precision, both tools reported 100%. On the other hand, they presented

about 80% and 95% respectively in terms of the recall rates.

2.3.12 Summary

In the context of our work, choosing a suitable design pattern detection tool is

very critical task. Therefore, the literature was surveyed searching for software de-

sign pattern detection tools. Section 2.3 provides information related to some DP

detection tools. As a result, 11 tools that work on Java language source code are

identified in terms of the detectable design patterns along with the precision and

recall rates as shown in Table 2.2. We found that design pattern detection tools

are not suitable for our work since that all of them are not congruent with the char-

acteristics required to obtain reliable data. These characteristics are mentioned

in Section 2.3. The surveyed tools cover a small set of design patterns except for

FUJABA [31]. The tools shown in Table 2.2 displays generally low percentages

of the accuracy metrics except for Tsnatalis [35] and DPJF [39]. Moreover, none

of the DP detection tools provide all the roles of design patterns. Therefore, P-

Mart repository came across. Several works [40, 41, 42, 43] have used it due

to its reliable source and validation. Moreover, it is considered as a benchmark

data set in the literature [43]. P-Mart repository was collected based on GoF’s

book [3]. It consists of 10 systems. Each system patterns collected in a separate

session by B.Sc. and M.Sc. students. Also, the collections of other people who
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are working in this area are used as well. P-Mart repository is considered as a

powerful replacement for design pattern detection tools.

Table 2.2: Design Pattern detection tools

Tools Patterns Precision Recall

DeMIMA
Abstract Factory, Composite, Adapter, Command,
Decorator, Observer, State/Strategy, Prototype, Visitor,
Singleton, Template Method and Factory Method

34 100

DP-Miner Adapter/Command, Bridge, State/Strategy and Composite 91 - 100 97
DPRE Adapter, Bridge, Composite, Facade, Proxy and Decorator 62 - 97 -

FUJABA All (GoF) patterns - -
MARRPLE Abstract Factory, Composite and Visitor 78.6 78.3

Pinot All (GoF) patterns except (Builder, Prototype, Command,
Interpreter, Iterator and Memento) -

PTIDEJ All (GoF) patterns except (Builder, Bridge,
Iterator) 65 100

Tsantalis
Singleton, Composite, Adapter/Command, Decorator,
Observer, State/Strategy, Prototype, Visitor, Template
Method and Factory Method

100 95.9

SPQR Decorator - -
WOP Abstract Factory, Bridge, Strategy and Adapter. 57.3 54.5
DPJF Composite, Observer, Decorator, Proxy, State, Bridge, Strategy, CoR 100 80

2.4 Code Smell Detection Approaches

Code smells can be referred as symptoms of problems that appear in a fragment

of code that make software hard to maintain and change [1]. There are many

approaches in the literature have been used for detection of code smells. Each

approach has advantages and limitations. Several techniques are accomplished

with the support of tools for code smells. Table 2.3 summarized the applied

approaches with some associated tools for each approach. It shows that search

and metric-based techniques are the most common techniques used by authors.

In addition, search-based technique combines code metrics and machine learning

methods to detect code smells. Moreover, although metrics-based code smells
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detection techniques have limitations as mentioned earlier, it is applied frequently

in many places. The accuracy of the approaches is very important for selecting

the appropriate tool. However, it is noticeable from Table 2.3 that the accuracy

of most approaches is not calculated. The literature is surveyed for code smells

detection approaches. As a result, 7 categories of code smells detection approaches

are presented by Kessentini et al. [44]. These techniques are explained in the

following sections.

2.4.1 Manual Approach

Manual code smells detection technique is proposed by researchers in [45, 46] based

on some reading guidelines. However, this approach has a human involvement,

and hence it eliminates uncertainties. On the other hand, it is not effective for

code smell detection for large systems.

2.4.2 Metrics-based Approach

Metrics-based detection techniques [47, 48, 49, 50, 51] are dependent on source

code metrics, but they vary based on how the metrics are applied. The accuracy

of this technique is dependent on the selection of metrics thresholds values. No

standard values for code smells detection which result in a variance of different

techniques. InCode [52] is a metric-based detection code smell tool. It has been

used frequently in the literature [53, 54, 55, 56].
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2.4.3 Search-based Approach

Most of the search-based techniques [57, 58, 59, 60, 61, 62] apply different machine

learning algorithms for detecting code smells from source code directly. However,

these algorithms learn from the standard, known design structures and then test

how code deviates from the one learned before. The accuracy of this technique is

dependent on the quality and size of data sets used to train the machine. Also,

the detection of code smells using this technique may vary due to the variance of

code smells definitions. Fontana et al. [63] presented a comparison between some

machine learning-based code smells detection techniques. JDeodorant tool [16] is

an example of search-based code smell detection approach. JDeodorant can only

detect four code smells.

2.4.4 Symptoms-based Approach

Symptoms-based technique [64, 65, 66, 67, 68] is based on some notations which

is translated to a detection algorithm. The symptoms need analysis to select the

proper threshold values. The accuracy of this technique is low because of differ-

ent interpretation of the same notation. Moha et al. [64] proposed a tool called

Decor that depend on symptoms approach. The tool reported a high performance

measures in recall rates.
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2.4.5 Visualization-based Approach

Visualization-based technique [24, 69, 70] is a semi-automated method which com-

bines human and automatic process in the detection. The technique is not effective

for large systems. In addition, it is error prone because of human interaction. Si-

mon et al. [69] presented metric-based visualization tool called Crocodile. They

performed experiments on a small system. Another tool by Carneiro [70] is pre-

sented to detect God class and Divergent class code smells. The percentage of the

tool were about 50%.

2.4.6 Probabilistic-based Approach

Probabilistic-based technique [71, 72] is based on fuzzy logic rules which use quan-

titative proprieties. Also it uses ranks for candidates of code smells using inference

rules. Nitin Mathur [72] proposed a statistical analysis-based technique called Java

Smell Detector (JSD). It detects only five code smells.

2.4.7 Cooperative-based Approach

Cooperative-based technique is a recent technique that combines activities in a

cooperative way to perform code smell detection. After surveying the literature,

only one common study presented by Abdelmoez et al. [73] applied two parallel

algorithms to detect code smells. Both algorithms are based on genetic algorithms.
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Table 2.3: Code Smells detection approaches

Reference
year

Tool Approach Languages Detected
Smells

Accuracy
(%)

[74] (2009) JSmell Metrics
based

Java Seven Success
rate 85-90

[50] (2010) CodeVizard Metrics
based

Java One NM

[75] (2011) Together
Borland

Metrics
based

Java, C#,
C++

NM NM

[76] (2012) JCodeCanine Metrics
based

Java Four Average
Acc 54

[77] (2013) JSNOSE Metrics
based

Javascript Thirteen Rec 98
Prec 93

[78] (2014) Research
prototype

Metrics
based

Java, C# Four NM

[47] (2015) InCode Metrics
based

Java Thirteen NM

[79] (2002) JCOSMO Search
based

Java Three NM

[80] (2005) CodeNose Search
based

Java Seven NM

[58] (2007) JDeodorant Search
based

Java Four Prec 92

[81] (2012) BSDT Search
based

Java Seven Acc 100

[82] (2013) iPlasma Search
based

Java Four Average
Acc 90

[59] (2015) CSD Search
based

Java Five Rec 58-100
Prec 72-86

[67] (2003) LMP envirn-
ment

Symptoms
based

SOUL Two NM

[64] (2010) Detex Symptoms
based

Java Fifteen Rec 100
Prec 50

[69] (2001) Crocodile Visualized
based

Java Four NM

[72] (2011) JSD Probabilistic
based

Java Five NM
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CHAPTER 3

LITERATURE REVIEW

In this Chapter, a summary of the relevant studies in the literature that have

addressed the link between DPs and code smells in terms of several aspects is

demonstrated. The collected studies are based on three categories as follows:

• DPs impact on software quality attributes

• Code smells impact on software quality attributes

• The relationship between DPs and code smells

We classify the relationships between design pattern and code smell based on

the following:

•Structural : This type of relation examines the structure of both DPs and code

smells. For instance, an evaluation of specific parts of code i.e. that may

make up both a design pattern and be considered as code smell.

•Refactoring : In this relationship, the refactoring technique is applied in order

to eradicate a code smell by the use of DPs
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•Co-occurrence : The relation means that if one of the terms i.e. DPs exist,

this might affect the other term i.e. code smells to be existed.

3.1 Design Patterns Impact on Software Quality

Attributes

Design patterns (DPs) are known as organized solutions to design flaws [3]. On

one hand, DPs are linked to good software systems. However, applying DPs is

not an easy task, in particular in case of integrating in a real software systems.

Although software engineers acknowledge the benefits of DPs, there are some

studies that investigated DPs impact on software quality. This literature shows

that the impact of DPs has been analyzed on few quality attributes: maintain-

ability, change-proneness [12, 83], fault-proneness [84, 85], and performance [86],

as illustrated in Figure 3.1.

Figure 3.1: The common attributes influenced by Design Patterns

Proxy, Observer, Bridge and Command are regarded as they have a questionable

use [11]. Wendorff et al. [11] stated that Proxy design pattern is easily understand-
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able which consequently makes it a classical "beginner’s pattern". The rationale

behind the use of Proxy pattern is justified with some quality characteristics such

as flexibility, access control and performance. According to the authors in [11],

these quality properties never materialized in most cases. It is known that, in

general, the use of design patterns tend to increase the number of classes and

methods. With Proxy it is not different. Therefore, its unnecessary employment

makes the size and complexity of the software increases considerably.

Wendorff [11] argues that a complicated functionality was spread over proxy

classes ignoring the documentation rationale. Missing the documentation itself is

not a code smell. However, when code becomes bigger and complex, the lack of

documentation in this case is even worse.

Bieman et al. [12] investigated the relationships between software change prone-

ness and design structure. Five open source systems have been used to conduct

the experiment. Design patterns and class inheritance participation are used to

recognize design structure. As results show in the study, classes participate in de-

sign patterns are more change prone than other classes. However, this result may

be justified by the fact that design pattern provides essential key responsibility

and functionality to the system. This may explain why classes that participate in

design pattern are more change prone than other classes, relatively. Although it

needs further investigation, change-proneness in patterns participating classes may

be an indication of design patterns co-occurrences with either Divergent Change

or Shotgun Surgery code smells, which are defined by Fowler et al. [1].
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Prechelt et al. [5] performed an experiment which investigates software main-

tenance situations that use several design patterns and compares it to other sce-

narios with simpler alternatives. In this study, there is an interesting section right

on Introduction named "Isn’t This Just Obvious?". In this section, the authors

state that "clearly patterns do have the advantages claimed for them!" However,

our intuition may mislead us and terms such as "clearly" and "obviously" do not

involve evidence. The authors find that, in many cases, the design solutions in

which GoF’s patterns are employed are easier to maintain than their correspond-

ing simpler solutions. Nonetheless, the authors detach that there are situations

in which the use of design patterns made maintenance of the program harder.

However, these cases can be utilized as basic starting points of design patterns

use guidelines. Besides that, they confirm that as compared to a straightforward

solution, design patterns may provide unnecessary flexibility.

A replication study of Prechelt et al. [5] has been performed by Vokac et al. [13]

and Krein et al. [87].

Vokac et al. [13] concluded that in regards to the Visitor pattern, it led to

high cost in terms of development time and poor correctness. In fact, Visitor pat-

tern has a complex structure which may justify the conclusion of study by Vokac

et al. [13]. Besides, they found that Decorator eases maintenance, despite being

hard to trace the control flow of the program, and hence lead to increase under-

standability efforts. Therefore, although its maintainability is good, it decreases

understandability. Decorator also requires some training, just like Observer, but

32



this one may ease understandability and reduce maintenance efforts. According

to the authors results, Composite pattern which relies on recursion, may cause

some issues. Vokac et al. [13] justified that the rationale behind these such is-

sues in Composite that its reliance on recursion is no longer in use. This may

be caused due to the availability predefined directories and predefined containers

in languages. Krein et al. [87] state that more deeper and meticulous practical

analysis is needed for design pattern topics.

3.2 Code Smells Impact on Software Quality At-

tributes

Code smells are perceived to lead to maintenance difficulties in software sys-

tems [88, 89, 90]. In addition, some studies claim that classes which have code

smells are liable to have more change prone [10, 88, 91], and more defects [88, 92,

93] than other classes that do not have code smells.

Olbrich et al. [88] have studied the impact of God classes and Brain classes

on the change size, change frequency and defects. They concluded that classes

having this kind of code smells have more change size, change frequency and

defects. The studies [94, 95, 96, 97], line with the findings of [88]. Interestingly,

Olbrich et al. [88] found that when their results are normalized with respect to

size (i.e. Line of Code), the results do not hold any more under an assumption

classes that are involved in code smells i.e. God Class and Brain Class have a ratio
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of functionality similar to other classes on average. As they stated, code smells

are not generally harmful. On opposite, such code smells in classes may be an

efficient way for organizing code providing that these smelly classes are constructed

intentionally. The results of [88] is consistent with the results stated in the study

done by Arisholm et al. [98] of evaluating the effect of centralized control on

the maintainability on large experiments of object oriented programming (OOP).

Arisholm et al. [98] outlined that most of the junior developers performed better

on centralized control style systems than the object oriented style versions.

D’Ambros et al. [99] conducted an empirical study on the impact of anti-

patterns i.e. Blob and Spaghetti Code, on program understandability. Their con-

clusion outlined that only one occurrence of Blob or one occurrence of Spaghetti

is not significantly decreasing the program understandability. On the other hand,

a combination of both Blob and Spaghetti affects the program understandability

and so affects the maintainability.

Jafaar et al. [93] reported a study on the impact of design patterns classes

that have dependencies with the non-design pattern classes on the defects and

change proneness. In addition, the study has been done in the case of antipattens

classes and non-antipattens classes. The results of their work showed that classes

having dependencies with antipattens produce more defects than the case of design

patterns. However, the exhibited results in [93] may vary from one antipattern to

another depending on the smell in addition to the analysed software subjects.

Foutse et al. [91] reported an experimental study concerning the impact of
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antipatterns on change- and fault- proneness. They resulted that classes with

antipatterns are more change prone and fault prone. In addition, they showed

that structural changes affect classes participating in antipatterns more than other

classes. As a summary, Figure 3.2 illustrates the common attributes that are

influenced by code smells.

Figure 3.2: The common attributes influenced by Code Smells

3.3 The Relationship between Design Patterns and

Code Smells

We detach that this is not a closed list, but just some ways to relate design

patters and bad smells. We anticipate that during our analysis, we only identified

studies that relate design patterns and bad smells through refactoring or structural

comparison.
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3.3.1 Structural Relationship

Several studies have addressed structural relationship between design patterns and

code smells. Khomh et al. [100] stated that understanding of design part of a sys-

tem is very effective on the quality attributes. The work proposes quality models

that take into considerations several styles of the design including design patterns,

code smells and anti-patterns. Authors believe that strength of design structure

is important to measure the quality attributes. Therefore, they have analyzed

how these styles, DPs and code smells, affect the quality attributes like fault and

change proneness. Bouhours et al. [17] propose a study which aims to improve

the use of design patterns. Since the designers may use DPs to get a good design

and easier maintenance work, they propose a model to detect "spoiled patterns".

Spoiled patterns are alternatives solutions for the same problem that design pat-

terns may address in order to adapt the deviated problem to the traditional one

solved by design pattern. Authors has stated that the spoiled patterns deteriorate

the intrinsic qualities of a design pattern. Spoiled patterns are comparable with

code smells.

Von Detten and Becker [101] propose an approach for reverse engineering sys-

tems. As long as the maintenance task depends on the understandability of the

systems, there is a need for reverse engineering to support such understanding

of a system. The approach used by the authors combines clustering-based and

pattern-based techniques. The occurrence of code smells may violate the archi-

tecture issued by clustering-based approach because smelly classes tend to be
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strongly coupled, and so they will be clustered together. This case is opposite to

design patterns, which strive to construct a modular architecture. Interestingly,

this opens our eyes to investigate whether that DPs have an influence on code

smells.

In the study proposed by Polasek et al. [102], an extension of two algorithms

has been introduced to detect, in addition to design patterns, anti-patterns. Ac-

cording to the study, anti-patterns structure is more complex than design patterns

structure as anti-patterns may need several variables e.g. number of methods,

name of the class, method parameters. This fact facilitates the extension of the

work to detect anti patterns. Code smell and anti pattern are considered in this

work as synonyms to each other. Authors state that some design patterns are

source of design flaws detection. The authors analyze structural features such as

associations, generalizations, and class abstraction.

3.3.2 Refactoring Relationship

This section presents studies that have addressed the relationship between DPs

and code smells in terms of refactorings. Refactoring stage has a high involve-

ment in the issue of software code quality improvement using design patterns to

eliminate code smells. Several studies [14, 103, 104, 105, 106, 107] have addressed

that issue.

Seng et al. [103] have discussed the importance of maintenance that helps to

eliminate fragments of code which degrade the quality of systems. These frag-
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ments are called code smells. In order to identify that, they proposed an auto-

matic search-based approach to suggest the possible refactoring segments based

on design patterns in the code of systems. However, applying or not applying the

approach of refactoring is a user-decision. However, the impact of refactorings

based on design patterns which called "Refactoring to Patterns" has been empir-

ically assessed by Alshayeb [108]. He found that there is no clear trends about

refactoring and refactoring to patterns in quality improvements.

Trifu and Reupke [104] worked on the issue of software maintenance practices

and the cost it involves. According to their perspectives, maintenance tasks may

exist due to two factors: poor design and the age of the system. However, they

introduced a tool that suggests the needed refactorings to the structural flaws in

OOP systems. Design patters are suggested to be applied as part of the refactor-

ings to remove code smells.

Jebelean et al. [14] proposed an approach that detects code smells automat-

ically and list the parts of code to be refactored. Composite design pattern is

involved in their approach as a refactoring suggestion. The purpose of applying

composite design pattern is to compose objects into tree structures.

Fontana and Spinelli [106] have analysed how the refactorings can affect the

software evolution and maintenance using metrics approach to assess the quality.

Two design patterns, Visitor and Strategy, are cited in the study to have an effect

on removing the bad smell Divergent Change. A co-occurrence between these

patterns and the bad smell Feature Envy may exist. These findings can bring
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researchers’ attention to the issue of co-occurrence of DP and bad smell. Dorman

and Rajlich [107] reported the improvement experience done by a programmer

to an open source system. As part of these improvements, the authors have

discussed sort of relationship between the elimination of (bad smells and changes)

and the use of design patterns. Refactorings are treated as a stage in the software

change process. However, applying refactoring tasks does not improve the quality

attributes necessarily [109].

3.3.3 Co-occurrence Relationship

Walter et al. [36] conducted an empirical study to evaluate the relationship be-

tween DPs and code smells. This work addressed the high level (i.e. design level)

to study such relation. On the other hand, the authors have examined this re-

lation in a pattern level for 10 design patterns and 7 code smells only. Their

experiments are mainly done based on two major open source projects with some

subsequent releases of each project. The results indicate that the presence of DPs

is not strongly linked with code smell instances. However, these observations be-

come more supported for some patterns such as Singleton and less supported for

others such as Composite.

As a summary, Figure 3.3 illustrates the common relations between design

patterns and code smells.
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Figure 3.3: The common relations between Design Patterns and Code Smells

3.4 Summary

Design patterns are not generally good or generally bad. They have to be used

in an appropriate manner to match an appropriate problem. For instance, a doc-

umented design patterns with essential training can improve maintenance tasks

in terms of time and quality properties. Based on the literature conducted in

this study we have extracted the design quality attributes commonly used in the

studies. The previous section presented some works related to design patterns

and bad smells. As noticed, some papers focused on design patterns and software

quality attributes. Others exhibited code smells and software quality attributes.

Interestingly, some works analyzed the potential problems of design patterns and

their consequences. For instance, some problematic use of design patterns, similar

to Proxy, Observer, Bridge, and Command is identified by Wendorff [11]. After

the performed literature review, it was found that most of the studies focus on

refactoring opportunities. On the other hand, some studies establish structural

analysis concerning design patterns and bad smells. In the sequence, we nar-

rowed our research to evaluate the relationship between design patterns and code
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smells. By accomplishing this literature review, we realized that the co-occurrence

between design patterns and bad smells is unexplored theme, although it is men-

tioned in some papers. The objective of this work is to empirically evaluate the

effectiveness of design patterns on the code bad smells. Consequently, this work

identifies the points at which design patterns co-occur with bad smells.
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CHAPTER 4

EXPIREMENTAL SETUP

This chapter describes the data used for conducting the study. The goal of this

work is to empirically evaluate the impact of the participating design pattern

classes on the smell presence. Data collection, methodology plan and then the

measurement tests are presented in this chapter.

4.1 Data Collection

In order to conduct this work, 10 open source software systems have been collected.

Hence, the required data set is as follows: (1) Classes which are participating in

patterns, (2) Classes which are participating in code smells.

4.1.1 Subject Systems

There follows a description of the selected subject systems: DrJava v20020804,

JHotDraw v5.1, DrJava v20020619, DrJava v20020703, MapperXML v1.9.7, Nutch

v0.4, PMD v1.8, JUnit v3.7, QuickUML 2001, Lexi v0.1.1.
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• DrJava: The Dr.Java project provides a user friendly, simplified envi-

ronment for writing and building Java programs. It includes the follow-

ing release versions: DrJava v20020804, DrJava v20020619, DrJava

v20020703. The project allows users to assess Java code in an interac-

tive environment and it includes an intuitive interface that was created with

students in mind.

• JHotDraw v5.1: A framework that supports the design of drawing editors.

Numerous tasks are facilitated in the editor including the ability to devise

behavioural constraints, design and edit geometric and user defined shapes,

and create animation.

• MapperXML v1.9.7: MapperXML v1.9.7 can be utilized for web appli-

cations as a presentation framework. It functions by creating applications

through different components which conform to the Model-View-Controller

design.

• Nutch v0.4: Nutch v0.4 is a scalable web crawler which is also extensible.

Among its useful functions are searching for, indexing and scoring filers.

• PMD v1.8: PMD v1.8 is a source code analyzer which can detect standard

coding rule abuses by scanning the source code. It is also useful for locating

dead and suboptimal code.

• JUnit v3.7: JUnit v3.7 is a valuable tool for writing test cases for Java

programs. It is known for its simplicity of design which allows the user to
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create test cases which can be used repetitively.

• QuickUML:QuickUML is an object-oriented design tool which is extremely

user friendly. It facilitates very comprehensive integration of a core set of

UML models. It enables the user to access their complete project by utiliz-

ing a tabbed window with smooth integration between object models, use

cases, class models, dictionaries , and code.

• Lexi v0.1.1: A word processor that enables editing of plain text as well as

numerous file types like RTF and HTML.

4.1.2 Data of Patterns and Smells

The reason for choosing the already described systems is the availability of pattern

data in the P-Mart repository [110]. As explained in Chapter 2, the pattern

identification and detection tools are not suitable for our work since that all of

them are not congruent with the characteristics required to obtain reliable data.

As a result of our search, P-Mart repository came across. Several works [40,

41, 42, 43] have used it due to its reliable source and validation.

P-Mart repository was collected based on GoF’s book [3]. It consists of 10

systems. Each system patterns collected in a separate session by B.Sc. and M.Sc.

students. Also, the collections of other people who are working in this area are

used as well.

Table 4.1 provides several statistics for the subject systems whilst Table 4.2 re-

ports the number of patterns instances in each one of the subject systems. We can

44



Table 4.1: Projects statistics

Systems # classes LOC Code Lines # Smelly Classes # DP classes
drJava 20020804 267 61844 30390 (13%)34 (32%)85
JHotDraw v5.1 155 16085 8891 (5%)8 (66%)103
drJava 20020619 215 47617 22696 (11%)25 (19%)41
drJava 20020703 238 52870 25425 (12%)28 (23%)55

MapperXML v1.9.7 217 32667 14372 (12%)27 (22%)48
Nutch v0.4 165 37106 23507 (24%)39 (25%)41
PMD v1.8 446 52302 41321 (8%)35 (9%)43
JUnit v3.7 78 6517 4773 (5%)4 (67%)52

QuickUML 2001 156 23319 9249 (4%)7 (26%)41
Lexi v0.1.1 alpha 24 10005 7045 (50%)12 (29%)7

Total # (All Systems) 1961 340332 187669 219 516

see in these tables that the number of DPs and the percentages of the participat-

ing classes in DPs are distributed over the systems. Patterns micro architecture

instances range from 5 to 34 over the subject systems, as seen in Table 4.2. In Ta-

ble 4.1, design pattern participant classes approximately range from 9% to 66%.

The same thing can be said about the number and the percentages of smelly

classes in the subject systems. The percentage of smelly classes ranges from (5%)

to (50%) in the subject classes. Figure 4.1a and Figure 4.1b clarify these numbers.

(a) DPs participant to non-participant classes (b) Smells participant to non-participant classes

Figure 4.1: Participant to non-participant classes
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The comparison of code smells detection tools has an impact on conducting

the study. Some factors in the literature have been exposed to be used in the

analysis of code smells detection tools. Evaluation the accuracy of the tool is

an important factor for the selection of an appropriate code smell detection tool.

Precision and recall are factors to identify correctness and completeness of results

as described in Chapter 2. Source code metrics-based tools are applied commonly.

According to the literature, none of the tool detects all the 22 code smells by

Fowler [1]. InFusion tool [111] which is the extended version of InCode [52] tool

(while iPlasma [112] is the old version of InCode) can detect 22 code smells, 10 of

them are identified by Fowler [1]. Since the accuracy of iPlasma tool at average

was 90% and InFusion is the newer version, this may increase the confidence of

InFusion tool. InCode, the old version of InFusion has been frequently used in the

literature studies. Moreover, InFusion provides well-documented definitions of the

detection rules and techniques used and their associated metrics with references.

In addition, InFusion makes quality assurance of multi-million LOC systems

not merely practical, but effective, successfully handling both object oriented and

procedural style code. Whether you own, are responsible for, or are acquiring soft-

ware projects in C/C++ or Java, InFusion puts you in full control of architecture

and design quality. It supports visualization and refactorings.

Moreover, InFusion classifies the smells’ effectiveness on the quality attributes

e.g. complexity. It provides some metrics for quality e.g quality deficit value

for separated classes and methods. The function level of detection is provided by
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InFusion tool. We collected smells data using InFusion tool. As mentioned before,

the subject systems of this study are open-source systems. They are hosted in the

sourceforge website1.

4.2 Methodology Description

In order to achieve the objectives we planned, we have to decide on how to measure

the differences between groups i.e. design pattern group vs non-design pattern

group. We followed a set of phases. In general, the methodology in this work

consists of three phases as illustrated in Figure 4.2.

Figure 4.2: Methodology flow

The phases are: (1) Subject systems and detection tools selection. (2) Execution

of the tools to bring the related results of design patterns and code smells data.

(3) Data analysis and mining the data. The first phase is Subject Systems and

1https://www.sourceforge.net
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Tools Selection. This phase brings us the systems to be analyzed in the work.

Beside choosing the systems, it focuses on selecting design patterns and code smells

tools. As discussed previously in Section 4.1.2, only code smells detection tool was

chosen while P-mart repository was used for design pattern data. The parameters

configuration of the code smells detection tool remained with the default values.

The second phase is Detection Tools Execution. The main point in this stage

is to collect code smells and design patterns data of each system. As discussed

before, for the design patterns we used the xml files in the P-mart repository and

parsed it to get each class in the xml file and its corresponding design pattern. For

code smells, we ran the tool for each system and collect the smelly classes along

with the number of smells in each class with their types. The previous output

results of design patterns and code smells were stored in the created data files (The

database in the Figure 4.2). The files were created as one file per project. Each file

has 25 columns. First column is the class name followed by the occurrences of a

design pattern. Then, the column number three indicates code smells occurrences

followed by the column of the number of smells in that class. The column after

that specifies the type of smells the class may have. The remaining 20 columns

refer to the corresponding design pattern types classified based on the categories

of design patterns. The last phase is Data Analysis and Mining. The purpose

in this stage is to analyze and mine the data in the stored files.

Statistical measurements were identified to achieve the objectives as follows:

1. Objective 1 - Empirical evaluation of code smell-proneness and
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smell density in design pattern classes versus non-design pattern

classes: For measuring the differences between the groups i.e. design

patterns and non-design patterns, we chose to use Wilcoxon signed-rank

test [113] and OR test [114] in order to compare the significance of the

overall data. The results are shown in Section 5.1.1.

2. Objective 2 - Empirical evaluation of code smell-proneness in de-

sign pattern classes versus non-design pattern classes in each cate-

gory of the design patterns(creational, structural and behavioral):

Mann-Whitney U test [115] is used in order to do comparison between pairs

of data, whilst Kruskal Wallis test [116] is dedicated for measuring multiple

groups(categories) of data. The results are shown in Section 5.1.2.

3. Objective 3 - Empirical evaluation of code smell-proneness in de-

sign pattern classes versus non-design pattern classes for the in-

dividual design patterns: To achieve the goal in this point, we split the

stage into two steps: (1) The comparison among patterns in each category

using Kruskal Wallis test. (2) The association rules analysis using Apriori

algorithm. The results are shown in Section 5.1.3.

The independent variables in this work are the classes participating in the design

patterns and the dependent variables are the smelly classes. Next follows have

detailed descriptions of the identified statistical measurements in this work.
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Table 4.3: Events involved in OR test

DP \Smell Yes NO
Yes 1 2
NO 3 4

4.2.1 Odd Ratio (OR) Test

We calculated the odds ratio (OR) [114] which specifies the probability of an event

occurring. The odds ratio can be calculated based on two groups. The first group

is the design patterns sample (p), while the other group is the code smells sample

(q). The ratio is given as follows: OR = p/(1−p)
q/(1−q)

. An odds ratio of 1 points to

the equality of the both samples. This indicates that the occurrence is equally

probable in both samples, while OR of points greater than 1 means that the first

sample in the numerator is more likely to have smells. On the other hand, OR

value of points less than 1 indicates that the second sample has more probable

of smells. This is typically used when the sample size is small. Four events are

involved in this test: (1) Classes participating in design patterns and code smells.

(2) Classes participating in design patterns only. (3) Classes participating in code

smells only. (4) Classes not participating in any of design patterns and code

smells. Table 4.3 clarifies these events.

4.2.2 Wilcoxon Signed-Rank Test

Wilcoxon signed-rank test [113] is well known, non-parametric test used to com-

pare differences between two paired data. It is used as a powerful replacement

for t-test which is used for normal distribution. It is an effective replacement but
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slightly less powerful than t-test. The variables in this context are considered as

continuous.

4.2.3 Mann-Whitney U Test

This test is utilized to evaluate the variations between different groups by making

a comparison between two independent groups [115]. This non-parametric test

can facilitate a comparison between classes that participate in design patterns

and the non-participating classes in terms of the disparity in smell-proneness. For

instance, the use of this test is to assess the variation between the classes that

participate in the structural design patterns and the classes that participate in

the creational design patterns, in terms of smell proneness. In order to conduct

this test the following four assumptions must apply:

• Dependent variables are required to be one of the following: categorical or

continuous. For the case being examined, the values of smell-proneness are

categorical (either 0 or 1).

• It is important to organize independent variables to be as two groups in a

shape of categories. The underwent test values have 0 or 1. 0 corresponds

to the group of non-participating classes while 1 corresponds to the group

of participating classes.

• It is vital that the independence of observations is ensured. In the case being

studied, the condition applies.

52



Table 4.4: Test of normality

Tested Variable df Group Kolmogorov-Smirnov
Sig value

Shapiro-Wilk
Sig value

Smell-Proneness 1961 Participant 0.000 0.000
Non-Participant 0.000 0.000

Smell-Density 1961 Participant 0.000 0.000
Non-Participant 0.000 0.000

• The data should not be normally distributed. In order to test such a condi-

tion, two techniques were applied, Kolmogorov-Smirnov and Shapiro-Wilk.

The results associated with the tests are presenetd in Table 4.4. When

assessing the normality, the following assumptions are made:

– H0: the data are not normally distributed.

– H1: the data are normally distributed.

The p-value associated with evaluating the normality was found to be less

than 0.05. For this reason, it was not possible to reject the null hypothesis.

This lead to accepting the H0 Hypothesis. That means the data of the

groups are not normally distributed.

• The groups underwent a test should have identical distributions. Levene’s

test is an inferential statistic used to assess the equality of variances for a

variable calculated for two or more groups [117]. we found that only the

data of the design pattern participant group have identical distribution as

shown in Table 4.5. The p-value of Levene test is 0.057 .
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Table 4.5: Test of homogeneity of variance

Design Pattern Category Skewness Levene Statistic p-value - Sig.
Creational 2.644

2.883 0.057Structural 3.804
Behavioural 2.294

4.2.4 Kruskal-Wallis Test

The Kruskal-Wallis test [116] is utilized to make a comparison among multiple

groups. In order to conduct this test, the following two assumptions must be in

place:

• Dependent variables are required to be either continuous or categorical. In

the case under investigation, the values for smell-proneness are categorical

(either 0 or 1).

• It is necessary for the independent variables to be composed of multiple

groups having categorical cases. In the case under investigation the values

for patterns are categorical (either 0 or 1). In the context of this work, it is

used to compare the differences among design patterns of each category.
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CHAPTER 5

EXPERIMENTAL RESULTS

The purpose of this chapter is to quantitatively evaluate the functional effective-

ness validity of design patterns on code smells. Before proceeding with that, the

descriptive statistics for smell-proneness and smell-density are presented in Ta-

ble 5.1. It is clear that the minimum value in all metrics of all cases is 0. Also,

we can see that the maximum value for smell-proneness is 1 in all cases. For the

other statistics, they are different from one case to another. From now on wards,

we abbreviate smelly classes participating in design pattern as SDP. On the other

hand, we use SnDP as an abbreviation of smelly classes not participating in design

patterns. In addition, S is used for Smells.
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Table 5.1: Descriptive statistics of smells in each system

Metric Minimum Maximum Mean Std. Dev
QuickUML

Smell-Proneness .00 1.00 .0486 .21580
Smell-Density .00 4.00 .0641 .37121

Lexi
Smell-Proneness .00 1.00 .5000 .51075
Smell-Density .00 6.00 .8750 1.51263

JUnit
Smell-Proneness .00 1.00 .0513 .22200
Smell-Density .00 1.00 .0513 .22200

JHotDraw
Smell-Proneness .00 1.00 .0516 .22196
Smell-Density .00 3.00 .0710 .34396

MapperXML
Smell-Proneness .00 1.00 .1244 .33083
Smell-Density .00 5.00 .1613 .54158

Nutch
Smell-Proneness .00 1.00 .2364 .42614
Smell-Density .00 3.00 .3939 .79401

PMD
Smell-Proneness .00 1.00 .0785 .26922
Smell-Density .00 34.00 .2063 1.69800

DrJava v2002619
Smell-Proneness .00 1.00 .1163 .32131
Smell-Density .00 4.00 .1721 .54956

DrJava v2002703
Smell-Proneness .00 1.00 .1176 .32287
Smell-Density .00 4.00 .1723 .54322

DrJava v2002804
Smell-Proneness .00 1.00 .1273 .33398
Smell-Density .00 4.00 .1873 .56408

All Systems
Smell-Proneness .00 1.00 .1117 .31505
Smell-Density .00 34.00 .1866 .95557
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5.1 Functional Effectiveness Evaluation of Design

Patterns on Code Smells

The evaluation in this study is conducted based on three levels of design patterns.

In this part, Section 5.1.1 is presented to achieve the objective number one. To do

so, OR test and Wilcoxon test are mainly chosen to evaluate the relation between

design patterns and code smells in the Class Level. Next follows is Section 5.1.2

which presents the results after evaluating the relation between design patterns

and code smells in the Category Level. Kruskal Wallis and Man Whitney U test

are selected to achieve the objective number two. The last objective of this study is

accomplished in Section 5.1.3. The work in this section is divided into two steps:

the first one is the comparison among patterns in each category using Kruskal

Wallis test. The other step is association rules analysis using Apriori algorithm.

5.1.1 Design Level(Class Level)

RQ1: Are design pattern classes more smell-prone than the non-design pattern

classes in software systems?

In order to answer RQ1, we evaluate the difference between participant and non-

participant design pattern classes with respect to smell proneness and smell den-

sity. This evaluation provides a superficial insight on the impact of design patterns

on presence and density of smells.
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5.1.1.1 Smell Proneness(Odd Ratio Test)

The evaluation results of smell-proneness in participating versus non-participating

design pattern classes using Odd Ratio test are shown in Table 5.2. As noticeable

from the table, most of the subject systems show significant differences i.e the

event of smells are more likely associated with the group of non-design pattern

classes. Moreover, when all systems are combined, we found that the results

still hold. Only two values: Nutch system and PMD system have opposite results.

Nutch system comprises 24.8% as design pattern classes while PMD system covers

only 9.6%. Link to Table 5.2, the OR value of PMD system is more than 2. This

might interpret the results of PMD system. Moreover, we can see from Figure 5.1

that the non-participating design pattern classes group is more likely to have a

smell event than the participating design pattern group in most of the subject

systems. The case is opposite in only JUnit and JHotDraw systems although the

OR values of them are less than 1. In general, the data needs more investigation

and analysis. Next section shows more rigorous analysis of the data.

Table 5.2: Odd Ratio test analysis for smell-proneness evaluation of participant
vs. non-participant design pattern classes groups

QuickUML .454 <1
Lexi .280 <1
JUnit .480 <1

JHotDraw .833 <1
MapperXML 1.007 ≈ 1

Nutch 1.750 >1
PMD 2.091 >1

DrJava v2002619 1.069 ≈ 1
DrJava v2002703 .696 <1
DrJava v2002804 .744 <1
All systems .907 <1
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Figure 5.1: Smell proneness
comparison of participant vs.
non-participant design pattern
classes in all systems

5.1.1.2 Smell Proneness(Wilcoxon Test)

Given the fact about the data distribution of samples: SDP and SnDP in Table 4.4

on page 54, we proceeded to conduct more strict and powerful tests. From the

inspection of mean and median values shown in Table 5.3, we can visually expect

that the design pattern instances are smaller as presented in the Figure 5.2. How-

ever, this expectation needs more verification. Wilcoxon test is used as an effective

and powerful alternative for t-test, used for normal-distributed samples. Due to

the characteristics of Wilcoxon test and the fact that combining smelly design

pattern and smelly non-design pattern classes represent all smells, we linked each

system with two values: SDP/S and SnDP/S , where S represents all smells in

each subject systems. The results are as follows: (z = -2.547, p-value=0.011).

Hence, the classes which participate in design patterns are less smell-proneness

than the classes not participating in design patterns for the subject systems, at

95% confidence level.
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Table 5.3: Statistics of smell proneness in all systems

Metric SDP/S SnDP/S
Mean .280 .719
Median .211 .788
Std. Dev. .161 .161
Variance .026 .026

Figure 5.2: The respective values of smell proneness in SDP and SnDP

5.1.1.3 Smell Density(Odd Ratio Test)

Odd Ratio test cannot be computed on smell density sample due to the nature of

this test. It only takes samples of kind 2*2 table i.e a sample underwent OR test

should have four and only four cases. They are as follows:

• Design patterns and smells.

Design patterns and non-smells.

• Non-design patterns and smells.

Non-design patterns and non-smells.
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5.1.1.4 Smell Density(Wilcoxon Test)

Similar to the smell proneness, we conducted the same procedure for smell den-

sity. Smell density indicates the number of smells associated per each class in

both groups, SDP and SnDP. The resulting values are shown in diagram 5.3.

The respective mean and median values are represented in Table 5.4. As long

as the sample is more confidence when all subject systems are combined, we did

the test based on the all systems. The results are as follows: (z = -2.310, p-

value=0.021). Consequently, the classes which participate in design patterns are

less smell-dense than classes not participating in design patterns, for the subject

systems, at 95% confidence level. Interestingly, the results of smell proneness and

smell density are consisted. Hence, our next experiments are smell proneness-

based and not smell density-based. The justification is that most of the classes in

the subject systems have only one smell.

Table 5.4: Statistics of smell density in all systems

Metric SDP/S SnDP/S
Mean .297 .703
Median .238 .762
Std. Dev. .190 .190
Variance .036 .036
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Figure 5.3: The respective values of smell density in SDP and SnDP

5.1.2 Category Level

RQ2: Do code smells have significant differences when they present in the different

categories of design pattern classes?

There exist three categories for design patterns in the GOF book: Creational,

Structural and Behavioural. In order to answer RQ2, we evaluate the differences

in smell-proneness among these different categories. To do so, we identified 3 pairs

to be underwent statistical test. Prior to do comparisons between the pairs, we

conducted Kruskal-Wallis test in order to find whether a difference among the

categories exists or not. If there is a difference, we will go further and conduct

Mann-Whitney test in order to compare the pairs. However, we did both tests

to confirm the results. The pairs in our study are as follows:

1. Creational vs. Structural
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2. Creational vs. Behavioural

3. Structural vs. Behavioural

5.1.2.1 Evaluation of different design pattern categories(Kruskal Wal-

lis Test)

In evaluating the differences in functional effectiveness of design pattern on smell

proneness among the classes that participate in the different design pattern cate-

gories, we ignored the Nutch, JUnit and DrJava v2002703 subject systems. This

is due to that they are only associated with 1, 2 and 2 classes of creational cate-

gory, respectively. Also, we ignored Lexi because the number of the classes that

participate in the structural design patterns is zero. So, we end up with 7 cases

only including the all systems case.

• Smell Proneness(Kruskal-Wallis Test)

As shown in Table 5.5 and visually inspection from Figure 5.4, the p-values

obtained in this test have no significant values in all systems, even when all

systems are combined, at 95% confidence level. Noticeably, JHotDraw and

DrJava v2002804 systems have very close percentages of smelly design pat-

tern classes in the categories with a maximum of 3.8% at the behavioural

category and minimum of 2.2% at the structural category for JHotDraw

system, and for DrJava v2002804, the percentage values of the categories:

creational, structural and behavioural are 9.1%, 11.4% and 12.5% respec-

tively. QuickUML and DrJava v2002619 systems have no smells linked to
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the structural design pattern category. This observation might be due to

the nature and structure of the structural category. According to [85], the

structural category tends to be less prone and less change. Moreover, based

on the authors’ teaching experience in the field of object oriented design

patterns, students may have more understanding of structural category as

compared to other categories, and so more easy to apply properly. PMD

and MapperXML systems have numerous variations of smells in the cate-

gories. Interestingly, when all systems are combined, the categories have

almost the same values of smelly design patterns with 8.9% in all categories.

This observation might indicate that design pattern categories result in the

same level of reliable software.

Table 5.5: P-values of evaluation design pattern categories using Kruskal-Wallis
test

Systems p-value
QuickUML .417
JHotDraw .872

MapperXML .333
PMD .338

DrJava v2002619 .081
DrJava v2002804 .986
All Systems .987
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Figure 5.4: Smell proneness comparison of the design patterns categories
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Table 5.6: P-values of evaluation design pattern categories using Mann Whitney
test

System \Pair Creational vs Structural Creational vs Behavioural Structural vs Behavioural
QuickUML .386 .317 1.000
JHotDraw .657 .967 .612

MapperXML .552 .139 .372
PMD .193 .961 .221

DrJava v2002619 1.000 .146 .078
DrJava v2002804 .871 .894 .929

All Systems .907 .976 .874

5.1.2.2 Evaluation the pairs of design pattern categories(Mann Whit-

ney Test)

Given the fact about the negligible differences in smell proneness among the design

pattern categories, we do not need to proceed with Mann Whitney test. However,

we conducted Mann Whitney test for pairs of categories mentioned in Section

5.1.2 to strengthen our results. P-values obtained for the pairs are shown in

Table 5.6. As noticeable, the results have no significant p-values in all pairs.

Consequently, design patterns categories have no significant differences in terms

of smell proneness for the subject systems. This observation confirms the reported

results in the previous section, i.e. the adoption of any design pattern category

might produce the same reliable software.

5.1.3 Individual Design Patterns Level

RQ3: Are the participant classes in a specific individual design pattern more

smell-prone in specific smells than other ones?

To answer RQ3, this section evaluates the functional effectiveness of design pat-

terns on code smells in the individual patterns level, as follows:
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• The differences in smell proneness among overall design patterns in each

category. To do so, we use Kruskal Wallis test.

• If we find a significant differences in the previous test, we will go further

to evaluate the co-occurrence of each design pattern-code smell pair using

association rules in the Apriori algorithm.

In this section, we conducted the evaluation when all systems are combined.

The reason behind it, is that the subject systems do not have the same set of pat-

terns. The comparison of smell proneness in each category (creatinal, structural

and behavioural) is presented in the Figures 5.5, 5.6, 5.7, respectively.

Figure 5.5: Comparison of smell proneness in creational category

Moreover, we used Kruskal Wallis technique to test the significant differences

among patterns in each category, as shown in Table 5.7.

It is noticeable from Table 5.7 that each category has significant p-value which
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Figure 5.6: Comparison of smell proneness in structural category

Figure 5.7: Comparison of smell proneness in behavioural category

might indicate that the subject design patterns in each category have different

behaviours in the context of their links with smells. On the other hand, some
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Table 5.7: P-values obtained from Kruskal Wallis test of each design pattern
category

Category of Patterns p-value
Creational .048
Behavioural .000
Structural .007

design patterns have more instances than the others. For instance, in Figure 5.7,

Iterator pattern appears to be more smell prone than Command pattern, although

Command pattern has 58 instances of patterns while Iterator pattern has only 17

instances. In addition, the distribution of smells and design patterns instances is

not equal. This observation might affect the conclusion of our results. Hence, a

further analysis is needed. Next section provides more deep analysis by applying

association rules to display possible significant relationships in the design pattern-

code smell pairs.

5.1.3.1 Applying Association Rules for Design Patterns and Code

Smells Pairs

As discussed in the Section 5.1.3, there is a need for further analysis to display

relationships that might link specific design patterns with specific code smells.

Consequently, "Association Rules" concept is employed in order to identify the

relationships.

Table 5.8 presents data that matches each item from the studied design pat-

terns with each item from the subject smells. The following acronyms are used

for the columns captions: DC-Data Class, DCl-Data Clumps, RPB-Refused Par-

ent Bequest Class, SC-Schizophrenic Class, BL-Blob, IC-Intensive Coupling, SD-
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Table 5.8: Data of individual patterns with individual smells

DP \CS DC DCL RPB SC BL IC SD ID ED GC FE TB MC SUM1 TOTAL2

Abs. Factory 2 - - 1 1 0 0 0 0 0 - 1 - 5 18
Builder - 1 1 - - - 2 - - - 1 - - 5 25
Factory Method 2 1 - 3 4 1 - 1 2 1 1 1 - 17 95
Prototype - - - - - - - - - - - - - - 21
Singlton - - - - 1 - - - - - - - - 1 27
Adapter - - - 1 2 - - - - - - 1 - 4 58
Bridge - - - - - - - - - - - - - - 28
Composite 2 - 1 2 - 1 - 1 3 - 1 - - 11 102
Facade 1 - - - - - - - - - - - - 1 3
Decorator - - - - - - - - - - - - - - 57
Proxy - - - 1 - 1 - 1 2 - 1 - - 6 8
Command - - - - 10 1 - - 8 6 - - 1 26 58
Iterator - - - - 3 1 2 - - 2 - - - 8 17
Mediator - - - - - - - - - - - - - - 3
Memento 2 - - - 10 - - - 8 1 - - - 21 18
Observer 2 - - 3 1 - 1 - - - - - - 7 87
State - - - - - - - - - - 1 1 - 2 66
Strategy - - - 1 - 1 2 - - - 1 - - 5 90
Template Method 2 - 2 1 4 1 - 2 4 4 1 1 - 22 133
Visitor - - - - - - - - - 1 - - - 1 7

1Pattern and smelly classes
2All classes which participate in DP.

Sibling Duplication, ID-Internal Duplication, ED-External Duplication, GC-God

Class, FE-Feature Envy, TB-Tradition Breaker and MC-Message Chains.

The data presented in Table 5.8 can lead directly to certain observations.

• Only 1 instance of a code smell was discovered to be contained in classes

with the Singleton, Facade and the Visitor.

• Classes with the Prototype, Decorator and Bridge were discovered not to

take place simultaneously with smells.

• The Blob, God Class and External Duplication smells are collocated with

the Command patterns.

• The Blob and External Duplication are collocated with the Memento pat-

terns.
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• The Command and Memento patterns can take place simultaneously on a

regular basis.

Mixtures of attributes in a data set can be expressed by Association Rules.

The specific attributes are design patterns and code smells in the particular en-

vironment we observed. Two well-liked measures were utilized to classify the de-

pendency rules between the attributes which were: confidence and support [118].

Weka tool has implemented some data mining techniques e.g Apriori algorithm [118].

In order to compute these measures, the assumption was made that, in each

system, each class is a separate transaction. The following facts were subsequently

established reagrding the transaction: (i) it includes an occurrence of a bad smell

and (ii) it includes an occurrence of a design pattern. Each bad smell and each

design pattern which is studied is refered to as an item set. Both metrics include

values that range from (0-1), with higher values designating more important rules.

Support of an item set refers to the share of transactions which contain this

itemset, thereby demonstrating its significance [118]. For example, if a system has

100 classes and 10 of these classes exhibit the bad smell Feature Envy, this can be

taken to signify that, in this system, the Support of the Feature Envy is 10%. As

a further example, the Support of the association of the Factory Method and God

Class illustrates the proportion of transactions which include both the Factory

Method and the God Class. Consequently, Support is shown to be a gauge of the

frequency of an item in an association.

It is essential to be familiar with the naming conventions employed in the
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association rules, which are antecedent and consequent, so that the concept of

Confidence [118] can be properly understood. We regard design patterns to be

the antecedent and bad smells to be the consequent for the purposes of this study.

Confidence can be defined as the likelihood of observing the rules’ consequent

under the condition that the transactions include the antecedent. To put this

another way, it represents the ratio between the Support of the association and

the Support of the antecedent. The Confidence can be determined by using the

below equation. The value of Confidence is usually higher if the consequent has

a high level of Support. Due to this fact, it is more probable that the Support of

the association is also high.

Conf(DP → Smell) = Sup(DP ∪ Smell)÷ Sup(DP )

In this part of the evaluation, we decided to separately test the rule which

combines (1)antecedent: design pattern on the left side and (2)consequent: the

code smell on the right side. In order that even the weak rules could be docu-

mented for additional study, we set the minimal configuration values for support

and confidence in Weka tool. The overall association rules which have been re-

sultant are equal to (20 * 13 = 260). Only 5 rules are given in Table 5.9 with a

low confidence ( < 95% ). This was done because the majority of the rules in our

data set exhibit very high confidence for the case which reflects the weak relation

between both concepts: design pattern and code smell. A positive association

between the presence of design patterns and code smells can be concluded from
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Table 5.9: Extraction of filtered association rules

Rules
Command ⇒ Blob
Command ⇒ GodClass
Command ⇒ ExternalDuplication
Memento ⇒ Blob
Memento ⇒ ExternalDuplication

these results as shown in Table 5.9. A discussion and interpretation of the results

are reported in the next section.

5.2 Discussion and Analysis

The findings reported in Section 5.1 are examined in this section. Explanations

for the findings are given, and then related work is presented. After that, a review

of the threats to the validity is discussed.

5.2.1 Co-occurrence between Design Patterns and Code Smells

In this section, the following observations can be made from Table 4.1 (page 46):

the smelly classes are not widespread. In fact, it is estimated that about only

4.0% to 24.0% of classes in all systems are impacted by them. Furthermore,

similarly only comprising 10.4% of all classes in the subject systems that have

both attributes code smells and design patterns.

RQ1: Design class level

The relationship between the SnDP and the SDP for the systems, shown in Figure

5.2, changes over time. The observed relationship agrees with the work’s final
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conclusion (SDP ≤ SnDP) for the majority of systems. However, for the JUnit

and the JHotDraw systems the situation is opposite. Data inspection of the

systems exhibited that only 2 classes in the JUnit system that had a Schizophrenic

smell were also represented in the Observer patterns. These relationships are not

seen in other systems, a fact that implies that this was an isolated event due

to suboptimal design choices. In JHotDraw, 5 associated classes including Blob,

Schizophrenic, Data Clump, Refused Parent Bequest and Tradition Breaker, also

took part in the Factory Method, Composite, Strategy and State. The bulk of

these smelly classes were apparently associated with smells in only this project i.e.

State with Tradition Breaker, Factory Method with Data Clumps and Strategy

with Schizophrenic.

RQ2: Category level

The different categories of design patterns were analyzed with regard to the dif-

ference in smell proneness in order to identify if there is a significant variance

between them. This result leads to answering RQ2. In Section 5.1.2, Tables 5.5

and 5.6 both a short and in depth summaries are given in order to identify the

possible differences between design pattern categories in regards to smell prone-

ness. The number of relevant cases varies from one pair to the other. Only 1 class

of creational category is participating in the Nutch system, whilst Lexi system

does not have any structural design patterns. It was noticed that every one of

the different categories acts in the same way in terms of smell proneness. This

observation tends towards the conclusion that the adoption of any of the design
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patterns might produce the same reliable software. This is due to the fact that

these design patterns usually exhibit similar percentages of smells.

Nevertheless, the behaviour category was found to have the highest absolute

number of smells. The reason for this could be because of the fact that behavioural

design patterns are relevant to the behaviour of the system, and consequently

could be more prone to change. Furthermore, it is our belief that these design

patterns represent difficult concepts. They are not readily comprehended and, as

a result, they are not easy to apply to the design of software.

RQ3: Individual design patterns level

By examining the presence of individual smells in code, it is possible to discover

the most common ones: Blob, God Class and External Duplication, which con-

trol other smells in the system. In the same way, the design patterns are not

evenly distributed: the Template Method, Composite, Factory Method, Strategy,

Observer and Command are the most employed instances in the subject systems.

Such design patterns and code smells allotments comprise approximately 62% of

the total number of smelly classes. Moreover, the Adapter with Decorator design

patterns take part in an equal number of design pattern classes, although they are

associated with a reduced number of smells, 4 and 0, respectively. In our search

for a solution to answering RQ3, we centered on identifying the interested possible

strong links between each design pattern and smell in the data set, characterized

by "Association Rules".

Within a particular rule, we have a design pattern as an antecedent in the
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left hand side, while a code smell plays the role of a consequent. Clearly, the

majority of the important rules we discovered displays the mutual exclusive of

design patterns and code smells. This sustains the findings resultant for RQ1.

However, some rules represent a strong link between individual patterns with

certain code smells, as revealed in Table 5.9. It can be seen from Table 5.8 that

Singleton, State, Strategy, Adapter and Decorator are patterns where they are

not allotted with smells generally, while it is opposite for Command and Memento

patterns. As illustrated by Table 5.9, Command patterns are linked to the Blob,

External Duplication and God Class smells, whereas the Memento patterns are

connected with Blob and External Duplication, with the God Class being the

exception. From an examination of our data set, the fact that Command and

Memento co-exist in the classes is clear to see. Furthermore, explanations for

our conclusion can be provided by the definitions and purposes of the Command

and Memento patterns. Obviously, an excessive implementation of the patterns

within the system evolution might potentially lead to the Blob and God Class in

Command and Memento. Blob smells co-occur with External Duplication smells.

Deep code analysis is required to clarify why they co-occur.

5.2.2 Comparison to Related Work

The literature provides little evidence regarding the part that the associations play

in the interactions of smells and patterns which can be related to our findings. For

this reason, it was decided to take an indirect approach to studying the interactions
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between them. The method applied was a two-phase strategy, which examines

the interactions between identified characteristics and qualities independent of

the smells and patterns. The adverse effect of smells on maintainability has been

reported in a number of cases, e.g. [89]. While the reverse assumptions have been

made by other papers e.g. [119]. Smells continue to be regarded as a legitimate

consideration for anticipating the effort put into maintenance. In tandem with

smells, investigations have also been conducted into design patterns in regard

to their effect on maintainability. Heged et al. [120] found that patterns make

maintenance possible. In addition, Ng et al. [121] demonstrated that preceding

understanding about patterns facilitates programmers to keep a software system

running. Once combined, these relationships imply that the smells and patterns

are correlated in some way negatively. Therefore, it should be anticipated that

using patterns will give rise to a reduction in the reported cases of smelly classes.

The rationale provided is sustained by the results of this study with exceptions in

some cases. If defects are thought of as the main consideration which ties together

smells and patterns, then the findings detailed in the literature are equivocal.

There are numerous studies where a correlation has been observed with the

existence of smells and an increased defect ratio [88, 95, 122]. In contrast, a study

by Voka [123] showed that certain patterns (Observer and Singleton) appear to

display dissimilar actions. This contradicts our findings, which concluded that

the Singleton was closely negatively correlated with the majority of the code

smells. Research by Jaafar et al. [93] revealed that classes which depend on
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smelly classes (known as anti-patterns) have a higher level of fault-proneness than

others. Although this is not the case one hundred percent of the time for classes

which exhibit dependencies on the classes which contribute to design patterns.

It was also discovered by the authors that the use of patterns is commonly used

by developers as a short-term cure for smells. Later both are eliminated from

the system. While their findings have been achieved under conditions which differ

slightly from the ones we experienced, where smells and patterns of the same class

were used exclusively, they do at least partly sustain the conclusion that smells

and patterns are typically mutually exclusive.

Research on the development of patterns and smells also suggests a range of

conclusions. Aversano et al. [124] failed to show a major influence of individual

patterns on change-proneness. However, the authors did come to the conclusion

that design patterns appear to produce code which has a greater resistance to

change. Moreover, they discovered that patterns are more suitable for applica-

tions which usually change more often. The results found by Bieman et al. [12] are

inconclusive: in one case where systems were analyzed, the use of design patterns

leads to a decrease in the change-proneness, while in four other systems the oppo-

site effect was observed. In addition, the existence of code smells appears to raise

the change proneness of the code. It was demonstrated by Olbrich et al. [88, 97]

that there are certain smells which cause increased change-proneness. Other stud-

ies corroborated this result e.g. [122, 125] for further smells. It appears, however,

that the development of code smells and design patterns is caused by different
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stimuli. While the evolution of design patterns can be the result of the fact that

the substitution of implementation classes inside a pattern can be achieved more

easily. With the case of smells, the changes are meant to eliminate design issues.

Walter et al. [36] conducted an empirical study to evaluate the relationship

between DPs and code smells. The authors have addressed the class level to

study such relation. Their experiments are mainly done based on two open source

projects: jFreeChart and Apache Maven with some subsequent releases of

each project. The results indicate that the presence of design patterns is not

strongly linked with the presence of code smell instances.

5.2.3 Threats to Validity

5.2.3.1 Construct Validity

Construct validity focuses on the measures used in the evaluation. The process

of code smells detection is regarded as being especially important in this study.

The various definitions of code smells are inherently ambiguous. The variations

between the different smell detecting tools that are offered on the market add an-

other layer of complexity. Accordingly, the findings can be significantly affected

by the selection of a particular tool. In the case being studied, detection of both

smells and patterns was achieved by using only a single detector. The fact that

this was accomplished without cross-validation by another tool or with the input

of human reviewers, could potentially give rise to false negative and false positive

instances of the observed phenomena. The P-Mart repository has been produced
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using different sources: studies in the literature [12]; Ptidej (pattern trace identifi-

cation, detection, and enhancement in Java) tool for identifying design motifs [34];

and validation assignments for both undergraduate and graduate students. By us-

ing these various sources, it is possible to reduce the likelihood of false positive

and negative instances of design patterns in the P-Mart repository.

5.2.3.2 Internal Validity

Internal validity can be defined as the extent to which the observed effects rely only

on the intended experimental variables. The background of the developers can give

rise to one source of threat to the internal validity. Whether the developers have

been trained to work with DPs or not is not known. Nevertheless, the cause-and-

effect relationship is not under investigation because it is not possible to control

each variable that impacts the relationships between the different groups. The

study is limited to attempting to determine if there is a significant connection

between the targeted variables or not.

5.2.3.3 External Validity

External validity focuses on generalizations. The external validity of this study is

endangered by the nature of the subject systems. Every subject system is open-

source and has been created solely by using the Java programming language. To

generalize the results obtained in this study, it is necessary to further explore the

design patterns together with commercial systems and systems developed using

other programming languages. To this end, this study should be regarded as an
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initial step which it will be possible to reinforce at a later date with additional

replications.

5.2.3.4 Conclusion Validity

Conclusion validity can be defined as the extent to which the conclusions that

are made at the design level and the category level in ten different cases (i.e.,

ten subject systems in addition to when all of these systems are united). The

distributed nature of the classes reduces the potential for bias in the classes in

every system. In addition, most of the subject systems have a relatively close

number of smelly classes. Conversely, two of the cases (Lexi and JUnit) have

comparatively few classes and examples of design patterns. Different conclusions

may be arrived at by taking into consideration a larger number of cases and

systems derived from different criteria.
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CHAPTER 6

CONCLUSION AND FUTURE

WORK

6.1 Conclusion

The relationship between design patterns and code (bad) smells has been explored

within the scope of this study. In particular, co-existence between design patterns

and bad smells were identified and investigated as shown in Chapter 5. The

main steps followed in this study included improving our comprehension of the

concepts related to it (Chapter 2). We conducted a literature review; completing

an empirical study in which intriguing results were discovered; and then presenting

an analysis and discussion of the results. The majority of the research uncovered

in the literature review (Chapter 3) regarding the terms design patterns and bad

smells highlight the refactoring opportunities. Conducting a literature review

also revealed a number of incipient studies which studied and examined the co-
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occurrences.

While surveying the studies in the literature (Chapter 3), most of them fit

in three classifications: refactoring, structural, and co-occurrence. Many studies

proposed tools that can provide algorithms which aim at detection of code smells

and so apply automatic refactoring. Other studies have discussed the difference

between both concepts, design pattern and code smells in terms of their structure.

In particular, they used the structural characteristics of both design patterns and

code smells to build a quality model. There are very few studies that performed an

empirical study to analyze the co-occurrence relationship between design patterns

and code smells. For instance, Seng et al. [103] have illustrated some examples

where design patterns could lead to an emergence of code smells and design flaws.

As an example, they used Facade design pattern to argue that Facade functions

can only send requests to required classes which might affect the cohesion. Fontana

et al. [106] showed cases where design patterns and code smells can co-occur.

Strategy and Visitor design patterns are illustrated in their study to have an

occurrence with Feature Envy smell. Therefore, identifying design patterns can

be utilized in the code smells detection. The relation between design patterns and

code smells is discussed in the field of software engineering. Yet, it is not deeply

explored in the research. This study analyzes such relationship between design

patterns and code smells and the possible situations where design patterns can

co-occur with code smells.

We started performing the study (Chapter 4) by collecting the data of design
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patterns and code smells. For the design patterns, P-mart repository was used

instead of running a design pattern detection tool as the tools do not meet all the

requirements (page 23). For the code smells detection, we ran InFusion tool over

ten open source projects.

While conducting the empirical study (Chapter 5), the analysis of the study

were separated into three levels: class level, category level, and individual patterns

level. At the class level, all classes of the projects were considered in the analysis.

We found that classes participating in design patterns display less smells than

classes not participating in design patterns. Smell proneness and smell frequency

were both considered in class level. They showed consistent results. Hence, we

proceed to consider the smell proneness only in the other levels. Moreover, when

doing the analysis on the category level, the result shows that categories almost

have no significant differences in terms of smell proneness. Different powerful

statistical techniques were used to conduct the analysis. However, at the level of

individual design patterns, specific examples of design patterns connection with

smells were discovered using association rules metrics, Support and Confidence.

Although most of the rules showed weak relation between the presence of design

patterns and the absence of code smells, it was observed that there is a connection

that could potentially facilitate the production of bad smells. The results present

the most noteworthy cases: the Command pattern with Blob and God Class

smells. In addition, Memento pattern was discovered to be connected to Blob

and External Duplication smells. On the other hand, Decorator pattern was
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significantly not connected with smells.

The outcome of this thesis was to demonstrate the potential for the improper

use of a design pattern, leading to the creation of code smells, whilst this may

not hold true for certain cases. Consequently, this study has laid a foundation for

future research and the potential for even more fascinating discoveries. It will be

important for future studies to investigate additional concrete examples of design

patterns that, because of their improper use, have classes that present bad smells.

There is definitely the potential for future research in this area.

6.2 Future Work

Working on this thesis has given rise to numerous ideas, but due to time con-

straints, it was not possible to explore these in greater deep. The authors would

like to recommend that further study be undertaken in the future as this would

further enhance the comprehension of these programs. Additional extensions to

this study can be presented below:

• The first potential area for future study is to reproduce the empirical study

in the context of enterprise development, which could lead to additional data

and consequently a higher degree of statistical significance. In addition to

altering the target systems, there is potential to employ additional detection

tools that could produce superior results and may also lead to the detection

of additional or possibly different instances of bad smells. To ensure the

success of this method, it is recommended to conduct it in a completely
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controlled environment. This requires that the systems are familiar to and

properly understood by the researchers. Under these conditions, the docu-

mentations of the employed design patterns must take place. In addition,

another requirement could be that the system is not too big, which might

also facilitate more accurate manual identification of bad smells. With the

data in our possession, there is the potential to conduct an examination of

the co-occurrences between design patterns and bad smells.

• As part of a future study it would be interesting to embark on a survey in-

volving experienced professionals with the aim of analyzing code clips which

include different design patterns and bad smells. This survey could poten-

tially assess how these professionals react when they discover a co-occurrence

of design patterns and bad smells.

• A potential work as a future work could be a smell prediction using metrics

that connect to design patterns. The metrics can be modeled based on the

availability of design patterns instances. In addition, smell detection can

utilize clustering techniques in order to detect specific smells that connect

to specific design patterns.
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